1 /*-
2  * Copyright (c) 2012 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Paul Fleischer <paul@xpg.dk>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  * POSSIBILITY OF SUCH DAMAGE.
28  */
29 /* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */
30 /*
31  * Copyright (c) 2002, 2003 Fujitsu Component Limited
32  * Copyright (c) 2002, 2003, 2005 Genetec Corporation
33  * All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. Neither the name of The Fujitsu Component Limited nor the name of
44  *    Genetec corporation may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
48  * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
51  * DISCLAIMED.  IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
52  * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
54  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
55  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
56  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
57  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
58  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  */
61 /*
62  * Copyright (c) 2001,2002 ARM Ltd
63  * All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  * 3. The name of the company may not be used to endorse or promote
74  *    products derived from this software without specific prior written
75  *    permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
79  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
80  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD
81  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
82  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
83  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
84  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
85  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
86  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
87  * POSSIBILITY OF SUCH DAMAGE.
88  *
89  */
90 
91 /*
92  * Copyright (c) 1997,1998 Mark Brinicombe.
93  * Copyright (c) 1997,1998 Causality Limited.
94  * All rights reserved.
95  *
96  * Redistribution and use in source and binary forms, with or without
97  * modification, are permitted provided that the following conditions
98  * are met:
99  * 1. Redistributions of source code must retain the above copyright
100  *    notice, this list of conditions and the following disclaimer.
101  * 2. Redistributions in binary form must reproduce the above copyright
102  *    notice, this list of conditions and the following disclaimer in the
103  *    documentation and/or other materials provided with the distribution.
104  * 3. All advertising materials mentioning features or use of this software
105  *    must display the following acknowledgement:
106  *	This product includes software developed by Mark Brinicombe
107  *	for the NetBSD Project.
108  * 4. The name of the company nor the name of the author may be used to
109  *    endorse or promote products derived from this software without specific
110  *    prior written permission.
111  *
112  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
113  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
114  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
115  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
116  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
117  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
118  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
119  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
120  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
121  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
122  * SUCH DAMAGE.
123  *
124  * Machine dependant functions for kernel setup for integrator board
125  *
126  * Created      : 24/11/97
127  */
128 
129 /*
130  * Machine dependant functions for kernel setup for FriendlyARM MINI2440
131  */
132 
133 #include <sys/cdefs.h>
134 __KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.21 2023/06/19 03:52:50 nisimura Exp $");
135 
136 #include "opt_arm_debug.h"
137 #include "opt_console.h"
138 #include "opt_ddb.h"
139 #include "opt_kgdb.h"
140 #include "opt_md.h"
141 
142 #include <sys/param.h>
143 #include <sys/device.h>
144 #include <sys/systm.h>
145 #include <sys/kernel.h>
146 #include <sys/exec.h>
147 #include <sys/proc.h>
148 #include <sys/msgbuf.h>
149 #include <sys/reboot.h>
150 #include <sys/termios.h>
151 #include <sys/ksyms.h>
152 #include <sys/mount.h>
153 
154 #include <net/if.h>
155 #include <net/if_ether.h>
156 #include <net/if_media.h>
157 
158 #include <uvm/uvm_extern.h>
159 
160 #include <dev/cons.h>
161 #include <dev/md.h>
162 
163 #include <machine/db_machdep.h>
164 #include <ddb/db_sym.h>
165 #include <ddb/db_extern.h>
166 #ifdef KGDB
167 #include <sys/kgdb.h>
168 #endif
169 
170 #include <sys/exec_elf.h>
171 
172 #include <sys/bus.h>
173 #include <machine/cpu.h>
174 #include <machine/frame.h>
175 #include <machine/intr.h>
176 #include <arm/undefined.h>
177 
178 #include <machine/autoconf.h>
179 
180 #include <arm/locore.h>
181 #include <arm/arm32/machdep.h>
182 
183 #include <arm/s3c2xx0/s3c2440reg.h>
184 #include <arm/s3c2xx0/s3c2440var.h>
185 
186 #include <arch/evbarm/mini2440/mini2440_bootinfo.h>
187 
188 #include "ksyms.h"
189 
190 #ifndef	SDRAM_START
191 #define	SDRAM_START	S3C2440_SDRAM_START
192 #endif
193 #ifndef	SDRAM_SIZE
194 #define	SDRAM_SIZE	(64*1024*1024) /* 64 Mb */
195 #endif
196 
197 /*
198  * Address to map I/O registers in early initialize stage.
