xref: /netbsd/sys/kern/subr_autoconf.c (revision 3b559736)
1 /* $NetBSD: subr_autoconf.c,v 1.290 2021/10/11 10:59:09 jmcneill Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.290 2021/10/11 10:59:09 jmcneill Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 #include <sys/stdarg.h>
111 
112 #include <sys/disk.h>
113 
114 #include <sys/rndsource.h>
115 
116 #include <machine/limits.h>
117 
118 /*
119  * Autoconfiguration subroutines.
120  */
121 
122 /*
123  * Device autoconfiguration timings are mixed into the entropy pool.
124  */
125 static krndsource_t rnd_autoconf_source;
126 
127 /*
128  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
129  * devices and drivers are found via these tables.
130  */
131 extern struct cfdata cfdata[];
132 extern const short cfroots[];
133 
134 /*
135  * List of all cfdriver structures.  We use this to detect duplicates
136  * when other cfdrivers are loaded.
137  */
138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
139 extern struct cfdriver * const cfdriver_list_initial[];
140 
141 /*
142  * Initial list of cfattach's.
143  */
144 extern const struct cfattachinit cfattachinit[];
145 
146 /*
147  * List of cfdata tables.  We always have one such list -- the one
148  * built statically when the kernel was configured.
149  */
150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
151 static struct cftable initcftable;
152 
153 #define	ROOT ((device_t)NULL)
154 
155 struct matchinfo {
156 	cfsubmatch_t fn;
157 	device_t parent;
158 	const int *locs;
159 	void	*aux;
160 	struct	cfdata *match;
161 	int	pri;
162 };
163 
164 struct alldevs_foray {
165 	int			af_s;
166 	struct devicelist	af_garbage;
167 };
168 
169 /*
170  * Internal version of the cfargs structure; all versions are
171  * canonicalized to this.
172  */
173 struct cfargs_internal {
174 	union {
175 		cfsubmatch_t	submatch;/* submatch function (direct config) */
176 		cfsearch_t	search;	 /* search function (indirect config) */
177 	};
178 	const char *	iattr;		/* interface attribute */
179 	const int *	locators;	/* locators array */
180 	devhandle_t	devhandle;	/* devhandle_t (by value) */
181 };
182 
183 static char *number(char *, int);
184 static void mapply(struct matchinfo *, cfdata_t);
185 static void config_devdelete(device_t);
186 static void config_devunlink(device_t, struct devicelist *);
187 static void config_makeroom(int, struct cfdriver *);
188 static void config_devlink(device_t);
189 static void config_alldevs_enter(struct alldevs_foray *);
190 static void config_alldevs_exit(struct alldevs_foray *);
191 static void config_add_attrib_dict(device_t);
192 static device_t	config_attach_internal(device_t, cfdata_t, void *,
193 		    cfprint_t, const struct cfargs_internal *);
194 
195 static void config_collect_garbage(struct devicelist *);
196 static void config_dump_garbage(struct devicelist *);
197 
198 static void pmflock_debug(device_t, const char *, int);
199 
200 static device_t deviter_next1(deviter_t *);
201 static void deviter_reinit(deviter_t *);
202 
203 struct deferred_config {
204 	TAILQ_ENTRY(deferred_config) dc_queue;
205 	device_t dc_dev;
206 	void (*dc_func)(device_t);
207 };
208 
209 TAILQ_HEAD(deferred_config_head, deferred_config);
210 
211 static struct deferred_config_head deferred_config_queue =
212 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
213 static struct deferred_config_head interrupt_config_queue =
214 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
215 static int interrupt_config_threads = 8;
216 static struct deferred_config_head mountroot_config_queue =
217 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
218 static int mountroot_config_threads = 2;
219 static lwp_t **mountroot_config_lwpids;
220 static size_t mountroot_config_lwpids_size;
221 bool root_is_mounted = false;
222 
223 static void config_process_deferred(struct deferred_config_head *, device_t);
224 
225 /* Hooks to finalize configuration once all real devices have been found. */
226 struct finalize_hook {
227 	TAILQ_ENTRY(finalize_hook) f_list;
228 	int (*f_func)(device_t);
229 	device_t f_dev;
230 };
231 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
232 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
233 static int config_finalize_done;
234 
235 /* list of all devices */
236 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
237 static kmutex_t alldevs_lock __cacheline_aligned;
238 static devgen_t alldevs_gen = 1;
239 static int alldevs_nread = 0;
240 static int alldevs_nwrite = 0;
241 static bool alldevs_garbage = false;
242 
243 static struct devicelist config_pending =
244     TAILQ_HEAD_INITIALIZER(config_pending);
245 static kmutex_t config_misc_lock;
246 static kcondvar_t config_misc_cv;
247 
248 static bool detachall = false;
249 
250 #define	STREQ(s1, s2)			\
251 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
252 
253 static bool config_initialized = false;	/* config_init() has been called. */
254 
255 static int config_do_twiddle;
256 static callout_t config_twiddle_ch;
257 
258 static void sysctl_detach_setup(struct sysctllog **);
259 
260 int no_devmon_insert(const char *, prop_dictionary_t);
261 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
262 
263 typedef int (*cfdriver_fn)(struct cfdriver *);
264 static int
265 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
266 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
267 	const char *style, bool dopanic)
268 {
269 	void (*pr)(const char *, ...) __printflike(1, 2) =
270 	    dopanic ? panic : printf;
271 	int i, error = 0, e2 __diagused;
272 
273 	for (i = 0; cfdriverv[i] != NULL; i++) {
274 		if ((error = drv_do(cfdriverv[i])) != 0) {
275 			pr("configure: `%s' driver %s failed: %d",
276 			    cfdriverv[i]->cd_name, style, error);
277 			goto bad;
278 		}
279 	}
280 
281 	KASSERT(error == 0);
282 	return 0;
283 
284  bad:
285 	printf("\n");
286 	for (i--; i >= 0; i--) {
287 		e2 = drv_undo(cfdriverv[i]);
288 		KASSERT(e2 == 0);
289 	}
290 
291 	return error;
292 }
293 
294 typedef int (*cfattach_fn)(const char *, struct cfattach *);
295 static int
296 frob_cfattachvec(const struct cfattachinit *cfattachv,
297 	cfattach_fn att_do, cfattach_fn att_undo,
298 	const char *style, bool dopanic)
299 {
300 	const struct cfattachinit *cfai = NULL;
301 	void (*pr)(const char *, ...) __printflike(1, 2) =
302 	    dopanic ? panic : printf;
303 	int j = 0, error = 0, e2 __diagused;
304 
305 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
306 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
307 			if ((error = att_do(cfai->cfai_name,
308 			    cfai->cfai_list[j])) != 0) {
309 				pr("configure: attachment `%s' "
310 				    "of `%s' driver %s failed: %d",
311 				    cfai->cfai_list[j]->ca_name,
312 				    cfai->cfai_name, style, error);
313 				goto bad;
314 			}
315 		}
316 	}
317 
318 	KASSERT(error == 0);
319 	return 0;
320 
321  bad:
322 	/*
323 	 * Rollback in reverse order.  dunno if super-important, but
324 	 * do that anyway.  Although the code looks a little like
325 	 * someone did a little integration (in the math sense).
326 	 */
327 	printf("\n");
328 	if (cfai) {
329 		bool last;
330 
331 		for (last = false; last == false; ) {
332 			if (cfai == &cfattachv[0])
333 				last = true;
334 			for (j--; j >= 0; j--) {
335 				e2 = att_undo(cfai->cfai_name,
336 				    cfai->cfai_list[j]);
337 				KASSERT(e2 == 0);
338 			}
339 			if (!last) {
340 				cfai--;
341 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
342 					;
343 			}
344 		}
345 	}
346 
347 	return error;
348 }
349 
350 /*
351  * Initialize the autoconfiguration data structures.  Normally this
352  * is done by configure(), but some platforms need to do this very
353  * early (to e.g. initialize the console).
354  */
355 void
356 config_init(void)
357 {
358 
359 	KASSERT(config_initialized == false);
360 
361 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
362 
363 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
364 	cv_init(&config_misc_cv, "cfgmisc");
365 
366 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
367 
368 	frob_cfdrivervec(cfdriver_list_initial,
369 	    config_cfdriver_attach, NULL, "bootstrap", true);
370 	frob_cfattachvec(cfattachinit,
371 	    config_cfattach_attach, NULL, "bootstrap", true);
372 
373 	initcftable.ct_cfdata = cfdata;
374 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
375 
376 	rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
377 	    RND_FLAG_COLLECT_TIME);
378 
379 	config_initialized = true;
380 }
381 
382 /*
383  * Init or fini drivers and attachments.  Either all or none
384  * are processed (via rollback).  It would be nice if this were
385  * atomic to outside consumers, but with the current state of
386  * locking ...
387  */
388 int
389 config_init_component(struct cfdriver * const *cfdriverv,
390 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
391 {
392 	int error;
393 
394 	KERNEL_LOCK(1, NULL);
395 
396 	if ((error = frob_cfdrivervec(cfdriverv,
397 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
398 		goto out;
399 	if ((error = frob_cfattachvec(cfattachv,
400 	    config_cfattach_attach, config_cfattach_detach,
401 	    "init", false)) != 0) {
402 		frob_cfdrivervec(cfdriverv,
403 	            config_cfdriver_detach, NULL, "init rollback", true);
404 		goto out;
405 	}
406 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
407 		frob_cfattachvec(cfattachv,
408 		    config_cfattach_detach, NULL, "init rollback", true);
409 		frob_cfdrivervec(cfdriverv,
410 	            config_cfdriver_detach, NULL, "init rollback", true);
411 		goto out;
412 	}
413 
414 	/* Success!  */
415 	error = 0;
416 
417 out:	KERNEL_UNLOCK_ONE(NULL);
418 	return error;
419 }
420 
421 int
422 config_fini_component(struct cfdriver * const *cfdriverv,
423 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
424 {
425 	int error;
426 
427 	KERNEL_LOCK(1, NULL);
428 
429 	if ((error = config_cfdata_detach(cfdatav)) != 0)
430 		goto out;
431 	if ((error = frob_cfattachvec(cfattachv,
432 	    config_cfattach_detach, config_cfattach_attach,
433 	    "fini", false)) != 0) {
434 		if (config_cfdata_attach(cfdatav, 0) != 0)
435 			panic("config_cfdata fini rollback failed");
436 		goto out;
437 	}
438 	if ((error = frob_cfdrivervec(cfdriverv,
439 	    config_cfdriver_detach, config_cfdriver_attach,
440 	    "fini", false)) != 0) {
441 		frob_cfattachvec(cfattachv,
442 	            config_cfattach_attach, NULL, "fini rollback", true);
443 		if (config_cfdata_attach(cfdatav, 0) != 0)
444 			panic("config_cfdata fini rollback failed");
445 		goto out;
446 	}
447 
448 	/* Success!  */
449 	error = 0;
450 
451 out:	KERNEL_UNLOCK_ONE(NULL);
452 	return error;
453 }
454 
455 void
456 config_init_mi(void)
457 {
458 
459 	if (!config_initialized)
460 		config_init();
461 
462 	sysctl_detach_setup(NULL);
463 }
464 
465 void
466 config_deferred(device_t dev)
467 {
468 
469 	KASSERT(KERNEL_LOCKED_P());
470 
471 	config_process_deferred(&deferred_config_queue, dev);
472 	config_process_deferred(&interrupt_config_queue, dev);
473 	config_process_deferred(&mountroot_config_queue, dev);
474 }
475 
476 static void
477 config_interrupts_thread(void *cookie)
478 {
479 	struct deferred_config *dc;
480 	device_t dev;
481 
482 	mutex_enter(&config_misc_lock);
483 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
484 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
485 		mutex_exit(&config_misc_lock);
486 
487 		dev = dc->dc_dev;
488 		(*dc->dc_func)(dev);
489 		if (!device_pmf_is_registered(dev))
490 			aprint_debug_dev(dev,
491 			    "WARNING: power management not supported\n");
492 		config_pending_decr(dev);
493 		kmem_free(dc, sizeof(*dc));
494 
495 		mutex_enter(&config_misc_lock);
496 	}
497 	mutex_exit(&config_misc_lock);
498 
499 	kthread_exit(0);
500 }
501 
502 void
503 config_create_interruptthreads(void)
504 {
505 	int i;
506 
507 	for (i = 0; i < interrupt_config_threads; i++) {
508 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
509 		    config_interrupts_thread, NULL, NULL, "configintr");
510 	}
511 }
512 
513 static void
514 config_mountroot_thread(void *cookie)
515 {
516 	struct deferred_config *dc;
517 
518 	mutex_enter(&config_misc_lock);
519 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
520 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
521 		mutex_exit(&config_misc_lock);
522 
523 		(*dc->dc_func)(dc->dc_dev);
524 		kmem_free(dc, sizeof(*dc));
525 
526 		mutex_enter(&config_misc_lock);
527 	}
528 	mutex_exit(&config_misc_lock);
529 
530 	kthread_exit(0);
531 }
532 
533 void
534 config_create_mountrootthreads(void)
535 {
536 	int i;
537 
538 	if (!root_is_mounted)
539 		root_is_mounted = true;
540 
541 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
542 				       mountroot_config_threads;
543 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
544 					     KM_NOSLEEP);
545 	KASSERT(mountroot_config_lwpids);
546 	for (i = 0; i < mountroot_config_threads; i++) {
547 		mountroot_config_lwpids[i] = 0;
548 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
549 				     NULL, config_mountroot_thread, NULL,
550 				     &mountroot_config_lwpids[i],
551 				     "configroot");
552 	}
553 }
554 
555 void
556 config_finalize_mountroot(void)
557 {
558 	int i, error;
559 
560 	for (i = 0; i < mountroot_config_threads; i++) {
561 		if (mountroot_config_lwpids[i] == 0)
562 			continue;
563 
564 		error = kthread_join(mountroot_config_lwpids[i]);
565 		if (error)
566 			printf("%s: thread %x joined with error %d\n",
567 			       __func__, i, error);
568 	}
569 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
570 }
571 
572 /*
573  * Announce device attach/detach to userland listeners.
