1 /*	$NetBSD: rf_parityloggingdags.c,v 1.7 2001/11/13 07:11:15 lukem Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30   DAGs specific to parity logging are created here
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.7 2001/11/13 07:11:15 lukem Exp $");
35 
36 #include "rf_archs.h"
37 
38 #if RF_INCLUDE_PARITYLOGGING > 0
39 
40 #include <dev/raidframe/raidframevar.h>
41 
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_debugMem.h"
47 #include "rf_paritylog.h"
48 #include "rf_memchunk.h"
49 #include "rf_general.h"
50 
51 #include "rf_parityloggingdags.h"
52 
53 /******************************************************************************
54  *
55  * creates a DAG to perform a large-write operation:
56  *
57  *         / Rod \     / Wnd \
58  * H -- NIL- Rod - NIL - Wnd ------ NIL - T
59  *         \ Rod /     \ Xor - Lpo /
60  *
61  * The writes are not done until the reads complete because if they were done in
62  * parallel, a failure on one of the reads could leave the parity in an inconsistent
63  * state, so that the retry with a new DAG would produce erroneous parity.
64  *
65  * Note:  this DAG has the nasty property that none of the buffers allocated for reading
66  *        old data can be freed until the XOR node fires.  Need to fix this.
67  *
68  * The last two arguments are the number of faults tolerated, and function for the
69  * redundancy calculation. The undo for the redundancy calc is assumed to be null
70  *
71  *****************************************************************************/
72 
73 void
74 rf_CommonCreateParityLoggingLargeWriteDAG(
75     RF_Raid_t * raidPtr,
76     RF_AccessStripeMap_t * asmap,
77     RF_DagHeader_t * dag_h,
78     void *bp,
79     RF_RaidAccessFlags_t flags,
80     RF_AllocListElem_t * allocList,
81     int nfaults,
82     int (*redFunc) (RF_DagNode_t *))
83 {
84 	RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
85 	       *lpoNode, *blockNode, *unblockNode, *termNode;
86 	int     nWndNodes, nRodNodes, i;
87 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
88 	RF_AccessStripeMapHeader_t *new_asm_h[2];
89 	int     nodeNum, asmNum;
90 	RF_ReconUnitNum_t which_ru;
91 	char   *sosBuffer, *eosBuffer;
92 	RF_PhysDiskAddr_t *pda;
93 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
94 
95 	if (rf_dagDebug)
96 		printf("[Creating parity-logging large-write DAG]\n");
97 	RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
98 	dag_h->creator = "ParityLoggingLargeWriteDAG";
99 
100 	/* alloc the Wnd nodes, the xor node, and the Lpo node */
101 	nWndNodes = asmap->numStripeUnitsAccessed;
102 	RF_CallocAndAdd(nodes, nWndNodes + 6, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
103 	i = 0;
104 	wndNodes = &nodes[i];
105 	i += nWndNodes;
106 	xorNode = &nodes[i];
107 	i += 1;
108 	lpoNode = &nodes[i];
109 	i += 1;
110 	blockNode = &nodes[i];
111 	i += 1;
112 	syncNode = &nodes[i];
113 	i += 1;
114 	unblockNode = &nodes[i];
115 	i += 1;
116 	termNode = &nodes[i];
117 	i += 1;
118 
119 	dag_h->numCommitNodes = nWndNodes + 1;
120 	dag_h->numCommits = 0;
121 	dag_h->numSuccedents = 1;
122 
123 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
124 	if (nRodNodes > 0)
125 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
126 
127 	/* begin node initialization */
128 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
129 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
130 	rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
131 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
132 
133 	/* initialize the Rod nodes */
134 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
135 		if (new_asm_h[asmNum]) {
136 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
137 			while (pda) {
138 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
139 				rodNodes[nodeNum].params[0].p = pda;
140 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
141 				rodNodes[nodeNum].params[2].v = parityStripeID;
142 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
143 				nodeNum++;
144 				pda = pda->next;
145 			}
146 		}
147 	}
