1 /* Target-dependent code for GNU/Linux i386.
2 
3    Copyright (C) 2000-2020 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "frame.h"
23 #include "value.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2/frame.h"
30 #include "i386-tdep.h"
31 #include "i386-linux-tdep.h"
32 #include "linux-tdep.h"
33 #include "utils.h"
34 #include "glibc-tdep.h"
35 #include "solib-svr4.h"
36 #include "symtab.h"
37 #include "arch-utils.h"
38 #include "xml-syscall.h"
39 #include "infrun.h"
40 
41 #include "i387-tdep.h"
42 #include "gdbsupport/x86-xstate.h"
43 
44 /* The syscall's XML filename for i386.  */
45 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
46 
47 #include "record-full.h"
48 #include "linux-record.h"
49 
50 #include "arch/i386.h"
51 #include "target-descriptions.h"
52 
53 /* Return non-zero, when the register is in the corresponding register
54    group.  Put the LINUX_ORIG_EAX register in the system group.  */
55 static int
i386_linux_register_reggroup_p(struct gdbarch * gdbarch,int regnum,struct reggroup * group)56 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
57 				struct reggroup *group)
58 {
59   if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
60     return (group == system_reggroup
61 	    || group == save_reggroup
62 	    || group == restore_reggroup);
63   return i386_register_reggroup_p (gdbarch, regnum, group);
64 }
65 
66 
67 /* Recognizing signal handler frames.  */
68 
69 /* GNU/Linux has two flavors of signals.  Normal signal handlers, and
70    "realtime" (RT) signals.  The RT signals can provide additional
71    information to the signal handler if the SA_SIGINFO flag is set
72    when establishing a signal handler using `sigaction'.  It is not
73    unlikely that future versions of GNU/Linux will support SA_SIGINFO
74    for normal signals too.  */
75 
76 /* When the i386 Linux kernel calls a signal handler and the
77    SA_RESTORER flag isn't set, the return address points to a bit of
78    code on the stack.  This function returns whether the PC appears to
79    be within this bit of code.
80 
81    The instruction sequence for normal signals is
82        pop    %eax
83        mov    $0x77, %eax
84        int    $0x80
85    or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
86 
87    Checking for the code sequence should be somewhat reliable, because
88    the effect is to call the system call sigreturn.  This is unlikely
89    to occur anywhere other than in a signal trampoline.
90 
91    It kind of sucks that we have to read memory from the process in
92    order to identify a signal trampoline, but there doesn't seem to be
93    any other way.  Therefore we only do the memory reads if no
94    function name could be identified, which should be the case since
95    the code is on the stack.
96 
97    Detection of signal trampolines for handlers that set the
98    SA_RESTORER flag is in general not possible.  Unfortunately this is
99    what the GNU C Library has been doing for quite some time now.
100    However, as of version 2.1.2, the GNU C Library uses signal
101    trampolines (named __restore and __restore_rt) that are identical
102    to the ones used by the kernel.  Therefore, these trampolines are
103    supported too.  */
104 
105 #define LINUX_SIGTRAMP_INSN0	0x58	/* pop %eax */
106 #define LINUX_SIGTRAMP_OFFSET0	0
107 #define LINUX_SIGTRAMP_INSN1	0xb8	/* mov $NNNN, %eax */
108 #define LINUX_SIGTRAMP_OFFSET1	1
109 #define LINUX_SIGTRAMP_INSN2	0xcd	/* int */
110 #define LINUX_SIGTRAMP_OFFSET2	6
111 
112 static const gdb_byte linux_sigtramp_code[] =
113 {
114   LINUX_SIGTRAMP_INSN0,					/* pop %eax */
115   LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,		/* mov $0x77, %eax */
116   LINUX_SIGTRAMP_INSN2, 0x80				/* int $0x80 */
117 };
118 
119 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
120 
121 /* If THIS_FRAME is a sigtramp routine, return the address of the
122    start of the routine.  Otherwise, return 0.  */
123 
124 static CORE_ADDR
i386_linux_sigtramp_start(struct frame_info * this_frame)125 i386_linux_sigtramp_start (struct frame_info *this_frame)
126 {
127   CORE_ADDR pc = get_frame_pc (this_frame);
128   gdb_byte buf[LINUX_SIGTRAMP_LEN];
129 
130   /* We only recognize a signal trampoline if PC is at the start of
131      one of the three instructions.  We optimize for finding the PC at
132      the start, as will be the case when the trampoline is not the
133      first frame on the stack.  We assume that in the case where the
134      PC is not at the start of the instruction sequence, there will be
135      a few trailing readable bytes on the stack.  */
136 
137   if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
138     return 0;
139 
140   if (buf[0] != LINUX_SIGTRAMP_INSN0)
141     {
142       int adjust;
143 
144       switch (buf[0])
145 	{
146 	case LINUX_SIGTRAMP_INSN1:
147 	  adjust = LINUX_SIGTRAMP_OFFSET1;
148 	  break;
149 	case LINUX_SIGTRAMP_INSN2:
150 	  adjust = LINUX_SIGTRAMP_OFFSET2;
151 	  break;
152 	default:
153 	  return 0;
154 	}
155 
156       pc -= adjust;
157 
158       if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
159 	return 0;
160     }
161 
162   if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
163     return 0;
