1 /*	$NetBSD: rf_parityloggingdags.c,v 1.23 2019/10/10 03:43:59 christos Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30   DAGs specific to parity logging are created here
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.23 2019/10/10 03:43:59 christos Exp $");
35 
36 #ifdef _KERNEL_OPT
37 #include "opt_raid_diagnostic.h"
38 #endif
39 
40 #include "rf_archs.h"
41 
42 #if RF_INCLUDE_PARITYLOGGING > 0
43 
44 #include <dev/raidframe/raidframevar.h>
45 
46 #include "rf_raid.h"
47 #include "rf_dag.h"
48 #include "rf_dagutils.h"
49 #include "rf_dagfuncs.h"
50 #include "rf_debugMem.h"
51 #include "rf_paritylog.h"
52 #include "rf_general.h"
53 
54 #include "rf_parityloggingdags.h"
55 
56 /******************************************************************************
57  *
58  * creates a DAG to perform a large-write operation:
59  *
60  *         / Rod \     / Wnd \
61  * H -- NIL- Rod - NIL - Wnd ------ NIL - T
62  *         \ Rod /     \ Xor - Lpo /
63  *
64  * The writes are not done until the reads complete because if they were done in
65  * parallel, a failure on one of the reads could leave the parity in an inconsistent
66  * state, so that the retry with a new DAG would produce erroneous parity.
67  *
68  * Note:  this DAG has the nasty property that none of the buffers allocated for reading
69  *        old data can be freed until the XOR node fires.  Need to fix this.
70  *
71  * The last two arguments are the number of faults tolerated, and function for the
72  * redundancy calculation. The undo for the redundancy calc is assumed to be null
73  *
74  *****************************************************************************/
75 
76 void
rf_CommonCreateParityLoggingLargeWriteDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList,int nfaults,void (* redFunc)(RF_DagNode_t *))77 rf_CommonCreateParityLoggingLargeWriteDAG(
78     RF_Raid_t * raidPtr,
79     RF_AccessStripeMap_t * asmap,
80     RF_DagHeader_t * dag_h,
81     void *bp,
82     RF_RaidAccessFlags_t flags,
83     RF_AllocListElem_t * allocList,
84     int nfaults,
85     void (*redFunc) (RF_DagNode_t *))
86 {
87 	RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
88 	       *lpoNode, *blockNode, *unblockNode, *termNode;
89 	int     nWndNodes, nRodNodes, i;
90 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
91 	RF_AccessStripeMapHeader_t *new_asm_h[2];
92 	int     nodeNum, asmNum;
93 	RF_ReconUnitNum_t which_ru;
94 	char   *sosBuffer, *eosBuffer;
95 	RF_PhysDiskAddr_t *pda;
96 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
97 
98 	if (rf_dagDebug)
99 		printf("[Creating parity-logging large-write DAG]\n");
100 	RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
101 	dag_h->creator = "ParityLoggingLargeWriteDAG";
102 
103 	/* alloc the Wnd nodes, the xor node, and the Lpo node */
104 	nWndNodes = asmap->numStripeUnitsAccessed;
105 	nodes = RF_MallocAndAdd((nWndNodes + 6) * sizeof(*nodes), allocList);
106 	i = 0;
107 	wndNodes = &nodes[i];
108 	i += nWndNodes;
109 	xorNode = &nodes[i];
110 	i += 1;
111 	lpoNode = &nodes[i];
112 	i += 1;
113 	blockNode = &nodes[i];
114 	i += 1;
115 	syncNode = &nodes[i];
116 	i += 1;
117 	unblockNode = &nodes[i];
118 	i += 1;
119 	termNode = &nodes[i];
120 	i += 1;
121 
122 	dag_h->numCommitNodes = nWndNodes + 1;
123 	dag_h->numCommits = 0;
124 	dag_h->numSuccedents = 1;
125 
126 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
127 	if (nRodNodes > 0)
128 		rodNodes = RF_MallocAndAdd(nRodNodes * sizeof(*rodNodes),
129 		      allocList);
130 
131 	/* begin node initialization */
132 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
133 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
