1 /* $NetBSD: rf_parityloggingdags.c,v 1.23 2019/10/10 03:43:59 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 DAGs specific to parity logging are created here
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.23 2019/10/10 03:43:59 christos Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_raid_diagnostic.h"
38 #endif
39
40 #include "rf_archs.h"
41
42 #if RF_INCLUDE_PARITYLOGGING > 0
43
44 #include <dev/raidframe/raidframevar.h>
45
46 #include "rf_raid.h"
47 #include "rf_dag.h"
48 #include "rf_dagutils.h"
49 #include "rf_dagfuncs.h"
50 #include "rf_debugMem.h"
51 #include "rf_paritylog.h"
52 #include "rf_general.h"
53
54 #include "rf_parityloggingdags.h"
55
56 /******************************************************************************
57 *
58 * creates a DAG to perform a large-write operation:
59 *
60 * / Rod \ / Wnd \
61 * H -- NIL- Rod - NIL - Wnd ------ NIL - T
62 * \ Rod / \ Xor - Lpo /
63 *
64 * The writes are not done until the reads complete because if they were done in
65 * parallel, a failure on one of the reads could leave the parity in an inconsistent
66 * state, so that the retry with a new DAG would produce erroneous parity.
67 *
68 * Note: this DAG has the nasty property that none of the buffers allocated for reading
69 * old data can be freed until the XOR node fires. Need to fix this.
70 *
71 * The last two arguments are the number of faults tolerated, and function for the
72 * redundancy calculation. The undo for the redundancy calc is assumed to be null
73 *
74 *****************************************************************************/
75
76 void
rf_CommonCreateParityLoggingLargeWriteDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList,int nfaults,void (* redFunc)(RF_DagNode_t *))77 rf_CommonCreateParityLoggingLargeWriteDAG(
78 RF_Raid_t * raidPtr,
79 RF_AccessStripeMap_t * asmap,
80 RF_DagHeader_t * dag_h,
81 void *bp,
82 RF_RaidAccessFlags_t flags,
83 RF_AllocListElem_t * allocList,
84 int nfaults,
85 void (*redFunc) (RF_DagNode_t *))
86 {
87 RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
88 *lpoNode, *blockNode, *unblockNode, *termNode;
89 int nWndNodes, nRodNodes, i;
90 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
91 RF_AccessStripeMapHeader_t *new_asm_h[2];
92 int nodeNum, asmNum;
93 RF_ReconUnitNum_t which_ru;
94 char *sosBuffer, *eosBuffer;
95 RF_PhysDiskAddr_t *pda;
96 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
97
98 if (rf_dagDebug)
99 printf("[Creating parity-logging large-write DAG]\n");
100 RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
101 dag_h->creator = "ParityLoggingLargeWriteDAG";
102
103 /* alloc the Wnd nodes, the xor node, and the Lpo node */
104 nWndNodes = asmap->numStripeUnitsAccessed;
105 nodes = RF_MallocAndAdd((nWndNodes + 6) * sizeof(*nodes), allocList);
106 i = 0;
107 wndNodes = &nodes[i];
108 i += nWndNodes;
109 xorNode = &nodes[i];
110 i += 1;
111 lpoNode = &nodes[i];
112 i += 1;
113 blockNode = &nodes[i];
114 i += 1;
115 syncNode = &nodes[i];
116 i += 1;
117 unblockNode = &nodes[i];
118 i += 1;
119 termNode = &nodes[i];
120 i += 1;
121
122 dag_h->numCommitNodes = nWndNodes + 1;
123 dag_h->numCommits = 0;
124 dag_h->numSuccedents = 1;
125
126 rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
127 if (nRodNodes > 0)
128 rodNodes = RF_MallocAndAdd(nRodNodes * sizeof(*rodNodes),
129 allocList);
130
131 /* begin node initialization */
132 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
133 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
134 rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
135 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
136
137 /* initialize the Rod nodes */
138 for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
139 if (new_asm_h[asmNum]) {
140 pda = new_asm_h[asmNum]->stripeMap->physInfo;
141 while (pda) {
142 rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
143 rodNodes[nodeNum].params[0].p = pda;
144 rodNodes[nodeNum].params[1].p = pda->bufPtr;
145 rodNodes[nodeNum].params[2].v = parityStripeID;
146 rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
147 nodeNum++;
148 pda = pda->next;
149 }
150 }
151 }
152 RF_ASSERT(nodeNum == nRodNodes);
153
154 /* initialize the wnd nodes */
155 pda = asmap->physInfo;
156 for (i = 0; i < nWndNodes; i++) {
157 rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
158 RF_ASSERT(pda != NULL);
159 wndNodes[i].params[0].p = pda;
160 wndNodes[i].params[1].p = pda->bufPtr;
161 wndNodes[i].params[2].v = parityStripeID;
162 wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
163 pda = pda->next;
164 }
165
166 /* initialize the redundancy node */
167 rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
168 xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
