xref: /netbsd/sys/dev/ic/spdmem.c (revision 6550d01e)
1 /* $NetBSD: spdmem.c,v 1.2 2010/06/29 04:42:30 pgoyette Exp $ */
2 
3 /*
4  * Copyright (c) 2007 Nicolas Joly
5  * Copyright (c) 2007 Paul Goyette
6  * Copyright (c) 2007 Tobias Nygren
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Serial Presence Detect (SPD) memory identification
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.2 2010/06/29 04:42:30 pgoyette Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/device.h>
42 #include <sys/endian.h>
43 #include <sys/sysctl.h>
44 #include <machine/bswap.h>
45 
46 #include <dev/i2c/i2cvar.h>
47 #include <dev/ic/spdmemreg.h>
48 #include <dev/ic/spdmemvar.h>
49 
50 SYSCTL_SETUP_PROTO(sysctl_spdmem_setup);
51 
52 /* Routines for decoding spd data */
53 static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
54 static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
55 static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
56 	int);
57 static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
58 static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
59 static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
60 static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
61 
62 static void decode_size_speed(const struct sysctlnode *, int, int, int, int,
63 			      bool, const char *, int);
64 static void decode_voltage_refresh(device_t, struct spdmem *);
65 
66 #define IS_RAMBUS_TYPE (s->sm_len < 4)
67 
68 static const char* spdmem_basic_types[] = {
69 	"unknown",
70 	"FPM",
71 	"EDO",
72 	"Pipelined Nibble",
73 	"SDRAM",
74 	"ROM",
75 	"DDR SGRAM",
76 	"DDR SDRAM",
77 	"DDR2 SDRAM",
78 	"DDR2 SDRAM FB",
79 	"DDR2 SDRAM FB Probe",
80 	"DDR3 SDRAM"
81 };
82 
83 static const char* spdmem_superset_types[] = {
84 	"unknown",
85 	"ESDRAM",
86 	"DDR ESDRAM",
87 	"PEM EDO",
88 	"PEM SDRAM"
89 };
90 
91 static const char* spdmem_voltage_types[] = {
92 	"TTL (5V tolerant)",
93 	"LvTTL (not 5V tolerant)",
94 	"HSTL 1.5V",
95 	"SSTL 3.3V",
96 	"SSTL 2.5V",
97 	"SSTL 1.8V"
98 };
99 
100 static const char* spdmem_refresh_types[] = {
101 	"15.625us",
102 	"3.9us",
103 	"7.8us",
104 	"31.3us",
105 	"62.5us",
106 	"125us"
107 };
108 
109 static const char* spdmem_parity_types[] = {
110 	"no parity or ECC",
111 	"data parity",
112 	"data ECC",
113 	"data parity and ECC",
114 	"cmd/addr parity",
115 	"cmd/addr/data parity",
116 	"cmd/addr parity, data ECC",
117 	"cmd/addr/data parity, data ECC"
118 };
119 
120 /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
121 static const uint16_t spdmem_cycle_frac[] = {
122 	0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
123 	250, 333, 667, 750, 999, 999
124 };
125 
126 /* Format string for timing info */
127 static const char* latency="tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n";
128 
129 /* sysctl stuff */
130 static int hw_node = CTL_EOL;
131 
132 /* CRC functions used for certain memory types */
133 
134 static uint16_t spdcrc16 (struct spdmem_softc *sc, int count)
135 {
136 	uint16_t crc;
137 	int i, j;
138 	uint8_t val;
139 	crc = 0;
140 	for (j = 0; j <= count; j++) {
141 		val = (sc->sc_read)(sc, j);
142 		crc = crc ^ val << 8;
143 		for (i = 0; i < 8; ++i)
144 			if (crc & 0x8000)
145 				crc = crc << 1 ^ 0x1021;
146 			else
147 				crc = crc << 1;
148 	}
149 	return (crc & 0xFFFF);
150 }
151 
152 int
153 spdmem_common_probe(struct spdmem_softc *sc)
154 {
155 	int cksum = 0;
156 	uint8_t i, val, spd_type;
157 	int spd_len, spd_crc_cover;
