xref: /netbsd/external/gpl3/gcc/dist/libiberty/sha1.c (revision 2f055536)
1 /* sha1.c - Functions to compute SHA1 message digest of files or
2    memory blocks according to the NIST specification FIPS-180-1.
3 
4    Copyright (C) 2000-2020 Free Software Foundation, Inc.
5 
6    This program is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by the
8    Free Software Foundation; either version 2, or (at your option) any
9    later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software Foundation,
18    Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
19 
20 /* Written by Scott G. Miller
21    Credits:
22       Robert Klep <robert@ilse.nl>  -- Expansion function fix
23 */
24 
25 #include <config.h>
26 
27 #include "sha1.h"
28 
29 #include <stddef.h>
30 #include <string.h>
31 
32 #if USE_UNLOCKED_IO
33 # include "unlocked-io.h"
34 #endif
35 
36 #ifdef WORDS_BIGENDIAN
37 # define SWAP(n) (n)
38 #else
39 # define SWAP(n) \
40     (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
41 #endif
42 
43 #define BLOCKSIZE 4096
44 #if BLOCKSIZE % 64 != 0
45 # error "invalid BLOCKSIZE"
46 #endif
47 
48 /* This array contains the bytes used to pad the buffer to the next
49    64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
50 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
51 
52 
53 /* Take a pointer to a 160 bit block of data (five 32 bit ints) and
54    initialize it to the start constants of the SHA1 algorithm.  This
55    must be called before using hash in the call to sha1_hash.  */
56 void
sha1_init_ctx(struct sha1_ctx * ctx)57 sha1_init_ctx (struct sha1_ctx *ctx)
58 {
59   ctx->A = 0x67452301;
60   ctx->B = 0xefcdab89;
61   ctx->C = 0x98badcfe;
62   ctx->D = 0x10325476;
63   ctx->E = 0xc3d2e1f0;
64 
65   ctx->total[0] = ctx->total[1] = 0;
66   ctx->buflen = 0;
67 }
68 
69 /* Put result from CTX in first 20 bytes following RESBUF.  The result
70    must be in little endian byte order.
71 
72    IMPORTANT: On some systems it is required that RESBUF is correctly
73    aligned for a 32-bit value.  */
74 void *
sha1_read_ctx(const struct sha1_ctx * ctx,void * resbuf)75 sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
76 {
77   ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A);
78   ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B);
79   ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C);
80   ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D);
81   ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E);
82 
83   return resbuf;
84 }
85 
86 /* Process the remaining bytes in the internal buffer and the usual
87    prolog according to the standard and write the result to RESBUF.
88 
89    IMPORTANT: On some systems it is required that RESBUF is correctly
90    aligned for a 32-bit value.  */
91 void *
sha1_finish_ctx(struct sha1_ctx * ctx,void * resbuf)92 sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
93 {
94   /* Take yet unprocessed bytes into account.  */
95   sha1_uint32 bytes = ctx->buflen;
96   size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
97 
98   /* Now count remaining bytes.  */
99   ctx->total[0] += bytes;
100   if (ctx->total[0] < bytes)
101     ++ctx->total[1];
102 
103   /* Put the 64-bit file length in *bits* at the end of the buffer.  */
104   ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
105   ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
106 
107   memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
108 
109   /* Process last bytes.  */
110   sha1_process_block (ctx->buffer, size * 4, ctx);
111 
112   return sha1_read_ctx (ctx, resbuf);
113 }
114 
115 /* Compute SHA1 message digest for bytes read from STREAM.  The
116    resulting message digest number will be written into the 16 bytes
117    beginning at RESBLOCK.  */
118 int
sha1_stream(FILE * stream,void * resblock)119 sha1_stream (FILE *stream, void *resblock)
120 {
121   struct sha1_ctx ctx;
122   char buffer[BLOCKSIZE + 72];
123   size_t sum;
124 
125   /* Initialize the computation context.  */
126   sha1_init_ctx (&ctx);
127 
128   /* Iterate over full file contents.  */
129   while (1)
130     {
131       /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
132 	 computation function processes the whole buffer so that with the
133 	 next round of the loop another block can be read.  */
134       size_t n;
135       sum = 0;
136 
137       /* Read block.  Take care for partial reads.  */
138       while (1)
139 	{
140 	  n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
141 
142 	  sum += n;
143 
144 	  if (sum == BLOCKSIZE)
145 	    break;
146 
147 	  if (n == 0)
148 	    {
149 	      /* Check for the error flag IFF N == 0, so that we don't
150 		 exit the loop after a partial read due to e.g., EAGAIN
151 		 or EWOULDBLOCK.  */
152 	      if (ferror (stream))
153 		return 1;
154 	      goto process_partial_block;
155 	    }
156 
157 	  /* We've read at least one byte, so ignore errors.  But always
158 	     check for EOF, since feof may be true even though N > 0.
