xref: /netbsd/sys/dev/raidframe/rf_raid1.c (revision c4a72b64)
1 /*	$NetBSD: rf_raid1.c,v 1.13 2002/09/23 03:38:51 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*****************************************************************************
30  *
31  * rf_raid1.c -- implements RAID Level 1
32  *
33  *****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.13 2002/09/23 03:38:51 oster Exp $");
37 
38 #include "rf_raid.h"
39 #include "rf_raid1.h"
40 #include "rf_dag.h"
41 #include "rf_dagffrd.h"
42 #include "rf_dagffwr.h"
43 #include "rf_dagdegrd.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_diskqueue.h"
47 #include "rf_general.h"
48 #include "rf_utils.h"
49 #include "rf_parityscan.h"
50 #include "rf_mcpair.h"
51 #include "rf_layout.h"
52 #include "rf_map.h"
53 #include "rf_engine.h"
54 #include "rf_reconbuffer.h"
55 
56 typedef struct RF_Raid1ConfigInfo_s {
57 	RF_RowCol_t **stripeIdentifier;
58 }       RF_Raid1ConfigInfo_t;
59 /* start of day code specific to RAID level 1 */
60 int
61 rf_ConfigureRAID1(
62     RF_ShutdownList_t ** listp,
63     RF_Raid_t * raidPtr,
64     RF_Config_t * cfgPtr)
65 {
66 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
67 	RF_Raid1ConfigInfo_t *info;
68 	RF_RowCol_t i;
69 
70 	/* create a RAID level 1 configuration structure */
71 	RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
72 	if (info == NULL)
73 		return (ENOMEM);
74 	layoutPtr->layoutSpecificInfo = (void *) info;
75 
76 	/* ... and fill it in. */
77 	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
78 	if (info->stripeIdentifier == NULL)
79 		return (ENOMEM);
80 	for (i = 0; i < (raidPtr->numCol / 2); i++) {
81 		info->stripeIdentifier[i][0] = (2 * i);
82 		info->stripeIdentifier[i][1] = (2 * i) + 1;
83 	}
84 
85 	RF_ASSERT(raidPtr->numRow == 1);
86 
87 	/* this implementation of RAID level 1 uses one row of numCol disks
88 	 * and allows multiple (numCol / 2) stripes per row.  A stripe
89 	 * consists of a single data unit and a single parity (mirror) unit.
90 	 * stripe id = raidAddr / stripeUnitSize */
91 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
92 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
93 	layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
94 	layoutPtr->numDataCol = 1;
95 	layoutPtr->numParityCol = 1;
96 	return (0);
97 }
98 
99 
100 /* returns the physical disk location of the primary copy in the mirror pair */
101 void
102 rf_MapSectorRAID1(
103     RF_Raid_t * raidPtr,
104     RF_RaidAddr_t raidSector,
105     RF_RowCol_t * row,
106     RF_RowCol_t * col,
107     RF_SectorNum_t * diskSector,
108     int remap)
109 {
110 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
111 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
112 
113 	*row = 0;
114 	*col = 2 * mirrorPair;
115 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
116 }
117 
118 
119 /* Map Parity
120  *
121  * returns the physical disk location of the secondary copy in the mirror
122  * pair
123  */
124 void
125 rf_MapParityRAID1(
126     RF_Raid_t * raidPtr,
127     RF_RaidAddr_t raidSector,
128     RF_RowCol_t * row,
129     RF_RowCol_t * col,
130     RF_SectorNum_t * diskSector,
131     int remap)
132 {
133 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
134 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
135 
136 	*row = 0;
137 	*col = (2 * mirrorPair) + 1;
138 