158 	uint16_t crc_calc, crc_spd;
159 
160 	spd_type = (sc->sc_read)(sc, 2);
161 
162 	/* For older memory types, validate the checksum over 1st 63 bytes */
163 	if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
164 		for (i = 0; i < 63; i++)
165 			cksum += (sc->sc_read)(sc, i);
166 
167 		val = (sc->sc_read)(sc, 63);
168 
169 		if (cksum == 0 || (cksum & 0xff) != val) {
170 			aprint_debug("spd checksum failed, calc = 0x%02x, "
171 				     "spd = 0x%02x\n", cksum, val);
172 			return 0;
173 		} else
174 			return 1;
175 	}
176 
177 	/* For DDR3 and FBDIMM, verify the CRC */
178 	else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
179 		spd_len = (sc->sc_read)(sc, 0);
180 		if (spd_len & SPDMEM_SPDCRC_116)
181 			spd_crc_cover = 116;
182 		else
183 			spd_crc_cover = 125;
184 		switch (spd_len & SPDMEM_SPDLEN_MASK) {
185 		case SPDMEM_SPDLEN_128:
186 			spd_len = 128;
187 			break;
188 		case SPDMEM_SPDLEN_176:
189 			spd_len = 176;
190 			break;
191 		case SPDMEM_SPDLEN_256:
192 			spd_len = 256;
193 			break;
194 		default:
195 			return 0;
196 		}
197 		if (spd_crc_cover > spd_len)
198 			return 0;
199 		crc_calc = spdcrc16(sc, spd_crc_cover);
200 		crc_spd = (sc->sc_read)(sc, 127) << 8;
201 		crc_spd |= (sc->sc_read)(sc, 126);
202 		if (crc_calc != crc_spd) {
203 			aprint_debug("crc16 failed, covers %d bytes, "
204 				     "calc = 0x%04x, spd = 0x%04x\n",
205 				     spd_crc_cover, crc_calc, crc_spd);
206 			return 0;
207 		}
208 		return 1;
209 	}
210 
211 	/* For unrecognized memory types, don't match at all */
212 	return 0;
213 }
214 
215 void
216 spdmem_common_attach(struct spdmem_softc *sc, device_t self)
217 {
218 	struct spdmem *s = &(sc->sc_spd_data);
219 	const char *type;
220 	const char *rambus_rev = "Reserved";
221 	int dimm_size;
222 	int i;
223 	unsigned int spd_len, spd_size;
224 	const struct sysctlnode *node = NULL;
225 
226 	/*
227 	 * FBDIMM and DDR3 (and probably all newer) have a different
228 	 * encoding of the SPD EEPROM used/total sizes
229 	 */
230 	s->sm_len = (sc->sc_read)(sc, 0);
231 	s->sm_size = (sc->sc_read)(sc, 1);
232 	s->sm_type = (sc->sc_read)(sc, 2);
233 
234 	if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
235 		spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
236 		switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
237 		case SPDMEM_SPDLEN_128:
238 			spd_len = 128;
239 			break;
240 		case SPDMEM_SPDLEN_176:
241 			spd_len = 176;
242 			break;
243 		case SPDMEM_SPDLEN_256:
244 			spd_len = 256;
245 			break;
246 		default:
247 			spd_len = 64;
248 			break;
249 		}
250 	} else {
251 		spd_size = 1 << s->sm_size;
252 		spd_len = s->sm_len;
253 		if (spd_len < 64)
254 			spd_len = 64;
255 	}
256 	if (spd_len > spd_size)
257 		spd_len = spd_size;
258 	if (spd_len > sizeof(struct spdmem))
259 		spd_len = sizeof(struct spdmem);
260 	for (i = 3; i < spd_len; i++)
261 		((uint8_t *)s)[i] = (sc->sc_read)(sc, i);
262 
263 #ifdef DEBUG
264 	for (i = 0; i < spd_len;  i += 16) {
265 		int j, k;
266 		aprint_debug("\n");
267 		aprint_debug_dev(self, "0x%02x:", i);
268 		k = (spd_len > i + 16) ? spd_len : i + 16;
269 		for (j = i; j < k; j++)
270 			aprint_debug(" %02x", ((uint8_t *)s)[j]);
271 	}
272 	aprint_debug("\n");
273 	aprint_debug_dev(self, "");
274 #endif
275 
276 	/*
277 	 * Setup our sysctl subtree, hw.spdmemN
278 	 */
279 	if (hw_node != CTL_EOL)
280 		sysctl_createv(NULL, 0, NULL, &node,
281 		    0, CTLTYPE_NODE,
