xref: /netbsd/sys/dev/ic/arn5008.c (revision 1943cc2e)
1 /*	$NetBSD: arn5008.c,v 1.19 2022/03/18 23:32:24 riastradh Exp $	*/
2 /*	$OpenBSD: ar5008.c,v 1.21 2012/08/25 12:14:31 kettenis Exp $	*/
3 
4 /*-
5  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2008-2009 Atheros Communications Inc.
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Atheros 802.11a/g/n chipsets.
23  * Routines common to AR5008, AR9001 and AR9002 families.
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: arn5008.c,v 1.19 2022/03/18 23:32:24 riastradh Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/queue.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/intr.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/if_dl.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60 
61 #include <dev/ic/athnreg.h>
62 #include <dev/ic/athnvar.h>
63 
64 #include <dev/ic/arn5008reg.h>
65 #include <dev/ic/arn5008.h>
66 #include <dev/ic/arn5416.h>
67 #include <dev/ic/arn9280.h>
68 
69 #define Static static
70 
71 Static void	ar5008_calib_adc_dc_off(struct athn_softc *);
72 Static void	ar5008_calib_adc_gain(struct athn_softc *);
73 Static void	ar5008_calib_iq(struct athn_softc *);
74 Static void	ar5008_disable_ofdm_weak_signal(struct athn_softc *);
75 Static void	ar5008_disable_phy(struct athn_softc *);
76 Static int	ar5008_dma_alloc(struct athn_softc *);
77 Static void	ar5008_dma_free(struct athn_softc *);
78 Static void	ar5008_do_calib(struct athn_softc *);
79 Static void	ar5008_do_noisefloor_calib(struct athn_softc *);
80 Static void	ar5008_enable_antenna_diversity(struct athn_softc *);
81 Static void	ar5008_enable_ofdm_weak_signal(struct athn_softc *);
82 Static uint8_t	ar5008_get_vpd(uint8_t, const uint8_t *, const uint8_t *, int);
83 Static void	ar5008_gpio_config_input(struct athn_softc *, int);
84 Static void	ar5008_gpio_config_output(struct athn_softc *, int, int);
85 Static int	ar5008_gpio_read(struct athn_softc *, int);
86 Static void	ar5008_gpio_write(struct athn_softc *, int, int);
87 Static void	ar5008_hw_init(struct athn_softc *, struct ieee80211_channel *,
88 		    struct ieee80211_channel *);
89 Static void	ar5008_init_baseband(struct athn_softc *);
90 Static void	ar5008_init_chains(struct athn_softc *);
91 Static int	ar5008_intr_status(struct athn_softc *);
92 Static int	ar5008_intr(struct athn_softc *);
93 Static void	ar5008_next_calib(struct athn_softc *);
94 Static int	ar5008_read_eep_word(struct athn_softc *, uint32_t,
95 		    uint16_t *);
96 Static int	ar5008_read_rom(struct athn_softc *);
97 Static void	ar5008_rf_bus_release(struct athn_softc *);
98 Static int	ar5008_rf_bus_request(struct athn_softc *);
99 Static void	ar5008_rfsilent_init(struct athn_softc *);
100 Static int	ar5008_rx_alloc(struct athn_softc *);
101 Static void	ar5008_rx_enable(struct athn_softc *);
102 Static void	ar5008_rx_free(struct athn_softc *);
103 Static void	ar5008_rx_intr(struct athn_softc *);
104 Static void	ar5008_rx_radiotap(struct athn_softc *, struct mbuf *,
105 		    struct ar_rx_desc *);
106 Static void	ar5008_set_cck_weak_signal(struct athn_softc *, int);
107 Static void	ar5008_set_delta_slope(struct athn_softc *,
108 		    struct ieee80211_channel *, struct ieee80211_channel *);
109 Static void	ar5008_set_firstep_level(struct athn_softc *, int);
110 Static void	ar5008_set_noise_immunity_level(struct athn_softc *, int);
111 Static void	ar5008_set_phy(struct athn_softc *, struct ieee80211_channel *,
112 		    struct ieee80211_channel *);
113 Static void	ar5008_set_rf_mode(struct athn_softc *,
114 		    struct ieee80211_channel *);
115 Static void	ar5008_set_rxchains(struct athn_softc *);
116 Static void	ar5008_set_spur_immunity_level(struct athn_softc *, int);
117 Static void	ar5008_swap_rom(struct athn_softc *);
118 Static int	ar5008_swba_intr(struct athn_softc *);
119 Static int	ar5008_tx(struct athn_softc *, struct mbuf *,
120 		    struct ieee80211_node *, int);
121 Static int	ar5008_tx_alloc(struct athn_softc *);
122 Static void	ar5008_tx_free(struct athn_softc *);
123 Static void	ar5008_tx_intr(struct athn_softc *);
124 Static int	ar5008_tx_process(struct athn_softc *, int);
125 
126 #ifdef notused
127 Static void	ar5008_bb_load_noisefloor(struct athn_softc *);
128 Static void	ar5008_get_noisefloor(struct athn_softc *,
129 		    struct ieee80211_channel *);
130 Static void	ar5008_noisefloor_calib(struct athn_softc *);
131 Static void	ar5008_read_noisefloor(struct athn_softc *, int16_t *,
132 		    int16_t *);
133 Static void	ar5008_write_noisefloor(struct athn_softc *, int16_t *,
134 		    int16_t *);
135 #endif /* notused */
136 
137 // bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
138 
139 /*
140  * XXX: see if_iwn.c:MCLGETIalt() for a better solution.
141  */
142 static struct mbuf *
MCLGETI(struct athn_softc * sc __unused,int how,struct ifnet * ifp __unused,u_int size)143 MCLGETI(struct athn_softc *sc __unused, int how,
144     struct ifnet *ifp __unused, u_int size)
145 {
146 	struct mbuf *m;
147 
148 	MGETHDR(m, how, MT_DATA);
149 	if (m == NULL)
150 		return NULL;
151 
152 	MEXTMALLOC(m, size, how);
153 	if ((m->m_flags & M_EXT) == 0) {
154 		m_freem(m);
155 		return NULL;
156 	}
157 	return m;
158 }
159 
160 PUBLIC int
ar5008_attach(struct athn_softc * sc)161 ar5008_attach(struct athn_softc *sc)
162 {
163 	struct athn_ops *ops = &sc->sc_ops;
164 	struct ieee80211com *ic = &sc->sc_ic;
165 	struct ar_base_eep_header *base;
166 	uint8_t eep_ver, kc_entries_log;
167 	int error;
168 
169 	/* Set callbacks for AR5008, AR9001 and AR9002 families. */
170 	ops->gpio_read = ar5008_gpio_read;
171 	ops->gpio_write = ar5008_gpio_write;
172 	ops->gpio_config_input = ar5008_gpio_config_input;
173 	ops->gpio_config_output = ar5008_gpio_config_output;
174 	ops->rfsilent_init = ar5008_rfsilent_init;
175 
176 	ops->dma_alloc = ar5008_dma_alloc;
177 	ops->dma_free = ar5008_dma_free;
178 	ops->rx_enable = ar5008_rx_enable;
179 	ops->intr_status = ar5008_intr_status;
180 	ops->intr = ar5008_intr;
181 	ops->tx = ar5008_tx;
182 
183 	ops->set_rf_mode = ar5008_set_rf_mode;
184 	ops->rf_bus_request = ar5008_rf_bus_request;
185 	ops->rf_bus_release = ar5008_rf_bus_release;
186 	ops->set_phy = ar5008_set_phy;
187 	ops->set_delta_slope = ar5008_set_delta_slope;
188 	ops->enable_antenna_diversity = ar5008_enable_antenna_diversity;
189 	ops->init_baseband = ar5008_init_baseband;
190 	ops->disable_phy = ar5008_disable_phy;
191 	ops->set_rxchains = ar5008_set_rxchains;
192 	ops->noisefloor_calib = ar5008_do_noisefloor_calib;
193 	ops->do_calib = ar5008_do_calib;
194 	ops->next_calib = ar5008_next_calib;
195 	ops->hw_init = ar5008_hw_init;
196 
197 	ops->set_noise_immunity_level = ar5008_set_noise_immunity_level;
198 	ops->enable_ofdm_weak_signal = ar5008_enable_ofdm_weak_signal;
199 	ops->disable_ofdm_weak_signal = ar5008_disable_ofdm_weak_signal;
200 	ops->set_cck_weak_signal = ar5008_set_cck_weak_signal;
201 	ops->set_firstep_level = ar5008_set_firstep_level;
202 	ops->set_spur_immunity_level = ar5008_set_spur_immunity_level;
203 
204 	/* Set MAC registers offsets. */
205 	sc->sc_obs_off = AR_OBS;
206 	sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
207 
208 	if (!(sc->sc_flags & ATHN_FLAG_PCIE))
209 		athn_config_nonpcie(sc);
210 	else
211 		athn_config_pcie(sc);
212 
213 	/* Read entire ROM content in memory. */
214 	if ((error = ar5008_read_rom(sc)) != 0) {
215 		aprint_error_dev(sc->sc_dev, "could not read ROM\n");
216 		return error;
217 	}
218 
219 	/* Get RF revision. */
220 	sc->sc_rf_rev = ar5416_get_rf_rev(sc);
221 
222 	base = sc->sc_eep;
223 	eep_ver = (base->version >> 12) & 0xf;
224 	sc->sc_eep_rev = (base->version & 0xfff);
225 	if (eep_ver != AR_EEP_VER || sc->sc_eep_rev == 0) {
226 		aprint_error_dev(sc->sc_dev, "unsupported ROM version %d.%d\n",
227 		    eep_ver, sc->sc_eep_rev);
228 		return EINVAL;
229 	}
230 
231 	if (base->opCapFlags & AR_OPFLAGS_11A)
232 		sc->sc_flags |= ATHN_FLAG_11A;
233 	if (base->opCapFlags & AR_OPFLAGS_11G)
234 		sc->sc_flags |= ATHN_FLAG_11G;
235 	if (base->opCapFlags & AR_OPFLAGS_11N)
236 		sc->sc_flags |= ATHN_FLAG_11N;
237 
238 	IEEE80211_ADDR_COPY(ic->ic_myaddr, base->macAddr);
239 
240 	/* Check if we have a hardware radio switch. */
241 	if (base->rfSilent & AR_EEP_RFSILENT_ENABLED) {
242 		sc->sc_flags |= ATHN_FLAG_RFSILENT;
243 		/* Get GPIO pin used by hardware radio switch. */
244 		sc->sc_rfsilent_pin = MS(base->rfSilent,
245 		    AR_EEP_RFSILENT_GPIO_SEL);
246 		/* Get polarity of hardware radio switch. */
247 		if (base->rfSilent & AR_EEP_RFSILENT_POLARITY)
248 			sc->sc_flags |= ATHN_FLAG_RFSILENT_REVERSED;
249 	}
250 
251 	/* Get the number of HW key cache entries. */
252 	kc_entries_log = MS(base->deviceCap, AR_EEP_DEVCAP_KC_ENTRIES);
253 	sc->sc_kc_entries = kc_entries_log != 0 ?
254 	    1 << kc_entries_log : AR_KEYTABLE_SIZE;
255 
256 	sc->sc_txchainmask = base->txMask;
257 	if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCI &&
258 	    !(base->opCapFlags & AR_OPFLAGS_11A)) {
259 		/* For single-band AR5416 PCI, use GPIO pin 0. */
260 		sc->sc_rxchainmask = ar5008_gpio_read(sc, 0) ? 0x5 : 0x7;
261 	}
262 	else
263 		sc->sc_rxchainmask = base->rxMask;
264 
265 	ops->setup(sc);
266 	return 0;
267 }
268 
269 /*
270  * Read 16-bit word from ROM.
271  */
272 Static int
ar5008_read_eep_word(struct athn_softc * sc,uint32_t addr,uint16_t * val)273 ar5008_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
274 {
275 	uint32_t reg;
276 	int ntries;
277 
278 	reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
279 	for (ntries = 0; ntries < 1000; ntries++) {
280 		reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
281 		if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
282 		    AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
283 			*val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
284 			return 0;
285 		}
286 		DELAY(10);
287 	}
288 	*val = 0xffff;
289 	return ETIMEDOUT;
290 }
291 
292 Static int
ar5008_read_rom(struct athn_softc * sc)293 ar5008_read_rom(struct athn_softc *sc)
294 {
295 	uint32_t addr, end;
296 	uint16_t magic, sum, *eep;
297 	int need_swap = 0;
298 	int error;
299 
300 	/* Determine ROM endianness. */
301 	error = ar5008_read_eep_word(sc, AR_EEPROM_MAGIC_OFFSET, &magic);
302 	if (error != 0)
303 		return error;
304 	if (magic != AR_EEPROM_MAGIC) {
305 		if (magic != bswap16(AR_EEPROM_MAGIC)) {
306 			DPRINTFN(DBG_INIT, sc,
307 			    "invalid ROM magic 0x%x != 0x%x\n",
308 			    magic, AR_EEPROM_MAGIC);
309 			return EIO;
310 		}
311 		DPRINTFN(DBG_INIT, sc, "non-native ROM endianness\n");
312 		need_swap = 1;
313 	}
314 
315 	/* Allocate space to store ROM in host memory. */
316 	sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_WAITOK);
317 
318 	/* Read entire ROM and compute checksum. */
319 	sum = 0;
320 	eep = sc->sc_eep;
321 	end = sc->sc_eep_base + sc->sc_eep_size / sizeof(uint16_t);
322 	for (addr = sc->sc_eep_base; addr < end; addr++, eep++) {
323 		if ((error = ar5008_read_eep_word(sc, addr, eep)) != 0) {
324 			DPRINTFN(DBG_INIT, sc,
325 			    "could not read ROM at 0x%x\n", addr);
326 			return error;
327 		}
328 		if (need_swap)
329 			*eep = bswap16(*eep);
330 		sum ^= *eep;
331 	}
332 	if (sum != 0xffff) {
333 		aprint_error_dev(sc->sc_dev, "bad ROM checksum 0x%04x\n", sum);
334 		return EIO;
335 	}
336 	if (need_swap)
337 		ar5008_swap_rom(sc);
338 
339 	return 0;
340 }
341 
342 Static void
ar5008_swap_rom(struct athn_softc * sc)343 ar5008_swap_rom(struct athn_softc *sc)
344 {
345 	struct ar_base_eep_header *base = sc->sc_eep;
346 
347 	/* Swap common fields first. */
348 	base->length = bswap16(base->length);
349 	base->version = bswap16(base->version);
350 	base->regDmn[0] = bswap16(base->regDmn[0]);
351 	base->regDmn[1] = bswap16(base->regDmn[1]);
352 	base->rfSilent = bswap16(base->rfSilent);
353 	base->blueToothOptions = bswap16(base->blueToothOptions);
354 	base->deviceCap = bswap16(base->deviceCap);
355 
356 	/* Swap device-dependent fields. */
357 	sc->sc_ops.swap_rom(sc);
358 }
359 
360 /*
361  * Access to General Purpose Input/Output ports.