574  */
575 
576 int
577 no_devmon_insert(const char *name, prop_dictionary_t p)
578 {
579 
580 	return ENODEV;
581 }
582 
583 static void
584 devmon_report_device(device_t dev, bool isattach)
585 {
586 	prop_dictionary_t ev, dict = device_properties(dev);
587 	const char *parent;
588 	const char *what;
589 	const char *where;
590 	device_t pdev = device_parent(dev);
591 
592 	/* If currently no drvctl device, just return */
593 	if (devmon_insert_vec == no_devmon_insert)
594 		return;
595 
596 	ev = prop_dictionary_create();
597 	if (ev == NULL)
598 		return;
599 
600 	what = (isattach ? "device-attach" : "device-detach");
601 	parent = (pdev == NULL ? "root" : device_xname(pdev));
602 	if (prop_dictionary_get_string(dict, "location", &where)) {
603 		prop_dictionary_set_string(ev, "location", where);
604 		aprint_debug("ev: %s %s at %s in [%s]\n",
605 		    what, device_xname(dev), parent, where);
606 	}
607 	if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
608 	    !prop_dictionary_set_string(ev, "parent", parent)) {
609 		prop_object_release(ev);
610 		return;
611 	}
612 
613 	if ((*devmon_insert_vec)(what, ev) != 0)
614 		prop_object_release(ev);
615 }
616 
617 /*
618  * Add a cfdriver to the system.
619  */
620 int
621 config_cfdriver_attach(struct cfdriver *cd)
622 {
623 	struct cfdriver *lcd;
624 
625 	/* Make sure this driver isn't already in the system. */
626 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
627 		if (STREQ(lcd->cd_name, cd->cd_name))
628 			return EEXIST;
629 	}
630 
631 	LIST_INIT(&cd->cd_attach);
632 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
633 
634 	return 0;
635 }
636 
637 /*
638  * Remove a cfdriver from the system.
639  */
640 int
641 config_cfdriver_detach(struct cfdriver *cd)
642 {
643 	struct alldevs_foray af;
644 	int i, rc = 0;
645 
646 	config_alldevs_enter(&af);
647 	/* Make sure there are no active instances. */
648 	for (i = 0; i < cd->cd_ndevs; i++) {
649 		if (cd->cd_devs[i] != NULL) {
650 			rc = EBUSY;
651 			break;
652 		}
653 	}
654 	config_alldevs_exit(&af);
655 
656 	if (rc != 0)
657 		return rc;
658 
659 	/* ...and no attachments loaded. */
660 	if (LIST_EMPTY(&cd->cd_attach) == 0)
661 		return EBUSY;
662 
663 	LIST_REMOVE(cd, cd_list);
664 
665 	KASSERT(cd->cd_devs == NULL);
666 
667 	return 0;
668 }
669 
670 /*
671  * Look up a cfdriver by name.
672  */
673 struct cfdriver *
674 config_cfdriver_lookup(const char *name)
675 {
676 	struct cfdriver *cd;
677 
678 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
679 		if (STREQ(cd->cd_name, name))
680 			return cd;
681 	}
682 
683 	return NULL;
684 }
685 
686 /*
687  * Add a cfattach to the specified driver.
688  */
689 int
690 config_cfattach_attach(const char *driver, struct cfattach *ca)
691 {
692 	struct cfattach *lca;
693 	struct cfdriver *cd;
694 
695 	cd = config_cfdriver_lookup(driver);
696 	if (cd == NULL)
697 		return ESRCH;
698 
699 	/* Make sure this attachment isn't already on this driver. */
700 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
701 		if (STREQ(lca->ca_name, ca->ca_name))
702 			return EEXIST;
703 	}
704 
705 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
706 
707 	return 0;
708 }
709 
710 /*
711  * Remove a cfattach from the specified driver.
712  */
713 int
714 config_cfattach_detach(const char *driver, struct cfattach *ca)
715 {
716 	struct alldevs_foray af;
717 	struct cfdriver *cd;
718 	device_t dev;
719 	int i, rc = 0;
720 
721 	cd = config_cfdriver_lookup(driver);
722 	if (cd == NULL)
723 		return ESRCH;
724 
725 	config_alldevs_enter(&af);
726 	/* Make sure there are no active instances. */
727 	for (i = 0; i < cd->cd_ndevs; i++) {
728 		if ((dev = cd->cd_devs[i]) == NULL)
729 			continue;
730 		if (dev->dv_cfattach == ca) {
731 			rc = EBUSY;
732 			break;
733 		}
734 	}
735 	config_alldevs_exit(&af);
736 
737 	if (rc != 0)
738 		return rc;
739 
740 	LIST_REMOVE(ca, ca_list);
741 
742 	return 0;
743 }
744 
745 /*
746  * Look up a cfattach by name.
747  */
748 static struct cfattach *
749 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
750 {
751 	struct cfattach *ca;
752 
753 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
754 		if (STREQ(ca->ca_name, atname))
755 			return ca;
756 	}
757 
758 	return NULL;
759 }
760 
761 /*
762  * Look up a cfattach by driver/attachment name.
763  */
764 struct cfattach *
765 config_cfattach_lookup(const char *name, const char *atname)
766 {
767 	struct cfdriver *cd;
768 
769 	cd = config_cfdriver_lookup(name);
770 	if (cd == NULL)
771 		return NULL;
772 
773 	return config_cfattach_lookup_cd(cd, atname);
774 }
775 
776 /*
777  * Apply the matching function and choose the best.  This is used
778  * a few times and we want to keep the code small.
779  */
780 static void
781 mapply(struct matchinfo *m, cfdata_t cf)
782 {
783 	int pri;
784 
785 	if (m->fn != NULL) {
786 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
787 	} else {
788 		pri = config_match(m->parent, cf, m->aux);
789 	}
790 	if (pri > m->pri) {
791 		m->match = cf;
792 		m->pri = pri;
793 	}
794 }
795 
796 int
797 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
798 {
799 	const struct cfiattrdata *ci;
800 	const struct cflocdesc *cl;
801 	int nlocs, i;
802 
803 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
804 	KASSERT(ci);
805 	nlocs = ci->ci_loclen;
806 	KASSERT(!nlocs || locs);
807 	for (i = 0; i < nlocs; i++) {
808 		cl = &ci->ci_locdesc[i];
809 		if (cl->cld_defaultstr != NULL &&
810 		    cf->cf_loc[i] == cl->cld_default)
811 			continue;
812 		if (cf->cf_loc[i] == locs[i])
813 			continue;
814 		return 0;
815 	}
816 
817 	return config_match(parent, cf, aux);
818 }
819 
820 /*
821  * Helper function: check whether the driver supports the interface attribute
822  * and return its descriptor structure.
823  */
824 static const struct cfiattrdata *
825 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
826 {
827 	const struct cfiattrdata * const *cpp;
828 
829 	if (cd->cd_attrs == NULL)
830 		return 0;
831 
832 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
833 		if (STREQ((*cpp)->ci_name, ia)) {
834 			/* Match. */
835 			return *cpp;
836 		}
837 	}
838 	return 0;
839 }
840 
841 #if defined(DIAGNOSTIC)
842 static int
843 cfdriver_iattr_count(const struct cfdriver *cd)
844 {
845 	const struct cfiattrdata * const *cpp;
846 	int i;
847 
848 	if (cd->cd_attrs == NULL)
849 		return 0;
850 
851 	for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
852 		i++;
853 	}
854 	return i;
855 }
856 #endif /* DIAGNOSTIC */
857 
858 /*
859  * Lookup an interface attribute description by name.
860  * If the driver is given, consider only its supported attributes.
861  */
862 const struct cfiattrdata *
863 cfiattr_lookup(const char *name, const struct cfdriver *cd)
864 {
865 	const struct cfdriver *d;
866 	const struct cfiattrdata *ia;
867 
868 	if (cd)
869 		return cfdriver_get_iattr(cd, name);
870 
871 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
872 		ia = cfdriver_get_iattr(d, name);
873 		if (ia)
874 			return ia;
875 	}
876 	return 0;
877 }
878 
879 /*
880  * Determine if `parent' is a potential parent for a device spec based
881  * on `cfp'.
882  */
883 static int
884 cfparent_match(const device_t parent, const struct cfparent *cfp)
885 {
886 	struct cfdriver *pcd;
887 
888 	/* We don't match root nodes here. */
889 	if (cfp == NULL)
890 		return 0;
891 
892 	pcd = parent->dv_cfdriver;
893 	KASSERT(pcd != NULL);
894 
895 	/*
896 	 * First, ensure this parent has the correct interface
897 	 * attribute.
898 	 */
899 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
900 		return 0;
901 
902 	/*
903 	 * If no specific parent device instance was specified (i.e.
904 	 * we're attaching to the attribute only), we're done!
905 	 */
906 	if (cfp->cfp_parent == NULL)
907 		return 1;
908 
909 	/*
910 	 * Check the parent device's name.
911 	 */
912 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
913 		return 0;	/* not the same parent */
914 
915 	/*
916 	 * Make sure the unit number matches.
917 	 */
918 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
919 	    cfp->cfp_unit == parent->dv_unit)
920 		return 1;
921 
922 	/* Unit numbers don't match. */
923 	return 0;
924 }
925 
926 /*
927  * Helper for config_cfdata_attach(): check all devices whether it could be
928  * parent any attachment in the config data table passed, and rescan.
929  */
930 static void
931 rescan_with_cfdata(const struct cfdata *cf)
932 {
933 	device_t d;
934 	const struct cfdata *cf1;
935 	deviter_t di;
936 
937 	KASSERT(KERNEL_LOCKED_P());
938 
939 	/*
940 	 * "alldevs" is likely longer than a modules's cfdata, so make it
941 	 * the outer loop.
942 	 */
943 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
944 
945 		if (!(d->dv_cfattach->ca_rescan))
946 			continue;
947 
948 		for (cf1 = cf; cf1->cf_name; cf1++) {
949 
950 			if (!cfparent_match(d, cf1->cf_pspec))
951 				continue;
952 
953 			(*d->dv_cfattach->ca_rescan)(d,
954 				cfdata_ifattr(cf1), cf1->cf_loc);
955 
956 			config_deferred(d);
957 		}
958 	}
959 	deviter_release(&di);
960 }
961 
962 /*
963  * Attach a supplemental config data table and rescan potential
964  * parent devices if required.
965  */
966 int
967 config_cfdata_attach(cfdata_t cf, int scannow)
968 {
969 	struct cftable *ct;
970 
971 	KERNEL_LOCK(1, NULL);
972 
973 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
974 	ct->ct_cfdata = cf;
975 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
976 
977 	if (scannow)
978 		rescan_with_cfdata(cf);
979 
980 	KERNEL_UNLOCK_ONE(NULL);
981 
982 	return 0;
983 }
984 
985 /*
986  * Helper for config_cfdata_detach: check whether a device is
987  * found through any attachment in the config data table.
988  */
989 static int
990 dev_in_cfdata(device_t d, cfdata_t cf)
991 {
992 	const struct cfdata *cf1;
993 
994 	for (cf1 = cf; cf1->cf_name; cf1++)
995 		if (d->dv_cfdata == cf1)
996 			return 1;
997 
998 	return 0;
999 }
1000 
1001 /*
1002  * Detach a supplemental config data table. Detach all devices found
1003  * through that table (and thus keeping references to it) before.
1004  */
1005 int
1006 config_cfdata_detach(cfdata_t cf)
1007 {
1008 	device_t d;
1009 	int error = 0;
1010 	struct cftable *ct;
1011 	deviter_t di;
1012 
1013 	KERNEL_LOCK(1, NULL);
1014 
1015 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
1016 	     d = deviter_next(&di)) {
1017 		if (!dev_in_cfdata(d, cf))
1018 			continue;
1019 		if ((error = config_detach(d, 0)) != 0)
1020 			break;
1021 	}
1022 	deviter_release(&di);
1023 	if (error) {
1024 		aprint_error_dev(d, "unable to detach instance\n");
1025 		goto out;
1026 	}
1027 
1028 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1029 		if (ct->ct_cfdata == cf) {
1030 			TAILQ_REMOVE(&allcftables, ct, ct_list);
1031 			kmem_free(ct, sizeof(*ct));
1032 			error = 0;
1033 			goto out;
1034 		}
1035 	}
1036 
1037 	/* not found -- shouldn't happen */
1038 	error = EINVAL;
1039 
1040 out:	KERNEL_UNLOCK_ONE(NULL);
1041 	return error;
1042 }
1043 
1044 /*
1045  * Invoke the "match" routine for a cfdata entry on behalf of
1046  * an external caller, usually a direct config "submatch" routine.
