xref: /netbsd/sys/kern/subr_autoconf.c (revision 316af091)
1 /* $NetBSD: subr_autoconf.c,v 1.314 2023/07/18 11:57:37 riastradh Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.314 2023/07/18 11:57:37 riastradh Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/device_impl.h>
90 #include <sys/disklabel.h>
91 #include <sys/conf.h>
92 #include <sys/kauth.h>
93 #include <sys/kmem.h>
94 #include <sys/systm.h>
95 #include <sys/kernel.h>
96 #include <sys/errno.h>
97 #include <sys/proc.h>
98 #include <sys/reboot.h>
99 #include <sys/kthread.h>
100 #include <sys/buf.h>
101 #include <sys/dirent.h>
102 #include <sys/mount.h>
103 #include <sys/namei.h>
104 #include <sys/unistd.h>
105 #include <sys/fcntl.h>
106 #include <sys/lockf.h>
107 #include <sys/callout.h>
108 #include <sys/devmon.h>
109 #include <sys/cpu.h>
110 #include <sys/sysctl.h>
111 #include <sys/stdarg.h>
112 #include <sys/localcount.h>
113 
114 #include <sys/disk.h>
115 
116 #include <sys/rndsource.h>
117 
118 #include <machine/limits.h>
119 
120 /*
121  * Autoconfiguration subroutines.
122  */
123 
124 /*
125  * Device autoconfiguration timings are mixed into the entropy pool.
126  */
127 static krndsource_t rnd_autoconf_source;
128 
129 /*
130  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
131  * devices and drivers are found via these tables.
132  */
133 extern struct cfdata cfdata[];
134 extern const short cfroots[];
135 
136 /*
137  * List of all cfdriver structures.  We use this to detect duplicates
138  * when other cfdrivers are loaded.
139  */
140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
141 extern struct cfdriver * const cfdriver_list_initial[];
142 
143 /*
144  * Initial list of cfattach's.
145  */
146 extern const struct cfattachinit cfattachinit[];
147 
148 /*
149  * List of cfdata tables.  We always have one such list -- the one
150  * built statically when the kernel was configured.
151  */
152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
153 static struct cftable initcftable;
154 
155 #define	ROOT ((device_t)NULL)
156 
157 struct matchinfo {
158 	cfsubmatch_t fn;
159 	device_t parent;
160 	const int *locs;
161 	void	*aux;
162 	struct	cfdata *match;
163 	int	pri;
164 };
165 
166 struct alldevs_foray {
167 	int			af_s;
168 	struct devicelist	af_garbage;
169 };
170 
171 /*
172  * Internal version of the cfargs structure; all versions are
173  * canonicalized to this.
174  */
175 struct cfargs_internal {
176 	union {
177 		cfsubmatch_t	submatch;/* submatch function (direct config) */
178 		cfsearch_t	search;	 /* search function (indirect config) */
179 	};
180 	const char *	iattr;		/* interface attribute */
181 	const int *	locators;	/* locators array */
182 	devhandle_t	devhandle;	/* devhandle_t (by value) */
183 };
184 
185 static char *number(char *, int);
186 static void mapply(struct matchinfo *, cfdata_t);
187 static void config_devdelete(device_t);
188 static void config_devunlink(device_t, struct devicelist *);
189 static void config_makeroom(int, struct cfdriver *);
190 static void config_devlink(device_t);
191 static void config_alldevs_enter(struct alldevs_foray *);
192 static void config_alldevs_exit(struct alldevs_foray *);
193 static void config_add_attrib_dict(device_t);
194 static device_t	config_attach_internal(device_t, cfdata_t, void *,
195 		    cfprint_t, const struct cfargs_internal *);
196 
197 static void config_collect_garbage(struct devicelist *);
198 static void config_dump_garbage(struct devicelist *);
199 
200 static void pmflock_debug(device_t, const char *, int);
201 
202 static device_t deviter_next1(deviter_t *);
203 static void deviter_reinit(deviter_t *);
204 
205 struct deferred_config {
206 	TAILQ_ENTRY(deferred_config) dc_queue;
207 	device_t dc_dev;
208 	void (*dc_func)(device_t);
209 };
210 
211 TAILQ_HEAD(deferred_config_head, deferred_config);
212 
213 static struct deferred_config_head deferred_config_queue =
214 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
215 static struct deferred_config_head interrupt_config_queue =
216 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
217 static int interrupt_config_threads = 8;
218 static struct deferred_config_head mountroot_config_queue =
219 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
220 static int mountroot_config_threads = 2;
221 static lwp_t **mountroot_config_lwpids;
222 static size_t mountroot_config_lwpids_size;
223 bool root_is_mounted = false;
224 
225 static void config_process_deferred(struct deferred_config_head *, device_t);
226 
227 /* Hooks to finalize configuration once all real devices have been found. */
228 struct finalize_hook {
229 	TAILQ_ENTRY(finalize_hook) f_list;
230 	int (*f_func)(device_t);
231 	device_t f_dev;
232 };
233 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
234 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
235 static int config_finalize_done;
236 
237 /* list of all devices */
238 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
239 static kmutex_t alldevs_lock __cacheline_aligned;
240 static devgen_t alldevs_gen = 1;
241 static int alldevs_nread = 0;
242 static int alldevs_nwrite = 0;
243 static bool alldevs_garbage = false;
244 
245 static struct devicelist config_pending =
246     TAILQ_HEAD_INITIALIZER(config_pending);
247 static kmutex_t config_misc_lock;
248 static kcondvar_t config_misc_cv;
249 
250 static bool detachall = false;
251 
252 #define	STREQ(s1, s2)			\
253 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
254 
255 static bool config_initialized = false;	/* config_init() has been called. */
256 
257 static int config_do_twiddle;
258 static callout_t config_twiddle_ch;
259 
260 static void sysctl_detach_setup(struct sysctllog **);
261 
262 int no_devmon_insert(const char *, prop_dictionary_t);
263 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
264 
265 typedef int (*cfdriver_fn)(struct cfdriver *);
266 static int
frob_cfdrivervec(struct cfdriver * const * cfdriverv,cfdriver_fn drv_do,cfdriver_fn drv_undo,const char * style,bool dopanic)267 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
268 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
269 	const char *style, bool dopanic)
270 {
271 	void (*pr)(const char *, ...) __printflike(1, 2) =
272 	    dopanic ? panic : printf;
273 	int i, error = 0, e2 __diagused;
274 
275 	for (i = 0; cfdriverv[i] != NULL; i++) {
276 		if ((error = drv_do(cfdriverv[i])) != 0) {
277 			pr("configure: `%s' driver %s failed: %d",
278 			    cfdriverv[i]->cd_name, style, error);
279 			goto bad;
280 		}
281 	}
282 
283 	KASSERT(error == 0);
284 	return 0;
285 
286  bad:
287 	printf("\n");
288 	for (i--; i >= 0; i--) {
289 		e2 = drv_undo(cfdriverv[i]);
290 		KASSERT(e2 == 0);
291 	}
292 
293 	return error;
294 }
295 
296 typedef int (*cfattach_fn)(const char *, struct cfattach *);
297 static int
frob_cfattachvec(const struct cfattachinit * cfattachv,cfattach_fn att_do,cfattach_fn att_undo,const char * style,bool dopanic)298 frob_cfattachvec(const struct cfattachinit *cfattachv,
299 	cfattach_fn att_do, cfattach_fn att_undo,
300 	const char *style, bool dopanic)
301 {
302 	const struct cfattachinit *cfai = NULL;
303 	void (*pr)(const char *, ...) __printflike(1, 2) =
304 	    dopanic ? panic : printf;
305 	int j = 0, error = 0, e2 __diagused;
306 
307 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
308 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
309 			if ((error = att_do(cfai->cfai_name,
310 			    cfai->cfai_list[j])) != 0) {
311 				pr("configure: attachment `%s' "
312 				    "of `%s' driver %s failed: %d",
313 				    cfai->cfai_list[j]->ca_name,
314 				    cfai->cfai_name, style, error);
315 				goto bad;
316 			}
317 		}
318 	}
319 
320 	KASSERT(error == 0);
321 	return 0;
322 
323  bad:
324 	/*
325 	 * Rollback in reverse order.  dunno if super-important, but
326 	 * do that anyway.  Although the code looks a little like
327 	 * someone did a little integration (in the math sense).
328 	 */
329 	printf("\n");
330 	if (cfai) {
331 		bool last;
332 
333 		for (last = false; last == false; ) {
334 			if (cfai == &cfattachv[0])
335 				last = true;
336 			for (j--; j >= 0; j--) {
337 				e2 = att_undo(cfai->cfai_name,
338 				    cfai->cfai_list[j]);
339 				KASSERT(e2 == 0);
340 			}
341 			if (!last) {
342 				cfai--;
343 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
344 					;
345 			}
346 		}
347 	}
348 
349 	return error;
350 }
351 
352 /*
353  * Initialize the autoconfiguration data structures.  Normally this
354  * is done by configure(), but some platforms need to do this very
355  * early (to e.g. initialize the console).
356  */
357 void
config_init(void)358 config_init(void)
359 {
360 
361 	KASSERT(config_initialized == false);
362 
363 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
364 
365 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
366 	cv_init(&config_misc_cv, "cfgmisc");
367 
368 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
369 
370 	frob_cfdrivervec(cfdriver_list_initial,
371 	    config_cfdriver_attach, NULL, "bootstrap", true);
372 	frob_cfattachvec(cfattachinit,
373 	    config_cfattach_attach, NULL, "bootstrap", true);
374 
375 	initcftable.ct_cfdata = cfdata;
376 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
377 
378 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
379 	    RND_FLAG_COLLECT_TIME);
380 
381 	config_initialized = true;
382 }
383 
384 /*
385  * Init or fini drivers and attachments.  Either all or none
386  * are processed (via rollback).  It would be nice if this were
387  * atomic to outside consumers, but with the current state of
388  * locking ...
389  */
390 int
config_init_component(struct cfdriver * const * cfdriverv,const struct cfattachinit * cfattachv,struct cfdata * cfdatav)391 config_init_component(struct cfdriver * const *cfdriverv,
392 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
393 {
394 	int error;
395 
396 	KERNEL_LOCK(1, NULL);
397 
398 	if ((error = frob_cfdrivervec(cfdriverv,
399 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
400 		goto out;
401 	if ((error = frob_cfattachvec(cfattachv,
402 	    config_cfattach_attach, config_cfattach_detach,
403 	    "init", false)) != 0) {
404 		frob_cfdrivervec(cfdriverv,
405 	            config_cfdriver_detach, NULL, "init rollback", true);
406 		goto out;
407 	}
408 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
409 		frob_cfattachvec(cfattachv,
410 		    config_cfattach_detach, NULL, "init rollback", true);
411 		frob_cfdrivervec(cfdriverv,
412 	            config_cfdriver_detach, NULL, "init rollback", true);
413 		goto out;
414 	}
415 
416 	/* Success!  */
417 	error = 0;
418 
419 out:	KERNEL_UNLOCK_ONE(NULL);
420 	return error;
421 }
422 
423 int
config_fini_component(struct cfdriver * const * cfdriverv,const struct cfattachinit * cfattachv,struct cfdata * cfdatav)424 config_fini_component(struct cfdriver * const *cfdriverv,
425 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
426 {
427 	int error;
428 
429 	KERNEL_LOCK(1, NULL);
430 
431 	if ((error = config_cfdata_detach(cfdatav)) != 0)
432 		goto out;
433 	if ((error = frob_cfattachvec(cfattachv,
434 	    config_cfattach_detach, config_cfattach_attach,
435 	    "fini", false)) != 0) {
436 		if (config_cfdata_attach(cfdatav, 0) != 0)
437 			panic("config_cfdata fini rollback failed");
438 		goto out;
439 	}
440 	if ((error = frob_cfdrivervec(cfdriverv,
441 	    config_cfdriver_detach, config_cfdriver_attach,
442 	    "fini", false)) != 0) {
443 		frob_cfattachvec(cfattachv,
444 	            config_cfattach_attach, NULL, "fini rollback", true);
445 		if (config_cfdata_attach(cfdatav, 0) != 0)
446 			panic("config_cfdata fini rollback failed");
447 		goto out;
448 	}
449 
450 	/* Success!  */
451 	error = 0;
452 
453 out:	KERNEL_UNLOCK_ONE(NULL);
454 	return error;
455 }
456 
457 void
config_init_mi(void)458 config_init_mi(void)
459 {
460 
461 	if (!config_initialized)
462 		config_init();
463 
464 	sysctl_detach_setup(NULL);
465 }
466 
467 void
config_deferred(device_t dev)468 config_deferred(device_t dev)
469 {
470 
471 	KASSERT(KERNEL_LOCKED_P());
472 
473 	config_process_deferred(&deferred_config_queue, dev);
474 	config_process_deferred(&interrupt_config_queue, dev);
475 	config_process_deferred(&mountroot_config_queue, dev);
476 }
477 
478 static void
config_interrupts_thread(void * cookie)479 config_interrupts_thread(void *cookie)
480 {
481 	struct deferred_config *dc;
482 	device_t dev;
483 
484 	mutex_enter(&config_misc_lock);
485 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
486 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
487 		mutex_exit(&config_misc_lock);
488 
489 		dev = dc->dc_dev;
490 		(*dc->dc_func)(dev);
491 		if (!device_pmf_is_registered(dev))
492 			aprint_debug_dev(dev,
493 			    "WARNING: power management not supported\n");
494 		config_pending_decr(dev);
495 		kmem_free(dc, sizeof(*dc));
496 
497 		mutex_enter(&config_misc_lock);
498 	}
499 	mutex_exit(&config_misc_lock);
500 
501 	kthread_exit(0);
502 }
503 
504 void
config_create_interruptthreads(void)505 config_create_interruptthreads(void)
506 {
507 	int i;
508 
509 	for (i = 0; i < interrupt_config_threads; i++) {
510 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
511 		    config_interrupts_thread, NULL, NULL, "configintr");
512 	}
513 }
514 
515 static void
config_mountroot_thread(void * cookie)516 config_mountroot_thread(void *cookie)
517 {
518 	struct deferred_config *dc;
519 
520 	mutex_enter(&config_misc_lock);
521 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
522 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
523 		mutex_exit(&config_misc_lock);
524 
525 		(*dc->dc_func)(dc->dc_dev);
526 		kmem_free(dc, sizeof(*dc));
527 
528 		mutex_enter(&config_misc_lock);
529 	}
530 	mutex_exit(&config_misc_lock);
531 
532 	kthread_exit(0);
533 }
534 
535 void
config_create_mountrootthreads(void)536 config_create_mountrootthreads(void)
537 {
538 	int i;
539 
540 	if (!root_is_mounted)
541 		root_is_mounted = true;
542 
543 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
544 				       mountroot_config_threads;
545 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
546 					     KM_NOSLEEP);
547 	KASSERT(mountroot_config_lwpids);
548 	for (i = 0; i < mountroot_config_threads; i++) {
549 		mountroot_config_lwpids[i] = 0;
550 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
551 				     NULL, config_mountroot_thread, NULL,
552 				     &mountroot_config_lwpids[i],
553 				     "configroot");
554 	}
555 }
556 
557 void
config_finalize_mountroot(void)558 config_finalize_mountroot(void)
559 {
560 	int i, error;
561 
562 	for (i = 0; i < mountroot_config_threads; i++) {
563 		if (mountroot_config_lwpids[i] == 0)
564 			continue;
565 
566 		error = kthread_join(mountroot_config_lwpids[i]);
567 		if (error)
568 			printf("%s: thread %x joined with error %d\n",
569 			       __func__, i, error);
570 	}
571 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
572 }
573 
574 /*
575  * Announce device attach/detach to userland listeners.
