xref: /netbsd/sys/uvm/pmap/pmap.c (revision c0e83466)
1 /*	$NetBSD: pmap.c,v 1.75 2023/02/26 07:13:55 skrll Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center and by Chris G. Demetriou.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1992, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * the Systems Programming Group of the University of Utah Computer
39  * Science Department and Ralph Campbell.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)pmap.c	8.4 (Berkeley) 1/26/94
66  */
67 
68 #include <sys/cdefs.h>
69 
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.75 2023/02/26 07:13:55 skrll Exp $");
71 
72 /*
73  *	Manages physical address maps.
74  *
75  *	In addition to hardware address maps, this
76  *	module is called upon to provide software-use-only
77  *	maps which may or may not be stored in the same
78  *	form as hardware maps.  These pseudo-maps are
79  *	used to store intermediate results from copy
80  *	operations to and from address spaces.
81  *
82  *	Since the information managed by this module is
83  *	also stored by the logical address mapping module,
84  *	this module may throw away valid virtual-to-physical
85  *	mappings at almost any time.  However, invalidations
86  *	of virtual-to-physical mappings must be done as
87  *	requested.
88  *
89  *	In order to cope with hardware architectures which
90  *	make virtual-to-physical map invalidates expensive,
91  *	this module may delay invalidate or reduced protection
92  *	operations until such time as they are actually
93  *	necessary.  This module is given full information as
94  *	to which processors are currently using which maps,
95  *	and to when physical maps must be made correct.
96  */
97 
98 #include "opt_ddb.h"
99 #include "opt_efi.h"
100 #include "opt_modular.h"
101 #include "opt_multiprocessor.h"
102 #include "opt_sysv.h"
103 #include "opt_uvmhist.h"
104 
105 #define __PMAP_PRIVATE
106 
107 #include <sys/param.h>
108 
109 #include <sys/asan.h>
110 #include <sys/atomic.h>
111 #include <sys/buf.h>
112 #include <sys/cpu.h>
113 #include <sys/mutex.h>
114 #include <sys/pool.h>
115 
116 #include <uvm/uvm.h>
117 #include <uvm/uvm_physseg.h>
118 #include <uvm/pmap/pmap_pvt.h>
119 
120 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
121     && !defined(PMAP_NO_PV_UNCACHED)
122 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
123  PMAP_NO_PV_UNCACHED to be defined
124 #endif
125 
126 #if defined(PMAP_PV_TRACK_ONLY_STUBS)
127 #undef	__HAVE_PMAP_PV_TRACK
128 #endif
129 
130 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
131 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
132 PMAP_COUNTER(remove_user_calls, "remove user calls");
133 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
134 PMAP_COUNTER(remove_flushes, "remove cache flushes");
135 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
136 PMAP_COUNTER(remove_pvfirst, "remove pv first");
137 PMAP_COUNTER(remove_pvsearch, "remove pv search");
138 
139 PMAP_COUNTER(prefer_requests, "prefer requests");
140 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
141 
142 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
143 
144 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
145 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
146 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
147 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
148 
149 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
150 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
151 
152 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
153 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
154 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
155 PMAP_COUNTER(user_mappings, "user pages mapped");
156 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
157 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
158 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
159 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
160 PMAP_COUNTER(pvtracked_mappings, "pv-tracked unmanaged pages mapped");
161 PMAP_COUNTER(efirt_mappings, "EFI RT pages mapped");