199  */
200 #define MINI2440_IO_VBASE	0xfd000000
201 
202 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
203 #define KERNEL_OFFSET		0x00200000
204 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + KERNEL_OFFSET)
205 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
206 
207 /*
208  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
209  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
210  */
211 #define KERNEL_VM_SIZE		0x0C000000
212 
213 /* Declared extern elsewhere in the kernel */
214 BootConfig bootconfig;		/* Boot config storage */
215 char *boot_args = NULL;
216 //char *boot_file = NULL;
217 
218 char bootinfo[BOOTINFO_MAXSIZE];
219 struct btinfo_rootdevice 	*bi_rdev;
220 struct btinfo_net		*bi_net;
221 struct btinfo_bootpath		*bi_path;
222 
223 vaddr_t physical_start;
224 vaddr_t physical_freestart;
225 vaddr_t physical_freeend;
226 vaddr_t physical_freeend_low;
227 vaddr_t physical_end;
228 u_int free_pages;
229 vaddr_t pagetables_start;
230 
231 /*int debug_flags;*/
232 #ifndef PMAP_STATIC_L1S
233 int max_processes = 64;		/* Default number */
234 #endif				/* !PMAP_STATIC_L1S */
235 
236 paddr_t msgbufphys;
237 
238 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
239 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
240 #define KERNEL_PT_KERNEL_NUM	3	/* L2 tables for mapping kernel VM */
241 
242 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
243 
244 #define KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
245 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
246 
247 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
248 
249 /* Prototypes */
250 
251 void consinit(void);
252 void kgdb_port_init(void);
253 static void mini2440_ksyms(struct btinfo_symtab *bi_symtab);
254 static void *lookup_bootinfo(int type);
255 static void mini2440_device_register(device_t dev, void *aux);
256 
257 
258 #include "com.h"
259 #if NCOM > 0
260 #include <dev/ic/comreg.h>
261 #include <dev/ic/comvar.h>
262 #endif
263 
264 #include "sscom.h"
265 #if NSSCOM > 0
266 #include "opt_sscom.h"
267 #include <arm/s3c2xx0/sscom_var.h>
268 #endif
269 
270 /*
271  * Define the default console speed for the board.  This is generally
272  * what the firmware provided with the board defaults to.
273  */
274 #ifndef CONSPEED
275 #define CONSPEED B115200	/* TTYDEF_SPEED */
276 #endif
277 #ifndef CONMODE
278 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8)   /* 8N1 */
279 #endif
280 
281 int comcnspeed = CONSPEED;
282 int comcnmode = CONMODE;
283 
284 /*
285  * void cpu_reboot(int howto, char *bootstr)
286  *
287  * Reboots the system
288  *
289  * Deal with any syncing, unmounting, dumping and shutdown hooks,
290  * then reset the CPU.
291  */
292 void
cpu_reboot(int howto,char * bootstr)293 cpu_reboot(int howto, char *bootstr)
294 {
295 #ifdef DIAGNOSTIC
296 	/* info */
297 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
298 #endif
299 
300 	cpu_reset_address_paddr = vtophys((uintptr_t)s3c2440_softreset);
301 
302 	/*
303 	 * If we are still cold then hit the air brakes
304 	 * and crash to earth fast
305 	 */
306 	if (cold) {
307 		doshutdownhooks();
308 		printf("The operating system has halted.\n");
309 		printf("Please press any key to reboot.\n\n");
310 		cngetc();
311 		printf("rebooting...\n");
312 		cpu_reset();
313 		/* NOTREACHED */
314 	}
315 	/* Disable console buffering */
316 
317 	/*
318 	 * If RB_NOSYNC was not specified sync the discs.
319 	 * Note: Unless cold is set to 1 here, syslogd will die during the
320 	 * unmount.  It looks like syslogd is getting woken up only to find
321 	 * that it cannot page part of the binary in as the filesystem has
322 	 * been unmounted.
