1 //===-- asan_allocator.cc -------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of AddressSanitizer, an address sanity checker.
9 //
10 // Implementation of ASan's memory allocator, 2-nd version.
11 // This variant uses the allocator from sanitizer_common, i.e. the one shared
12 // with ThreadSanitizer and MemorySanitizer.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "asan_allocator.h"
17 #include "asan_mapping.h"
18 #include "asan_poisoning.h"
19 #include "asan_report.h"
20 #include "asan_stack.h"
21 #include "asan_thread.h"
22 #include "sanitizer_common/sanitizer_allocator_checks.h"
23 #include "sanitizer_common/sanitizer_allocator_interface.h"
24 #include "sanitizer_common/sanitizer_errno.h"
25 #include "sanitizer_common/sanitizer_flags.h"
26 #include "sanitizer_common/sanitizer_internal_defs.h"
27 #include "sanitizer_common/sanitizer_list.h"
28 #include "sanitizer_common/sanitizer_stackdepot.h"
29 #include "sanitizer_common/sanitizer_quarantine.h"
30 #include "lsan/lsan_common.h"
31
32 namespace __asan {
33
34 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
35 // We use adaptive redzones: for larger allocation larger redzones are used.
RZLog2Size(u32 rz_log)36 static u32 RZLog2Size(u32 rz_log) {
37 CHECK_LT(rz_log, 8);
38 return 16 << rz_log;
39 }
40
RZSize2Log(u32 rz_size)41 static u32 RZSize2Log(u32 rz_size) {
42 CHECK_GE(rz_size, 16);
43 CHECK_LE(rz_size, 2048);
44 CHECK(IsPowerOfTwo(rz_size));
45 u32 res = Log2(rz_size) - 4;
46 CHECK_EQ(rz_size, RZLog2Size(res));
47 return res;
48 }
49
50 static AsanAllocator &get_allocator();
51
52 // The memory chunk allocated from the underlying allocator looks like this:
53 // L L L L L L H H U U U U U U R R
54 // L -- left redzone words (0 or more bytes)
55 // H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
56 // U -- user memory.
57 // R -- right redzone (0 or more bytes)
58 // ChunkBase consists of ChunkHeader and other bytes that overlap with user
59 // memory.
60
61 // If the left redzone is greater than the ChunkHeader size we store a magic
62 // value in the first uptr word of the memory block and store the address of
63 // ChunkBase in the next uptr.
64 // M B L L L L L L L L L H H U U U U U U
65 // | ^
66 // ---------------------|
67 // M -- magic value kAllocBegMagic
68 // B -- address of ChunkHeader pointing to the first 'H'
69 static const uptr kAllocBegMagic = 0xCC6E96B9;
70
71 struct ChunkHeader {
72 // 1-st 8 bytes.
73 u32 chunk_state : 8; // Must be first.
74 u32 alloc_tid : 24;
75
76 u32 free_tid : 24;
77 u32 from_memalign : 1;
78 u32 alloc_type : 2;
79 u32 rz_log : 3;
80 u32 lsan_tag : 2;
81 // 2-nd 8 bytes
82 // This field is used for small sizes. For large sizes it is equal to
83 // SizeClassMap::kMaxSize and the actual size is stored in the
84 // SecondaryAllocator's metadata.
85 u32 user_requested_size : 29;
86 // align < 8 -> 0
87 // else -> log2(min(align, 512)) - 2
88 u32 user_requested_alignment_log : 3;
89 u32 alloc_context_id;
90 };
91
92 struct ChunkBase : ChunkHeader {
93 // Header2, intersects with user memory.
94 u32 free_context_id;
95 };
96
97 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
98 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
99 COMPILER_CHECK(kChunkHeaderSize == 16);
100 COMPILER_CHECK(kChunkHeader2Size <= 16);
101
102 // Every chunk of memory allocated by this allocator can be in one of 3 states:
103 // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
104 // CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
105 // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
106 enum {
107 CHUNK_AVAILABLE = 0, // 0 is the default value even if we didn't set it.
108 CHUNK_ALLOCATED = 2,
109 CHUNK_QUARANTINE = 3
110 };
111
112 struct AsanChunk: ChunkBase {
Beg__asan::AsanChunk113 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
UsedSize__asan::AsanChunk114 uptr UsedSize(bool locked_version = false) {
115 if (user_requested_size != SizeClassMap::kMaxSize)
116 return user_requested_size;
117 return *reinterpret_cast<uptr *>(
118 get_allocator().GetMetaData(AllocBeg(locked_version)));
119 }
AllocBeg__asan::AsanChunk120 void *AllocBeg(bool locked_version = false) {
121 if (from_memalign) {
122 if (locked_version)
123 return get_allocator().GetBlockBeginFastLocked(
124 reinterpret_cast<void *>(this));
125 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
126 }
127 return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
128 }
AddrIsInside__asan::AsanChunk129 bool AddrIsInside(uptr addr, bool locked_version = false) {
130 return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version));
131 }
132 };
133
134 struct QuarantineCallback {
QuarantineCallback__asan::QuarantineCallback135 QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack)
136 : cache_(cache),
137 stack_(stack) {
138 }
139
Recycle__asan::QuarantineCallback140 void Recycle(AsanChunk *m) {
141 CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
142 atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed);
143 CHECK_NE(m->alloc_tid, kInvalidTid);
144 CHECK_NE(m->free_tid, kInvalidTid);
145 PoisonShadow(m->Beg(),
146 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
147 kAsanHeapLeftRedzoneMagic);
148 void *p = reinterpret_cast<void *>(m->AllocBeg());
149 if (p != m) {
150 uptr *alloc_magic = reinterpret_cast<uptr *>(p);
151 CHECK_EQ(alloc_magic[0], kAllocBegMagic);
152 // Clear the magic value, as allocator internals may overwrite the
153 // contents of deallocated chunk, confusing GetAsanChunk lookup.