164 
165   return pc;
166 }
167 
168 /* This function does the same for RT signals.  Here the instruction
169    sequence is
170        mov    $0xad, %eax
171        int    $0x80
172    or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
173 
174    The effect is to call the system call rt_sigreturn.  */
175 
176 #define LINUX_RT_SIGTRAMP_INSN0		0xb8 /* mov $NNNN, %eax */
177 #define LINUX_RT_SIGTRAMP_OFFSET0	0
178 #define LINUX_RT_SIGTRAMP_INSN1		0xcd /* int */
179 #define LINUX_RT_SIGTRAMP_OFFSET1	5
180 
181 static const gdb_byte linux_rt_sigtramp_code[] =
182 {
183   LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,	/* mov $0xad, %eax */
184   LINUX_RT_SIGTRAMP_INSN1, 0x80				/* int $0x80 */
185 };
186 
187 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
188 
189 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
190    start of the routine.  Otherwise, return 0.  */
191 
192 static CORE_ADDR
i386_linux_rt_sigtramp_start(struct frame_info * this_frame)193 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
194 {
195   CORE_ADDR pc = get_frame_pc (this_frame);
196   gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
197 
198   /* We only recognize a signal trampoline if PC is at the start of
199      one of the two instructions.  We optimize for finding the PC at
200      the start, as will be the case when the trampoline is not the
201      first frame on the stack.  We assume that in the case where the
202      PC is not at the start of the instruction sequence, there will be
203      a few trailing readable bytes on the stack.  */
204 
205   if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
206     return 0;
207 
208   if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
209     {
210       if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
211 	return 0;
212 
213       pc -= LINUX_RT_SIGTRAMP_OFFSET1;
214 
215       if (!safe_frame_unwind_memory (this_frame, pc, buf,
216 				     LINUX_RT_SIGTRAMP_LEN))
217 	return 0;
218     }
219 
220   if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
221     return 0;
222 
223   return pc;
224 }
225 
226 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
227    routine.  */
228 
229 static int
i386_linux_sigtramp_p(struct frame_info * this_frame)230 i386_linux_sigtramp_p (struct frame_info *this_frame)
231 {
232   CORE_ADDR pc = get_frame_pc (this_frame);
233   const char *name;
234 
235   find_pc_partial_function (pc, &name, NULL, NULL);
236 
237   /* If we have NAME, we can optimize the search.  The trampolines are
238      named __restore and __restore_rt.  However, they aren't dynamically
239      exported from the shared C library, so the trampoline may appear to
240      be part of the preceding function.  This should always be sigaction,
241      __sigaction, or __libc_sigaction (all aliases to the same function).  */
242   if (name == NULL || strstr (name, "sigaction") != NULL)
243     return (i386_linux_sigtramp_start (this_frame) != 0
244 	    || i386_linux_rt_sigtramp_start (this_frame) != 0);
245 
246   return (strcmp ("__restore", name) == 0
247 	  || strcmp ("__restore_rt", name) == 0);
248 }
249 
250 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
251    may have DWARF-2 CFI.  */
252 
253 static int
i386_linux_dwarf_signal_frame_p(struct gdbarch * gdbarch,struct frame_info * this_frame)254 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
255 				 struct frame_info *this_frame)
256 {
257   CORE_ADDR pc = get_frame_pc (this_frame);
258   const char *name;
259 
260   find_pc_partial_function (pc, &name, NULL, NULL);
261 
262   /* If a vsyscall DSO is in use, the signal trampolines may have these
263      names.  */
264   if (name && (strcmp (name, "__kernel_sigreturn") == 0
265 	       || strcmp (name, "__kernel_rt_sigreturn") == 0))
266     return 1;
267 
268   return 0;
269 }
270 
271 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>.  */
272 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
273 
274 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
275    address of the associated sigcontext structure.  */
276 
277 static CORE_ADDR
i386_linux_sigcontext_addr(struct frame_info * this_frame)278 i386_linux_sigcontext_addr (struct frame_info *this_frame)
279 {
280   struct gdbarch *gdbarch = get_frame_arch (this_frame);
281   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
282   CORE_ADDR pc;
283   CORE_ADDR sp;
284   gdb_byte buf[4];
285 
286   get_frame_register (this_frame, I386_ESP_REGNUM, buf);
287   sp = extract_unsigned_integer (buf, 4, byte_order);
288 
289   pc = i386_linux_sigtramp_start (this_frame);
290   if (pc)
291     {
292       /* The sigcontext structure lives on the stack, right after
293 	 the signum argument.  We determine the address of the
294 	 sigcontext structure by looking at the frame's stack
295 	 pointer.  Keep in mind that the first instruction of the
296 	 sigtramp code is "pop %eax".  If the PC is after this
297 	 instruction, adjust the returned value accordingly.  */
298       if (pc == get_frame_pc (this_frame))
299 	return sp + 4;
300       return sp;
301     }
302 
303   pc = i386_linux_rt_sigtramp_start (this_frame);
304   if (pc)
305     {
306       CORE_ADDR ucontext_addr;