323 	 */
324 	if (!(howto & RB_NOSYNC))
325 		bootsync();
326 
327 	/* Say NO to interrupts */
328 	splhigh();
329 
330 	/* Do a dump if requested. */
331 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
332 		dumpsys();
333 
334 	/* Run any shutdown hooks */
335 	doshutdownhooks();
336 
337 	/* Make sure IRQ's are disabled */
338 	IRQdisable;
339 
340 	if (howto & RB_HALT) {
341 		printf("The operating system has halted.\n");
342 		printf("Please press any key to reboot.\n\n");
343 		cngetc();
344 	}
345 	printf("rebooting...\n");
346 	cpu_reset();
347 	/* NOTREACHED */
348 }
349 
350 /*
351  * Static device mappings. These peripheral registers are mapped at
352  * fixed virtual addresses very early in initarm() so that we can use
353  * them while booting the kernel , and stay at the same address
354  * throughout whole kernel's life time.
355  *
356  * We use this table twice; once with bootstrap page table, and once
357  * with kernel's page table which we build up in initarm().
358  *
359  * Since we map these registers into the bootstrap page table using
360  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
361  * registers segment-aligned and segment-rounded in order to avoid
362  * using the 2nd page tables.
363  */
364 
365 #define	_V(n)	(MINI2440_IO_VBASE + (n) * L1_S_SIZE)
366 
367 #define	GPIO_VBASE	_V(0)
368 #define	INTCTL_VBASE	_V(1)
369 #define	CLKMAN_VBASE	_V(2)
370 #define	UART_VBASE	_V(3)
371 
372 static const struct pmap_devmap mini2440_devmap[] = {
373 	/* GPIO registers */
374 	DEVMAP_ENTRY(
375 		GPIO_VBASE,
376 		S3C2440_GPIO_BASE,
377 		S3C2440_GPIO_SIZE
378 	),
379 	DEVMAP_ENTRY(
380 		INTCTL_VBASE,
381 		S3C2440_INTCTL_BASE,
382 		S3C2440_INTCTL_SIZE
383 	),
384 	DEVMAP_ENTRY(
385 		CLKMAN_VBASE,
386 		S3C2440_CLKMAN_BASE,
387 		S3C24X0_CLKMAN_SIZE
388 	),
389 	/* UART registers for UART0, 1, 2. */
390 	DEVMAP_ENTRY(
391 		UART_VBASE,
392 		S3C2440_UART0_BASE,
393 		S3C2440_UART_BASE(3) - S3C2440_UART0_BASE
394 	),
395 	DEVMAP_ENTRY_END
396 };
397 
398 static inline	pd_entry_t *
read_ttb(void)399 read_ttb(void)
400 {
401 	long ttb;
402 
403 	__asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r"(ttb));
404 
405 
406 	return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
407 }
408 
409 
410 #define	ioreg_write32(a,v)  	(*(volatile uint32_t *)(a)=(v))
411 
412 /*
413  * vaddr_t initarm(...)
414  *
415  * Initial entry point on startup. This gets called before main() is
416  * entered.
417  * It should be responsible for setting up everything that must be
418  * in place when main is called.
419  * This includes
420  *   Taking a copy of the boot configuration structure.
421  *   Initialising the physical console so characters can be printed.
422  *   Setting up page tables for the kernel
423  *   Relocating the kernel to the bottom of physical memory
424  */
425 
426 vaddr_t
initarm(void * arg)427 initarm(void *arg)
428 {
429 	int loop;
430 	int loop1;
431 	u_int l1pagetable;
432 	extern int etext __asm("_etext");
433 	extern int end __asm("_end");
434 	uint32_t kerneldatasize;
435 	struct btinfo_magic *bi_magic = arg;
436 	struct btinfo_bootstring *bi_bootstring;
437 	struct btinfo_symtab *bi_symtab;
438 
439 	boothowto = 0;
440 
441 	/* Copy bootinfo from boot loader into kernel memory where it remains.