154 alloc_magic[0] = 0;
155 CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m));
156 }
157
158 // Statistics.
159 AsanStats &thread_stats = GetCurrentThreadStats();
160 thread_stats.real_frees++;
161 thread_stats.really_freed += m->UsedSize();
162
163 get_allocator().Deallocate(cache_, p);
164 }
165
Allocate__asan::QuarantineCallback166 void *Allocate(uptr size) {
167 void *res = get_allocator().Allocate(cache_, size, 1);
168 // TODO(alekseys): Consider making quarantine OOM-friendly.
169 if (UNLIKELY(!res))
170 ReportOutOfMemory(size, stack_);
171 return res;
172 }
173
Deallocate__asan::QuarantineCallback174 void Deallocate(void *p) {
175 get_allocator().Deallocate(cache_, p);
176 }
177
178 private:
179 AllocatorCache* const cache_;
180 BufferedStackTrace* const stack_;
181 };
182
183 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
184 typedef AsanQuarantine::Cache QuarantineCache;
185
OnMap(uptr p,uptr size) const186 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
187 PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
188 // Statistics.
189 AsanStats &thread_stats = GetCurrentThreadStats();
190 thread_stats.mmaps++;
191 thread_stats.mmaped += size;
192 }
OnUnmap(uptr p,uptr size) const193 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
194 PoisonShadow(p, size, 0);
195 // We are about to unmap a chunk of user memory.
196 // Mark the corresponding shadow memory as not needed.
197 FlushUnneededASanShadowMemory(p, size);
198 // Statistics.
199 AsanStats &thread_stats = GetCurrentThreadStats();
200 thread_stats.munmaps++;
201 thread_stats.munmaped += size;
202 }
203
204 // We can not use THREADLOCAL because it is not supported on some of the
205 // platforms we care about (OSX 10.6, Android).
206 // static THREADLOCAL AllocatorCache cache;
GetAllocatorCache(AsanThreadLocalMallocStorage * ms)207 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
208 CHECK(ms);
209 return &ms->allocator_cache;
210 }
211
GetQuarantineCache(AsanThreadLocalMallocStorage * ms)212 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
213 CHECK(ms);
214 CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
215 return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
216 }
217
SetFrom(const Flags * f,const CommonFlags * cf)218 void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
219 quarantine_size_mb = f->quarantine_size_mb;
220 thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
221 min_redzone = f->redzone;
222 max_redzone = f->max_redzone;
223 may_return_null = cf->allocator_may_return_null;
224 alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
225 release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
226 }
227
CopyTo(Flags * f,CommonFlags * cf)228 void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
229 f->quarantine_size_mb = quarantine_size_mb;
230 f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
231 f->redzone = min_redzone;
232 f->max_redzone = max_redzone;
233 cf->allocator_may_return_null = may_return_null;
234 f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
235 cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
236 }
237
238 struct Allocator {
239 static const uptr kMaxAllowedMallocSize =
240 FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);
241
242 AsanAllocator allocator;
243 AsanQuarantine quarantine;
244 StaticSpinMutex fallback_mutex;
245 AllocatorCache fallback_allocator_cache;
246 QuarantineCache fallback_quarantine_cache;
247
248 atomic_uint8_t rss_limit_exceeded;
249
250 // ------------------- Options --------------------------
251 atomic_uint16_t min_redzone;
252 atomic_uint16_t max_redzone;
253 atomic_uint8_t alloc_dealloc_mismatch;
254
255 // ------------------- Initialization ------------------------
Allocator__asan::Allocator256 explicit Allocator(LinkerInitialized)
257 : quarantine(LINKER_INITIALIZED),
258 fallback_quarantine_cache(LINKER_INITIALIZED) {}
259
CheckOptions__asan::Allocator260 void CheckOptions(const AllocatorOptions &options) const {
261 CHECK_GE(options.min_redzone, 16);
262 CHECK_GE(options.max_redzone, options.min_redzone);
263 CHECK_LE(options.max_redzone, 2048);
264 CHECK(IsPowerOfTwo(options.min_redzone));
265 CHECK(IsPowerOfTwo(options.max_redzone));
266 }
267
SharedInitCode__asan::Allocator268 void SharedInitCode(const AllocatorOptions &options) {
269 CheckOptions(options);
270 quarantine.Init((uptr)options.quarantine_size_mb << 20,
271 (uptr)options.thread_local_quarantine_size_kb << 10);
272 atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
273 memory_order_release);
274 atomic_store(&min_redzone, options.min_redzone, memory_order_release);
275 atomic_store(&max_redzone, options.max_redzone, memory_order_release);
276 }
277
InitLinkerInitialized__asan::Allocator278 void InitLinkerInitialized(const AllocatorOptions &options) {
279 SetAllocatorMayReturnNull(options.may_return_null);
280 allocator.InitLinkerInitialized(options.release_to_os_interval_ms);
281 SharedInitCode(options);
282 }
283
RssLimitExceeded__asan::Allocator284 bool RssLimitExceeded() {
285 return atomic_load(&rss_limit_exceeded, memory_order_relaxed);
286 }
287
SetRssLimitExceeded__asan::Allocator288 void SetRssLimitExceeded(bool limit_exceeded) {
289 atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed);
290 }
291
RePoisonChunk__asan::Allocator292 void RePoisonChunk(uptr chunk) {
293 // This could be a user-facing chunk (with redzones), or some internal
294 // housekeeping chunk, like TransferBatch. Start by assuming the former.
