xref: /netbsd/sys/dev/raidframe/rf_raid1.c (revision b5a38de0)
1 /*	$NetBSD: rf_raid1.c,v 1.39 2021/07/23 22:34:12 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*****************************************************************************
30  *
31  * rf_raid1.c -- implements RAID Level 1
32  *
33  *****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.39 2021/07/23 22:34:12 oster Exp $");
37 
38 #include "rf_raid.h"
39 #include "rf_raid1.h"
40 #include "rf_dag.h"
41 #include "rf_dagffrd.h"
42 #include "rf_dagffwr.h"
43 #include "rf_dagdegrd.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_diskqueue.h"
47 #include "rf_general.h"
48 #include "rf_utils.h"
49 #include "rf_parityscan.h"
50 #include "rf_mcpair.h"
51 #include "rf_layout.h"
52 #include "rf_map.h"
53 #include "rf_engine.h"
54 #include "rf_reconbuffer.h"
55 
56 typedef struct RF_Raid1ConfigInfo_s {
57 	RF_RowCol_t **stripeIdentifier;
58 }       RF_Raid1ConfigInfo_t;
59 /* start of day code specific to RAID level 1 */
60 int
rf_ConfigureRAID1(RF_ShutdownList_t ** listp,RF_Raid_t * raidPtr,RF_Config_t * cfgPtr)61 rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
62 		  RF_Config_t *cfgPtr)
63 {
64 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
65 	RF_Raid1ConfigInfo_t *info;
66 	RF_RowCol_t i;
67 
68 	/* Sanity check the number of columns... */
69 	if (raidPtr->numCol < 2 || raidPtr->numCol % 2 != 0) {
70 		return (EINVAL);
71 	}
72 
73 	/* create a RAID level 1 configuration structure */
74 	info = RF_MallocAndAdd(sizeof(*info), raidPtr->cleanupList);
75 	if (info == NULL)
76 		return (ENOMEM);
77 	layoutPtr->layoutSpecificInfo = (void *) info;
78 
79 	/* ... and fill it in. */
80 	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
81 	if (info->stripeIdentifier == NULL)
82 		return (ENOMEM);
83 	for (i = 0; i < (raidPtr->numCol / 2); i++) {
84 		info->stripeIdentifier[i][0] = (2 * i);
85 		info->stripeIdentifier[i][1] = (2 * i) + 1;
86 	}
87 
88 	/* this implementation of RAID level 1 uses one row of numCol disks
89 	 * and allows multiple (numCol / 2) stripes per row.  A stripe
90 	 * consists of a single data unit and a single parity (mirror) unit.
91 	 * stripe id = raidAddr / stripeUnitSize */
92 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
93 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
94 	layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
95 	layoutPtr->numDataCol = 1;
96 	layoutPtr->numParityCol = 1;
97 	return (0);
98 }
99 
100 
101 /* returns the physical disk location of the primary copy in the mirror pair */
102 void
rf_MapSectorRAID1(RF_Raid_t * raidPtr,RF_RaidAddr_t raidSector,RF_RowCol_t * col,RF_SectorNum_t * diskSector,int remap)103 rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
104 		  RF_RowCol_t *col, RF_SectorNum_t *diskSector,
105 		  int remap)
106 {
107 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
108 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
109 
110 	*col = 2 * mirrorPair;
111 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
112 }
113 
114 
115 /* Map Parity
116  *
117  * returns the physical disk location of the secondary copy in the mirror
118  * pair
119  */
120 void
rf_MapParityRAID1(RF_Raid_t * raidPtr,RF_RaidAddr_t raidSector,RF_RowCol_t * col,RF_SectorNum_t * diskSector,int remap)121 rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
122 		  RF_RowCol_t *col, RF_SectorNum_t *diskSector,
123 		  int remap)
124 {
125 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
126 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
127 
128 	*col = (2 * mirrorPair) + 1;