442 	 */
443 	if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) {
444 		memcpy(bootinfo, bi_magic, sizeof(bootinfo));
445 	} else {
446 		memset(bootinfo, 0, sizeof(bootinfo));
447 	}
448 
449 	/* Extract boot_args from bootinfo */
450 	bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING);
451 	if (bi_bootstring ) {
452 		printf("Bootloader args are %s\n", bi_bootstring->bootstring);
453 		boot_args = bi_bootstring->bootstring;
454 		parse_mi_bootargs(boot_args);
455 	}
456 
457 #define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT))
458 
459 // 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8
460 #define __LED(x)  (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0))
461 
462 	__LED(0);
463 
464 	/*
465 	 * Heads up ... Setup the CPU / MMU / TLB functions
466 	 */
467 	if (set_cpufuncs())
468 		panic("cpu not recognized!");
469 
470 	/*
471 	 * Map I/O registers that are used in startup.  Now we are
472 	 * still using page table prepared by bootloader.  Later we'll
473 	 * map those registers at the same address in the kernel page
474 	 * table.
475 	 */
476 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap);
477 
478 #undef	pdatb
479 #define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT))
480 
481 	/* Disable all peripheral interrupts */
482 	ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
483 
484 	__LED(1);
485 
486 	/* initialize some variables so that splfoo() doesn't
487 	   touch illegal address.  */
488 	s3c2xx0_intr_bootstrap(INTCTL_VBASE);
489 
490 	__LED(2);
491 	consinit();
492 	__LED(3);
493 
494 	/* Extract information from the bootloader configuration */
495 	bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE);
496 	bi_net = lookup_bootinfo(BTINFO_NET);
497 	bi_path = lookup_bootinfo(BTINFO_BOOTPATH);
498 
499 #ifdef VERBOSE_INIT_ARM
500 	printf("consinit done\n");
501 #endif
502 
503 #ifdef KGDB
504 	kgdb_port_init();
505 #endif
506 
507 #ifdef VERBOSE_INIT_ARM
508 	/* Talk to the user */
509 	printf("\nNetBSD/evbarm (MINI2440) booting ...\n");
510 #endif
511 	/*
512 	 * Ok we have the following memory map
513 	 *
514 	 * Physical Address Range     Description
515 	 * -----------------------    ----------------------------------
516 	 * 0x30000000 - 0x33ffffff    SDRAM (64MB)
517          *
518          * Kernel is loaded by bootloader at 0x30200000
519 	 *
520 	 * The initarm() has the responsibility for creating the kernel
521 	 * page tables.
522 	 * It must also set up various memory pointers that are used
523 	 * by pmap etc.
524 	 */
525 
526 	/* Fake bootconfig structure for the benefit of pmap.c */
527 	/* XXX must make the memory description h/w independent */
528 	bootconfig.dramblocks = 1;
529 	bootconfig.dram[0].address = SDRAM_START;
530 	bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
531 
532 	/*
533 	 * Set up the variables that define the availability of
534 	 * physical memory.
535          * We use the 2MB between the physical start and the kernel to
536          * begin with. Allocating from 0x30200000 and downwards
537 	 * If we get too close to the bottom of SDRAM, we
538 	 * will panic.  We will update physical_freestart and
539 	 * physical_freeend later to reflect what pmap_bootstrap()
540 	 * wants to see.
541 	 *
542 	 * XXX pmap_bootstrap() needs an enema.
543 	 */
544 	physical_start = bootconfig.dram[0].address;
545 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
546 
547 	physical_freestart = SDRAM_START;	/* XXX */
548 	physical_freeend = SDRAM_START + KERNEL_OFFSET;
549 
550 	physmem = (physical_end - physical_start) / PAGE_SIZE;
551 
552 #ifdef VERBOSE_INIT_ARM
553 	/* Tell the user about the memory */
554 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
555 	    physical_start, physical_end - 1);
556 	printf("phys_end: 0x%08lx\n", physical_end);
557 #endif
558 
559 	/*
560 	 * XXX
561 	 * Okay, the kernel starts 2MB in from the bottom of physical
562 	 * memory.  We are going to allocate our bootstrap pages downwards
563 	 * from there.
564 	 *
565 	 * We need to allocate some fixed page tables to get the kernel
566 	 * going.  We allocate one page directory and a number of page
567 	 * tables and store the physical addresses in the kernel_pt_table
568 	 * array.