295 AsanChunk *ac = GetAsanChunk((void *)chunk);
296 uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)ac);
297 uptr beg = ac->Beg();
298 uptr end = ac->Beg() + ac->UsedSize(true);
299 uptr chunk_end = chunk + allocated_size;
300 if (chunk < beg && beg < end && end <= chunk_end &&
301 ac->chunk_state == CHUNK_ALLOCATED) {
302 // Looks like a valid AsanChunk in use, poison redzones only.
303 PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
304 uptr end_aligned_down = RoundDownTo(end, SHADOW_GRANULARITY);
305 FastPoisonShadowPartialRightRedzone(
306 end_aligned_down, end - end_aligned_down,
307 chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
308 } else {
309 // This is either not an AsanChunk or freed or quarantined AsanChunk.
310 // In either case, poison everything.
311 PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
312 }
313 }
314
ReInitialize__asan::Allocator315 void ReInitialize(const AllocatorOptions &options) {
316 SetAllocatorMayReturnNull(options.may_return_null);
317 allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
318 SharedInitCode(options);
319
320 // Poison all existing allocation's redzones.
321 if (CanPoisonMemory()) {
322 allocator.ForceLock();
323 allocator.ForEachChunk(
324 [](uptr chunk, void *alloc) {
325 ((Allocator *)alloc)->RePoisonChunk(chunk);
326 },
327 this);
328 allocator.ForceUnlock();
329 }
330 }
331
GetOptions__asan::Allocator332 void GetOptions(AllocatorOptions *options) const {
333 options->quarantine_size_mb = quarantine.GetSize() >> 20;
334 options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10;
335 options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
336 options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
337 options->may_return_null = AllocatorMayReturnNull();
338 options->alloc_dealloc_mismatch =
339 atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
340 options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
341 }
342
343 // -------------------- Helper methods. -------------------------
ComputeRZLog__asan::Allocator344 uptr ComputeRZLog(uptr user_requested_size) {
345 u32 rz_log =
346 user_requested_size <= 64 - 16 ? 0 :
347 user_requested_size <= 128 - 32 ? 1 :
348 user_requested_size <= 512 - 64 ? 2 :
349 user_requested_size <= 4096 - 128 ? 3 :
350 user_requested_size <= (1 << 14) - 256 ? 4 :
351 user_requested_size <= (1 << 15) - 512 ? 5 :
352 user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
353 u32 min_rz = atomic_load(&min_redzone, memory_order_acquire);
354 u32 max_rz = atomic_load(&max_redzone, memory_order_acquire);
355 return Min(Max(rz_log, RZSize2Log(min_rz)), RZSize2Log(max_rz));
356 }
357
ComputeUserRequestedAlignmentLog__asan::Allocator358 static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) {
359 if (user_requested_alignment < 8)
360 return 0;
361 if (user_requested_alignment > 512)
362 user_requested_alignment = 512;
363 return Log2(user_requested_alignment) - 2;
364 }
365
ComputeUserAlignment__asan::Allocator366 static uptr ComputeUserAlignment(uptr user_requested_alignment_log) {
367 if (user_requested_alignment_log == 0)
368 return 0;
369 return 1LL << (user_requested_alignment_log + 2);
370 }
371
372 // We have an address between two chunks, and we want to report just one.
ChooseChunk__asan::Allocator373 AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
374 AsanChunk *right_chunk) {
375 // Prefer an allocated chunk over freed chunk and freed chunk
376 // over available chunk.
377 if (left_chunk->chunk_state != right_chunk->chunk_state) {
378 if (left_chunk->chunk_state == CHUNK_ALLOCATED)
379 return left_chunk;
380 if (right_chunk->chunk_state == CHUNK_ALLOCATED)
381 return right_chunk;
382 if (left_chunk->chunk_state == CHUNK_QUARANTINE)
383 return left_chunk;
384 if (right_chunk->chunk_state == CHUNK_QUARANTINE)
385 return right_chunk;
386 }
387 // Same chunk_state: choose based on offset.