362  */
363 Static int
ar5008_gpio_read(struct athn_softc * sc,int pin)364 ar5008_gpio_read(struct athn_softc *sc, int pin)
365 {
366 
367 	KASSERT(pin < sc->sc_ngpiopins);
368 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc))
369 		return !((AR_READ(sc, AR7010_GPIO_IN) >> pin) & 1);
370 	return (AR_READ(sc, AR_GPIO_IN_OUT) >> (sc->sc_ngpiopins + pin)) & 1;
371 }
372 
373 Static void
ar5008_gpio_write(struct athn_softc * sc,int pin,int set)374 ar5008_gpio_write(struct athn_softc *sc, int pin, int set)
375 {
376 	uint32_t reg;
377 
378 	KASSERT(pin < sc->sc_ngpiopins);
379 
380 	if (sc->sc_flags & ATHN_FLAG_USB)
381 		set = !set;	/* AR9271/AR7010 is reversed. */
382 
383 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
384 		/* Special case for AR7010. */
385 		reg = AR_READ(sc, AR7010_GPIO_OUT);
386 		if (set)
387 			reg |= 1 << pin;
388 		else
389 			reg &= ~(1 << pin);
390 		AR_WRITE(sc, AR7010_GPIO_OUT, reg);
391 	}
392 	else {
393 		reg = AR_READ(sc, AR_GPIO_IN_OUT);
394 		if (set)
395 			reg |= 1 << pin;
396 		else
397 			reg &= ~(1 << pin);
398 		AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
399 	}
400 	AR_WRITE_BARRIER(sc);
401 }
402 
403 Static void
ar5008_gpio_config_input(struct athn_softc * sc,int pin)404 ar5008_gpio_config_input(struct athn_softc *sc, int pin)
405 {
406 	uint32_t reg;
407 
408 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
409 		/* Special case for AR7010. */
410 		AR_SETBITS(sc, AR7010_GPIO_OE, 1 << pin);
411 	}
412 	else {
413 		reg = AR_READ(sc, AR_GPIO_OE_OUT);
414 		reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
415 		reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
416 		AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
417 	}
418 	AR_WRITE_BARRIER(sc);
419 }
420 
421 Static void
ar5008_gpio_config_output(struct athn_softc * sc,int pin,int type)422 ar5008_gpio_config_output(struct athn_softc *sc, int pin, int type)
423 {
424 	uint32_t reg;
425 	int mux, off;
426 
427 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
428 		/* Special case for AR7010. */
429 		AR_CLRBITS(sc, AR7010_GPIO_OE, 1 << pin);
430 		AR_WRITE_BARRIER(sc);
431 		return;
432 	}
433 	mux = pin / 6;
434 	off = pin % 6;
435 
436 	reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
437 	if (!AR_SREV_9280_20_OR_LATER(sc) && mux == 0)
438 		reg = (reg & ~0x1f0) | (reg & 0x1f0) << 1;
439 	reg &= ~(0x1f << (off * 5));
440 	reg |= (type & 0x1f) << (off * 5);
441 	AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
442 
443 	reg = AR_READ(sc, AR_GPIO_OE_OUT);
444 	reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
445 	reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
446 	AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
447 	AR_WRITE_BARRIER(sc);
448 }
449 
450 Static void
ar5008_rfsilent_init(struct athn_softc * sc)451 ar5008_rfsilent_init(struct athn_softc *sc)
452 {
453 	uint32_t reg;
454 
455 	/* Configure hardware radio switch. */
456 	AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
457 	reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
458 	reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
459 	AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
460 	ar5008_gpio_config_input(sc, sc->sc_rfsilent_pin);
461 	AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
462 	if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
463 		AR_SETBITS(sc, AR_GPIO_INTR_POL,
464 		    AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
465 	}
466 	AR_WRITE_BARRIER(sc);
467 }
468 
469 Static int
ar5008_dma_alloc(struct athn_softc * sc)470 ar5008_dma_alloc(struct athn_softc *sc)
471 {
472 	int error;
473 
474 	error = ar5008_tx_alloc(sc);
475 	if (error != 0)
476 		return error;
477 
478 	error = ar5008_rx_alloc(sc);
479 	if (error != 0)
480 		return error;
481 
482 	return 0;
483 }
484 
485 Static void
ar5008_dma_free(struct athn_softc * sc)486 ar5008_dma_free(struct athn_softc *sc)
487 {
488 
489 	ar5008_tx_free(sc);
490 	ar5008_rx_free(sc);
491 }
492 
493 Static int
ar5008_tx_alloc(struct athn_softc * sc)494 ar5008_tx_alloc(struct athn_softc *sc)
495 {
496 	struct athn_tx_buf *bf;
497 	bus_size_t size;
498 	int error, nsegs, i;
499 
500 	/*
501 	 * Allocate a pool of Tx descriptors shared between all Tx queues.
502 	 */
503 	size = ATHN_NTXBUFS * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc);
504 
505 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
506 	    BUS_DMA_NOWAIT, &sc->sc_map);
507 	if (error != 0)
508 		goto fail;
509 
510 	error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
511 // XXX	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
512 	    &nsegs, BUS_DMA_NOWAIT);
513 	if (error != 0)
514 		goto fail;
515 
516 	error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
517 	    (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
518 	if (error != 0)
519 		goto fail;
520 
521 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_map, sc->sc_descs,
522 	    size, NULL, BUS_DMA_NOWAIT);
523 	if (error != 0)
524 		goto fail;
525 
526 	SIMPLEQ_INIT(&sc->sc_txbufs);
527 	for (i = 0; i < ATHN_NTXBUFS; i++) {
528 		bf = &sc->sc_txpool[i];
529 
530 		error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
531 		    AR5008_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
532 		    &bf->bf_map);
533 		if (error != 0) {
534 			aprint_error_dev(sc->sc_dev,
535 			    "could not create Tx buf DMA map\n");
536 			goto fail;
537 		}
538 
539 		bf->bf_descs =
540 		    &((struct ar_tx_desc *)sc->sc_descs)[i * AR5008_MAX_SCATTER];
541 		bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
542 		    i * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc);
543 
544 		SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
545 	}
546 	return 0;
547  fail:
548 	ar5008_tx_free(sc);
549 	return error;
550 }
551 
552 Static void
ar5008_tx_free(struct athn_softc * sc)553 ar5008_tx_free(struct athn_softc *sc)
554 {
555 	struct athn_tx_buf *bf;
556 	int i;
557 
558 	for (i = 0; i < ATHN_NTXBUFS; i++) {
559 		bf = &sc->sc_txpool[i];
560 
561 		if (bf->bf_map != NULL)
562 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
563 	}
564 	/* Free Tx descriptors. */
565 	if (sc->sc_map != NULL) {
566 		if (sc->sc_descs != NULL) {
567 			bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
568 			bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
569 			    ATHN_NTXBUFS * AR5008_MAX_SCATTER *
570 			    sizeof(struct ar_tx_desc));
571 			bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
572 		}
573 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
574 	}
575 }
576 
577 Static int
ar5008_rx_alloc(struct athn_softc * sc)578 ar5008_rx_alloc(struct athn_softc *sc)
579 {
580 	struct athn_rxq *rxq = &sc->sc_rxq[0];
581 	struct athn_rx_buf *bf;
582 	struct ar_rx_desc *ds;
583 	bus_size_t size;
584 	int error, nsegs, i;
585 
586 	rxq->bf = malloc(ATHN_NRXBUFS * sizeof(*bf), M_DEVBUF,
587 	    M_WAITOK | M_ZERO);
588 
589 	size = ATHN_NRXBUFS * sizeof(struct ar_rx_desc);
590 
591 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
592 	    BUS_DMA_NOWAIT, &rxq->map);
593 	if (error != 0)
594 		goto fail;
595 
596 	error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &rxq->seg, 1,
597 //	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
598 	    &nsegs, BUS_DMA_NOWAIT);
599 	if (error != 0)
600 		goto fail;
601 
602 	error = bus_dmamem_map(sc->sc_dmat, &rxq->seg, 1, size,
603 	    (void **)&rxq->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
604 	if (error != 0)
605 		goto fail;
606 
607 	error = bus_dmamap_load(sc->sc_dmat, rxq->map, rxq->descs,
608 	    size, NULL, BUS_DMA_NOWAIT);
609 	if (error != 0)
610 		goto fail;
611 
612 	for (i = 0; i < ATHN_NRXBUFS; i++) {
613 		bf = &rxq->bf[i];
614 		ds = &((struct ar_rx_desc *)rxq->descs)[i];
615 
616 		error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
617 		    ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
618 		    &bf->bf_map);
619 		if (error != 0) {
620 			aprint_error_dev(sc->sc_dev,
621 			    " could not create Rx buf DMA map\n");
622 			goto fail;
623 		}
624 		/*
625 		 * Assumes MCLGETI returns cache-line-size aligned buffers.
626 		 * XXX: does ours?
627 		 */
628 		bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
629 		if (bf->bf_m == NULL) {
630 			aprint_error_dev(sc->sc_dev,
631 			    "could not allocate Rx mbuf\n");
632 			error = ENOBUFS;
633 			goto fail;
634 		}
635 
636 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
637 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
638 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
639 		if (error != 0) {
640 			aprint_error_dev(sc->sc_dev,
641 			    "could not DMA map Rx buffer\n");
642 			goto fail;
643 		}
644 
645 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
646 		    BUS_DMASYNC_PREREAD);
647 
648 		bf->bf_desc = ds;
649 		bf->bf_daddr = rxq->map->dm_segs[0].ds_addr +
650 		    i * sizeof(struct ar_rx_desc);
651 	}
652 	return 0;
653  fail:
654 	ar5008_rx_free(sc);
655 	return error;
656 }
657 
658 Static void
ar5008_rx_free(struct athn_softc * sc)659 ar5008_rx_free(struct athn_softc *sc)
660 {
661 	struct athn_rxq *rxq = &sc->sc_rxq[0];
662 	struct athn_rx_buf *bf;
663 	int i;
664 
665 	if (rxq->bf == NULL)
666 		return;
667 	for (i = 0; i < ATHN_NRXBUFS; i++) {
668 		bf = &rxq->bf[i];
669 
670 		if (bf->bf_map != NULL)
671 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
672 		if (bf->bf_m != NULL)
673 			m_freem(bf->bf_m);
674 	}
675 	free(rxq->bf, M_DEVBUF);
676 
677 	/* Free Rx descriptors. */
678 	if (rxq->map != NULL) {
679 		if (rxq->descs != NULL) {
680 			bus_dmamap_unload(sc->sc_dmat, rxq->map);
681 			bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->descs,
682 			    ATHN_NRXBUFS * sizeof(struct ar_rx_desc));
683 			bus_dmamem_free(sc->sc_dmat, &rxq->seg, 1);
684 		}
685 		bus_dmamap_destroy(sc->sc_dmat, rxq->map);
686 	}
687 }
688 
689 Static void
ar5008_rx_enable(struct athn_softc * sc)690 ar5008_rx_enable(struct athn_softc *sc)
691 {
692 	struct athn_rxq *rxq = &sc->sc_rxq[0];
693 	struct athn_rx_buf *bf;
694 	struct ar_rx_desc *ds;
695 	int i;
696 
697 	/* Setup and link Rx descriptors. */
698 	SIMPLEQ_INIT(&rxq->head);
699 	rxq->lastds = NULL;
700 	for (i = 0; i < ATHN_NRXBUFS; i++) {
701 		bf = &rxq->bf[i];
702 		ds = bf->bf_desc;
703 
704 		memset(ds, 0, sizeof(*ds));
705 		ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
706 		ds->ds_ctl1 = SM(AR_RXC1_BUF_LEN, ATHN_RXBUFSZ);
707 
708 		if (rxq->lastds != NULL) {
709 			((struct ar_rx_desc *)rxq->lastds)->ds_link =
710 			    bf->bf_daddr;
711 		}
712 		SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
713 		rxq->lastds = ds;
714 	}
715 	bus_dmamap_sync(sc->sc_dmat, rxq->map, 0, rxq->map->dm_mapsize,
716 	    BUS_DMASYNC_PREREAD);
717 
718 	/* Enable Rx. */
719 	AR_WRITE(sc, AR_RXDP, SIMPLEQ_FIRST(&rxq->head)->bf_daddr);
720 	AR_WRITE(sc, AR_CR, AR_CR_RXE);
721 	AR_WRITE_BARRIER(sc);
722 }
723 
724 Static void
ar5008_rx_radiotap(struct athn_softc * sc,struct mbuf * m,struct ar_rx_desc * ds)725 ar5008_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
726     struct ar_rx_desc *ds)
727 {
728 	struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
729 	struct ieee80211com *ic = &sc->sc_ic;
730 	uint64_t tsf;
731 	uint32_t tstamp;
732 	uint8_t rate;
733 
734 	/* Extend the 15-bit timestamp from Rx descriptor to 64-bit TSF. */
735 	tstamp = ds->ds_status2;
736 	tsf = AR_READ(sc, AR_TSF_U32);
737 	tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
738 	if ((tsf & 0x7fff) < tstamp)
739 		tsf -= 0x8000;
740 	tsf = (tsf & ~0x7fff) | tstamp;
741 
742 	tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
743 	tap->wr_tsft = htole64(tsf);
744 	tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
745 	tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
746 	tap->wr_dbm_antsignal = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED);
747 	/* XXX noise. */
748 	tap->wr_antenna = MS(ds->ds_status3, AR_RXS3_ANTENNA);
749 	tap->wr_rate = 0;	/* In case it can't be found below. */
750 	if (AR_SREV_5416_20_OR_LATER(sc))
751 		rate = MS(ds->ds_status0, AR_RXS0_RATE);
752 	else
753 		rate = MS(ds->ds_status3, AR_RXS3_RATE);
754 	if (rate & 0x80) {		/* HT. */
755 		/* Bit 7 set means HT MCS instead of rate. */
756 		tap->wr_rate = rate;
757 		if (!(ds->ds_status3 & AR_RXS3_GI))
758 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
759 
760 	}
761 	else if (rate & 0x10) {	/* CCK. */
762 		if (rate & 0x04)
763 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
764 		switch (rate & ~0x14) {
765 		case 0xb: tap->wr_rate =   2; break;
766 		case 0xa: tap->wr_rate =   4; break;
767 		case 0x9: tap->wr_rate =  11; break;
768 		case 0x8: tap->wr_rate =  22; break;
769 		}
770 	}
771 	else {			/* OFDM. */
772 		switch (rate) {
773 		case 0xb: tap->wr_rate =  12; break;
774 		case 0xf: tap->wr_rate =  18; break;
775 		case 0xa: tap->wr_rate =  24; break;
776 		case 0xe: tap->wr_rate =  36; break;
777 		case 0x9: tap->wr_rate =  48; break;
778 		case 0xd: tap->wr_rate =  72; break;
779 		case 0x8: tap->wr_rate =  96; break;
780 		case 0xc: tap->wr_rate = 108; break;
781 		}
782 	}
783 	bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
784 }
785 
786 static __inline int
ar5008_rx_process(struct athn_softc * sc)787 ar5008_rx_process(struct athn_softc *sc)
788 {
789 	struct ieee80211com *ic = &sc->sc_ic;
790 	struct ifnet *ifp = &sc->sc_if;
791 	struct athn_rxq *rxq = &sc->sc_rxq[0];
792 	struct athn_rx_buf *bf, *nbf;
793 	struct ar_rx_desc *ds;
794 	struct ieee80211_frame *wh;
795 	struct ieee80211_node *ni;
796 	struct mbuf *m, *m1;
797 	u_int32_t rstamp;
798 	int error, len, rssi, s;
799 
800 	bf = SIMPLEQ_FIRST(&rxq->head);
801 	if (__predict_false(bf == NULL)) {	/* Should not happen. */
802 		aprint_error_dev(sc->sc_dev, "Rx queue is empty!\n");
803 		return ENOENT;
804 	}
805 	ds = bf->bf_desc;
806 
807 	if (!(ds->ds_status8 & AR_RXS8_DONE)) {
808 		/*
809 		 * On some parts, the status words can get corrupted
810 		 * (including the "done" bit), so we check the next
811 		 * descriptor "done" bit.  If it is set, it is a good
812 		 * indication that the status words are corrupted, so
813 		 * we skip this descriptor and drop the frame.