139 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
140 }
141 
142 
143 /* IdentifyStripeRAID1
144  *
145  * returns a list of disks for a given redundancy group
146  */
147 void
148 rf_IdentifyStripeRAID1(
149     RF_Raid_t * raidPtr,
150     RF_RaidAddr_t addr,
151     RF_RowCol_t ** diskids,
152     RF_RowCol_t * outRow)
153 {
154 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
155 	RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
156 	RF_ASSERT(stripeID >= 0);
157 	RF_ASSERT(addr >= 0);
158 	*outRow = 0;
159 	*diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
160 	RF_ASSERT(*diskids);
161 }
162 
163 
164 /* MapSIDToPSIDRAID1
165  *
166  * maps a logical stripe to a stripe in the redundant array
167  */
168 void
169 rf_MapSIDToPSIDRAID1(
170     RF_RaidLayout_t * layoutPtr,
171     RF_StripeNum_t stripeID,
172     RF_StripeNum_t * psID,
173     RF_ReconUnitNum_t * which_ru)
174 {
175 	*which_ru = 0;
176 	*psID = stripeID;
177 }
178 
179 
180 
181 /******************************************************************************
182  * select a graph to perform a single-stripe access
183  *
184  * Parameters:  raidPtr    - description of the physical array
185  *              type       - type of operation (read or write) requested
186  *              asmap      - logical & physical addresses for this access
187  *              createFunc - name of function to use to create the graph
188  *****************************************************************************/
189 
190 void
191 rf_RAID1DagSelect(
192     RF_Raid_t * raidPtr,
193     RF_IoType_t type,
194     RF_AccessStripeMap_t * asmap,
195     RF_VoidFuncPtr * createFunc)
196 {
197 	RF_RowCol_t frow, fcol, or, oc;
198 	RF_PhysDiskAddr_t *failedPDA;
199 	int     prior_recon;
200 	RF_RowStatus_t rstat;
201 	RF_SectorNum_t oo;
202 
203 
204 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
205 
206 	if (asmap->numDataFailed + asmap->numParityFailed > 1) {
207 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
208 		*createFunc = NULL;
209 		return;
210 	}
211 	if (asmap->numDataFailed + asmap->numParityFailed) {
212 		/*
213 	         * We've got a fault. Re-map to spare space, iff applicable.
214 	         * Shouldn't the arch-independent code do this for us?
215 	         * Anyway, it turns out if we don't do this here, then when
216 	         * we're reconstructing, writes go only to the surviving
217 	         * original disk, and aren't reflected on the reconstructed
218 	         * spare. Oops. --jimz
219 	         */
220 		failedPDA = asmap->failedPDAs[0];
221 		frow = failedPDA->row;
222 		fcol = failedPDA->col;
223 		rstat = raidPtr->status[frow];
224 		prior_recon = (rstat == rf_rs_reconfigured) || (
225 		    (rstat == rf_rs_reconstructing) ?
226 		    rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
227 		    );
228 		if (prior_recon) {
229 			or = frow;
230 			oc = fcol;
231 			oo = failedPDA->startSector;
232 			/*
233 		         * If we did distributed sparing, we'd monkey with that here.
234 		         * But we don't, so we'll
235 		         */
236 			failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
237 			failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
238 			/*
239 		         * Redirect other components, iff necessary. This looks
240 		         * pretty suspicious to me, but it's what the raid5
241 		         * DAG select does.