148 	RF_ASSERT(nodeNum == nRodNodes);
149 
150 	/* initialize the wnd nodes */
151 	pda = asmap->physInfo;
152 	for (i = 0; i < nWndNodes; i++) {
153 		rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
154 		RF_ASSERT(pda != NULL);
155 		wndNodes[i].params[0].p = pda;
156 		wndNodes[i].params[1].p = pda->bufPtr;
157 		wndNodes[i].params[2].v = parityStripeID;
158 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
159 		pda = pda->next;
160 	}
161 
162 	/* initialize the redundancy node */
163 	rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
164 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
165 	for (i = 0; i < nWndNodes; i++) {
166 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
167 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
168 	}
169 	for (i = 0; i < nRodNodes; i++) {
170 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
171 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
172 	}
173 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
174 									 * at RAID information */
175 
176 	/* look for an Rod node that reads a complete SU.  If none, alloc a
177 	 * buffer to receive the parity info. Note that we can't use a new
178 	 * data buffer because it will not have gotten written when the xor
179 	 * occurs. */
180 	for (i = 0; i < nRodNodes; i++)
181 		if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
182 			break;
183 	if (i == nRodNodes) {
184 		RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
185 	} else {
186 		xorNode->results[0] = rodNodes[i].params[1].p;
187 	}
188 
189 	/* initialize the Lpo node */
190 	rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
191 
192 	lpoNode->params[0].p = asmap->parityInfo;
193 	lpoNode->params[1].p = xorNode->results[0];
194 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
195 							 * describe entire
196 							 * parity unit */
197 
198 	/* connect nodes to form graph */
199 
200 	/* connect dag header to block node */
201 	RF_ASSERT(dag_h->numSuccedents == 1);
202 	RF_ASSERT(blockNode->numAntecedents == 0);
203 	dag_h->succedents[0] = blockNode;
204 
205 	/* connect the block node to the Rod nodes */
206 	RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
207 	for (i = 0; i < nRodNodes; i++) {
208 		RF_ASSERT(rodNodes[i].numAntecedents == 1);
209 		blockNode->succedents[i] = &rodNodes[i];
210 		rodNodes[i].antecedents[0] = blockNode;
211 		rodNodes[i].antType[0] = rf_control;
212 	}
213 
214 	/* connect the block node to the sync node */
215 	/* necessary if nRodNodes == 0 */
216 	RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
217 	blockNode->succedents[nRodNodes] = syncNode;
218 	syncNode->antecedents[0] = blockNode;
219 	syncNode->antType[0] = rf_control;
220 
221 	/* connect the Rod nodes to the syncNode */
222 	for (i = 0; i < nRodNodes; i++) {
223 		rodNodes[i].succedents[0] = syncNode;
224 		syncNode->antecedents[1 + i] = &rodNodes[i];
225 		syncNode->antType[1 + i] = rf_control;
226 	}
227 
228 	/* connect the sync node to the xor node */
229 	RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
230 	RF_ASSERT(xorNode->numAntecedents == 1);
231 	syncNode->succedents[0] = xorNode;
232 	xorNode->antecedents[0] = syncNode;
233 	xorNode->antType[0] = rf_trueData;	/* carry forward from sync */
234 
235 	/* connect the sync node to the Wnd nodes */
236 	for (i = 0; i < nWndNodes; i++) {
237 		RF_ASSERT(wndNodes->numAntecedents == 1);
238 		syncNode->succedents[1 + i] = &wndNodes[i];
239 		wndNodes[i].antecedents[0] = syncNode;
240 		wndNodes[i].antType[0] = rf_control;
241 	}
242 
243 	/* connect the xor node to the Lpo node */
244 	RF_ASSERT(xorNode->numSuccedents == 1);
245 	RF_ASSERT(lpoNode->numAntecedents == 1);
246 	xorNode->succedents[0] = lpoNode;
247 	lpoNode->antecedents[0] = xorNode;
248 	lpoNode->antType[0] = rf_trueData;
249 
250 	/* connect the Wnd nodes to the unblock node */
251 	RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
252 	for (i = 0; i < nWndNodes; i++) {
253 		RF_ASSERT(wndNodes->numSuccedents == 1);
254 		wndNodes[i].succedents[0] = unblockNode;