814 		 */
815 		nbf = SIMPLEQ_NEXT(bf, bf_list);
816 		if (nbf != NULL &&
817 		    (((struct ar_rx_desc *)nbf->bf_desc)->ds_status8 &
818 		     AR_RXS8_DONE)) {
819 			DPRINTFN(DBG_RX, sc,
820 			    "corrupted descriptor status=0x%x\n",
821 			    ds->ds_status8);
822 			/* HW will not "move" RXDP in this case, so do it. */
823 			AR_WRITE(sc, AR_RXDP, nbf->bf_daddr);
824 			AR_WRITE_BARRIER(sc);
825 			if_statinc(ifp, if_ierrors);
826 			goto skip;
827 		}
828 		return EBUSY;
829 	}
830 
831 	if (__predict_false(ds->ds_status1 & AR_RXS1_MORE)) {
832 		/* Drop frames that span multiple Rx descriptors. */
833 		DPRINTFN(DBG_RX, sc, "dropping split frame\n");
834 		if_statinc(ifp, if_ierrors);
835 		goto skip;
836 	}
837 	if (!(ds->ds_status8 & AR_RXS8_FRAME_OK)) {
838 		if (ds->ds_status8 & AR_RXS8_CRC_ERR)
839 			DPRINTFN(DBG_RX, sc, "CRC error\n");
840 		else if (ds->ds_status8 & AR_RXS8_PHY_ERR)
841 			DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
842 			    MS(ds->ds_status8, AR_RXS8_PHY_ERR_CODE));
843 		else if (ds->ds_status8 & AR_RXS8_DECRYPT_CRC_ERR)
844 			DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
845 		else if (ds->ds_status8 & AR_RXS8_MICHAEL_ERR) {
846 			DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
847 
848 			len = MS(ds->ds_status1, AR_RXS1_DATA_LEN);
849 			m = bf->bf_m;
850 			m_set_rcvif(m, ifp);
851 			m->m_pkthdr.len = m->m_len = len;
852 			wh = mtod(m, struct ieee80211_frame *);
853 
854 			/* Report Michael MIC failures to net80211. */
855 			ieee80211_notify_michael_failure(ic, wh, 0 /* XXX: keyix */);
856 		}
857 		if_statinc(ifp, if_ierrors);
858 		goto skip;
859 	}
860 
861 	len = MS(ds->ds_status1, AR_RXS1_DATA_LEN);
862 	if (__predict_false(len < (int)IEEE80211_MIN_LEN || len > ATHN_RXBUFSZ)) {
863 		DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%d\n", len);
864 		if_statinc(ifp, if_ierrors);
865 		goto skip;
866 	}
867 
868 	/* Allocate a new Rx buffer. */
869 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
870 	if (__predict_false(m1 == NULL)) {
871 		ic->ic_stats.is_rx_nobuf++;
872 		if_statinc(ifp, if_ierrors);
873 		goto skip;
874 	}
875 
876 	/* Sync and unmap the old Rx buffer. */
877 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
878 	    BUS_DMASYNC_POSTREAD);
879 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
880 
881 	/* Map the new Rx buffer. */
882 	error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
883 	    ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
884 	if (__predict_false(error != 0)) {
885 		m_freem(m1);
886 
887 		/* Remap the old Rx buffer or panic. */
888 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
889 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
890 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
891 		KASSERT(error != 0);
892 		if_statinc(ifp, if_ierrors);
893 		goto skip;
894 	}
895 
896 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
897 	    BUS_DMASYNC_PREREAD);
898 
899 	/* Write physical address of new Rx buffer. */
900 	ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
901 
902 	m = bf->bf_m;
903 	bf->bf_m = m1;
904 
905 	/* Finalize mbuf. */
906 	m_set_rcvif(m, ifp);
907 	m->m_pkthdr.len = m->m_len = len;
908 
909 	s = splnet();
910 
911 	/* Grab a reference to the source node. */
912 	wh = mtod(m, struct ieee80211_frame *);
913 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
914 
915 	/* Remove any HW padding after the 802.11 header. */
916 	if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
917 		u_int hdrlen = ieee80211_anyhdrsize(wh);
918 		if (hdrlen & 3) {
919 			memmove((uint8_t *)wh + 2, wh, hdrlen);
920 			m_adj(m, 2);
921 		}
922 	}
923 	if (__predict_false(sc->sc_drvbpf != NULL))
924 		ar5008_rx_radiotap(sc, m, ds);
925 
926 	/* Trim 802.11 FCS after radiotap. */
927 	m_adj(m, -IEEE80211_CRC_LEN);
928 
929 	/* Send the frame to the 802.11 layer. */
930 	rssi = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED);
931 	rstamp = ds->ds_status2;
932 	ieee80211_input(ic, m, ni, rssi, rstamp);
933 
934 	/* Node is no longer needed. */
935 	ieee80211_free_node(ni);
936 
937 	splx(s);
938 
939  skip:
940 	/* Unlink this descriptor from head. */
941 	SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
942 	memset(&ds->ds_status0, 0, 36);	/* XXX Really needed? */
943 	ds->ds_status8 &= ~AR_RXS8_DONE;
944 	ds->ds_link = 0;
945 
946 	/* Re-use this descriptor and link it to tail. */
947 	if (__predict_true(!SIMPLEQ_EMPTY(&rxq->head)))
948 		((struct ar_rx_desc *)rxq->lastds)->ds_link = bf->bf_daddr;
949 	else
950 		AR_WRITE(sc, AR_RXDP, bf->bf_daddr);
951 	SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
952 	rxq->lastds = ds;
953 
954 	/* Re-enable Rx. */
955 	AR_WRITE(sc, AR_CR, AR_CR_RXE);
956 	AR_WRITE_BARRIER(sc);
957 	return 0;
958 }
959 
960 Static void
ar5008_rx_intr(struct athn_softc * sc)961 ar5008_rx_intr(struct athn_softc *sc)
962 {
963 
964 	while (ar5008_rx_process(sc) == 0)
965 		continue;
966 }
967 
968 Static int
ar5008_tx_process(struct athn_softc * sc,int qid)969 ar5008_tx_process(struct athn_softc *sc, int qid)
970 {
971 	struct ifnet *ifp = &sc->sc_if;
972 	struct athn_txq *txq = &sc->sc_txq[qid];
973 	struct athn_node *an;
974 	struct athn_tx_buf *bf;
975 	struct ar_tx_desc *ds;
976 	uint8_t failcnt;
977 
978 	bf = SIMPLEQ_FIRST(&txq->head);
979 	if (bf == NULL)
980 		return ENOENT;
981 	/* Get descriptor of last DMA segment. */
982 	ds = &((struct ar_tx_desc *)bf->bf_descs)[bf->bf_map->dm_nsegs - 1];
983 
984 	if (!(ds->ds_status9 & AR_TXS9_DONE))
985 		return EBUSY;
986 
987 	SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
988 	if_statinc(ifp, if_opackets);
989 
990 	sc->sc_tx_timer = 0;
991 
992 	if (ds->ds_status1 & AR_TXS1_EXCESSIVE_RETRIES)
993 		if_statinc(ifp, if_oerrors);
994 
995 	if (ds->ds_status1 & AR_TXS1_UNDERRUN)
996 		athn_inc_tx_trigger_level(sc);
997 
998 	an = (struct athn_node *)bf->bf_ni;
999 	/*
1000 	 * NB: the data fail count contains the number of un-acked tries
1001 	 * for the final series used.  We must add the number of tries for
1002 	 * each series that was fully processed.
1003 	 */
1004 	failcnt  = MS(ds->ds_status1, AR_TXS1_DATA_FAIL_CNT);
1005 	/* NB: Assume two tries per series. */
1006 	failcnt += MS(ds->ds_status9, AR_TXS9_FINAL_IDX) * 2;
1007 
1008 	/* Update rate control statistics. */
1009 	an->amn.amn_txcnt++;
1010 	if (failcnt > 0)
1011 		an->amn.amn_retrycnt++;
1012 
1013 	DPRINTFN(DBG_TX, sc, "Tx done qid=%d status1=%d fail count=%d\n",
1014 	    qid, ds->ds_status1, failcnt);
1015 
1016 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1017 	    BUS_DMASYNC_POSTWRITE);
1018 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1019 
1020 	m_freem(bf->bf_m);
1021 	bf->bf_m = NULL;
1022 	ieee80211_free_node(bf->bf_ni);
1023 	bf->bf_ni = NULL;
1024 
1025 	/* Link Tx buffer back to global free list. */
1026 	SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1027 	return 0;
1028 }
1029 
1030 Static void
ar5008_tx_intr(struct athn_softc * sc)1031 ar5008_tx_intr(struct athn_softc *sc)
1032 {
1033 	struct ifnet *ifp = &sc->sc_if;
1034 	uint16_t mask = 0;
1035 	uint32_t reg;
1036 	int qid, s;
1037 
1038 	s = splnet();
1039 
1040 	reg = AR_READ(sc, AR_ISR_S0_S);
1041 	mask |= MS(reg, AR_ISR_S0_QCU_TXOK);
1042 	mask |= MS(reg, AR_ISR_S0_QCU_TXDESC);
1043 
1044 	reg = AR_READ(sc, AR_ISR_S1_S);
1045 	mask |= MS(reg, AR_ISR_S1_QCU_TXERR);
1046 	mask |= MS(reg, AR_ISR_S1_QCU_TXEOL);
1047 
1048 	DPRINTFN(DBG_TX, sc, "Tx interrupt mask=0x%x\n", mask);
1049 	for (qid = 0; mask != 0; mask >>= 1, qid++) {
1050 		if (mask & 1)
1051 			while (ar5008_tx_process(sc, qid) == 0);
1052 	}
1053 	if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
1054 		ifp->if_flags &= ~IFF_OACTIVE;
1055 		ifp->if_start(ifp); /* in softint */
1056 	}
1057 
1058 	splx(s);
1059 }
1060 
1061 #ifndef IEEE80211_STA_ONLY
1062 /*
1063  * Process Software Beacon Alert interrupts.