576  */
577 
578 int
no_devmon_insert(const char * name,prop_dictionary_t p)579 no_devmon_insert(const char *name, prop_dictionary_t p)
580 {
581 
582 	return ENODEV;
583 }
584 
585 static void
devmon_report_device(device_t dev,bool isattach)586 devmon_report_device(device_t dev, bool isattach)
587 {
588 	prop_dictionary_t ev, dict = device_properties(dev);
589 	const char *parent;
590 	const char *what;
591 	const char *where;
592 	device_t pdev = device_parent(dev);
593 
594 	/* If currently no drvctl device, just return */
595 	if (devmon_insert_vec == no_devmon_insert)
596 		return;
597 
598 	ev = prop_dictionary_create();
599 	if (ev == NULL)
600 		return;
601 
602 	what = (isattach ? "device-attach" : "device-detach");
603 	parent = (pdev == NULL ? "root" : device_xname(pdev));
604 	if (prop_dictionary_get_string(dict, "location", &where)) {
605 		prop_dictionary_set_string(ev, "location", where);
606 		aprint_debug("ev: %s %s at %s in [%s]\n",
607 		    what, device_xname(dev), parent, where);
608 	}
609 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
610 	    !prop_dictionary_set_string(ev, "parent", parent)) {
611 		prop_object_release(ev);
612 		return;
613 	}
614 
615 	if ((*devmon_insert_vec)(what, ev) != 0)
616 		prop_object_release(ev);
617 }
618 
619 /*
620  * Add a cfdriver to the system.
621  */
622 int
config_cfdriver_attach(struct cfdriver * cd)623 config_cfdriver_attach(struct cfdriver *cd)
624 {
625 	struct cfdriver *lcd;
626 
627 	/* Make sure this driver isn't already in the system. */
628 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
629 		if (STREQ(lcd->cd_name, cd->cd_name))
630 			return EEXIST;
631 	}
632 
633 	LIST_INIT(&cd->cd_attach);
634 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
635 
636 	return 0;
637 }
638 
639 /*
640  * Remove a cfdriver from the system.
641  */
642 int
config_cfdriver_detach(struct cfdriver * cd)643 config_cfdriver_detach(struct cfdriver *cd)
644 {
645 	struct alldevs_foray af;
646 	int i, rc = 0;
647 
648 	config_alldevs_enter(&af);
649 	/* Make sure there are no active instances. */
650 	for (i = 0; i < cd->cd_ndevs; i++) {
651 		if (cd->cd_devs[i] != NULL) {
652 			rc = EBUSY;
653 			break;
654 		}
655 	}
656 	config_alldevs_exit(&af);
657 
658 	if (rc != 0)
659 		return rc;
660 
661 	/* ...and no attachments loaded. */
662 	if (LIST_EMPTY(&cd->cd_attach) == 0)
663 		return EBUSY;
664 
665 	LIST_REMOVE(cd, cd_list);
666 
667 	KASSERT(cd->cd_devs == NULL);
668 
669 	return 0;
670 }
671 
672 /*
673  * Look up a cfdriver by name.
674  */
675 struct cfdriver *
config_cfdriver_lookup(const char * name)676 config_cfdriver_lookup(const char *name)
677 {
678 	struct cfdriver *cd;
679 
680 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
681 		if (STREQ(cd->cd_name, name))
682 			return cd;
683 	}
684 
685 	return NULL;
686 }
687 
688 /*
689  * Add a cfattach to the specified driver.
690  */
691 int
config_cfattach_attach(const char * driver,struct cfattach * ca)692 config_cfattach_attach(const char *driver, struct cfattach *ca)
693 {
694 	struct cfattach *lca;
695 	struct cfdriver *cd;
696 
697 	cd = config_cfdriver_lookup(driver);
698 	if (cd == NULL)
699 		return ESRCH;
700 
701 	/* Make sure this attachment isn't already on this driver. */
702 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
703 		if (STREQ(lca->ca_name, ca->ca_name))
704 			return EEXIST;
705 	}
706 
707 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
708 
709 	return 0;
710 }
711 
712 /*
713  * Remove a cfattach from the specified driver.
714  */
715 int
config_cfattach_detach(const char * driver,struct cfattach * ca)716 config_cfattach_detach(const char *driver, struct cfattach *ca)
717 {
718 	struct alldevs_foray af;
719 	struct cfdriver *cd;
720 	device_t dev;
721 	int i, rc = 0;
722 
723 	cd = config_cfdriver_lookup(driver);
724 	if (cd == NULL)
725 		return ESRCH;
726 
727 	config_alldevs_enter(&af);
728 	/* Make sure there are no active instances. */
729 	for (i = 0; i < cd->cd_ndevs; i++) {
730 		if ((dev = cd->cd_devs[i]) == NULL)
731 			continue;
732 		if (dev->dv_cfattach == ca) {
733 			rc = EBUSY;
734 			break;
735 		}
736 	}
737 	config_alldevs_exit(&af);
738 
739 	if (rc != 0)
740 		return rc;
741 
742 	LIST_REMOVE(ca, ca_list);
743 
744 	return 0;
745 }
746 
747 /*
748  * Look up a cfattach by name.
749  */
750 static struct cfattach *
config_cfattach_lookup_cd(struct cfdriver * cd,const char * atname)751 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
752 {
753 	struct cfattach *ca;
754 
755 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
756 		if (STREQ(ca->ca_name, atname))
757 			return ca;
758 	}
759 
760 	return NULL;
761 }
762 
763 /*
764  * Look up a cfattach by driver/attachment name.
765  */
766 struct cfattach *
config_cfattach_lookup(const char * name,const char * atname)767 config_cfattach_lookup(const char *name, const char *atname)
768 {
769 	struct cfdriver *cd;
770 
771 	cd = config_cfdriver_lookup(name);
772 	if (cd == NULL)
773 		return NULL;
774 
775 	return config_cfattach_lookup_cd(cd, atname);
776 }
777 
778 /*
779  * Apply the matching function and choose the best.  This is used
780  * a few times and we want to keep the code small.
781  */
782 static void
mapply(struct matchinfo * m,cfdata_t cf)783 mapply(struct matchinfo *m, cfdata_t cf)
784 {
785 	int pri;
786 
787 	if (m->fn != NULL) {
788 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
789 	} else {
790 		pri = config_match(m->parent, cf, m->aux);
791 	}
792 	if (pri > m->pri) {
793 		m->match = cf;
794 		m->pri = pri;
795 	}
796 }
797 
798 int
config_stdsubmatch(device_t parent,cfdata_t cf,const int * locs,void * aux)799 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
800 {
801 	const struct cfiattrdata *ci;
802 	const struct cflocdesc *cl;
803 	int nlocs, i;
804 
805 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
806 	KASSERT(ci);
807 	nlocs = ci->ci_loclen;
808 	KASSERT(!nlocs || locs);
809 	for (i = 0; i < nlocs; i++) {
810 		cl = &ci->ci_locdesc[i];
811 		if (cl->cld_defaultstr != NULL &&
812 		    cf->cf_loc[i] == cl->cld_default)
813 			continue;
814 		if (cf->cf_loc[i] == locs[i])
815 			continue;
816 		return 0;
817 	}
818 
819 	return config_match(parent, cf, aux);
820 }
821 
822 /*
823  * Helper function: check whether the driver supports the interface attribute
824  * and return its descriptor structure.
825  */
826 static const struct cfiattrdata *
cfdriver_get_iattr(const struct cfdriver * cd,const char * ia)827 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
828 {
829 	const struct cfiattrdata * const *cpp;
830 
831 	if (cd->cd_attrs == NULL)
832 		return 0;
833 
834 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
835 		if (STREQ((*cpp)->ci_name, ia)) {
836 			/* Match. */
837 			return *cpp;
838 		}
839 	}
840 	return 0;
841 }
842 
843 static int __diagused
cfdriver_iattr_count(const struct cfdriver * cd)844 cfdriver_iattr_count(const struct cfdriver *cd)
845 {
846 	const struct cfiattrdata * const *cpp;
847 	int i;
848 
849 	if (cd->cd_attrs == NULL)
850 		return 0;
851 
852 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
853 		i++;
854 	}
855 	return i;
856 }
857 
858 /*
859  * Lookup an interface attribute description by name.
860  * If the driver is given, consider only its supported attributes.
861  */
862 const struct cfiattrdata *
cfiattr_lookup(const char * name,const struct cfdriver * cd)863 cfiattr_lookup(const char *name, const struct cfdriver *cd)
864 {
865 	const struct cfdriver *d;
866 	const struct cfiattrdata *ia;
867 
868 	if (cd)
869 		return cfdriver_get_iattr(cd, name);
870 
871 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
872 		ia = cfdriver_get_iattr(d, name);
873 		if (ia)
874 			return ia;
875 	}
876 	return 0;
877 }
878 
879 /*
880  * Determine if `parent' is a potential parent for a device spec based
881  * on `cfp'.
882  */
883 static int
cfparent_match(const device_t parent,const struct cfparent * cfp)884 cfparent_match(const device_t parent, const struct cfparent *cfp)
885 {
886 	struct cfdriver *pcd;
887 
888 	/* We don't match root nodes here. */
889 	if (cfp == NULL)
890 		return 0;
891 
892 	pcd = parent->dv_cfdriver;
893 	KASSERT(pcd != NULL);
894 
895 	/*
896 	 * First, ensure this parent has the correct interface
897 	 * attribute.
898 	 */
899 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
900 		return 0;
901 
902 	/*
903 	 * If no specific parent device instance was specified (i.e.
904 	 * we're attaching to the attribute only), we're done!
905 	 */
906 	if (cfp->cfp_parent == NULL)
907 		return 1;
908 
909 	/*
910 	 * Check the parent device's name.
911 	 */
912 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
913 		return 0;	/* not the same parent */
914 
915 	/*
916 	 * Make sure the unit number matches.
917 	 */
918 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
919 	    cfp->cfp_unit == parent->dv_unit)
920 		return 1;
921 
922 	/* Unit numbers don't match. */
923 	return 0;
924 }
925 
926 /*
927  * Helper for config_cfdata_attach(): check all devices whether it could be
928  * parent any attachment in the config data table passed, and rescan.
929  */
930 static void
rescan_with_cfdata(const struct cfdata * cf)931 rescan_with_cfdata(const struct cfdata *cf)
932 {
933 	device_t d;
934 	const struct cfdata *cf1;
935 	deviter_t di;
936 
937 	KASSERT(KERNEL_LOCKED_P());
938 
939 	/*
940 	 * "alldevs" is likely longer than a modules's cfdata, so make it
941 	 * the outer loop.
942 	 */
943 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
944 
945 		if (!(d->dv_cfattach->ca_rescan))
946 			continue;
947 
948 		for (cf1 = cf; cf1->cf_name; cf1++) {
949 
950 			if (!cfparent_match(d, cf1->cf_pspec))
951 				continue;
952 
953 			(*d->dv_cfattach->ca_rescan)(d,
954 				cfdata_ifattr(cf1), cf1->cf_loc);
955 
956 			config_deferred(d);
957 		}
958 	}
959 	deviter_release(&di);
960 }
961 
962 /*
963  * Attach a supplemental config data table and rescan potential
964  * parent devices if required.
965  */
966 int
config_cfdata_attach(cfdata_t cf,int scannow)967 config_cfdata_attach(cfdata_t cf, int scannow)
968 {
969 	struct cftable *ct;
970 
971 	KERNEL_LOCK(1, NULL);
972 
973 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
974 	ct->ct_cfdata = cf;
975 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
976 
977 	if (scannow)
978 		rescan_with_cfdata(cf);
979 
980 	KERNEL_UNLOCK_ONE(NULL);
981 
982 	return 0;
983 }
984 
985 /*
986  * Helper for config_cfdata_detach: check whether a device is
987  * found through any attachment in the config data table.
988  */
989 static int
dev_in_cfdata(device_t d,cfdata_t cf)990 dev_in_cfdata(device_t d, cfdata_t cf)
991 {
992 	const struct cfdata *cf1;
993 
994 	for (cf1 = cf; cf1->cf_name; cf1++)
995 		if (d->dv_cfdata == cf1)
996 			return 1;
997 
998 	return 0;
999 }
1000 
1001 /*
1002  * Detach a supplemental config data table. Detach all devices found
1003  * through that table (and thus keeping references to it) before.
1004  */
1005 int
config_cfdata_detach(cfdata_t cf)1006 config_cfdata_detach(cfdata_t cf)
1007 {
1008 	device_t d;
1009 	int error = 0;
1010 	struct cftable *ct;
1011 	deviter_t di;
1012 
1013 	KERNEL_LOCK(1, NULL);
1014 
1015 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
1016 	     d = deviter_next(&di)) {
1017 		if (!dev_in_cfdata(d, cf))
1018 			continue;
1019 		if ((error = config_detach(d, 0)) != 0)
1020 			break;
1021 	}
1022 	deviter_release(&di);
1023 	if (error) {
1024 		aprint_error_dev(d, "unable to detach instance\n");
1025 		goto out;
1026 	}
1027 
1028 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1029 		if (ct->ct_cfdata == cf) {
1030 			TAILQ_REMOVE(&allcftables, ct, ct_list);
1031 			kmem_free(ct, sizeof(*ct));
1032 			error = 0;
1033 			goto out;
1034 		}
1035 	}
1036 
1037 	/* not found -- shouldn't happen */
1038 	error = EINVAL;
1039 
1040 out:	KERNEL_UNLOCK_ONE(NULL);
1041 	return error;
1042 }
1043 
1044 /*
1045  * Invoke the "match" routine for a cfdata entry on behalf of
1046  * an external caller, usually a direct config "submatch" routine.
1047  */
1048 int
config_match(device_t parent,cfdata_t cf,void * aux)1049 config_match(device_t parent, cfdata_t cf, void *aux)
1050 {
1051 	struct cfattach *ca;
1052 
1053 	KASSERT(KERNEL_LOCKED_P());
1054 
1055 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
1056 	if (ca == NULL) {
1057 		/* No attachment for this entry, oh well. */
1058 		return 0;
1059 	}
1060 
1061 	return (*ca->ca_match)(parent, cf, aux);
1062 }
1063 
1064 /*
1065  * Invoke the "probe" routine for a cfdata entry on behalf of
1066  * an external caller, usually an indirect config "search" routine.
1067  */
1068 int
config_probe(device_t parent,cfdata_t cf,void * aux)1069 config_probe(device_t parent, cfdata_t cf, void *aux)
1070 {
1071 	/*
1072 	 * This is currently a synonym for config_match(), but this
1073 	 * is an implementation detail; "match" and "probe" routines
1074 	 * have different behaviors.
1075 	 *
1076 	 * XXX config_probe() should return a bool, because there is
1077 	 * XXX no match score for probe -- it's either there or it's
1078 	 * XXX not, but some ports abuse the return value as a way
1079 	 * XXX to attach "critical" devices before "non-critical"
1080 	 * XXX devices.
1081 	 */
1082 	return config_match(parent, cf, aux);
1083 }
1084 
1085 static struct cfargs_internal *
cfargs_canonicalize(const struct cfargs * const cfargs,struct cfargs_internal * const store)1086 cfargs_canonicalize(const struct cfargs * const cfargs,
1087     struct cfargs_internal * const store)
1088 {
1089 	struct cfargs_internal *args = store;
1090 
1091 	memset(args, 0, sizeof(*args));
1092 
1093 	/* If none specified, are all-NULL pointers are good. */
1094 	if (cfargs == NULL) {
1095 		return args;
1096 	}
1097 
1098 	/*
1099 	 * Only one arguments version is recognized at this time.
1100 	 */
1101 	if (cfargs->cfargs_version != CFARGS_VERSION) {
1102 		panic("cfargs_canonicalize: unknown version %lu\n",
1103 		    (unsigned long)cfargs->cfargs_version);
1104 	}
1105 
1106 	/*
1107 	 * submatch and search are mutually-exclusive.
1108 	 */
1109 	if (cfargs->submatch != NULL && cfargs->search != NULL) {
1110 		panic("cfargs_canonicalize: submatch and search are "
1111 		      "mutually-exclusive");
1112 	}
1113 	if (cfargs->submatch != NULL) {
1114 		args->submatch = cfargs->submatch;
1115 	} else if (cfargs->search != NULL) {
1116 		args->search = cfargs->search;
1117 	}
1118 
1119 	args->iattr = cfargs->iattr;
1120 	args->locators = cfargs->locators;
1121 	args->devhandle = cfargs->devhandle;
1122 
1123 	return args;
1124 }
1125 
1126 /*
1127  * Iterate over all potential children of some device, calling the given
1128  * function (default being the child's match function) for each one.