255 		unblockNode->antecedents[i] = &wndNodes[i];
256 		unblockNode->antType[i] = rf_control;
257 	}
258 
259 	/* connect the Lpo node to the unblock node */
260 	RF_ASSERT(lpoNode->numSuccedents == 1);
261 	lpoNode->succedents[0] = unblockNode;
262 	unblockNode->antecedents[nWndNodes] = lpoNode;
263 	unblockNode->antType[nWndNodes] = rf_control;
264 
265 	/* connect unblock node to terminator */
266 	RF_ASSERT(unblockNode->numSuccedents == 1);
267 	RF_ASSERT(termNode->numAntecedents == 1);
268 	RF_ASSERT(termNode->numSuccedents == 0);
269 	unblockNode->succedents[0] = termNode;
270 	termNode->antecedents[0] = unblockNode;
271 	termNode->antType[0] = rf_control;
272 }
273 
274 
275 
276 
277 /******************************************************************************
278  *
279  * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
280  *
281  *                                     Header
282  *                                       |
283  *                                     Block
284  *                                 / |  ... \   \
285  *                                /  |       \   \
286  *                             Rod  Rod      Rod  Rop
287  *                             | \ /| \    / |  \/ |
288  *                             |    |        |  /\ |
289  *                             Wnd  Wnd      Wnd   X
290  *                              |    \       /     |
291  *                              |     \     /      |
292  *                               \     \   /      Lpo
293  *                                \     \ /       /
294  *                                 +-> Unblock <-+
295  *                                       |
296  *                                       T
297  *
298  *
299  * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
300  * When the access spans a stripe unit boundary and is less than one SU in size, there will
301  * be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
302  * The second output from each Rod node goes to the X node.  In the double-XOR
303  * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
304  * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
305  *
306  * The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
307  *
308  * Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
309  *        it also has the nasty property that none of the buffers allocated for reading
310  *        old data & parity can be freed until the XOR node fires.  Need to fix this.
311  *
312  * A null qfuncs indicates single fault tolerant
313  *****************************************************************************/
314 
315 void
316 rf_CommonCreateParityLoggingSmallWriteDAG(
317     RF_Raid_t * raidPtr,
318     RF_AccessStripeMap_t * asmap,
319     RF_DagHeader_t * dag_h,
320     void *bp,
321     RF_RaidAccessFlags_t flags,
322     RF_AllocListElem_t * allocList,
323     RF_RedFuncs_t * pfuncs,
324     RF_RedFuncs_t * qfuncs)
325 {
326 	RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
327 	RF_DagNode_t *readDataNodes, *readParityNodes;
328 	RF_DagNode_t *writeDataNodes, *lpuNodes;
329 	RF_DagNode_t *unlockDataNodes = NULL, *termNode;
330 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
331 	int     numDataNodes = asmap->numStripeUnitsAccessed;
332 	int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
333 	int     i, j, nNodes, totalNumNodes;
334 	RF_ReconUnitNum_t which_ru;
335 	int     (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
336 	int     (*qfunc) (RF_DagNode_t * node);
337 	char   *name, *qname;
338 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
339 #ifdef RAID_DIAGNOSTIC
340 	long    nfaults = qfuncs ? 2 : 1;
341 #endif /* RAID_DIAGNOSTIC */
342 	int     lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
343 
344 	if (rf_dagDebug)
345 		printf("[Creating parity-logging small-write DAG]\n");
346 	RF_ASSERT(numDataNodes > 0);
347 	RF_ASSERT(nfaults == 1);
348 	dag_h->creator = "ParityLoggingSmallWriteDAG";
349 
350 	/* DAG creation occurs in three steps: 1. count the number of nodes in
351 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