307 
308       /* The sigcontext structure is part of the user context.  A
309 	 pointer to the user context is passed as the third argument
310 	 to the signal handler.  */
311       read_memory (sp + 8, buf, 4);
312       ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
313       return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
314     }
315 
316   error (_("Couldn't recognize signal trampoline."));
317   return 0;
318 }
319 
320 /* Set the program counter for process PTID to PC.  */
321 
322 static void
i386_linux_write_pc(struct regcache * regcache,CORE_ADDR pc)323 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
324 {
325   regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
326 
327   /* We must be careful with modifying the program counter.  If we
328      just interrupted a system call, the kernel might try to restart
329      it when we resume the inferior.  On restarting the system call,
330      the kernel will try backing up the program counter even though it
331      no longer points at the system call.  This typically results in a
332      SIGSEGV or SIGILL.  We can prevent this by writing `-1' in the
333      "orig_eax" pseudo-register.
334 
335      Note that "orig_eax" is saved when setting up a dummy call frame.
336      This means that it is properly restored when that frame is
337      popped, and that the interrupted system call will be restarted
338      when we resume the inferior on return from a function call from
339      within GDB.  In all other cases the system call will not be
340      restarted.  */
341   regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
342 }
343 
344 /* Record all registers but IP register for process-record.  */
345 
346 static int
i386_all_but_ip_registers_record(struct regcache * regcache)347 i386_all_but_ip_registers_record (struct regcache *regcache)
348 {
349   if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
350     return -1;
351   if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
352     return -1;
353   if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
354     return -1;
355   if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
356     return -1;
357   if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
358     return -1;
359   if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
360     return -1;
361   if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
362     return -1;
363   if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
364     return -1;
365   if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
366     return -1;
367 
368   return 0;
369 }
370 
371 /* i386_canonicalize_syscall maps from the native i386 Linux set
372    of syscall ids into a canonical set of syscall ids used by
373    process record (a mostly trivial mapping, since the canonical
374    set was originally taken from the i386 set).  */
375 
376 static enum gdb_syscall
i386_canonicalize_syscall(int syscall)377 i386_canonicalize_syscall (int syscall)
378 {
379   enum { i386_syscall_max = 499 };
380 
381   if (syscall <= i386_syscall_max)
382     return (enum gdb_syscall) syscall;
383   else
384     return gdb_sys_no_syscall;
385 }
386 
387 /* Value of the sigcode in case of a boundary fault.  */
388 
389 #define SIG_CODE_BONDARY_FAULT 3
390 
391 /* i386 GNU/Linux implementation of the report_signal_info
392    gdbarch hook.  Displays information related to MPX bound
393    violations.  */
394 void
i386_linux_report_signal_info(struct gdbarch * gdbarch,struct ui_out * uiout,enum gdb_signal siggnal)395 i386_linux_report_signal_info (struct gdbarch *gdbarch, struct ui_out *uiout,
396 			       enum gdb_signal siggnal)
397 {
398   /* -Wmaybe-uninitialized  */
399   CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0;
400   int is_upper;
401   long sig_code = 0;
402 
403   if (!i386_mpx_enabled () || siggnal != GDB_SIGNAL_SEGV)
404     return;
405 
406   try
407     {
408       /* Sigcode evaluates if the actual segfault is a boundary violation.  */
409       sig_code = parse_and_eval_long ("$_siginfo.si_code\n");
410 
411       lower_bound
412         = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower");
413       upper_bound
414         = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper");
415       access
416         = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
417     }
418   catch (const gdb_exception &exception)
419     {
420       return;
421     }
422 
423   /* If this is not a boundary violation just return.  */
424   if (sig_code != SIG_CODE_BONDARY_FAULT)
425     return;
426 
427   is_upper = (access > upper_bound ? 1 : 0);
428 
429   uiout->text ("\n");
430   if (is_upper)
431     uiout->field_string ("sigcode-meaning", _("Upper bound violation"));
432   else
433     uiout->field_string ("sigcode-meaning", _("Lower bound violation"));
434 
435   uiout->text (_(" while accessing address "));
436   uiout->field_core_addr ("bound-access", gdbarch, access);
437 
438   uiout->text (_("\nBounds: [lower = "));
439   uiout->field_core_addr ("lower-bound", gdbarch, lower_bound);
440 
441   uiout->text (_(", upper = "));
442   uiout->field_core_addr ("upper-bound", gdbarch, upper_bound);
443 
444   uiout->text (_("]"));