1047  */
1048 int
1049 config_match(device_t parent, cfdata_t cf, void *aux)
1050 {
1051 	struct cfattach *ca;
1052 
1053 	KASSERT(KERNEL_LOCKED_P());
1054 
1055 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
1056 	if (ca == NULL) {
1057 		/* No attachment for this entry, oh well. */
1058 		return 0;
1059 	}
1060 
1061 	return (*ca->ca_match)(parent, cf, aux);
1062 }
1063 
1064 /*
1065  * Invoke the "probe" routine for a cfdata entry on behalf of
1066  * an external caller, usually an indirect config "search" routine.
1067  */
1068 int
1069 config_probe(device_t parent, cfdata_t cf, void *aux)
1070 {
1071 	/*
1072 	 * This is currently a synonym for config_match(), but this
1073 	 * is an implementation detail; "match" and "probe" routines
1074 	 * have different behaviors.
1075 	 *
1076 	 * XXX config_probe() should return a bool, because there is
1077 	 * XXX no match score for probe -- it's either there or it's
1078 	 * XXX not, but some ports abuse the return value as a way
1079 	 * XXX to attach "critical" devices before "non-critical"
1080 	 * XXX devices.
1081 	 */
1082 	return config_match(parent, cf, aux);
1083 }
1084 
1085 static struct cfargs_internal *
1086 cfargs_canonicalize(const struct cfargs * const cfargs,
1087     struct cfargs_internal * const store)
1088 {
1089 	struct cfargs_internal *args = store;
1090 
1091 	memset(args, 0, sizeof(*args));
1092 
1093 	/* If none specified, are all-NULL pointers are good. */
1094 	if (cfargs == NULL) {
1095 		return args;
1096 	}
1097 
1098 	/*
1099 	 * Only one arguments version is recognized at this time.
1100 	 */
1101 	if (cfargs->cfargs_version != CFARGS_VERSION) {
1102 		panic("cfargs_canonicalize: unknown version %lu\n",
1103 		    (unsigned long)cfargs->cfargs_version);
1104 	}
1105 
1106 	/*
1107 	 * submatch and search are mutually-exclusive.
1108 	 */
1109 	if (cfargs->submatch != NULL && cfargs->search != NULL) {
1110 		panic("cfargs_canonicalize: submatch and search are "
1111 		      "mutually-exclusive");
1112 	}
1113 	if (cfargs->submatch != NULL) {
1114 		args->submatch = cfargs->submatch;
1115 	} else if (cfargs->search != NULL) {
1116 		args->search = cfargs->search;
1117 	}
1118 
1119 	args->iattr = cfargs->iattr;
1120 	args->locators = cfargs->locators;
1121 	args->devhandle = cfargs->devhandle;
1122 
1123 	return args;
1124 }
1125 
1126 /*
1127  * Iterate over all potential children of some device, calling the given
1128  * function (default being the child's match function) for each one.
1129  * Nonzero returns are matches; the highest value returned is considered
1130  * the best match.  Return the `found child' if we got a match, or NULL
1131  * otherwise.  The `aux' pointer is simply passed on through.
1132  *
1133  * Note that this function is designed so that it can be used to apply
1134  * an arbitrary function to all potential children (its return value
1135  * can be ignored).
1136  */
1137 static cfdata_t
1138 config_search_internal(device_t parent, void *aux,
1139     const struct cfargs_internal * const args)
1140 {
1141 	struct cftable *ct;
1142 	cfdata_t cf;
1143 	struct matchinfo m;
1144 
1145 	KASSERT(config_initialized);
1146 	KASSERT(!args->iattr ||
1147 		cfdriver_get_iattr(parent->dv_cfdriver, args->iattr));
1148 	KASSERT(args->iattr ||
1149 		cfdriver_iattr_count(parent->dv_cfdriver) < 2);
1150 
1151 	m.fn = args->submatch;		/* N.B. union */
1152 	m.parent = parent;
1153 	m.locs = args->locators;
1154 	m.aux = aux;
1155 	m.match = NULL;
1156 	m.pri = 0;
1157 
1158 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1159 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1160 
1161 			/* We don't match root nodes here. */
1162 			if (!cf->cf_pspec)
1163 				continue;
1164 
1165 			/*
1166 			 * Skip cf if no longer eligible, otherwise scan
1167 			 * through parents for one matching `parent', and
1168 			 * try match function.
1169 			 */
1170 			if (cf->cf_fstate == FSTATE_FOUND)
1171 				continue;
1172 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1173 			    cf->cf_fstate == FSTATE_DSTAR)
1174 				continue;
1175 
1176 			/*
1177 			 * If an interface attribute was specified,
1178 			 * consider only children which attach to
1179 			 * that attribute.
1180 			 */
1181 			if (args->iattr != NULL &&
1182 			    !STREQ(args->iattr, cfdata_ifattr(cf)))
1183 				continue;
1184 
1185 			if (cfparent_match(parent, cf->cf_pspec))
1186 				mapply(&m, cf);
1187 		}
1188 	}
1189 	return m.match;
1190 }
1191 
1192 cfdata_t
1193 config_search(device_t parent, void *aux, const struct cfargs *cfargs)
1194 {
1195 	cfdata_t cf;
1196 	struct cfargs_internal store;
1197 
1198 	cf = config_search_internal(parent, aux,
1199 	    cfargs_canonicalize(cfargs, &store));
1200 
1201 	return cf;
1202 }
1203 
1204 /*
1205  * Find the given root device.
1206  * This is much like config_search, but there is no parent.
1207  * Don't bother with multiple cfdata tables; the root node
1208  * must always be in the initial table.
1209  */
1210 cfdata_t
1211 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1212 {
1213 	cfdata_t cf;
1214 	const short *p;
1215 	struct matchinfo m;
1216 
1217 	m.fn = fn;
1218 	m.parent = ROOT;
1219 	m.aux = aux;
1220 	m.match = NULL;
1221 	m.pri = 0;
1222 	m.locs = 0;
1223 	/*
1224 	 * Look at root entries for matching name.  We do not bother
1225 	 * with found-state here since only one root should ever be
1226 	 * searched (and it must be done first).
1227 	 */
1228 	for (p = cfroots; *p >= 0; p++) {
1229 		cf = &cfdata[*p];
1230 		if (strcmp(cf->cf_name, rootname) == 0)
1231 			mapply(&m, cf);
1232 	}
1233 	return m.match;
1234 }
1235 
1236 static const char * const msgs[] = {
1237 [QUIET]		=	"",
1238 [UNCONF]	=	" not configured\n",
1239 [UNSUPP]	=	" unsupported\n",
1240 };
1241 
1242 /*
1243  * The given `aux' argument describes a device that has been found
1244  * on the given parent, but not necessarily configured.  Locate the
1245  * configuration data for that device (using the submatch function
1246  * provided, or using candidates' cd_match configuration driver
1247  * functions) and attach it, and return its device_t.  If the device was
1248  * not configured, call the given `print' function and return NULL.
1249  */
1250 device_t
1251 config_found(device_t parent, void *aux, cfprint_t print,
1252     const struct cfargs * const cfargs)
1253 {
1254 	cfdata_t cf;
1255 	struct cfargs_internal store;
1256 	const struct cfargs_internal * const args =
1257 	    cfargs_canonicalize(cfargs, &store);
1258 
1259 	cf = config_search_internal(parent, aux, args);
1260 	if (cf != NULL) {
1261 		return config_attach_internal(parent, cf, aux, print, args);
1262 	}
1263 
1264 	if (print) {
1265 		if (config_do_twiddle && cold)
1266 			twiddle();
1267 
1268 		const int pret = (*print)(aux, device_xname(parent));
1269 		KASSERT(pret >= 0);
1270 		KASSERT(pret < __arraycount(msgs));
1271 		KASSERT(msgs[pret] != NULL);
1272 		aprint_normal("%s", msgs[pret]);
1273 	}
1274 
1275 	/*
1276 	 * This has the effect of mixing in a single timestamp to the
1277 	 * entropy pool.  Experiments indicate the estimator will almost
1278 	 * always attribute one bit of entropy to this sample; analysis
1279 	 * of device attach/detach timestamps on FreeBSD indicates 4
1280 	 * bits of entropy/sample so this seems appropriately conservative.
1281 	 */
1282 	rnd_add_uint32(&rnd_autoconf_source, 0);
1283 	return NULL;
1284 }
1285 
1286 /*
1287  * As above, but for root devices.
1288  */
1289 device_t
1290 config_rootfound(const char *rootname, void *aux)
1291 {
1292 	cfdata_t cf;
1293 	device_t dev = NULL;
1294 
1295 	KERNEL_LOCK(1, NULL);
1296 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1297 		dev = config_attach(ROOT, cf, aux, NULL, CFARGS_NONE);
1298 	else
1299 		aprint_error("root device %s not configured\n", rootname);
1300 	KERNEL_UNLOCK_ONE(NULL);
1301 	return dev;
1302 }
1303 
1304 /* just like sprintf(buf, "%d") except that it works from the end */
1305 static char *
1306 number(char *ep, int n)
1307 {
1308 
1309 	*--ep = 0;
1310 	while (n >= 10) {
1311 		*--ep = (n % 10) + '0';
1312 		n /= 10;
1313 	}
1314 	*--ep = n + '0';
1315 	return ep;
1316 }
1317 
1318 /*
1319  * Expand the size of the cd_devs array if necessary.
1320  *
1321  * The caller must hold alldevs_lock. config_makeroom() may release and
1322  * re-acquire alldevs_lock, so callers should re-check conditions such
1323  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1324  * returns.
1325  */
1326 static void
1327 config_makeroom(int n, struct cfdriver *cd)
1328 {
1329 	int ondevs, nndevs;
1330 	device_t *osp, *nsp;
1331 
1332 	KASSERT(mutex_owned(&alldevs_lock));
1333 	alldevs_nwrite++;
1334 
1335 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1336 		;
1337 
1338 	while (n >= cd->cd_ndevs) {
1339 		/*
1340 		 * Need to expand the array.
1341 		 */
1342 		ondevs = cd->cd_ndevs;
1343 		osp = cd->cd_devs;
1344 
1345 		/*
1346 		 * Release alldevs_lock around allocation, which may
1347 		 * sleep.
1348 		 */
1349 		mutex_exit(&alldevs_lock);
1350 		nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
1351 		mutex_enter(&alldevs_lock);
1352 
1353 		/*
1354 		 * If another thread moved the array while we did
1355 		 * not hold alldevs_lock, try again.
1356 		 */
1357 		if (cd->cd_devs != osp) {
1358 			mutex_exit(&alldevs_lock);
1359 			kmem_free(nsp, sizeof(device_t) * nndevs);
1360 			mutex_enter(&alldevs_lock);
1361 			continue;
1362 		}
1363 
1364 		memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
1365 		if (ondevs != 0)
1366 			memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
1367 
1368 		cd->cd_ndevs = nndevs;
1369 		cd->cd_devs = nsp;
1370 		if (ondevs != 0) {
1371 			mutex_exit(&alldevs_lock);
1372 			kmem_free(osp, sizeof(device_t) * ondevs);
1373 			mutex_enter(&alldevs_lock);
1374 		}
1375 	}
1376 	KASSERT(mutex_owned(&alldevs_lock));
1377 	alldevs_nwrite--;
1378 }
1379 
1380 /*
1381  * Put dev into the devices list.
1382  */
1383 static void
1384 config_devlink(device_t dev)
1385 {
1386 
1387 	mutex_enter(&alldevs_lock);
1388 
1389 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1390 
1391 	dev->dv_add_gen = alldevs_gen;
1392 	/* It is safe to add a device to the tail of the list while
1393 	 * readers and writers are in the list.
1394 	 */
1395 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1396 	mutex_exit(&alldevs_lock);
1397 }
1398 
1399 static void
1400 config_devfree(device_t dev)
1401 {
1402 
1403 	KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
1404 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
1405 
1406 	if (dev->dv_cfattach->ca_devsize > 0)
1407 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1408 	kmem_free(dev, sizeof(*dev));
1409 }
1410 
1411 /*
1412  * Caller must hold alldevs_lock.
1413  */
1414 static void
1415 config_devunlink(device_t dev, struct devicelist *garbage)
1416 {
1417 	struct device_garbage *dg = &dev->dv_garbage;
1418 	cfdriver_t cd = device_cfdriver(dev);
1419 	int i;
1420 
1421 	KASSERT(mutex_owned(&alldevs_lock));
1422 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
1423 
1424  	/* Unlink from device list.  Link to garbage list. */
1425 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1426 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1427 
1428 	/* Remove from cfdriver's array. */
1429 	cd->cd_devs[dev->dv_unit] = NULL;
1430 
1431 	/*
1432 	 * If the device now has no units in use, unlink its softc array.