352 	 * nodes */
353 
354 	/* Step 1. compute number of nodes in the graph */
355 
356 	/* number of nodes: a read and write for each data unit a redundancy
357 	 * computation node for each parity node a read and Lpu for each
358 	 * parity unit a block and unblock node (2) a terminator node if
359 	 * atomic RMW an unlock node for each data unit, redundancy unit */
360 	totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
361 	if (lu_flag)
362 		totalNumNodes += numDataNodes;
363 
364 	nNodes = numDataNodes + numParityNodes;
365 
366 	dag_h->numCommitNodes = numDataNodes + numParityNodes;
367 	dag_h->numCommits = 0;
368 	dag_h->numSuccedents = 1;
369 
370 	/* Step 2. create the nodes */
371 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
372 	i = 0;
373 	blockNode = &nodes[i];
374 	i += 1;
375 	unblockNode = &nodes[i];
376 	i += 1;
377 	readDataNodes = &nodes[i];
378 	i += numDataNodes;
379 	readParityNodes = &nodes[i];
380 	i += numParityNodes;
381 	writeDataNodes = &nodes[i];
382 	i += numDataNodes;
383 	lpuNodes = &nodes[i];
384 	i += numParityNodes;
385 	xorNodes = &nodes[i];
386 	i += numParityNodes;
387 	termNode = &nodes[i];
388 	i += 1;
389 	if (lu_flag) {
390 		unlockDataNodes = &nodes[i];
391 		i += numDataNodes;
392 	}
393 	RF_ASSERT(i == totalNumNodes);
394 
395 	/* Step 3. initialize the nodes */
396 	/* initialize block node (Nil) */
397 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
398 
399 	/* initialize unblock node (Nil) */
400 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
401 
402 	/* initialize terminatory node (Trm) */
403 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
404 
405 	/* initialize nodes which read old data (Rod) */
406 	for (i = 0; i < numDataNodes; i++) {
407 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
408 		RF_ASSERT(pda != NULL);
409 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
410 							 * desc */
411 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
412 												 * data */
413 		readDataNodes[i].params[2].v = parityStripeID;
414 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
415 		pda = pda->next;
416 		readDataNodes[i].propList[0] = NULL;
417 		readDataNodes[i].propList[1] = NULL;
418 	}
419 
420 	/* initialize nodes which read old parity (Rop) */
421 	pda = asmap->parityInfo;
422 	i = 0;
423 	for (i = 0; i < numParityNodes; i++) {
424 		RF_ASSERT(pda != NULL);
425 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
426 		readParityNodes[i].params[0].p = pda;
427 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
428 													 * parity */
429 		readParityNodes[i].params[2].v = parityStripeID;
430 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
431 		readParityNodes[i].propList[0] = NULL;
432 		pda = pda->next;
433 	}
434 
435 	/* initialize nodes which write new data (Wnd) */
436 	pda = asmap->physInfo;
437 	for (i = 0; i < numDataNodes; i++) {
438 		RF_ASSERT(pda != NULL);
439 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
440 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
441 							 * desc */
442 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
443 								 * data to be written */
444 		writeDataNodes[i].params[2].v = parityStripeID;
445 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
446 
447 		if (lu_flag) {
448 			/* initialize node to unlock the disk queue */
449 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
450 			unlockDataNodes[i].params[0].p = pda;	/* physical disk addr
451 								 * desc */
452 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
453 		}
454 		pda = pda->next;
455 	}
456 
457 
458 	/* initialize nodes which compute new parity */
459 	/* we use the simple XOR func in the double-XOR case, and when we're
460 	 * accessing only a portion of one stripe unit. the distinction
461 	 * between the two is that the regular XOR func assumes that the
462 	 * targbuf is a full SU in size, and examines the pda associated with
463 	 * the buffer to decide where within the buffer to XOR the data,
464 	 * whereas the simple XOR func just XORs the data into the start of