129 
130 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
131 }
132 
133 
134 /* IdentifyStripeRAID1
135  *
136  * returns a list of disks for a given redundancy group
137  */
138 void
rf_IdentifyStripeRAID1(RF_Raid_t * raidPtr,RF_RaidAddr_t addr,RF_RowCol_t ** diskids)139 rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
140 		       RF_RowCol_t **diskids)
141 {
142 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
143 	RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
144 	RF_ASSERT(stripeID >= 0);
145 	RF_ASSERT(addr >= 0);
146 	*diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
147 	RF_ASSERT(*diskids);
148 }
149 
150 
151 /* MapSIDToPSIDRAID1
152  *
153  * maps a logical stripe to a stripe in the redundant array
154  */
155 void
rf_MapSIDToPSIDRAID1(RF_RaidLayout_t * layoutPtr,RF_StripeNum_t stripeID,RF_StripeNum_t * psID,RF_ReconUnitNum_t * which_ru)156 rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr,
157 		     RF_StripeNum_t stripeID,
158 		     RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru)
159 {
160 	*which_ru = 0;
161 	*psID = stripeID;
162 }
163 
164 
165 
166 /******************************************************************************
167  * select a graph to perform a single-stripe access
168  *
169  * Parameters:  raidPtr    - description of the physical array
170  *              type       - type of operation (read or write) requested
171  *              asmap      - logical & physical addresses for this access
172  *              createFunc - name of function to use to create the graph
173  *****************************************************************************/
174 
175 void
rf_RAID1DagSelect(RF_Raid_t * raidPtr,RF_IoType_t type,RF_AccessStripeMap_t * asmap,RF_VoidFuncPtr * createFunc)176 rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type,
177 		  RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc)
178 {
179 	RF_RowCol_t fcol, oc __unused;
180 	RF_PhysDiskAddr_t *failedPDA;
181 	int     prior_recon;
182 	RF_RowStatus_t rstat;
183 	RF_SectorNum_t oo __unused;
184 
185 
186 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
187 
188 	if (asmap->numDataFailed + asmap->numParityFailed > 1) {
189 #if RF_DEBUG_DAG
190 		if (rf_dagDebug)
191 			RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
192 #endif
193 		*createFunc = NULL;
194 		return;
195 	}
196 	if (asmap->numDataFailed + asmap->numParityFailed) {
197 		/*
198 	         * We've got a fault. Re-map to spare space, iff applicable.
199 	         * Shouldn't the arch-independent code do this for us?
200 	         * Anyway, it turns out if we don't do this here, then when
201 	         * we're reconstructing, writes go only to the surviving
202 	         * original disk, and aren't reflected on the reconstructed
203 	         * spare. Oops. --jimz
204 	         */
205 		failedPDA = asmap->failedPDAs[0];
206 		fcol = failedPDA->col;
207 		rstat = raidPtr->status;
208 		prior_recon = (rstat == rf_rs_reconfigured) || (
209 		    (rstat == rf_rs_reconstructing) ?
210 		    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
211 		    );
212 		if (prior_recon) {
213 			oc = fcol;
214 			oo = failedPDA->startSector;
215 			/*
216 		         * If we did distributed sparing, we'd monkey with that here.
217 		         * But we don't, so we'll
218 		         */
219 			failedPDA->col = raidPtr->Disks[fcol].spareCol;
220 			/*
221 		         * Redirect other components, iff necessary. This looks
222 		         * pretty suspicious to me, but it's what the raid5
223 		         * DAG select does.