1433 	 */
1434 	for (i = 0; i < cd->cd_ndevs; i++) {
1435 		if (cd->cd_devs[i] != NULL)
1436 			break;
1437 	}
1438 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1439 	if (i == cd->cd_ndevs) {
1440 		dg->dg_ndevs = cd->cd_ndevs;
1441 		dg->dg_devs = cd->cd_devs;
1442 		cd->cd_devs = NULL;
1443 		cd->cd_ndevs = 0;
1444 	}
1445 }
1446 
1447 static void
1448 config_devdelete(device_t dev)
1449 {
1450 	struct device_garbage *dg = &dev->dv_garbage;
1451 	device_lock_t dvl = device_getlock(dev);
1452 
1453 	KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
1454 
1455 	if (dg->dg_devs != NULL)
1456 		kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
1457 
1458 	cv_destroy(&dvl->dvl_cv);
1459 	mutex_destroy(&dvl->dvl_mtx);
1460 
1461 	KASSERT(dev->dv_properties != NULL);
1462 	prop_object_release(dev->dv_properties);
1463 
1464 	if (dev->dv_activity_handlers)
1465 		panic("%s with registered handlers", __func__);
1466 
1467 	if (dev->dv_locators) {
1468 		size_t amount = *--dev->dv_locators;
1469 		kmem_free(dev->dv_locators, amount);
1470 	}
1471 
1472 	config_devfree(dev);
1473 }
1474 
1475 static int
1476 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1477 {
1478 	int unit;
1479 
1480 	if (cf->cf_fstate == FSTATE_STAR) {
1481 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1482 			if (cd->cd_devs[unit] == NULL)
1483 				break;
1484 		/*
1485 		 * unit is now the unit of the first NULL device pointer,
1486 		 * or max(cd->cd_ndevs,cf->cf_unit).
1487 		 */
1488 	} else {
1489 		unit = cf->cf_unit;
1490 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1491 			unit = -1;
1492 	}
1493 	return unit;
1494 }
1495 
1496 static int
1497 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1498 {
1499 	struct alldevs_foray af;
1500 	int unit;
1501 
1502 	config_alldevs_enter(&af);
1503 	for (;;) {
1504 		unit = config_unit_nextfree(cd, cf);
1505 		if (unit == -1)
1506 			break;
1507 		if (unit < cd->cd_ndevs) {
1508 			cd->cd_devs[unit] = dev;
1509 			dev->dv_unit = unit;
1510 			break;
1511 		}
1512 		config_makeroom(unit, cd);
1513 	}
1514 	config_alldevs_exit(&af);
1515 
1516 	return unit;
1517 }
1518 
1519 static device_t
1520 config_devalloc(const device_t parent, const cfdata_t cf,
1521     const struct cfargs_internal * const args)
1522 {
1523 	cfdriver_t cd;
1524 	cfattach_t ca;
1525 	size_t lname, lunit;
1526 	const char *xunit;
1527 	int myunit;
1528 	char num[10];
1529 	device_t dev;
1530 	void *dev_private;
1531 	const struct cfiattrdata *ia;
1532 	device_lock_t dvl;
1533 
1534 	cd = config_cfdriver_lookup(cf->cf_name);
1535 	if (cd == NULL)
1536 		return NULL;
1537 
1538 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1539 	if (ca == NULL)
1540 		return NULL;
1541 
1542 	/* get memory for all device vars */
1543 	KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1544 	if (ca->ca_devsize > 0) {
1545 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1546 	} else {
1547 		dev_private = NULL;
1548 	}
1549 	dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1550 
1551 	dev->dv_handle = args->devhandle;
1552 
1553 	dev->dv_class = cd->cd_class;
1554 	dev->dv_cfdata = cf;
1555 	dev->dv_cfdriver = cd;
1556 	dev->dv_cfattach = ca;
1557 	dev->dv_activity_count = 0;
1558 	dev->dv_activity_handlers = NULL;
1559 	dev->dv_private = dev_private;
1560 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1561 
1562 	myunit = config_unit_alloc(dev, cd, cf);
1563 	if (myunit == -1) {
1564 		config_devfree(dev);
1565 		return NULL;
1566 	}
1567 
1568 	/* compute length of name and decimal expansion of unit number */
1569 	lname = strlen(cd->cd_name);
1570 	xunit = number(&num[sizeof(num)], myunit);
1571 	lunit = &num[sizeof(num)] - xunit;
1572 	if (lname + lunit > sizeof(dev->dv_xname))
1573 		panic("config_devalloc: device name too long");
1574 
1575 	dvl = device_getlock(dev);
1576 
1577 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1578 	cv_init(&dvl->dvl_cv, "pmfsusp");
1579 
1580 	memcpy(dev->dv_xname, cd->cd_name, lname);
1581 	memcpy(dev->dv_xname + lname, xunit, lunit);
1582 	dev->dv_parent = parent;
1583 	if (parent != NULL)
1584 		dev->dv_depth = parent->dv_depth + 1;
1585 	else
1586 		dev->dv_depth = 0;
1587 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1588 	if (args->locators) {
1589 		KASSERT(parent); /* no locators at root */
1590 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1591 		dev->dv_locators =
1592 		    kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
1593 		*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
1594 		memcpy(dev->dv_locators, args->locators,
1595 		    sizeof(int) * ia->ci_loclen);
1596 	}
1597 	dev->dv_properties = prop_dictionary_create();
1598 	KASSERT(dev->dv_properties != NULL);
1599 
1600 	prop_dictionary_set_string_nocopy(dev->dv_properties,
1601 	    "device-driver", dev->dv_cfdriver->cd_name);
1602 	prop_dictionary_set_uint16(dev->dv_properties,
1603 	    "device-unit", dev->dv_unit);
1604 	if (parent != NULL) {
1605 		prop_dictionary_set_string(dev->dv_properties,
1606 		    "device-parent", device_xname(parent));
1607 	}
1608 
1609 	if (dev->dv_cfdriver->cd_attrs != NULL)
1610 		config_add_attrib_dict(dev);
1611 
1612 	return dev;
1613 }
1614 
1615 /*
1616  * Create an array of device attach attributes and add it
1617  * to the device's dv_properties dictionary.
1618  *
1619  * <key>interface-attributes</key>
1620  * <array>
1621  *    <dict>
1622  *       <key>attribute-name</key>
1623  *       <string>foo</string>
1624  *       <key>locators</key>
1625  *       <array>
1626  *          <dict>
1627  *             <key>loc-name</key>
1628  *             <string>foo-loc1</string>
1629  *          </dict>
1630  *          <dict>
1631  *             <key>loc-name</key>
1632  *             <string>foo-loc2</string>
1633  *             <key>default</key>
1634  *             <string>foo-loc2-default</string>
1635  *          </dict>
1636  *          ...
1637  *       </array>
1638  *    </dict>
1639  *    ...
1640  * </array>
1641  */
1642 
1643 static void
1644 config_add_attrib_dict(device_t dev)
1645 {
1646 	int i, j;
1647 	const struct cfiattrdata *ci;
1648 	prop_dictionary_t attr_dict, loc_dict;
1649 	prop_array_t attr_array, loc_array;
1650 
1651 	if ((attr_array = prop_array_create()) == NULL)
1652 		return;
1653 
1654 	for (i = 0; ; i++) {
1655 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1656 			break;
1657 		if ((attr_dict = prop_dictionary_create()) == NULL)
1658 			break;
1659 		prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
1660 		    ci->ci_name);
1661 
1662 		/* Create an array of the locator names and defaults */
1663 
1664 		if (ci->ci_loclen != 0 &&
1665 		    (loc_array = prop_array_create()) != NULL) {
1666 			for (j = 0; j < ci->ci_loclen; j++) {
1667 				loc_dict = prop_dictionary_create();
1668 				if (loc_dict == NULL)
1669 					continue;
1670 				prop_dictionary_set_string_nocopy(loc_dict,
1671 				    "loc-name", ci->ci_locdesc[j].cld_name);
1672 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1673 					prop_dictionary_set_string_nocopy(
1674 					    loc_dict, "default",
1675 					    ci->ci_locdesc[j].cld_defaultstr);
1676 				prop_array_set(loc_array, j, loc_dict);
1677 				prop_object_release(loc_dict);
1678 			}
1679 			prop_dictionary_set_and_rel(attr_dict, "locators",
1680 			    loc_array);
1681 		}
1682 		prop_array_add(attr_array, attr_dict);
1683 		prop_object_release(attr_dict);
1684 	}
1685 	if (i == 0)
1686 		prop_object_release(attr_array);
1687 	else
1688 		prop_dictionary_set_and_rel(dev->dv_properties,
1689 		    "interface-attributes", attr_array);
1690 
1691 	return;
1692 }
1693 
1694 /*
1695  * Attach a found device.
1696  */
1697 static device_t
1698 config_attach_internal(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
1699     const struct cfargs_internal * const args)
1700 {
1701 	device_t dev;
1702 	struct cftable *ct;
1703 	const char *drvname;
1704 	bool deferred;
1705 
1706 	KASSERT(KERNEL_LOCKED_P());
1707 
1708 	dev = config_devalloc(parent, cf, args);
1709 	if (!dev)
1710 		panic("config_attach: allocation of device softc failed");
1711 
1712 	/* XXX redundant - see below? */
1713 	if (cf->cf_fstate != FSTATE_STAR) {
1714 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1715 		cf->cf_fstate = FSTATE_FOUND;
1716 	}
1717 
1718 	config_devlink(dev);
1719 
1720 	if (config_do_twiddle && cold)
1721 		twiddle();
1722 	else
1723 		aprint_naive("Found ");
1724 	/*
1725 	 * We want the next two printfs for normal, verbose, and quiet,
1726 	 * but not silent (in which case, we're twiddling, instead).
1727 	 */
1728 	if (parent == ROOT) {
1729 		aprint_naive("%s (root)", device_xname(dev));
1730 		aprint_normal("%s (root)", device_xname(dev));
1731 	} else {
1732 		aprint_naive("%s at %s", device_xname(dev),
1733 		    device_xname(parent));
1734 		aprint_normal("%s at %s", device_xname(dev),
1735 		    device_xname(parent));
1736 		if (print)
1737 			(void) (*print)(aux, NULL);
1738 	}
1739 
1740 	/*
1741 	 * Before attaching, clobber any unfound devices that are
1742 	 * otherwise identical.
1743 	 * XXX code above is redundant?
1744 	 */
1745 	drvname = dev->dv_cfdriver->cd_name;
1746 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1747 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1748 			if (STREQ(cf->cf_name, drvname) &&
1749 			    cf->cf_unit == dev->dv_unit) {
1750 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1751 					cf->cf_fstate = FSTATE_FOUND;
1752 			}
1753 		}
1754 	}
1755 	device_register(dev, aux);
1756 
1757 	/* Let userland know */
1758 	devmon_report_device(dev, true);
1759 
1760 	config_pending_incr(dev);
1761 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1762 	config_pending_decr(dev);
1763 
1764 	mutex_enter(&config_misc_lock);
1765 	deferred = (dev->dv_pending != 0);
1766 	mutex_exit(&config_misc_lock);
1767 
1768 	if (!deferred && !device_pmf_is_registered(dev))
1769 		aprint_debug_dev(dev,
1770 		    "WARNING: power management not supported\n");
1771 
1772 	config_process_deferred(&deferred_config_queue, dev);
1773 
1774 	device_register_post_config(dev, aux);
1775 	return dev;
1776 }
1777 
1778 device_t
1779 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
1780     const struct cfargs *cfargs)
1781 {
1782 	struct cfargs_internal store;
1783 
1784 	KASSERT(KERNEL_LOCKED_P());
1785 
1786 	return config_attach_internal(parent, cf, aux, print,
1787 	    cfargs_canonicalize(cfargs, &store));
1788 }
1789 
1790 /*
1791  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1792  * way are silently inserted into the device tree, and their children
1793  * attached.
1794  *
1795  * Note that because pseudo-devices are attached silently, any information
1796  * the attach routine wishes to print should be prefixed with the device
1797  * name by the attach routine.
1798  */
1799 device_t
1800 config_attach_pseudo(cfdata_t cf)
1801 {
1802 	device_t dev;
1803 
1804 	KERNEL_LOCK(1, NULL);
1805 
1806 	struct cfargs_internal args = { };
1807 	dev = config_devalloc(ROOT, cf, &args);
1808 	if (!dev)
1809 		goto out;
1810 
1811 	/* XXX mark busy in cfdata */
1812 
1813 	if (cf->cf_fstate != FSTATE_STAR) {
1814 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1815 		cf->cf_fstate = FSTATE_FOUND;
1816 	}
1817 
1818 	config_devlink(dev);
1819 
1820 #if 0	/* XXXJRT not yet */
1821 	device_register(dev, NULL);	/* like a root node */
1822 #endif
1823 
1824 	/* Let userland know */
1825 	devmon_report_device(dev, true);
1826 
1827 	config_pending_incr(dev);
1828 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1829 	config_pending_decr(dev);
1830 
1831 	config_process_deferred(&deferred_config_queue, dev);
1832 
1833 out:	KERNEL_UNLOCK_ONE(NULL);
1834 	return dev;
1835 }
1836 
1837 /*
1838  * Caller must hold alldevs_lock.
