xref: /netbsd/sys/dev/pci/voyager/pwmclock.c (revision 04121346)
1 /*	$NetBSD: pwmclock.c,v 1.12 2020/05/29 12:30:41 rin Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Michael Lorenz
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: pwmclock.c,v 1.12 2020/05/29 12:30:41 rin Exp $");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/device.h>
35 #include <sys/cpu.h>
36 #include <sys/timetc.h>
37 #include <sys/sysctl.h>
38 
39 #include <dev/pci/voyagervar.h>
40 #include <dev/ic/sm502reg.h>
41 
42 #include <mips/mips3_clock.h>
43 #include <mips/locore.h>
44 #include <mips/bonito/bonitoreg.h>
45 #include <mips/bonito/bonitovar.h>
46 
47 #include "opt_pwmclock.h"
48 
49 #ifdef PWMCLOCK_DEBUG
50 #define DPRINTF aprint_error
51 #else
52 #define DPRINTF while (0) printf
53 #endif
54 
55 int pwmclock_intr(void *);
56 
57 struct pwmclock_softc {
58 	device_t sc_dev;
59 	bus_space_tag_t sc_memt;
60 	bus_space_handle_t sc_regh;
61 	uint32_t sc_reg, sc_last;
62 	uint32_t sc_scale[8];
63 	uint32_t sc_count;	/* should probably be 64 bit */
64 	int sc_step;
65 	int sc_step_wanted;
66 	void *sc_shutdown_cookie;
67 };
68 
69 static int	pwmclock_match(device_t, cfdata_t, void *);
70 static void	pwmclock_attach(device_t, device_t, void *);
71 
72 CFATTACH_DECL_NEW(pwmclock, sizeof(struct pwmclock_softc),
73     pwmclock_match, pwmclock_attach, NULL, NULL);
74 
75 static void pwmclock_start(void);
76 static u_int get_pwmclock_timecount(struct timecounter *);
77 
78 struct pwmclock_softc *pwmclock;
79 extern void (*initclocks_ptr)(void);
80 
81 /* 0, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1 */
82 static int scale_m[] = {1, 1, 3, 1, 5, 3, 7, 1};
83 static int scale_d[] = {0, 4, 8, 2, 8, 4, 8, 1};
84 
85 #define scale(x, f) (x * scale_d[f] / scale_m[f])
86 
87 void pwmclock_set_speed(struct pwmclock_softc *, int);
88 static int  pwmclock_cpuspeed_temp(SYSCTLFN_ARGS);
89 static int  pwmclock_cpuspeed_cur(SYSCTLFN_ARGS);
90 static int  pwmclock_cpuspeed_available(SYSCTLFN_ARGS);
91 
92 static void pwmclock_shutdown(void *);
93 
94 static struct timecounter pwmclock_timecounter = {
95 	.tc_get_timecount = get_pwmclock_timecount,
96 	.tc_counter_mask = 0xffffffff,
97 	.tc_name = "pwm",
98 	.tc_quality = 100,
99 };
100 
101 static int
pwmclock_match(device_t parent,cfdata_t match,void * aux)102 pwmclock_match(device_t parent, cfdata_t match, void *aux)
103 {
104 	struct voyager_attach_args *vaa = (struct voyager_attach_args *)aux;
105 
106 	if (strcmp(vaa->vaa_name, "pwmclock") == 0) return 100;
107 	return 0;
108 }
109 
110 static uint32_t
pwmclock_wait_edge(struct pwmclock_softc * sc)111 pwmclock_wait_edge(struct pwmclock_softc *sc)
112 {
113 	/* clear interrupt */
114 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
115 	while ((bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1) &
116 	    SM502_PWM_INTR_PENDING) == 0);
117 	return mips3_cp0_count_read();
118 }
119 
120 static void
pwmclock_attach(device_t parent,device_t self,void * aux)121 pwmclock_attach(device_t parent, device_t self, void *aux)
122 {