162 PMAP_COUNTER(managed_mappings, "managed pages mapped");
163 PMAP_COUNTER(mappings, "pages mapped");
164 PMAP_COUNTER(remappings, "pages remapped");
165 PMAP_COUNTER(unmappings, "pages unmapped");
166 PMAP_COUNTER(primary_mappings, "page initial mappings");
167 PMAP_COUNTER(primary_unmappings, "page final unmappings");
168 PMAP_COUNTER(tlb_hit, "page mapping");
169 
170 PMAP_COUNTER(exec_mappings, "exec pages mapped");
171 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
172 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
173 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
174 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
175 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
176 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
177 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
178 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
179 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
180 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
181 
182 PMAP_COUNTER(create, "creates");
183 PMAP_COUNTER(reference, "references");
184 PMAP_COUNTER(dereference, "dereferences");
185 PMAP_COUNTER(destroy, "destroyed");
186 PMAP_COUNTER(activate, "activations");
187 PMAP_COUNTER(deactivate, "deactivations");
188 PMAP_COUNTER(update, "updates");
189 #ifdef MULTIPROCESSOR
190 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
191 #endif
192 PMAP_COUNTER(unwire, "unwires");
193 PMAP_COUNTER(copy, "copies");
194 PMAP_COUNTER(clear_modify, "clear_modifies");
195 PMAP_COUNTER(protect, "protects");
196 PMAP_COUNTER(page_protect, "page_protects");
197 
198 #define PMAP_ASID_RESERVED 0
199 CTASSERT(PMAP_ASID_RESERVED == 0);
200 
201 #ifdef PMAP_HWPAGEWALKER
202 #ifndef PMAP_PDETAB_ALIGN
203 #define PMAP_PDETAB_ALIGN	/* nothing */
204 #endif
205 
206 #ifdef _LP64
207 pmap_pdetab_t	pmap_kstart_pdetab PMAP_PDETAB_ALIGN; /* first mid-level pdetab for kernel */
208 #endif
209 pmap_pdetab_t	pmap_kern_pdetab PMAP_PDETAB_ALIGN;
210 #endif
211 
212 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
213 #ifndef PMAP_SEGTAB_ALIGN
214 #define PMAP_SEGTAB_ALIGN	/* nothing */
215 #endif
216 #ifdef _LP64
217 pmap_segtab_t	pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
218 #endif
219 pmap_segtab_t	pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
220 #ifdef _LP64
221 	.seg_seg[(VM_MIN_KERNEL_ADDRESS >> XSEGSHIFT) & (NSEGPG - 1)] = &pmap_kstart_segtab,
222 #endif
223 };
224 #endif
225 
226 struct pmap_kernel kernel_pmap_store = {
227 	.kernel_pmap = {
228 		.pm_refcnt = 1,
229 #ifdef PMAP_HWPAGEWALKER
230 		.pm_pdetab = PMAP_INVALID_PDETAB_ADDRESS,
231 #endif
232 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
233 		.pm_segtab = &pmap_kern_segtab,
234 #endif
235 		.pm_minaddr = VM_MIN_KERNEL_ADDRESS,
236 		.pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
237 	},
238 };
239 
240 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
241 
242 #if defined(EFI_RUNTIME)
243 static struct pmap efirt_pmap;
244 
245 pmap_t
pmap_efirt(void)246 pmap_efirt(void)
247 {
248 	return &efirt_pmap;
249 }
250 #else
251 static inline pt_entry_t
pte_make_enter_efirt(paddr_t pa,vm_prot_t prot,u_int flags)252 pte_make_enter_efirt(paddr_t pa, vm_prot_t prot, u_int flags)
253 {
254 	panic("not supported");
255 }
256 #endif
257 
258 /* The current top of kernel VM - gets updated by pmap_growkernel */
259 vaddr_t pmap_curmaxkvaddr;
260 
261 struct pmap_limits pmap_limits = {	/* VA and PA limits */
262 	.virtual_start = VM_MIN_KERNEL_ADDRESS,
263 	.virtual_end = VM_MAX_KERNEL_ADDRESS,
264 };
265 
266 #ifdef UVMHIST
267 static struct kern_history_ent pmapexechistbuf[10000];
268 static struct kern_history_ent pmaphistbuf[10000];
269 static struct kern_history_ent pmapxtabhistbuf[5000];
270 UVMHIST_DEFINE(pmapexechist) = UVMHIST_INITIALIZER(pmapexechist, pmapexechistbuf);
271 UVMHIST_DEFINE(pmaphist) = UVMHIST_INITIALIZER(pmaphist, pmaphistbuf);
272 UVMHIST_DEFINE(pmapxtabhist) = UVMHIST_INITIALIZER(pmapxtabhist, pmapxtabhistbuf);
273 #endif
274 
275 /*
276  * The pools from which pmap structures and sub-structures are allocated.