134 	rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
135 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
136 
137 	/* initialize the Rod nodes */
138 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
139 		if (new_asm_h[asmNum]) {
140 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
141 			while (pda) {
142 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
143 				rodNodes[nodeNum].params[0].p = pda;
144 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
145 				rodNodes[nodeNum].params[2].v = parityStripeID;
146 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
147 				nodeNum++;
148 				pda = pda->next;
149 			}
150 		}
151 	}
152 	RF_ASSERT(nodeNum == nRodNodes);
153 
154 	/* initialize the wnd nodes */
155 	pda = asmap->physInfo;
156 	for (i = 0; i < nWndNodes; i++) {
157 		rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
158 		RF_ASSERT(pda != NULL);
159 		wndNodes[i].params[0].p = pda;
160 		wndNodes[i].params[1].p = pda->bufPtr;
161 		wndNodes[i].params[2].v = parityStripeID;
162 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
163 		pda = pda->next;
164 	}
165 
166 	/* initialize the redundancy node */
167 	rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
168 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
169 	for (i = 0; i < nWndNodes; i++) {
170 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
171 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
172 	}
173 	for (i = 0; i < nRodNodes; i++) {
174 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
175 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
176 	}
177 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
178 									 * at RAID information */
179 
180 	/* look for an Rod node that reads a complete SU.  If none, alloc a
181 	 * buffer to receive the parity info. Note that we can't use a new
182 	 * data buffer because it will not have gotten written when the xor
183 	 * occurs. */
184 	for (i = 0; i < nRodNodes; i++)
185 		if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
186 			break;
187 	if (i == nRodNodes) {
188 		xorNode->results[0] = RF_MallocAndAdd(rf_RaidAddressToByte(
189 		    raidPtr, raidPtr->Layout.sectorsPerStripeUnit), allocList);
190 	} else {
191 		xorNode->results[0] = rodNodes[i].params[1].p;
192 	}
193 
194 	/* initialize the Lpo node */
195 	rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
196 
197 	lpoNode->params[0].p = asmap->parityInfo;
198 	lpoNode->params[1].p = xorNode->results[0];
199 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
200 							 * describe entire
201 							 * parity unit */
202 
203 	/* connect nodes to form graph */
204 
205 	/* connect dag header to block node */
206 	RF_ASSERT(dag_h->numSuccedents == 1);
207 	RF_ASSERT(blockNode->numAntecedents == 0);
208 	dag_h->succedents[0] = blockNode;
209 
210 	/* connect the block node to the Rod nodes */
211 	RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
212 	for (i = 0; i < nRodNodes; i++) {
213 		RF_ASSERT(rodNodes[i].numAntecedents == 1);
214 		blockNode->succedents[i] = &rodNodes[i];
215 		rodNodes[i].antecedents[0] = blockNode;
216 		rodNodes[i].antType[0] = rf_control;
217 	}
218 
219 	/* connect the block node to the sync node */
220 	/* necessary if nRodNodes == 0 */
221 	RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
222 	blockNode->succedents[nRodNodes] = syncNode;
223 	syncNode->antecedents[0] = blockNode;
224 	syncNode->antType[0] = rf_control;
225 
226 	/* connect the Rod nodes to the syncNode */
227 	for (i = 0; i < nRodNodes; i++) {
228 		rodNodes[i].succedents[0] = syncNode;