1129  * Nonzero returns are matches; the highest value returned is considered
1130  * the best match.  Return the `found child' if we got a match, or NULL
1131  * otherwise.  The `aux' pointer is simply passed on through.
1132  *
1133  * Note that this function is designed so that it can be used to apply
1134  * an arbitrary function to all potential children (its return value
1135  * can be ignored).
1136  */
1137 static cfdata_t
config_search_internal(device_t parent,void * aux,const struct cfargs_internal * const args)1138 config_search_internal(device_t parent, void *aux,
1139     const struct cfargs_internal * const args)
1140 {
1141 	struct cftable *ct;
1142 	cfdata_t cf;
1143 	struct matchinfo m;
1144 
1145 	KASSERT(config_initialized);
1146 	KASSERTMSG((!args->iattr ||
1147 		cfdriver_get_iattr(parent->dv_cfdriver, args->iattr)),
1148 	    "%s searched for child at interface attribute %s,"
1149 	    " but device %s(4) has no such interface attribute in config(5)",
1150 	    device_xname(parent), args->iattr,
1151 	    parent->dv_cfdriver->cd_name);
1152 	KASSERTMSG((args->iattr ||
1153 		cfdriver_iattr_count(parent->dv_cfdriver) < 2),
1154 	    "%s searched for child without interface attribute,"
1155 	    " needed to disambiguate among the %d declared for in %s(4)"
1156 	    " in config(5)",
1157 	    device_xname(parent),
1158 	    cfdriver_iattr_count(parent->dv_cfdriver),
1159 	    parent->dv_cfdriver->cd_name);
1160 
1161 	m.fn = args->submatch;		/* N.B. union */
1162 	m.parent = parent;
1163 	m.locs = args->locators;
1164 	m.aux = aux;
1165 	m.match = NULL;
1166 	m.pri = 0;
1167 
1168 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1169 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1170 
1171 			/* We don't match root nodes here. */
1172 			if (!cf->cf_pspec)
1173 				continue;
1174 
1175 			/*
1176 			 * Skip cf if no longer eligible, otherwise scan
1177 			 * through parents for one matching `parent', and
1178 			 * try match function.
1179 			 */
1180 			if (cf->cf_fstate == FSTATE_FOUND)
1181 				continue;
1182 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1183 			    cf->cf_fstate == FSTATE_DSTAR)
1184 				continue;
1185 
1186 			/*
1187 			 * If an interface attribute was specified,
1188 			 * consider only children which attach to
1189 			 * that attribute.
1190 			 */
1191 			if (args->iattr != NULL &&
1192 			    !STREQ(args->iattr, cfdata_ifattr(cf)))
1193 				continue;
1194 
1195 			if (cfparent_match(parent, cf->cf_pspec))
1196 				mapply(&m, cf);
1197 		}
1198 	}
1199 	rnd_add_uint32(&rnd_autoconf_source, 0);
1200 	return m.match;
1201 }
1202 
1203 cfdata_t
config_search(device_t parent,void * aux,const struct cfargs * cfargs)1204 config_search(device_t parent, void *aux, const struct cfargs *cfargs)
1205 {
1206 	cfdata_t cf;
1207 	struct cfargs_internal store;
1208 
1209 	cf = config_search_internal(parent, aux,
1210 	    cfargs_canonicalize(cfargs, &store));
1211 
1212 	return cf;
1213 }
1214 
1215 /*
1216  * Find the given root device.
1217  * This is much like config_search, but there is no parent.
1218  * Don't bother with multiple cfdata tables; the root node
1219  * must always be in the initial table.
1220  */
1221 cfdata_t
config_rootsearch(cfsubmatch_t fn,const char * rootname,void * aux)1222 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1223 {
1224 	cfdata_t cf;
1225 	const short *p;
1226 	struct matchinfo m;
1227 
1228 	m.fn = fn;
1229 	m.parent = ROOT;
1230 	m.aux = aux;
1231 	m.match = NULL;
1232 	m.pri = 0;
1233 	m.locs = 0;
1234 	/*
1235 	 * Look at root entries for matching name.  We do not bother
1236 	 * with found-state here since only one root should ever be
1237 	 * searched (and it must be done first).
1238 	 */
1239 	for (p = cfroots; *p >= 0; p++) {
1240 		cf = &cfdata[*p];
1241 		if (strcmp(cf->cf_name, rootname) == 0)
1242 			mapply(&m, cf);
1243 	}
1244 	return m.match;
1245 }
1246 
1247 static const char * const msgs[] = {
1248 [QUIET]		=	"",
1249 [UNCONF]	=	" not configured\n",
1250 [UNSUPP]	=	" unsupported\n",
1251 };
1252 
1253 /*
1254  * The given `aux' argument describes a device that has been found
1255  * on the given parent, but not necessarily configured.  Locate the
1256  * configuration data for that device (using the submatch function
1257  * provided, or using candidates' cd_match configuration driver
1258  * functions) and attach it, and return its device_t.  If the device was
1259  * not configured, call the given `print' function and return NULL.
1260  */
1261 device_t
config_found_acquire(device_t parent,void * aux,cfprint_t print,const struct cfargs * const cfargs)1262 config_found_acquire(device_t parent, void *aux, cfprint_t print,
1263     const struct cfargs * const cfargs)
1264 {
1265 	cfdata_t cf;
1266 	struct cfargs_internal store;
1267 	const struct cfargs_internal * const args =
1268 	    cfargs_canonicalize(cfargs, &store);
1269 	device_t dev;
1270 
1271 	KERNEL_LOCK(1, NULL);
1272 
1273 	cf = config_search_internal(parent, aux, args);
1274 	if (cf != NULL) {
1275 		dev = config_attach_internal(parent, cf, aux, print, args);
1276 		goto out;
1277 	}
1278 
1279 	if (print) {
1280 		if (config_do_twiddle && cold)
1281 			twiddle();
1282 
1283 		const int pret = (*print)(aux, device_xname(parent));
1284 		KASSERT(pret >= 0);
1285 		KASSERT(pret < __arraycount(msgs));
1286 		KASSERT(msgs[pret] != NULL);
1287 		aprint_normal("%s", msgs[pret]);
1288 	}
1289 
1290 	dev = NULL;
1291 
1292 out:	KERNEL_UNLOCK_ONE(NULL);
1293 	return dev;
1294 }
1295 
1296 /*
1297  * config_found(parent, aux, print, cfargs)
1298  *
1299  *	Legacy entry point for callers whose use of the returned
1300  *	device_t is not delimited by device_release.
1301  *
1302  *	The caller is required to hold the kernel lock as a fragile
1303  *	defence against races.
1304  *
1305  *	Callers should ignore the return value or be converted to
1306  *	config_found_acquire with a matching device_release once they
1307  *	have finished with the returned device_t.
1308  */
1309 device_t
config_found(device_t parent,void * aux,cfprint_t print,const struct cfargs * const cfargs)1310 config_found(device_t parent, void *aux, cfprint_t print,
1311     const struct cfargs * const cfargs)
1312 {
1313 	device_t dev;
1314 
1315 	KASSERT(KERNEL_LOCKED_P());
1316 
1317 	dev = config_found_acquire(parent, aux, print, cfargs);
1318 	if (dev == NULL)
1319 		return NULL;
1320 	device_release(dev);
1321 
1322 	return dev;
1323 }
1324 
1325 /*
1326  * As above, but for root devices.
1327  */
1328 device_t
config_rootfound(const char * rootname,void * aux)1329 config_rootfound(const char *rootname, void *aux)
1330 {
1331 	cfdata_t cf;
1332 	device_t dev = NULL;
1333 
1334 	KERNEL_LOCK(1, NULL);
1335 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1336 		dev = config_attach(ROOT, cf, aux, NULL, CFARGS_NONE);
1337 	else
1338 		aprint_error("root device %s not configured\n", rootname);
1339 	KERNEL_UNLOCK_ONE(NULL);
1340 	return dev;
1341 }
1342 
1343 /* just like sprintf(buf, "%d") except that it works from the end */
1344 static char *
number(char * ep,int n)1345 number(char *ep, int n)
1346 {
1347 
1348 	*--ep = 0;
1349 	while (n >= 10) {
1350 		*--ep = (n % 10) + '0';
1351 		n /= 10;
1352 	}
1353 	*--ep = n + '0';
1354 	return ep;
1355 }
1356 
1357 /*
1358  * Expand the size of the cd_devs array if necessary.
1359  *
1360  * The caller must hold alldevs_lock. config_makeroom() may release and
1361  * re-acquire alldevs_lock, so callers should re-check conditions such
1362  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1363  * returns.
1364  */
1365 static void
config_makeroom(int n,struct cfdriver * cd)1366 config_makeroom(int n, struct cfdriver *cd)
1367 {
1368 	int ondevs, nndevs;
1369 	device_t *osp, *nsp;
1370 
1371 	KASSERT(mutex_owned(&alldevs_lock));
1372 	alldevs_nwrite++;
1373 
1374 	/* XXX arithmetic overflow */
1375 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1376 		;
1377 
1378 	while (n >= cd->cd_ndevs) {
1379 		/*
1380 		 * Need to expand the array.
1381 		 */
1382 		ondevs = cd->cd_ndevs;
1383 		osp = cd->cd_devs;
1384 
1385 		/*
1386 		 * Release alldevs_lock around allocation, which may
1387 		 * sleep.
1388 		 */
1389 		mutex_exit(&alldevs_lock);
1390 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
1391 		mutex_enter(&alldevs_lock);
1392 
1393 		/*
1394 		 * If another thread moved the array while we did
1395 		 * not hold alldevs_lock, try again.
1396 		 */
1397 		if (cd->cd_devs != osp || cd->cd_ndevs != ondevs) {
1398 			mutex_exit(&alldevs_lock);
1399 			kmem_free(nsp, sizeof(device_t) * nndevs);
1400 			mutex_enter(&alldevs_lock);
1401 			continue;
1402 		}
1403 
1404 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
1405 		if (ondevs != 0)
1406 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
1407 
1408 		cd->cd_ndevs = nndevs;
1409 		cd->cd_devs = nsp;
1410 		if (ondevs != 0) {
1411 			mutex_exit(&alldevs_lock);
1412 			kmem_free(osp, sizeof(device_t) * ondevs);
1413 			mutex_enter(&alldevs_lock);
1414 		}
1415 	}
1416 	KASSERT(mutex_owned(&alldevs_lock));
1417 	alldevs_nwrite--;
1418 }
1419 
1420 /*
1421  * Put dev into the devices list.
1422  */
1423 static void
config_devlink(device_t dev)1424 config_devlink(device_t dev)
1425 {
1426 
1427 	mutex_enter(&alldevs_lock);
1428 
1429 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1430 
1431 	dev->dv_add_gen = alldevs_gen;
1432 	/* It is safe to add a device to the tail of the list while
1433 	 * readers and writers are in the list.
1434 	 */
1435 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1436 	mutex_exit(&alldevs_lock);
1437 }
1438 
1439 static void
config_devfree(device_t dev)1440 config_devfree(device_t dev)
1441 {
1442 
1443 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
1444 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
1445 
1446 	if (dev->dv_cfattach->ca_devsize > 0)
1447 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1448 	kmem_free(dev, sizeof(*dev));
1449 }
1450 
1451 /*
1452  * Caller must hold alldevs_lock.
1453  */
1454 static void
config_devunlink(device_t dev,struct devicelist * garbage)1455 config_devunlink(device_t dev, struct devicelist *garbage)
1456 {
1457 	struct device_garbage *dg = &dev->dv_garbage;
1458 	cfdriver_t cd = device_cfdriver(dev);
1459 	int i;
1460 
1461 	KASSERT(mutex_owned(&alldevs_lock));
1462 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
1463 
1464  	/* Unlink from device list.  Link to garbage list. */
1465 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1466 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1467 
1468 	/* Remove from cfdriver's array. */
1469 	cd->cd_devs[dev->dv_unit] = NULL;
1470 
1471 	/*
1472 	 * If the device now has no units in use, unlink its softc array.
1473 	 */
1474 	for (i = 0; i < cd->cd_ndevs; i++) {
1475 		if (cd->cd_devs[i] != NULL)
1476 			break;
1477 	}
1478 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1479 	if (i == cd->cd_ndevs) {
1480 		dg->dg_ndevs = cd->cd_ndevs;
1481 		dg->dg_devs = cd->cd_devs;
1482 		cd->cd_devs = NULL;
1483 		cd->cd_ndevs = 0;
1484 	}
1485 }
1486 
1487 static void
config_devdelete(device_t dev)1488 config_devdelete(device_t dev)
1489 {
1490 	struct device_garbage *dg = &dev->dv_garbage;
1491 	device_lock_t dvl = device_getlock(dev);
1492 
1493 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
1494 
1495 	if (dg->dg_devs != NULL)
1496 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
1497 
1498 	localcount_fini(dev->dv_localcount);
1499 	kmem_free(dev->dv_localcount, sizeof(*dev->dv_localcount));
1500 
1501 	cv_destroy(&dvl->dvl_cv);
1502 	mutex_destroy(&dvl->dvl_mtx);
1503 
1504 	KASSERT(dev->dv_properties != NULL);
1505 	prop_object_release(dev->dv_properties);
1506 
1507 	if (dev->dv_activity_handlers)
1508 		panic("%s with registered handlers", __func__);
1509 
1510 	if (dev->dv_locators) {
1511 		size_t amount = *--dev->dv_locators;
1512 		kmem_free(dev->dv_locators, amount);
1513 	}
1514 
1515 	config_devfree(dev);
1516 }
1517 
1518 static int
config_unit_nextfree(cfdriver_t cd,cfdata_t cf)1519 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1520 {
1521 	int unit = cf->cf_unit;
1522 
1523 	KASSERT(mutex_owned(&alldevs_lock));
1524 
1525 	if (unit < 0)
1526 		return -1;
1527 	if (cf->cf_fstate == FSTATE_STAR) {
1528 		for (; unit < cd->cd_ndevs; unit++)
1529 			if (cd->cd_devs[unit] == NULL)
1530 				break;
1531 		/*
1532 		 * unit is now the unit of the first NULL device pointer,
1533 		 * or max(cd->cd_ndevs,cf->cf_unit).