465 	 * the buffer. */
466 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
467 		func = pfuncs->simple;
468 		undoFunc = rf_NullNodeUndoFunc;
469 		name = pfuncs->SimpleName;
470 		if (qfuncs) {
471 			qfunc = qfuncs->simple;
472 			qname = qfuncs->SimpleName;
473 		}
474 	} else {
475 		func = pfuncs->regular;
476 		undoFunc = rf_NullNodeUndoFunc;
477 		name = pfuncs->RegularName;
478 		if (qfuncs) {
479 			qfunc = qfuncs->regular;
480 			qname = qfuncs->RegularName;
481 		}
482 	}
483 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
484 	 * nodes, and raidPtr  */
485 	if (numParityNodes == 2) {	/* double-xor case */
486 		for (i = 0; i < numParityNodes; i++) {
487 			rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
488 																	 * xor */
489 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
490 			xorNodes[i].params[0] = readDataNodes[i].params[0];
491 			xorNodes[i].params[1] = readDataNodes[i].params[1];
492 			xorNodes[i].params[2] = readParityNodes[i].params[0];
493 			xorNodes[i].params[3] = readParityNodes[i].params[1];
494 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
495 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
496 			xorNodes[i].params[6].p = raidPtr;
497 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
498 											 * target buf */
499 		}
500 	} else {
501 		/* there is only one xor node in this case */
502 		rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
503 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
504 		for (i = 0; i < numDataNodes + 1; i++) {
505 			/* set up params related to Rod and Rop nodes */
506 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
507 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
508 		}
509 		for (i = 0; i < numDataNodes; i++) {
510 			/* set up params related to Wnd and Wnp nodes */
511 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
512 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
513 		}
514 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
515 											 * at RAID information */
516 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
517 	}
518 
519 	/* initialize the log node(s) */
520 	pda = asmap->parityInfo;
521 	for (i = 0; i < numParityNodes; i++) {
522 		RF_ASSERT(pda);
523 		rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
524 		lpuNodes[i].params[0].p = pda;	/* PhysDiskAddr of parity */
525 		lpuNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer to
526 									 * parity */
527 		pda = pda->next;
528 	}
529 
530 
531 	/* Step 4. connect the nodes */
532 
533 	/* connect header to block node */
534 	RF_ASSERT(dag_h->numSuccedents == 1);
535 	RF_ASSERT(blockNode->numAntecedents == 0);
536 	dag_h->succedents[0] = blockNode;
537 
538 	/* connect block node to read old data nodes */
539 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
540 	for (i = 0; i < numDataNodes; i++) {
541 		blockNode->succedents[i] = &readDataNodes[i];
542 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
543 		readDataNodes[i].antecedents[0] = blockNode;
544 		readDataNodes[i].antType[0] = rf_control;
545 	}
546 
547 	/* connect block node to read old parity nodes */
548 	for (i = 0; i < numParityNodes; i++) {
549 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
550 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
551 		readParityNodes[i].antecedents[0] = blockNode;
552 		readParityNodes[i].antType[0] = rf_control;
553 	}
554 
555 	/* connect read old data nodes to write new data nodes */
556 	for (i = 0; i < numDataNodes; i++) {
557 		RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
558 		for (j = 0; j < numDataNodes; j++) {
559 			RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
560 			readDataNodes[i].succedents[j] = &writeDataNodes[j];
561 			writeDataNodes[j].antecedents[i] = &readDataNodes[i];
562 			if (i == j)
563 				writeDataNodes[j].antType[i] = rf_antiData;
564 			else
565 				writeDataNodes[j].antType[i] = rf_control;
566 		}
567 	}
568 
569 	/* connect read old data nodes to xor nodes */
570 	for (i = 0; i < numDataNodes; i++)