1064  */
1065 Static int
ar5008_swba_intr(struct athn_softc * sc)1066 ar5008_swba_intr(struct athn_softc *sc)
1067 {
1068 	struct ieee80211com *ic = &sc->sc_ic;
1069 	struct ifnet *ifp = &sc->sc_if;
1070 	struct ieee80211_node *ni = ic->ic_bss;
1071 	struct athn_tx_buf *bf = sc->sc_bcnbuf;
1072 	struct ieee80211_frame *wh;
1073 	struct ieee80211_beacon_offsets bo;
1074 	struct ar_tx_desc *ds;
1075 	struct mbuf *m;
1076 	uint8_t ridx, hwrate;
1077 	int error, totlen;
1078 
1079 #if notyet
1080 	if (ic->ic_tim_mcast_pending &&
1081 	    IF_IS_EMPTY(&ni->ni_savedq) &&
1082 	    SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
1083 		ic->ic_tim_mcast_pending = 0;
1084 #endif
1085 	if (ic->ic_dtim_count == 0)
1086 		ic->ic_dtim_count = ic->ic_dtim_period - 1;
1087 	else
1088 		ic->ic_dtim_count--;
1089 
1090 	/* Make sure previous beacon has been sent. */
1091 	if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
1092 		DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
1093 		return EBUSY;
1094 	}
1095 	/* Get new beacon. */
1096 	m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
1097 	if (__predict_false(m == NULL))
1098 		return ENOBUFS;
1099 	/* Assign sequence number. */
1100 	/* XXX: use non-QoS tid? */
1101 	wh = mtod(m, struct ieee80211_frame *);
1102 	*(uint16_t *)&wh->i_seq[0] =
1103 	    htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
1104 	ic->ic_bss->ni_txseqs[0]++;
1105 
1106 	/* Unmap and free old beacon if any. */
1107 	if (__predict_true(bf->bf_m != NULL)) {
1108 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1109 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1110 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1111 		m_freem(bf->bf_m);
1112 		bf->bf_m = NULL;
1113 	}
1114 	/* DMA map new beacon. */
1115 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1116 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1117 	if (__predict_false(error != 0)) {
1118 		m_freem(m);
1119 		return error;
1120 	}
1121 	bf->bf_m = m;
1122 
1123 	/* Setup Tx descriptor (simplified ar5008_tx()). */
1124 	ds = bf->bf_descs;
1125 	memset(ds, 0, sizeof(*ds));
1126 
1127 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1128 	ds->ds_ctl0 = SM(AR_TXC0_FRAME_LEN, totlen);
1129 	ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, AR_MAX_RATE_POWER);
1130 	ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
1131 	ds->ds_ctl1 |= AR_TXC1_NO_ACK;
1132 	ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
1133 
1134 	/* Write number of tries. */
1135 	ds->ds_ctl2 = SM(AR_TXC2_XMIT_DATA_TRIES0, 1);
1136 
1137 	/* Write Tx rate. */
1138 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1139 	    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1140 	hwrate = athn_rates[ridx].hwrate;
1141 	ds->ds_ctl3 = SM(AR_TXC3_XMIT_RATE0, hwrate);
1142 
1143 	/* Write Tx chains. */
1144 	ds->ds_ctl7 = SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask);
1145 
1146 	ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
1147 	/* Segment length must be a multiple of 4. */
1148 	ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN,
1149 	    (bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
1150 
1151 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1152 	    BUS_DMASYNC_PREWRITE);
1153 
1154 	/* Stop Tx DMA before putting the new beacon on the queue. */
1155 	athn_stop_tx_dma(sc, ATHN_QID_BEACON);
1156 
1157 	AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
1158 
1159 	for(;;) {
1160 		if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
1161 			break;
1162 
1163 		IF_DEQUEUE(&ni->ni_savedq, m);
1164 		if (m == NULL)
1165 			break;
1166 		if (!IF_IS_EMPTY(&ni->ni_savedq)) {
1167 			/* more queued frames, set the more data bit */
1168 			wh = mtod(m, struct ieee80211_frame *);
1169 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1170 		}
1171 
1172 		if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
1173 			ieee80211_free_node(ni);
1174 			if_statinc(ifp, if_oerrors);
1175 			break;
1176 		}
1177 	}
1178 
1179 	/* Kick Tx. */
1180 	AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
1181 	AR_WRITE_BARRIER(sc);
1182 	return 0;
1183 }
1184 #endif
1185 
1186 static int
ar5008_get_intr_status(struct athn_softc * sc,uint32_t * intrp,uint32_t * syncp)1187 ar5008_get_intr_status(struct athn_softc *sc, uint32_t *intrp, uint32_t *syncp)
1188 {
1189 	uint32_t intr, sync;
1190 
1191 	/* Get pending interrupts. */
1192 	intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
1193 	if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
1194 		intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
1195 		if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
1196 			return 0;	/* Not for us. */
1197 	}
1198 
1199 	if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
1200 	    (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
1201 		intr = AR_READ(sc, AR_ISR);
1202 	else
1203 		intr = 0;
1204 	sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
1205 	if (intr == 0 && sync == 0)
1206 		return 0;	/* Not for us. */
1207 
1208 	*intrp = intr;
1209 	*syncp = sync;
1210 	return 1;
1211 }
1212 
1213 
1214 Static int
ar5008_intr_status(struct athn_softc * sc)1215 ar5008_intr_status(struct athn_softc *sc)
1216 {
1217 	uint32_t intr, sync;
1218 
1219 	return ar5008_get_intr_status(sc, &intr, &sync);
1220 }
1221 
1222 Static int
ar5008_intr(struct athn_softc * sc)1223 ar5008_intr(struct athn_softc *sc)
1224 {
1225 	uint32_t intr, intr5, sync;
1226 #ifndef IEEE80211_STA_ONLY
1227 	int s;
1228 #endif
1229 
1230 	if (!ar5008_get_intr_status(sc, &intr, &sync))
1231 		return 0;
1232 
1233 	if (intr != 0) {
1234 		if (intr & AR_ISR_BCNMISC) {
1235 			uint32_t intr2 = AR_READ(sc, AR_ISR_S2);
1236 #if notyet
1237 			if (intr2 & AR_ISR_S2_TIM)
1238 				/* TBD */;
1239 			if (intr2 & AR_ISR_S2_TSFOOR)
1240 				/* TBD */;
1241 #else
1242 			__USE(intr2);
1243 #endif
1244 		}
1245 		intr = AR_READ(sc, AR_ISR_RAC);
1246 		if (intr == AR_INTR_SPURIOUS)
1247 			return 1;
1248 
1249 #ifndef IEEE80211_STA_ONLY
1250 		if (intr & AR_ISR_SWBA) {
1251 			s = splnet();
1252 			ar5008_swba_intr(sc);
1253 			splx(s);
1254 		}
1255 #endif
1256 		if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
1257 			ar5008_rx_intr(sc);
1258 		if (intr & (AR_ISR_RXOK | AR_ISR_RXERR | AR_ISR_RXORN))
1259 			ar5008_rx_intr(sc);
1260 
1261 		if (intr & (AR_ISR_TXOK | AR_ISR_TXDESC |
1262 		    AR_ISR_TXERR | AR_ISR_TXEOL))
1263 			ar5008_tx_intr(sc);
1264 
1265 		intr5 = AR_READ(sc, AR_ISR_S5_S);
1266 		if (intr & AR_ISR_GENTMR) {
1267 			if (intr5 & AR_ISR_GENTMR) {
1268 				DPRINTFN(DBG_INTR, sc,
1269 				    "GENTMR trigger=%d thresh=%d\n",
1270 				    MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
1271 				    MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
1272 			}
1273 		}
1274 #if notyet
1275 		if (intr5 & AR_ISR_S5_TIM_TIMER) {
1276 			/* TBD */;
1277 		}
1278 #endif
1279 	}
1280 	if (sync != 0) {
1281 #if notyet
1282 		if (sync &
1283 		    (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) {
1284 			/* TBD */;
1285 		}
1286 #endif
1287 		if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
1288 			AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
1289 			AR_WRITE(sc, AR_RC, 0);
1290 		}
1291 
1292 		if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
1293 		    (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
1294 			AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
1295 			(void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
1296 			pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF);
1297 		}
1298 
1299 		AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
1300 		(void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
1301 	}
1302 	return 1;
1303 }
1304 
1305 Static int
ar5008_tx(struct athn_softc * sc,struct mbuf * m,struct ieee80211_node * ni,int txflags)1306 ar5008_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
1307     int txflags)
1308 {
1309 	struct ieee80211com *ic = &sc->sc_ic;
1310 	struct ieee80211_key *k = NULL;
1311 	struct ieee80211_frame *wh;
1312 	struct athn_series series[4];
1313 	struct ar_tx_desc *ds, *lastds;
1314 	struct athn_txq *txq;
1315 	struct athn_tx_buf *bf;
1316 	struct athn_node *an = (void *)ni;
1317 	struct mbuf *m1;
1318 	uint16_t qos;
1319 	uint8_t txpower, type, encrtype, ridx[4];
1320 	int i, error, totlen, hasqos, qid;
1321 
1322 	/* Grab a Tx buffer from our global free list. */
1323 	bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
1324 	KASSERT(bf != NULL);
1325 
1326 	/* Map 802.11 frame type to hardware frame type. */
1327 	wh = mtod(m, struct ieee80211_frame *);
1328 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1329 	    IEEE80211_FC0_TYPE_MGT) {
1330 		/* NB: Beacons do not use ar5008_tx(). */
1331 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1332 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1333 			type = AR_FRAME_TYPE_PROBE_RESP;
1334 		else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1335 		    IEEE80211_FC0_SUBTYPE_ATIM)
1336 			type = AR_FRAME_TYPE_ATIM;
1337 		else
1338 			type = AR_FRAME_TYPE_NORMAL;
1339 	}
1340 	else if ((wh->i_fc[0] &
1341 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1342 	    (IEEE80211_FC0_TYPE_CTL  | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
1343 		type = AR_FRAME_TYPE_PSPOLL;
1344 	}
1345 	else
1346 		type = AR_FRAME_TYPE_NORMAL;
1347 
1348 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1349 		k = ieee80211_crypto_encap(ic, ni, m);
1350 		if (k == NULL)
1351 			return ENOBUFS;
1352 
1353 		/* packet header may have moved, reset our local pointer */
1354 		wh = mtod(m, struct ieee80211_frame *);
1355 	}
1356 
1357 	/* XXX 2-byte padding for QoS and 4-addr headers. */
1358 
1359 	/* Select the HW Tx queue to use for this frame. */
1360 	if ((hasqos = ieee80211_has_qos(wh))) {
1361 #ifdef notyet_edca
1362 		uint8_t tid;
1363 
1364 		qos = ieee80211_get_qos(wh);
1365 		tid = qos & IEEE80211_QOS_TID;
1366 		qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
1367 #else
1368 		qos = ieee80211_get_qos(wh);
1369 		qid = ATHN_QID_AC_BE;
1370 #endif /* notyet_edca */
1371 	}
1372 	else if (type == AR_FRAME_TYPE_PSPOLL) {
1373 		qos = 0;
1374 		qid = ATHN_QID_PSPOLL;
1375 	}
1376 	else if (txflags & ATHN_TXFLAG_CAB) {
1377 		qos = 0;
1378 		qid = ATHN_QID_CAB;
1379 	}
1380 	else {
1381 		qos = 0;
1382 		qid = ATHN_QID_AC_BE;
1383 	}
1384 	txq = &sc->sc_txq[qid];
1385 
1386 	/* Select the transmit rates to use for this frame. */
1387 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1388 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1389 	    IEEE80211_FC0_TYPE_DATA) {
1390 		/* Use lowest rate for all tries. */
1391 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1392 		    (ic->ic_curmode == IEEE80211_MODE_11A) ?
1393 			ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1394 	}
1395 	else if (ic->ic_fixed_rate != -1) {
1396 		/* Use same fixed rate for all tries. */
1397 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1398 		    sc->sc_fixed_ridx;
1399 	}
1400 	else {
1401 		int txrate = ni->ni_txrate;
1402 		/* Use fallback table of the node. */
1403 		for (i = 0; i < 4; i++) {
1404 			ridx[i] = an->ridx[txrate];
1405 			txrate = an->fallback[txrate];
1406 		}
1407 	}
1408 
1409 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1410 		struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
1411 
1412 		tap->wt_flags = 0;
1413 		/* Use initial transmit rate. */
1414 		tap->wt_rate = athn_rates[ridx[0]].rate;
1415 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1416 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1417 // XXX		tap->wt_hwqueue = qid;
1418 		if (ridx[0] != ATHN_RIDX_CCK1 &&
1419 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1420 			tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1421 
1422 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
1423 	}
1424 
1425 	/* DMA map mbuf. */
1426 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1427 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1428 	if (__predict_false(error != 0)) {
1429 		if (error != EFBIG) {
1430 			aprint_error_dev(sc->sc_dev,
1431 			    "can't map mbuf (error %d)\n", error);
1432 			m_freem(m);
1433 			return error;
1434 		}
1435 		/*
1436 		 * DMA mapping requires too many DMA segments; linearize
1437 		 * mbuf in kernel virtual address space and retry.
1438 		 */
1439 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
1440 		if (m1 == NULL) {
1441 			m_freem(m);
1442 			return ENOBUFS;
1443 		}
1444 		if (m->m_pkthdr.len > (int)MHLEN) {
1445 			MCLGET(m1, M_DONTWAIT);
1446 			if (!(m1->m_flags & M_EXT)) {
1447 				m_freem(m);
1448 				m_freem(m1);
1449 				return ENOBUFS;
1450 			}
1451 		}
1452 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
1453 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
1454 		m_freem(m);
1455 		m = m1;
1456 
1457 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1458 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1459 		if (error != 0) {
1460 			aprint_error_dev(sc->sc_dev,
1461 			    "can't map mbuf (error %d)\n", error);
1462 			m_freem(m);
1463 			return error;
1464 		}
1465 	}
1466 	bf->bf_m = m;
1467 	bf->bf_ni = ni;
1468 	bf->bf_txflags = txflags;
1469 
1470 	wh = mtod(m, struct ieee80211_frame *);
1471 
1472 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1473 
1474 	/* Clear all Tx descriptors that we will use. */
1475 	memset(bf->bf_descs, 0, bf->bf_map->dm_nsegs * sizeof(*ds));
1476 
1477 	/* Setup first Tx descriptor. */
1478 	ds = bf->bf_descs;
1479 
1480 	ds->ds_ctl0 = AR_TXC0_INTR_REQ | AR_TXC0_CLR_DEST_MASK;
1481 	txpower = AR_MAX_RATE_POWER;	/* Get from per-rate registers. */
1482 	ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, txpower);
1483 
1484 	ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, type);
1485 
1486 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1487 	    (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
1488 	     IEEE80211_QOS_ACKPOLICY_NOACK))
1489 		ds->ds_ctl1 |= AR_TXC1_NO_ACK;
1490 #if notyet
1491 	if (0 && k != NULL) {
1492 		uintptr_t entry;
1493 
1494 		/*
1495 		 * Map 802.11 cipher to hardware encryption type and
1496 		 * compute MIC+ICV overhead.