229 		syncNode->antecedents[1 + i] = &rodNodes[i];
230 		syncNode->antType[1 + i] = rf_control;
231 	}
232 
233 	/* connect the sync node to the xor node */
234 	RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
235 	RF_ASSERT(xorNode->numAntecedents == 1);
236 	syncNode->succedents[0] = xorNode;
237 	xorNode->antecedents[0] = syncNode;
238 	xorNode->antType[0] = rf_trueData;	/* carry forward from sync */
239 
240 	/* connect the sync node to the Wnd nodes */
241 	for (i = 0; i < nWndNodes; i++) {
242 		RF_ASSERT(wndNodes->numAntecedents == 1);
243 		syncNode->succedents[1 + i] = &wndNodes[i];
244 		wndNodes[i].antecedents[0] = syncNode;
245 		wndNodes[i].antType[0] = rf_control;
246 	}
247 
248 	/* connect the xor node to the Lpo node */
249 	RF_ASSERT(xorNode->numSuccedents == 1);
250 	RF_ASSERT(lpoNode->numAntecedents == 1);
251 	xorNode->succedents[0] = lpoNode;
252 	lpoNode->antecedents[0] = xorNode;
253 	lpoNode->antType[0] = rf_trueData;
254 
255 	/* connect the Wnd nodes to the unblock node */
256 	RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
257 	for (i = 0; i < nWndNodes; i++) {
258 		RF_ASSERT(wndNodes->numSuccedents == 1);
259 		wndNodes[i].succedents[0] = unblockNode;
260 		unblockNode->antecedents[i] = &wndNodes[i];
261 		unblockNode->antType[i] = rf_control;
262 	}
263 
264 	/* connect the Lpo node to the unblock node */
265 	RF_ASSERT(lpoNode->numSuccedents == 1);
266 	lpoNode->succedents[0] = unblockNode;
267 	unblockNode->antecedents[nWndNodes] = lpoNode;
268 	unblockNode->antType[nWndNodes] = rf_control;
269 
270 	/* connect unblock node to terminator */
271 	RF_ASSERT(unblockNode->numSuccedents == 1);
272 	RF_ASSERT(termNode->numAntecedents == 1);
273 	RF_ASSERT(termNode->numSuccedents == 0);
274 	unblockNode->succedents[0] = termNode;
275 	termNode->antecedents[0] = unblockNode;
276 	termNode->antType[0] = rf_control;
277 }
278 
279 
280 
281 
282 /******************************************************************************
283  *
284  * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
285  *
286  *                                     Header
287  *                                       |
288  *                                     Block
289  *                                 / |  ... \   \
290  *                                /  |       \   \
291  *                             Rod  Rod      Rod  Rop
292  *                             | \ /| \    / |  \/ |
293  *                             |    |        |  /\ |
294  *                             Wnd  Wnd      Wnd   X
295  *                              |    \       /     |
296  *                              |     \     /      |
297  *                               \     \   /      Lpo
298  *                                \     \ /       /
299  *                                 +-> Unblock <-+
300  *                                       |
301  *                                       T
302  *
303  *
304  * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
305  * When the access spans a stripe unit boundary and is less than one SU in size, there will
306  * be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
307  * The second output from each Rod node goes to the X node.  In the double-XOR
308  * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
309  * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
310  *
311  * The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
312  *
313  * Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
314  *        it also has the nasty property that none of the buffers allocated for reading
315  *        old data & parity can be freed until the XOR node fires.  Need to fix this.