445 }
446 
447 /* Parse the arguments of current system call instruction and record
448    the values of the registers and memory that will be changed into
449    "record_arch_list".  This instruction is "int 0x80" (Linux
450    Kernel2.4) or "sysenter" (Linux Kernel 2.6).
451 
452    Return -1 if something wrong.  */
453 
454 static struct linux_record_tdep i386_linux_record_tdep;
455 
456 static int
i386_linux_intx80_sysenter_syscall_record(struct regcache * regcache)457 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
458 {
459   int ret;
460   LONGEST syscall_native;
461   enum gdb_syscall syscall_gdb;
462 
463   regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
464 
465   syscall_gdb = i386_canonicalize_syscall (syscall_native);
466 
467   if (syscall_gdb < 0)
468     {
469       printf_unfiltered (_("Process record and replay target doesn't "
470                            "support syscall number %s\n"),
471 			 plongest (syscall_native));
472       return -1;
473     }
474 
475   if (syscall_gdb == gdb_sys_sigreturn
476       || syscall_gdb == gdb_sys_rt_sigreturn)
477    {
478      if (i386_all_but_ip_registers_record (regcache))
479        return -1;
480      return 0;
481    }
482 
483   ret = record_linux_system_call (syscall_gdb, regcache,
484 				  &i386_linux_record_tdep);
485   if (ret)
486     return ret;
487 
488   /* Record the return value of the system call.  */
489   if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
490     return -1;
491 
492   return 0;
493 }
494 
495 #define I386_LINUX_xstate	270
496 #define I386_LINUX_frame_size	732
497 
498 static int
i386_linux_record_signal(struct gdbarch * gdbarch,struct regcache * regcache,enum gdb_signal signal)499 i386_linux_record_signal (struct gdbarch *gdbarch,
500                           struct regcache *regcache,
501                           enum gdb_signal signal)
502 {
503   ULONGEST esp;
504 
505   if (i386_all_but_ip_registers_record (regcache))
506     return -1;
507 
508   if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
509     return -1;
510 
511   /* Record the change in the stack.  */
512   regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
513   /* This is for xstate.
514      sp -= sizeof (struct _fpstate);  */
515   esp -= I386_LINUX_xstate;
516   /* This is for frame_size.
517      sp -= sizeof (struct rt_sigframe);  */
518   esp -= I386_LINUX_frame_size;
519   if (record_full_arch_list_add_mem (esp,
520 				     I386_LINUX_xstate + I386_LINUX_frame_size))
521     return -1;
522 
523   if (record_full_arch_list_add_end ())
524     return -1;
525 
526   return 0;
527 }
528 
529 
530 /* Core of the implementation for gdbarch get_syscall_number.  Get pending
531    syscall number from REGCACHE.  If there is no pending syscall -1 will be
532    returned.  Pending syscall means ptrace has stepped into the syscall but
533    another ptrace call will step out.  PC is right after the int $0x80
534    / syscall / sysenter instruction in both cases, PC does not change during
535    the second ptrace step.  */
536 
537 static LONGEST
i386_linux_get_syscall_number_from_regcache(struct regcache * regcache)538 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
539 {
540   struct gdbarch *gdbarch = regcache->arch ();
541   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
542   /* The content of a register.  */
543   gdb_byte buf[4];
544   /* The result.  */
545   LONGEST ret;
546 
547   /* Getting the system call number from the register.
548      When dealing with x86 architecture, this information
549      is stored at %eax register.  */
550   regcache->cooked_read (I386_LINUX_ORIG_EAX_REGNUM, buf);
551 
552   ret = extract_signed_integer (buf, 4, byte_order);
553 
554   return ret;
555 }
556 
557 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
558    compatible with gdbarch get_syscall_number method prototype.  */
559 
560 static LONGEST
i386_linux_get_syscall_number(struct gdbarch * gdbarch,thread_info * thread)561 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
562 			       thread_info *thread)
563 {
564   struct regcache *regcache = get_thread_regcache (thread);
565 
566   return i386_linux_get_syscall_number_from_regcache (regcache);
567 }
568 
569 /* The register sets used in GNU/Linux ELF core-dumps are identical to
570    the register sets in `struct user' that are used for a.out
571    core-dumps.  These are also used by ptrace(2).  The corresponding
572    types are `elf_gregset_t' for the general-purpose registers (with
573    `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
574    for the floating-point registers.