277  */
278 struct pool pmap_pmap_pool;
279 struct pool pmap_pv_pool;
280 
281 #ifndef PMAP_PV_LOWAT
282 #define	PMAP_PV_LOWAT	16
283 #endif
284 int	pmap_pv_lowat = PMAP_PV_LOWAT;
285 
286 bool	pmap_initialized = false;
287 #define	PMAP_PAGE_COLOROK_P(a, b) \
288 		((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
289 u_int	pmap_page_colormask;
290 
291 #define PAGE_IS_MANAGED(pa)	(pmap_initialized && uvm_pageismanaged(pa))
292 
293 #define PMAP_IS_ACTIVE(pm)						\
294 	((pm) == pmap_kernel() ||					\
295 	 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
296 
297 /* Forward function declarations */
298 void pmap_page_remove(struct vm_page_md *);
299 static void pmap_pvlist_check(struct vm_page_md *);
300 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
301 void pmap_enter_pv(pmap_t, vaddr_t, paddr_t, struct vm_page_md *, pt_entry_t *, u_int);
302 
303 /*
304  * PV table management functions.
305  */
306 void	*pmap_pv_page_alloc(struct pool *, int);
307 void	pmap_pv_page_free(struct pool *, void *);
308 
309 struct pool_allocator pmap_pv_page_allocator = {
310 	pmap_pv_page_alloc, pmap_pv_page_free, 0,
311 };
312 
313 #define	pmap_pv_alloc()		pool_get(&pmap_pv_pool, PR_NOWAIT)
314 #define	pmap_pv_free(pv)	pool_put(&pmap_pv_pool, (pv))
315 
316 #ifndef PMAP_NEED_TLB_MISS_LOCK
317 
318 #if defined(PMAP_MD_NEED_TLB_MISS_LOCK) || defined(DEBUG)
319 #define	PMAP_NEED_TLB_MISS_LOCK
320 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK || DEBUG */
321 
322 #endif /* PMAP_NEED_TLB_MISS_LOCK */
323 
324 #ifdef PMAP_NEED_TLB_MISS_LOCK
325 
326 #ifdef PMAP_MD_NEED_TLB_MISS_LOCK
327 #define	pmap_tlb_miss_lock_init()	__nothing /* MD code deals with this */
328 #define	pmap_tlb_miss_lock_enter()	pmap_md_tlb_miss_lock_enter()
329 #define	pmap_tlb_miss_lock_exit()	pmap_md_tlb_miss_lock_exit()
330 #else
331 kmutex_t pmap_tlb_miss_lock		__cacheline_aligned;
332 
333 static void
pmap_tlb_miss_lock_init(void)334 pmap_tlb_miss_lock_init(void)
335 {
336 	mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
337 }
338 
339 static inline void
pmap_tlb_miss_lock_enter(void)340 pmap_tlb_miss_lock_enter(void)
341 {
342 	mutex_spin_enter(&pmap_tlb_miss_lock);
343 }
344 
345 static inline void
pmap_tlb_miss_lock_exit(void)346 pmap_tlb_miss_lock_exit(void)
347 {
348 	mutex_spin_exit(&pmap_tlb_miss_lock);
349 }
350 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK */
351 
352 #else
353 
354 #define	pmap_tlb_miss_lock_init()	__nothing
355 #define	pmap_tlb_miss_lock_enter()	__nothing
356 #define	pmap_tlb_miss_lock_exit()	__nothing
357 
358 #endif /* PMAP_NEED_TLB_MISS_LOCK */
359 
360 #ifndef MULTIPROCESSOR
361 kmutex_t pmap_pvlist_mutex	__cacheline_aligned;
362 #endif
363 
364 /*
365  * Debug functions.