1839  */
1840 static void
1841 config_collect_garbage(struct devicelist *garbage)
1842 {
1843 	device_t dv;
1844 
1845 	KASSERT(!cpu_intr_p());
1846 	KASSERT(!cpu_softintr_p());
1847 	KASSERT(mutex_owned(&alldevs_lock));
1848 
1849 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1850 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1851 			if (dv->dv_del_gen != 0)
1852 				break;
1853 		}
1854 		if (dv == NULL) {
1855 			alldevs_garbage = false;
1856 			break;
1857 		}
1858 		config_devunlink(dv, garbage);
1859 	}
1860 	KASSERT(mutex_owned(&alldevs_lock));
1861 }
1862 
1863 static void
1864 config_dump_garbage(struct devicelist *garbage)
1865 {
1866 	device_t dv;
1867 
1868 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1869 		TAILQ_REMOVE(garbage, dv, dv_list);
1870 		config_devdelete(dv);
1871 	}
1872 }
1873 
1874 static int
1875 config_detach_enter(device_t dev)
1876 {
1877 	int error;
1878 
1879 	mutex_enter(&config_misc_lock);
1880 	for (;;) {
1881 		if (dev->dv_pending == 0 && dev->dv_detaching == NULL) {
1882 			dev->dv_detaching = curlwp;
1883 			error = 0;
1884 			break;
1885 		}
1886 		KASSERTMSG(dev->dv_detaching != curlwp,
1887 		    "recursively detaching %s", device_xname(dev));
1888 		error = cv_wait_sig(&config_misc_cv, &config_misc_lock);
1889 		if (error)
1890 			break;
1891 	}
1892 	KASSERT(error || dev->dv_detaching == curlwp);
1893 	mutex_exit(&config_misc_lock);
1894 
1895 	return error;
1896 }
1897 
1898 static void
1899 config_detach_exit(device_t dev)
1900 {
1901 
1902 	mutex_enter(&config_misc_lock);
1903 	KASSERT(dev->dv_detaching == curlwp);
1904 	dev->dv_detaching = NULL;
1905 	cv_broadcast(&config_misc_cv);
1906 	mutex_exit(&config_misc_lock);
1907 }
1908 
1909 /*
1910  * Detach a device.  Optionally forced (e.g. because of hardware
1911  * removal) and quiet.  Returns zero if successful, non-zero
1912  * (an error code) otherwise.
1913  *
1914  * Note that this code wants to be run from a process context, so
1915  * that the detach can sleep to allow processes which have a device
1916  * open to run and unwind their stacks.
1917  */
1918 int
1919 config_detach(device_t dev, int flags)
1920 {
1921 	struct alldevs_foray af;
1922 	struct cftable *ct;
1923 	cfdata_t cf;
1924 	const struct cfattach *ca;
1925 	struct cfdriver *cd;
1926 	device_t d __diagused;
1927 	int rv = 0;
1928 
1929 	KERNEL_LOCK(1, NULL);
1930 
1931 	cf = dev->dv_cfdata;
1932 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1933 		cf->cf_fstate == FSTATE_STAR),
1934 	    "config_detach: %s: bad device fstate: %d",
1935 	    device_xname(dev), cf ? cf->cf_fstate : -1);
1936 
1937 	cd = dev->dv_cfdriver;
1938 	KASSERT(cd != NULL);
1939 
1940 	ca = dev->dv_cfattach;
1941 	KASSERT(ca != NULL);
1942 
1943 	/*
1944 	 * Only one detach at a time, please -- and not until fully
1945 	 * attached.
1946 	 */
1947 	rv = config_detach_enter(dev);
1948 	if (rv) {
1949 		KERNEL_UNLOCK_ONE(NULL);
1950 		return rv;
1951 	}
1952 
1953 	mutex_enter(&alldevs_lock);
1954 	if (dev->dv_del_gen != 0) {
1955 		mutex_exit(&alldevs_lock);
1956 #ifdef DIAGNOSTIC
1957 		printf("%s: %s is already detached\n", __func__,
1958 		    device_xname(dev));
1959 #endif /* DIAGNOSTIC */
1960 		config_detach_exit(dev);
1961 		KERNEL_UNLOCK_ONE(NULL);
1962 		return ENOENT;
1963 	}
1964 	alldevs_nwrite++;
1965 	mutex_exit(&alldevs_lock);
1966 
1967 	if (!detachall &&
1968 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1969 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1970 		rv = EOPNOTSUPP;
1971 	} else if (ca->ca_detach != NULL) {
1972 		rv = (*ca->ca_detach)(dev, flags);
1973 	} else
1974 		rv = EOPNOTSUPP;
1975 
1976 	/*
1977 	 * If it was not possible to detach the device, then we either
1978 	 * panic() (for the forced but failed case), or return an error.
1979 	 *
1980 	 * If it was possible to detach the device, ensure that the
1981 	 * device is deactivated.
1982 	 */
1983 	if (rv == 0)
1984 		dev->dv_flags &= ~DVF_ACTIVE;
1985 	else if ((flags & DETACH_FORCE) == 0)
1986 		goto out;
1987 	else {
1988 		panic("config_detach: forced detach of %s failed (%d)",
1989 		    device_xname(dev), rv);
1990 	}
1991 
1992 	/*
1993 	 * The device has now been successfully detached.
1994 	 */
1995 
1996 	/* Let userland know */
1997 	devmon_report_device(dev, false);
1998 
1999 #ifdef DIAGNOSTIC
2000 	/*
2001 	 * Sanity: If you're successfully detached, you should have no
2002 	 * children.  (Note that because children must be attached
2003 	 * after parents, we only need to search the latter part of
2004 	 * the list.)
2005 	 */
2006 	mutex_enter(&alldevs_lock);
2007 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
2008 	    d = TAILQ_NEXT(d, dv_list)) {
2009 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
2010 			printf("config_detach: detached device %s"
2011 			    " has children %s\n", device_xname(dev),
2012 			    device_xname(d));
2013 			panic("config_detach");
2014 		}
2015 	}
2016 	mutex_exit(&alldevs_lock);
2017 #endif
2018 
2019 	/* notify the parent that the child is gone */
2020 	if (dev->dv_parent) {
2021 		device_t p = dev->dv_parent;
2022 		if (p->dv_cfattach->ca_childdetached)
2023 			(*p->dv_cfattach->ca_childdetached)(p, dev);
2024 	}
2025 
2026 	/*
2027 	 * Mark cfdata to show that the unit can be reused, if possible.
2028 	 */
2029 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
2030 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
2031 			if (STREQ(cf->cf_name, cd->cd_name)) {
2032 				if (cf->cf_fstate == FSTATE_FOUND &&
2033 				    cf->cf_unit == dev->dv_unit)
2034 					cf->cf_fstate = FSTATE_NOTFOUND;
2035 			}
2036 		}
2037 	}
2038 
2039 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
2040 		aprint_normal_dev(dev, "detached\n");
2041 
2042 out:
2043 	config_detach_exit(dev);
2044 
2045 	config_alldevs_enter(&af);
2046 	KASSERT(alldevs_nwrite != 0);
2047 	--alldevs_nwrite;
2048 	if (rv == 0 && dev->dv_del_gen == 0) {
2049 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
2050 			config_devunlink(dev, &af.af_garbage);
2051 		else {
2052 			dev->dv_del_gen = alldevs_gen;
2053 			alldevs_garbage = true;
2054 		}
2055 	}
2056 	config_alldevs_exit(&af);
2057 
2058 	KERNEL_UNLOCK_ONE(NULL);
2059 
2060 	return rv;
2061 }
2062 
2063 int
2064 config_detach_children(device_t parent, int flags)
2065 {
2066 	device_t dv;
2067 	deviter_t di;
2068 	int error = 0;
2069 
2070 	KASSERT(KERNEL_LOCKED_P());
2071 
2072 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
2073 	     dv = deviter_next(&di)) {
2074 		if (device_parent(dv) != parent)
2075 			continue;
2076 		if ((error = config_detach(dv, flags)) != 0)
2077 			break;
2078 	}
2079 	deviter_release(&di);
2080 	return error;
2081 }
2082 
2083 device_t
2084 shutdown_first(struct shutdown_state *s)
2085 {
2086 	if (!s->initialized) {
2087 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
2088 		s->initialized = true;
2089 	}
2090 	return shutdown_next(s);
2091 }
2092 
2093 device_t
2094 shutdown_next(struct shutdown_state *s)
2095 {
2096 	device_t dv;
2097 
2098 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
2099 		;
2100 
2101 	if (dv == NULL)
2102 		s->initialized = false;
2103 
2104 	return dv;
2105 }
2106 
2107 bool
2108 config_detach_all(int how)
2109 {
2110 	static struct shutdown_state s;
2111 	device_t curdev;
2112 	bool progress = false;
2113 	int flags;
2114 
2115 	KERNEL_LOCK(1, NULL);
2116 
2117 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
2118 		goto out;
2119 
2120 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
2121 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
2122 	else
2123 		flags = DETACH_SHUTDOWN;
2124 
2125 	for (curdev = shutdown_first(&s); curdev != NULL;
2126 	     curdev = shutdown_next(&s)) {
2127 		aprint_debug(" detaching %s, ", device_xname(curdev));
2128 		if (config_detach(curdev, flags) == 0) {
2129 			progress = true;
2130 			aprint_debug("success.");
2131 		} else
2132 			aprint_debug("failed.");
2133 	}
2134 
2135 out:	KERNEL_UNLOCK_ONE(NULL);
2136 	return progress;
2137 }
2138 
2139 static bool
2140 device_is_ancestor_of(device_t ancestor, device_t descendant)
2141 {
2142 	device_t dv;
2143 
2144 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
2145 		if (device_parent(dv) == ancestor)
2146 			return true;
2147 	}
2148 	return false;
2149 }
2150 
2151 int
2152 config_deactivate(device_t dev)
2153 {
2154 	deviter_t di;
2155 	const struct cfattach *ca;
2156 	device_t descendant;
2157 	int s, rv = 0, oflags;
2158 
2159 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
2160 	     descendant != NULL;
2161 	     descendant = deviter_next(&di)) {
2162 		if (dev != descendant &&
2163 		    !device_is_ancestor_of(dev, descendant))
2164 			continue;
2165 
2166 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
2167 			continue;
2168 
2169 		ca = descendant->dv_cfattach;
2170 		oflags = descendant->dv_flags;
2171 
2172 		descendant->dv_flags &= ~DVF_ACTIVE;
2173 		if (ca->ca_activate == NULL)
2174 			continue;
2175 		s = splhigh();
2176 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
2177 		splx(s);
2178 		if (rv != 0)
2179 			descendant->dv_flags = oflags;
2180 	}
2181 	deviter_release(&di);
2182 	return rv;
2183 }
2184 
2185 /*
2186  * Defer the configuration of the specified device until all
2187  * of its parent's devices have been attached.
2188  */
2189 void
2190 config_defer(device_t dev, void (*func)(device_t))
2191 {
2192 	struct deferred_config *dc;
2193 
2194 	if (dev->dv_parent == NULL)
2195 		panic("config_defer: can't defer config of a root device");
2196 
2197 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2198 
2199 	config_pending_incr(dev);
2200 
2201 	mutex_enter(&config_misc_lock);
2202 #ifdef DIAGNOSTIC
2203 	struct deferred_config *odc;
2204 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
2205 		if (odc->dc_dev == dev)
2206 			panic("config_defer: deferred twice");
2207 	}
2208 #endif
2209 	dc->dc_dev = dev;
2210 	dc->dc_func = func;
2211 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
2212 	mutex_exit(&config_misc_lock);
2213 }
2214 
2215 /*
2216  * Defer some autoconfiguration for a device until after interrupts
2217  * are enabled.
2218  */
2219 void
2220 config_interrupts(device_t dev, void (*func)(device_t))
2221 {
2222 	struct deferred_config *dc;
2223 
2224 	/*
2225 	 * If interrupts are enabled, callback now.
2226 	 */
2227 	if (cold == 0) {
2228 		(*func)(dev);
2229 		return;
2230 	}
2231 
2232 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2233 
2234 	config_pending_incr(dev);
2235 
2236 	mutex_enter(&config_misc_lock);
2237 #ifdef DIAGNOSTIC
2238 	struct deferred_config *odc;
2239 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
2240 		if (odc->dc_dev == dev)
2241 			panic("config_interrupts: deferred twice");
2242 	}
2243 #endif
2244 	dc->dc_dev = dev;
2245 	dc->dc_func = func;
2246 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2247 	mutex_exit(&config_misc_lock);
2248 }
2249 
2250 /*
2251  * Defer some autoconfiguration for a device until after root file system
2252  * is mounted (to load firmware etc).