575 
576    Those types used to be available under the names `gregset_t' and
577    `fpregset_t' too, and GDB used those names in the past.  But those
578    names are now used for the register sets used in the `mcontext_t'
579    type, which have a different size and layout.  */
580 
581 /* Mapping between the general-purpose registers in `struct user'
582    format and GDB's register cache layout.  */
583 
584 /* From <sys/reg.h>.  */
585 int i386_linux_gregset_reg_offset[] =
586 {
587   6 * 4,			/* %eax */
588   1 * 4,			/* %ecx */
589   2 * 4,			/* %edx */
590   0 * 4,			/* %ebx */
591   15 * 4,			/* %esp */
592   5 * 4,			/* %ebp */
593   3 * 4,			/* %esi */
594   4 * 4,			/* %edi */
595   12 * 4,			/* %eip */
596   14 * 4,			/* %eflags */
597   13 * 4,			/* %cs */
598   16 * 4,			/* %ss */
599   7 * 4,			/* %ds */
600   8 * 4,			/* %es */
601   9 * 4,			/* %fs */
602   10 * 4,			/* %gs */
603   -1, -1, -1, -1, -1, -1, -1, -1,
604   -1, -1, -1, -1, -1, -1, -1, -1,
605   -1, -1, -1, -1, -1, -1, -1, -1,
606   -1,
607   -1, -1, -1, -1, -1, -1, -1, -1,
608   -1, -1, -1, -1,		  /* MPX registers BND0 ... BND3.  */
609   -1, -1,			  /* MPX registers BNDCFGU, BNDSTATUS.  */
610   -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512)  */
611   -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512)  */
612   -1,				  /* PKRU register  */
613   11 * 4,			  /* "orig_eax"  */
614 };
615 
616 /* Mapping between the general-purpose registers in `struct
617    sigcontext' format and GDB's register cache layout.  */
618 
619 /* From <asm/sigcontext.h>.  */
620 static int i386_linux_sc_reg_offset[] =
621 {
622   11 * 4,			/* %eax */
623   10 * 4,			/* %ecx */
624   9 * 4,			/* %edx */
625   8 * 4,			/* %ebx */
626   7 * 4,			/* %esp */
627   6 * 4,			/* %ebp */
628   5 * 4,			/* %esi */
629   4 * 4,			/* %edi */
630   14 * 4,			/* %eip */
631   16 * 4,			/* %eflags */
632   15 * 4,			/* %cs */
633   18 * 4,			/* %ss */
634   3 * 4,			/* %ds */
635   2 * 4,			/* %es */
636   1 * 4,			/* %fs */
637   0 * 4				/* %gs */
638 };
639 
640 /* Get XSAVE extended state xcr0 from core dump.  */
641 
642 uint64_t
i386_linux_core_read_xcr0(bfd * abfd)643 i386_linux_core_read_xcr0 (bfd *abfd)
644 {
645   asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
646   uint64_t xcr0;
647 
648   if (xstate)
649     {
650       size_t size = bfd_section_size (xstate);
651 
652       /* Check extended state size.  */
653       if (size < X86_XSTATE_AVX_SIZE)
654 	xcr0 = X86_XSTATE_SSE_MASK;
655       else
656 	{
657 	  char contents[8];
658 
659 	  if (! bfd_get_section_contents (abfd, xstate, contents,
660 					  I386_LINUX_XSAVE_XCR0_OFFSET,
661 					  8))
662 	    {
663 	      warning (_("Couldn't read `xcr0' bytes from "
664 			 "`.reg-xstate' section in core file."));
665 	      return 0;
666 	    }
667 
668 	  xcr0 = bfd_get_64 (abfd, contents);
669 	}
670     }
671   else
672     xcr0 = 0;
673 
674   return xcr0;
675 }
676 
677 /* See i386-linux-tdep.h.  */
678 
679 const struct target_desc *
i386_linux_read_description(uint64_t xcr0)680 i386_linux_read_description (uint64_t xcr0)
681 {
682   if (xcr0 == 0)
683     return NULL;
684 
685   static struct target_desc *i386_linux_tdescs \
686     [2/*X87*/][2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
687   struct target_desc **tdesc;
688 
689   tdesc = &i386_linux_tdescs[(xcr0 & X86_XSTATE_X87) ? 1 : 0]
690     [(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
691     [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
692     [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
693     [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
694     [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
695 
696   if (*tdesc == NULL)
697     *tdesc = i386_create_target_description (xcr0, true, false);