1497 		 */
1498 		totlen += k->wk_keylen;
1499 		switch (k->wk_cipher->ic_cipher) {
1500 		case IEEE80211_CIPHER_WEP:
1501 			encrtype = AR_ENCR_TYPE_WEP;
1502 			break;
1503 		case IEEE80211_CIPHER_TKIP:
1504 			encrtype = AR_ENCR_TYPE_TKIP;
1505 			break;
1506 		case IEEE80211_CIPHER_AES_OCB:
1507 		case IEEE80211_CIPHER_AES_CCM:
1508 			encrtype = AR_ENCR_TYPE_AES;
1509 			break;
1510 		default:
1511 			panic("unsupported cipher");
1512 		}
1513 		/*
1514 		 * NB: The key cache entry index is stored in the key
1515 		 * private field when the key is installed.
1516 		 */
1517 		entry = (uintptr_t)k->k_priv;
1518 		ds->ds_ctl1 |= SM(AR_TXC1_DEST_IDX, entry);
1519 		ds->ds_ctl0 |= AR_TXC0_DEST_IDX_VALID;
1520 	}
1521 	else
1522 #endif
1523 		encrtype = AR_ENCR_TYPE_CLEAR;
1524 	ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, encrtype);
1525 
1526 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1527 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1528 		/* NB: Group frames are sent using CCK in 802.11b/g. */
1529 		if (totlen > ic->ic_rtsthreshold) {
1530 			ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE;
1531 		}
1532 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1533 		    athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
1534 			if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1535 				ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE;
1536 			else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1537 				ds->ds_ctl0 |= AR_TXC0_CTS_ENABLE;
1538 		}
1539 	}
1540 	if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) {
1541 		/* Disable multi-rate retries when protection is used. */
1542 		ridx[1] = ridx[2] = ridx[3] = ridx[0];
1543 	}
1544 	/* Setup multi-rate retries. */
1545 	for (i = 0; i < 4; i++) {
1546 		series[i].hwrate = athn_rates[ridx[i]].hwrate;
1547 		if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
1548 		    ridx[i] != ATHN_RIDX_CCK1 &&
1549 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1550 			series[i].hwrate |= 0x04;
1551 		series[i].dur = 0;
1552 	}
1553 	if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) {
1554 		/* Compute duration for each series. */
1555 		for (i = 0; i < 4; i++) {
1556 			series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
1557 			    athn_rates[ridx[i]].rspridx, ic->ic_flags);
1558 		}
1559 	}
1560 
1561 	/* Write number of tries for each series. */
1562 	ds->ds_ctl2 =
1563 	    SM(AR_TXC2_XMIT_DATA_TRIES0, 2) |
1564 	    SM(AR_TXC2_XMIT_DATA_TRIES1, 2) |
1565 	    SM(AR_TXC2_XMIT_DATA_TRIES2, 2) |
1566 	    SM(AR_TXC2_XMIT_DATA_TRIES3, 4);
1567 
1568 	/* Tell HW to update duration field in 802.11 header. */
1569 	if (type != AR_FRAME_TYPE_PSPOLL)
1570 		ds->ds_ctl2 |= AR_TXC2_DUR_UPDATE_ENA;
1571 
1572 	/* Write Tx rate for each series. */
1573 	ds->ds_ctl3 =
1574 	    SM(AR_TXC3_XMIT_RATE0, series[0].hwrate) |
1575 	    SM(AR_TXC3_XMIT_RATE1, series[1].hwrate) |
1576 	    SM(AR_TXC3_XMIT_RATE2, series[2].hwrate) |
1577 	    SM(AR_TXC3_XMIT_RATE3, series[3].hwrate);
1578 
1579 	/* Write duration for each series. */
1580 	ds->ds_ctl4 =
1581 	    SM(AR_TXC4_PACKET_DUR0, series[0].dur) |
1582 	    SM(AR_TXC4_PACKET_DUR1, series[1].dur);
1583 	ds->ds_ctl5 =
1584 	    SM(AR_TXC5_PACKET_DUR2, series[2].dur) |
1585 	    SM(AR_TXC5_PACKET_DUR3, series[3].dur);
1586 
1587 	/* Use the same Tx chains for all tries. */
1588 	ds->ds_ctl7 =
1589 	    SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask) |
1590 	    SM(AR_TXC7_CHAIN_SEL1, sc->sc_txchainmask) |
1591 	    SM(AR_TXC7_CHAIN_SEL2, sc->sc_txchainmask) |
1592 	    SM(AR_TXC7_CHAIN_SEL3, sc->sc_txchainmask);
1593 #ifdef notyet
1594 #ifndef IEEE80211_NO_HT
1595 	/* Use the same short GI setting for all tries. */
1596 	if (ic->ic_flags & IEEE80211_F_SHGI)
1597 		ds->ds_ctl7 |= AR_TXC7_GI0123;
1598 	/* Use the same channel width for all tries. */
1599 	if (ic->ic_flags & IEEE80211_F_CBW40)
1600 		ds->ds_ctl7 |= AR_TXC7_2040_0123;
1601 #endif
1602 #endif
1603 
1604 	if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) {
1605 		uint8_t protridx, hwrate;
1606 		uint16_t dur = 0;
1607 
1608 		/* Use the same protection mode for all tries. */
1609 		if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) {
1610 			ds->ds_ctl4 |= AR_TXC4_RTSCTS_QUAL01;
1611 			ds->ds_ctl5 |= AR_TXC5_RTSCTS_QUAL23;
1612 		}
1613 		/* Select protection rate (suboptimal but ok). */
1614 		protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1615 		    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
1616 		if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) {
1617 			/* Account for CTS duration. */
1618 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1619 			    athn_rates[protridx].rspridx, ic->ic_flags);
1620 		}
1621 		dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
1622 		if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) {
1623 			/* Account for ACK duration. */
1624 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1625 			    athn_rates[ridx[0]].rspridx, ic->ic_flags);
1626 		}
1627 		/* Write protection frame duration and rate. */
1628 		ds->ds_ctl2 |= SM(AR_TXC2_BURST_DUR, dur);
1629 		hwrate = athn_rates[protridx].hwrate;
1630 		if (protridx == ATHN_RIDX_CCK2 &&
1631 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1632 			hwrate |= 0x04;
1633 		ds->ds_ctl7 |= SM(AR_TXC7_RTSCTS_RATE, hwrate);
1634 	}
1635 
1636 	/* Finalize first Tx descriptor and fill others (if any). */
1637 	ds->ds_ctl0 |= SM(AR_TXC0_FRAME_LEN, totlen);
1638 
1639 	lastds = NULL;	/* XXX: gcc */
1640 	for (i = 0; i < bf->bf_map->dm_nsegs; i++, ds++) {
1641 		ds->ds_data = bf->bf_map->dm_segs[i].ds_addr;
1642 		ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN,
1643 		    bf->bf_map->dm_segs[i].ds_len);
1644 
1645 		if (i != bf->bf_map->dm_nsegs - 1)
1646 			ds->ds_ctl1 |= AR_TXC1_MORE;
1647 		ds->ds_link = 0;
1648 
1649 		/* Chain Tx descriptor. */
1650 		if (i != 0)
1651 			lastds->ds_link = bf->bf_daddr + i * sizeof(*ds);
1652 		lastds = ds;
1653 	}
1654 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1655 	    BUS_DMASYNC_PREWRITE);
1656 
1657 	if (!SIMPLEQ_EMPTY(&txq->head))
1658 		((struct ar_tx_desc *)txq->lastds)->ds_link = bf->bf_daddr;
1659 	else
1660 		AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
1661 	txq->lastds = lastds;
1662 	SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
1663 	SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
1664 
1665 	ds = bf->bf_descs;
1666 	DPRINTFN(DBG_TX, sc,
1667 	    "Tx qid=%d nsegs=%d ctl0=0x%x ctl1=0x%x ctl3=0x%x\n",
1668 	    qid, bf->bf_map->dm_nsegs, ds->ds_ctl0, ds->ds_ctl1, ds->ds_ctl3);
1669 
1670 	/* Kick Tx. */
1671 	AR_WRITE(sc, AR_Q_TXE, 1 << qid);
1672 	AR_WRITE_BARRIER(sc);
1673 	return 0;
1674 }
1675 
1676 Static void
ar5008_set_rf_mode(struct athn_softc * sc,struct ieee80211_channel * c)1677 ar5008_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
1678 {
1679 	uint32_t reg;
1680 
1681 	reg = IEEE80211_IS_CHAN_2GHZ(c) ?
1682 	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1683 	if (!AR_SREV_9280_10_OR_LATER(sc)) {
1684 		reg |= IEEE80211_IS_CHAN_2GHZ(c) ?
1685 		    AR_PHY_MODE_RF2GHZ : AR_PHY_MODE_RF5GHZ;
1686 	}
1687 	else if (IEEE80211_IS_CHAN_5GHZ(c) &&
1688 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
1689 		reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
1690 	}
1691 	AR_WRITE(sc, AR_PHY_MODE, reg);
1692 	AR_WRITE_BARRIER(sc);
1693 }
1694 
1695 static __inline uint32_t
ar5008_synth_delay(struct athn_softc * sc)1696 ar5008_synth_delay(struct athn_softc *sc)
1697 {
1698 	uint32_t synth_delay;
1699 
1700 	synth_delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
1701 	if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
1702 		synth_delay = (synth_delay * 4) / 22;
1703 	else
1704 		synth_delay = synth_delay / 10;	/* in 100ns steps */
1705 	return synth_delay;
1706 }
1707 
1708 Static int
ar5008_rf_bus_request(struct athn_softc * sc)1709 ar5008_rf_bus_request(struct athn_softc *sc)
1710 {
1711 	int ntries;
1712 
1713 	/* Request RF Bus grant. */
1714 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1715 	for (ntries = 0; ntries < 10000; ntries++) {
1716 		if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
1717 			return 0;
1718 		DELAY(10);
1719 	}
1720 	DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
1721 	return ETIMEDOUT;
1722 }
1723 
1724 Static void
ar5008_rf_bus_release(struct athn_softc * sc)1725 ar5008_rf_bus_release(struct athn_softc *sc)
1726 {
1727 
1728 	/* Wait for the synthesizer to settle. */
1729 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar5008_synth_delay(sc));
1730 
1731 	/* Release the RF Bus grant. */
1732 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
1733 	AR_WRITE_BARRIER(sc);
1734 }
1735 
1736 Static void
ar5008_set_phy(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)1737 ar5008_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
1738     struct ieee80211_channel *extc)
1739 {
1740 	uint32_t phy;
1741 
1742 	if (AR_SREV_9285_10_OR_LATER(sc))
1743 		phy = AR_READ(sc, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO;
1744 	else
1745 		phy = 0;
1746 	phy |= AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 |
1747 	    AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
1748 #ifndef IEEE80211_NO_HT
1749 	if (extc != NULL) {
1750 		phy |= AR_PHY_FC_DYN2040_EN;
1751 		if (extc > c)	/* XXX */
1752 			phy |= AR_PHY_FC_DYN2040_PRI_CH;
1753 	}
1754 #endif
1755 	AR_WRITE(sc, AR_PHY_TURBO, phy);
1756 
1757 	AR_WRITE(sc, AR_2040_MODE,
1758 	    (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
1759 
1760 	/* Set global transmit timeout. */
1761 	AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
1762 	/* Set carrier sense timeout. */
1763 	AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
1764 	AR_WRITE_BARRIER(sc);
1765 }
1766 
1767 Static void
ar5008_set_delta_slope(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)1768 ar5008_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
1769     struct ieee80211_channel *extc)
1770 {
1771 	uint32_t coeff, exp, man, reg;
1772 
1773 	/* Set Delta Slope (exponent and mantissa). */
1774 	coeff = (100 << 24) / c->ic_freq;
1775 	athn_get_delta_slope(coeff, &exp, &man);
1776 	DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1777 
1778 	reg = AR_READ(sc, AR_PHY_TIMING3);
1779 	reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
1780 	reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
1781 	AR_WRITE(sc, AR_PHY_TIMING3, reg);
1782 
1783 	/* For Short GI, coeff is 9/10 that of normal coeff. */
1784 	coeff = (9 * coeff) / 10;
1785 	athn_get_delta_slope(coeff, &exp, &man);
1786 	DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1787 
1788 	reg = AR_READ(sc, AR_PHY_HALFGI);
1789 	reg = RW(reg, AR_PHY_HALFGI_DSC_EXP, exp);
1790 	reg = RW(reg, AR_PHY_HALFGI_DSC_MAN, man);
1791 	AR_WRITE(sc, AR_PHY_HALFGI, reg);
1792 	AR_WRITE_BARRIER(sc);
1793 }
1794 
1795 Static void
ar5008_enable_antenna_diversity(struct athn_softc * sc)1796 ar5008_enable_antenna_diversity(struct athn_softc *sc)
1797 {
1798 
1799 	AR_SETBITS(sc, AR_PHY_CCK_DETECT,
1800 	    AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1801 	AR_WRITE_BARRIER(sc);
1802 }
1803 
1804 Static void
ar5008_init_baseband(struct athn_softc * sc)1805 ar5008_init_baseband(struct athn_softc *sc)
1806 {
1807 	uint32_t synth_delay;
1808 
1809 	synth_delay = ar5008_synth_delay(sc);
1810 	/* Activate the PHY (includes baseband activate and synthesizer on). */
1811 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1812 	AR_WRITE_BARRIER(sc);
1813 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
1814 }
1815 
1816 Static void
ar5008_disable_phy(struct athn_softc * sc)1817 ar5008_disable_phy(struct athn_softc *sc)
1818 {
1819 
1820 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1821 	AR_WRITE_BARRIER(sc);
1822 }
1823 
1824 Static void
ar5008_init_chains(struct athn_softc * sc)1825 ar5008_init_chains(struct athn_softc *sc)
1826 {
1827 