242 		         */
243 			if (asmap->parityInfo->next) {
244 				if (failedPDA == asmap->parityInfo) {
245 					failedPDA->next->row = failedPDA->row;
246 					failedPDA->next->col = failedPDA->col;
247 				} else {
248 					if (failedPDA == asmap->parityInfo->next) {
249 						asmap->parityInfo->row = failedPDA->row;
250 						asmap->parityInfo->col = failedPDA->col;
251 					}
252 				}
253 			}
254 			if (rf_dagDebug || rf_mapDebug) {
255 				printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
256 				       raidPtr->raidid, type, or, oc,
257 				       (long) oo, failedPDA->row,
258 				       failedPDA->col,
259 				       (long) failedPDA->startSector);
260 			}
261 			asmap->numDataFailed = asmap->numParityFailed = 0;
262 		}
263 	}
264 	if (type == RF_IO_TYPE_READ) {
265 		if (asmap->numDataFailed == 0)
266 			*createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
267 		else
268 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
269 	} else {
270 		*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
271 	}
272 }
273 
274 int
275 rf_VerifyParityRAID1(
276     RF_Raid_t * raidPtr,
277     RF_RaidAddr_t raidAddr,
278     RF_PhysDiskAddr_t * parityPDA,
279     int correct_it,
280     RF_RaidAccessFlags_t flags)
281 {
282 	int     nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
283 	RF_DagNode_t *blockNode, *wrBlock;
284 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;
285 	RF_AccessStripeMapHeader_t *asm_h;
286 	RF_AllocListElem_t *allocList;
287 	RF_AccTraceEntry_t tracerec;
288 	RF_ReconUnitNum_t which_ru;
289 	RF_RaidLayout_t *layoutPtr;
290 	RF_AccessStripeMap_t *aasm;
291 	RF_SectorCount_t nsector;
292 	RF_RaidAddr_t startAddr;
293 	char   *buf, *buf1, *buf2;
294 	RF_PhysDiskAddr_t *pda;
295 	RF_StripeNum_t psID;
296 	RF_MCPair_t *mcpair;
297 
298 	layoutPtr = &raidPtr->Layout;
299 	startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
300 	nsector = parityPDA->numSector;
301 	nbytes = rf_RaidAddressToByte(raidPtr, nsector);
302 	psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
303 
304 	asm_h = NULL;
305 	rd_dag_h = wr_dag_h = NULL;
306 	mcpair = NULL;
307 
308 	ret = RF_PARITY_COULD_NOT_VERIFY;
309 
310 	rf_MakeAllocList(allocList);
311 	if (allocList == NULL)
312 		return (RF_PARITY_COULD_NOT_VERIFY);
313 	mcpair = rf_AllocMCPair();
314 	if (mcpair == NULL)
315 		goto done;
316 	RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
317 	stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
318 	bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
319 	RF_MallocAndAdd(buf, bcount, (char *), allocList);
320 	if (buf == NULL)
321 		goto done;
322 #if RF_DEBUG_VERIFYPARITY
323 	if (rf_verifyParityDebug) {
324 		printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
325 		       raidPtr->raidid, (long) buf, bcount, (long) buf,
326 		       (long) buf + bcount);
327 	}
328 #endif
329 	/*
330          * Generate a DAG which will read the entire stripe- then we can
331          * just compare data chunks versus "parity" chunks.
332          */
333 
334 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
335 	    rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
336 	    RF_IO_NORMAL_PRIORITY);
337 	if (rd_dag_h == NULL)
338 		goto done;
339 	blockNode = rd_dag_h->succedents[0];
340 
341 	/*
342          * Map the access to physical disk addresses (PDAs)- this will
343          * get us both a list of data addresses, and "parity" addresses
344          * (which are really mirror copies).
345          */
346 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
347 	    buf, RF_DONT_REMAP);
348 	aasm = asm_h->stripeMap;
349 
350 	buf1 = buf;
351 	/*
352          * Loop through the data blocks, setting up read nodes for each.
353          */
354 	for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
355 		RF_ASSERT(pda);
356 
357 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
358 
359 		RF_ASSERT(pda->numSector != 0);
360 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
361 			/* cannot verify parity with dead disk */
362 			goto done;
363 		}
364 		pda->bufPtr = buf1;
365 		blockNode->succedents[i]->params[0].p = pda;
366 		blockNode->succedents[i]->params[1].p = buf1;
367 		blockNode->succedents[i]->params[2].v = psID;
368 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
369 		buf1 += nbytes;
370 	}
371 	RF_ASSERT(pda == NULL);
372 	/*
373          * keep i, buf1 running
374          *
375          * Loop through parity blocks, setting up read nodes for each.