123 	struct pwmclock_softc *sc = device_private(self);
124 	struct voyager_attach_args *vaa = aux;
125 	const struct sysctlnode *sysctl_node, *me, *freq;
126 	uint32_t reg, last, curr, diff, acc;
127 	int i, clk;
128 
129 	sc->sc_dev = self;
130 	sc->sc_memt = vaa->vaa_tag;
131 	sc->sc_regh = vaa->vaa_regh;
132 
133 	aprint_normal("\n");
134 
135 	/* NULL here gets us the clockframe */
136 	voyager_establish_intr(parent, 22, pwmclock_intr, NULL);
137 	reg = voyager_set_pwm(100, 100); /* 100Hz, 10% duty cycle */
138 	reg |= SM502_PWM_ENABLE | SM502_PWM_ENABLE_INTR |
139 	       SM502_PWM_INTR_PENDING;
140 	sc->sc_reg = reg;
141 	pwmclock = sc;
142 	initclocks_ptr = pwmclock_start;
143 
144 	/*
145 	 * Establish a hook so on shutdown we can set the CPU clock back to
146 	 * full speed. This is necessary because PMON doesn't change the
147 	 * clock scale register on a warm boot, the MIPS clock code gets
148 	 * confused if we're too slow and the loongson-specific bits run
149 	 * too late in the boot process
150 	 */
151 	sc->sc_shutdown_cookie = shutdownhook_establish(pwmclock_shutdown, sc);
152 
153 	/* ok, let's see how far the cycle counter gets between interrupts */
154 	DPRINTF("calibrating CPU timer...\n");
155 	for (clk = 1; clk < 8; clk++) {
156 
157 		REGVAL(LS2F_CHIPCFG0) =
158 		    (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | clk;
159 		bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1,
160 		    sc->sc_reg);
161 		acc = 0;
162 		last = pwmclock_wait_edge(sc);
163 		for (i = 0; i < 16; i++) {
164 			curr = pwmclock_wait_edge(sc);
165 			diff = curr - last;
166 			acc += diff;
167 			last = curr;
168 		}
169 		sc->sc_scale[clk] = (acc >> 4) / 5000;
170 	}
171 #ifdef PWMCLOCK_DEBUG
172 	for (clk = 1; clk < 8; clk++) {
173 		aprint_normal_dev(sc->sc_dev, "%d/8: %d\n", clk + 1,
174 		    sc->sc_scale[clk]);
175 	}
176 #endif
177 	sc->sc_step = 7;
178 	sc->sc_step_wanted = 7;
179 
180 	/* now setup sysctl */
181 	if (sysctl_createv(NULL, 0, NULL,
182 	    &me,
183 	    CTLFLAG_READWRITE, CTLTYPE_NODE, "loongson", NULL, NULL,
184 	    0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL) != 0)
185 		aprint_error_dev(sc->sc_dev,
186 		    "couldn't create 'loongson' node\n");
187 
188 	if (sysctl_createv(NULL, 0, NULL,
189 	    &freq,
190 	    CTLFLAG_READWRITE, CTLTYPE_NODE, "frequency", NULL, NULL, 0, NULL,
191 	    0, CTL_MACHDEP, me->sysctl_num, CTL_CREATE, CTL_EOL) != 0)
192 		aprint_error_dev(sc->sc_dev,
193 		    "couldn't create 'frequency' node\n");
194 
195 	if (sysctl_createv(NULL, 0, NULL,
196 	    &sysctl_node,
197 	    CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
198 	    CTLTYPE_INT, "target", "CPU speed", pwmclock_cpuspeed_temp,
199 	    0, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
200 	    CTL_CREATE, CTL_EOL) == 0) {
201 	} else
202 		aprint_error_dev(sc->sc_dev,
203 		    "couldn't create 'target' node\n");
204 
205 	if (sysctl_createv(NULL, 0, NULL,
206 	    &sysctl_node,
207 	    CTLFLAG_READWRITE,
208 	    CTLTYPE_INT, "current", NULL, pwmclock_cpuspeed_cur,