1828 	if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
1829 		AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1830 
1831 	/* Setup chain masks. */
1832 	if (sc->sc_mac_ver <= AR_SREV_VERSION_9160 &&
1833 	    (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5)) {
1834 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  0x7);
1835 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, 0x7);
1836 	}
1837 	else {
1838 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
1839 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
1840 	}
1841 	AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
1842 	AR_WRITE_BARRIER(sc);
1843 }
1844 
1845 Static void
ar5008_set_rxchains(struct athn_softc * sc)1846 ar5008_set_rxchains(struct athn_softc *sc)
1847 {
1848 
1849 	if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
1850 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
1851 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
1852 		AR_WRITE_BARRIER(sc);
1853 	}
1854 }
1855 
1856 #ifdef notused
1857 Static void
ar5008_read_noisefloor(struct athn_softc * sc,int16_t * nf,int16_t * nf_ext)1858 ar5008_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
1859 {
1860 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */
1861 #define SIGN_EXT(v)	(((v) ^ 0x100) - 0x100)
1862 	uint32_t reg;
1863 	int i;
1864 
1865 	for (i = 0; i < sc->sc_nrxchains; i++) {
1866 		reg = AR_READ(sc, AR_PHY_CCA(i));
1867 		if (AR_SREV_9280_10_OR_LATER(sc))
1868 			nf[i] = MS(reg, AR9280_PHY_MINCCA_PWR);
1869 		else
1870 			nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
1871 		nf[i] = SIGN_EXT(nf[i]);
1872 
1873 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
1874 		if (AR_SREV_9280_10_OR_LATER(sc))
1875 			nf_ext[i] = MS(reg, AR9280_PHY_EXT_MINCCA_PWR);
1876 		else
1877 			nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
1878 		nf_ext[i] = SIGN_EXT(nf_ext[i]);
1879 	}
1880 #undef SIGN_EXT
1881 }
1882 #endif /* notused */
1883 
1884 #ifdef notused
1885 Static void
ar5008_write_noisefloor(struct athn_softc * sc,int16_t * nf,int16_t * nf_ext)1886 ar5008_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
1887 {
1888 	uint32_t reg;
1889 	int i;
1890 
1891 	for (i = 0; i < sc->sc_nrxchains; i++) {
1892 		reg = AR_READ(sc, AR_PHY_CCA(i));
1893 		reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
1894 		AR_WRITE(sc, AR_PHY_CCA(i), reg);
1895 
1896 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
1897 		reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
1898 		AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
1899 	}
1900 	AR_WRITE_BARRIER(sc);
1901 }
1902 #endif /* notused */
1903 
1904 #ifdef notused
1905 Static void
ar5008_get_noisefloor(struct athn_softc * sc,struct ieee80211_channel * c)1906 ar5008_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
1907 {
1908 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
1909 	int i;
1910 
1911 	if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1912 		/* Noisefloor calibration not finished. */
1913 		return;
1914 	}
1915 	/* Noisefloor calibration is finished. */
1916 	ar5008_read_noisefloor(sc, nf, nf_ext);
1917 
1918 	/* Update noisefloor history. */
1919 	for (i = 0; i < sc->sc_nrxchains; i++) {
1920 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
1921 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
1922 	}
1923 	if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
1924 		sc->sc_nf_hist_cur = 0;
1925 }
1926 #endif /* notused */
1927 
1928 #ifdef notused
1929 Static void
ar5008_bb_load_noisefloor(struct athn_softc * sc)1930 ar5008_bb_load_noisefloor(struct athn_softc *sc)
1931 {
1932 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
1933 	int i, ntries;
1934 
1935 	/* Write filtered noisefloor values. */
1936 	for (i = 0; i < sc->sc_nrxchains; i++) {
1937 		nf[i] = sc->sc_nf_priv[i] * 2;
1938 		nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
1939 	}
1940 	ar5008_write_noisefloor(sc, nf, nf_ext);
1941 
1942 	/* Load filtered noisefloor values into baseband. */
1943 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1944 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1945 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1946 	/* Wait for load to complete. */
1947 	for (ntries = 0; ntries < 1000; ntries++) {
1948 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
1949 			break;
1950 		DELAY(50);
1951 	}
1952 	if (ntries == 1000) {
1953 		DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
1954 		return;
1955 	}
1956 
1957 	/* Restore noisefloor values to initial (max) values. */
1958 	for (i = 0; i < AR_MAX_CHAINS; i++)
1959 		nf[i] = nf_ext[i] = -50 * 2;
1960 	ar5008_write_noisefloor(sc, nf, nf_ext);
1961 }
1962 #endif /* notused */
1963 
1964 #ifdef notused
1965 Static void
ar5008_noisefloor_calib(struct athn_softc * sc)1966 ar5008_noisefloor_calib(struct athn_softc *sc)
1967 {
1968 
1969 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1970 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1971 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1972 	AR_WRITE_BARRIER(sc);
1973 }
1974 #endif /* notused */
1975 
1976 Static void
ar5008_do_noisefloor_calib(struct athn_softc * sc)1977 ar5008_do_noisefloor_calib(struct athn_softc *sc)
1978 {
1979 
1980 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1981 	AR_WRITE_BARRIER(sc);
1982 }
1983 
1984 Static void
ar5008_do_calib(struct athn_softc * sc)1985 ar5008_do_calib(struct athn_softc *sc)
1986 {
1987 	uint32_t mode, reg;
1988 	int log;
1989 
1990 	reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0);
1991 	log = AR_SREV_9280_10_OR_LATER(sc) ? 10 : 2;
1992 	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, log);
1993 	AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg);
1994 
1995 	if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN)
1996 		mode = AR_PHY_CALMODE_ADC_GAIN;
1997 	else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC)
1998 		mode = AR_PHY_CALMODE_ADC_DC_PER;
1999 	else	/* ATHN_CAL_IQ */
2000 		mode = AR_PHY_CALMODE_IQ;
2001 	AR_WRITE(sc, AR_PHY_CALMODE, mode);
2002 
2003 	DPRINTFN(DBG_RF, sc, "starting calibration mode=0x%x\n", mode);
2004 	AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_DO_CAL);
2005 	AR_WRITE_BARRIER(sc);
2006 }
2007 
2008 Static void
ar5008_next_calib(struct athn_softc * sc)2009 ar5008_next_calib(struct athn_softc *sc)
2010 {
2011 
2012 	/* Check if we have any calibration in progress. */
2013 	if (sc->sc_cur_calib_mask != 0) {
2014 		if (!(AR_READ(sc, AR_PHY_TIMING_CTRL4_0) &
2015 		    AR_PHY_TIMING_CTRL4_DO_CAL)) {
2016 			/* Calibration completed for current sample. */
2017 			if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN)
2018 				ar5008_calib_adc_gain(sc);
2019 			else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC)
2020 				ar5008_calib_adc_dc_off(sc);
2021 			else	/* ATHN_CAL_IQ */
2022 				ar5008_calib_iq(sc);
2023 		}
2024 	}
2025 }
2026 
2027 Static void
ar5008_calib_iq(struct athn_softc * sc)2028 ar5008_calib_iq(struct athn_softc *sc)
2029 {
2030 	struct athn_iq_cal *cal;
2031 	uint32_t reg, i_coff_denom, q_coff_denom;
2032 	int32_t i_coff, q_coff;
2033 	int i, iq_corr_neg;
2034 
2035 	for (i = 0; i < AR_MAX_CHAINS; i++) {
2036 		cal = &sc->sc_calib.iq[i];
2037 
2038 		/* Accumulate IQ calibration measures (clear on read). */
2039 		cal->pwr_meas_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
2040 		cal->pwr_meas_q += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
2041 		cal->iq_corr_meas +=
2042 		    (int32_t)AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
2043 	}
2044 	if (!AR_SREV_9280_10_OR_LATER(sc) &&
2045 	    ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) {
2046 		/* Not enough samples accumulated, continue. */
2047 		ar5008_do_calib(sc);
2048 		return;
2049 	}
2050 
2051 	for (i = 0; i < sc->sc_nrxchains; i++) {
2052 		cal = &sc->sc_calib.iq[i];
2053 
2054 		if (cal->pwr_meas_q == 0)
2055 			continue;
2056 
2057 		if ((iq_corr_neg = cal->iq_corr_meas) < 0)
2058 			cal->iq_corr_meas = -cal->iq_corr_meas;
2059 
2060 		i_coff_denom =
2061 		    (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 128;
2062 		q_coff_denom = cal->pwr_meas_q / 64;
2063 
2064 		if (i_coff_denom == 0 || q_coff_denom == 0)
2065 			continue;	/* Prevents division by zero. */
2066 
2067 		i_coff = cal->iq_corr_meas / i_coff_denom;
2068 		q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
2069 
2070 		/* Negate i_coff if iq_corr_meas is positive. */
2071 		if (!iq_corr_neg)
2072 			i_coff = 0x40 - (i_coff & 0x3f);
2073 		if (q_coff > 15)
2074 			q_coff = 15;
2075 		else if (q_coff <= -16)
2076 			q_coff = -16;	/* XXX Linux has a bug here? */
2077 
2078 		DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
2079 		reg = AR_READ(sc, AR_PHY_TIMING_CTRL4(i));
2080 		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, i_coff);
2081 		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, q_coff);
2082 		AR_WRITE(sc, AR_PHY_TIMING_CTRL4(i), reg);
2083 	}
2084 
2085 	/* Apply new settings. */
2086 	AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0,
2087 	    AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
2088 	AR_WRITE_BARRIER(sc);
2089 
2090 	/* IQ calibration done. */
2091 	sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
2092 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2093 }
2094 
2095 Static void
ar5008_calib_adc_gain(struct athn_softc * sc)2096 ar5008_calib_adc_gain(struct athn_softc *sc)
2097 {
2098 	struct athn_adc_cal *cal;
2099 	uint32_t reg, gain_mismatch_i, gain_mismatch_q;
2100 	int i;
2101 
2102 	for (i = 0; i < AR_MAX_CHAINS; i++) {
2103 		cal = &sc->sc_calib.adc_gain[i];
2104 
2105 		/* Accumulate ADC gain measures (clear on read). */
2106 		cal->pwr_meas_odd_i  += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
2107 		cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
2108 		cal->pwr_meas_odd_q  += AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
2109 		cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i));
2110 	}
2111 	if (!AR_SREV_9280_10_OR_LATER(sc) &&
2112 	    ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) {
2113 		/* Not enough samples accumulated, continue. */
2114 		ar5008_do_calib(sc);
2115 		return;
2116 	}
2117 
2118 	for (i = 0; i < sc->sc_nrxchains; i++) {
2119 		cal = &sc->sc_calib.adc_gain[i];
2120 
2121 		if (cal->pwr_meas_odd_i == 0 || cal->pwr_meas_even_q == 0)
2122 			continue;	/* Prevents division by zero. */
2123 
2124 		gain_mismatch_i =
2125 		    (cal->pwr_meas_even_i * 32) / cal->pwr_meas_odd_i;
2126 		gain_mismatch_q =
2127 		    (cal->pwr_meas_odd_q * 32) / cal->pwr_meas_even_q;
2128 
2129 		DPRINTFN(DBG_RF, sc, "ADC gain calibration for chain %d\n", i);
2130 		reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
2131 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IGAIN, gain_mismatch_i);
2132 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QGAIN, gain_mismatch_q);
2133 		AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg);
2134 	}
2135 
2136 	/* Apply new settings. */
2137 	AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
2138 	    AR_PHY_NEW_ADC_GAIN_CORR_ENABLE);
2139 	AR_WRITE_BARRIER(sc);
2140 
2141 	/* ADC gain calibration done. */
2142 	sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_GAIN;
2143 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2144 }
2145 
2146 Static void
ar5008_calib_adc_dc_off(struct athn_softc * sc)2147 ar5008_calib_adc_dc_off(struct athn_softc *sc)
2148 {
2149 	struct athn_adc_cal *cal;
2150 	int32_t dc_offset_mismatch_i, dc_offset_mismatch_q;
2151 	uint32_t reg;
2152 	int count, i;
2153 
2154 	for (i = 0; i < AR_MAX_CHAINS; i++) {
2155 		cal = &sc->sc_calib.adc_dc_offset[i];
2156 
2157 		/* Accumulate ADC DC offset measures (clear on read). */
2158 		cal->pwr_meas_odd_i  += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
2159 		cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
2160 		cal->pwr_meas_odd_q  += AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