569 	 *
570 	 * The kernel page directory must be on a 16K boundary.  The page
571 	 * tables must be on 4K boundaries.  What we do is allocate the
572 	 * page directory on the first 16K boundary that we encounter, and
573 	 * the page tables on 4K boundaries otherwise.  Since we allocate
574 	 * at least 3 L2 page tables, we are guaranteed to encounter at
575 	 * least one 16K aligned region.
576 	 */
577 
578 #ifdef VERBOSE_INIT_ARM
579 	printf("Allocating page tables\n");
580 #endif
581 
582 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
583 
584 #ifdef VERBOSE_INIT_ARM
585 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n",
586 	    physical_freestart, free_pages, free_pages, physical_freeend);
587 #endif
588 
589 	/* Define a macro to simplify memory allocation */
590 #define	valloc_pages(var, np)				\
591 	alloc_pages((var).pv_pa, (np));			\
592 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
593 
594 #define alloc_pages(var, np)				\
595 	physical_freeend -= ((np) * PAGE_SIZE);		\
596 	if (physical_freeend < physical_freestart)	\
597 		panic("initarm: out of memory");	\
598 	(var) = physical_freeend;			\
599 	free_pages -= (np);				\
600 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
601 
602 	loop1 = 0;
603 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
604 		/* Are we 16KB aligned for an L1 ? */
605 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
606 		    && kernel_l1pt.pv_pa == 0) {
607 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
608 		} else {
609 			valloc_pages(kernel_pt_table[loop1],
610 			    L2_TABLE_SIZE / PAGE_SIZE);
611 			++loop1;
612 		}
613 	}
614 
615 	/* This should never be able to happen but better confirm that. */
616 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
617 		panic("initarm: Failed to align the kernel page directory\n");
618 
619 	/*
620 	 * Allocate a page for the system page mapped to V0x00000000
621 	 * This page will just contain the system vectors and can be
622 	 * shared by all processes.
623 	 */
624 	alloc_pages(systempage.pv_pa, 1);
625 
626 	/* Allocate stacks for all modes */
627 	valloc_pages(irqstack, IRQ_STACK_SIZE);
628 	valloc_pages(abtstack, ABT_STACK_SIZE);
629 	valloc_pages(undstack, UND_STACK_SIZE);
630 	valloc_pages(kernelstack, UPAGES);
631 
632 #ifdef VERBOSE_INIT_ARM
633 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
634 	    irqstack.pv_va);
635 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
636 	    abtstack.pv_va);
637 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
638 	    undstack.pv_va);
639 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
640 	    kernelstack.pv_va);
641 	printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart);
642 #endif
643 
644 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
645 
646 	physical_freeend_low = physical_freeend;
647 
648 	/*
649 	 * Ok we have allocated physical pages for the primary kernel
650 	 * page tables
651 	 */
652 
653 #ifdef VERBOSE_INIT_ARM
654 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
655 #endif
656 
657 	/*
658 	 * Now we start construction of the L1 page table
659 	 * We start by mapping the L2 page tables into the L1.
660 	 * This means that we can replace L1 mappings later on if necessary
661 	 */
662 	l1pagetable = kernel_l1pt.pv_pa;
663 
664 	/* Map the L2 pages tables in the L1 page table */
665 	pmap_link_l2pt(l1pagetable, 0x00000000,
666 	    &kernel_pt_table[KERNEL_PT_SYS]);
667 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
668 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
669 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
670 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
671 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
672 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
673 
674 	/* update the top of the kernel VM */
675 	pmap_curmaxkvaddr =
676 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
677 
678 #ifdef VERBOSE_INIT_ARM
679 	printf("Mapping kernel\n");
680 #endif
681 
682 	/* Now we fill in the L2 pagetable for the kernel static code/data */
683 	{
684 		/* Total size must include symbol table, if it exists.
685 		   The size of the symbol table can be acquired from the ELF
686 		   header, to which a pointer is passed in the boot info (ssym).