209 	    1, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
210 	    CTL_CREATE, CTL_EOL) == 0) {
211 	} else
212 		aprint_error_dev(sc->sc_dev,
213 		    "couldn't create 'current' node\n");
214 
215 	if (sysctl_createv(NULL, 0, NULL,
216 	    &sysctl_node,
217 	    CTLFLAG_READWRITE,
218 	    CTLTYPE_STRING, "available", NULL, pwmclock_cpuspeed_available,
219 	    2, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
220 	    CTL_CREATE, CTL_EOL) == 0) {
221 	} else
222 		aprint_error_dev(sc->sc_dev,
223 		    "couldn't create 'available' node\n");
224 }
225 
226 static void
pwmclock_shutdown(void * cookie)227 pwmclock_shutdown(void *cookie)
228 {
229 	struct pwmclock_softc *sc = cookie;
230 
231 	/* just in case the interrupt handler runs again after this */
232 	sc->sc_step_wanted = 7;
233 	/* set the clock to full speed */
234 	REGVAL(LS2F_CHIPCFG0) =
235 	    (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | 7;
236 }
237 
238 void
pwmclock_set_speed(struct pwmclock_softc * sc,int speed)239 pwmclock_set_speed(struct pwmclock_softc *sc, int speed)
240 {
241 
242 	if ((speed < 1) || (speed > 7))
243 		return;
244 	sc->sc_step_wanted = speed;
245 	DPRINTF("%s: %d\n", __func__, speed);
246 }
247 
248 /*
249  * the PWM interrupt handler
250  * we don't have a CPU clock independent, high resolution counter so we're
251  * stuck with a PWM that can't count and a CP0 counter that slows down or
252  * speeds up with the actual CPU speed. In order to still get halfway
253  * accurate time we do the following:
254  * - only change CPU speed in the timer interrupt
255  * - each timer interrupt we measure how many CP0 cycles passed since last
256  *   time, adjust for CPU speed since we can be sure it didn't change, use
257  *   that to update a separate counter
258  * - when reading the time counter we take the number of CP0 ticks since
259  *   the last timer interrupt, scale it to CPU clock, return that plus the
260  *   interrupt updated counter mentioned above to get something close to
261  *   CP0 running at full speed
262  * - when changing CPU speed do it as close to taking the time from CP0 as
263  *   possible to keep the period of time we spend with CP0 running at the
264  *   wrong frequency as short as possible - hopefully short enough to stay
265  *   insignificant compared to other noise since switching speeds isn't
266  *   going to happen all that often
267  */
268 
269 int
pwmclock_intr(void * cookie)270 pwmclock_intr(void *cookie)
271 {
272 	struct clockframe *cf = cookie;
273 	struct pwmclock_softc *sc = pwmclock;
274 	uint32_t reg, now, diff;
275 
276 	/* is it us? */
277 	reg = bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1);
278 	if ((reg & SM502_PWM_INTR_PENDING) == 0)
279 		return 0;
280 
281 	/* yes, it's us, so clear the interrupt */
282 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
283 
284 	/*
285 	 * this looks kinda funny but what we want here is this:
286 	 * - reading the counter and changing the CPU clock should be as
287 	 *   close together as possible in order to remain halfway accurate