2253  */
2254 void
2255 config_mountroot(device_t dev, void (*func)(device_t))
2256 {
2257 	struct deferred_config *dc;
2258 
2259 	/*
2260 	 * If root file system is mounted, callback now.
2261 	 */
2262 	if (root_is_mounted) {
2263 		(*func)(dev);
2264 		return;
2265 	}
2266 
2267 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2268 
2269 	mutex_enter(&config_misc_lock);
2270 #ifdef DIAGNOSTIC
2271 	struct deferred_config *odc;
2272 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
2273 		if (odc->dc_dev == dev)
2274 			panic("%s: deferred twice", __func__);
2275 	}
2276 #endif
2277 
2278 	dc->dc_dev = dev;
2279 	dc->dc_func = func;
2280 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2281 	mutex_exit(&config_misc_lock);
2282 }
2283 
2284 /*
2285  * Process a deferred configuration queue.
2286  */
2287 static void
2288 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2289 {
2290 	struct deferred_config *dc;
2291 
2292 	KASSERT(KERNEL_LOCKED_P());
2293 
2294 	mutex_enter(&config_misc_lock);
2295 	dc = TAILQ_FIRST(queue);
2296 	while (dc) {
2297 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2298 			TAILQ_REMOVE(queue, dc, dc_queue);
2299 			mutex_exit(&config_misc_lock);
2300 
2301 			(*dc->dc_func)(dc->dc_dev);
2302 			config_pending_decr(dc->dc_dev);
2303 			kmem_free(dc, sizeof(*dc));
2304 
2305 			mutex_enter(&config_misc_lock);
2306 			/* Restart, queue might have changed */
2307 			dc = TAILQ_FIRST(queue);
2308 		} else {
2309 			dc = TAILQ_NEXT(dc, dc_queue);
2310 		}
2311 	}
2312 	mutex_exit(&config_misc_lock);
2313 }
2314 
2315 /*
2316  * Manipulate the config_pending semaphore.
2317  */
2318 void
2319 config_pending_incr(device_t dev)
2320 {
2321 
2322 	mutex_enter(&config_misc_lock);
2323 	KASSERTMSG(dev->dv_pending < INT_MAX,
2324 	    "%s: excess config_pending_incr", device_xname(dev));
2325 	if (dev->dv_pending++ == 0)
2326 		TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
2327 #ifdef DEBUG_AUTOCONF
2328 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2329 #endif
2330 	mutex_exit(&config_misc_lock);
2331 }
2332 
2333 void
2334 config_pending_decr(device_t dev)
2335 {
2336 
2337 	mutex_enter(&config_misc_lock);
2338 	KASSERTMSG(dev->dv_pending > 0,
2339 	    "%s: excess config_pending_decr", device_xname(dev));
2340 	if (--dev->dv_pending == 0) {
2341 		TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
2342 		cv_broadcast(&config_misc_cv);
2343 	}
2344 #ifdef DEBUG_AUTOCONF
2345 	printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
2346 #endif
2347 	mutex_exit(&config_misc_lock);
2348 }
2349 
2350 /*
2351  * Register a "finalization" routine.  Finalization routines are
2352  * called iteratively once all real devices have been found during
2353  * autoconfiguration, for as long as any one finalizer has done
2354  * any work.
2355  */
2356 int
2357 config_finalize_register(device_t dev, int (*fn)(device_t))
2358 {
2359 	struct finalize_hook *f;
2360 	int error = 0;
2361 
2362 	KERNEL_LOCK(1, NULL);
2363 
2364 	/*
2365 	 * If finalization has already been done, invoke the
2366 	 * callback function now.
2367 	 */
2368 	if (config_finalize_done) {
2369 		while ((*fn)(dev) != 0)
2370 			/* loop */ ;
2371 		goto out;
2372 	}
2373 
2374 	/* Ensure this isn't already on the list. */
2375 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2376 		if (f->f_func == fn && f->f_dev == dev) {
2377 			error = EEXIST;
2378 			goto out;
2379 		}
2380 	}
2381 
2382 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
2383 	f->f_func = fn;
2384 	f->f_dev = dev;
2385 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2386 
2387 	/* Success!  */
2388 	error = 0;
2389 
2390 out:	KERNEL_UNLOCK_ONE(NULL);
2391 	return error;
2392 }
2393 
2394 void
2395 config_finalize(void)
2396 {
2397 	struct finalize_hook *f;
2398 	struct pdevinit *pdev;
2399 	extern struct pdevinit pdevinit[];
2400 	int errcnt, rv;
2401 
2402 	/*
2403 	 * Now that device driver threads have been created, wait for
2404 	 * them to finish any deferred autoconfiguration.
2405 	 */
2406 	mutex_enter(&config_misc_lock);
2407 	while (!TAILQ_EMPTY(&config_pending)) {
2408 		device_t dev;
2409 		int error;
2410 
2411 		error = cv_timedwait(&config_misc_cv, &config_misc_lock,
2412 		    mstohz(1000));
2413 		if (error == EWOULDBLOCK) {
2414 			aprint_debug("waiting for devices:");
2415 			TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
2416 				aprint_debug(" %s", device_xname(dev));
2417 			aprint_debug("\n");
2418 		}
2419 	}
2420 	mutex_exit(&config_misc_lock);
2421 
2422 	KERNEL_LOCK(1, NULL);
2423 
2424 	/* Attach pseudo-devices. */
2425 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2426 		(*pdev->pdev_attach)(pdev->pdev_count);
2427 
2428 	/* Run the hooks until none of them does any work. */
2429 	do {
2430 		rv = 0;
2431 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
2432 			rv |= (*f->f_func)(f->f_dev);
2433 	} while (rv != 0);
2434 
2435 	config_finalize_done = 1;
2436 
2437 	/* Now free all the hooks. */
2438 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2439 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
2440 		kmem_free(f, sizeof(*f));
2441 	}
2442 
2443 	KERNEL_UNLOCK_ONE(NULL);
2444 
2445 	errcnt = aprint_get_error_count();
2446 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2447 	    (boothowto & AB_VERBOSE) == 0) {
2448 		mutex_enter(&config_misc_lock);
2449 		if (config_do_twiddle) {
2450 			config_do_twiddle = 0;
2451 			printf_nolog(" done.\n");
2452 		}
2453 		mutex_exit(&config_misc_lock);
2454 	}
2455 	if (errcnt != 0) {
2456 		printf("WARNING: %d error%s while detecting hardware; "
2457 		    "check system log.\n", errcnt,
2458 		    errcnt == 1 ? "" : "s");
2459 	}
2460 }
2461 
2462 void
2463 config_twiddle_init(void)
2464 {
2465 
2466 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2467 		config_do_twiddle = 1;
2468 	}
2469 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2470 }
2471 
2472 void
2473 config_twiddle_fn(void *cookie)
2474 {
2475 
2476 	mutex_enter(&config_misc_lock);
2477 	if (config_do_twiddle) {
2478 		twiddle();
2479 		callout_schedule(&config_twiddle_ch, mstohz(100));
2480 	}
2481 	mutex_exit(&config_misc_lock);
2482 }
2483 
2484 static void
2485 config_alldevs_enter(struct alldevs_foray *af)
2486 {
2487 	TAILQ_INIT(&af->af_garbage);
2488 	mutex_enter(&alldevs_lock);
2489 	config_collect_garbage(&af->af_garbage);
2490 }
2491 
2492 static void
2493 config_alldevs_exit(struct alldevs_foray *af)
2494 {
2495 	mutex_exit(&alldevs_lock);
2496 	config_dump_garbage(&af->af_garbage);
2497 }
2498 
2499 /*
2500  * device_lookup:
2501  *
2502  *	Look up a device instance for a given driver.
2503  */
2504 device_t
2505 device_lookup(cfdriver_t cd, int unit)
2506 {
2507 	device_t dv;
2508 
2509 	mutex_enter(&alldevs_lock);
2510 	if (unit < 0 || unit >= cd->cd_ndevs)
2511 		dv = NULL;
2512 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2513 		dv = NULL;
2514 	mutex_exit(&alldevs_lock);
2515 
2516 	return dv;
2517 }
2518 
2519 /*
2520  * device_lookup_private:
2521  *
2522  *	Look up a softc instance for a given driver.
2523  */
2524 void *
2525 device_lookup_private(cfdriver_t cd, int unit)
2526 {
2527 
2528 	return device_private(device_lookup(cd, unit));
2529 }
2530 
2531 /*
2532  * device_find_by_xname:
2533  *
2534  *	Returns the device of the given name or NULL if it doesn't exist.
2535  */
2536 device_t
2537 device_find_by_xname(const char *name)
2538 {
2539 	device_t dv;
2540 	deviter_t di;
2541 
2542 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2543 		if (strcmp(device_xname(dv), name) == 0)
2544 			break;
2545 	}
2546 	deviter_release(&di);
2547 
2548 	return dv;
2549 }
2550 
2551 /*
2552  * device_find_by_driver_unit:
2553  *
2554  *	Returns the device of the given driver name and unit or
2555  *	NULL if it doesn't exist.
2556  */
2557 device_t
2558 device_find_by_driver_unit(const char *name, int unit)
2559 {
2560 	struct cfdriver *cd;
2561 
2562 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2563 		return NULL;
2564 	return device_lookup(cd, unit);
2565 }
2566 
2567 static bool
2568 match_strcmp(const char * const s1, const char * const s2)
2569 {
2570 	return strcmp(s1, s2) == 0;
2571 }
2572 
2573 static bool
2574 match_pmatch(const char * const s1, const char * const s2)
2575 {
2576 	return pmatch(s1, s2, NULL) == 2;
2577 }
2578 
2579 static bool
2580 strarray_match_internal(const char ** const strings,
2581     unsigned int const nstrings, const char * const str,
2582     unsigned int * const indexp,
2583     bool (*match_fn)(const char *, const char *))
2584 {
2585 	unsigned int i;
2586 
2587 	if (strings == NULL || nstrings == 0) {
2588 		return false;
2589 	}
2590 
2591 	for (i = 0; i < nstrings; i++) {
2592 		if ((*match_fn)(strings[i], str)) {
2593 			*indexp = i;
2594 			return true;
2595 		}
2596 	}
2597 
2598 	return false;
2599 }
2600 
2601 static int
2602 strarray_match(const char ** const strings, unsigned int const nstrings,
2603     const char * const str)
2604 {
2605 	unsigned int idx;
2606 
2607 	if (strarray_match_internal(strings, nstrings, str, &idx,
2608 				    match_strcmp)) {
2609 		return (int)(nstrings - idx);
2610 	}
2611 	return 0;
2612 }
2613 
2614 static int
2615 strarray_pmatch(const char ** const strings, unsigned int const nstrings,
2616     const char * const pattern)
2617 {
2618 	unsigned int idx;
2619 
2620 	if (strarray_match_internal(strings, nstrings, pattern, &idx,
2621 				    match_pmatch)) {
2622 		return (int)(nstrings - idx);
2623 	}
2624 	return 0;
2625 }
2626 
2627 static int
2628 device_compatible_match_strarray_internal(
2629     const char **device_compats, int ndevice_compats,
2630     const struct device_compatible_entry *driver_compats,
2631     const struct device_compatible_entry **matching_entryp,
2632     int (*match_fn)(const char **, unsigned int, const char *))
2633 {
2634 	const struct device_compatible_entry *dce = NULL;
2635 	int rv;
2636 
2637 	if (ndevice_compats == 0 || device_compats == NULL ||
2638 	    driver_compats == NULL)
2639 		return 0;
2640 
2641 	for (dce = driver_compats; dce->compat != NULL; dce++) {
2642 		rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
2643 		if (rv != 0) {
2644 			if (matching_entryp != NULL) {
2645 				*matching_entryp = dce;
2646 			}
2647 			return rv;
2648 		}
2649 	}
2650 	return 0;
2651 }
2652 
2653 /*
2654  * device_compatible_match:
2655  *
2656  *	Match a driver's "compatible" data against a device's
2657  *	"compatible" strings.  Returns resulted weighted by
2658  *	which device "compatible" string was matched.
2659  */
2660 int
2661 device_compatible_match(const char **device_compats, int ndevice_compats,
2662     const struct device_compatible_entry *driver_compats)
2663 {
2664 	return device_compatible_match_strarray_internal(device_compats,
2665 	    ndevice_compats, driver_compats, NULL, strarray_match);
2666 }
2667 
2668 /*
2669  * device_compatible_pmatch:
2670  *
2671  *	Like device_compatible_match(), but uses pmatch(9) to compare
2672  *	the device "compatible" strings against patterns in the
2673  *	driver's "compatible" data.