571 		for (j = 0; j < numParityNodes; j++) {
572 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
573 			readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
574 			xorNodes[j].antecedents[i] = &readDataNodes[i];
575 			xorNodes[j].antType[i] = rf_trueData;
576 		}
577 
578 	/* connect read old parity nodes to write new data nodes */
579 	for (i = 0; i < numParityNodes; i++) {
580 		RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
581 		for (j = 0; j < numDataNodes; j++) {
582 			readParityNodes[i].succedents[j] = &writeDataNodes[j];
583 			writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
584 			writeDataNodes[j].antType[numDataNodes + i] = rf_control;
585 		}
586 	}
587 
588 	/* connect read old parity nodes to xor nodes */
589 	for (i = 0; i < numParityNodes; i++)
590 		for (j = 0; j < numParityNodes; j++) {
591 			readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
592 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
593 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
594 		}
595 
596 	/* connect xor nodes to write new parity nodes */
597 	for (i = 0; i < numParityNodes; i++) {
598 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
599 		RF_ASSERT(lpuNodes[i].numAntecedents == 1);
600 		xorNodes[i].succedents[0] = &lpuNodes[i];
601 		lpuNodes[i].antecedents[0] = &xorNodes[i];
602 		lpuNodes[i].antType[0] = rf_trueData;
603 	}
604 
605 	for (i = 0; i < numDataNodes; i++) {
606 		if (lu_flag) {
607 			/* connect write new data nodes to unlock nodes */
608 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
609 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
610 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
611 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
612 			unlockDataNodes[i].antType[0] = rf_control;
613 
614 			/* connect unlock nodes to unblock node */
615 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
616 			RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
617 			unlockDataNodes[i].succedents[0] = unblockNode;
618 			unblockNode->antecedents[i] = &unlockDataNodes[i];
619 			unblockNode->antType[i] = rf_control;
620 		} else {
621 			/* connect write new data nodes to unblock node */
622 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
623 			RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
624 			writeDataNodes[i].succedents[0] = unblockNode;
625 			unblockNode->antecedents[i] = &writeDataNodes[i];
626 			unblockNode->antType[i] = rf_control;
627 		}
628 	}
629 
630 	/* connect write new parity nodes to unblock node */
631 	for (i = 0; i < numParityNodes; i++) {
632 		RF_ASSERT(lpuNodes[i].numSuccedents == 1);
633 		lpuNodes[i].succedents[0] = unblockNode;
634 		unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
635 		unblockNode->antType[numDataNodes + i] = rf_control;
636 	}
637 
638 	/* connect unblock node to terminator */
639 	RF_ASSERT(unblockNode->numSuccedents == 1);
640 	RF_ASSERT(termNode->numAntecedents == 1);
641 	RF_ASSERT(termNode->numSuccedents == 0);
642 	unblockNode->succedents[0] = termNode;
643 	termNode->antecedents[0] = unblockNode;
644 	termNode->antType[0] = rf_control;
645 }
646 
647 
648 void
649 rf_CreateParityLoggingSmallWriteDAG(
650     RF_Raid_t * raidPtr,
651     RF_AccessStripeMap_t * asmap,
652     RF_DagHeader_t * dag_h,
653     void *bp,
654     RF_RaidAccessFlags_t flags,
655     RF_AllocListElem_t * allocList,
656     RF_RedFuncs_t * pfuncs,
657     RF_RedFuncs_t * qfuncs)
658 {
659 	dag_h->creator = "ParityLoggingSmallWriteDAG";
660 	rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
661 }
662 
663 
664 void
665 rf_CreateParityLoggingLargeWriteDAG(
666     RF_Raid_t * raidPtr,
667     RF_AccessStripeMap_t * asmap,
668     RF_DagHeader_t * dag_h,
669     void *bp,
670     RF_RaidAccessFlags_t flags,
671     RF_AllocListElem_t * allocList,
672     int nfaults,
673     int (*redFunc) (RF_DagNode_t *))
674 {
675 	dag_h->creator = "ParityLoggingSmallWriteDAG";
676 	rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
677 }
678 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
679