388 sptr l_offset = 0, r_offset = 0;
389 CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
390 CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
391 if (l_offset < r_offset)
392 return left_chunk;
393 return right_chunk;
394 }
395
396 // -------------------- Allocation/Deallocation routines ---------------
Allocate__asan::Allocator397 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
398 AllocType alloc_type, bool can_fill) {
399 if (UNLIKELY(!asan_inited))
400 AsanInitFromRtl();
401 if (RssLimitExceeded()) {
402 if (AllocatorMayReturnNull())
403 return nullptr;
404 ReportRssLimitExceeded(stack);
405 }
406 Flags &fl = *flags();
407 CHECK(stack);
408 const uptr min_alignment = SHADOW_GRANULARITY;
409 const uptr user_requested_alignment_log =
410 ComputeUserRequestedAlignmentLog(alignment);
411 if (alignment < min_alignment)
412 alignment = min_alignment;
413 if (size == 0) {
414 // We'd be happy to avoid allocating memory for zero-size requests, but
415 // some programs/tests depend on this behavior and assume that malloc
416 // would not return NULL even for zero-size allocations. Moreover, it
417 // looks like operator new should never return NULL, and results of
418 // consecutive "new" calls must be different even if the allocated size
419 // is zero.
420 size = 1;
421 }
422 CHECK(IsPowerOfTwo(alignment));
423 uptr rz_log = ComputeRZLog(size);
424 uptr rz_size = RZLog2Size(rz_log);
425 uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
426 uptr needed_size = rounded_size + rz_size;
427 if (alignment > min_alignment)
428 needed_size += alignment;
429 bool using_primary_allocator = true;
430 // If we are allocating from the secondary allocator, there will be no
431 // automatic right redzone, so add the right redzone manually.
432 if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
433 needed_size += rz_size;
434 using_primary_allocator = false;
435 }
436 CHECK(IsAligned(needed_size, min_alignment));
437 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
438 if (AllocatorMayReturnNull()) {
439 Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
440 (void*)size);
441 return nullptr;
442 }
443 ReportAllocationSizeTooBig(size, needed_size, kMaxAllowedMallocSize,
444 stack);
445 }
446
447 AsanThread *t = GetCurrentThread();
448 void *allocated;
449 if (t) {
450 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
451 allocated = allocator.Allocate(cache, needed_size, 8);
452 } else {
453 SpinMutexLock l(&fallback_mutex);
454 AllocatorCache *cache = &fallback_allocator_cache;
455 allocated = allocator.Allocate(cache, needed_size, 8);
456 }
457 if (UNLIKELY(!allocated)) {
458 SetAllocatorOutOfMemory();
459 if (AllocatorMayReturnNull())
460 return nullptr;
461 ReportOutOfMemory(size, stack);
462 }
463
464 if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
465 // Heap poisoning is enabled, but the allocator provides an unpoisoned
466 // chunk. This is possible if CanPoisonMemory() was false for some
467 // time, for example, due to flags()->start_disabled.
468 // Anyway, poison the block before using it for anything else.
469 uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
470 PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
471 }
472
473 uptr alloc_beg = reinterpret_cast<uptr>(allocated);
474 uptr alloc_end = alloc_beg + needed_size;
475 uptr beg_plus_redzone = alloc_beg + rz_size;
476 uptr user_beg = beg_plus_redzone;
477 if (!IsAligned(user_beg, alignment))
478 user_beg = RoundUpTo(user_beg, alignment);
479 uptr user_end = user_beg + size;
480 CHECK_LE(user_end, alloc_end);
481 uptr chunk_beg = user_beg - kChunkHeaderSize;
482 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
483 m->alloc_type = alloc_type;
484 m->rz_log = rz_log;
485 u32 alloc_tid = t ? t->tid() : 0;
486 m->alloc_tid = alloc_tid;
487 CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield?
488 m->free_tid = kInvalidTid;
489 m->from_memalign = user_beg != beg_plus_redzone;
490 if (alloc_beg != chunk_beg) {
491 CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
492 reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
493 reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
494 }
495 if (using_primary_allocator) {
496 CHECK(size);
497 m->user_requested_size = size;
498 CHECK(allocator.FromPrimary(allocated));
499 } else {
500 CHECK(!allocator.FromPrimary(allocated));
501 m->user_requested_size = SizeClassMap::kMaxSize;
502 uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
503 meta[0] = size;
504 meta[1] = chunk_beg;
505 }
506 m->user_requested_alignment_log = user_requested_alignment_log;
507
508 m->alloc_context_id = StackDepotPut(*stack);
509
510 uptr size_rounded_down_to_granularity =
511 RoundDownTo(size, SHADOW_GRANULARITY);
512 // Unpoison the bulk of the memory region.
513 if (size_rounded_down_to_granularity)
514 PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
515 // Deal with the end of the region if size is not aligned to granularity.
516 if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
517 u8 *shadow =
518 (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
519 *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
520 }
521
522 AsanStats &thread_stats = GetCurrentThreadStats();
523 thread_stats.mallocs++;
524 thread_stats.malloced += size;
525 thread_stats.malloced_redzones += needed_size - size;
526 if (needed_size > SizeClassMap::kMaxSize)
527 thread_stats.malloc_large++;
528 else
529 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
530
531 void *res = reinterpret_cast<void *>(user_beg);
532 if (can_fill && fl.max_malloc_fill_size) {
533 uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
534 REAL(memset)(res, fl.malloc_fill_byte, fill_size);
535 }
536 #if CAN_SANITIZE_LEAKS
537 m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
538 : __lsan::kDirectlyLeaked;
539 #endif
540 // Must be the last mutation of metadata in this function.