169 for (i = 0; i < nWndNodes; i++) {
170 xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
171 xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
172 }
173 for (i = 0; i < nRodNodes; i++) {
174 xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
175 xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
176 }
177 xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get
178 * at RAID information */
179
180 /* look for an Rod node that reads a complete SU. If none, alloc a
181 * buffer to receive the parity info. Note that we can't use a new
182 * data buffer because it will not have gotten written when the xor
183 * occurs. */
184 for (i = 0; i < nRodNodes; i++)
185 if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
186 break;
187 if (i == nRodNodes) {
188 xorNode->results[0] = RF_MallocAndAdd(rf_RaidAddressToByte(
189 raidPtr, raidPtr->Layout.sectorsPerStripeUnit), allocList);
190 } else {
191 xorNode->results[0] = rodNodes[i].params[1].p;
192 }
193
194 /* initialize the Lpo node */
195 rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
196
197 lpoNode->params[0].p = asmap->parityInfo;
198 lpoNode->params[1].p = xorNode->results[0];
199 RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must
200 * describe entire
201 * parity unit */
202
203 /* connect nodes to form graph */
204
205 /* connect dag header to block node */
206 RF_ASSERT(dag_h->numSuccedents == 1);
207 RF_ASSERT(blockNode->numAntecedents == 0);
208 dag_h->succedents[0] = blockNode;
209
210 /* connect the block node to the Rod nodes */
211 RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
212 for (i = 0; i < nRodNodes; i++) {
213 RF_ASSERT(rodNodes[i].numAntecedents == 1);
214 blockNode->succedents[i] = &rodNodes[i];
215 rodNodes[i].antecedents[0] = blockNode;
216 rodNodes[i].antType[0] = rf_control;
217 }
218
219 /* connect the block node to the sync node */
220 /* necessary if nRodNodes == 0 */
221 RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
222 blockNode->succedents[nRodNodes] = syncNode;
223 syncNode->antecedents[0] = blockNode;
224 syncNode->antType[0] = rf_control;
225
226 /* connect the Rod nodes to the syncNode */
227 for (i = 0; i < nRodNodes; i++) {
228 rodNodes[i].succedents[0] = syncNode;
229 syncNode->antecedents[1 + i] = &rodNodes[i];
230 syncNode->antType[1 + i] = rf_control;
231 }
232
233 /* connect the sync node to the xor node */
234 RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
235 RF_ASSERT(xorNode->numAntecedents == 1);
236 syncNode->succedents[0] = xorNode;
237 xorNode->antecedents[0] = syncNode;
238 xorNode->antType[0] = rf_trueData; /* carry forward from sync */
239
240 /* connect the sync node to the Wnd nodes */
241 for (i = 0; i < nWndNodes; i++) {
242 RF_ASSERT(wndNodes->numAntecedents == 1);
243 syncNode->succedents[1 + i] = &wndNodes[i];
244 wndNodes[i].antecedents[0] = syncNode;
245 wndNodes[i].antType[0] = rf_control;
246 }
247
248 /* connect the xor node to the Lpo node */
249 RF_ASSERT(xorNode->numSuccedents == 1);
250 RF_ASSERT(lpoNode->numAntecedents == 1);
251 xorNode->succedents[0] = lpoNode;
252 lpoNode->antecedents[0] = xorNode;
253 lpoNode->antType[0] = rf_trueData;
254
255 /* connect the Wnd nodes to the unblock node */
256 RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
257 for (i = 0; i < nWndNodes; i++) {
258 RF_ASSERT(wndNodes->numSuccedents == 1);
259 wndNodes[i].succedents[0] = unblockNode;
260 unblockNode->antecedents[i] = &wndNodes[i];
261 unblockNode->antType[i] = rf_control;
262 }
263
264 /* connect the Lpo node to the unblock node */
265 RF_ASSERT(lpoNode->numSuccedents == 1);
266 lpoNode->succedents[0] = unblockNode;
267 unblockNode->antecedents[nWndNodes] = lpoNode;
268 unblockNode->antType[nWndNodes] = rf_control;
269
270 /* connect unblock node to terminator */
271 RF_ASSERT(unblockNode->numSuccedents == 1);
272 RF_ASSERT(termNode->numAntecedents == 1);
273 RF_ASSERT(termNode->numSuccedents == 0);
274 unblockNode->succedents[0] = termNode;
275 termNode->antecedents[0] = unblockNode;
276 termNode->antType[0] = rf_control;
277 }
278
279
280
281
282 /******************************************************************************
283 *
284 * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
285 *
286 * Header
287 * |
288 * Block
289 * / | ... \ \
290 * / | \ \
291 * Rod Rod Rod Rop
292 * | \ /| \ / | \/ |
293 * | | | /\ |
294 * Wnd Wnd Wnd X
295 * | \ / |
296 * | \ / |
297 * \ \ / Lpo
298 * \ \ / /
299 * +-> Unblock <-+
300 * |
301 * T
302 *
303 *
304 * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
305 * When the access spans a stripe unit boundary and is less than one SU in size, there will
306 * be two Rop -- X -- Wnp branches. I call this the "double-XOR" case.