1534 		 */
1535 	} else {
1536 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1537 			unit = -1;
1538 	}
1539 	return unit;
1540 }
1541 
1542 static int
config_unit_alloc(device_t dev,cfdriver_t cd,cfdata_t cf)1543 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1544 {
1545 	struct alldevs_foray af;
1546 	int unit;
1547 
1548 	config_alldevs_enter(&af);
1549 	for (;;) {
1550 		unit = config_unit_nextfree(cd, cf);
1551 		if (unit == -1)
1552 			break;
1553 		if (unit < cd->cd_ndevs) {
1554 			cd->cd_devs[unit] = dev;
1555 			dev->dv_unit = unit;
1556 			break;
1557 		}
1558 		config_makeroom(unit, cd);
1559 	}
1560 	config_alldevs_exit(&af);
1561 
1562 	return unit;
1563 }
1564 
1565 static device_t
config_devalloc(const device_t parent,const cfdata_t cf,const struct cfargs_internal * const args)1566 config_devalloc(const device_t parent, const cfdata_t cf,
1567     const struct cfargs_internal * const args)
1568 {
1569 	cfdriver_t cd;
1570 	cfattach_t ca;
1571 	size_t lname, lunit;
1572 	const char *xunit;
1573 	int myunit;
1574 	char num[10];
1575 	device_t dev;
1576 	void *dev_private;
1577 	const struct cfiattrdata *ia;
1578 	device_lock_t dvl;
1579 
1580 	cd = config_cfdriver_lookup(cf->cf_name);
1581 	if (cd == NULL)
1582 		return NULL;
1583 
1584 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1585 	if (ca == NULL)
1586 		return NULL;
1587 
1588 	/* get memory for all device vars */
1589 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1590 	if (ca->ca_devsize > 0) {
1591 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1592 	} else {
1593 		dev_private = NULL;
1594 	}
1595 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1596 
1597 	dev->dv_handle = args->devhandle;
1598 
1599 	dev->dv_class = cd->cd_class;
1600 	dev->dv_cfdata = cf;
1601 	dev->dv_cfdriver = cd;
1602 	dev->dv_cfattach = ca;
1603 	dev->dv_activity_count = 0;
1604 	dev->dv_activity_handlers = NULL;
1605 	dev->dv_private = dev_private;
1606 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1607 	dev->dv_attaching = curlwp;
1608 
1609 	myunit = config_unit_alloc(dev, cd, cf);
1610 	if (myunit == -1) {
1611 		config_devfree(dev);
1612 		return NULL;
1613 	}
1614 
1615 	/* compute length of name and decimal expansion of unit number */
1616 	lname = strlen(cd->cd_name);
1617 	xunit = number(&num[sizeof(num)], myunit);
1618 	lunit = &num[sizeof(num)] - xunit;
1619 	if (lname + lunit > sizeof(dev->dv_xname))
1620 		panic("config_devalloc: device name too long");
1621 
1622 	dvl = device_getlock(dev);
1623 
1624 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1625 	cv_init(&dvl->dvl_cv, "pmfsusp");
1626 
1627 	memcpy(dev->dv_xname, cd->cd_name, lname);
1628 	memcpy(dev->dv_xname + lname, xunit, lunit);
1629 	dev->dv_parent = parent;
1630 	if (parent != NULL)
1631 		dev->dv_depth = parent->dv_depth + 1;
1632 	else
1633 		dev->dv_depth = 0;
1634 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1635 	if (args->locators) {
1636 		KASSERT(parent); /* no locators at root */
1637 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1638 		dev->dv_locators =
1639 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
1640 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
1641 		memcpy(dev->dv_locators, args->locators,
1642 		    sizeof(int) * ia->ci_loclen);
1643 	}
1644 	dev->dv_properties = prop_dictionary_create();
1645 	KASSERT(dev->dv_properties != NULL);
1646 
1647 	prop_dictionary_set_string_nocopy(dev->dv_properties,
1648 	    "device-driver", dev->dv_cfdriver->cd_name);
1649 	prop_dictionary_set_uint16(dev->dv_properties,
1650 	    "device-unit", dev->dv_unit);
1651 	if (parent != NULL) {
1652 		prop_dictionary_set_string(dev->dv_properties,
1653 		    "device-parent", device_xname(parent));
1654 	}
1655 
1656 	dev->dv_localcount = kmem_zalloc(sizeof(*dev->dv_localcount),
1657 	    KM_SLEEP);
1658 	localcount_init(dev->dv_localcount);
1659 
1660 	if (dev->dv_cfdriver->cd_attrs != NULL)
1661 		config_add_attrib_dict(dev);
1662 
1663 	return dev;
1664 }
1665 
1666 /*
1667  * Create an array of device attach attributes and add it
1668  * to the device's dv_properties dictionary.
1669  *
1670  * <key>interface-attributes</key>
1671  * <array>
1672  *    <dict>
1673  *       <key>attribute-name</key>
1674  *       <string>foo</string>
1675  *       <key>locators</key>
1676  *       <array>
1677  *          <dict>
1678  *             <key>loc-name</key>
1679  *             <string>foo-loc1</string>
1680  *          </dict>
1681  *          <dict>
1682  *             <key>loc-name</key>
1683  *             <string>foo-loc2</string>
1684  *             <key>default</key>
1685  *             <string>foo-loc2-default</string>
1686  *          </dict>
1687  *          ...
1688  *       </array>
1689  *    </dict>
1690  *    ...
1691  * </array>
1692  */
1693 
1694 static void
config_add_attrib_dict(device_t dev)1695 config_add_attrib_dict(device_t dev)
1696 {
1697 	int i, j;
1698 	const struct cfiattrdata *ci;
1699 	prop_dictionary_t attr_dict, loc_dict;
1700 	prop_array_t attr_array, loc_array;
1701 
1702 	if ((attr_array = prop_array_create()) == NULL)
1703 		return;
1704 
1705 	for (i = 0; ; i++) {
1706 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1707 			break;
1708 		if ((attr_dict = prop_dictionary_create()) == NULL)
1709 			break;
1710 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
1711 		    ci->ci_name);
1712 
1713 		/* Create an array of the locator names and defaults */
1714 
1715 		if (ci->ci_loclen != 0 &&
1716 		    (loc_array = prop_array_create()) != NULL) {
1717 			for (j = 0; j < ci->ci_loclen; j++) {
1718 				loc_dict = prop_dictionary_create();
1719 				if (loc_dict == NULL)
1720 					continue;
1721 				prop_dictionary_set_string_nocopy(loc_dict,
1722 				    "loc-name", ci->ci_locdesc[j].cld_name);
1723 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1724 					prop_dictionary_set_string_nocopy(
1725 					    loc_dict, "default",
1726 					    ci->ci_locdesc[j].cld_defaultstr);
1727 				prop_array_set(loc_array, j, loc_dict);
1728 				prop_object_release(loc_dict);
1729 			}
1730 			prop_dictionary_set_and_rel(attr_dict, "locators",
1731 			    loc_array);
1732 		}
1733 		prop_array_add(attr_array, attr_dict);
1734 		prop_object_release(attr_dict);
1735 	}
1736 	if (i == 0)
1737 		prop_object_release(attr_array);
1738 	else
1739 		prop_dictionary_set_and_rel(dev->dv_properties,
1740 		    "interface-attributes", attr_array);
1741 
1742 	return;
1743 }
1744 
1745 /*
1746  * Attach a found device.
1747  *
1748  * Returns the device referenced, to be released with device_release.
1749  */
1750 static device_t
config_attach_internal(device_t parent,cfdata_t cf,void * aux,cfprint_t print,const struct cfargs_internal * const args)1751 config_attach_internal(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
1752     const struct cfargs_internal * const args)
1753 {
1754 	device_t dev;
1755 	struct cftable *ct;
1756 	const char *drvname;
1757 	bool deferred;
1758 
1759 	KASSERT(KERNEL_LOCKED_P());
1760 
1761 	dev = config_devalloc(parent, cf, args);
1762 	if (!dev)
1763 		panic("config_attach: allocation of device softc failed");
1764 
1765 	/* XXX redundant - see below? */
1766 	if (cf->cf_fstate != FSTATE_STAR) {
1767 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1768 		cf->cf_fstate = FSTATE_FOUND;
1769 	}
1770 
1771 	config_devlink(dev);
1772 
1773 	if (config_do_twiddle && cold)
1774 		twiddle();
1775 	else
1776 		aprint_naive("Found ");
1777 	/*
1778 	 * We want the next two printfs for normal, verbose, and quiet,
1779 	 * but not silent (in which case, we're twiddling, instead).
1780 	 */
1781 	if (parent == ROOT) {
1782 		aprint_naive("%s (root)", device_xname(dev));
1783 		aprint_normal("%s (root)", device_xname(dev));
1784 	} else {
1785 		aprint_naive("%s at %s", device_xname(dev),
1786 		    device_xname(parent));
1787 		aprint_normal("%s at %s", device_xname(dev),
1788 		    device_xname(parent));
1789 		if (print)
1790 			(void) (*print)(aux, NULL);
1791 	}
1792 
1793 	/*
1794 	 * Before attaching, clobber any unfound devices that are
1795 	 * otherwise identical.
1796 	 * XXX code above is redundant?
1797 	 */
1798 	drvname = dev->dv_cfdriver->cd_name;
1799 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1800 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1801 			if (STREQ(cf->cf_name, drvname) &&
1802 			    cf->cf_unit == dev->dv_unit) {
1803 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1804 					cf->cf_fstate = FSTATE_FOUND;
1805 			}
1806 		}
1807 	}
1808 	device_register(dev, aux);
1809 
1810 	/* Let userland know */
1811 	devmon_report_device(dev, true);
1812 
1813 	/*
1814 	 * Prevent detach until the driver's attach function, and all
1815 	 * deferred actions, have finished.
1816 	 */
1817 	config_pending_incr(dev);
1818 
1819 	/*
1820 	 * Prevent concurrent detach from destroying the device_t until
1821 	 * the caller has released the device.
1822 	 */
1823 	device_acquire(dev);
1824 
1825 	/* Call the driver's attach function.  */
1826 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1827 
1828 	/*
1829 	 * Allow other threads to acquire references to the device now
1830 	 * that the driver's attach function is done.
1831 	 */
1832 	mutex_enter(&config_misc_lock);
1833 	KASSERT(dev->dv_attaching == curlwp);
1834 	dev->dv_attaching = NULL;
1835 	cv_broadcast(&config_misc_cv);
1836 	mutex_exit(&config_misc_lock);
1837 
1838 	/*
1839 	 * Synchronous parts of attach are done.  Allow detach, unless
1840 	 * the driver's attach function scheduled deferred actions.
1841 	 */
1842 	config_pending_decr(dev);
1843 
1844 	mutex_enter(&config_misc_lock);
1845 	deferred = (dev->dv_pending != 0);
1846 	mutex_exit(&config_misc_lock);
1847 
1848 	if (!deferred && !device_pmf_is_registered(dev))
1849 		aprint_debug_dev(dev,
1850 		    "WARNING: power management not supported\n");
1851 
1852 	config_process_deferred(&deferred_config_queue, dev);
1853 
1854 	device_register_post_config(dev, aux);
1855 	rnd_add_uint32(&rnd_autoconf_source, 0);
1856 	return dev;
1857 }
1858 
1859 device_t
config_attach_acquire(device_t parent,cfdata_t cf,void * aux,cfprint_t print,const struct cfargs * cfargs)1860 config_attach_acquire(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
1861     const struct cfargs *cfargs)
1862 {
1863 	struct cfargs_internal store;
1864 	device_t dev;
1865 
1866 	KERNEL_LOCK(1, NULL);
1867 	dev = config_attach_internal(parent, cf, aux, print,
1868 	    cfargs_canonicalize(cfargs, &store));
1869 	KERNEL_UNLOCK_ONE(NULL);
1870 
1871 	return dev;
1872 }
1873 
1874 /*
1875  * config_attach(parent, cf, aux, print, cfargs)
1876  *
1877  *	Legacy entry point for callers whose use of the returned
1878  *	device_t is not delimited by device_release.
1879  *
1880  *	The caller is required to hold the kernel lock as a fragile
1881  *	defence against races.
1882  *
1883  *	Callers should ignore the return value or be converted to
1884  *	config_attach_acquire with a matching device_release once they
1885  *	have finished with the returned device_t.
1886  */
1887 device_t
config_attach(device_t parent,cfdata_t cf,void * aux,cfprint_t print,const struct cfargs * cfargs)1888 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
1889     const struct cfargs *cfargs)
1890 {
1891 	device_t dev;
1892 
1893 	KASSERT(KERNEL_LOCKED_P());
1894 
1895 	dev = config_attach_acquire(parent, cf, aux, print, cfargs);
1896 	if (dev == NULL)
1897 		return NULL;
1898 	device_release(dev);
1899 
1900 	return dev;
1901 }
1902 
1903 /*
1904  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1905  * way are silently inserted into the device tree, and their children
1906  * attached.
1907  *
1908  * Note that because pseudo-devices are attached silently, any information
1909  * the attach routine wishes to print should be prefixed with the device
1910  * name by the attach routine.
1911  */
1912 device_t
config_attach_pseudo_acquire(cfdata_t cf,void * aux)1913 config_attach_pseudo_acquire(cfdata_t cf, void *aux)
1914 {
1915 	device_t dev;
1916 
1917 	KERNEL_LOCK(1, NULL);
1918 
1919 	struct cfargs_internal args = { };
1920 	dev = config_devalloc(ROOT, cf, &args);
1921 	if (!dev)
1922 		goto out;
1923 
1924 	/* XXX mark busy in cfdata */
1925 
1926 	if (cf->cf_fstate != FSTATE_STAR) {
1927 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1928 		cf->cf_fstate = FSTATE_FOUND;
1929 	}
1930 
1931 	config_devlink(dev);
1932 
1933 #if 0	/* XXXJRT not yet */
1934 	device_register(dev, NULL);	/* like a root node */
1935 #endif
1936 
1937 	/* Let userland know */
1938 	devmon_report_device(dev, true);
1939 
1940 	/*
1941 	 * Prevent detach until the driver's attach function, and all
1942 	 * deferred actions, have finished.
1943 	 */
1944 	config_pending_incr(dev);
1945 
1946 	/*
1947 	 * Prevent concurrent detach from destroying the device_t until
1948 	 * the caller has released the device.
1949 	 */
1950 	device_acquire(dev);
1951 
1952 	/* Call the driver's attach function.  */
1953 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, aux);
1954 
1955 	/*
1956 	 * Allow other threads to acquire references to the device now
1957 	 * that the driver's attach function is done.
1958 	 */
1959 	mutex_enter(&config_misc_lock);
1960 	KASSERT(dev->dv_attaching == curlwp);
1961 	dev->dv_attaching = NULL;
1962 	cv_broadcast(&config_misc_cv);
1963 	mutex_exit(&config_misc_lock);
1964 
1965 	/*
1966 	 * Synchronous parts of attach are done.  Allow detach, unless
1967 	 * the driver's attach function scheduled deferred actions.
1968 	 */
1969 	config_pending_decr(dev);
1970 
1971 	config_process_deferred(&deferred_config_queue, dev);
1972 
1973 out:	KERNEL_UNLOCK_ONE(NULL);
1974 	return dev;
1975 }
1976 
1977 /*
1978  * config_attach_pseudo(cf)
1979  *
1980  *	Legacy entry point for callers whose use of the returned
1981  *	device_t is not delimited by device_release.
1982  *
1983  *	The caller is required to hold the kernel lock as a fragile
1984  *	defence against races.
1985  *
1986  *	Callers should ignore the return value or be converted to
1987  *	config_attach_pseudo_acquire with a matching device_release
1988  *	once they have finished with the returned device_t.  As a
1989  *	bonus, config_attach_pseudo_acquire can pass a non-null aux
1990  *	argument into the driver's attach routine.
1991  */
1992 device_t
config_attach_pseudo(cfdata_t cf)1993 config_attach_pseudo(cfdata_t cf)
1994 {
1995 	device_t dev;
1996 
1997 	dev = config_attach_pseudo_acquire(cf, NULL);
1998 	if (dev == NULL)
1999 		return dev;
2000 	device_release(dev);
2001 
2002 	return dev;
2003 }
2004 
2005 /*
2006  * Caller must hold alldevs_lock.
2007  */
2008 static void
config_collect_garbage(struct devicelist * garbage)2009 config_collect_garbage(struct devicelist *garbage)
2010 {
2011 	device_t dv;
2012 
2013 	KASSERT(!cpu_intr_p());
2014 	KASSERT(!cpu_softintr_p());
2015 	KASSERT(mutex_owned(&alldevs_lock));
2016 
2017 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
2018 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2019 			if (dv->dv_del_gen != 0)
2020 				break;
2021 		}
2022 		if (dv == NULL) {
2023 			alldevs_garbage = false;
2024 			break;
2025 		}
2026 		config_devunlink(dv, garbage);
2027 	}
2028 	KASSERT(mutex_owned(&alldevs_lock));
2029 }
2030 
2031 static void
config_dump_garbage(struct devicelist * garbage)2032 config_dump_garbage(struct devicelist *garbage)
2033 {
2034 	device_t dv;
2035 
2036 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
2037 		TAILQ_REMOVE(garbage, dv, dv_list);
2038 		config_devdelete(dv);
2039 	}
2040 }
2041 
2042 static int
config_detach_enter(device_t dev)2043 config_detach_enter(device_t dev)
2044 {
2045 	struct lwp *l __diagused;
2046 	int error = 0;
2047 
2048 	mutex_enter(&config_misc_lock);
2049 
2050 	/*
2051 	 * Wait until attach has fully completed, and until any
2052 	 * concurrent detach (e.g., drvctl racing with USB event
2053 	 * thread) has completed.
2054 	 *
2055 	 * Caller must hold alldevs_nread or alldevs_nwrite (e.g., via
2056 	 * deviter) to ensure the winner of the race doesn't free the
2057 	 * device leading the loser of the race into use-after-free.
2058 	 *
2059 	 * XXX Not all callers do this!