541 atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
542 ASAN_MALLOC_HOOK(res, size);
543 return res;
544 }
545
546 // Set quarantine flag if chunk is allocated, issue ASan error report on
547 // available and quarantined chunks. Return true on success, false otherwise.
AtomicallySetQuarantineFlagIfAllocated__asan::Allocator548 bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
549 BufferedStackTrace *stack) {
550 u8 old_chunk_state = CHUNK_ALLOCATED;
551 // Flip the chunk_state atomically to avoid race on double-free.
552 if (!atomic_compare_exchange_strong((atomic_uint8_t *)m, &old_chunk_state,
553 CHUNK_QUARANTINE,
554 memory_order_acquire)) {
555 ReportInvalidFree(ptr, old_chunk_state, stack);
556 // It's not safe to push a chunk in quarantine on invalid free.
557 return false;
558 }
559 CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
560 return true;
561 }
562
563 // Expects the chunk to already be marked as quarantined by using
564 // AtomicallySetQuarantineFlagIfAllocated.
QuarantineChunk__asan::Allocator565 void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
566 CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
567 CHECK_GE(m->alloc_tid, 0);
568 if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area.
569 CHECK_EQ(m->free_tid, kInvalidTid);
570 AsanThread *t = GetCurrentThread();
571 m->free_tid = t ? t->tid() : 0;
572 m->free_context_id = StackDepotPut(*stack);
573
574 Flags &fl = *flags();
575 if (fl.max_free_fill_size > 0) {
576 // We have to skip the chunk header, it contains free_context_id.
577 uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
578 if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area.
579 uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
580 size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
581 REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
582 }
583 }
584
585 // Poison the region.
586 PoisonShadow(m->Beg(),
587 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
588 kAsanHeapFreeMagic);
589
590 AsanStats &thread_stats = GetCurrentThreadStats();
591 thread_stats.frees++;
592 thread_stats.freed += m->UsedSize();
593
594 // Push into quarantine.
595 if (t) {
596 AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
597 AllocatorCache *ac = GetAllocatorCache(ms);
598 quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m,
599 m->UsedSize());
600 } else {
601 SpinMutexLock l(&fallback_mutex);
602 AllocatorCache *ac = &fallback_allocator_cache;
603 quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack),
604 m, m->UsedSize());
605 }
606 }
607
Deallocate__asan::Allocator608 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
609 BufferedStackTrace *stack, AllocType alloc_type) {
610 uptr p = reinterpret_cast<uptr>(ptr);
611 if (p == 0) return;
612
613 uptr chunk_beg = p - kChunkHeaderSize;
614 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
615
616 // On Windows, uninstrumented DLLs may allocate memory before ASan hooks
617 // malloc. Don't report an invalid free in this case.
618 if (SANITIZER_WINDOWS &&
619 !get_allocator().PointerIsMine(ptr)) {
620 if (!IsSystemHeapAddress(p))
621 ReportFreeNotMalloced(p, stack);
622 return;
623 }
624
625 ASAN_FREE_HOOK(ptr);
626
627 // Must mark the chunk as quarantined before any changes to its metadata.
628 // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
629 if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;
630
631 if (m->alloc_type != alloc_type) {
632 if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
633 ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
634 (AllocType)alloc_type);
635 }
636 } else {
637 if (flags()->new_delete_type_mismatch &&
638 (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) &&
639 ((delete_size && delete_size != m->UsedSize()) ||
640 ComputeUserRequestedAlignmentLog(delete_alignment) !=
641 m->user_requested_alignment_log)) {
642 ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack);
643 }
644 }
645
646 QuarantineChunk(m, ptr, stack);
647 }
648
Reallocate__asan::Allocator649 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
650 CHECK(old_ptr && new_size);
651 uptr p = reinterpret_cast<uptr>(old_ptr);
652 uptr chunk_beg = p - kChunkHeaderSize;
653 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
654
655 AsanStats &thread_stats = GetCurrentThreadStats();
656 thread_stats.reallocs++;
657 thread_stats.realloced += new_size;
658
659 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
660 if (new_ptr) {
661 u8 chunk_state = m->chunk_state;
662 if (chunk_state != CHUNK_ALLOCATED)
663 ReportInvalidFree(old_ptr, chunk_state, stack);
664 CHECK_NE(REAL(memcpy), nullptr);
665 uptr memcpy_size = Min(new_size, m->UsedSize());
666 // If realloc() races with free(), we may start copying freed memory.
667 // However, we will report racy double-free later anyway.
668 REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
669 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
670 }
671 return new_ptr;
672 }
673
Calloc__asan::Allocator674 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
675 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
676 if (AllocatorMayReturnNull())
677 return nullptr;
678 ReportCallocOverflow(nmemb, size, stack);
679 }
680 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
681 // If the memory comes from the secondary allocator no need to clear it
682 // as it comes directly from mmap.