376          */
377 	for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
378 		RF_ASSERT(pda);
379 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
380 		RF_ASSERT(pda->numSector != 0);
381 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
382 			/* cannot verify parity with dead disk */
383 			goto done;
384 		}
385 		pda->bufPtr = buf1;
386 		blockNode->succedents[i]->params[0].p = pda;
387 		blockNode->succedents[i]->params[1].p = buf1;
388 		blockNode->succedents[i]->params[2].v = psID;
389 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
390 		buf1 += nbytes;
391 	}
392 	RF_ASSERT(pda == NULL);
393 
394 	memset((char *) &tracerec, 0, sizeof(tracerec));
395 	rd_dag_h->tracerec = &tracerec;
396 
397 #if 0
398 	if (rf_verifyParityDebug > 1) {
399 		printf("raid%d: RAID1 parity verify read dag:\n",
400 		       raidPtr->raidid);
401 		rf_PrintDAGList(rd_dag_h);
402 	}
403 #endif
404 	RF_LOCK_MUTEX(mcpair->mutex);
405 	mcpair->flag = 0;
406 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
407 	    (void *) mcpair);
408 	while (mcpair->flag == 0) {
409 		RF_WAIT_MCPAIR(mcpair);
410 	}
411 	RF_UNLOCK_MUTEX(mcpair->mutex);
412 
413 	if (rd_dag_h->status != rf_enable) {
414 		RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
415 		ret = RF_PARITY_COULD_NOT_VERIFY;
416 		goto done;
417 	}
418 	/*
419          * buf1 is the beginning of the data blocks chunk
420          * buf2 is the beginning of the parity blocks chunk
421          */
422 	buf1 = buf;
423 	buf2 = buf + (nbytes * layoutPtr->numDataCol);
424 	ret = RF_PARITY_OKAY;
425 	/*
426          * bbufs is "bad bufs"- an array whose entries are the data
427          * column numbers where we had miscompares. (That is, column 0
428          * and column 1 of the array are mirror copies, and are considered
429          * "data column 0" for this purpose).
430          */
431 	RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
432 	    allocList);
433 	nbad = 0;
434 	/*
435          * Check data vs "parity" (mirror copy).
436          */
437 	for (i = 0; i < layoutPtr->numDataCol; i++) {
438 #if RF_DEBUG_VERIFYPARITY
439 		if (rf_verifyParityDebug) {
440 			printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
441 			       raidPtr->raidid, nbytes, i, (long) buf1,
442 			       (long) buf2, (long) buf);
443 		}
444 #endif
445 		ret = memcmp(buf1, buf2, nbytes);
446 		if (ret) {
447 #if RF_DEBUG_VERIFYPARITY
448 			if (rf_verifyParityDebug > 1) {
449 				for (j = 0; j < nbytes; j++) {
450 					if (buf1[j] != buf2[j])
451 						break;
452 				}
453 				printf("psid=%ld j=%d\n", (long) psID, j);
454 				printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
455 				    buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
456 				printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
457 				    buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
458 			}
459 			if (rf_verifyParityDebug) {
460 				printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
461 			}
462 #endif
463 			/*
464 		         * Parity is bad. Keep track of which columns were bad.
465 		         */
466 			if (bbufs)
467 				bbufs[nbad] = i;
468 			nbad++;
469 			ret = RF_PARITY_BAD;
470 		}
471 		buf1 += nbytes;
472 		buf2 += nbytes;
473 	}
474 
475 	if ((ret != RF_PARITY_OKAY) && correct_it) {
476 		ret = RF_PARITY_COULD_NOT_CORRECT;
477 #if RF_DEBUG_VERIFYPARITY
478 		if (rf_verifyParityDebug) {
479 			printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
480 		}
481 #endif
482 		if (bbufs == NULL)
483 			goto done;
484 		/*
485 	         * Make a DAG with one write node for each bad unit. We'll simply
486 	         * write the contents of the data unit onto the parity unit for
487 	         * correction. (It's possible that the mirror copy was the correct
488 	         * copy, and that we're spooging good data by writing bad over it,
489 	         * but there's no way we can know that.
490 	         */
491 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
492 		    rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
493 		    RF_IO_NORMAL_PRIORITY);
494 		if (wr_dag_h == NULL)
495 			goto done;
496 		wrBlock = wr_dag_h->succedents[0];
497 		/*
498 	         * Fill in a write node for each bad compare.