159 	     Otherwise, we could end up calling fread after EOF.  */
160 	  if (feof (stream))
161 	    goto process_partial_block;
162 	}
163 
164       /* Process buffer with BLOCKSIZE bytes.  Note that
165 			BLOCKSIZE % 64 == 0
166        */
167       sha1_process_block (buffer, BLOCKSIZE, &ctx);
168     }
169 
170  process_partial_block:;
171 
172   /* Process any remaining bytes.  */
173   if (sum > 0)
174     sha1_process_bytes (buffer, sum, &ctx);
175 
176   /* Construct result in desired memory.  */
177   sha1_finish_ctx (&ctx, resblock);
178   return 0;
179 }
180 
181 /* Compute SHA1 message digest for LEN bytes beginning at BUFFER.  The
182    result is always in little endian byte order, so that a byte-wise
183    output yields to the wanted ASCII representation of the message
184    digest.  */
185 void *
sha1_buffer(const char * buffer,size_t len,void * resblock)186 sha1_buffer (const char *buffer, size_t len, void *resblock)
187 {
188   struct sha1_ctx ctx;
189 
190   /* Initialize the computation context.  */
191   sha1_init_ctx (&ctx);
192 
193   /* Process whole buffer but last len % 64 bytes.  */
194   sha1_process_bytes (buffer, len, &ctx);
195 
196   /* Put result in desired memory area.  */
197   return sha1_finish_ctx (&ctx, resblock);
198 }
199 
200 void
sha1_process_bytes(const void * buffer,size_t len,struct sha1_ctx * ctx)201 sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
202 {
203   /* When we already have some bits in our internal buffer concatenate
204      both inputs first.  */
205   if (ctx->buflen != 0)
206     {
207       size_t left_over = ctx->buflen;
208       size_t add = 128 - left_over > len ? len : 128 - left_over;
209 
210       memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
211       ctx->buflen += add;
212 
213       if (ctx->buflen > 64)
214 	{
215 	  sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
216 
217 	  ctx->buflen &= 63;
218 	  /* The regions in the following copy operation cannot overlap.  */
219 	  memcpy (ctx->buffer,
220 		  &((char *) ctx->buffer)[(left_over + add) & ~63],
221 		  ctx->buflen);
222 	}
223 
224       buffer = (const char *) buffer + add;
225       len -= add;
226     }
227 
228   /* Process available complete blocks.  */
229   if (len >= 64)
230     {
231 #if !_STRING_ARCH_unaligned
232 # if defined(__clang__) || defined(__GNUC__)
233 # define alignof(type) __alignof__(type)
234 # else
235 # define alignof(type) offsetof (struct { char c; type x; }, x)
236 # endif
237 # define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0)
238       if (UNALIGNED_P (buffer))
239 	while (len > 64)
240 	  {
241 	    sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
242 	    buffer = (const char *) buffer + 64;
243 	    len -= 64;
244 	  }
245       else
246 #endif
247 	{
248 	  sha1_process_block (buffer, len & ~63, ctx);
249 	  buffer = (const char *) buffer + (len & ~63);
250 	  len &= 63;
251 	}
252     }
253 
254   /* Move remaining bytes in internal buffer.  */
255   if (len > 0)
256     {
257       size_t left_over = ctx->buflen;
258 
259       memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
260       left_over += len;
261       if (left_over >= 64)
262 	{
263 	  sha1_process_block (ctx->buffer, 64, ctx);
264 	  left_over -= 64;
265 	  memcpy (ctx->buffer, &ctx->buffer[16], left_over);
266 	}
267       ctx->buflen = left_over;
268     }
269 }
270 
271 /* --- Code below is the primary difference between md5.c and sha1.c --- */
272 
273 /* SHA1 round constants */
274 #define K1 0x5a827999
275 #define K2 0x6ed9eba1
276 #define K3 0x8f1bbcdc
277 #define K4 0xca62c1d6
278 
279 /* Round functions.  Note that F2 is the same as F4.  */
280 #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
281 #define F2(B,C,D) (B ^ C ^ D)
282 #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
283 #define F4(B,C,D) (B ^ C ^ D)
284 
285 /* Process LEN bytes of BUFFER, accumulating context into CTX.