683 if (ptr && allocator.FromPrimary(ptr))
684 REAL(memset)(ptr, 0, nmemb * size);
685 return ptr;
686 }
687
ReportInvalidFree__asan::Allocator688 void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
689 if (chunk_state == CHUNK_QUARANTINE)
690 ReportDoubleFree((uptr)ptr, stack);
691 else
692 ReportFreeNotMalloced((uptr)ptr, stack);
693 }
694
CommitBack__asan::Allocator695 void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) {
696 AllocatorCache *ac = GetAllocatorCache(ms);
697 quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack));
698 allocator.SwallowCache(ac);
699 }
700
701 // -------------------------- Chunk lookup ----------------------
702
703 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
GetAsanChunk__asan::Allocator704 AsanChunk *GetAsanChunk(void *alloc_beg) {
705 if (!alloc_beg) return nullptr;
706 if (!allocator.FromPrimary(alloc_beg)) {
707 uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
708 AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
709 return m;
710 }
711 uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
712 if (alloc_magic[0] == kAllocBegMagic)
713 return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
714 return reinterpret_cast<AsanChunk *>(alloc_beg);
715 }
716
GetAsanChunkByAddr__asan::Allocator717 AsanChunk *GetAsanChunkByAddr(uptr p) {
718 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
719 return GetAsanChunk(alloc_beg);
720 }
721
722 // Allocator must be locked when this function is called.
GetAsanChunkByAddrFastLocked__asan::Allocator723 AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
724 void *alloc_beg =
725 allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
726 return GetAsanChunk(alloc_beg);
727 }
728
AllocationSize__asan::Allocator729 uptr AllocationSize(uptr p) {
730 AsanChunk *m = GetAsanChunkByAddr(p);
731 if (!m) return 0;
732 if (m->chunk_state != CHUNK_ALLOCATED) return 0;
733 if (m->Beg() != p) return 0;
734 return m->UsedSize();
735 }
736
FindHeapChunkByAddress__asan::Allocator737 AsanChunkView FindHeapChunkByAddress(uptr addr) {
738 AsanChunk *m1 = GetAsanChunkByAddr(addr);
739 if (!m1) return AsanChunkView(m1);
740 sptr offset = 0;
741 if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
742 // The address is in the chunk's left redzone, so maybe it is actually
743 // a right buffer overflow from the other chunk to the left.
744 // Search a bit to the left to see if there is another chunk.
745 AsanChunk *m2 = nullptr;
746 for (uptr l = 1; l < GetPageSizeCached(); l++) {
747 m2 = GetAsanChunkByAddr(addr - l);
748 if (m2 == m1) continue; // Still the same chunk.
749 break;
750 }
751 if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
752 m1 = ChooseChunk(addr, m2, m1);
753 }
754 return AsanChunkView(m1);
755 }
756
Purge__asan::Allocator757 void Purge(BufferedStackTrace *stack) {
758 AsanThread *t = GetCurrentThread();
759 if (t) {
760 AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
761 quarantine.DrainAndRecycle(GetQuarantineCache(ms),
762 QuarantineCallback(GetAllocatorCache(ms),
763 stack));
764 }
765 {
766 SpinMutexLock l(&fallback_mutex);
767 quarantine.DrainAndRecycle(&fallback_quarantine_cache,
768 QuarantineCallback(&fallback_allocator_cache,
769 stack));
770 }
771
772 allocator.ForceReleaseToOS();
773 }
774
PrintStats__asan::Allocator775 void PrintStats() {
776 allocator.PrintStats();
777 quarantine.PrintStats();
778 }
779
ForceLock__asan::Allocator780 void ForceLock() {
781 allocator.ForceLock();
782 fallback_mutex.Lock();
783 }
784
ForceUnlock__asan::Allocator785 void ForceUnlock() {
786 fallback_mutex.Unlock();
787 allocator.ForceUnlock();
788 }
789 };
790
791 static Allocator instance(LINKER_INITIALIZED);
792
get_allocator()793 static AsanAllocator &get_allocator() {
794 return instance.allocator;
795 }
796
IsValid() const797 bool AsanChunkView::IsValid() const {
798 return chunk_ && chunk_->chunk_state != CHUNK_AVAILABLE;
799 }
IsAllocated() const800 bool AsanChunkView::IsAllocated() const {
801 return chunk_ && chunk_->chunk_state == CHUNK_ALLOCATED;
802 }
IsQuarantined() const803 bool AsanChunkView::IsQuarantined() const {
804 return chunk_ && chunk_->chunk_state == CHUNK_QUARANTINE;
805 }
Beg() const806 uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
End() const807 uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
UsedSize() const808 uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
UserRequestedAlignment() const809 u32 AsanChunkView::UserRequestedAlignment() const {
810 return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log);
811 }
AllocTid() const812 uptr AsanChunkView::AllocTid() const { return chunk_->alloc_tid; }
FreeTid() const813 uptr AsanChunkView::FreeTid() const { return chunk_->free_tid; }
GetAllocType() const814 AllocType AsanChunkView::GetAllocType() const {
815 return (AllocType)chunk_->alloc_type;
816 }
817
GetStackTraceFromId(u32 id)818 static StackTrace GetStackTraceFromId(u32 id) {
819 CHECK(id);
820 StackTrace res = StackDepotGet(id);
821 CHECK(res.trace);
822 return res;
823 }
824