2674  */
2675 int
2676 device_compatible_pmatch(const char **device_compats, int ndevice_compats,
2677     const struct device_compatible_entry *driver_compats)
2678 {
2679 	return device_compatible_match_strarray_internal(device_compats,
2680 	    ndevice_compats, driver_compats, NULL, strarray_pmatch);
2681 }
2682 
2683 static int
2684 device_compatible_match_strlist_internal(
2685     const char * const device_compats, size_t const device_compatsize,
2686     const struct device_compatible_entry *driver_compats,
2687     const struct device_compatible_entry **matching_entryp,
2688     int (*match_fn)(const char *, size_t, const char *))
2689 {
2690 	const struct device_compatible_entry *dce = NULL;
2691 	int rv;
2692 
2693 	if (device_compats == NULL || device_compatsize == 0 ||
2694 	    driver_compats == NULL)
2695 		return 0;
2696 
2697 	for (dce = driver_compats; dce->compat != NULL; dce++) {
2698 		rv = (*match_fn)(device_compats, device_compatsize,
2699 		    dce->compat);
2700 		if (rv != 0) {
2701 			if (matching_entryp != NULL) {
2702 				*matching_entryp = dce;
2703 			}
2704 			return rv;
2705 		}
2706 	}
2707 	return 0;
2708 }
2709 
2710 /*
2711  * device_compatible_match_strlist:
2712  *
2713  *	Like device_compatible_match(), but take the device
2714  *	"compatible" strings as an OpenFirmware-style string
2715  *	list.
2716  */
2717 int
2718 device_compatible_match_strlist(
2719     const char * const device_compats, size_t const device_compatsize,
2720     const struct device_compatible_entry *driver_compats)
2721 {
2722 	return device_compatible_match_strlist_internal(device_compats,
2723 	    device_compatsize, driver_compats, NULL, strlist_match);
2724 }
2725 
2726 /*
2727  * device_compatible_pmatch_strlist:
2728  *
2729  *	Like device_compatible_pmatch(), but take the device
2730  *	"compatible" strings as an OpenFirmware-style string
2731  *	list.
2732  */
2733 int
2734 device_compatible_pmatch_strlist(
2735     const char * const device_compats, size_t const device_compatsize,
2736     const struct device_compatible_entry *driver_compats)
2737 {
2738 	return device_compatible_match_strlist_internal(device_compats,
2739 	    device_compatsize, driver_compats, NULL, strlist_pmatch);
2740 }
2741 
2742 static int
2743 device_compatible_match_id_internal(
2744     uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
2745     const struct device_compatible_entry *driver_compats,
2746     const struct device_compatible_entry **matching_entryp)
2747 {
2748 	const struct device_compatible_entry *dce = NULL;
2749 
2750 	if (mask == 0)
2751 		return 0;
2752 
2753 	for (dce = driver_compats; dce->id != sentinel_id; dce++) {
2754 		if ((id & mask) == dce->id) {
2755 			if (matching_entryp != NULL) {
2756 				*matching_entryp = dce;
2757 			}
2758 			return 1;
2759 		}
2760 	}
2761 	return 0;
2762 }
2763 
2764 /*
2765  * device_compatible_match_id:
2766  *
2767  *	Like device_compatible_match(), but takes a single
2768  *	unsigned integer device ID.
2769  */
2770 int
2771 device_compatible_match_id(
2772     uintptr_t const id, uintptr_t const sentinel_id,
2773     const struct device_compatible_entry *driver_compats)
2774 {
2775 	return device_compatible_match_id_internal(id, (uintptr_t)-1,
2776 	    sentinel_id, driver_compats, NULL);
2777 }
2778 
2779 /*
2780  * device_compatible_lookup:
2781  *
2782  *	Look up and return the device_compatible_entry, using the
2783  *	same matching criteria used by device_compatible_match().
2784  */
2785 const struct device_compatible_entry *
2786 device_compatible_lookup(const char **device_compats, int ndevice_compats,
2787 			 const struct device_compatible_entry *driver_compats)
2788 {
2789 	const struct device_compatible_entry *dce;
2790 
2791 	if (device_compatible_match_strarray_internal(device_compats,
2792 	    ndevice_compats, driver_compats, &dce, strarray_match)) {
2793 		return dce;
2794 	}
2795 	return NULL;
2796 }
2797 
2798 /*
2799  * device_compatible_plookup:
2800  *
2801  *	Look up and return the device_compatible_entry, using the
2802  *	same matching criteria used by device_compatible_pmatch().
2803  */
2804 const struct device_compatible_entry *
2805 device_compatible_plookup(const char **device_compats, int ndevice_compats,
2806 			  const struct device_compatible_entry *driver_compats)
2807 {
2808 	const struct device_compatible_entry *dce;
2809 
2810 	if (device_compatible_match_strarray_internal(device_compats,
2811 	    ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
2812 		return dce;
2813 	}
2814 	return NULL;
2815 }
2816 
2817 /*
2818  * device_compatible_lookup_strlist:
2819  *
2820  *	Like device_compatible_lookup(), but take the device
2821  *	"compatible" strings as an OpenFirmware-style string
2822  *	list.
2823  */
2824 const struct device_compatible_entry *
2825 device_compatible_lookup_strlist(
2826     const char * const device_compats, size_t const device_compatsize,
2827     const struct device_compatible_entry *driver_compats)
2828 {
2829 	const struct device_compatible_entry *dce;
2830 
2831 	if (device_compatible_match_strlist_internal(device_compats,
2832 	    device_compatsize, driver_compats, &dce, strlist_match)) {
2833 		return dce;
2834 	}
2835 	return NULL;
2836 }
2837 
2838 /*
2839  * device_compatible_plookup_strlist:
2840  *
2841  *	Like device_compatible_plookup(), but take the device
2842  *	"compatible" strings as an OpenFirmware-style string
2843  *	list.
2844  */
2845 const struct device_compatible_entry *
2846 device_compatible_plookup_strlist(
2847     const char * const device_compats, size_t const device_compatsize,
2848     const struct device_compatible_entry *driver_compats)
2849 {
2850 	const struct device_compatible_entry *dce;
2851 
2852 	if (device_compatible_match_strlist_internal(device_compats,
2853 	    device_compatsize, driver_compats, &dce, strlist_pmatch)) {
2854 		return dce;
2855 	}
2856 	return NULL;
2857 }
2858 
2859 /*
2860  * device_compatible_lookup_id:
2861  *
2862  *	Like device_compatible_lookup(), but takes a single
2863  *	unsigned integer device ID.
2864  */
2865 const struct device_compatible_entry *
2866 device_compatible_lookup_id(
2867     uintptr_t const id, uintptr_t const sentinel_id,
2868     const struct device_compatible_entry *driver_compats)
2869 {
2870 	const struct device_compatible_entry *dce;
2871 
2872 	if (device_compatible_match_id_internal(id, (uintptr_t)-1,
2873 	    sentinel_id, driver_compats, &dce)) {
2874 		return dce;
2875 	}
2876 	return NULL;
2877 }
2878 
2879 /*
2880  * Power management related functions.
2881  */
2882 
2883 bool
2884 device_pmf_is_registered(device_t dev)
2885 {
2886 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2887 }
2888 
2889 bool
2890 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2891 {
2892 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2893 		return true;
2894 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2895 		return false;
2896 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2897 	    dev->dv_driver_suspend != NULL &&
2898 	    !(*dev->dv_driver_suspend)(dev, qual))
2899 		return false;
2900 
2901 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2902 	return true;
2903 }
2904 
2905 bool
2906 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2907 {
2908 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2909 		return true;
2910 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2911 		return false;
2912 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2913 	    dev->dv_driver_resume != NULL &&
2914 	    !(*dev->dv_driver_resume)(dev, qual))
2915 		return false;
2916 
2917 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2918 	return true;
2919 }
2920 
2921 bool
2922 device_pmf_driver_shutdown(device_t dev, int how)
2923 {
2924 
2925 	if (*dev->dv_driver_shutdown != NULL &&
2926 	    !(*dev->dv_driver_shutdown)(dev, how))
2927 		return false;
2928 	return true;
2929 }
2930 
2931 bool
2932 device_pmf_driver_register(device_t dev,
2933     bool (*suspend)(device_t, const pmf_qual_t *),
2934     bool (*resume)(device_t, const pmf_qual_t *),
2935     bool (*shutdown)(device_t, int))
2936 {
2937 	dev->dv_driver_suspend = suspend;
2938 	dev->dv_driver_resume = resume;
2939 	dev->dv_driver_shutdown = shutdown;
2940 	dev->dv_flags |= DVF_POWER_HANDLERS;
2941 	return true;
2942 }
2943 
2944 static const char *
2945 curlwp_name(void)
2946 {
2947 	if (curlwp->l_name != NULL)
2948 		return curlwp->l_name;
2949 	else
2950 		return curlwp->l_proc->p_comm;
2951 }
2952 
2953 void
2954 device_pmf_driver_deregister(device_t dev)
2955 {
2956 	device_lock_t dvl = device_getlock(dev);
2957 
2958 	dev->dv_driver_suspend = NULL;
2959 	dev->dv_driver_resume = NULL;
2960 
2961 	mutex_enter(&dvl->dvl_mtx);
2962 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2963 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2964 		/* Wake a thread that waits for the lock.  That
2965 		 * thread will fail to acquire the lock, and then
2966 		 * it will wake the next thread that waits for the
2967 		 * lock, or else it will wake us.
2968 		 */
2969 		cv_signal(&dvl->dvl_cv);
2970 		pmflock_debug(dev, __func__, __LINE__);
2971 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2972 		pmflock_debug(dev, __func__, __LINE__);
2973 	}
2974 	mutex_exit(&dvl->dvl_mtx);
2975 }
2976 
2977 bool
2978 device_pmf_driver_child_register(device_t dev)
2979 {
2980 	device_t parent = device_parent(dev);
2981 
2982 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2983 		return true;
2984 	return (*parent->dv_driver_child_register)(dev);
2985 }
2986 
2987 void
2988 device_pmf_driver_set_child_register(device_t dev,
2989     bool (*child_register)(device_t))
2990 {
2991 	dev->dv_driver_child_register = child_register;
2992 }
2993 
2994 static void
2995 pmflock_debug(device_t dev, const char *func, int line)
2996 {
2997 	device_lock_t dvl = device_getlock(dev);
2998 
2999 	aprint_debug_dev(dev,
3000 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
3001 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
3002 }
3003 
3004 static bool
3005 device_pmf_lock1(device_t dev)
3006 {
3007 	device_lock_t dvl = device_getlock(dev);
3008 
3009 	while (device_pmf_is_registered(dev) &&
3010 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
3011 		dvl->dvl_nwait++;
3012 		pmflock_debug(dev, __func__, __LINE__);
3013 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
3014 		pmflock_debug(dev, __func__, __LINE__);
3015 		dvl->dvl_nwait--;
3016 	}
3017 	if (!device_pmf_is_registered(dev)) {
3018 		pmflock_debug(dev, __func__, __LINE__);
3019 		/* We could not acquire the lock, but some other thread may
3020 		 * wait for it, also.  Wake that thread.