316  *
317  * A null qfuncs indicates single fault tolerant
318  *****************************************************************************/
319 
320 void
rf_CommonCreateParityLoggingSmallWriteDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList,const RF_RedFuncs_t * pfuncs,const RF_RedFuncs_t * qfuncs)321 rf_CommonCreateParityLoggingSmallWriteDAG(
322     RF_Raid_t * raidPtr,
323     RF_AccessStripeMap_t * asmap,
324     RF_DagHeader_t * dag_h,
325     void *bp,
326     RF_RaidAccessFlags_t flags,
327     RF_AllocListElem_t * allocList,
328     const RF_RedFuncs_t * pfuncs,
329     const RF_RedFuncs_t * qfuncs)
330 {
331 	RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
332 	RF_DagNode_t *readDataNodes, *readParityNodes;
333 	RF_DagNode_t *writeDataNodes, *lpuNodes;
334 	RF_DagNode_t *termNode;
335 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
336 	int     numDataNodes = asmap->numStripeUnitsAccessed;
337 	int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
338 	int     i, j, nNodes, totalNumNodes;
339 	RF_ReconUnitNum_t which_ru;
340 	void    (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
341 	const char   *name;
342 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
343 	long    nfaults __unused = qfuncs ? 2 : 1;
344 
345 	if (rf_dagDebug)
346 		printf("[Creating parity-logging small-write DAG]\n");
347 	RF_ASSERT(numDataNodes > 0);
348 	RF_ASSERT(nfaults == 1);
349 	dag_h->creator = "ParityLoggingSmallWriteDAG";
350 
351 	/* DAG creation occurs in three steps: 1. count the number of nodes in
352 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
353 	 * nodes */
354 
355 	/* Step 1. compute number of nodes in the graph */
356 
357 	/* number of nodes: a read and write for each data unit a redundancy
358 	 * computation node for each parity node a read and Lpu for each
359 	 * parity unit a block and unblock node (2) a terminator node if
360 	 * atomic RMW an unlock node for each data unit, redundancy unit */
361 	totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
362 
363 	nNodes = numDataNodes + numParityNodes;
364 
365 	dag_h->numCommitNodes = numDataNodes + numParityNodes;
366 	dag_h->numCommits = 0;
367 	dag_h->numSuccedents = 1;
368 
369 	/* Step 2. create the nodes */
370 	nodes = RF_MallocAndAdd(totalNumNodes * sizeof(*nodes), allocList);
371 	i = 0;
372 	blockNode = &nodes[i];
373 	i += 1;
374 	unblockNode = &nodes[i];
375 	i += 1;
376 	readDataNodes = &nodes[i];
377 	i += numDataNodes;
378 	readParityNodes = &nodes[i];
379 	i += numParityNodes;
380 	writeDataNodes = &nodes[i];
381 	i += numDataNodes;
382 	lpuNodes = &nodes[i];
383 	i += numParityNodes;
384 	xorNodes = &nodes[i];
385 	i += numParityNodes;
386 	termNode = &nodes[i];
387 	i += 1;
388 
389 	RF_ASSERT(i == totalNumNodes);
390 
391 	/* Step 3. initialize the nodes */
392 	/* initialize block node (Nil) */
393 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
394 
395 	/* initialize unblock node (Nil) */
396 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
397 
398 	/* initialize terminatory node (Trm) */
399 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
400 
401 	/* initialize nodes which read old data (Rod) */
402 	for (i = 0; i < numDataNodes; i++) {
403 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
404 		RF_ASSERT(pda != NULL);
405 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
406 							 * desc */
407 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);	/* buffer to hold old data */
408 		readDataNodes[i].params[2].v = parityStripeID;
409 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
410 		pda = pda->next;
411 		readDataNodes[i].propList[0] = NULL;
412 		readDataNodes[i].propList[1] = NULL;
413 	}
414 
415 	/* initialize nodes which read old parity (Rop) */
416 	pda = asmap->parityInfo;
417 	i = 0;
418 	for (i = 0; i < numParityNodes; i++) {
419 		RF_ASSERT(pda != NULL);
420 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
421 		readParityNodes[i].params[0].p = pda;
422 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);	/* buffer to hold old parity */
423 		readParityNodes[i].params[2].v = parityStripeID;
424 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
425 		readParityNodes[i].propList[0] = NULL;
426 		pda = pda->next;
427 	}
428 