GetAllocStackId() const825 u32 AsanChunkView::GetAllocStackId() const { return chunk_->alloc_context_id; }
GetFreeStackId() const826 u32 AsanChunkView::GetFreeStackId() const { return chunk_->free_context_id; }
827
GetAllocStack() const828 StackTrace AsanChunkView::GetAllocStack() const {
829 return GetStackTraceFromId(GetAllocStackId());
830 }
831
GetFreeStack() const832 StackTrace AsanChunkView::GetFreeStack() const {
833 return GetStackTraceFromId(GetFreeStackId());
834 }
835
InitializeAllocator(const AllocatorOptions & options)836 void InitializeAllocator(const AllocatorOptions &options) {
837 instance.InitLinkerInitialized(options);
838 }
839
ReInitializeAllocator(const AllocatorOptions & options)840 void ReInitializeAllocator(const AllocatorOptions &options) {
841 instance.ReInitialize(options);
842 }
843
GetAllocatorOptions(AllocatorOptions * options)844 void GetAllocatorOptions(AllocatorOptions *options) {
845 instance.GetOptions(options);
846 }
847
FindHeapChunkByAddress(uptr addr)848 AsanChunkView FindHeapChunkByAddress(uptr addr) {
849 return instance.FindHeapChunkByAddress(addr);
850 }
FindHeapChunkByAllocBeg(uptr addr)851 AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
852 return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
853 }
854
CommitBack()855 void AsanThreadLocalMallocStorage::CommitBack() {
856 GET_STACK_TRACE_MALLOC;
857 instance.CommitBack(this, &stack);
858 }
859
PrintInternalAllocatorStats()860 void PrintInternalAllocatorStats() {
861 instance.PrintStats();
862 }
863
asan_free(void * ptr,BufferedStackTrace * stack,AllocType alloc_type)864 void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
865 instance.Deallocate(ptr, 0, 0, stack, alloc_type);
866 }
867
asan_delete(void * ptr,uptr size,uptr alignment,BufferedStackTrace * stack,AllocType alloc_type)868 void asan_delete(void *ptr, uptr size, uptr alignment,
869 BufferedStackTrace *stack, AllocType alloc_type) {
870 instance.Deallocate(ptr, size, alignment, stack, alloc_type);
871 }
872
asan_malloc(uptr size,BufferedStackTrace * stack)873 void *asan_malloc(uptr size, BufferedStackTrace *stack) {
874 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
875 }
876
asan_calloc(uptr nmemb,uptr size,BufferedStackTrace * stack)877 void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
878 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
879 }
880
asan_realloc(void * p,uptr size,BufferedStackTrace * stack)881 void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
882 if (!p)
883 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
884 if (size == 0) {
885 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
886 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
887 return nullptr;
888 }
889 // Allocate a size of 1 if we shouldn't free() on Realloc to 0
890 size = 1;
891 }
892 return SetErrnoOnNull(instance.Reallocate(p, size, stack));
893 }
894
asan_valloc(uptr size,BufferedStackTrace * stack)895 void *asan_valloc(uptr size, BufferedStackTrace *stack) {
896 return SetErrnoOnNull(
897 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
898 }
899
asan_pvalloc(uptr size,BufferedStackTrace * stack)900 void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
901 uptr PageSize = GetPageSizeCached();
902 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
903 errno = errno_ENOMEM;
904 if (AllocatorMayReturnNull())
905 return nullptr;
906 ReportPvallocOverflow(size, stack);
907 }
908 // pvalloc(0) should allocate one page.
909 size = size ? RoundUpTo(size, PageSize) : PageSize;
910 return SetErrnoOnNull(
911 instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
912 }
913
asan_memalign(uptr alignment,uptr size,BufferedStackTrace * stack,AllocType alloc_type)914 void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
915 AllocType alloc_type) {
916 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
917 errno = errno_EINVAL;
918 if (AllocatorMayReturnNull())
919 return nullptr;
920 ReportInvalidAllocationAlignment(alignment, stack);
921 }
922 return SetErrnoOnNull(
923 instance.Allocate(size, alignment, stack, alloc_type, true));
924 }
925
asan_aligned_alloc(uptr alignment,uptr size,BufferedStackTrace * stack)926 void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
927 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
928 errno = errno_EINVAL;
929 if (AllocatorMayReturnNull())
930 return nullptr;
931 ReportInvalidAlignedAllocAlignment(size, alignment, stack);
932 }
933 return SetErrnoOnNull(
934 instance.Allocate(size, alignment, stack, FROM_MALLOC, true));
935 }
936
asan_posix_memalign(void ** memptr,uptr alignment,uptr size,BufferedStackTrace * stack)937 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
938 BufferedStackTrace *stack) {
939 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
940 if (AllocatorMayReturnNull())
941 return errno_EINVAL;
942 ReportInvalidPosixMemalignAlignment(alignment, stack);
943 }
944 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
945 if (UNLIKELY(!ptr))
946 // OOM error is already taken care of by Allocate.