499 	         */
500 		for (i = 0; i < nbad; i++) {
501 			j = i + layoutPtr->numDataCol;
502 			pda = blockNode->succedents[j]->params[0].p;
503 			pda->bufPtr = blockNode->succedents[i]->params[1].p;
504 			wrBlock->succedents[i]->params[0].p = pda;
505 			wrBlock->succedents[i]->params[1].p = pda->bufPtr;
506 			wrBlock->succedents[i]->params[2].v = psID;
507 			wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
508 		}
509 		memset((char *) &tracerec, 0, sizeof(tracerec));
510 		wr_dag_h->tracerec = &tracerec;
511 #if 0
512 		if (rf_verifyParityDebug > 1) {
513 			printf("Parity verify write dag:\n");
514 			rf_PrintDAGList(wr_dag_h);
515 		}
516 #endif
517 		RF_LOCK_MUTEX(mcpair->mutex);
518 		mcpair->flag = 0;
519 		/* fire off the write DAG */
520 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
521 		    (void *) mcpair);
522 		while (!mcpair->flag) {
523 			RF_WAIT_COND(mcpair->cond, mcpair->mutex);
524 		}
525 		RF_UNLOCK_MUTEX(mcpair->mutex);
526 		if (wr_dag_h->status != rf_enable) {
527 			RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
528 			goto done;
529 		}
530 		ret = RF_PARITY_CORRECTED;
531 	}
532 done:
533 	/*
534          * All done. We might've gotten here without doing part of the function,
535          * so cleanup what we have to and return our running status.
536          */
537 	if (asm_h)
538 		rf_FreeAccessStripeMap(asm_h);
539 	if (rd_dag_h)
540 		rf_FreeDAG(rd_dag_h);
541 	if (wr_dag_h)
542 		rf_FreeDAG(wr_dag_h);
543 	if (mcpair)
544 		rf_FreeMCPair(mcpair);
545 	rf_FreeAllocList(allocList);
546 #if RF_DEBUG_VERIFYPARITY
547 	if (rf_verifyParityDebug) {
548 		printf("raid%d: RAID1 parity verify, returning %d\n",
549 		       raidPtr->raidid, ret);
550 	}
551 #endif
552 	return (ret);
553 }
554 
555 int
556 rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
557 	RF_ReconBuffer_t *rbuf;	/* the recon buffer to submit */
558 	int     keep_it;	/* whether we can keep this buffer or we have
559 				 * to return it */
560 	int     use_committed;	/* whether to use a committed or an available
561 				 * recon buffer */
562 {
563 	RF_ReconParityStripeStatus_t *pssPtr;
564 	RF_ReconCtrl_t *reconCtrlPtr;
565 	int     retcode, created;
566 	RF_CallbackDesc_t *cb, *p;
567 	RF_ReconBuffer_t *t;
568 	RF_Raid_t *raidPtr;
569 	caddr_t ta;
570 
571 	retcode = 0;
572 	created = 0;
573 
574 	raidPtr = rbuf->raidPtr;
575 	reconCtrlPtr = raidPtr->reconControl[rbuf->row];
576 
577 	RF_ASSERT(rbuf);
578 	RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
579 
580 #if RF_DEBUG_RECON
581 	if (rf_reconbufferDebug) {
582 		printf("raid%d: RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n",
583 		       raidPtr->raidid, rbuf->row, rbuf->col,
584 		       (long) rbuf->parityStripeID, rbuf->which_ru,
585 		       (long) rbuf->failedDiskSectorOffset);
586 	}
587 #endif
588 	if (rf_reconDebug) {
589 		printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
590 		    (long) rbuf->parityStripeID, (long) rbuf->buffer);
591 		printf("RAID1 psid %ld   %02x %02x %02x %02x %02x\n",
592 		    (long) rbuf->parityStripeID,
593 		    rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
594 		    rbuf->buffer[4]);
595 	}
596 	RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
597 
598 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
599 
600 	pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
601 	    rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
602 	RF_ASSERT(pssPtr);	/* if it didn't exist, we wouldn't have gotten
603 				 * an rbuf for it */
604 
605 	/*
606          * Since this is simple mirroring, the first submission for a stripe is also
607          * treated as the last.