366  */
367 
368 #ifdef DEBUG
369 static inline void
pmap_asid_check(pmap_t pm,const char * func)370 pmap_asid_check(pmap_t pm, const char *func)
371 {
372 	if (!PMAP_IS_ACTIVE(pm))
373 		return;
374 
375 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
376 	tlb_asid_t asid = tlb_get_asid();
377 	if (asid != pai->pai_asid)
378 		panic("%s: inconsistency for active TLB update: %u <-> %u",
379 		    func, asid, pai->pai_asid);
380 }
381 #endif
382 
383 static void
pmap_addr_range_check(pmap_t pmap,vaddr_t sva,vaddr_t eva,const char * func)384 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
385 {
386 #ifdef DEBUG
387 	if (pmap == pmap_kernel()) {
388 		if (sva < VM_MIN_KERNEL_ADDRESS)
389 			panic("%s: kva %#"PRIxVADDR" not in range",
390 			    func, sva);
391 		if (eva >= pmap_limits.virtual_end)
392 			panic("%s: kva %#"PRIxVADDR" not in range",
393 			    func, eva);
394 	} else {
395 		if (eva > VM_MAXUSER_ADDRESS)
396 			panic("%s: uva %#"PRIxVADDR" not in range",
397 			    func, eva);
398 		pmap_asid_check(pmap, func);
399 	}
400 #endif
401 }
402 
403 /*
404  * Misc. functions.
405  */
406 
407 bool
pmap_page_clear_attributes(struct vm_page_md * mdpg,u_int clear_attributes)408 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
409 {
410 	volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
411 
412 #ifdef MULTIPROCESSOR
413 	for (;;) {
414 		u_int old_attr = *attrp;
415 		if ((old_attr & clear_attributes) == 0)
416 			return false;
417 		u_int new_attr = old_attr & ~clear_attributes;
418 		if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
419 			return true;
420 	}
421 #else
422 	unsigned long old_attr = *attrp;
423 	if ((old_attr & clear_attributes) == 0)
424 		return false;
425 	*attrp &= ~clear_attributes;
426 	return true;
427 #endif
428 }
429 
430 void
pmap_page_set_attributes(struct vm_page_md * mdpg,u_int set_attributes)431 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
432 {
433 #ifdef MULTIPROCESSOR
434 	atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
435 #else
436 	mdpg->mdpg_attrs |= set_attributes;
437 #endif
438 }
439 
440 static void
pmap_page_syncicache(struct vm_page * pg)441 pmap_page_syncicache(struct vm_page *pg)
442 {
443 	UVMHIST_FUNC(__func__);
444 	UVMHIST_CALLED(pmaphist);
445 #ifndef MULTIPROCESSOR
446 	struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
447 #endif
448 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
449 	pv_entry_t pv = &mdpg->mdpg_first;
450 	kcpuset_t *onproc;
451 #ifdef MULTIPROCESSOR
452 	kcpuset_create(&onproc, true);
453 	KASSERT(onproc != NULL);
454 #else
455 	onproc = NULL;
456 #endif
457 	VM_PAGEMD_PVLIST_READLOCK(mdpg);
458 	pmap_pvlist_check(mdpg);
459 
460 	UVMHIST_LOG(pmaphist, "pv %#jx pv_pmap %#jx", (uintptr_t)pv,
461 	    (uintptr_t)pv->pv_pmap, 0, 0);
462 
463 	if (pv->pv_pmap != NULL) {
464 		for (; pv != NULL; pv = pv->pv_next) {
465 #ifdef MULTIPROCESSOR
466 			UVMHIST_LOG(pmaphist, "pv %#jx pv_pmap %#jx",
467 			    (uintptr_t)pv, (uintptr_t)pv->pv_pmap, 0, 0);
468 			kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
469 			if (kcpuset_match(onproc, kcpuset_running)) {
470 				break;
471 			}
472 #else
473 			if (pv->pv_pmap == curpmap) {
474 				onproc = curcpu()->ci_kcpuset;
475 				break;
476 			}
477 #endif
478 		}
479 	}
480 	pmap_pvlist_check(mdpg);
481 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
482 	kpreempt_disable();
483 	pmap_md_page_syncicache(mdpg, onproc);
484 	kpreempt_enable();
485 #ifdef MULTIPROCESSOR
486 	kcpuset_destroy(onproc);
487 #endif
488 }
489 
490 /*
491  * Define the initial bounds of the kernel virtual address space.