282 		    device_xname(self), NULL, NULL, 0, NULL, 0,
283 		    CTL_HW, CTL_CREATE, CTL_EOL);
284 	if (node != NULL && spd_len != 0)
285                 sysctl_createv(NULL, 0, NULL, NULL,
286                     0,
287                     CTLTYPE_STRUCT, "spd_data",
288 		    SYSCTL_DESCR("raw spd data"), NULL,
289                     0, s, spd_len,
290                     CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
291 
292 	/*
293 	 * Decode and print key SPD contents
294 	 */
295 	if (IS_RAMBUS_TYPE) {
296 		if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
297 			type = "Rambus";
298 		else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
299 			type = "Direct Rambus";
300 		else
301 			type = "Rambus (unknown)";
302 
303 		switch (s->sm_len) {
304 		case 0:
305 			rambus_rev = "Invalid";
306 			break;
307 		case 1:
308 			rambus_rev = "0.7";
309 			break;
310 		case 2:
311 			rambus_rev = "1.0";
312 			break;
313 		default:
314 			rambus_rev = "Reserved";
315 			break;
316 		}
317 	} else {
318 		if (s->sm_type < __arraycount(spdmem_basic_types))
319 			type = spdmem_basic_types[s->sm_type];
320 		else
321 			type = "unknown memory type";
322 
323 		if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
324 		    s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
325 			type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
326 		if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
327 		    s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
328 			type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
329 		if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
330 		    s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
331 			type =
332 			    spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
333 		if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
334 		    s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
335 			type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
336 		}
337 	}
338 
339 	aprint_naive("\n");
340 	aprint_normal("\n");
341 	aprint_normal_dev(self, "%s", type);
342 	strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
343 	if (node != NULL)
344 		sysctl_createv(NULL, 0, NULL, NULL,
345 		    0,
346 		    CTLTYPE_STRING, "mem_type",
347 		    SYSCTL_DESCR("memory module type"), NULL,
348 		    0, sc->sc_type, 0,
349 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
350 
351 	if (IS_RAMBUS_TYPE) {
352 		aprint_normal(", SPD Revision %s", rambus_rev);
353 		dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
354 		if (dimm_size >= 1024)
355 			aprint_normal(", %dGB\n", dimm_size / 1024);
356 		else
357 			aprint_normal(", %dMB\n", dimm_size);
358 
359 		/* No further decode for RAMBUS memory */
360 		return;
361 	}
362 	switch (s->sm_type) {
363 	case SPDMEM_MEMTYPE_EDO:
364 	case SPDMEM_MEMTYPE_FPM:
365 		decode_edofpm(node, self, s);
366 		break;
367 	case SPDMEM_MEMTYPE_ROM:
368 		decode_rom(node, self, s);
369 		break;
370 	case SPDMEM_MEMTYPE_SDRAM:
371 		decode_sdram(node, self, s, spd_len);
372 		break;
373 	case SPDMEM_MEMTYPE_DDRSDRAM:
374 		decode_ddr(node, self, s);
375 		break;
376 	case SPDMEM_MEMTYPE_DDR2SDRAM:
377 		decode_ddr2(node, self, s);
378 		break;
379 	case SPDMEM_MEMTYPE_DDR3SDRAM:
380 		decode_ddr3(node, self, s);
381 		break;
382 	case SPDMEM_MEMTYPE_FBDIMM:
383 	case SPDMEM_MEMTYPE_FBDIMM_PROBE:
384 		decode_fbdimm(node, self, s);
385 		break;
386 	}
387 }
388 