288 	 * - we need to use the previous sc_step in order to scale the
289 	 *   interval passed since the last clock interrupt correctly, so
290 	 *   we only change sc_step after doing that
291 	 */
292 	if (sc->sc_step_wanted != sc->sc_step) {
293 
294 		REGVAL(LS2F_CHIPCFG0) =
295 		    (REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) |
296 		     sc->sc_step_wanted;
297 	}
298 
299 	now = mips3_cp0_count_read();
300 	diff = now - sc->sc_last;
301 	sc->sc_count += scale(diff, sc->sc_step);
302 	sc->sc_last = now;
303 	if (sc->sc_step_wanted != sc->sc_step) {
304 		sc->sc_step = sc->sc_step_wanted;
305 	}
306 
307 	hardclock(cf);
308 
309 	return 1;
310 }
311 
312 static void
pwmclock_start(void)313 pwmclock_start(void)
314 {
315 	struct pwmclock_softc *sc = pwmclock;
316 	sc->sc_count = 0;
317 	sc->sc_last = mips3_cp0_count_read();
318 	pwmclock_timecounter.tc_frequency = curcpu()->ci_cpu_freq / 2;
319 	tc_init(&pwmclock_timecounter);
320 	bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
321 }
322 
323 static u_int
get_pwmclock_timecount(struct timecounter * tc)324 get_pwmclock_timecount(struct timecounter *tc)
325 {
326 	struct pwmclock_softc *sc = pwmclock;
327 	uint32_t now, diff;
328 
329 	now = mips3_cp0_count_read();
330 	diff = now - sc->sc_last;
331 	return sc->sc_count + scale(diff, sc->sc_step);
332 }
333 
334 static int
pwmclock_cpuspeed_temp(SYSCTLFN_ARGS)335 pwmclock_cpuspeed_temp(SYSCTLFN_ARGS)
336 {
337 	struct sysctlnode node = *rnode;
338 	struct pwmclock_softc *sc = node.sysctl_data;
339 	int mhz, i;
340 
341 	mhz = sc->sc_scale[sc->sc_step_wanted];
342 
343 	node.sysctl_data = &mhz;
344 	if (sysctl_lookup(SYSCTLFN_CALL(&node)) == 0) {
345 		int new_reg;
346 
347 		new_reg = *(int *)node.sysctl_data;
348 		i = 1;
349 		while ((i < 8) && (sc->sc_scale[i] != new_reg))
350 			i++;
351 		if (i > 7)
352 			return EINVAL;
353 		pwmclock_set_speed(sc, i);
354 		return 0;
355 	}
356 	return EINVAL;
357 }
358 
359 static int
pwmclock_cpuspeed_cur(SYSCTLFN_ARGS)360 pwmclock_cpuspeed_cur(SYSCTLFN_ARGS)
361 {
362 	struct sysctlnode node = *rnode;
363 	struct pwmclock_softc *sc = node.sysctl_data;
364 	int mhz;
365 
366 	mhz = sc->sc_scale[sc->sc_step];
367 	node.sysctl_data = &mhz;
368 	return sysctl_lookup(SYSCTLFN_CALL(&node));
369 }
370 
371 static int
pwmclock_cpuspeed_available(SYSCTLFN_ARGS)372 pwmclock_cpuspeed_available(SYSCTLFN_ARGS)
373 {
374 	struct sysctlnode node = *rnode;
375 	struct pwmclock_softc *sc = node.sysctl_data;
376 	char buf[128];
377 
378 	snprintf(buf, 128, "%d %d %d %d %d %d %d", sc->sc_scale[1],
379 	    sc->sc_scale[2], sc->sc_scale[3], sc->sc_scale[4],
380 	    sc->sc_scale[5], sc->sc_scale[6], sc->sc_scale[7]);
381 	node.sysctl_data = buf;
382 	return(sysctl_lookup(SYSCTLFN_CALL(&node)));
383 }
384 
385 SYSCTL_SETUP(sysctl_ams_setup, "sysctl obio subtree setup")
386 {
387 
388 	sysctl_createv(NULL, 0, NULL, NULL,
389 		       CTLFLAG_PERMANENT,
390 		       CTLTYPE_NODE, "machdep", NULL,
391 		       NULL, 0, NULL, 0,
392 		       CTL_MACHDEP, CTL_EOL);
393 }
394