224 		         */
225 			if (asmap->parityInfo->next) {
226 				if (failedPDA == asmap->parityInfo) {
227 					failedPDA->next->col = failedPDA->col;
228 				} else {
229 					if (failedPDA == asmap->parityInfo->next) {
230 						asmap->parityInfo->col = failedPDA->col;
231 					}
232 				}
233 			}
234 #if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0
235 			if (rf_dagDebug || rf_mapDebug) {
236 				printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
237 				       raidPtr->raidid, type, oc,
238 				       (long) oo,
239 				       failedPDA->col,
240 				       (long) failedPDA->startSector);
241 			}
242 #endif
243 			asmap->numDataFailed = asmap->numParityFailed = 0;
244 		}
245 	}
246 	if (type == RF_IO_TYPE_READ) {
247 		if (asmap->numDataFailed == 0)
248 			*createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
249 		else
250 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
251 	} else {
252 		*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
253 	}
254 }
255 
256 int
rf_VerifyParityRAID1(RF_Raid_t * raidPtr,RF_RaidAddr_t raidAddr,RF_PhysDiskAddr_t * parityPDA,int correct_it,RF_RaidAccessFlags_t flags)257 rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
258 		     RF_PhysDiskAddr_t *parityPDA, int correct_it,
259 		     RF_RaidAccessFlags_t flags)
260 {
261 	int     nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
262 	RF_DagNode_t *blockNode, *wrBlock;
263 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;
264 	RF_AccessStripeMapHeader_t *asm_h;
265 	RF_AllocListElem_t *allocList;
266 #if RF_ACC_TRACE > 0
267 	RF_AccTraceEntry_t tracerec;
268 #endif
269 	RF_ReconUnitNum_t which_ru;
270 	RF_RaidLayout_t *layoutPtr;
271 	RF_AccessStripeMap_t *aasm;
272 	RF_SectorCount_t nsector;
273 	RF_RaidAddr_t startAddr;
274 	char   *bf, *buf1, *buf2;
275 	RF_PhysDiskAddr_t *pda;
276 	RF_StripeNum_t psID;
277 	RF_MCPair_t *mcpair;
278 
279 	layoutPtr = &raidPtr->Layout;
280 	startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
281 	nsector = parityPDA->numSector;
282 	nbytes = rf_RaidAddressToByte(raidPtr, nsector);
283 	psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
284 
285 	asm_h = NULL;
286 	rd_dag_h = wr_dag_h = NULL;
287 	mcpair = NULL;
288 
289 	ret = RF_PARITY_COULD_NOT_VERIFY;
290 
291 	rf_MakeAllocList(allocList);
292 	if (allocList == NULL)
293 		return (RF_PARITY_COULD_NOT_VERIFY);
294 	mcpair = rf_AllocMCPair(raidPtr);
295 	if (mcpair == NULL)
296 		goto done;
297 	RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
298 	stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
299 	bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
300 	bf = RF_MallocAndAdd(bcount, allocList);
301 	if (bf == NULL)
302 		goto done;
303 #if RF_DEBUG_VERIFYPARITY
304 	if (rf_verifyParityDebug) {
305 		printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
306 		       raidPtr->raidid, (long) bf, bcount, (long) bf,
307 		       (long) bf + bcount);
308 	}
309 #endif
310 	/*
311          * Generate a DAG which will read the entire stripe- then we can
312          * just compare data chunks versus "parity" chunks.
313          */
314 
315 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, bf,
316 	    rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
317 	    RF_IO_NORMAL_PRIORITY);
318 	if (rd_dag_h == NULL)
319 		goto done;
320 	blockNode = rd_dag_h->succedents[0];
321 
322 	/*
323          * Map the access to physical disk addresses (PDAs)- this will
324          * get us both a list of data addresses, and "parity" addresses
325          * (which are really mirror copies).
326          */
327 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
328 	    bf, RF_DONT_REMAP);
329 	aasm = asm_h->stripeMap;
330 
331 	buf1 = bf;
332 	/*
333          * Loop through the data blocks, setting up read nodes for each.
334          */
335 	for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
336 		RF_ASSERT(pda);
337 
338 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
339 
340 		RF_ASSERT(pda->numSector != 0);
341 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
342 			/* cannot verify parity with dead disk */
343 			goto done;
344 		}
345 		pda->bufPtr = buf1;
346 		blockNode->succedents[i]->params[0].p = pda;
347 		blockNode->succedents[i]->params[1].p = buf1;
348 		blockNode->succedents[i]->params[2].v = psID;
349 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
350 		buf1 += nbytes;
351 	}
352 	RF_ASSERT(pda == NULL);
353 	/*
354          * keep i, buf1 running
355          *
356          * Loop through parity blocks, setting up read nodes for each.