492  */
493 void
pmap_virtual_space(vaddr_t * vstartp,vaddr_t * vendp)494 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
495 {
496 	*vstartp = pmap_limits.virtual_start;
497 	*vendp = pmap_limits.virtual_end;
498 }
499 
500 vaddr_t
pmap_growkernel(vaddr_t maxkvaddr)501 pmap_growkernel(vaddr_t maxkvaddr)
502 {
503 	UVMHIST_FUNC(__func__);
504 	UVMHIST_CALLARGS(pmaphist, "maxkvaddr=%#jx (%#jx)", maxkvaddr,
505 	    pmap_curmaxkvaddr, 0, 0);
506 
507 	vaddr_t virtual_end = pmap_curmaxkvaddr;
508 	maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
509 
510 	/*
511 	 * Don't exceed VM_MAX_KERNEL_ADDRESS!
512 	 */
513 	if (maxkvaddr == 0 || maxkvaddr > VM_MAX_KERNEL_ADDRESS)
514 		maxkvaddr = VM_MAX_KERNEL_ADDRESS;
515 
516 	/*
517 	 * Reserve PTEs for the new KVA space.
518 	 */
519 	for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
520 		pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
521 	}
522 
523 	kasan_shadow_map((void *)pmap_curmaxkvaddr,
524 	    (size_t)(virtual_end - pmap_curmaxkvaddr));
525 
526 	/*
527 	 * Update new end.
528 	 */
529 	pmap_curmaxkvaddr = virtual_end;
530 
531 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
532 
533 	return virtual_end;
534 }
535 
536 /*
537  * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
538  * This function allows for early dynamic memory allocation until the virtual
539  * memory system has been bootstrapped.  After that point, either kmem_alloc
540  * or malloc should be used.  This function works by stealing pages from the
541  * (to be) managed page pool, then implicitly mapping the pages (by using
542  * their direct mapped addresses) and zeroing them.
543  *
544  * It may be used once the physical memory segments have been pre-loaded
545  * into the vm_physmem[] array.  Early memory allocation MUST use this
546  * interface!  This cannot be used after vm_page_startup(), and will
547  * generate a panic if tried.
548  *
549  * Note that this memory will never be freed, and in essence it is wired
550  * down.
551  *
552  * We must adjust *vstartp and/or *vendp iff we use address space
553  * from the kernel virtual address range defined by pmap_virtual_space().
554  */
555 vaddr_t
pmap_steal_memory(vsize_t size,vaddr_t * vstartp,vaddr_t * vendp)556 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
557 {
558 	size_t npgs;
559 	paddr_t pa;
560 	vaddr_t va;
561 
562 	uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
563 
564 	size = round_page(size);
565 	npgs = atop(size);
566 
567 	aprint_debug("%s: need %zu pages\n", __func__, npgs);
568 
569 	for (uvm_physseg_t bank = uvm_physseg_get_first();
570 	     uvm_physseg_valid_p(bank);
571 	     bank = uvm_physseg_get_next(bank)) {
572 
573 		if (uvm.page_init_done == true)
574 			panic("pmap_steal_memory: called _after_ bootstrap");
575 
576 		aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
577 		    __func__, bank,
578 		    uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
579 		    uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
580 
581 		if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
582 		    || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
583 			aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
584 			continue;
585 		}
586 
587 		if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
588 			aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
589 			    __func__, bank, npgs);
590 			continue;
591 		}
592 
593 		if (!pmap_md_ok_to_steal_p(bank, npgs)) {
594 			continue;
595 		}
596 
597 		/*
598 		 * Always try to allocate from the segment with the least
599 		 * amount of space left.