307 * The second output from each Rod node goes to the X node. In the double-XOR
308 * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
309 * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
310 *
311 * The block and unblock nodes are unused. See comment above CreateFaultFreeReadDAG.
312 *
313 * Note: this DAG ignores all the optimizations related to making the RMWs atomic.
314 * it also has the nasty property that none of the buffers allocated for reading
315 * old data & parity can be freed until the XOR node fires. Need to fix this.
316 *
317 * A null qfuncs indicates single fault tolerant
318 *****************************************************************************/
319
320 void
rf_CommonCreateParityLoggingSmallWriteDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList,const RF_RedFuncs_t * pfuncs,const RF_RedFuncs_t * qfuncs)321 rf_CommonCreateParityLoggingSmallWriteDAG(
322 RF_Raid_t * raidPtr,
323 RF_AccessStripeMap_t * asmap,
324 RF_DagHeader_t * dag_h,
325 void *bp,
326 RF_RaidAccessFlags_t flags,
327 RF_AllocListElem_t * allocList,
328 const RF_RedFuncs_t * pfuncs,
329 const RF_RedFuncs_t * qfuncs)
330 {
331 RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
332 RF_DagNode_t *readDataNodes, *readParityNodes;
333 RF_DagNode_t *writeDataNodes, *lpuNodes;
334 RF_DagNode_t *termNode;
335 RF_PhysDiskAddr_t *pda = asmap->physInfo;
336 int numDataNodes = asmap->numStripeUnitsAccessed;
337 int numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
338 int i, j, nNodes, totalNumNodes;
339 RF_ReconUnitNum_t which_ru;
340 void (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
341 const char *name;
342 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
343 long nfaults __unused = qfuncs ? 2 : 1;
344
345 if (rf_dagDebug)
346 printf("[Creating parity-logging small-write DAG]\n");
347 RF_ASSERT(numDataNodes > 0);
348 RF_ASSERT(nfaults == 1);
349 dag_h->creator = "ParityLoggingSmallWriteDAG";
350
351 /* DAG creation occurs in three steps: 1. count the number of nodes in
352 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
353 * nodes */
354
355 /* Step 1. compute number of nodes in the graph */
356
357 /* number of nodes: a read and write for each data unit a redundancy
358 * computation node for each parity node a read and Lpu for each
359 * parity unit a block and unblock node (2) a terminator node if
360 * atomic RMW an unlock node for each data unit, redundancy unit */
361 totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
362
363 nNodes = numDataNodes + numParityNodes;
364
365 dag_h->numCommitNodes = numDataNodes + numParityNodes;
366 dag_h->numCommits = 0;
367 dag_h->numSuccedents = 1;
368
369 /* Step 2. create the nodes */
370 nodes = RF_MallocAndAdd(totalNumNodes * sizeof(*nodes), allocList);
371 i = 0;
372 blockNode = &nodes[i];
373 i += 1;
374 unblockNode = &nodes[i];
375 i += 1;
376 readDataNodes = &nodes[i];
377 i += numDataNodes;
378 readParityNodes = &nodes[i];
379 i += numParityNodes;
380 writeDataNodes = &nodes[i];
381 i += numDataNodes;
382 lpuNodes = &nodes[i];
383 i += numParityNodes;
384 xorNodes = &nodes[i];
385 i += numParityNodes;
386 termNode = &nodes[i];
387 i += 1;
388
389 RF_ASSERT(i == totalNumNodes);
390
391 /* Step 3. initialize the nodes */
392 /* initialize block node (Nil) */
393 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
394
395 /* initialize unblock node (Nil) */
396 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
397
398 /* initialize terminatory node (Trm) */
399 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
400
401 /* initialize nodes which read old data (Rod) */
402 for (i = 0; i < numDataNodes; i++) {
403 rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
404 RF_ASSERT(pda != NULL);
405 readDataNodes[i].params[0].p = pda; /* physical disk addr
406 * desc */
407 readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector); /* buffer to hold old data */
408 readDataNodes[i].params[2].v = parityStripeID;
409 readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
410 pda = pda->next;
411 readDataNodes[i].propList[0] = NULL;
412 readDataNodes[i].propList[1] = NULL;
413 }
414
415 /* initialize nodes which read old parity (Rop) */
416 pda = asmap->parityInfo;
417 i = 0;
418 for (i = 0; i < numParityNodes; i++) {
419 RF_ASSERT(pda != NULL);