2161 		cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i));
2162 	}
2163 	if (!AR_SREV_9280_10_OR_LATER(sc) &&
2164 	    ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) {
2165 		/* Not enough samples accumulated, continue. */
2166 		ar5008_do_calib(sc);
2167 		return;
2168 	}
2169 
2170 	if (AR_SREV_9280_10_OR_LATER(sc))
2171 		count = (1 << (10 + 5));
2172 	else
2173 		count = (1 << ( 2 + 5)) * AR_CAL_SAMPLES;
2174 	for (i = 0; i < sc->sc_nrxchains; i++) {
2175 		cal = &sc->sc_calib.adc_dc_offset[i];
2176 
2177 		dc_offset_mismatch_i =
2178 		    (cal->pwr_meas_even_i - cal->pwr_meas_odd_i * 2) / count;
2179 		dc_offset_mismatch_q =
2180 		    (cal->pwr_meas_odd_q - cal->pwr_meas_even_q * 2) / count;
2181 
2182 		DPRINTFN(DBG_RF, sc, "ADC DC offset calibration for chain %d\n", i);
2183 		reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
2184 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QDC,
2185 		    dc_offset_mismatch_q);
2186 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IDC,
2187 		    dc_offset_mismatch_i);
2188 		AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg);
2189 	}
2190 
2191 	/* Apply new settings. */
2192 	AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
2193 	    AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE);
2194 	AR_WRITE_BARRIER(sc);
2195 
2196 	/* ADC DC offset calibration done. */
2197 	sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_DC;
2198 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2199 }
2200 
2201 PUBLIC void
ar5008_write_txpower(struct athn_softc * sc,int16_t power[ATHN_POWER_COUNT])2202 ar5008_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
2203 {
2204 
2205 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE1,
2206 	    (power[ATHN_POWER_OFDM18  ] & 0x3f) << 24 |
2207 	    (power[ATHN_POWER_OFDM12  ] & 0x3f) << 16 |
2208 	    (power[ATHN_POWER_OFDM9   ] & 0x3f) <<  8 |
2209 	    (power[ATHN_POWER_OFDM6   ] & 0x3f));
2210 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE2,
2211 	    (power[ATHN_POWER_OFDM54  ] & 0x3f) << 24 |
2212 	    (power[ATHN_POWER_OFDM48  ] & 0x3f) << 16 |
2213 	    (power[ATHN_POWER_OFDM36  ] & 0x3f) <<  8 |
2214 	    (power[ATHN_POWER_OFDM24  ] & 0x3f));
2215 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE3,
2216 	    (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
2217 	    (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
2218 	    (power[ATHN_POWER_XR      ] & 0x3f) <<  8 |
2219 	    (power[ATHN_POWER_CCK1_LP ] & 0x3f));
2220 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE4,
2221 	    (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
2222 	    (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
2223 	    (power[ATHN_POWER_CCK55_SP] & 0x3f) <<  8 |
2224 	    (power[ATHN_POWER_CCK55_LP] & 0x3f));
2225 #ifndef IEEE80211_NO_HT
2226 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE5,
2227 	    (power[ATHN_POWER_HT20(3) ] & 0x3f) << 24 |
2228 	    (power[ATHN_POWER_HT20(2) ] & 0x3f) << 16 |
2229 	    (power[ATHN_POWER_HT20(1) ] & 0x3f) <<  8 |
2230 	    (power[ATHN_POWER_HT20(0) ] & 0x3f));
2231 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE6,
2232 	    (power[ATHN_POWER_HT20(7) ] & 0x3f) << 24 |
2233 	    (power[ATHN_POWER_HT20(6) ] & 0x3f) << 16 |
2234 	    (power[ATHN_POWER_HT20(5) ] & 0x3f) <<  8 |
2235 	    (power[ATHN_POWER_HT20(4) ] & 0x3f));
2236 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE7,
2237 	    (power[ATHN_POWER_HT40(3) ] & 0x3f) << 24 |
2238 	    (power[ATHN_POWER_HT40(2) ] & 0x3f) << 16 |
2239 	    (power[ATHN_POWER_HT40(1) ] & 0x3f) <<  8 |
2240 	    (power[ATHN_POWER_HT40(0) ] & 0x3f));
2241 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE8,
2242 	    (power[ATHN_POWER_HT40(7) ] & 0x3f) << 24 |
2243 	    (power[ATHN_POWER_HT40(6) ] & 0x3f) << 16 |
2244 	    (power[ATHN_POWER_HT40(5) ] & 0x3f) <<  8 |
2245 	    (power[ATHN_POWER_HT40(4) ] & 0x3f));
2246 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE9,
2247 	    (power[ATHN_POWER_OFDM_EXT] & 0x3f) << 24 |
2248 	    (power[ATHN_POWER_CCK_EXT ] & 0x3f) << 16 |
2249 	    (power[ATHN_POWER_OFDM_DUP] & 0x3f) <<  8 |
2250 	    (power[ATHN_POWER_CCK_DUP ] & 0x3f));
2251 #endif
2252 	AR_WRITE_BARRIER(sc);
2253 }
2254 
2255 PUBLIC void
ar5008_set_viterbi_mask(struct athn_softc * sc,int bin)2256 ar5008_set_viterbi_mask(struct athn_softc *sc, int bin)
2257 {
2258 	uint32_t mask[4], reg;
2259 	uint8_t m[62], p[62];	/* XXX use bit arrays? */
2260 	int i, bit, cur;
2261 
2262 	/* Compute pilot mask. */
2263 	cur = -6000;
2264 	for (i = 0; i < 4; i++) {
2265 		mask[i] = 0;
2266 		for (bit = 0; bit < 30; bit++) {
2267 			if (abs(cur - bin) < 100)
2268 				mask[i] |= 1 << bit;
2269 			cur += 100;
2270 		}
2271 		if (cur == 0)	/* Skip entry "0". */
2272 			cur = 100;
2273 	}
2274 	/* Write entries from -6000 to -3100. */
2275 	AR_WRITE(sc, AR_PHY_TIMING7, mask[0]);
2276 	AR_WRITE(sc, AR_PHY_TIMING9, mask[0]);
2277 	/* Write entries from -3000 to -100. */
2278 	AR_WRITE(sc, AR_PHY_TIMING8, mask[1]);
2279 	AR_WRITE(sc, AR_PHY_TIMING10, mask[1]);
2280 	/* Write entries from 100 to 3000. */
2281 	AR_WRITE(sc, AR_PHY_PILOT_MASK_01_30, mask[2]);
2282 	AR_WRITE(sc, AR_PHY_CHANNEL_MASK_01_30, mask[2]);
2283 	/* Write entries from 3100 to 6000. */
2284 	AR_WRITE(sc, AR_PHY_PILOT_MASK_31_60, mask[3]);
2285 	AR_WRITE(sc, AR_PHY_CHANNEL_MASK_31_60, mask[3]);
2286 
2287 	/* Compute viterbi mask. */
2288 	for (cur = 6100; cur >= 0; cur -= 100)
2289 		p[+cur / 100] = abs(cur - bin) < 75;
2290 	for (cur = 0; cur >= -6100; cur -= 100)
2291 		m[-cur / 100] = abs(cur - bin) < 75;
2292 
2293 	/* Write viterbi mask (XXX needs to be reworked). */
2294 	reg =
2295 	    m[46] << 30 | m[47] << 28 | m[48] << 26 | m[49] << 24 |
2296 	    m[50] << 22 | m[51] << 20 | m[52] << 18 | m[53] << 16 |
2297 	    m[54] << 14 | m[55] << 12 | m[56] << 10 | m[57] <<  8 |
2298 	    m[58] <<  6 | m[59] <<  4 | m[60] <<  2 | m[61] <<  0;
2299 	AR_WRITE(sc, AR_PHY_BIN_MASK_1, reg);
2300 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_46_61, reg);
2301 
2302 	/* XXX m[48] should be m[38] ? */
2303 	reg =             m[31] << 28 | m[32] << 26 | m[33] << 24 |
2304 	    m[34] << 22 | m[35] << 20 | m[36] << 18 | m[37] << 16 |
2305 	    m[48] << 14 | m[39] << 12 | m[40] << 10 | m[41] <<  8 |
2306 	    m[42] <<  6 | m[43] <<  4 | m[44] <<  2 | m[45] <<  0;
2307 	AR_WRITE(sc, AR_PHY_BIN_MASK_2, reg);
2308 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_31_45, reg);
2309 
2310 	/* XXX This one is weird too. */
2311 	reg =
2312 	    m[16] << 30 | m[16] << 28 | m[18] << 26 | m[18] << 24 |
2313 	    m[20] << 22 | m[20] << 20 | m[22] << 18 | m[22] << 16 |
2314 	    m[24] << 14 | m[24] << 12 | m[25] << 10 | m[26] <<  8 |
2315 	    m[27] <<  6 | m[28] <<  4 | m[29] <<  2 | m[30] <<  0;
2316 	AR_WRITE(sc, AR_PHY_BIN_MASK_3, reg);
2317 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_16_30, reg);
2318 
2319 	reg =
2320 	    m[ 0] << 30 | m[ 1] << 28 | m[ 2] << 26 | m[ 3] << 24 |
2321 	    m[ 4] << 22 | m[ 5] << 20 | m[ 6] << 18 | m[ 7] << 16 |
2322 	    m[ 8] << 14 | m[ 9] << 12 | m[10] << 10 | m[11] <<  8 |
2323 	    m[12] <<  6 | m[13] <<  4 | m[14] <<  2 | m[15] <<  0;
2324 	AR_WRITE(sc, AR_PHY_MASK_CTL, reg);
2325 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_00_15, reg);
2326 
2327 	reg =             p[15] << 28 | p[14] << 26 | p[13] << 24 |
2328 	    p[12] << 22 | p[11] << 20 | p[10] << 18 | p[ 9] << 16 |
2329 	    p[ 8] << 14 | p[ 7] << 12 | p[ 6] << 10 | p[ 5] <<  8 |
2330 	    p[ 4] <<  6 | p[ 3] <<  4 | p[ 2] <<  2 | p[ 1] <<  0;
2331 	AR_WRITE(sc, AR_PHY_BIN_MASK2_1, reg);
2332 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_15_01, reg);
2333 
2334 	reg =             p[30] << 28 | p[29] << 26 | p[28] << 24 |
2335 	    p[27] << 22 | p[26] << 20 | p[25] << 18 | p[24] << 16 |
2336 	    p[23] << 14 | p[22] << 12 | p[21] << 10 | p[20] <<  8 |
2337 	    p[19] <<  6 | p[18] <<  4 | p[17] <<  2 | p[16] <<  0;
2338 	AR_WRITE(sc, AR_PHY_BIN_MASK2_2, reg);
2339 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_30_16, reg);
2340 
2341 	reg =             p[45] << 28 | p[44] << 26 | p[43] << 24 |
2342 	    p[42] << 22 | p[41] << 20 | p[40] << 18 | p[39] << 16 |
2343 	    p[38] << 14 | p[37] << 12 | p[36] << 10 | p[35] <<  8 |
2344 	    p[34] <<  6 | p[33] <<  4 | p[32] <<  2 | p[31] <<  0;
2345 	AR_WRITE(sc, AR_PHY_BIN_MASK2_3, reg);
2346 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_45_31, reg);
2347 
2348 	reg =
2349 	    p[61] << 30 | p[60] << 28 | p[59] << 26 | p[58] << 24 |
2350 	    p[57] << 22 | p[56] << 20 | p[55] << 18 | p[54] << 16 |
2351 	    p[53] << 14 | p[52] << 12 | p[51] << 10 | p[50] <<  8 |
2352 	    p[49] <<  6 | p[48] <<  4 | p[47] <<  2 | p[46] <<  0;
2353 	AR_WRITE(sc, AR_PHY_BIN_MASK2_4, reg);
2354 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_61_46, reg);
2355 	AR_WRITE_BARRIER(sc);
2356 }
2357 
2358 Static void
ar5008_hw_init(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)2359 ar5008_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
2360     struct ieee80211_channel *extc)
2361 {
2362 	struct athn_ops *ops = &sc->sc_ops;
2363 	const struct athn_ini *ini = sc->sc_ini;
2364 	const uint32_t *pvals;
2365 	uint32_t reg;
2366 	int i;
2367 
2368 	AR_WRITE(sc, AR_PHY(0), 0x00000007);
2369 	AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
2370 
2371 	if (!AR_SINGLE_CHIP(sc))
2372 		ar5416_reset_addac(sc, c);
2373 
2374 	AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
2375 
2376 	/* First initialization step (depends on channel band/bandwidth). */
2377 #ifndef IEEE80211_NO_HT
2378 	if (extc != NULL) {
2379 		if (IEEE80211_IS_CHAN_2GHZ(c))
2380 			pvals = ini->vals_2g40;
2381 		else
2382 			pvals = ini->vals_5g40;
2383 	}
2384 	else
2385 #endif
2386 	{
2387 		if (IEEE80211_IS_CHAN_2GHZ(c))
2388 			pvals = ini->vals_2g20;
2389 		else
2390 			pvals = ini->vals_5g20;
2391 	}
2392 	DPRINTFN(DBG_INIT, sc, "writing modal init vals\n");
2393 	for (i = 0; i < ini->nregs; i++) {
2394 		uint32_t val = pvals[i];
2395 
2396 		/* Fix AR_AN_TOP2 initialization value if required. */
2397 		if (ini->regs[i] == AR_AN_TOP2 &&
2398 		    (sc->sc_flags & ATHN_FLAG_AN_TOP2_FIXUP))
2399 			val &= ~AR_AN_TOP2_PWDCLKIND;
2400 		AR_WRITE(sc, ini->regs[i], val);
2401 		if (AR_IS_ANALOG_REG(ini->regs[i])) {
2402 			AR_WRITE_BARRIER(sc);
2403 			DELAY(100);
2404 		}
2405 		if ((i & 0x1f) == 0)
2406 			DELAY(1);
2407 	}
2408 	AR_WRITE_BARRIER(sc);
2409 
2410 	if (sc->sc_rx_gain != NULL)
2411 		ar9280_reset_rx_gain(sc, c);
2412 	if (sc->sc_tx_gain != NULL)
2413 		ar9280_reset_tx_gain(sc, c);
2414 
2415 	if (AR_SREV_9271_10(sc)) {
2416 		AR_WRITE(sc, AR_PHY(68), 0x30002311);
2417 		AR_WRITE(sc, AR_PHY_RF_CTL3, 0x0a020001);
2418 	}
2419 	AR_WRITE_BARRIER(sc);
2420 
2421 	/* Second initialization step (common to all channels). */
2422 	DPRINTFN(DBG_INIT, sc, "writing common init vals\n");
2423 	for (i = 0; i < ini->ncmregs; i++) {
2424 		AR_WRITE(sc, ini->cmregs[i], ini->cmvals[i]);
2425 		if (AR_IS_ANALOG_REG(ini->cmregs[i])) {
2426 			AR_WRITE_BARRIER(sc);
2427 			DELAY(100);
2428 		}
2429 		if ((i & 0x1f) == 0)
2430 			DELAY(1);
2431 	}
2432 	AR_WRITE_BARRIER(sc);
2433 
2434 	if (!AR_SINGLE_CHIP(sc))
2435 		ar5416_reset_bb_gain(sc, c);
2436 
2437 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
2438 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
2439 		/* Update modal values for fast PLL clock. */
2440 #ifndef IEEE80211_NO_HT
2441 		if (extc != NULL)
2442 			pvals = ini->fastvals_5g40;
2443 		else
2444 #endif
2445 			pvals = ini->fastvals_5g20;
2446 		DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
2447 		for (i = 0; i < ini->nfastregs; i++) {
2448 			AR_WRITE(sc, ini->fastregs[i], pvals[i]);
2449 			if (AR_IS_ANALOG_REG(ini->fastregs[i])) {
2450 				AR_WRITE_BARRIER(sc);
2451 				DELAY(100);
2452 			}
2453 			if ((i & 0x1f) == 0)
2454 				DELAY(1);
2455 		}
2456 	}
2457 
2458 	/*
2459 	 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
2460 	 * descriptor status.