600 		 */
601 #define VM_PHYSMEM_SPACE(b)	((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
602 		if (uvm_physseg_valid_p(maybe_bank) == false
603 		    || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
604 			maybe_bank = bank;
605 		}
606 	}
607 
608 	if (uvm_physseg_valid_p(maybe_bank)) {
609 		const uvm_physseg_t bank = maybe_bank;
610 
611 		/*
612 		 * There are enough pages here; steal them!
613 		 */
614 		pa = ptoa(uvm_physseg_get_start(bank));
615 		uvm_physseg_unplug(atop(pa), npgs);
616 
617 		aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
618 		    __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
619 
620 		va = pmap_md_map_poolpage(pa, size);
621 		memset((void *)va, 0, size);
622 		return va;
623 	}
624 
625 	/*
626 	 * If we got here, there was no memory left.
627 	 */
628 	panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
629 }
630 
631 /*
632  *	Bootstrap the system enough to run with virtual memory.
633  *	(Common routine called by machine-dependent bootstrap code.)
634  */
635 void
pmap_bootstrap_common(void)636 pmap_bootstrap_common(void)
637 {
638 	UVMHIST_LINK_STATIC(pmapexechist);
639 	UVMHIST_LINK_STATIC(pmaphist);
640 	UVMHIST_LINK_STATIC(pmapxtabhist);
641 
642 	static const struct uvm_pagerops pmap_pager = {
643 		/* nothing */
644 	};
645 
646 	pmap_t pm = pmap_kernel();
647 
648 	rw_init(&pm->pm_obj_lock);
649 	uvm_obj_init(&pm->pm_uobject, &pmap_pager, false, 1);
650 	uvm_obj_setlock(&pm->pm_uobject, &pm->pm_obj_lock);
651 
652 	TAILQ_INIT(&pm->pm_ppg_list);
653 
654 #if defined(PMAP_HWPAGEWALKER)
655 	TAILQ_INIT(&pm->pm_pdetab_list);
656 #endif
657 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
658 	TAILQ_INIT(&pm->pm_segtab_list);
659 #endif
660 
661 #if defined(EFI_RUNTIME)
662 
663 	const pmap_t efipm = pmap_efirt();
664 	struct pmap_asid_info * const efipai = PMAP_PAI(efipm, cpu_tlb_info(ci));
665 
666 	rw_init(&efipm->pm_obj_lock);
667 	uvm_obj_init(&efipm->pm_uobject, &pmap_pager, false, 1);
668 	uvm_obj_setlock(&efipm->pm_uobject, &efipm->pm_obj_lock);
669 
670 	efipai->pai_asid = KERNEL_PID;
671 
672 	TAILQ_INIT(&efipm->pm_ppg_list);
673 
674 #if defined(PMAP_HWPAGEWALKER)
675 	TAILQ_INIT(&efipm->pm_pdetab_list);
676 #endif
677 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
678 	TAILQ_INIT(&efipm->pm_segtab_list);
679 #endif
680 
681 #endif
682 
683 	/*
684 	 * Initialize the segtab lock.
685 	 */
686 	mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
687 
688 	pmap_tlb_miss_lock_init();
689 }
690 
691 /*
692  *	Initialize the pmap module.
693  *	Called by vm_init, to initialize any structures that the pmap
694  *	system needs to map virtual memory.
695  */
696 void
pmap_init(void)697 pmap_init(void)
698 {
699 	UVMHIST_FUNC(__func__);
700 	UVMHIST_CALLED(pmaphist);
701 
702 	/*
703 	 * Set a low water mark on the pv_entry pool, so that we are
704 	 * more likely to have these around even in extreme memory
705 	 * starvation.
706 	 */
707 	pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
708 
709 	/*
710 	 * Set the page colormask but allow pmap_md_init to override it.