698 
699   return *tdesc;
700 }
701 
702 /* Get Linux/x86 target description from core dump.  */
703 
704 static const struct target_desc *
i386_linux_core_read_description(struct gdbarch * gdbarch,struct target_ops * target,bfd * abfd)705 i386_linux_core_read_description (struct gdbarch *gdbarch,
706 				  struct target_ops *target,
707 				  bfd *abfd)
708 {
709   /* Linux/i386.  */
710   uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
711   const struct target_desc *tdesc = i386_linux_read_description (xcr0);
712 
713   if (tdesc != NULL)
714     return tdesc;
715 
716   if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
717     return i386_linux_read_description (X86_XSTATE_SSE_MASK);
718   else
719     return i386_linux_read_description (X86_XSTATE_X87_MASK);
720 }
721 
722 /* Similar to i386_supply_fpregset, but use XSAVE extended state.  */
723 
724 static void
i386_linux_supply_xstateregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * xstateregs,size_t len)725 i386_linux_supply_xstateregset (const struct regset *regset,
726 				struct regcache *regcache, int regnum,
727 				const void *xstateregs, size_t len)
728 {
729   i387_supply_xsave (regcache, regnum, xstateregs);
730 }
731 
732 struct type *
x86_linux_get_siginfo_type(struct gdbarch * gdbarch)733 x86_linux_get_siginfo_type (struct gdbarch *gdbarch)
734 {
735   return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND);
736 }
737 
738 /* Similar to i386_collect_fpregset, but use XSAVE extended state.  */
739 
740 static void
i386_linux_collect_xstateregset(const struct regset * regset,const struct regcache * regcache,int regnum,void * xstateregs,size_t len)741 i386_linux_collect_xstateregset (const struct regset *regset,
742 				 const struct regcache *regcache,
743 				 int regnum, void *xstateregs, size_t len)
744 {
745   i387_collect_xsave (regcache, regnum, xstateregs, 1);
746 }
747 
748 /* Register set definitions.  */
749 
750 static const struct regset i386_linux_xstateregset =
751   {
752     NULL,
753     i386_linux_supply_xstateregset,
754     i386_linux_collect_xstateregset
755   };
756 
757 /* Iterate over core file register note sections.  */
758 
759 static void
i386_linux_iterate_over_regset_sections(struct gdbarch * gdbarch,iterate_over_regset_sections_cb * cb,void * cb_data,const struct regcache * regcache)760 i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
761 					 iterate_over_regset_sections_cb *cb,
762 					 void *cb_data,
763 					 const struct regcache *regcache)
764 {
765   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
766 
767   cb (".reg", 68, 68, &i386_gregset, NULL, cb_data);
768 
769   if (tdep->xcr0 & X86_XSTATE_AVX)
770     cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0),
771 	X86_XSTATE_SIZE (tdep->xcr0), &i386_linux_xstateregset,
772 	"XSAVE extended state", cb_data);
773   else if (tdep->xcr0 & X86_XSTATE_SSE)
774     cb (".reg-xfp", 512, 512, &i386_fpregset, "extended floating-point",
775 	cb_data);
776   else
777     cb (".reg2", 108, 108, &i386_fpregset, NULL, cb_data);
778 }
779 
780 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
781    inferior is still inside the syscall.  On next PTRACE_SINGLESTEP it will
782    finish the syscall but PC will not change.
783 
784    Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
785    i386_displaced_step_fixup would keep PC at the displaced pad location.
786    As PC is pointing to the 'ret' instruction before the step
787    i386_displaced_step_fixup would expect inferior has just executed that 'ret'
788    and PC should not be adjusted.  In reality it finished syscall instead and
789    PC should get relocated back to its vDSO address.  Hide the 'ret'
790    instruction by 'nop' so that i386_displaced_step_fixup is not confused.