947 return errno_ENOMEM;
948 CHECK(IsAligned((uptr)ptr, alignment));
949 *memptr = ptr;
950 return 0;
951 }
952
asan_malloc_usable_size(const void * ptr,uptr pc,uptr bp)953 uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
954 if (!ptr) return 0;
955 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
956 if (flags()->check_malloc_usable_size && (usable_size == 0)) {
957 GET_STACK_TRACE_FATAL(pc, bp);
958 ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
959 }
960 return usable_size;
961 }
962
asan_mz_size(const void * ptr)963 uptr asan_mz_size(const void *ptr) {
964 return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
965 }
966
asan_mz_force_lock()967 void asan_mz_force_lock() {
968 instance.ForceLock();
969 }
970
asan_mz_force_unlock()971 void asan_mz_force_unlock() {
972 instance.ForceUnlock();
973 }
974
AsanSoftRssLimitExceededCallback(bool limit_exceeded)975 void AsanSoftRssLimitExceededCallback(bool limit_exceeded) {
976 instance.SetRssLimitExceeded(limit_exceeded);
977 }
978
979 } // namespace __asan
980
981 // --- Implementation of LSan-specific functions --- {{{1
982 namespace __lsan {
LockAllocator()983 void LockAllocator() {
984 __asan::get_allocator().ForceLock();
985 }
986
UnlockAllocator()987 void UnlockAllocator() {
988 __asan::get_allocator().ForceUnlock();
989 }
990
GetAllocatorGlobalRange(uptr * begin,uptr * end)991 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
992 *begin = (uptr)&__asan::get_allocator();
993 *end = *begin + sizeof(__asan::get_allocator());
994 }
995
PointsIntoChunk(void * p)996 uptr PointsIntoChunk(void* p) {
997 uptr addr = reinterpret_cast<uptr>(p);
998 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
999 if (!m) return 0;
1000 uptr chunk = m->Beg();
1001 if (m->chunk_state != __asan::CHUNK_ALLOCATED)
1002 return 0;
1003 if (m->AddrIsInside(addr, /*locked_version=*/true))
1004 return chunk;
1005 if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(/*locked_version*/ true),
1006 addr))
1007 return chunk;
1008 return 0;
1009 }
1010
GetUserBegin(uptr chunk)1011 uptr GetUserBegin(uptr chunk) {
1012 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
1013 CHECK(m);
1014 return m->Beg();
1015 }
1016
LsanMetadata(uptr chunk)1017 LsanMetadata::LsanMetadata(uptr chunk) {
1018 metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize);
1019 }
1020
allocated() const1021 bool LsanMetadata::allocated() const {
1022 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1023 return m->chunk_state == __asan::CHUNK_ALLOCATED;
1024 }
1025
tag() const1026 ChunkTag LsanMetadata::tag() const {
1027 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1028 return static_cast<ChunkTag>(m->lsan_tag);
1029 }
1030
set_tag(ChunkTag value)1031 void LsanMetadata::set_tag(ChunkTag value) {
1032 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1033 m->lsan_tag = value;
1034 }
1035
requested_size() const1036 uptr LsanMetadata::requested_size() const {
1037 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1038 return m->UsedSize(/*locked_version=*/true);
1039 }
1040
stack_trace_id() const1041 u32 LsanMetadata::stack_trace_id() const {
1042 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1043 return m->alloc_context_id;
1044 }
1045
ForEachChunk(ForEachChunkCallback callback,void * arg)1046 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1047 __asan::get_allocator().ForEachChunk(callback, arg);
1048 }
1049
IgnoreObjectLocked(const void * p)1050 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
1051 uptr addr = reinterpret_cast<uptr>(p);
1052 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
1053 if (!m) return kIgnoreObjectInvalid;
1054 if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) {
1055 if (m->lsan_tag == kIgnored)
1056 return kIgnoreObjectAlreadyIgnored;
1057 m->lsan_tag = __lsan::kIgnored;
1058 return kIgnoreObjectSuccess;
1059 } else {
1060 return kIgnoreObjectInvalid;
1061 }
1062 }
1063 } // namespace __lsan
1064
1065 // ---------------------- Interface ---------------- {{{1
1066 using namespace __asan; // NOLINT
1067
1068 // ASan allocator doesn't reserve extra bytes, so normally we would
1069 // just return "size". We don't want to expose our redzone sizes, etc here.
__sanitizer_get_estimated_allocated_size(uptr size)1070 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
1071 return size;
1072 }
1073
__sanitizer_get_ownership(const void * p)1074 int __sanitizer_get_ownership(const void *p) {
1075 uptr ptr = reinterpret_cast<uptr>(p);
1076 return instance.AllocationSize(ptr) > 0;
1077 }
1078
__sanitizer_get_allocated_size(const void * p)1079 uptr __sanitizer_get_allocated_size(const void *p) {
1080 if (!p) return 0;
1081 uptr ptr = reinterpret_cast<uptr>(p);
1082 uptr allocated_size = instance.AllocationSize(ptr);
1083 // Die if p is not malloced or if it is already freed.
1084 if (allocated_size == 0) {
1085 GET_STACK_TRACE_FATAL_HERE;
1086 ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
1087 }
1088 return allocated_size;
1089 }
1090
__sanitizer_purge_allocator()1091 void __sanitizer_purge_allocator() {
1092 GET_STACK_TRACE_MALLOC;
1093 instance.Purge(&stack);
1094 }
1095
1096 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
1097 // Provide default (no-op) implementation of malloc hooks.
SANITIZER_INTERFACE_WEAK_DEF(void,__sanitizer_malloc_hook,void * ptr,uptr size)1098 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
1099 void *ptr, uptr size) {
1100 (void)ptr;
1101 (void)size;
1102 }
1103
SANITIZER_INTERFACE_WEAK_DEF(void,__sanitizer_free_hook,void * ptr)1104 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) {
1105 (void)ptr;
1106 }
1107 #endif
1108