2060 	 */
2061 	while (dev->dv_pending || dev->dv_detaching) {
2062 		KASSERTMSG(dev->dv_detaching != curlwp,
2063 		    "recursively detaching %s", device_xname(dev));
2064 		error = cv_wait_sig(&config_misc_cv, &config_misc_lock);
2065 		if (error)
2066 			goto out;
2067 	}
2068 
2069 	/*
2070 	 * Attach has completed, and no other concurrent detach is
2071 	 * running.  Claim the device for detaching.  This will cause
2072 	 * all new attempts to acquire references to block.
2073 	 */
2074 	KASSERTMSG((l = dev->dv_attaching) == NULL,
2075 	    "lwp %ld [%s] @ %p attaching %s",
2076 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
2077 	    device_xname(dev));
2078 	KASSERTMSG((l = dev->dv_detaching) == NULL,
2079 	    "lwp %ld [%s] @ %p detaching %s",
2080 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
2081 	    device_xname(dev));
2082 	dev->dv_detaching = curlwp;
2083 
2084 out:	mutex_exit(&config_misc_lock);
2085 	return error;
2086 }
2087 
2088 static void
config_detach_exit(device_t dev)2089 config_detach_exit(device_t dev)
2090 {
2091 	struct lwp *l __diagused;
2092 
2093 	mutex_enter(&config_misc_lock);
2094 	KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s",
2095 	    device_xname(dev));
2096 	KASSERTMSG((l = dev->dv_detaching) == curlwp,
2097 	    "lwp %ld [%s] @ %p detaching %s",
2098 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
2099 	    device_xname(dev));
2100 	dev->dv_detaching = NULL;
2101 	cv_broadcast(&config_misc_cv);
2102 	mutex_exit(&config_misc_lock);
2103 }
2104 
2105 /*
2106  * Detach a device.  Optionally forced (e.g. because of hardware
2107  * removal) and quiet.  Returns zero if successful, non-zero
2108  * (an error code) otherwise.
2109  *
2110  * Note that this code wants to be run from a process context, so
2111  * that the detach can sleep to allow processes which have a device
2112  * open to run and unwind their stacks.
2113  *
2114  * Caller must hold a reference with device_acquire or
2115  * device_lookup_acquire.
2116  */
2117 int
config_detach_release(device_t dev,int flags)2118 config_detach_release(device_t dev, int flags)
2119 {
2120 	struct alldevs_foray af;
2121 	struct cftable *ct;
2122 	cfdata_t cf;
2123 	const struct cfattach *ca;
2124 	struct cfdriver *cd;
2125 	device_t d __diagused;
2126 	int rv = 0;
2127 
2128 	KERNEL_LOCK(1, NULL);
2129 
2130 	cf = dev->dv_cfdata;
2131 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
2132 		cf->cf_fstate == FSTATE_STAR),
2133 	    "config_detach: %s: bad device fstate: %d",
2134 	    device_xname(dev), cf ? cf->cf_fstate : -1);
2135 
2136 	cd = dev->dv_cfdriver;
2137 	KASSERT(cd != NULL);
2138 
2139 	ca = dev->dv_cfattach;
2140 	KASSERT(ca != NULL);
2141 
2142 	/*
2143 	 * Only one detach at a time, please -- and not until fully
2144 	 * attached.
2145 	 */
2146 	rv = config_detach_enter(dev);
2147 	device_release(dev);
2148 	if (rv) {
2149 		KERNEL_UNLOCK_ONE(NULL);
2150 		return rv;
2151 	}
2152 
2153 	mutex_enter(&alldevs_lock);
2154 	if (dev->dv_del_gen != 0) {
2155 		mutex_exit(&alldevs_lock);
2156 #ifdef DIAGNOSTIC
2157 		printf("%s: %s is already detached\n", __func__,
2158 		    device_xname(dev));
2159 #endif /* DIAGNOSTIC */
2160 		config_detach_exit(dev);
2161 		KERNEL_UNLOCK_ONE(NULL);
2162 		return ENOENT;
2163 	}
2164 	alldevs_nwrite++;
2165 	mutex_exit(&alldevs_lock);
2166 
2167 	/*
2168 	 * Call the driver's .ca_detach function, unless it has none or
2169 	 * we are skipping it because it's unforced shutdown time and
2170 	 * the driver didn't ask to detach on shutdown.
2171 	 */
2172 	if (!detachall &&
2173 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
2174 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
2175 		rv = EOPNOTSUPP;
2176 	} else if (ca->ca_detach != NULL) {
2177 		rv = (*ca->ca_detach)(dev, flags);
2178 	} else
2179 		rv = EOPNOTSUPP;
2180 
2181 	KASSERTMSG(!dev->dv_detach_done, "%s detached twice, error=%d",
2182 	    device_xname(dev), rv);
2183 
2184 	/*
2185 	 * If it was not possible to detach the device, then we either
2186 	 * panic() (for the forced but failed case), or return an error.
2187 	 */
2188 	if (rv) {
2189 		/*
2190 		 * Detach failed -- likely EOPNOTSUPP or EBUSY.  Driver
2191 		 * must not have called config_detach_commit.
2192 		 */
2193 		KASSERTMSG(!dev->dv_detach_committed,
2194 		    "%s committed to detaching and then backed out, error=%d",
2195 		    device_xname(dev), rv);
2196 		if (flags & DETACH_FORCE) {
2197 			panic("config_detach: forced detach of %s failed (%d)",
2198 			    device_xname(dev), rv);
2199 		}
2200 		goto out;
2201 	}
2202 
2203 	/*
2204 	 * The device has now been successfully detached.
2205 	 */
2206 	dev->dv_detach_done = true;
2207 
2208 	/*
2209 	 * If .ca_detach didn't commit to detach, then do that for it.
2210 	 * This wakes any pending device_lookup_acquire calls so they
2211 	 * will fail.
2212 	 */
2213 	config_detach_commit(dev);
2214 
2215 	/*
2216 	 * If it was possible to detach the device, ensure that the
2217 	 * device is deactivated.
2218 	 */
2219 	dev->dv_flags &= ~DVF_ACTIVE; /* XXXSMP */
2220 
2221 	/*
2222 	 * Wait for all device_lookup_acquire references -- mostly, for
2223 	 * all attempts to open the device -- to drain.  It is the
2224 	 * responsibility of .ca_detach to ensure anything with open
2225 	 * references will be interrupted and release them promptly,
2226 	 * not block indefinitely.  All new attempts to acquire
2227 	 * references will fail, as config_detach_commit has arranged
2228 	 * by now.
2229 	 */
2230 	mutex_enter(&config_misc_lock);
2231 	localcount_drain(dev->dv_localcount,
2232 	    &config_misc_cv, &config_misc_lock);
2233 	mutex_exit(&config_misc_lock);
2234 
2235 	/* Let userland know */
2236 	devmon_report_device(dev, false);
2237 
2238 #ifdef DIAGNOSTIC
2239 	/*
2240 	 * Sanity: If you're successfully detached, you should have no
2241 	 * children.  (Note that because children must be attached
2242 	 * after parents, we only need to search the latter part of
2243 	 * the list.)
2244 	 */
2245 	mutex_enter(&alldevs_lock);
2246 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
2247 	    d = TAILQ_NEXT(d, dv_list)) {
2248 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
2249 			printf("config_detach: detached device %s"
2250 			    " has children %s\n", device_xname(dev),
2251 			    device_xname(d));
2252 			panic("config_detach");
2253 		}
2254 	}
2255 	mutex_exit(&alldevs_lock);
2256 #endif
2257 
2258 	/* notify the parent that the child is gone */
2259 	if (dev->dv_parent) {
2260 		device_t p = dev->dv_parent;
2261 		if (p->dv_cfattach->ca_childdetached)
2262 			(*p->dv_cfattach->ca_childdetached)(p, dev);
2263 	}
2264 
2265 	/*
2266 	 * Mark cfdata to show that the unit can be reused, if possible.
2267 	 */
2268 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
2269 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
2270 			if (STREQ(cf->cf_name, cd->cd_name)) {
2271 				if (cf->cf_fstate == FSTATE_FOUND &&
2272 				    cf->cf_unit == dev->dv_unit)
2273 					cf->cf_fstate = FSTATE_NOTFOUND;
2274 			}
2275 		}
2276 	}
2277 
2278 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
2279 		aprint_normal_dev(dev, "detached\n");
2280 
2281 out:
2282 	config_detach_exit(dev);
2283 
2284 	config_alldevs_enter(&af);
2285 	KASSERT(alldevs_nwrite != 0);
2286 	--alldevs_nwrite;
2287 	if (rv == 0 && dev->dv_del_gen == 0) {
2288 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
2289 			config_devunlink(dev, &af.af_garbage);
2290 		else {
2291 			dev->dv_del_gen = alldevs_gen;
2292 			alldevs_garbage = true;
2293 		}
2294 	}
2295 	config_alldevs_exit(&af);
2296 
2297 	KERNEL_UNLOCK_ONE(NULL);
2298 
2299 	return rv;
2300 }
2301 
2302 /*
2303  * config_detach(dev, flags)
2304  *
2305  *	Legacy entry point for callers that have not acquired a
2306  *	reference to dev.
2307  *
2308  *	The caller is required to hold the kernel lock as a fragile
2309  *	defence against races.
2310  *
2311  *	Callers should be converted to use device_acquire under a lock
2312  *	taken also by .ca_childdetached to synchronize access to the
2313  *	device_t, and then config_detach_release ouside the lock.
2314  *	Alternatively, most drivers detach children only in their own
2315  *	detach routines, which can be done with config_detach_children
2316  *	instead.
2317  */
2318 int
config_detach(device_t dev,int flags)2319 config_detach(device_t dev, int flags)
2320 {
2321 
2322 	device_acquire(dev);
2323 	return config_detach_release(dev, flags);
2324 }
2325 
2326 /*
2327  * config_detach_commit(dev)
2328  *
2329  *	Issued by a driver's .ca_detach routine to notify anyone
2330  *	waiting in device_lookup_acquire that the driver is committed
2331  *	to detaching the device, which allows device_lookup_acquire to
2332  *	wake up and fail immediately.
2333  *
2334  *	Safe to call multiple times -- idempotent.  Must be called
2335  *	during config_detach_enter/exit.  Safe to use with
2336  *	device_lookup because the device is not actually removed from
2337  *	the table until after config_detach_exit.
2338  */
2339 void
config_detach_commit(device_t dev)2340 config_detach_commit(device_t dev)
2341 {
2342 	struct lwp *l __diagused;
2343 
2344 	mutex_enter(&config_misc_lock);
2345 	KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s",
2346 	    device_xname(dev));
2347 	KASSERTMSG((l = dev->dv_detaching) == curlwp,
2348 	    "lwp %ld [%s] @ %p detaching %s",
2349 	    (long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
2350 	    device_xname(dev));
2351 	dev->dv_detach_committed = true;
2352 	cv_broadcast(&config_misc_cv);
2353 	mutex_exit(&config_misc_lock);
2354 }
2355 
2356 int
config_detach_children(device_t parent,int flags)2357 config_detach_children(device_t parent, int flags)
2358 {
2359 	device_t dv;
2360 	deviter_t di;
2361 	int error = 0;
2362 
2363 	KASSERT(KERNEL_LOCKED_P());
2364 
2365 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
2366 	     dv = deviter_next(&di)) {
2367 		if (device_parent(dv) != parent)
2368 			continue;
2369 		if ((error = config_detach(dv, flags)) != 0)
2370 			break;
2371 	}
2372 	deviter_release(&di);
2373 	return error;
2374 }
2375 
2376 device_t
shutdown_first(struct shutdown_state * s)2377 shutdown_first(struct shutdown_state *s)
2378 {
2379 	if (!s->initialized) {
2380 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
2381 		s->initialized = true;
2382 	}
2383 	return shutdown_next(s);
2384 }
2385 
2386 device_t
shutdown_next(struct shutdown_state * s)2387 shutdown_next(struct shutdown_state *s)
2388 {
2389 	device_t dv;
2390 
2391 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
2392 		;
2393 
2394 	if (dv == NULL)
2395 		s->initialized = false;
2396 
2397 	return dv;
2398 }
2399 
2400 bool
config_detach_all(int how)2401 config_detach_all(int how)
2402 {
2403 	static struct shutdown_state s;
2404 	device_t curdev;
2405 	bool progress = false;
2406 	int flags;
2407 
2408 	KERNEL_LOCK(1, NULL);
2409 
2410 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
2411 		goto out;
2412 
2413 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
2414 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
2415 	else
2416 		flags = DETACH_SHUTDOWN;
2417 
2418 	for (curdev = shutdown_first(&s); curdev != NULL;
2419 	     curdev = shutdown_next(&s)) {
2420 		aprint_debug(" detaching %s, ", device_xname(curdev));
2421 		if (config_detach(curdev, flags) == 0) {
2422 			progress = true;
2423 			aprint_debug("success.");
2424 		} else
2425 			aprint_debug("failed.");
2426 	}
2427 
2428 out:	KERNEL_UNLOCK_ONE(NULL);
2429 	return progress;
2430 }
2431 
2432 static bool
device_is_ancestor_of(device_t ancestor,device_t descendant)2433 device_is_ancestor_of(device_t ancestor, device_t descendant)
2434 {
2435 	device_t dv;
2436 
2437 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
2438 		if (device_parent(dv) == ancestor)
2439 			return true;
2440 	}
2441 	return false;
2442 }
2443 
2444 int
config_deactivate(device_t dev)2445 config_deactivate(device_t dev)
2446 {
2447 	deviter_t di;
2448 	const struct cfattach *ca;
2449 	device_t descendant;
2450 	int s, rv = 0, oflags;
2451 
2452 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
2453 	     descendant != NULL;
2454 	     descendant = deviter_next(&di)) {
2455 		if (dev != descendant &&
2456 		    !device_is_ancestor_of(dev, descendant))
2457 			continue;
2458 
2459 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
2460 			continue;
2461 
2462 		ca = descendant->dv_cfattach;
2463 		oflags = descendant->dv_flags;
2464 
2465 		descendant->dv_flags &= ~DVF_ACTIVE;
2466 		if (ca->ca_activate == NULL)
2467 			continue;
2468 		s = splhigh();
2469 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
2470 		splx(s);
2471 		if (rv != 0)
2472 			descendant->dv_flags = oflags;
2473 	}
2474 	deviter_release(&di);
2475 	return rv;
2476 }
2477 
2478 /*
2479  * Defer the configuration of the specified device until all
2480  * of its parent's devices have been attached.
2481  */
2482 void
config_defer(device_t dev,void (* func)(device_t))2483 config_defer(device_t dev, void (*func)(device_t))
2484 {
2485 	struct deferred_config *dc;
2486 
2487 	if (dev->dv_parent == NULL)
2488 		panic("config_defer: can't defer config of a root device");
2489 
2490 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2491 
2492 	config_pending_incr(dev);
2493 
2494 	mutex_enter(&config_misc_lock);
2495 #ifdef DIAGNOSTIC
2496 	struct deferred_config *odc;
2497 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
2498 		if (odc->dc_dev == dev)
2499 			panic("config_defer: deferred twice");
2500 	}
2501 #endif
2502 	dc->dc_dev = dev;
2503 	dc->dc_func = func;
2504 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
2505 	mutex_exit(&config_misc_lock);
2506 }
2507 
2508 /*
2509  * Defer some autoconfiguration for a device until after interrupts
2510  * are enabled.
2511  */
2512 void
config_interrupts(device_t dev,void (* func)(device_t))2513 config_interrupts(device_t dev, void (*func)(device_t))
2514 {
2515 	struct deferred_config *dc;
2516 
2517 	/*
2518 	 * If interrupts are enabled, callback now.
2519 	 */
2520 	if (cold == 0) {
2521 		(*func)(dev);
2522 		return;
2523 	}
2524 
2525 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2526 
2527 	config_pending_incr(dev);
2528 
2529 	mutex_enter(&config_misc_lock);
2530 #ifdef DIAGNOSTIC
2531 	struct deferred_config *odc;
2532 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
2533 		if (odc->dc_dev == dev)
2534 			panic("config_interrupts: deferred twice");
2535 	}
2536 #endif
2537 	dc->dc_dev = dev;
2538 	dc->dc_func = func;
2539 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2540 	mutex_exit(&config_misc_lock);
2541 }
2542 
2543 /*
2544  * Defer some autoconfiguration for a device until after root file system
2545  * is mounted (to load firmware etc).