687 		 */
688 		size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
689 		kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE;
690 		u_int logical;
691 
692 		bi_symtab = lookup_bootinfo(BTINFO_SYMTAB);
693 
694 		if (bi_symtab) {
695 			Elf_Ehdr *elfHeader;
696 			Elf_Shdr *sectionHeader;
697 			int nsection;
698 			int sz = 0;
699 
700 			elfHeader = bi_symtab->ssym;
701 
702 #ifdef VERBOSE_INIT_ARM
703 			printf("Symbol table information provided by bootloader\n");
704 			printf("ELF header is at %p\n", elfHeader);
705 #endif
706 			sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) +
707 						     (elfHeader->e_shoff));
708 			nsection = elfHeader->e_shnum;
709 #ifdef VERBOSE_INIT_ARM
710 			printf("Number of sections: %d\n", nsection);
711 #endif
712 			for(; nsection > 0; nsection--, sectionHeader++) {
713 				if (sectionHeader->sh_offset > 0 &&
714 				    (sectionHeader->sh_offset + sectionHeader->sh_size) > sz)
715 					sz = sectionHeader->sh_offset + sectionHeader->sh_size;
716 			}
717 #ifdef VERBOSE_INIT_ARM
718 			printf("Max size of sections: %d\n", sz);
719 #endif
720 			kerneldatasize += sz;
721 		}
722 
723 #ifdef VERBOSE_INIT_ARM
724 		printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize,
725 		       (uint)kerneldatasize);
726 		printf("&etext: 0x%x\n", (uint)&etext);
727 		printf("&end: 0x%x\n", (uint)&end);
728 		printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE);
729 #endif
730 
731 		textsize = (textsize + PGOFSET) & ~PGOFSET;
732 		kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET;
733 
734 		logical = KERNEL_OFFSET;	/* offset of kernel in RAM */
735 
736 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
737 					  physical_start + logical, textsize,
738 					  VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
739 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
740 					  physical_start + logical, kerneldatasize - textsize,
741 					  VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
742 	}
743 
744 #ifdef VERBOSE_INIT_ARM
745 	printf("Constructing L2 page tables\n");
746 #endif
747 
748 	/* Map the stack pages */
749 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
750 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
751 	    PTE_CACHE);
752 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
753 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
754 	    PTE_CACHE);
755 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
756 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
757 	    PTE_CACHE);
758 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
759 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
760 
761 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
762 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
763 
764 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
765 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
766 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
767 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
768 	}
769 
770 	/* Map the vector page. */
771 #if 0
772 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
773 	 * cache-clean code there.  */
774 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
775 	    VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
776 #else
777 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
778 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
779 #endif
780 
781 	/*
782 	 * map integrated peripherals at same address in l1pagetable
783 	 * so that we can continue to use console.
784 	 */
785 	pmap_devmap_bootstrap(l1pagetable, mini2440_devmap);
786 
787 	/*
788 	 * Now we have the real page tables in place so we can switch to them.
789 	 * Once this is done we will be running with the REAL kernel page
790 	 * tables.
791 	 */
792 	/*
793 	 * Update the physical_freestart/physical_freeend/free_pages
794 	 * variables.
795 	 */
796 	physical_freestart = physical_start +
797 	  (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
798 	physical_freeend = physical_end;
799 	free_pages =
800 	  (physical_freeend - physical_freestart) / PAGE_SIZE;
801 
802 	/* Switch tables */
803 #ifdef VERBOSE_INIT_ARM
804 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
805 	    physical_freestart, free_pages, free_pages);
806 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
807 #endif
808 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
809 	cpu_setttb(kernel_l1pt.pv_pa, true);
810 	cpu_tlb_flushID();
811 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
812 
813 	/*
814 	 * Moved from cpu_startup() as data_abort_handler() references
815 	 * this during uvm init
816 	 */
817 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
818 
819 #ifdef VERBOSE_INIT_ARM
820 	printf("done!\n");
821 #endif
822 
823 #ifdef VERBOSE_INIT_ARM
824 	printf("bootstrap done.\n");
825 #endif
826 
827 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
828 
829 	/*
830 	 * Pages were allocated during the secondary bootstrap for the
831 	 * stacks for different CPU modes.
832 	 * We must now set the r13 registers in the different CPU modes to
833 	 * point to these stacks.
834 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
835 	 * of the stack memory.
836 	 */
837 #ifdef VERBOSE_INIT_ARM
838 	printf("init subsystems: stacks ");
839 #endif
840 
841 	set_stackptr(PSR_IRQ32_MODE,
842 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
843 	set_stackptr(PSR_ABT32_MODE,
844 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
845 	set_stackptr(PSR_UND32_MODE,
846 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
847 
848 	cpu_idcache_wbinv_all();
849 
850 	/*
851 	 * Well we should set a data abort handler.