420 rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
421 readParityNodes[i].params[0].p = pda;
422 readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector); /* buffer to hold old parity */
423 readParityNodes[i].params[2].v = parityStripeID;
424 readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
425 readParityNodes[i].propList[0] = NULL;
426 pda = pda->next;
427 }
428
429 /* initialize nodes which write new data (Wnd) */
430 pda = asmap->physInfo;
431 for (i = 0; i < numDataNodes; i++) {
432 RF_ASSERT(pda != NULL);
433 rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
434 writeDataNodes[i].params[0].p = pda; /* physical disk addr
435 * desc */
436 writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new
437 * data to be written */
438 writeDataNodes[i].params[2].v = parityStripeID;
439 writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
440
441 pda = pda->next;
442 }
443
444
445 /* initialize nodes which compute new parity */
446 /* we use the simple XOR func in the double-XOR case, and when we're
447 * accessing only a portion of one stripe unit. the distinction
448 * between the two is that the regular XOR func assumes that the
449 * targbuf is a full SU in size, and examines the pda associated with
450 * the buffer to decide where within the buffer to XOR the data,
451 * whereas the simple XOR func just XORs the data into the start of
452 * the buffer. */
453 if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
454 func = pfuncs->simple;
455 undoFunc = rf_NullNodeUndoFunc;
456 name = pfuncs->SimpleName;
457 } else {
458 func = pfuncs->regular;
459 undoFunc = rf_NullNodeUndoFunc;
460 name = pfuncs->RegularName;
461 }
462 /* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
463 * nodes, and raidPtr */
464 if (numParityNodes == 2) { /* double-xor case */
465 for (i = 0; i < numParityNodes; i++) {
466 rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for
467 * xor */
468 xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
469 xorNodes[i].params[0] = readDataNodes[i].params[0];
470 xorNodes[i].params[1] = readDataNodes[i].params[1];
471 xorNodes[i].params[2] = readParityNodes[i].params[0];
472 xorNodes[i].params[3] = readParityNodes[i].params[1];
473 xorNodes[i].params[4] = writeDataNodes[i].params[0];
474 xorNodes[i].params[5] = writeDataNodes[i].params[1];
475 xorNodes[i].params[6].p = raidPtr;
476 xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as
477 * target buf */
478 }
479 } else {
480 /* there is only one xor node in this case */
481 rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
482 xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
483 for (i = 0; i < numDataNodes + 1; i++) {
484 /* set up params related to Rod and Rop nodes */
485 xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
486 xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */
487 }
488 for (i = 0; i < numDataNodes; i++) {
489 /* set up params related to Wnd and Wnp nodes */
490 xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */
491 xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */
492 }
493 xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get
494 * at RAID information */
495 xorNodes[0].results[0] = readParityNodes[0].params[1].p;
496 }
497
498 /* initialize the log node(s) */
499 pda = asmap->parityInfo;
500 for (i = 0; i < numParityNodes; i++) {
501 RF_ASSERT(pda);
502 rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
503 lpuNodes[i].params[0].p = pda; /* PhysDiskAddr of parity */
504 lpuNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer to
505 * parity */
506 pda = pda->next;
507 }
508
509
510 /* Step 4. connect the nodes */
511
512 /* connect header to block node */
513 RF_ASSERT(dag_h->numSuccedents == 1);
514 RF_ASSERT(blockNode->numAntecedents == 0);
515 dag_h->succedents[0] = blockNode;
516
517 /* connect block node to read old data nodes */
518 RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
519 for (i = 0; i < numDataNodes; i++) {
520 blockNode->succedents[i] = &readDataNodes[i];
521 RF_ASSERT(readDataNodes[i].numAntecedents == 1);
522 readDataNodes[i].antecedents[0] = blockNode;
523 readDataNodes[i].antType[0] = rf_control;
524 }
525
526 /* connect block node to read old parity nodes */
527 for (i = 0; i < numParityNodes; i++) {