2546  */
2547 void
config_mountroot(device_t dev,void (* func)(device_t))2548 config_mountroot(device_t dev, void (*func)(device_t))
2549 {
2550 	struct deferred_config *dc;
2551 
2552 	/*
2553 	 * If root file system is mounted, callback now.
2554 	 */
2555 	if (root_is_mounted) {
2556 		(*func)(dev);
2557 		return;
2558 	}
2559 
2560 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2561 
2562 	mutex_enter(&config_misc_lock);
2563 #ifdef DIAGNOSTIC
2564 	struct deferred_config *odc;
2565 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
2566 		if (odc->dc_dev == dev)
2567 			panic("%s: deferred twice", __func__);
2568 	}
2569 #endif
2570 
2571 	dc->dc_dev = dev;
2572 	dc->dc_func = func;
2573 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2574 	mutex_exit(&config_misc_lock);
2575 }
2576 
2577 /*
2578  * Process a deferred configuration queue.
2579  */
2580 static void
config_process_deferred(struct deferred_config_head * queue,device_t parent)2581 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2582 {
2583 	struct deferred_config *dc;
2584 
2585 	KASSERT(KERNEL_LOCKED_P());
2586 
2587 	mutex_enter(&config_misc_lock);
2588 	dc = TAILQ_FIRST(queue);
2589 	while (dc) {
2590 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2591 			TAILQ_REMOVE(queue, dc, dc_queue);
2592 			mutex_exit(&config_misc_lock);
2593 
2594 			(*dc->dc_func)(dc->dc_dev);
2595 			config_pending_decr(dc->dc_dev);
2596 			kmem_free(dc, sizeof(*dc));
2597 
2598 			mutex_enter(&config_misc_lock);
2599 			/* Restart, queue might have changed */
2600 			dc = TAILQ_FIRST(queue);
2601 		} else {
2602 			dc = TAILQ_NEXT(dc, dc_queue);
2603 		}
2604 	}
2605 	mutex_exit(&config_misc_lock);
2606 }
2607 
2608 /*
2609  * Manipulate the config_pending semaphore.
2610  */
2611 void
config_pending_incr(device_t dev)2612 config_pending_incr(device_t dev)
2613 {
2614 
2615 	mutex_enter(&config_misc_lock);
2616 	KASSERTMSG(dev->dv_pending < INT_MAX,
2617 	    "%s: excess config_pending_incr", device_xname(dev));
2618 	if (dev->dv_pending++ == 0)
2619 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
2620 #ifdef DEBUG_AUTOCONF
2621 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2622 #endif
2623 	mutex_exit(&config_misc_lock);
2624 }
2625 
2626 void
config_pending_decr(device_t dev)2627 config_pending_decr(device_t dev)
2628 {
2629 
2630 	mutex_enter(&config_misc_lock);
2631 	KASSERTMSG(dev->dv_pending > 0,
2632 	    "%s: excess config_pending_decr", device_xname(dev));
2633 	if (--dev->dv_pending == 0) {
2634 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
2635 		cv_broadcast(&config_misc_cv);
2636 	}
2637 #ifdef DEBUG_AUTOCONF
2638 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2639 #endif
2640 	mutex_exit(&config_misc_lock);
2641 }
2642 
2643 /*
2644  * Register a "finalization" routine.  Finalization routines are
2645  * called iteratively once all real devices have been found during
2646  * autoconfiguration, for as long as any one finalizer has done
2647  * any work.
2648  */
2649 int
config_finalize_register(device_t dev,int (* fn)(device_t))2650 config_finalize_register(device_t dev, int (*fn)(device_t))
2651 {
2652 	struct finalize_hook *f;
2653 	int error = 0;
2654 
2655 	KERNEL_LOCK(1, NULL);
2656 
2657 	/*
2658 	 * If finalization has already been done, invoke the
2659 	 * callback function now.
2660 	 */
2661 	if (config_finalize_done) {
2662 		while ((*fn)(dev) != 0)
2663 			/* loop */ ;
2664 		goto out;
2665 	}
2666 
2667 	/* Ensure this isn't already on the list. */
2668 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2669 		if (f->f_func == fn && f->f_dev == dev) {
2670 			error = EEXIST;
2671 			goto out;
2672 		}
2673 	}
2674 
2675 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
2676 	f->f_func = fn;
2677 	f->f_dev = dev;
2678 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2679 
2680 	/* Success!  */
2681 	error = 0;
2682 
2683 out:	KERNEL_UNLOCK_ONE(NULL);
2684 	return error;
2685 }
2686 
2687 void
config_finalize(void)2688 config_finalize(void)
2689 {
2690 	struct finalize_hook *f;
2691 	struct pdevinit *pdev;
2692 	extern struct pdevinit pdevinit[];
2693 	unsigned t0 = getticks();
2694 	int errcnt, rv;
2695 
2696 	/*
2697 	 * Now that device driver threads have been created, wait for
2698 	 * them to finish any deferred autoconfiguration.
2699 	 */
2700 	mutex_enter(&config_misc_lock);
2701 	while (!TAILQ_EMPTY(&config_pending)) {
2702 		const unsigned t1 = getticks();
2703 
2704 		if (t1 - t0 >= hz) {
2705 			void (*pr)(const char *, ...) __printflike(1,2);
2706 			device_t dev;
2707 
2708 			if (t1 - t0 >= 60*hz) {
2709 				pr = aprint_normal;
2710 				t0 = t1;
2711 			} else {
2712 				pr = aprint_debug;
2713 			}
2714 
2715 			(*pr)("waiting for devices:");
2716 			TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
2717 				(*pr)(" %s", device_xname(dev));
2718 			(*pr)("\n");
2719 		}
2720 
2721 		(void)cv_timedwait(&config_misc_cv, &config_misc_lock,
2722 		    mstohz(1000));
2723 	}
2724 	mutex_exit(&config_misc_lock);
2725 
2726 	KERNEL_LOCK(1, NULL);
2727 
2728 	/* Attach pseudo-devices. */
2729 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2730 		(*pdev->pdev_attach)(pdev->pdev_count);
2731 
2732 	/* Run the hooks until none of them does any work. */
2733 	do {
2734 		rv = 0;
2735 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
2736 			rv |= (*f->f_func)(f->f_dev);
2737 	} while (rv != 0);
2738 
2739 	config_finalize_done = 1;
2740 
2741 	/* Now free all the hooks. */
2742 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2743 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
2744 		kmem_free(f, sizeof(*f));
2745 	}
2746 
2747 	KERNEL_UNLOCK_ONE(NULL);
2748 
2749 	errcnt = aprint_get_error_count();
2750 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2751 	    (boothowto & AB_VERBOSE) == 0) {
2752 		mutex_enter(&config_misc_lock);
2753 		if (config_do_twiddle) {
2754 			config_do_twiddle = 0;
2755 			printf_nolog(" done.\n");
2756 		}
2757 		mutex_exit(&config_misc_lock);
2758 	}
2759 	if (errcnt != 0) {
2760 		printf("WARNING: %d error%s while detecting hardware; "
2761 		    "check system log.\n", errcnt,
2762 		    errcnt == 1 ? "" : "s");
2763 	}
2764 }
2765 
2766 void
config_twiddle_init(void)2767 config_twiddle_init(void)
2768 {
2769 
2770 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2771 		config_do_twiddle = 1;
2772 	}
2773 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2774 }
2775 
2776 void
config_twiddle_fn(void * cookie)2777 config_twiddle_fn(void *cookie)
2778 {
2779 
2780 	mutex_enter(&config_misc_lock);
2781 	if (config_do_twiddle) {
2782 		twiddle();
2783 		callout_schedule(&config_twiddle_ch, mstohz(100));
2784 	}
2785 	mutex_exit(&config_misc_lock);
2786 }
2787 
2788 static void
config_alldevs_enter(struct alldevs_foray * af)2789 config_alldevs_enter(struct alldevs_foray *af)
2790 {
2791 	TAILQ_INIT(&af->af_garbage);
2792 	mutex_enter(&alldevs_lock);
2793 	config_collect_garbage(&af->af_garbage);
2794 }
2795 
2796 static void
config_alldevs_exit(struct alldevs_foray * af)2797 config_alldevs_exit(struct alldevs_foray *af)
2798 {
2799 	mutex_exit(&alldevs_lock);
2800 	config_dump_garbage(&af->af_garbage);
2801 }
2802 
2803 /*
2804  * device_lookup:
2805  *
2806  *	Look up a device instance for a given driver.
2807  *
2808  *	Caller is responsible for ensuring the device's state is
2809  *	stable, either by holding a reference already obtained with
2810  *	device_lookup_acquire or by otherwise ensuring the device is
2811  *	attached and can't be detached (e.g., holding an open device
2812  *	node and ensuring *_detach calls vdevgone).
2813  *
2814  *	XXX Find a way to assert this.
2815  *
2816  *	Safe for use up to and including interrupt context at IPL_VM.
2817  *	Never sleeps.
2818  */
2819 device_t
device_lookup(cfdriver_t cd,int unit)2820 device_lookup(cfdriver_t cd, int unit)
2821 {
2822 	device_t dv;
2823 
2824 	mutex_enter(&alldevs_lock);
2825 	if (unit < 0 || unit >= cd->cd_ndevs)
2826 		dv = NULL;
2827 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2828 		dv = NULL;
2829 	mutex_exit(&alldevs_lock);
2830 
2831 	return dv;
2832 }
2833 
2834 /*
2835  * device_lookup_private:
2836  *
2837  *	Look up a softc instance for a given driver.
2838  */
2839 void *
device_lookup_private(cfdriver_t cd,int unit)2840 device_lookup_private(cfdriver_t cd, int unit)
2841 {
2842 
2843 	return device_private(device_lookup(cd, unit));
2844 }
2845 
2846 /*
2847  * device_lookup_acquire:
2848  *
2849  *	Look up a device instance for a given driver, and return a
2850  *	reference to it that must be released by device_release.
2851  *
2852  *	=> If the device is still attaching, blocks until *_attach has
2853  *	   returned.
2854  *
2855  *	=> If the device is detaching, blocks until *_detach has
2856  *	   returned.  May succeed or fail in that case, depending on
2857  *	   whether *_detach has backed out (EBUSY) or committed to
2858  *	   detaching.
2859  *
2860  *	May sleep.
2861  */
2862 device_t
device_lookup_acquire(cfdriver_t cd,int unit)2863 device_lookup_acquire(cfdriver_t cd, int unit)
2864 {
2865 	device_t dv;
2866 
2867 	ASSERT_SLEEPABLE();
2868 
2869 	/* XXX This should have a pserialized fast path -- TBD.  */
2870 	mutex_enter(&config_misc_lock);
2871 	mutex_enter(&alldevs_lock);
2872 retry:	if (unit < 0 || unit >= cd->cd_ndevs ||
2873 	    (dv = cd->cd_devs[unit]) == NULL ||
2874 	    dv->dv_del_gen != 0 ||
2875 	    dv->dv_detach_committed) {
2876 		dv = NULL;
2877 	} else {
2878 		/*
2879 		 * Wait for the device to stabilize, if attaching or
2880 		 * detaching.  Either way we must wait for *_attach or
2881 		 * *_detach to complete, and either way we must retry:
2882 		 * even if detaching, *_detach might fail (EBUSY) so
2883 		 * the device may still be there.
2884 		 */
2885 		if ((dv->dv_attaching != NULL && dv->dv_attaching != curlwp) ||
2886 		    dv->dv_detaching != NULL) {
2887 			mutex_exit(&alldevs_lock);
2888 			cv_wait(&config_misc_cv, &config_misc_lock);
2889 			mutex_enter(&alldevs_lock);
2890 			goto retry;
2891 		}
2892 		device_acquire(dv);
2893 	}
2894 	mutex_exit(&alldevs_lock);
2895 	mutex_exit(&config_misc_lock);
2896 
2897 	return dv;
2898 }
2899 
2900 /*
2901  * device_acquire:
2902  *
2903  *	Acquire a reference to a device.  It is the caller's
2904  *	responsibility to ensure that the device's .ca_detach routine
2905  *	cannot return before calling this.  Caller must release the
2906  *	reference with device_release or config_detach_release.
2907  */
2908 void
device_acquire(device_t dv)2909 device_acquire(device_t dv)
2910 {
2911 
2912 	/*
2913 	 * No lock because the caller has promised that this can't
2914 	 * change concurrently with device_acquire.
2915 	 */
2916 	KASSERTMSG(!dv->dv_detach_done, "%s",
2917 	    dv == NULL ? "(null)" : device_xname(dv));
2918 	localcount_acquire(dv->dv_localcount);
2919 }
2920 
2921 /*
2922  * device_release:
2923  *
2924  *	Release a reference to a device acquired with device_acquire or
2925  *	device_lookup_acquire.
2926  */
2927 void
device_release(device_t dv)2928 device_release(device_t dv)
2929 {
2930 
2931 	localcount_release(dv->dv_localcount,
2932 	    &config_misc_cv, &config_misc_lock);
2933 }
2934 
2935 /*
2936  * device_find_by_xname:
2937  *
2938  *	Returns the device of the given name or NULL if it doesn't exist.
2939  */
2940 device_t
device_find_by_xname(const char * name)2941 device_find_by_xname(const char *name)
2942 {
2943 	device_t dv;
2944 	deviter_t di;
2945 
2946 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2947 		if (strcmp(device_xname(dv), name) == 0)
2948 			break;
2949 	}
2950 	deviter_release(&di);
2951 
2952 	return dv;
2953 }
2954 
2955 /*
2956  * device_find_by_driver_unit:
2957  *
2958  *	Returns the device of the given driver name and unit or
2959  *	NULL if it doesn't exist.
2960  */
2961 device_t
device_find_by_driver_unit(const char * name,int unit)2962 device_find_by_driver_unit(const char *name, int unit)
2963 {
2964 	struct cfdriver *cd;
2965 
2966 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2967 		return NULL;
2968 	return device_lookup(cd, unit);
2969 }
2970 
2971 static bool
match_strcmp(const char * const s1,const char * const s2)2972 match_strcmp(const char * const s1, const char * const s2)
2973 {
2974 	return strcmp(s1, s2) == 0;
2975 }
2976 
2977 static bool
match_pmatch(const char * const s1,const char * const s2)2978 match_pmatch(const char * const s1, const char * const s2)
2979 {
2980 	return pmatch(s1, s2, NULL) == 2;
2981 }
2982 
2983 static bool
strarray_match_internal(const char ** const strings,unsigned int const nstrings,const char * const str,unsigned int * const indexp,bool (* match_fn)(const char *,const char *))2984 strarray_match_internal(const char ** const strings,
2985     unsigned int const nstrings, const char * const str,
2986     unsigned int * const indexp,
2987     bool (*match_fn)(const char *, const char *))
2988 {
2989 	unsigned int i;
2990 
2991 	if (strings == NULL || nstrings == 0) {
2992 		return false;
2993 	}
2994 
2995 	for (i = 0; i < nstrings; i++) {
2996 		if ((*match_fn)(strings[i], str)) {
2997 			*indexp = i;
2998 			return true;
2999 		}
3000 	}
3001 
3002 	return false;
3003 }
3004 
3005 static int
strarray_match(const char ** const strings,unsigned int const nstrings,const char * const str)3006 strarray_match(const char ** const strings, unsigned int const nstrings,
3007     const char * const str)
3008 {
3009 	unsigned int idx;
3010 
3011 	if (strarray_match_internal(strings, nstrings, str, &idx,
3012 				    match_strcmp)) {
3013 		return (int)(nstrings - idx);
3014 	}
3015 	return 0;
3016 }
3017 
3018 static int
strarray_pmatch(const char ** const strings,unsigned int const nstrings,const char * const pattern)3019 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
3020     const char * const pattern)
3021 {
3022 	unsigned int idx;
3023 
3024 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
3025 				    match_pmatch)) {
3026 		return (int)(nstrings - idx);
3027 	}
3028 	return 0;
3029 }
3030 
3031 static int
device_compatible_match_strarray_internal(const char ** device_compats,int ndevice_compats,const struct device_compatible_entry * driver_compats,const struct device_compatible_entry ** matching_entryp,int (* match_fn)(const char **,unsigned int,const char *))3032 device_compatible_match_strarray_internal(
3033     const char **device_compats, int ndevice_compats,
3034     const struct device_compatible_entry *driver_compats,
3035     const struct device_compatible_entry **matching_entryp,
3036     int (*match_fn)(const char **, unsigned int, const char *))
3037 {
3038 	const struct device_compatible_entry *dce = NULL;
3039 	int rv;
3040 
3041 	if (ndevice_compats == 0 || device_compats == NULL ||
3042 	    driver_compats == NULL)
3043 		return 0;
3044 
3045 	for (dce = driver_compats; dce->compat != NULL; dce++) {
3046 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
3047 		if (rv != 0) {
3048 			if (matching_entryp != NULL) {
3049 				*matching_entryp = dce;
3050 			}
3051 			return rv;
3052 		}
3053 	}
3054 	return 0;
3055 }
3056 
3057 /*
3058  * device_compatible_match:
3059  *
3060  *	Match a driver's "compatible" data against a device's
3061  *	"compatible" strings.  Returns resulted weighted by
3062  *	which device "compatible" string was matched.