286    It is assumed that LEN % 64 == 0.
287    Most of this code comes from GnuPG's cipher/sha1.c.  */
288 
289 void
sha1_process_block(const void * buffer,size_t len,struct sha1_ctx * ctx)290 sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
291 {
292   const sha1_uint32 *words = (const sha1_uint32*) buffer;
293   size_t nwords = len / sizeof (sha1_uint32);
294   const sha1_uint32 *endp = words + nwords;
295   sha1_uint32 x[16];
296   sha1_uint32 a = ctx->A;
297   sha1_uint32 b = ctx->B;
298   sha1_uint32 c = ctx->C;
299   sha1_uint32 d = ctx->D;
300   sha1_uint32 e = ctx->E;
301 
302   /* First increment the byte count.  RFC 1321 specifies the possible
303      length of the file up to 2^64 bits.  Here we only compute the
304      number of bytes.  Do a double word increment.  */
305   ctx->total[0] += len;
306   ctx->total[1] += ((len >> 31) >> 1) + (ctx->total[0] < len);
307 
308 #define rol(x, n) (((x) << (n)) | ((sha1_uint32) (x) >> (32 - (n))))
309 
310 #define M(I) ( tm =   x[I&0x0f] ^ x[(I-14)&0x0f] \
311 		    ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
312 	       , (x[I&0x0f] = rol(tm, 1)) )
313 
314 #define R(A,B,C,D,E,F,K,M)  do { E += rol( A, 5 )     \
315 				      + F( B, C, D )  \
316 				      + K	      \
317 				      + M;	      \
318 				 B = rol( B, 30 );    \
319 			       } while(0)
320 
321   while (words < endp)
322     {
323       sha1_uint32 tm;
324       int t;
325       for (t = 0; t < 16; t++)
326 	{
327 	  x[t] = SWAP (*words);
328 	  words++;
329 	}
330 
331       R( a, b, c, d, e, F1, K1, x[ 0] );
332       R( e, a, b, c, d, F1, K1, x[ 1] );
333       R( d, e, a, b, c, F1, K1, x[ 2] );
334       R( c, d, e, a, b, F1, K1, x[ 3] );
335       R( b, c, d, e, a, F1, K1, x[ 4] );
336       R( a, b, c, d, e, F1, K1, x[ 5] );
337       R( e, a, b, c, d, F1, K1, x[ 6] );
338       R( d, e, a, b, c, F1, K1, x[ 7] );
339       R( c, d, e, a, b, F1, K1, x[ 8] );
340       R( b, c, d, e, a, F1, K1, x[ 9] );
341       R( a, b, c, d, e, F1, K1, x[10] );
342       R( e, a, b, c, d, F1, K1, x[11] );
343       R( d, e, a, b, c, F1, K1, x[12] );
344       R( c, d, e, a, b, F1, K1, x[13] );
345       R( b, c, d, e, a, F1, K1, x[14] );
346       R( a, b, c, d, e, F1, K1, x[15] );
347       R( e, a, b, c, d, F1, K1, M(16) );
348       R( d, e, a, b, c, F1, K1, M(17) );
349       R( c, d, e, a, b, F1, K1, M(18) );
350       R( b, c, d, e, a, F1, K1, M(19) );
351       R( a, b, c, d, e, F2, K2, M(20) );
352       R( e, a, b, c, d, F2, K2, M(21) );
353       R( d, e, a, b, c, F2, K2, M(22) );
354       R( c, d, e, a, b, F2, K2, M(23) );
355       R( b, c, d, e, a, F2, K2, M(24) );