389 SYSCTL_SETUP(sysctl_spdmem_setup, "sysctl hw.spdmem subtree setup")
390 {
391 	const struct sysctlnode *node;
392 
393 	if (sysctl_createv(clog, 0, NULL, &node,
394 	    CTLFLAG_PERMANENT,
395 	    CTLTYPE_NODE, "hw", NULL,
396 	    NULL, 0, NULL, 0,
397 	    CTL_HW, CTL_EOL) != 0)
398 		return;
399 
400 	hw_node = node->sysctl_num;
401 }
402 
403 static void
404 decode_size_speed(const struct sysctlnode *node, int dimm_size, int cycle_time,
405 		  int d_clk, int bits, bool round, const char *ddr_type_string,
406 		  int speed)
407 {
408 	int p_clk;
409 
410 	if (dimm_size < 1024)
411 		aprint_normal("%dMB", dimm_size);
412 	else
413 		aprint_normal("%dGB", dimm_size / 1024);
414 	if (node != NULL)
415 		sysctl_createv(NULL, 0, NULL, NULL,
416 		    CTLFLAG_IMMEDIATE,
417 		    CTLTYPE_INT, "size",
418 		    SYSCTL_DESCR("module size in MB"), NULL,
419 		    dimm_size, NULL, 0,
420 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
421 
422 	if (cycle_time == 0) {
423 		aprint_normal("\n");
424 		return;
425 	}
426 
427 	/*
428 	 * Calculate p_clk first, since for DDR3 we need maximum significance.
429 	 * DDR3 rating is not rounded to a multiple of 100.  This results in
430 	 * cycle_time of 1.5ns displayed as PC3-10666.
431 	 *
432 	 * For SDRAM, the speed is provided by the caller so we use it.
433 	 */
434 	d_clk *= 1000 * 1000;
435 	if (speed)
436 		p_clk = speed;
437 	else
438 		p_clk = (d_clk * bits) / 8 / cycle_time;
439 	d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
440 	if (round) {
441 		if ((p_clk % 100) >= 50)
442 			p_clk += 50;
443 		p_clk -= p_clk % 100;
444 	}
445 	aprint_normal(", %dMHz (%s-%d)\n",
446 		      d_clk, ddr_type_string, p_clk);
447 	if (node != NULL)
448 		sysctl_createv(NULL, 0, NULL, NULL,
449 			       CTLFLAG_IMMEDIATE,
450 			       CTLTYPE_INT, "speed",
451 			       SYSCTL_DESCR("memory speed in MHz"),
452 			       NULL, d_clk, NULL, 0,
453 			       CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
454 }
455 
456 static void
457 decode_voltage_refresh(device_t self, struct spdmem *s)
458 {
459 	const char *voltage, *refresh;
460 
461 	if (s->sm_voltage < __arraycount(spdmem_voltage_types))
462 		voltage = spdmem_voltage_types[s->sm_voltage];
463 	else
464 		voltage = "unknown";
465 
466 	if (s->sm_refresh < __arraycount(spdmem_refresh_types))
467 		refresh = spdmem_refresh_types[s->sm_refresh];
468 	else
469 		refresh = "unknown";
470 
471 	aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
472 			voltage, refresh,
473 			s->sm_selfrefresh?" (self-refreshing)":"");
474 }
475 
476 static void
477 decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
478 	aprint_normal("\n");
479 	aprint_verbose_dev(self,
480 	    "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
481 	    s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
482 	    s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
483 }
484 
485 static void
486 decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) {
487 	aprint_normal("\n");
488 	aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
489 	    s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
490 }
491 
492 static void
493 decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
494 	     int spd_len) {
495 	int dimm_size, cycle_time, bits, tAA, i, speed, freq;
496 
497 	aprint_normal("%s, %s, ",
498 		(s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
499 			" (registered)":"",
500 		(s->sm_config < __arraycount(spdmem_parity_types))?