852 	 * Once things get going this will change as we will need a proper
853 	 * handler.
854 	 * Until then we will use a handler that just panics but tells us
855 	 * why.
856 	 * Initialisation of the vectors will just panic on a data abort.
857 	 * This just fills in a slightly better one.
858 	 */
859 #ifdef VERBOSE_INIT_ARM
860 	printf("vectors ");
861 #endif
862 	data_abort_handler_address = (u_int)data_abort_handler;
863 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
864 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
865 
866 	/* Initialise the undefined instruction handlers */
867 #ifdef VERBOSE_INIT_ARM
868 	printf("undefined ");
869 #endif
870 	undefined_init();
871 
872 	/* Load memory into UVM. */
873 #ifdef VERBOSE_INIT_ARM
874 	printf("page ");
875 #endif
876 	uvm_md_init();
877 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
878 	    atop(physical_freestart), atop(physical_freeend),
879 	    VM_FREELIST_DEFAULT);
880 	uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low),
881 	    atop(SDRAM_START), atop(physical_freeend_low),
882 	    VM_FREELIST_DEFAULT);
883 
884 
885 	/* Boot strap pmap telling it where managed kernel virtual memory is */
886 #ifdef VERBOSE_INIT_ARM
887 	printf("pmap ");
888 #endif
889 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
890 
891 #ifdef VERBOSE_INIT_ARM
892 	printf("done.\n");
893 #endif
894 
895 #ifdef BOOTHOWTO
896 	boothowto |= BOOTHOWTO;
897 #endif
898 
899 #ifdef KGDB
900 	if (boothowto & RB_KDB) {
901 		kgdb_debug_init = 1;
902 		kgdb_connect(1);
903 	}
904 #endif
905 
906 	mini2440_ksyms(bi_symtab);
907 
908 #ifdef DDB
909 	/*db_machine_init();*/
910 	if (boothowto & RB_KDB)
911 		Debugger();
912 #endif
913 
914 	evbarm_device_register = mini2440_device_register;
915 
916 	/* We return the new stack pointer address */
917 	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
918 }
919 
920 void
consinit(void)921 consinit(void)
922 {
923 	static int consinit_done = 0;
924 #if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE)
925 	bus_space_tag_t iot = &s3c2xx0_bs_tag;
926 #endif
927 	int pclk;
928 
929 	if (consinit_done != 0)
930 		return;
931 
932 	consinit_done = 1;
933 
934 	s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
935 
936 #if NSSCOM > 0
937 #ifdef SSCOM0CONSOLE
938 	if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed,
939 		pclk, comcnmode))
940 		return;
941 #endif
942 #ifdef SSCOM1CONSOLE
943 	if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed,
944 		pclk, comcnmode))
945 		return;
946 #endif
947 #endif				/* NSSCOM */
948 #if NCOM>0 && defined(CONCOMADDR)
949 	if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
950 		COM_FREQ, COM_TYPE_NORMAL, comcnmode))
951 		panic("can't init serial console @%x", CONCOMADDR);
952 	return;
953 #endif
954 
955 	consinit_done = 0;
956 }
957 
958 
959 #ifdef KGDB
960 
961 #if (NSSCOM > 0)
962 
963 #ifdef KGDB_DEVNAME
964 const char kgdb_devname[] = KGDB_DEVNAME;
965 #else
966 const char kgdb_devname[] = "";
967 #endif
968 
969 #ifndef KGDB_DEVMODE
970 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
971 #endif
972 int kgdb_sscom_mode = KGDB_DEVMODE;
973 
974 #endif				/* NSSCOM */
975 
976 void
kgdb_port_init(void)977 kgdb_port_init(void)
978 {
979 #if (NSSCOM > 0)
980 	int unit = -1;
981 	int pclk;
982 
983 	if (strcmp(kgdb_devname, "sscom0") == 0)
984 		unit = 0;
985 	else if (strcmp(kgdb_devname, "sscom1") == 0)
986 		unit = 1;
987 
988 	if (unit >= 0) {