357          */
358 	for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
359 		RF_ASSERT(pda);
360 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
361 		RF_ASSERT(pda->numSector != 0);
362 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
363 			/* cannot verify parity with dead disk */
364 			goto done;
365 		}
366 		pda->bufPtr = buf1;
367 		blockNode->succedents[i]->params[0].p = pda;
368 		blockNode->succedents[i]->params[1].p = buf1;
369 		blockNode->succedents[i]->params[2].v = psID;
370 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
371 		buf1 += nbytes;
372 	}
373 	RF_ASSERT(pda == NULL);
374 
375 #if RF_ACC_TRACE > 0
376 	memset(&tracerec, 0, sizeof(tracerec));
377 	rd_dag_h->tracerec = &tracerec;
378 #endif
379 #if 0
380 	if (rf_verifyParityDebug > 1) {
381 		printf("raid%d: RAID1 parity verify read dag:\n",
382 		       raidPtr->raidid);
383 		rf_PrintDAGList(rd_dag_h);
384 	}
385 #endif
386 	RF_LOCK_MCPAIR(mcpair);
387 	mcpair->flag = 0;
388 	RF_UNLOCK_MCPAIR(mcpair);
389 
390 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
391 	    (void *) mcpair);
392 
393 	RF_LOCK_MCPAIR(mcpair);
394 	while (mcpair->flag == 0) {
395 		RF_WAIT_MCPAIR(mcpair);
396 	}
397 	RF_UNLOCK_MCPAIR(mcpair);
398 
399 	if (rd_dag_h->status != rf_enable) {
400 		RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
401 		ret = RF_PARITY_COULD_NOT_VERIFY;
402 		goto done;
403 	}
404 	/*
405          * buf1 is the beginning of the data blocks chunk
406          * buf2 is the beginning of the parity blocks chunk
407          */
408 	buf1 = bf;
409 	buf2 = bf + (nbytes * layoutPtr->numDataCol);
410 	ret = RF_PARITY_OKAY;
411 	/*
412          * bbufs is "bad bufs"- an array whose entries are the data
413          * column numbers where we had miscompares. (That is, column 0
414          * and column 1 of the array are mirror copies, and are considered
415          * "data column 0" for this purpose).
416          */
417 	bbufs = RF_MallocAndAdd(layoutPtr->numParityCol * sizeof(*bbufs),
418 	    allocList);
419 	nbad = 0;
420 	/*
421          * Check data vs "parity" (mirror copy).
422          */
423 	for (i = 0; i < layoutPtr->numDataCol; i++) {
424 #if RF_DEBUG_VERIFYPARITY
425 		if (rf_verifyParityDebug) {
426 			printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
427 			       raidPtr->raidid, nbytes, i, (long) buf1,
428 			       (long) buf2, (long) bf);
429 		}
430 #endif
431 		ret = memcmp(buf1, buf2, nbytes);
432 		if (ret) {
433 #if RF_DEBUG_VERIFYPARITY
434 			if (rf_verifyParityDebug > 1) {
435 				for (j = 0; j < nbytes; j++) {
436 					if (buf1[j] != buf2[j])
437 						break;
438 				}
439 				printf("psid=%ld j=%d\n", (long) psID, j);
440 				printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
441 				    buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
442 				printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
443 				    buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
444 			}
445 			if (rf_verifyParityDebug) {
446 				printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
447 			}
448 #endif
449 			/*
450 		         * Parity is bad. Keep track of which columns were bad.
451 		         */
452 			if (bbufs)
453 				bbufs[nbad] = i;
454 			nbad++;
455 			ret = RF_PARITY_BAD;
456 		}
457 		buf1 += nbytes;
458 		buf2 += nbytes;
459 	}
460 
461 	if ((ret != RF_PARITY_OKAY) && correct_it) {
462 		ret = RF_PARITY_COULD_NOT_CORRECT;
463 #if RF_DEBUG_VERIFYPARITY
464 		if (rf_verifyParityDebug) {
465 			printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
466 		}
467 #endif
468 		if (bbufs == NULL)
469 			goto done;
470 		/*
471 	         * Make a DAG with one write node for each bad unit. We'll simply
472 	         * write the contents of the data unit onto the parity unit for
473 	         * correction. (It's possible that the mirror copy was the correct
474 	         * copy, and that we're spooging good data by writing bad over it,
475 	         * but there's no way we can know that.
476 	         */
477 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, bf,
478 		    rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
479 		    RF_IO_NORMAL_PRIORITY);
480 		if (wr_dag_h == NULL)
481 			goto done;
482 		wrBlock = wr_dag_h->succedents[0];
483 		/*
484 	         * Fill in a write node for each bad compare.