429 	/* initialize nodes which write new data (Wnd) */
430 	pda = asmap->physInfo;
431 	for (i = 0; i < numDataNodes; i++) {
432 		RF_ASSERT(pda != NULL);
433 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
434 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
435 							 * desc */
436 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
437 								 * data to be written */
438 		writeDataNodes[i].params[2].v = parityStripeID;
439 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
440 
441 		pda = pda->next;
442 	}
443 
444 
445 	/* initialize nodes which compute new parity */
446 	/* we use the simple XOR func in the double-XOR case, and when we're
447 	 * accessing only a portion of one stripe unit. the distinction
448 	 * between the two is that the regular XOR func assumes that the
449 	 * targbuf is a full SU in size, and examines the pda associated with
450 	 * the buffer to decide where within the buffer to XOR the data,
451 	 * whereas the simple XOR func just XORs the data into the start of
452 	 * the buffer. */
453 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
454 		func = pfuncs->simple;
455 		undoFunc = rf_NullNodeUndoFunc;
456 		name = pfuncs->SimpleName;
457 	} else {
458 		func = pfuncs->regular;
459 		undoFunc = rf_NullNodeUndoFunc;
460 		name = pfuncs->RegularName;
461 	}
462 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
463 	 * nodes, and raidPtr  */
464 	if (numParityNodes == 2) {	/* double-xor case */
465 		for (i = 0; i < numParityNodes; i++) {
466 			rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
467 																	 * xor */
468 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
469 			xorNodes[i].params[0] = readDataNodes[i].params[0];
470 			xorNodes[i].params[1] = readDataNodes[i].params[1];
471 			xorNodes[i].params[2] = readParityNodes[i].params[0];
472 			xorNodes[i].params[3] = readParityNodes[i].params[1];
473 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
474 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
475 			xorNodes[i].params[6].p = raidPtr;
476 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
477 											 * target buf */
478 		}
479 	} else {
480 		/* there is only one xor node in this case */
481 		rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
482 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
483 		for (i = 0; i < numDataNodes + 1; i++) {
484 			/* set up params related to Rod and Rop nodes */
485 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
486 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
487 		}
488 		for (i = 0; i < numDataNodes; i++) {
489 			/* set up params related to Wnd and Wnp nodes */
490 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
491 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
492 		}
493 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
494 											 * at RAID information */
495 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
496 	}
497 
498 	/* initialize the log node(s) */
499 	pda = asmap->parityInfo;
500 	for (i = 0; i < numParityNodes; i++) {
501 		RF_ASSERT(pda);
502 		rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
503 		lpuNodes[i].params[0].p = pda;	/* PhysDiskAddr of parity */
504 		lpuNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer to
505 									 * parity */
506 		pda = pda->next;
507 	}
508 
509 
510 	/* Step 4. connect the nodes */
511 
512 	/* connect header to block node */
513 	RF_ASSERT(dag_h->numSuccedents == 1);
514 	RF_ASSERT(blockNode->numAntecedents == 0);
515 	dag_h->succedents[0] = blockNode;
516 
517 	/* connect block node to read old data nodes */
518 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
519 	for (i = 0; i < numDataNodes; i++) {
520 		blockNode->succedents[i] = &readDataNodes[i];
521 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
522 		readDataNodes[i].antecedents[0] = blockNode;
523 		readDataNodes[i].antType[0] = rf_control;
524 	}
525 
526 	/* connect block node to read old parity nodes */
527 	for (i = 0; i < numParityNodes; i++) {
528 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
529 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
530 		readParityNodes[i].antecedents[0] = blockNode;
531 		readParityNodes[i].antType[0] = rf_control;
532 	}
533 