3063  */
3064 int
device_compatible_match(const char ** device_compats,int ndevice_compats,const struct device_compatible_entry * driver_compats)3065 device_compatible_match(const char **device_compats, int ndevice_compats,
3066     const struct device_compatible_entry *driver_compats)
3067 {
3068 	return device_compatible_match_strarray_internal(device_compats,
3069 	    ndevice_compats, driver_compats, NULL, strarray_match);
3070 }
3071 
3072 /*
3073  * device_compatible_pmatch:
3074  *
3075  *	Like device_compatible_match(), but uses pmatch(9) to compare
3076  *	the device "compatible" strings against patterns in the
3077  *	driver's "compatible" data.
3078  */
3079 int
device_compatible_pmatch(const char ** device_compats,int ndevice_compats,const struct device_compatible_entry * driver_compats)3080 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
3081     const struct device_compatible_entry *driver_compats)
3082 {
3083 	return device_compatible_match_strarray_internal(device_compats,
3084 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
3085 }
3086 
3087 static int
device_compatible_match_strlist_internal(const char * const device_compats,size_t const device_compatsize,const struct device_compatible_entry * driver_compats,const struct device_compatible_entry ** matching_entryp,int (* match_fn)(const char *,size_t,const char *))3088 device_compatible_match_strlist_internal(
3089     const char * const device_compats, size_t const device_compatsize,
3090     const struct device_compatible_entry *driver_compats,
3091     const struct device_compatible_entry **matching_entryp,
3092     int (*match_fn)(const char *, size_t, const char *))
3093 {
3094 	const struct device_compatible_entry *dce = NULL;
3095 	int rv;
3096 
3097 	if (device_compats == NULL || device_compatsize == 0 ||
3098 	    driver_compats == NULL)
3099 		return 0;
3100 
3101 	for (dce = driver_compats; dce->compat != NULL; dce++) {
3102 		rv = (*match_fn)(device_compats, device_compatsize,
3103 		    dce->compat);
3104 		if (rv != 0) {
3105 			if (matching_entryp != NULL) {
3106 				*matching_entryp = dce;
3107 			}
3108 			return rv;
3109 		}
3110 	}
3111 	return 0;
3112 }
3113 
3114 /*
3115  * device_compatible_match_strlist:
3116  *
3117  *	Like device_compatible_match(), but take the device
3118  *	"compatible" strings as an OpenFirmware-style string
3119  *	list.
3120  */
3121 int
device_compatible_match_strlist(const char * const device_compats,size_t const device_compatsize,const struct device_compatible_entry * driver_compats)3122 device_compatible_match_strlist(
3123     const char * const device_compats, size_t const device_compatsize,
3124     const struct device_compatible_entry *driver_compats)
3125 {
3126 	return device_compatible_match_strlist_internal(device_compats,
3127 	    device_compatsize, driver_compats, NULL, strlist_match);
3128 }
3129 
3130 /*
3131  * device_compatible_pmatch_strlist:
3132  *
3133  *	Like device_compatible_pmatch(), but take the device
3134  *	"compatible" strings as an OpenFirmware-style string
3135  *	list.
3136  */
3137 int
device_compatible_pmatch_strlist(const char * const device_compats,size_t const device_compatsize,const struct device_compatible_entry * driver_compats)3138 device_compatible_pmatch_strlist(
3139     const char * const device_compats, size_t const device_compatsize,
3140     const struct device_compatible_entry *driver_compats)
3141 {
3142 	return device_compatible_match_strlist_internal(device_compats,
3143 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
3144 }
3145 
3146 static int
device_compatible_match_id_internal(uintptr_t const id,uintptr_t const mask,uintptr_t const sentinel_id,const struct device_compatible_entry * driver_compats,const struct device_compatible_entry ** matching_entryp)3147 device_compatible_match_id_internal(
3148     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
3149     const struct device_compatible_entry *driver_compats,
3150     const struct device_compatible_entry **matching_entryp)
3151 {
3152 	const struct device_compatible_entry *dce = NULL;
3153 
3154 	if (mask == 0)
3155 		return 0;
3156 
3157 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
3158 		if ((id & mask) == dce->id) {
3159 			if (matching_entryp != NULL) {
3160 				*matching_entryp = dce;
3161 			}
3162 			return 1;
3163 		}
3164 	}
3165 	return 0;
3166 }
3167 
3168 /*
3169  * device_compatible_match_id:
3170  *
3171  *	Like device_compatible_match(), but takes a single
3172  *	unsigned integer device ID.
3173  */
3174 int
device_compatible_match_id(uintptr_t const id,uintptr_t const sentinel_id,const struct device_compatible_entry * driver_compats)3175 device_compatible_match_id(
3176     uintptr_t const id, uintptr_t const sentinel_id,
3177     const struct device_compatible_entry *driver_compats)
3178 {
3179 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
3180 	    sentinel_id, driver_compats, NULL);
3181 }
3182 
3183 /*
3184  * device_compatible_lookup:
3185  *
3186  *	Look up and return the device_compatible_entry, using the
3187  *	same matching criteria used by device_compatible_match().
3188  */
3189 const struct device_compatible_entry *
device_compatible_lookup(const char ** device_compats,int ndevice_compats,const struct device_compatible_entry * driver_compats)3190 device_compatible_lookup(const char **device_compats, int ndevice_compats,
3191 			 const struct device_compatible_entry *driver_compats)
3192 {
3193 	const struct device_compatible_entry *dce;
3194 
3195 	if (device_compatible_match_strarray_internal(device_compats,
3196 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
3197 		return dce;
3198 	}
3199 	return NULL;
3200 }
3201 
3202 /*
3203  * device_compatible_plookup:
3204  *
3205  *	Look up and return the device_compatible_entry, using the
3206  *	same matching criteria used by device_compatible_pmatch().
3207  */
3208 const struct device_compatible_entry *
device_compatible_plookup(const char ** device_compats,int ndevice_compats,const struct device_compatible_entry * driver_compats)3209 device_compatible_plookup(const char **device_compats, int ndevice_compats,
3210 			  const struct device_compatible_entry *driver_compats)
3211 {
3212 	const struct device_compatible_entry *dce;
3213 
3214 	if (device_compatible_match_strarray_internal(device_compats,
3215 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
3216 		return dce;
3217 	}
3218 	return NULL;
3219 }
3220 
3221 /*
3222  * device_compatible_lookup_strlist:
3223  *
3224  *	Like device_compatible_lookup(), but take the device
3225  *	"compatible" strings as an OpenFirmware-style string
3226  *	list.
3227  */
3228 const struct device_compatible_entry *
device_compatible_lookup_strlist(const char * const device_compats,size_t const device_compatsize,const struct device_compatible_entry * driver_compats)3229 device_compatible_lookup_strlist(
3230     const char * const device_compats, size_t const device_compatsize,
3231     const struct device_compatible_entry *driver_compats)
3232 {
3233 	const struct device_compatible_entry *dce;
3234 
3235 	if (device_compatible_match_strlist_internal(device_compats,
3236 	    device_compatsize, driver_compats, &dce, strlist_match)) {
3237 		return dce;
3238 	}
3239 	return NULL;
3240 }
3241 
3242 /*
3243  * device_compatible_plookup_strlist:
3244  *
3245  *	Like device_compatible_plookup(), but take the device
3246  *	"compatible" strings as an OpenFirmware-style string
3247  *	list.
3248  */
3249 const struct device_compatible_entry *
device_compatible_plookup_strlist(const char * const device_compats,size_t const device_compatsize,const struct device_compatible_entry * driver_compats)3250 device_compatible_plookup_strlist(
3251     const char * const device_compats, size_t const device_compatsize,
3252     const struct device_compatible_entry *driver_compats)
3253 {
3254 	const struct device_compatible_entry *dce;
3255 
3256 	if (device_compatible_match_strlist_internal(device_compats,
3257 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
3258 		return dce;
3259 	}
3260 	return NULL;
3261 }
3262 
3263 /*
3264  * device_compatible_lookup_id:
3265  *
3266  *	Like device_compatible_lookup(), but takes a single
3267  *	unsigned integer device ID.
3268  */
3269 const struct device_compatible_entry *
device_compatible_lookup_id(uintptr_t const id,uintptr_t const sentinel_id,const struct device_compatible_entry * driver_compats)3270 device_compatible_lookup_id(
3271     uintptr_t const id, uintptr_t const sentinel_id,
3272     const struct device_compatible_entry *driver_compats)
3273 {
3274 	const struct device_compatible_entry *dce;
3275 
3276 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
3277 	    sentinel_id, driver_compats, &dce)) {
3278 		return dce;
3279 	}
3280 	return NULL;
3281 }
3282 
3283 /*
3284  * Power management related functions.
3285  */
3286 
3287 bool
device_pmf_is_registered(device_t dev)3288 device_pmf_is_registered(device_t dev)
3289 {
3290 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
3291 }
3292 
3293 bool
device_pmf_driver_suspend(device_t dev,const pmf_qual_t * qual)3294 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
3295 {
3296 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
3297 		return true;
3298 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
3299 		return false;
3300 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
3301 	    dev->dv_driver_suspend != NULL &&
3302 	    !(*dev->dv_driver_suspend)(dev, qual))
3303 		return false;
3304 
3305 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
3306 	return true;
3307 }
3308 
3309 bool
device_pmf_driver_resume(device_t dev,const pmf_qual_t * qual)3310 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
3311 {
3312 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
3313 		return true;
3314 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
3315 		return false;
3316 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
3317 	    dev->dv_driver_resume != NULL &&
3318 	    !(*dev->dv_driver_resume)(dev, qual))
3319 		return false;
3320 
3321 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
3322 	return true;
3323 }
3324 
3325 bool
device_pmf_driver_shutdown(device_t dev,int how)3326 device_pmf_driver_shutdown(device_t dev, int how)
3327 {
3328 
3329 	if (*dev->dv_driver_shutdown != NULL &&
3330 	    !(*dev->dv_driver_shutdown)(dev, how))
3331 		return false;
3332 	return true;
3333 }
3334 
3335 void
device_pmf_driver_register(device_t dev,bool (* suspend)(device_t,const pmf_qual_t *),bool (* resume)(device_t,const pmf_qual_t *),bool (* shutdown)(device_t,int))3336 device_pmf_driver_register(device_t dev,
3337     bool (*suspend)(device_t, const pmf_qual_t *),
3338     bool (*resume)(device_t, const pmf_qual_t *),
3339     bool (*shutdown)(device_t, int))
3340 {
3341 
3342 	dev->dv_driver_suspend = suspend;
3343 	dev->dv_driver_resume = resume;
3344 	dev->dv_driver_shutdown = shutdown;
3345 	dev->dv_flags |= DVF_POWER_HANDLERS;
3346 }
3347 
3348 void
device_pmf_driver_deregister(device_t dev)3349 device_pmf_driver_deregister(device_t dev)
3350 {
3351 	device_lock_t dvl = device_getlock(dev);
3352 
3353 	dev->dv_driver_suspend = NULL;
3354 	dev->dv_driver_resume = NULL;
3355 
3356 	mutex_enter(&dvl->dvl_mtx);
3357 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
3358 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
3359 		/* Wake a thread that waits for the lock.  That
3360 		 * thread will fail to acquire the lock, and then
3361 		 * it will wake the next thread that waits for the
3362 		 * lock, or else it will wake us.
3363 		 */
3364 		cv_signal(&dvl->dvl_cv);
3365 		pmflock_debug(dev, __func__, __LINE__);
3366 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
3367 		pmflock_debug(dev, __func__, __LINE__);
3368 	}
3369 	mutex_exit(&dvl->dvl_mtx);
3370 }
3371 
3372 void
device_pmf_driver_child_register(device_t dev)3373 device_pmf_driver_child_register(device_t dev)
3374 {
3375 	device_t parent = device_parent(dev);
3376 
3377 	if (parent == NULL || parent->dv_driver_child_register == NULL)
3378 		return;
3379 	(*parent->dv_driver_child_register)(dev);
3380 }
3381 
3382 void
device_pmf_driver_set_child_register(device_t dev,void (* child_register)(device_t))3383 device_pmf_driver_set_child_register(device_t dev,
3384     void (*child_register)(device_t))
3385 {
3386 	dev->dv_driver_child_register = child_register;
3387 }
3388 
3389 static void
pmflock_debug(device_t dev,const char * func,int line)3390 pmflock_debug(device_t dev, const char *func, int line)
3391 {
3392 #ifdef PMFLOCK_DEBUG
3393 	device_lock_t dvl = device_getlock(dev);
3394 	const char *curlwp_name;
3395 
3396 	if (curlwp->l_name != NULL)
3397 		curlwp_name = curlwp->l_name;
3398 	else
3399 		curlwp_name = curlwp->l_proc->p_comm;
3400 
3401 	aprint_debug_dev(dev,
3402 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
3403 	    curlwp_name, dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
3404 #endif	/* PMFLOCK_DEBUG */
3405 }
3406 
3407 static bool
device_pmf_lock1(device_t dev)3408 device_pmf_lock1(device_t dev)
3409 {
3410 	device_lock_t dvl = device_getlock(dev);
3411 
3412 	while (device_pmf_is_registered(dev) &&
3413 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
3414 		dvl->dvl_nwait++;
3415 		pmflock_debug(dev, __func__, __LINE__);
3416 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
3417 		pmflock_debug(dev, __func__, __LINE__);
3418 		dvl->dvl_nwait--;
3419 	}
3420 	if (!device_pmf_is_registered(dev)) {
3421 		pmflock_debug(dev, __func__, __LINE__);
3422 		/* We could not acquire the lock, but some other thread may
3423 		 * wait for it, also.  Wake that thread.