501 			spdmem_parity_types[s->sm_config]:"invalid parity");
502 
503 	dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
504 	dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
505 
506 	cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
507 		     s->sm_sdr.sdr_cycle_tenths * 100;
508 	bits = le16toh(s->sm_sdr.sdr_datawidth);
509 	if (s->sm_config == 1 || s->sm_config == 2)
510 		bits -= 8;
511 
512 	/* Calculate speed here - from OpenBSD */
513 	if (spd_len >= 128)
514 		freq = ((uint8_t *)s)[126];
515 	else
516 		freq = 0;
517 	switch (freq) {
518 		/*
519 		 * Must check cycle time since some PC-133 DIMMs
520 		 * actually report PC-100
521 		 */
522 	    case 100:
523 	    case 133:
524 		if (cycle_time < 8000)
525 			speed = 133;
526 		else
527 			speed = 100;
528 		break;
529 	    case 0x66:		/* Legacy DIMMs use _hex_ 66! */
530 	    default:
531 		speed = 66;
532 	}
533 	decode_size_speed(node, dimm_size, cycle_time, 1, bits, FALSE, "PC",
534 			  speed);
535 
536 	aprint_verbose_dev(self,
537 	    "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
538 	    s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
539 	    s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
540 	    (cycle_time % 1000) / 100);
541 
542 	tAA  = 0;
543 	for (i = 0; i < 8; i++)
544 		if (s->sm_sdr.sdr_tCAS & (1 << i))
545 			tAA = i;
546 	tAA++;
547 	aprint_verbose_dev(self, latency, tAA, s->sm_sdr.sdr_tRCD,
548 	    s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
549 
550 	decode_voltage_refresh(self, s);
551 }
552 
553 static void
554 decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) {
555 	int dimm_size, cycle_time, bits, tAA, i;
556 
557 	aprint_normal("%s, %s, ",
558 		(s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
559 			" (registered)":"",
560 		(s->sm_config < __arraycount(spdmem_parity_types))?
561 			spdmem_parity_types[s->sm_config]:"invalid parity");
562 
563 	dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
564 	dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
565 
566 	cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
567 		  spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
568 	bits = le16toh(s->sm_ddr.ddr_datawidth);
569 	if (s->sm_config == 1 || s->sm_config == 2)
570 		bits -= 8;
571 	decode_size_speed(node, dimm_size, cycle_time, 2, bits, TRUE, "PC", 0);
572 
573 	aprint_verbose_dev(self,
574 	    "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
575 	    s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
576 	    s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
577 	    (cycle_time % 1000 + 50) / 100);
578 
579 	tAA  = 0;
580 	for (i = 2; i < 8; i++)
581 		if (s->sm_ddr.ddr_tCAS & (1 << i))
582 			tAA = i;
583 	tAA /= 2;
584 
585 #define __DDR_ROUND(scale, field)	\
586 		((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
587 
588 	aprint_verbose_dev(self, latency, tAA, __DDR_ROUND(250, ddr_tRCD),
589 		__DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
590 
591 #undef	__DDR_ROUND
592 
593 	decode_voltage_refresh(self, s);
594 }
595 
596 static void
597 decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) {
598 	int dimm_size, cycle_time, bits, tAA, i;
599 
600 	aprint_normal("%s, %s, ",
601 		(s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
602 			" (registered)":"",
603 		(s->sm_config < __arraycount(spdmem_parity_types))?