791 
792    It is not fully correct as the bytes in struct displaced_step_closure will
793    not match the inferior code.  But we would need some new flag in
794    displaced_step_closure otherwise to keep the state that syscall is finishing
795    for the later i386_displaced_step_fixup execution as the syscall execution
796    is already no longer detectable there.  The new flag field would mean
797    i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
798    which does not seem worth it.  The same effect is achieved by patching that
799    'nop' instruction there instead.  */
800 
801 static displaced_step_closure_up
i386_linux_displaced_step_copy_insn(struct gdbarch * gdbarch,CORE_ADDR from,CORE_ADDR to,struct regcache * regs)802 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
803 				     CORE_ADDR from, CORE_ADDR to,
804 				     struct regcache *regs)
805 {
806   displaced_step_closure_up closure_
807     =  i386_displaced_step_copy_insn (gdbarch, from, to, regs);
808 
809   if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
810     {
811       /* The closure returned by i386_displaced_step_copy_insn is simply a
812 	 buffer with a copy of the instruction. */
813       i386_displaced_step_closure *closure
814 	= (i386_displaced_step_closure *) closure_.get ();
815 
816       /* Fake nop.  */
817       closure->buf[0] = 0x90;
818     }
819 
820   return closure_;
821 }
822 
823 static void
i386_linux_init_abi(struct gdbarch_info info,struct gdbarch * gdbarch)824 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
825 {
826   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
827   const struct target_desc *tdesc = info.target_desc;
828   struct tdesc_arch_data *tdesc_data = info.tdesc_data;
829   const struct tdesc_feature *feature;
830   int valid_p;
831 
832   gdb_assert (tdesc_data);
833 
834   linux_init_abi (info, gdbarch);
835 
836   /* GNU/Linux uses ELF.  */
837   i386_elf_init_abi (info, gdbarch);
838 
839   /* Reserve a number for orig_eax.  */
840   set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
841 
842   if (! tdesc_has_registers (tdesc))
843     tdesc = i386_linux_read_description (X86_XSTATE_SSE_MASK);
844   tdep->tdesc = tdesc;
845 
846   feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
847   if (feature == NULL)
848     return;
849 
850   valid_p = tdesc_numbered_register (feature, tdesc_data,
851 				     I386_LINUX_ORIG_EAX_REGNUM,
852 				     "orig_eax");
853   if (!valid_p)
854     return;
855 
856   /* Add the %orig_eax register used for syscall restarting.  */
857   set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
858 
859   tdep->register_reggroup_p = i386_linux_register_reggroup_p;
860 
861   tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
862   tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
863   tdep->sizeof_gregset = 17 * 4;
864 
865   tdep->jb_pc_offset = 20;	/* From <bits/setjmp.h>.  */
866 
867   tdep->sigtramp_p = i386_linux_sigtramp_p;
868   tdep->sigcontext_addr = i386_linux_sigcontext_addr;
869   tdep->sc_reg_offset = i386_linux_sc_reg_offset;
870   tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
871 
872   tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
873 
874   set_gdbarch_process_record (gdbarch, i386_process_record);
875   set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
876 
877   /* Initialize the i386_linux_record_tdep.  */
878   /* These values are the size of the type that will be used in a system
879      call.  They are obtained from Linux Kernel source.  */
880   i386_linux_record_tdep.size_pointer
881     = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
882   i386_linux_record_tdep.size__old_kernel_stat = 32;
883   i386_linux_record_tdep.size_tms = 16;
884   i386_linux_record_tdep.size_loff_t = 8;
885   i386_linux_record_tdep.size_flock = 16;
886   i386_linux_record_tdep.size_oldold_utsname = 45;
887   i386_linux_record_tdep.size_ustat = 20;
888   i386_linux_record_tdep.size_old_sigaction = 16;
889   i386_linux_record_tdep.size_old_sigset_t = 4;
890   i386_linux_record_tdep.size_rlimit = 8;
891   i386_linux_record_tdep.size_rusage = 72;
892   i386_linux_record_tdep.size_timeval = 8;
893   i386_linux_record_tdep.size_timezone = 8;
894   i386_linux_record_tdep.size_old_gid_t = 2;
895   i386_linux_record_tdep.size_old_uid_t = 2;
896   i386_linux_record_tdep.size_fd_set = 128;
897   i386_linux_record_tdep.size_old_dirent = 268;
898   i386_linux_record_tdep.size_statfs = 64;
899   i386_linux_record_tdep.size_statfs64 = 84;
900   i386_linux_record_tdep.size_sockaddr = 16;
901   i386_linux_record_tdep.size_int
902     = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
903   i386_linux_record_tdep.size_long
904     = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
905   i386_linux_record_tdep.size_ulong
906     = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
907   i386_linux_record_tdep.size_msghdr = 28;
908   i386_linux_record_tdep.size_itimerval = 16;
909   i386_linux_record_tdep.size_stat = 88;
910   i386_linux_record_tdep.size_old_utsname = 325;
911   i386_linux_record_tdep.size_sysinfo = 64;
912   i386_linux_record_tdep.size_msqid_ds = 88;
913   i386_linux_record_tdep.size_shmid_ds = 84;
914   i386_linux_record_tdep.size_new_utsname = 390;
915   i386_linux_record_tdep.size_timex = 128;
916   i386_linux_record_tdep.size_mem_dqinfo = 24;
917   i386_linux_record_tdep.size_if_dqblk = 68;
918   i386_linux_record_tdep.size_fs_quota_stat = 68;
919   i386_linux_record_tdep.size_timespec = 8;
920   i386_linux_record_tdep.size_pollfd = 8;
921   i386_linux_record_tdep.size_NFS_FHSIZE = 32;
922   i386_linux_record_tdep.size_knfsd_fh = 132;
923   i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
924   i386_linux_record_tdep.size_sigaction = 20;
925   i386_linux_record_tdep.size_sigset_t = 8;
926   i386_linux_record_tdep.size_siginfo_t = 128;
927   i386_linux_record_tdep.size_cap_user_data_t = 12;
928   i386_linux_record_tdep.size_stack_t = 12;
929   i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
930   i386_linux_record_tdep.size_stat64 = 96;
931   i386_linux_record_tdep.size_gid_t = 4;
932   i386_linux_record_tdep.size_uid_t = 4;
933   i386_linux_record_tdep.size_PAGE_SIZE = 4096;
934   i386_linux_record_tdep.size_flock64 = 24;
935   i386_linux_record_tdep.size_user_desc = 16;
936   i386_linux_record_tdep.size_io_event = 32;
937   i386_linux_record_tdep.size_iocb = 64;
938   i386_linux_record_tdep.size_epoll_event = 12;
939   i386_linux_record_tdep.size_itimerspec
940     = i386_linux_record_tdep.size_timespec * 2;
941   i386_linux_record_tdep.size_mq_attr = 32;
942   i386_linux_record_tdep.size_termios = 36;
943   i386_linux_record_tdep.size_termios2 = 44;
944   i386_linux_record_tdep.size_pid_t = 4;
945   i386_linux_record_tdep.size_winsize = 8;
946   i386_linux_record_tdep.size_serial_struct = 60;
947   i386_linux_record_tdep.size_serial_icounter_struct = 80;
948   i386_linux_record_tdep.size_hayes_esp_config = 12;
949   i386_linux_record_tdep.size_size_t = 4;
950   i386_linux_record_tdep.size_iovec = 8;
951   i386_linux_record_tdep.size_time_t = 4;