711 	 */
712 	pmap_page_colormask = ptoa(uvmexp.colormask);
713 
714 	pmap_md_init();
715 
716 	/*
717 	 * Now it is safe to enable pv entry recording.
718 	 */
719 	pmap_initialized = true;
720 }
721 
722 /*
723  *	Create and return a physical map.
724  *
725  *	If the size specified for the map
726  *	is zero, the map is an actual physical
727  *	map, and may be referenced by the
728  *	hardware.
729  *
730  *	If the size specified is non-zero,
731  *	the map will be used in software only, and
732  *	is bounded by that size.
733  */
734 pmap_t
pmap_create(void)735 pmap_create(void)
736 {
737 	UVMHIST_FUNC(__func__);
738 	UVMHIST_CALLED(pmaphist);
739 	PMAP_COUNT(create);
740 
741 	static const struct uvm_pagerops pmap_pager = {
742 		/* nothing */
743 	};
744 
745 	pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
746 	memset(pmap, 0, PMAP_SIZE);
747 
748 	KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
749 
750 	pmap->pm_refcnt = 1;
751 	pmap->pm_minaddr = VM_MIN_ADDRESS;
752 	pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
753 
754 	rw_init(&pmap->pm_obj_lock);
755 	uvm_obj_init(&pmap->pm_uobject, &pmap_pager, false, 1);
756 	uvm_obj_setlock(&pmap->pm_uobject, &pmap->pm_obj_lock);
757 
758 	TAILQ_INIT(&pmap->pm_ppg_list);
759 #if defined(PMAP_HWPAGEWALKER)
760 	TAILQ_INIT(&pmap->pm_pdetab_list);
761 #endif
762 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
763 	TAILQ_INIT(&pmap->pm_segtab_list);
764 #endif
765 
766 	pmap_segtab_init(pmap);
767 
768 #ifdef MULTIPROCESSOR
769 	kcpuset_create(&pmap->pm_active, true);
770 	kcpuset_create(&pmap->pm_onproc, true);
771 	KASSERT(pmap->pm_active != NULL);
772 	KASSERT(pmap->pm_onproc != NULL);
773 #endif
774 
775 	UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap,
776 	    0, 0, 0);
777 
778 	return pmap;
779 }
780 
781 /*
782  *	Retire the given physical map from service.
783  *	Should only be called if the map contains
784  *	no valid mappings.
785  */
786 void
pmap_destroy(pmap_t pmap)787 pmap_destroy(pmap_t pmap)
788 {
789 	UVMHIST_FUNC(__func__);
790 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
791 	UVMHIST_CALLARGS(pmapxtabhist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
792 
793 	membar_release();
794 	if (atomic_dec_uint_nv(&pmap->pm_refcnt) > 0) {
795 		PMAP_COUNT(dereference);
796 		UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
797 		UVMHIST_LOG(pmapxtabhist, " <-- done (deref)", 0, 0, 0, 0);
798 		return;
799 	}
800 	membar_acquire();
801 
802 	PMAP_COUNT(destroy);
803 	KASSERT(pmap->pm_refcnt == 0);
804 	kpreempt_disable();
805 	pmap_tlb_miss_lock_enter();
806 	pmap_tlb_asid_release_all(pmap);
807 	pmap_tlb_miss_lock_exit();
808 	pmap_segtab_destroy(pmap, NULL, 0);
809 
810 	KASSERT(TAILQ_EMPTY(&pmap->pm_ppg_list));
811 
812 #ifdef _LP64
813 #if defined(PMAP_HWPAGEWALKER)
814 	KASSERT(TAILQ_EMPTY(&pmap->pm_pdetab_list));
815 #endif
816 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
817 	KASSERT(TAILQ_EMPTY(&pmap->pm_segtab_list));
818 #endif
819 #endif
820 	KASSERT(pmap->pm_uobject.uo_npages == 0);
821 
822 	uvm_obj_destroy(&pmap->pm_uobject, false);
823 	rw_destroy(&pmap->pm_obj_lock);
824 
825 #ifdef MULTIPROCESSOR
826 	kcpuset_destroy(pmap->pm_active);
827 	kcpuset_destroy(pmap->pm_onproc);
828 	pmap->pm_active = NULL;
829 	pmap->pm_onproc = NULL;
830 #endif
831 
832 	pool_put(&pmap_pmap_pool, pmap);
833 	kpreempt_enable();
834 
835 	UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
836 	UVMHIST_LOG(pmapxtabhist, " <-- done (freed)", 0, 0, 0, 0);
837 }
838 
839 /*
840  *	Add a reference to the specified pmap.