608          */
609 
610 	t = NULL;
611 	if (keep_it) {
612 #if RF_DEBUG_RECON
613 		if (rf_reconbufferDebug) {
614 			printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
615 			       raidPtr->raidid);
616 		}
617 #endif
618 		t = rbuf;
619 	} else {
620 		if (use_committed) {
621 #if RF_DEBUG_RECON
622 			if (rf_reconbufferDebug) {
623 				printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
624 			}
625 #endif
626 			t = reconCtrlPtr->committedRbufs;
627 			RF_ASSERT(t);
628 			reconCtrlPtr->committedRbufs = t->next;
629 			t->next = NULL;
630 		} else
631 			if (reconCtrlPtr->floatingRbufs) {
632 #if RF_DEBUG_RECON
633 				if (rf_reconbufferDebug) {
634 					printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
635 				}
636 #endif
637 				t = reconCtrlPtr->floatingRbufs;
638 				reconCtrlPtr->floatingRbufs = t->next;
639 				t->next = NULL;
640 			}
641 	}
642 	if (t == NULL) {
643 #if RF_DEBUG_RECON
644 		if (rf_reconbufferDebug) {
645 			printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
646 		}
647 #endif
648 		RF_ASSERT((keep_it == 0) && (use_committed == 0));
649 		raidPtr->procsInBufWait++;
650 		if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
651 		    && (raidPtr->numFullReconBuffers == 0)) {
652 			/* ruh-ro */
653 			RF_ERRORMSG("Buffer wait deadlock\n");
654 			rf_PrintPSStatusTable(raidPtr, rbuf->row);
655 			RF_PANIC();
656 		}
657 		pssPtr->flags |= RF_PSS_BUFFERWAIT;
658 		cb = rf_AllocCallbackDesc();
659 		cb->row = rbuf->row;
660 		cb->col = rbuf->col;
661 		cb->callbackArg.v = rbuf->parityStripeID;
662 		cb->callbackArg2.v = rbuf->which_ru;
663 		cb->next = NULL;
664 		if (reconCtrlPtr->bufferWaitList == NULL) {
665 			/* we are the wait list- lucky us */
666 			reconCtrlPtr->bufferWaitList = cb;
667 		} else {
668 			/* append to wait list */
669 			for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
670 			p->next = cb;
671 		}
672 		retcode = 1;
673 		goto out;
674 	}
675 	if (t != rbuf) {
676 		t->row = rbuf->row;
677 		t->col = reconCtrlPtr->fcol;
678 		t->parityStripeID = rbuf->parityStripeID;
679 		t->which_ru = rbuf->which_ru;
680 		t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
681 		t->spRow = rbuf->spRow;
682 		t->spCol = rbuf->spCol;
683 		t->spOffset = rbuf->spOffset;
684 		/* Swap buffers. DANCE! */
685 		ta = t->buffer;
686 		t->buffer = rbuf->buffer;
687 		rbuf->buffer = ta;
688 	}
689 	/*
690          * Use the rbuf we've been given as the target.
691          */
692 	RF_ASSERT(pssPtr->rbuf == NULL);
693 	pssPtr->rbuf = t;
694 
695 	t->count = 1;
696 	/*
697          * Below, we use 1 for numDataCol (which is equal to the count in the
698          * previous line), so we'll always be done.
699          */
700 	rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
701 
702 out:
703 	RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
704 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
705 #if RF_DEBUG_RECON
706 	if (rf_reconbufferDebug) {
707 		printf("raid%d: RAID1 rbuf submission: returning %d\n",
708 		       raidPtr->raidid, retcode);
709 	}
710 #endif
711 	return (retcode);
712 }
713