3021 		 */
3022 		cv_signal(&dvl->dvl_cv);
3023 		return false;
3024 	}
3025 	dvl->dvl_nlock++;
3026 	dvl->dvl_holder = curlwp;
3027 	pmflock_debug(dev, __func__, __LINE__);
3028 	return true;
3029 }
3030 
3031 bool
3032 device_pmf_lock(device_t dev)
3033 {
3034 	bool rc;
3035 	device_lock_t dvl = device_getlock(dev);
3036 
3037 	mutex_enter(&dvl->dvl_mtx);
3038 	rc = device_pmf_lock1(dev);
3039 	mutex_exit(&dvl->dvl_mtx);
3040 
3041 	return rc;
3042 }
3043 
3044 void
3045 device_pmf_unlock(device_t dev)
3046 {
3047 	device_lock_t dvl = device_getlock(dev);
3048 
3049 	KASSERT(dvl->dvl_nlock > 0);
3050 	mutex_enter(&dvl->dvl_mtx);
3051 	if (--dvl->dvl_nlock == 0)
3052 		dvl->dvl_holder = NULL;
3053 	cv_signal(&dvl->dvl_cv);
3054 	pmflock_debug(dev, __func__, __LINE__);
3055 	mutex_exit(&dvl->dvl_mtx);
3056 }
3057 
3058 device_lock_t
3059 device_getlock(device_t dev)
3060 {
3061 	return &dev->dv_lock;
3062 }
3063 
3064 void *
3065 device_pmf_bus_private(device_t dev)
3066 {
3067 	return dev->dv_bus_private;
3068 }
3069 
3070 bool
3071 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
3072 {
3073 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
3074 		return true;
3075 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
3076 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
3077 		return false;
3078 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
3079 	    dev->dv_bus_suspend != NULL &&
3080 	    !(*dev->dv_bus_suspend)(dev, qual))
3081 		return false;
3082 
3083 	dev->dv_flags |= DVF_BUS_SUSPENDED;
3084 	return true;
3085 }
3086 
3087 bool
3088 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
3089 {
3090 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
3091 		return true;
3092 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
3093 	    dev->dv_bus_resume != NULL &&
3094 	    !(*dev->dv_bus_resume)(dev, qual))
3095 		return false;
3096 
3097 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
3098 	return true;
3099 }
3100 
3101 bool
3102 device_pmf_bus_shutdown(device_t dev, int how)
3103 {
3104 
3105 	if (*dev->dv_bus_shutdown != NULL &&
3106 	    !(*dev->dv_bus_shutdown)(dev, how))
3107 		return false;
3108 	return true;
3109 }
3110 
3111 void
3112 device_pmf_bus_register(device_t dev, void *priv,
3113     bool (*suspend)(device_t, const pmf_qual_t *),
3114     bool (*resume)(device_t, const pmf_qual_t *),
3115     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
3116 {
3117 	dev->dv_bus_private = priv;
3118 	dev->dv_bus_resume = resume;
3119 	dev->dv_bus_suspend = suspend;
3120 	dev->dv_bus_shutdown = shutdown;
3121 	dev->dv_bus_deregister = deregister;
3122 }
3123 
3124 void
3125 device_pmf_bus_deregister(device_t dev)
3126 {
3127 	if (dev->dv_bus_deregister == NULL)
3128 		return;
3129 	(*dev->dv_bus_deregister)(dev);
3130 	dev->dv_bus_private = NULL;
3131 	dev->dv_bus_suspend = NULL;
3132 	dev->dv_bus_resume = NULL;
3133 	dev->dv_bus_deregister = NULL;
3134 }
3135 
3136 void *
3137 device_pmf_class_private(device_t dev)
3138 {
3139 	return dev->dv_class_private;
3140 }
3141 
3142 bool
3143 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
3144 {
3145 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
3146 		return true;
3147 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3148 	    dev->dv_class_suspend != NULL &&
3149 	    !(*dev->dv_class_suspend)(dev, qual))
3150 		return false;
3151 
3152 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
3153 	return true;
3154 }
3155 
3156 bool
3157 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
3158 {
3159 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
3160 		return true;
3161 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
3162 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
3163 		return false;
3164 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
3165 	    dev->dv_class_resume != NULL &&
3166 	    !(*dev->dv_class_resume)(dev, qual))
3167 		return false;
3168 
3169 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
3170 	return true;
3171 }
3172 
3173 void
3174 device_pmf_class_register(device_t dev, void *priv,
3175     bool (*suspend)(device_t, const pmf_qual_t *),
3176     bool (*resume)(device_t, const pmf_qual_t *),
3177     void (*deregister)(device_t))
3178 {
3179 	dev->dv_class_private = priv;
3180 	dev->dv_class_suspend = suspend;
3181 	dev->dv_class_resume = resume;
3182 	dev->dv_class_deregister = deregister;
3183 }
3184 
3185 void
3186 device_pmf_class_deregister(device_t dev)
3187 {
3188 	if (dev->dv_class_deregister == NULL)
3189 		return;
3190 	(*dev->dv_class_deregister)(dev);
3191 	dev->dv_class_private = NULL;
3192 	dev->dv_class_suspend = NULL;
3193 	dev->dv_class_resume = NULL;
3194 	dev->dv_class_deregister = NULL;
3195 }
3196 
3197 bool
3198 device_active(device_t dev, devactive_t type)
3199 {
3200 	size_t i;
3201 
3202 	if (dev->dv_activity_count == 0)
3203 		return false;
3204 
3205 	for (i = 0; i < dev->dv_activity_count; ++i) {
3206 		if (dev->dv_activity_handlers[i] == NULL)
3207 			break;
3208 		(*dev->dv_activity_handlers[i])(dev, type);
3209 	}
3210 
3211 	return true;
3212 }
3213 
3214 bool
3215 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
3216 {
3217 	void (**new_handlers)(device_t, devactive_t);
3218 	void (**old_handlers)(device_t, devactive_t);
3219 	size_t i, old_size, new_size;
3220 	int s;
3221 
3222 	old_handlers = dev->dv_activity_handlers;
3223 	old_size = dev->dv_activity_count;
3224 
3225 	KASSERT(old_size == 0 || old_handlers != NULL);
3226 
3227 	for (i = 0; i < old_size; ++i) {
3228 		KASSERT(old_handlers[i] != handler);
3229 		if (old_handlers[i] == NULL) {
3230 			old_handlers[i] = handler;
3231 			return true;
3232 		}
3233 	}
3234 
3235 	new_size = old_size + 4;
3236 	new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
3237 
3238 	for (i = 0; i < old_size; ++i)
3239 		new_handlers[i] = old_handlers[i];
3240 	new_handlers[old_size] = handler;
3241 	for (i = old_size+1; i < new_size; ++i)
3242 		new_handlers[i] = NULL;
3243 
3244 	s = splhigh();
3245 	dev->dv_activity_count = new_size;
3246 	dev->dv_activity_handlers = new_handlers;
3247 	splx(s);
3248 
3249 	if (old_size > 0)
3250 		kmem_free(old_handlers, sizeof(void *) * old_size);
3251 
3252 	return true;
3253 }
3254 
3255 void
3256 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
3257 {
3258 	void (**old_handlers)(device_t, devactive_t);
3259 	size_t i, old_size;
3260 	int s;
3261 
3262 	old_handlers = dev->dv_activity_handlers;
3263 	old_size = dev->dv_activity_count;
3264 
3265 	for (i = 0; i < old_size; ++i) {
3266 		if (old_handlers[i] == handler)
3267 			break;
3268 		if (old_handlers[i] == NULL)
3269 			return; /* XXX panic? */
3270 	}
3271 
3272 	if (i == old_size)
3273 		return; /* XXX panic? */
3274 
3275 	for (; i < old_size - 1; ++i) {
3276 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
3277 			continue;
3278 
3279 		if (i == 0) {
3280 			s = splhigh();
3281 			dev->dv_activity_count = 0;
3282 			dev->dv_activity_handlers = NULL;
3283 			splx(s);
3284 			kmem_free(old_handlers, sizeof(void *) * old_size);
3285 		}
3286 		return;
3287 	}
3288 	old_handlers[i] = NULL;
3289 }
3290 
3291 /* Return true iff the device_t `dev' exists at generation `gen'. */
3292 static bool
3293 device_exists_at(device_t dv, devgen_t gen)
3294 {
3295 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
3296 	    dv->dv_add_gen <= gen;
3297 }
3298 
3299 static bool
3300 deviter_visits(const deviter_t *di, device_t dv)
3301 {
3302 	return device_exists_at(dv, di->di_gen);
3303 }
3304 
3305 /*
3306  * Device Iteration
3307  *
3308  * deviter_t: a device iterator.  Holds state for a "walk" visiting
3309  *     each device_t's in the device tree.
3310  *
3311  * deviter_init(di, flags): initialize the device iterator `di'
3312  *     to "walk" the device tree.  deviter_next(di) will return
3313  *     the first device_t in the device tree, or NULL if there are
3314  *     no devices.
3315  *
3316  *     `flags' is one or more of DEVITER_F_RW, indicating that the
3317  *     caller intends to modify the device tree by calling
3318  *     config_detach(9) on devices in the order that the iterator
3319  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
3320  *     nearest the "root" of the device tree to be returned, first;
3321  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
3322  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
3323  *     indicating both that deviter_init() should not respect any
3324  *     locks on the device tree, and that deviter_next(di) may run
3325  *     in more than one LWP before the walk has finished.
3326  *
3327  *     Only one DEVITER_F_RW iterator may be in the device tree at
3328  *     once.
3329  *
3330  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
3331  *
3332  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
3333  *     DEVITER_F_LEAVES_FIRST are used in combination.
3334  *
3335  * deviter_first(di, flags): initialize the device iterator `di'
3336  *     and return the first device_t in the device tree, or NULL
3337  *     if there are no devices.  The statement
3338  *
3339  *         dv = deviter_first(di);
3340  *
3341  *     is shorthand for
3342  *
3343  *         deviter_init(di);
3344  *         dv = deviter_next(di);
3345  *
3346  * deviter_next(di): return the next device_t in the device tree,
3347  *     or NULL if there are no more devices.  deviter_next(di)
3348  *     is undefined if `di' was not initialized with deviter_init() or
3349  *     deviter_first().
3350  *
3351  * deviter_release(di): stops iteration (subsequent calls to
3352  *     deviter_next() will return NULL), releases any locks and
3353  *     resources held by the device iterator.
3354  *
3355  * Device iteration does not return device_t's in any particular
3356  * order.  An iterator will never return the same device_t twice.
3357  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
3358  * is called repeatedly on the same `di', it will eventually return
3359  * NULL.  It is ok to attach/detach devices during device iteration.
3360  */
3361 void
3362 deviter_init(deviter_t *di, deviter_flags_t flags)
3363 {
3364 	device_t dv;
3365 
3366 	memset(di, 0, sizeof(*di));
3367 
3368 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
3369 		flags |= DEVITER_F_RW;
3370 
3371 	mutex_enter(&alldevs_lock);
3372 	if ((flags & DEVITER_F_RW) != 0)
3373 		alldevs_nwrite++;
3374 	else
3375 		alldevs_nread++;
3376 	di->di_gen = alldevs_gen++;
3377 	di->di_flags = flags;
3378 
3379 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3380 	case DEVITER_F_LEAVES_FIRST:
3381 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
3382 			if (!deviter_visits(di, dv))
3383 				continue;
3384 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
3385 		}
3386 		break;
3387 	case DEVITER_F_ROOT_FIRST:
3388 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
3389 			if (!deviter_visits(di, dv))
3390 				continue;
3391 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
3392 		}
3393 		break;
3394 	default:
3395 		break;
3396 	}
3397 
3398 	deviter_reinit(di);
3399 	mutex_exit(&alldevs_lock);
3400 }
3401 
3402 static void
3403 deviter_reinit(deviter_t *di)
3404 {
3405 
3406 	KASSERT(mutex_owned(&alldevs_lock));
3407 	if ((di->di_flags & DEVITER_F_RW) != 0)
3408 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
3409 	else
3410 		di->di_prev = TAILQ_FIRST(&alldevs);
3411 }
3412 
3413 device_t
3414 deviter_first(deviter_t *di, deviter_flags_t flags)
3415 {
3416 
3417 	deviter_init(di, flags);
3418 	return deviter_next(di);
3419 }
3420 
3421 static device_t
3422 deviter_next2(deviter_t *di)
3423 {
3424 	device_t dv;
3425 
3426 	KASSERT(mutex_owned(&alldevs_lock));
3427 
3428 	dv = di->di_prev;
3429 
3430 	if (dv == NULL)
3431 		return NULL;
3432 
3433 	if ((di->di_flags & DEVITER_F_RW) != 0)
3434 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
3435 	else
3436 		di->di_prev = TAILQ_NEXT(dv, dv_list);
3437 
3438 	return dv;
3439 }
3440 
3441 static device_t
3442 deviter_next1(deviter_t *di)
3443 {
3444 	device_t dv;
3445 
3446 	KASSERT(mutex_owned(&alldevs_lock));
3447 
3448 	do {
3449 		dv = deviter_next2(di);
3450 	} while (dv != NULL && !deviter_visits(di, dv));
3451 
3452 	return dv;
3453 }
3454 
3455 device_t
3456 deviter_next(deviter_t *di)
3457 {
3458 	device_t dv = NULL;
3459 
3460 	mutex_enter(&alldevs_lock);
3461 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3462 	case 0:
3463 		dv = deviter_next1(di);
3464 		break;
3465 	case DEVITER_F_LEAVES_FIRST:
3466 		while (di->di_curdepth >= 0) {
3467 			if ((dv = deviter_next1(di)) == NULL) {
3468 				di->di_curdepth--;
3469 				deviter_reinit(di);
3470 			} else if (dv->dv_depth == di->di_curdepth)
3471 				break;
3472 		}
3473 		break;
3474 	case DEVITER_F_ROOT_FIRST:
3475 		while (di->di_curdepth <= di->di_maxdepth) {
3476 			if ((dv = deviter_next1(di)) == NULL) {
3477 				di->di_curdepth++;
3478 				deviter_reinit(di);
3479 			} else if (dv->dv_depth == di->di_curdepth)
3480 				break;
3481 		}
3482 		break;
3483 	default:
3484 		break;
3485 	}
3486 	mutex_exit(&alldevs_lock);
3487 
3488 	return dv;
3489 }
3490 
3491 void
3492 deviter_release(deviter_t *di)
3493 {
3494 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
3495 
3496 	mutex_enter(&alldevs_lock);
3497 	if (rw)
3498 		--alldevs_nwrite;
3499 	else
3500 		--alldevs_nread;
3501 	/* XXX wake a garbage-collection thread */
3502 	mutex_exit(&alldevs_lock);
3503 }
3504 
3505 const char *
3506 cfdata_ifattr(const struct cfdata *cf)
3507 {
3508 	return cf->cf_pspec->cfp_iattr;
3509 }
3510 
3511 bool
3512 ifattr_match(const char *snull, const char *t)
3513 {
3514 	return (snull == NULL) || strcmp(snull, t) == 0;
3515 }
3516 
3517 void
3518 null_childdetached(device_t self, device_t child)
3519 {
3520 	/* do nothing */
3521 }
3522 
3523 static void
3524 sysctl_detach_setup(struct sysctllog **clog)
3525 {
3526 
3527 	sysctl_createv(clog, 0, NULL, NULL,
3528 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3529 		CTLTYPE_BOOL, "detachall",
3530 		SYSCTL_DESCR("Detach all devices at shutdown"),
3531 		NULL, 0, &detachall, 0,
3532 		CTL_KERN, CTL_CREATE, CTL_EOL);
3533 }
3534