356       R( a, b, c, d, e, F2, K2, M(25) );
357       R( e, a, b, c, d, F2, K2, M(26) );
358       R( d, e, a, b, c, F2, K2, M(27) );
359       R( c, d, e, a, b, F2, K2, M(28) );
360       R( b, c, d, e, a, F2, K2, M(29) );
361       R( a, b, c, d, e, F2, K2, M(30) );
362       R( e, a, b, c, d, F2, K2, M(31) );
363       R( d, e, a, b, c, F2, K2, M(32) );
364       R( c, d, e, a, b, F2, K2, M(33) );
365       R( b, c, d, e, a, F2, K2, M(34) );
366       R( a, b, c, d, e, F2, K2, M(35) );
367       R( e, a, b, c, d, F2, K2, M(36) );
368       R( d, e, a, b, c, F2, K2, M(37) );
369       R( c, d, e, a, b, F2, K2, M(38) );
370       R( b, c, d, e, a, F2, K2, M(39) );
371       R( a, b, c, d, e, F3, K3, M(40) );
372       R( e, a, b, c, d, F3, K3, M(41) );
373       R( d, e, a, b, c, F3, K3, M(42) );
374       R( c, d, e, a, b, F3, K3, M(43) );
375       R( b, c, d, e, a, F3, K3, M(44) );
376       R( a, b, c, d, e, F3, K3, M(45) );
377       R( e, a, b, c, d, F3, K3, M(46) );
378       R( d, e, a, b, c, F3, K3, M(47) );
379       R( c, d, e, a, b, F3, K3, M(48) );
380       R( b, c, d, e, a, F3, K3, M(49) );
381       R( a, b, c, d, e, F3, K3, M(50) );
382       R( e, a, b, c, d, F3, K3, M(51) );
383       R( d, e, a, b, c, F3, K3, M(52) );
384       R( c, d, e, a, b, F3, K3, M(53) );
385       R( b, c, d, e, a, F3, K3, M(54) );
386       R( a, b, c, d, e, F3, K3, M(55) );
387       R( e, a, b, c, d, F3, K3, M(56) );
388       R( d, e, a, b, c, F3, K3, M(57) );
389       R( c, d, e, a, b, F3, K3, M(58) );
390       R( b, c, d, e, a, F3, K3, M(59) );
391       R( a, b, c, d, e, F4, K4, M(60) );
392       R( e, a, b, c, d, F4, K4, M(61) );
393       R( d, e, a, b, c, F4, K4, M(62) );
394       R( c, d, e, a, b, F4, K4, M(63) );
395       R( b, c, d, e, a, F4, K4, M(64) );
396       R( a, b, c, d, e, F4, K4, M(65) );
397       R( e, a, b, c, d, F4, K4, M(66) );
398       R( d, e, a, b, c, F4, K4, M(67) );
399       R( c, d, e, a, b, F4, K4, M(68) );
400       R( b, c, d, e, a, F4, K4, M(69) );
401       R( a, b, c, d, e, F4, K4, M(70) );
402       R( e, a, b, c, d, F4, K4, M(71) );
403       R( d, e, a, b, c, F4, K4, M(72) );
404       R( c, d, e, a, b, F4, K4, M(73) );
405       R( b, c, d, e, a, F4, K4, M(74) );
406       R( a, b, c, d, e, F4, K4, M(75) );
407       R( e, a, b, c, d, F4, K4, M(76) );
408       R( d, e, a, b, c, F4, K4, M(77) );
409       R( c, d, e, a, b, F4, K4, M(78) );
410       R( b, c, d, e, a, F4, K4, M(79) );
411 
412       a = ctx->A += a;
413       b = ctx->B += b;
414       c = ctx->C += c;
415       d = ctx->D += d;
416       e = ctx->E += e;
417     }
418 }
419