2461 	 */
2462 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
2463 
2464 	/* Hardware workarounds for occasional Rx data corruption. */
2465 	if (AR_SREV_9280_10_OR_LATER(sc)) {
2466 		reg = AR_READ(sc, AR_PCU_MISC_MODE2);
2467 		if (!AR_SREV_9271(sc))
2468 			reg &= ~AR_PCU_MISC_MODE2_HWWAR1;
2469 		if (AR_SREV_9287_10_OR_LATER(sc))
2470 			reg &= ~AR_PCU_MISC_MODE2_HWWAR2;
2471 		AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
2472 
2473 	}
2474 	else if (AR_SREV_5416_20_OR_LATER(sc)) {
2475 		/* Disable baseband clock gating. */
2476 		AR_WRITE(sc, AR_PHY(651), 0x11);
2477 
2478 		if (AR_SREV_9160(sc)) {
2479 			/* Disable RIFS search to fix baseband hang. */
2480 			AR_CLRBITS(sc, AR_PHY_HEAVY_CLIP_FACTOR_RIFS,
2481 			    AR_PHY_RIFS_INIT_DELAY_M);
2482 		}
2483 	}
2484 	AR_WRITE_BARRIER(sc);
2485 
2486 	ar5008_set_phy(sc, c, extc);
2487 	ar5008_init_chains(sc);
2488 
2489 	if (sc->sc_flags & ATHN_FLAG_OLPC) {
2490 		sc->sc_olpc_ticks = ticks;
2491 		ops->olpc_init(sc);
2492 	}
2493 
2494 	ops->set_txpower(sc, c, extc);
2495 
2496 	if (!AR_SINGLE_CHIP(sc))
2497 		ar5416_rf_reset(sc, c);
2498 }
2499 
2500 Static uint8_t
ar5008_get_vpd(uint8_t pwr,const uint8_t * pwrPdg,const uint8_t * vpdPdg,int nicepts)2501 ar5008_get_vpd(uint8_t pwr, const uint8_t *pwrPdg, const uint8_t *vpdPdg,
2502     int nicepts)
2503 {
2504 	uint8_t vpd;
2505 	int i, lo, hi;
2506 
2507 	for (i = 0; i < nicepts; i++)
2508 		if (pwrPdg[i] > pwr)
2509 			break;
2510 	hi = i;
2511 	lo = hi - 1;
2512 	if (lo == -1)
2513 		lo = hi;
2514 	else if (hi == nicepts)
2515 		hi = lo;
2516 
2517 	vpd = athn_interpolate(pwr, pwrPdg[lo], vpdPdg[lo],
2518 	    pwrPdg[hi], vpdPdg[hi]);
2519 	return vpd;
2520 }
2521 
2522 PUBLIC void
ar5008_get_pdadcs(struct athn_softc * sc,uint8_t fbin,struct athn_pier * lopier,struct athn_pier * hipier,int nxpdgains,int nicepts,uint8_t overlap,uint8_t * boundaries,uint8_t * pdadcs)2523 ar5008_get_pdadcs(struct athn_softc *sc, uint8_t fbin,
2524     struct athn_pier *lopier, struct athn_pier *hipier, int nxpdgains,
2525     int nicepts, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs)
2526 {
2527 #define DB(x)	((x) / 2)	/* Convert half dB to dB. */
2528 	uint8_t minpwr[AR_PD_GAINS_IN_MASK], maxpwr[AR_PD_GAINS_IN_MASK];
2529 	uint8_t vpd[AR_MAX_PWR_RANGE_IN_HALF_DB], pwr;
2530 	uint8_t lovpd, hivpd, boundary;
2531 	int16_t ss, delta, vpdstep, val;
2532 	int i, j, npdadcs, nvpds, maxidx, tgtidx;
2533 
2534 	/* Compute min and max power in half dB for each pdGain. */
2535 	for (i = 0; i < nxpdgains; i++) {
2536 		minpwr[i] = MAX(lopier->pwr[i][0], hipier->pwr[i][0]);
2537 		maxpwr[i] = MIN(lopier->pwr[i][nicepts - 1],
2538 		    hipier->pwr[i][nicepts - 1]);
2539 	}
2540 
2541 	/* Fill phase domain analog-to-digital converter (PDADC) table. */
2542 	npdadcs = 0;
2543 	for (i = 0; i < nxpdgains; i++) {
2544 		if (i != nxpdgains - 1)
2545 			boundaries[i] = DB(maxpwr[i] + minpwr[i + 1]) / 2;
2546 		else
2547 			boundaries[i] = DB(maxpwr[i]);
2548 		if (boundaries[i] > AR_MAX_RATE_POWER)
2549 			boundaries[i] = AR_MAX_RATE_POWER;
2550 
2551 		if (i == 0 && !AR_SREV_5416_20_OR_LATER(sc)) {
2552 			/* Fix the gain delta (AR5416 1.0 only). */
2553 			delta = boundaries[0] - 23;
2554 			boundaries[0] = 23;
2555 		}
2556 		else
2557 			delta = 0;
2558 
2559 		/* Find starting index for this pdGain. */
2560 		if (i != 0) {
2561 			ss = boundaries[i - 1] - DB(minpwr[i]) -
2562 			    overlap + 1 + delta;
2563 		}
2564 		else if (AR_SREV_9280_10_OR_LATER(sc))
2565 			ss = -DB(minpwr[i]);
2566 		else
2567 			ss = 0;
2568 
2569 		/* Compute Vpd table for this pdGain. */
2570 		nvpds = DB(maxpwr[i] - minpwr[i]) + 1;
2571 		memset(vpd, 0, sizeof(vpd));
2572 		pwr = minpwr[i];
2573 		for (j = 0; j < nvpds; j++) {
2574 			/* Get lower and higher Vpd. */
2575 			lovpd = ar5008_get_vpd(pwr, lopier->pwr[i],
2576 			    lopier->vpd[i], nicepts);
2577 			hivpd = ar5008_get_vpd(pwr, hipier->pwr[i],
2578 			    hipier->vpd[i], nicepts);
2579 
2580 			/* Interpolate the final Vpd. */
2581 			vpd[j] = athn_interpolate(fbin,
2582 			    lopier->fbin, lovpd, hipier->fbin, hivpd);
2583 
2584 			pwr += 2;	/* In half dB. */
2585 		}
2586 
2587 		/* Extrapolate data for ss < 0. */
2588 		if (vpd[1] > vpd[0])
2589 			vpdstep = vpd[1] - vpd[0];
2590 		else
2591 			vpdstep = 1;
2592 		while (ss < 0 && npdadcs < AR_NUM_PDADC_VALUES - 1) {
2593 			val = vpd[0] + ss * vpdstep;
2594 			pdadcs[npdadcs++] = MAX(val, 0);
2595 			ss++;
2596 		}
2597 
2598 		tgtidx = boundaries[i] + overlap - DB(minpwr[i]);
2599 		maxidx = MIN(tgtidx, nvpds);
2600 		while (ss < maxidx && npdadcs < AR_NUM_PDADC_VALUES - 1)
2601 			pdadcs[npdadcs++] = vpd[ss++];
2602 
2603 		if (tgtidx < maxidx)
2604 			continue;
2605 
2606 		/* Extrapolate data for maxidx <= ss <= tgtidx. */
2607 		if (vpd[nvpds - 1] > vpd[nvpds - 2])
2608 			vpdstep = vpd[nvpds - 1] - vpd[nvpds - 2];
2609 		else
2610 			vpdstep = 1;
2611 		while (ss <= tgtidx && npdadcs < AR_NUM_PDADC_VALUES - 1) {
2612 			val = vpd[nvpds - 1] + (ss - maxidx + 1) * vpdstep;
2613 			pdadcs[npdadcs++] = MIN(val, 255);
2614 			ss++;
2615 		}
2616 	}
2617 
2618 	/* Fill remaining PDADC and boundaries entries. */
2619 	if (AR_SREV_9285(sc))
2620 		boundary = AR9285_PD_GAIN_BOUNDARY_DEFAULT;
2621 	else	/* Fill with latest. */
2622 		boundary = boundaries[nxpdgains - 1];
2623 
2624 	for (; nxpdgains < AR_PD_GAINS_IN_MASK; nxpdgains++)
2625 		boundaries[nxpdgains] = boundary;
2626 
2627 	for (; npdadcs < AR_NUM_PDADC_VALUES; npdadcs++)
2628 		pdadcs[npdadcs] = pdadcs[npdadcs - 1];
2629 #undef DB
2630 }
2631 
2632 PUBLIC void
ar5008_get_lg_tpow(struct athn_softc * sc,struct ieee80211_channel * c,uint8_t ctl,const struct ar_cal_target_power_leg * tgt,int nchans,uint8_t tpow[4])2633 ar5008_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
2634     uint8_t ctl, const struct ar_cal_target_power_leg *tgt, int nchans,
2635     uint8_t tpow[4])
2636 {
2637 	uint8_t fbin;
2638 	int i, lo, hi;
2639 
2640 	/* Find interval (lower and upper indices). */
2641 	fbin = athn_chan2fbin(c);
2642 	for (i = 0; i < nchans; i++) {
2643 		if (tgt[i].bChannel == AR_BCHAN_UNUSED ||
2644 		    tgt[i].bChannel > fbin)
2645 			break;
2646 	}
2647 	hi = i;
2648 	lo = hi - 1;
2649 	if (lo == -1)
2650 		lo = hi;
2651 	else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED)
2652 		hi = lo;
2653 
2654 	/* Interpolate values. */
2655 	for (i = 0; i < 4; i++) {
2656 		tpow[i] = athn_interpolate(fbin,
2657 		    tgt[lo].bChannel, tgt[lo].tPow2x[i],
2658 		    tgt[hi].bChannel, tgt[hi].tPow2x[i]);
2659 	}
2660 	/* XXX Apply conformance testing limit. */
2661 }
2662 
2663 #ifndef IEEE80211_NO_HT
2664 PUBLIC void
ar5008_get_ht_tpow(struct athn_softc * sc,struct ieee80211_channel * c,uint8_t ctl,const struct ar_cal_target_power_ht * tgt,int nchans,uint8_t tpow[8])2665 ar5008_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
2666     uint8_t ctl, const struct ar_cal_target_power_ht *tgt, int nchans,
2667     uint8_t tpow[8])
2668 {
2669 	uint8_t fbin;
2670 	int i, lo, hi;
2671 
2672 	/* Find interval (lower and upper indices). */
2673 	fbin = athn_chan2fbin(c);
2674 	for (i = 0; i < nchans; i++) {
2675 		if (tgt[i].bChannel == AR_BCHAN_UNUSED ||
2676 		    tgt[i].bChannel > fbin)
2677 			break;
2678 	}
2679 	hi = i;
2680 	lo = hi - 1;
2681 	if (lo == -1)
2682 		lo = hi;
2683 	else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED)
2684 		hi = lo;
2685 
2686 	/* Interpolate values. */
2687 	for (i = 0; i < 8; i++) {
2688 		tpow[i] = athn_interpolate(fbin,
2689 		    tgt[lo].bChannel, tgt[lo].tPow2x[i],
2690 		    tgt[hi].bChannel, tgt[hi].tPow2x[i]);
2691 	}
2692 	/* XXX Apply conformance testing limit. */
2693 }
2694 #endif
2695 
2696 /*
2697  * Adaptive noise immunity.
2698  */
2699 Static void
ar5008_set_noise_immunity_level(struct athn_softc * sc,int level)2700 ar5008_set_noise_immunity_level(struct athn_softc *sc, int level)
2701 {
2702 	int high = level == 4;
2703 	uint32_t reg;
2704 
2705 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
2706 	reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
2707 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
2708 
2709 	reg = AR_READ(sc, AR_PHY_AGC_CTL1);
2710 	reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_LOW, high ? -70 : -64);
2711 	reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_HIGH, high ? -12 : -14);
2712 	AR_WRITE(sc, AR_PHY_AGC_CTL1, reg);
2713 
2714 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
2715 	reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
2716 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
2717 
2718 	AR_WRITE_BARRIER(sc);
2719 }
2720 
2721 Static void
ar5008_enable_ofdm_weak_signal(struct athn_softc * sc)2722 ar5008_enable_ofdm_weak_signal(struct athn_softc *sc)
2723 {
2724 	uint32_t reg;
2725 
2726 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
2727 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
2728 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
2729 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
2730 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
2731 
2732 	reg = AR_READ(sc, AR_PHY_SFCORR);
2733 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
2734 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
2735 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
2736 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
2737 
2738 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
2739 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
2740 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
2741 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
2742 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
2743 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
2744 
2745 	AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
2746 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
2747 	AR_WRITE_BARRIER(sc);
2748 }
2749 
2750 Static void
ar5008_disable_ofdm_weak_signal(struct athn_softc * sc)2751 ar5008_disable_ofdm_weak_signal(struct athn_softc *sc)
2752 {
2753 	uint32_t reg;
2754 
2755 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
2756 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
2757 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
2758 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
2759 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
2760 
2761 	reg = AR_READ(sc, AR_PHY_SFCORR);
2762 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
2763 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
2764 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
2765 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
2766 
2767 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
2768 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
2769 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
2770 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
2771 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
2772 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
2773 
2774 	AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
2775 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
2776 	AR_WRITE_BARRIER(sc);
2777 }
2778 
2779 Static void
ar5008_set_cck_weak_signal(struct athn_softc * sc,int high)2780 ar5008_set_cck_weak_signal(struct athn_softc *sc, int high)
2781 {
2782 	uint32_t reg;
2783 
2784 	reg = AR_READ(sc, AR_PHY_CCK_DETECT);
2785 	reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
2786 	AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
2787 	AR_WRITE_BARRIER(sc);
2788 }
2789 
2790 Static void
ar5008_set_firstep_level(struct athn_softc * sc,int level)2791 ar5008_set_firstep_level(struct athn_softc *sc, int level)
2792 {
2793 	uint32_t reg;
2794 
2795 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
2796 	reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
2797 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
2798 	AR_WRITE_BARRIER(sc);
2799 }
2800 
2801 Static void
ar5008_set_spur_immunity_level(struct athn_softc * sc,int level)2802 ar5008_set_spur_immunity_level(struct athn_softc *sc, int level)
2803 {
2804 	uint32_t reg;
2805 
2806 	reg = AR_READ(sc, AR_PHY_TIMING5);
2807 	reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
2808 	AR_WRITE(sc, AR_PHY_TIMING5, reg);
2809 	AR_WRITE_BARRIER(sc);
2810 }
2811