528 blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
529 RF_ASSERT(readParityNodes[i].numAntecedents == 1);
530 readParityNodes[i].antecedents[0] = blockNode;
531 readParityNodes[i].antType[0] = rf_control;
532 }
533
534 /* connect read old data nodes to write new data nodes */
535 for (i = 0; i < numDataNodes; i++) {
536 RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
537 for (j = 0; j < numDataNodes; j++) {
538 RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
539 readDataNodes[i].succedents[j] = &writeDataNodes[j];
540 writeDataNodes[j].antecedents[i] = &readDataNodes[i];
541 if (i == j)
542 writeDataNodes[j].antType[i] = rf_antiData;
543 else
544 writeDataNodes[j].antType[i] = rf_control;
545 }
546 }
547
548 /* connect read old data nodes to xor nodes */
549 for (i = 0; i < numDataNodes; i++)
550 for (j = 0; j < numParityNodes; j++) {
551 RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
552 readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
553 xorNodes[j].antecedents[i] = &readDataNodes[i];
554 xorNodes[j].antType[i] = rf_trueData;
555 }
556
557 /* connect read old parity nodes to write new data nodes */
558 for (i = 0; i < numParityNodes; i++) {
559 RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
560 for (j = 0; j < numDataNodes; j++) {
561 readParityNodes[i].succedents[j] = &writeDataNodes[j];
562 writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
563 writeDataNodes[j].antType[numDataNodes + i] = rf_control;
564 }
565 }
566
567 /* connect read old parity nodes to xor nodes */
568 for (i = 0; i < numParityNodes; i++)
569 for (j = 0; j < numParityNodes; j++) {
570 readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
571 xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
572 xorNodes[j].antType[numDataNodes + i] = rf_trueData;
573 }
574
575 /* connect xor nodes to write new parity nodes */
576 for (i = 0; i < numParityNodes; i++) {
577 RF_ASSERT(xorNodes[i].numSuccedents == 1);
578 RF_ASSERT(lpuNodes[i].numAntecedents == 1);
579 xorNodes[i].succedents[0] = &lpuNodes[i];
580 lpuNodes[i].antecedents[0] = &xorNodes[i];
581 lpuNodes[i].antType[0] = rf_trueData;
582 }
583
584 for (i = 0; i < numDataNodes; i++) {
585 /* connect write new data nodes to unblock node */
586 RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
587 RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
588 writeDataNodes[i].succedents[0] = unblockNode;
589 unblockNode->antecedents[i] = &writeDataNodes[i];
590 unblockNode->antType[i] = rf_control;
591 }
592
593 /* connect write new parity nodes to unblock node */
594 for (i = 0; i < numParityNodes; i++) {
595 RF_ASSERT(lpuNodes[i].numSuccedents == 1);
596 lpuNodes[i].succedents[0] = unblockNode;
597 unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
598 unblockNode->antType[numDataNodes + i] = rf_control;
599 }
600
601 /* connect unblock node to terminator */
602 RF_ASSERT(unblockNode->numSuccedents == 1);
603 RF_ASSERT(termNode->numAntecedents == 1);
604 RF_ASSERT(termNode->numSuccedents == 0);
605 unblockNode->succedents[0] = termNode;
606 termNode->antecedents[0] = unblockNode;
607 termNode->antType[0] = rf_control;
608 }
609
610
611 void
rf_CreateParityLoggingSmallWriteDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList,const RF_RedFuncs_t * pfuncs,const RF_RedFuncs_t * qfuncs)612 rf_CreateParityLoggingSmallWriteDAG(
613 RF_Raid_t * raidPtr,
614 RF_AccessStripeMap_t * asmap,
615 RF_DagHeader_t * dag_h,
616 void *bp,
617 RF_RaidAccessFlags_t flags,
618 RF_AllocListElem_t * allocList,
619 const RF_RedFuncs_t * pfuncs,
620 const RF_RedFuncs_t * qfuncs)
621 {
622 dag_h->creator = "ParityLoggingSmallWriteDAG";
623 rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
624 }
625
626
627 void
rf_CreateParityLoggingLargeWriteDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList,int nfaults,void (* redFunc)(RF_DagNode_t *))628 rf_CreateParityLoggingLargeWriteDAG(
629 RF_Raid_t * raidPtr,
630 RF_AccessStripeMap_t * asmap,
631 RF_DagHeader_t * dag_h,
632 void *bp,
633 RF_RaidAccessFlags_t flags,
634 RF_AllocListElem_t * allocList,
635 int nfaults,
636 void (*redFunc) (RF_DagNode_t *))
637 {
638 dag_h->creator = "ParityLoggingSmallWriteDAG";
639 rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
640 }
641 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
642