485 	         */
486 		for (i = 0; i < nbad; i++) {
487 			j = i + layoutPtr->numDataCol;
488 			pda = blockNode->succedents[j]->params[0].p;
489 			pda->bufPtr = blockNode->succedents[i]->params[1].p;
490 			wrBlock->succedents[i]->params[0].p = pda;
491 			wrBlock->succedents[i]->params[1].p = pda->bufPtr;
492 			wrBlock->succedents[i]->params[2].v = psID;
493 			wrBlock->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
494 		}
495 #if RF_ACC_TRACE > 0
496 		memset(&tracerec, 0, sizeof(tracerec));
497 		wr_dag_h->tracerec = &tracerec;
498 #endif
499 #if 0
500 		if (rf_verifyParityDebug > 1) {
501 			printf("Parity verify write dag:\n");
502 			rf_PrintDAGList(wr_dag_h);
503 		}
504 #endif
505 		RF_LOCK_MCPAIR(mcpair);
506 		mcpair->flag = 0;
507 		RF_UNLOCK_MCPAIR(mcpair);
508 
509 		/* fire off the write DAG */
510 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
511 		    (void *) mcpair);
512 
513 		RF_LOCK_MCPAIR(mcpair);
514 		while (!mcpair->flag) {
515 			RF_WAIT_MCPAIR(mcpair);
516 		}
517 		RF_UNLOCK_MCPAIR(mcpair);
518 		if (wr_dag_h->status != rf_enable) {
519 			RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
520 			goto done;
521 		}
522 		ret = RF_PARITY_CORRECTED;
523 	}
524 done:
525 	/*
526          * All done. We might've gotten here without doing part of the function,
527          * so cleanup what we have to and return our running status.
528          */
529 	if (asm_h)
530 		rf_FreeAccessStripeMap(raidPtr, asm_h);
531 	if (rd_dag_h)
532 		rf_FreeDAG(rd_dag_h);
533 	if (wr_dag_h)
534 		rf_FreeDAG(wr_dag_h);
535 	if (mcpair)
536 		rf_FreeMCPair(raidPtr, mcpair);
537 	rf_FreeAllocList(allocList);
538 #if RF_DEBUG_VERIFYPARITY
539 	if (rf_verifyParityDebug) {
540 		printf("raid%d: RAID1 parity verify, returning %d\n",
541 		       raidPtr->raidid, ret);
542 	}
543 #endif
544 	return (ret);
545 }
546 
547 /* rbuf          - the recon buffer to submit
548  * keep_it       - whether we can keep this buffer or we have to return it
549  * use_committed - whether to use a committed or an available recon buffer
550  */
551 
552 int
rf_SubmitReconBufferRAID1(RF_ReconBuffer_t * rbuf,int keep_it,int use_committed)553 rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it,
554 			  int use_committed)
555 {
556 	RF_ReconParityStripeStatus_t *pssPtr;
557 	RF_ReconCtrl_t *reconCtrlPtr;
558 	int     retcode;
559 	RF_CallbackValueDesc_t *cb, *p;
560 	RF_ReconBuffer_t *t;
561 	RF_Raid_t *raidPtr;
562 	void *ta;
563 
564 	retcode = 0;
565 
566 	raidPtr = rbuf->raidPtr;
567 	reconCtrlPtr = raidPtr->reconControl;
568 
569 	RF_ASSERT(rbuf);
570 	RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
571 
572 #if RF_DEBUG_RECON
573 	if (rf_reconbufferDebug) {
574 		printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n",
575 		       raidPtr->raidid, rbuf->col,
576 		       (long) rbuf->parityStripeID, rbuf->which_ru,
577 		       (long) rbuf->failedDiskSectorOffset);
578 	}
579 #endif
580 	if (rf_reconDebug) {
581 		unsigned char *b = rbuf->buffer;
582 		printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
583 		    (long) rbuf->parityStripeID, (long) rbuf->buffer);
584 		printf("RAID1 psid %ld   %02x %02x %02x %02x %02x\n",
585 		    (long)rbuf->parityStripeID, b[0], b[1], b[2], b[3], b[4]);
586 	}
587 	RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
588 
589 	rf_lock_mutex2(reconCtrlPtr->rb_mutex);
590 	while(reconCtrlPtr->rb_lock) {
591 		rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
592 	}
593 	reconCtrlPtr->rb_lock = 1;
594 	rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
595 
596 	pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
597 	    rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, NULL);
598 	RF_ASSERT(pssPtr);	/* if it didn't exist, we wouldn't have gotten
599 				 * an rbuf for it */
600 
601 	/*
602          * Since this is simple mirroring, the first submission for a stripe is also
603          * treated as the last.