3424 		 */
3425 		cv_signal(&dvl->dvl_cv);
3426 		return false;
3427 	}
3428 	dvl->dvl_nlock++;
3429 	dvl->dvl_holder = curlwp;
3430 	pmflock_debug(dev, __func__, __LINE__);
3431 	return true;
3432 }
3433 
3434 bool
device_pmf_lock(device_t dev)3435 device_pmf_lock(device_t dev)
3436 {
3437 	bool rc;
3438 	device_lock_t dvl = device_getlock(dev);
3439 
3440 	mutex_enter(&dvl->dvl_mtx);
3441 	rc = device_pmf_lock1(dev);
3442 	mutex_exit(&dvl->dvl_mtx);
3443 
3444 	return rc;
3445 }
3446 
3447 void
device_pmf_unlock(device_t dev)3448 device_pmf_unlock(device_t dev)
3449 {
3450 	device_lock_t dvl = device_getlock(dev);
3451 
3452 	KASSERT(dvl->dvl_nlock > 0);
3453 	mutex_enter(&dvl->dvl_mtx);
3454 	if (--dvl->dvl_nlock == 0)
3455 		dvl->dvl_holder = NULL;
3456 	cv_signal(&dvl->dvl_cv);
3457 	pmflock_debug(dev, __func__, __LINE__);
3458 	mutex_exit(&dvl->dvl_mtx);
3459 }
3460 
3461 device_lock_t
device_getlock(device_t dev)3462 device_getlock(device_t dev)
3463 {
3464 	return &dev->dv_lock;
3465 }
3466 
3467 void *
device_pmf_bus_private(device_t dev)3468 device_pmf_bus_private(device_t dev)
3469 {
3470 	return dev->dv_bus_private;
3471 }
3472 
3473 bool
device_pmf_bus_suspend(device_t dev,const pmf_qual_t * qual)3474 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
3475 {
3476 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
3477 		return true;
3478 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
3479 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
3480 		return false;
3481 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
3482 	    dev->dv_bus_suspend != NULL &&
3483 	    !(*dev->dv_bus_suspend)(dev, qual))
3484 		return false;
3485 
3486 	dev->dv_flags |= DVF_BUS_SUSPENDED;
3487 	return true;
3488 }
3489 
3490 bool
device_pmf_bus_resume(device_t dev,const pmf_qual_t * qual)3491 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
3492 {
3493 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
3494 		return true;
3495 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
3496 	    dev->dv_bus_resume != NULL &&
3497 	    !(*dev->dv_bus_resume)(dev, qual))
3498 		return false;
3499 
3500 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
3501 	return true;
3502 }
3503 
3504 bool
device_pmf_bus_shutdown(device_t dev,int how)3505 device_pmf_bus_shutdown(device_t dev, int how)
3506 {
3507 
3508 	if (*dev->dv_bus_shutdown != NULL &&
3509 	    !(*dev->dv_bus_shutdown)(dev, how))
3510 		return false;
3511 	return true;
3512 }
3513 
3514 void
device_pmf_bus_register(device_t dev,void * priv,bool (* suspend)(device_t,const pmf_qual_t *),bool (* resume)(device_t,const pmf_qual_t *),bool (* shutdown)(device_t,int),void (* deregister)(device_t))3515 device_pmf_bus_register(device_t dev, void *priv,
3516     bool (*suspend)(device_t, const pmf_qual_t *),
3517     bool (*resume)(device_t, const pmf_qual_t *),
3518     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
3519 {
3520 	dev->dv_bus_private = priv;
3521 	dev->dv_bus_resume = resume;
3522 	dev->dv_bus_suspend = suspend;
3523 	dev->dv_bus_shutdown = shutdown;
3524 	dev->dv_bus_deregister = deregister;
3525 }
3526 
3527 void
device_pmf_bus_deregister(device_t dev)3528 device_pmf_bus_deregister(device_t dev)
3529 {
3530 	if (dev->dv_bus_deregister == NULL)
3531 		return;
3532 	(*dev->dv_bus_deregister)(dev);
3533 	dev->dv_bus_private = NULL;
3534 	dev->dv_bus_suspend = NULL;
3535 	dev->dv_bus_resume = NULL;
3536 	dev->dv_bus_deregister = NULL;
3537 }
3538 
3539 void *
device_pmf_class_private(device_t dev)3540 device_pmf_class_private(device_t dev)
3541 {
3542 	return dev->dv_class_private;
3543 }
3544 
3545 bool
device_pmf_class_suspend(device_t dev,const pmf_qual_t * qual)3546 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
3547 {
3548 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
3549 		return true;
3550 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3551 	    dev->dv_class_suspend != NULL &&
3552 	    !(*dev->dv_class_suspend)(dev, qual))
3553 		return false;
3554 
3555 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
3556 	return true;
3557 }
3558 
3559 bool
device_pmf_class_resume(device_t dev,const pmf_qual_t * qual)3560 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
3561 {
3562 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
3563 		return true;
3564 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
3565 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
3566 		return false;
3567 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3568 	    dev->dv_class_resume != NULL &&
3569 	    !(*dev->dv_class_resume)(dev, qual))
3570 		return false;
3571 
3572 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
3573 	return true;
3574 }
3575 
3576 void
device_pmf_class_register(device_t dev,void * priv,bool (* suspend)(device_t,const pmf_qual_t *),bool (* resume)(device_t,const pmf_qual_t *),void (* deregister)(device_t))3577 device_pmf_class_register(device_t dev, void *priv,
3578     bool (*suspend)(device_t, const pmf_qual_t *),
3579     bool (*resume)(device_t, const pmf_qual_t *),
3580     void (*deregister)(device_t))
3581 {
3582 	dev->dv_class_private = priv;
3583 	dev->dv_class_suspend = suspend;
3584 	dev->dv_class_resume = resume;
3585 	dev->dv_class_deregister = deregister;
3586 }
3587 
3588 void
device_pmf_class_deregister(device_t dev)3589 device_pmf_class_deregister(device_t dev)
3590 {
3591 	if (dev->dv_class_deregister == NULL)
3592 		return;
3593 	(*dev->dv_class_deregister)(dev);
3594 	dev->dv_class_private = NULL;
3595 	dev->dv_class_suspend = NULL;
3596 	dev->dv_class_resume = NULL;
3597 	dev->dv_class_deregister = NULL;
3598 }
3599 
3600 bool
device_active(device_t dev,devactive_t type)3601 device_active(device_t dev, devactive_t type)
3602 {
3603 	size_t i;
3604 
3605 	if (dev->dv_activity_count == 0)
3606 		return false;
3607 
3608 	for (i = 0; i < dev->dv_activity_count; ++i) {
3609 		if (dev->dv_activity_handlers[i] == NULL)
3610 			break;
3611 		(*dev->dv_activity_handlers[i])(dev, type);
3612 	}
3613 
3614 	return true;
3615 }
3616 
3617 bool
device_active_register(device_t dev,void (* handler)(device_t,devactive_t))3618 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
3619 {
3620 	void (**new_handlers)(device_t, devactive_t);
3621 	void (**old_handlers)(device_t, devactive_t);
3622 	size_t i, old_size, new_size;
3623 	int s;
3624 
3625 	old_handlers = dev->dv_activity_handlers;
3626 	old_size = dev->dv_activity_count;
3627 
3628 	KASSERT(old_size == 0 || old_handlers != NULL);
3629 
3630 	for (i = 0; i < old_size; ++i) {
3631 		KASSERT(old_handlers[i] != handler);
3632 		if (old_handlers[i] == NULL) {
3633 			old_handlers[i] = handler;
3634 			return true;
3635 		}
3636 	}
3637 
3638 	new_size = old_size + 4;
3639 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
3640 
3641 	for (i = 0; i < old_size; ++i)
3642 		new_handlers[i] = old_handlers[i];
3643 	new_handlers[old_size] = handler;
3644 	for (i = old_size+1; i < new_size; ++i)
3645 		new_handlers[i] = NULL;
3646 
3647 	s = splhigh();
3648 	dev->dv_activity_count = new_size;
3649 	dev->dv_activity_handlers = new_handlers;
3650 	splx(s);
3651 
3652 	if (old_size > 0)
3653 		kmem_free(old_handlers, sizeof(void *) * old_size);
3654 
3655 	return true;
3656 }
3657 
3658 void
device_active_deregister(device_t dev,void (* handler)(device_t,devactive_t))3659 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
3660 {
3661 	void (**old_handlers)(device_t, devactive_t);
3662 	size_t i, old_size;
3663 	int s;
3664 
3665 	old_handlers = dev->dv_activity_handlers;
3666 	old_size = dev->dv_activity_count;
3667 
3668 	for (i = 0; i < old_size; ++i) {
3669 		if (old_handlers[i] == handler)
3670 			break;
3671 		if (old_handlers[i] == NULL)
3672 			return; /* XXX panic? */
3673 	}
3674 
3675 	if (i == old_size)
3676 		return; /* XXX panic? */
3677 
3678 	for (; i < old_size - 1; ++i) {
3679 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
3680 			continue;
3681 
3682 		if (i == 0) {
3683 			s = splhigh();
3684 			dev->dv_activity_count = 0;
3685 			dev->dv_activity_handlers = NULL;
3686 			splx(s);
3687 			kmem_free(old_handlers, sizeof(void *) * old_size);
3688 		}
3689 		return;
3690 	}
3691 	old_handlers[i] = NULL;
3692 }
3693 
3694 /* Return true iff the device_t `dev' exists at generation `gen'. */
3695 static bool
device_exists_at(device_t dv,devgen_t gen)3696 device_exists_at(device_t dv, devgen_t gen)
3697 {
3698 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
3699 	    dv->dv_add_gen <= gen;
3700 }
3701 
3702 static bool
deviter_visits(const deviter_t * di,device_t dv)3703 deviter_visits(const deviter_t *di, device_t dv)
3704 {
3705 	return device_exists_at(dv, di->di_gen);
3706 }
3707 
3708 /*
3709  * Device Iteration
3710  *
3711  * deviter_t: a device iterator.  Holds state for a "walk" visiting
3712  *     each device_t's in the device tree.
3713  *
3714  * deviter_init(di, flags): initialize the device iterator `di'
3715  *     to "walk" the device tree.  deviter_next(di) will return
3716  *     the first device_t in the device tree, or NULL if there are
3717  *     no devices.
3718  *
3719  *     `flags' is one or more of DEVITER_F_RW, indicating that the
3720  *     caller intends to modify the device tree by calling
3721  *     config_detach(9) on devices in the order that the iterator
3722  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
3723  *     nearest the "root" of the device tree to be returned, first;
3724  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
3725  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
3726  *     indicating both that deviter_init() should not respect any
3727  *     locks on the device tree, and that deviter_next(di) may run
3728  *     in more than one LWP before the walk has finished.
3729  *
3730  *     Only one DEVITER_F_RW iterator may be in the device tree at
3731  *     once.
3732  *
3733  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
3734  *
3735  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
3736  *     DEVITER_F_LEAVES_FIRST are used in combination.
3737  *
3738  * deviter_first(di, flags): initialize the device iterator `di'
3739  *     and return the first device_t in the device tree, or NULL
3740  *     if there are no devices.  The statement
3741  *
3742  *         dv = deviter_first(di);
3743  *
3744  *     is shorthand for
3745  *
3746  *         deviter_init(di);
3747  *         dv = deviter_next(di);
3748  *
3749  * deviter_next(di): return the next device_t in the device tree,
3750  *     or NULL if there are no more devices.  deviter_next(di)
3751  *     is undefined if `di' was not initialized with deviter_init() or
3752  *     deviter_first().
3753  *
3754  * deviter_release(di): stops iteration (subsequent calls to
3755  *     deviter_next() will return NULL), releases any locks and
3756  *     resources held by the device iterator.
3757  *
3758  * Device iteration does not return device_t's in any particular
3759  * order.  An iterator will never return the same device_t twice.
3760  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
3761  * is called repeatedly on the same `di', it will eventually return
3762  * NULL.  It is ok to attach/detach devices during device iteration.
3763  */
3764 void
deviter_init(deviter_t * di,deviter_flags_t flags)3765 deviter_init(deviter_t *di, deviter_flags_t flags)
3766 {
3767 	device_t dv;
3768 
3769 	memset(di, 0, sizeof(*di));
3770 
3771 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
3772 		flags |= DEVITER_F_RW;
3773 
3774 	mutex_enter(&alldevs_lock);
3775 	if ((flags & DEVITER_F_RW) != 0)
3776 		alldevs_nwrite++;
3777 	else
3778 		alldevs_nread++;
3779 	di->di_gen = alldevs_gen++;
3780 	di->di_flags = flags;
3781 
3782 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3783 	case DEVITER_F_LEAVES_FIRST:
3784 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
3785 			if (!deviter_visits(di, dv))
3786 				continue;
3787 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
3788 		}
3789 		break;
3790 	case DEVITER_F_ROOT_FIRST:
3791 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
3792 			if (!deviter_visits(di, dv))
3793 				continue;
3794 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
3795 		}
3796 		break;
3797 	default:
3798 		break;
3799 	}
3800 
3801 	deviter_reinit(di);
3802 	mutex_exit(&alldevs_lock);
3803 }
3804 
3805 static void
deviter_reinit(deviter_t * di)3806 deviter_reinit(deviter_t *di)
3807 {
3808 
3809 	KASSERT(mutex_owned(&alldevs_lock));
3810 	if ((di->di_flags & DEVITER_F_RW) != 0)
3811 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
3812 	else
3813 		di->di_prev = TAILQ_FIRST(&alldevs);
3814 }
3815 
3816 device_t
deviter_first(deviter_t * di,deviter_flags_t flags)3817 deviter_first(deviter_t *di, deviter_flags_t flags)
3818 {
3819 
3820 	deviter_init(di, flags);
3821 	return deviter_next(di);
3822 }
3823 
3824 static device_t
deviter_next2(deviter_t * di)3825 deviter_next2(deviter_t *di)
3826 {
3827 	device_t dv;
3828 
3829 	KASSERT(mutex_owned(&alldevs_lock));
3830 
3831 	dv = di->di_prev;
3832 
3833 	if (dv == NULL)
3834 		return NULL;
3835 
3836 	if ((di->di_flags & DEVITER_F_RW) != 0)
3837 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
3838 	else
3839 		di->di_prev = TAILQ_NEXT(dv, dv_list);
3840 
3841 	return dv;
3842 }
3843 
3844 static device_t
deviter_next1(deviter_t * di)3845 deviter_next1(deviter_t *di)
3846 {
3847 	device_t dv;
3848 
3849 	KASSERT(mutex_owned(&alldevs_lock));
3850 
3851 	do {
3852 		dv = deviter_next2(di);
3853 	} while (dv != NULL && !deviter_visits(di, dv));
3854 
3855 	return dv;
3856 }
3857 
3858 device_t
deviter_next(deviter_t * di)3859 deviter_next(deviter_t *di)
3860 {
3861 	device_t dv = NULL;
3862 
3863 	mutex_enter(&alldevs_lock);
3864 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3865 	case 0:
3866 		dv = deviter_next1(di);
3867 		break;
3868 	case DEVITER_F_LEAVES_FIRST:
3869 		while (di->di_curdepth >= 0) {
3870 			if ((dv = deviter_next1(di)) == NULL) {
3871 				di->di_curdepth--;
3872 				deviter_reinit(di);
3873 			} else if (dv->dv_depth == di->di_curdepth)
3874 				break;
3875 		}
3876 		break;
3877 	case DEVITER_F_ROOT_FIRST:
3878 		while (di->di_curdepth <= di->di_maxdepth) {
3879 			if ((dv = deviter_next1(di)) == NULL) {
3880 				di->di_curdepth++;
3881 				deviter_reinit(di);
3882 			} else if (dv->dv_depth == di->di_curdepth)
3883 				break;
3884 		}
3885 		break;
3886 	default:
3887 		break;
3888 	}
3889 	mutex_exit(&alldevs_lock);
3890 
3891 	return dv;
3892 }
3893 
3894 void
deviter_release(deviter_t * di)3895 deviter_release(deviter_t *di)
3896 {
3897 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
3898 
3899 	mutex_enter(&alldevs_lock);
3900 	if (rw)
3901 		--alldevs_nwrite;
3902 	else
3903 		--alldevs_nread;
3904 	/* XXX wake a garbage-collection thread */
3905 	mutex_exit(&alldevs_lock);
3906 }
3907 
3908 const char *
cfdata_ifattr(const struct cfdata * cf)3909 cfdata_ifattr(const struct cfdata *cf)
3910 {
3911 	return cf->cf_pspec->cfp_iattr;
3912 }
3913 
3914 bool
ifattr_match(const char * snull,const char * t)3915 ifattr_match(const char *snull, const char *t)
3916 {
3917 	return (snull == NULL) || strcmp(snull, t) == 0;
3918 }
3919 
3920 void
null_childdetached(device_t self,device_t child)3921 null_childdetached(device_t self, device_t child)
3922 {
3923 	/* do nothing */
3924 }
3925 
3926 static void
sysctl_detach_setup(struct sysctllog ** clog)3927 sysctl_detach_setup(struct sysctllog **clog)
3928 {
3929 
3930 	sysctl_createv(clog, 0, NULL, NULL,
3931 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3932 		CTLTYPE_BOOL, "detachall",
3933 		SYSCTL_DESCR("Detach all devices at shutdown"),
3934 		NULL, 0, &detachall, 0,
3935 		CTL_KERN, CTL_CREATE, CTL_EOL);
3936 }
3937