989 		s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
990 
991 		s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag,
992 		    unit, kgdb_rate, pclk, kgdb_sscom_mode);
993 	}
994 #endif
995 }
996 #endif
997 
998 
999 static struct arm32_dma_range mini2440_dma_ranges[1];
1000 
1001 bus_dma_tag_t
s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag * dma_tag_template)1002 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
1003 {
1004 	extern paddr_t physical_start, physical_end;
1005 	struct arm32_bus_dma_tag *dmat;
1006 
1007 	mini2440_dma_ranges[0].dr_sysbase = physical_start;
1008 	mini2440_dma_ranges[0].dr_busbase = physical_start;
1009 	mini2440_dma_ranges[0].dr_len = physical_end - physical_start;
1010 
1011 #if 1
1012 	dmat = dma_tag_template;
1013 #else
1014 	dmat = malloc(sizeof *dmat, M_DEVBUF, M_WAITOK);
1015 	*dmat =  *dma_tag_template;
1016 #endif
1017 
1018 	dmat->_ranges = mini2440_dma_ranges;
1019 	dmat->_nranges = 1;
1020 
1021 	return dmat;
1022 }
1023 
1024 void
mini2440_ksyms(struct btinfo_symtab * bi_symtab)1025 mini2440_ksyms(struct btinfo_symtab *bi_symtab)
1026 {
1027 #if NKSYMS || defined(DDB) || defined(LKM)
1028 	extern int end;
1029 
1030 #ifdef DDB
1031 	db_machine_init();
1032 #endif
1033 	if (bi_symtab == NULL) {
1034 		return;
1035 	}
1036 #ifdef VERBOSE_INIT_ARM
1037 	printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n",
1038 	       bi_symtab->nsym,
1039 	       bi_symtab->ssym,
1040 	       bi_symtab->esym);
1041 #endif
1042 
1043 	ksyms_addsyms_elf(bi_symtab->nsym,
1044 			  (int*)bi_symtab->ssym,
1045 			  (int*)bi_symtab->esym);
1046 #endif
1047 }
1048 
1049 void *
lookup_bootinfo(int type)1050 lookup_bootinfo(int type)
1051 {
1052 	struct btinfo_common *bt;
1053 	struct btinfo_common *help = (struct btinfo_common *)bootinfo;
1054 
1055 	if (help->next == 0)
1056 		return (NULL);  /* bootinfo[] was not made */
1057 	do {
1058 		bt = help;
1059 		if (bt->type == type)
1060 			return (help);
1061 		help = (struct btinfo_common *)((char*)help + bt->next);
1062 	} while (bt->next &&
1063 		 (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE);
1064 
1065 	return (NULL);
1066 }
1067 
1068 
1069 extern char *booted_kernel;
1070 
1071 static void
mini2440_device_register(device_t dev,void * aux)1072 mini2440_device_register(device_t dev, void *aux) {
1073 	if (device_class(dev) == DV_IFNET) {
1074 #ifndef MEMORY_DISK_IS_ROOT
1075 		if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) {
1076 			booted_device = dev;
1077 			rootfstype = MOUNT_NFS;
1078 			if( bi_path != NULL ) {
1079 				booted_kernel = bi_path->bootpath;
1080 			}
1081 		}
1082 #endif
1083 		if (bi_net != NULL && device_is_a(dev, bi_net->devname)) {
1084 			prop_data_t pd;
1085 			pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN);
1086 			KASSERT(pd != NULL);
1087 			if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) {
1088 				printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev));
1089 			}
1090 			prop_object_release(pd);
1091 			bi_net = NULL;
1092 		}
1093 	}
1094 #ifndef MEMORY_DISK_IS_ROOT
1095 	if (bi_rdev != NULL && device_class(dev) == DV_DISK
1096 	    && device_is_a(dev, bi_rdev->devname)
1097 	    && device_unit(dev) == bi_rdev->cookie) {
1098 		booted_device = dev;
1099 		booted_partition = bi_rdev->partition;
1100 		rootfstype = ROOT_FSTYPE_ANY;
1101 		if( bi_path != NULL ) {
1102 			booted_kernel = bi_path->bootpath;
1103 		}
1104 	}
1105 #endif
1106 }
1107