952 
953   /* These values are the second argument of system call "sys_ioctl".
954      They are obtained from Linux Kernel source.  */
955   i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
956   i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
957   i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
958   i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
959   i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
960   i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
961   i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
962   i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
963   i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
964   i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
965   i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
966   i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
967   i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
968   i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
969   i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
970   i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
971   i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
972   i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
973   i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
974   i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
975   i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
976   i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
977   i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
978   i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
979   i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
980   i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
981   i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
982   i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
983   i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
984   i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
985   i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
986   i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
987   i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
988   i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
989   i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
990   i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
991   i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
992   i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
993   i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
994   i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
995   i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
996   i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
997   i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
998   i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
999   i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1000   i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1001   i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1002   i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1003   i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1004   i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1005   i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1006   i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1007   i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1008   i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1009   i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1010   i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1011   i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1012   i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1013   i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
1014   i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
1015   i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
1016   i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
1017   i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
1018   i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
1019   i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1020 
1021   /* These values are the second argument of system call "sys_fcntl"
1022      and "sys_fcntl64".  They are obtained from Linux Kernel source.  */
1023   i386_linux_record_tdep.fcntl_F_GETLK = 5;
1024   i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
1025   i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
1026   i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1027 
1028   i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
1029   i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
1030   i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
1031   i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
1032   i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
1033   i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
1034 
1035   tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
1036   tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
1037   tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
1038 
1039   /* N_FUN symbols in shared libraries have 0 for their values and need
1040      to be relocated.  */
1041   set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
1042 
1043   /* GNU/Linux uses SVR4-style shared libraries.  */
1044   set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1045   set_solib_svr4_fetch_link_map_offsets
1046     (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1047 
1048   /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */
1049   set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1050 
1051   dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
1052 
1053   /* Enable TLS support.  */
1054   set_gdbarch_fetch_tls_load_module_address (gdbarch,
1055                                              svr4_fetch_objfile_link_map);
1056 
1057   /* Core file support.  */
1058   set_gdbarch_iterate_over_regset_sections
1059     (gdbarch, i386_linux_iterate_over_regset_sections);
1060   set_gdbarch_core_read_description (gdbarch,
1061 				     i386_linux_core_read_description);
1062 
1063   /* Displaced stepping.  */
1064   set_gdbarch_displaced_step_copy_insn (gdbarch,
1065                                         i386_linux_displaced_step_copy_insn);
1066   set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
1067   set_gdbarch_displaced_step_location (gdbarch,
1068                                        linux_displaced_step_location);
1069 
1070   /* Functions for 'catch syscall'.  */
1071   set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
1072   set_gdbarch_get_syscall_number (gdbarch,
1073                                   i386_linux_get_syscall_number);
1074 
1075   set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type);
1076   set_gdbarch_report_signal_info (gdbarch, i386_linux_report_signal_info);
1077 }
1078 
1079 void _initialize_i386_linux_tdep ();
1080 void
_initialize_i386_linux_tdep()1081 _initialize_i386_linux_tdep ()
1082 {
1083   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
1084 			  i386_linux_init_abi);
1085 }
1086