604 			spdmem_parity_types[s->sm_config]:"invalid parity");
605 
606 	dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
607 	dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
608 		     s->sm_ddr2.ddr2_banks_per_chip;
609 
610 	cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
611 		 spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
612 	bits = s->sm_ddr2.ddr2_datawidth;
613 	if ((s->sm_config & 0x03) != 0)
614 		bits -= 8;
615 	decode_size_speed(node, dimm_size, cycle_time, 2, bits, TRUE, "PC2", 0);
616 
617 	aprint_verbose_dev(self,
618 	    "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
619 	    s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
620 	    s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
621 	    cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
622 
623 	tAA  = 0;
624 	for (i = 2; i < 8; i++)
625 		if (s->sm_ddr2.ddr2_tCAS & (1 << i))
626 			tAA = i;
627 
628 #define __DDR2_ROUND(scale, field)	\
629 		((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
630 
631 	aprint_verbose_dev(self, latency, tAA, __DDR2_ROUND(250, ddr2_tRCD),
632 		__DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
633 
634 #undef	__DDR_ROUND
635 
636 	decode_voltage_refresh(self, s);
637 }
638 
639 static void
640 decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) {
641 	int dimm_size, cycle_time, bits;
642 
643 	if (s->sm_ddr3.ddr3_mod_type ==
644 		SPDMEM_DDR3_TYPE_MINI_RDIMM ||
645 	    s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
646 		aprint_normal(" (registered)");
647 	aprint_normal(", %sECC, %stemp-sensor, ",
648 		(s->sm_ddr3.ddr3_hasECC)?"":"no ",
649 		(s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
650 
651 	/*
652 	 * DDR3 size specification is quite different from others
653 	 *
654 	 * Module capacity is defined as
655 	 *	Chip_Capacity_in_bits / 8bits-per-byte *
656 	 *	external_bus_width / internal_bus_width
657 	 * We further divide by 2**20 to get our answer in MB
658 	 */
659 	dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
660 		    (s->sm_ddr3.ddr3_datawidth + 3) -
661 		    (s->sm_ddr3.ddr3_chipwidth + 2);
662 	dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
663 
664 	cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
665 			    (s->sm_ddr3.ddr3_mtb_divisor / 2)) /
666 		     s->sm_ddr3.ddr3_mtb_divisor;
667 	cycle_time *= s->sm_ddr3.ddr3_tCKmin;
668 	bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
669 	decode_size_speed(node, dimm_size, cycle_time, 2, bits, FALSE, "PC3", 0);
670 
671 	aprint_verbose_dev(self,
672 	    "%d rows, %d cols, %d log. banks, %d phys. banks, "
673 	    "%d.%03dns cycle time\n",
674 	    s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
675 	    1 << (s->sm_ddr3.ddr3_logbanks + 3),
676 	    s->sm_ddr3.ddr3_physbanks + 1,
677 	    cycle_time/1000, cycle_time % 1000);
678 
679 #define	__DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
680 
681 	aprint_verbose_dev(self, latency, __DDR3_CYCLES(ddr3_tAAmin),
682 		__DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
683 		(s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
684 		    s->sm_ddr3.ddr3_tCKmin);
685 
686 #undef	__DDR3_CYCLES
687 }
688 
689 static void
690 decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
691 	int dimm_size, cycle_time, bits;
692 
693 	/*
694 	 * FB-DIMM module size calculation is very much like DDR3
695 	 */
696 	dimm_size = s->sm_fbd.fbdimm_rows + 12 +
697 		    s->sm_fbd.fbdimm_cols +  9 - 20 - 3;
698 	dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
699 
700 	cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
701 			    (s->sm_fbd.fbdimm_mtb_divisor / 2)) /
702 		     s->sm_fbd.fbdimm_mtb_divisor;
703 	bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
704 	decode_size_speed(node, dimm_size, cycle_time, 2, bits, TRUE, "PC2", 0);
705 
706 	aprint_verbose_dev(self,
707 	    "%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
708 	    s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
709 	    1 << (s->sm_fbd.fbdimm_banks + 2),
710 	    cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
711 
712 #define	__FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
713 
714 	aprint_verbose_dev(self, latency, __FBDIMM_CYCLES(fbdimm_tAAmin),
715 		__FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
716 		(s->sm_fbd.fbdimm_tRAS_msb * 256 +
717 			s->sm_fbd.fbdimm_tRAS_lsb) /
718 		    s->sm_fbd.fbdimm_tCKmin);
719 
720 #undef	__FBDIMM_CYCLES
721 
722 	decode_voltage_refresh(self, s);
723 }
724