534 	/* connect read old data nodes to write new data nodes */
535 	for (i = 0; i < numDataNodes; i++) {
536 		RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
537 		for (j = 0; j < numDataNodes; j++) {
538 			RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
539 			readDataNodes[i].succedents[j] = &writeDataNodes[j];
540 			writeDataNodes[j].antecedents[i] = &readDataNodes[i];
541 			if (i == j)
542 				writeDataNodes[j].antType[i] = rf_antiData;
543 			else
544 				writeDataNodes[j].antType[i] = rf_control;
545 		}
546 	}
547 
548 	/* connect read old data nodes to xor nodes */
549 	for (i = 0; i < numDataNodes; i++)
550 		for (j = 0; j < numParityNodes; j++) {
551 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
552 			readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
553 			xorNodes[j].antecedents[i] = &readDataNodes[i];
554 			xorNodes[j].antType[i] = rf_trueData;
555 		}
556 
557 	/* connect read old parity nodes to write new data nodes */
558 	for (i = 0; i < numParityNodes; i++) {
559 		RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
560 		for (j = 0; j < numDataNodes; j++) {
561 			readParityNodes[i].succedents[j] = &writeDataNodes[j];
562 			writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
563 			writeDataNodes[j].antType[numDataNodes + i] = rf_control;
564 		}
565 	}
566 
567 	/* connect read old parity nodes to xor nodes */
568 	for (i = 0; i < numParityNodes; i++)
569 		for (j = 0; j < numParityNodes; j++) {
570 			readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
571 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
572 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
573 		}
574 
575 	/* connect xor nodes to write new parity nodes */
576 	for (i = 0; i < numParityNodes; i++) {
577 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
578 		RF_ASSERT(lpuNodes[i].numAntecedents == 1);
579 		xorNodes[i].succedents[0] = &lpuNodes[i];
580 		lpuNodes[i].antecedents[0] = &xorNodes[i];
581 		lpuNodes[i].antType[0] = rf_trueData;
582 	}
583 
584 	for (i = 0; i < numDataNodes; i++) {
585 		/* connect write new data nodes to unblock node */
586 		RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
587 		RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
588 		writeDataNodes[i].succedents[0] = unblockNode;
589 		unblockNode->antecedents[i] = &writeDataNodes[i];
590 		unblockNode->antType[i] = rf_control;
591 	}
592 
593 	/* connect write new parity nodes to unblock node */
594 	for (i = 0; i < numParityNodes; i++) {
595 		RF_ASSERT(lpuNodes[i].numSuccedents == 1);
596 		lpuNodes[i].succedents[0] = unblockNode;
597 		unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
598 		unblockNode->antType[numDataNodes + i] = rf_control;
599 	}
600 
601 	/* connect unblock node to terminator */
602 	RF_ASSERT(unblockNode->numSuccedents == 1);
603 	RF_ASSERT(termNode->numAntecedents == 1);
604 	RF_ASSERT(termNode->numSuccedents == 0);
605 	unblockNode->succedents[0] = termNode;
606 	termNode->antecedents[0] = unblockNode;
607 	termNode->antType[0] = rf_control;
608 }
609 
610 
611 void
rf_CreateParityLoggingSmallWriteDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList,const RF_RedFuncs_t * pfuncs,const RF_RedFuncs_t * qfuncs)612 rf_CreateParityLoggingSmallWriteDAG(
613     RF_Raid_t * raidPtr,
614     RF_AccessStripeMap_t * asmap,
615     RF_DagHeader_t * dag_h,
616     void *bp,
617     RF_RaidAccessFlags_t flags,
618     RF_AllocListElem_t * allocList,
619     const RF_RedFuncs_t * pfuncs,
620     const RF_RedFuncs_t * qfuncs)
621 {
622 	dag_h->creator = "ParityLoggingSmallWriteDAG";
623 	rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
624 }
625 
626 
627 void
rf_CreateParityLoggingLargeWriteDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList,int nfaults,void (* redFunc)(RF_DagNode_t *))628 rf_CreateParityLoggingLargeWriteDAG(
629     RF_Raid_t * raidPtr,
630     RF_AccessStripeMap_t * asmap,
631     RF_DagHeader_t * dag_h,
632     void *bp,
633     RF_RaidAccessFlags_t flags,
634     RF_AllocListElem_t * allocList,
635     int nfaults,
636     void (*redFunc) (RF_DagNode_t *))
637 {
638 	dag_h->creator = "ParityLoggingSmallWriteDAG";
639 	rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
640 }
641 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
642