604          */
605 
606 	t = NULL;
607 	if (keep_it) {
608 #if RF_DEBUG_RECON
609 		if (rf_reconbufferDebug) {
610 			printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
611 			       raidPtr->raidid);
612 		}
613 #endif
614 		t = rbuf;
615 	} else {
616 		if (use_committed) {
617 #if RF_DEBUG_RECON
618 			if (rf_reconbufferDebug) {
619 				printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
620 			}
621 #endif
622 			t = reconCtrlPtr->committedRbufs;
623 			RF_ASSERT(t);
624 			reconCtrlPtr->committedRbufs = t->next;
625 			t->next = NULL;
626 		} else
627 			if (reconCtrlPtr->floatingRbufs) {
628 #if RF_DEBUG_RECON
629 				if (rf_reconbufferDebug) {
630 					printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
631 				}
632 #endif
633 				t = reconCtrlPtr->floatingRbufs;
634 				reconCtrlPtr->floatingRbufs = t->next;
635 				t->next = NULL;
636 			}
637 	}
638 	if (t == NULL) {
639 #if RF_DEBUG_RECON
640 		if (rf_reconbufferDebug) {
641 			printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
642 		}
643 #endif
644 		RF_ASSERT((keep_it == 0) && (use_committed == 0));
645 		raidPtr->procsInBufWait++;
646 		if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
647 		    && (raidPtr->numFullReconBuffers == 0)) {
648 			/* ruh-ro */
649 			RF_ERRORMSG("Buffer wait deadlock\n");
650 			rf_PrintPSStatusTable(raidPtr);
651 			RF_PANIC();
652 		}
653 		pssPtr->flags |= RF_PSS_BUFFERWAIT;
654 		cb = rf_AllocCallbackValueDesc(raidPtr);
655 		cb->col = rbuf->col;
656 		cb->v = rbuf->parityStripeID;
657 		cb->next = NULL;
658 		if (reconCtrlPtr->bufferWaitList == NULL) {
659 			/* we are the wait list- lucky us */
660 			reconCtrlPtr->bufferWaitList = cb;
661 		} else {
662 			/* append to wait list */
663 			for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
664 			p->next = cb;
665 		}
666 		retcode = 1;
667 		goto out;
668 	}
669 	if (t != rbuf) {
670 		t->col = reconCtrlPtr->fcol;
671 		t->parityStripeID = rbuf->parityStripeID;
672 		t->which_ru = rbuf->which_ru;
673 		t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
674 		t->spCol = rbuf->spCol;
675 		t->spOffset = rbuf->spOffset;
676 		/* Swap buffers. DANCE! */
677 		ta = t->buffer;
678 		t->buffer = rbuf->buffer;
679 		rbuf->buffer = ta;
680 	}
681 	/*
682          * Use the rbuf we've been given as the target.
683          */
684 	RF_ASSERT(pssPtr->rbuf == NULL);
685 	pssPtr->rbuf = t;
686 
687 	t->count = 1;
688 	/*
689          * Below, we use 1 for numDataCol (which is equal to the count in the
690          * previous line), so we'll always be done.
691          */
692 	rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
693 
694 out:
695 	RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
696 	rf_lock_mutex2(reconCtrlPtr->rb_mutex);
697 	reconCtrlPtr->rb_lock = 0;
698 	rf_broadcast_cond2(reconCtrlPtr->rb_cv);
699 	rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
700 #if RF_DEBUG_RECON
701 	if (rf_reconbufferDebug) {
702 		printf("raid%d: RAID1 rbuf submission: returning %d\n",
703 		       raidPtr->raidid, retcode);
704 	}
705 #endif
706 	return (retcode);
707 }
708 
709 RF_HeadSepLimit_t
rf_GetDefaultHeadSepLimitRAID1(RF_Raid_t * raidPtr)710 rf_GetDefaultHeadSepLimitRAID1(RF_Raid_t *raidPtr)
711 {
712 	return (10);
713 }
714 
715