841  */
842 void
pmap_reference(pmap_t pmap)843 pmap_reference(pmap_t pmap)
844 {
845 	UVMHIST_FUNC(__func__);
846 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
847 	PMAP_COUNT(reference);
848 
849 	if (pmap != NULL) {
850 		atomic_inc_uint(&pmap->pm_refcnt);
851 	}
852 
853 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
854 }
855 
856 /*
857  *	Make a new pmap (vmspace) active for the given process.
858  */
859 void
pmap_activate(struct lwp * l)860 pmap_activate(struct lwp *l)
861 {
862 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
863 
864 	UVMHIST_FUNC(__func__);
865 	UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
866 	    (uintptr_t)pmap, 0, 0);
867 	PMAP_COUNT(activate);
868 
869 	kpreempt_disable();
870 	pmap_tlb_miss_lock_enter();
871 	pmap_tlb_asid_acquire(pmap, l);
872 	pmap_segtab_activate(pmap, l);
873 	pmap_tlb_miss_lock_exit();
874 	kpreempt_enable();
875 
876 	UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
877 	    l->l_lid, 0, 0);
878 }
879 
880 /*
881  * Remove this page from all physical maps in which it resides.
882  * Reflects back modify bits to the pager.
883  */
884 void
pmap_page_remove(struct vm_page_md * mdpg)885 pmap_page_remove(struct vm_page_md *mdpg)
886 {
887 	kpreempt_disable();
888 	VM_PAGEMD_PVLIST_LOCK(mdpg);
889 	pmap_pvlist_check(mdpg);
890 
891 	struct vm_page * const pg =
892 	    VM_PAGEMD_VMPAGE_P(mdpg) ? VM_MD_TO_PAGE(mdpg) : NULL;
893 
894 	UVMHIST_FUNC(__func__);
895 	if (pg) {
896 		UVMHIST_CALLARGS(pmaphist, "mdpg %#jx pg %#jx (pa %#jx): "
897 		    "execpage cleared", (uintptr_t)mdpg, (uintptr_t)pg,
898 		    VM_PAGE_TO_PHYS(pg), 0);
899 	} else {
900 		UVMHIST_CALLARGS(pmaphist, "mdpg %#jx", (uintptr_t)mdpg, 0,
901 		    0, 0);
902 	}
903 
904 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
905 	pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE | VM_PAGEMD_UNCACHED);
906 #else
907 	pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
908 #endif
909 	PMAP_COUNT(exec_uncached_remove);
910 
911 	pv_entry_t pv = &mdpg->mdpg_first;
912 	if (pv->pv_pmap == NULL) {
913 		VM_PAGEMD_PVLIST_UNLOCK(mdpg);
914 		kpreempt_enable();
915 		UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
916 		return;
917 	}
918 
919 	pv_entry_t npv;
920 	pv_entry_t pvp = NULL;
921 
922 	for (; pv != NULL; pv = npv) {
923 		npv = pv->pv_next;
924 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
925 		if (PV_ISKENTER_P(pv)) {
926 			UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %#jx"
927 			    " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap,
928 			    pv->pv_va, 0);
929 
930 			KASSERT(pv->pv_pmap == pmap_kernel());
931 
932 			/* Assume no more - it'll get fixed if there are */
933 			pv->pv_next = NULL;
934 
935 			/*
936 			 * pvp is non-null when we already have a PV_KENTER
937 			 * pv in pvh_first; otherwise we haven't seen a
938 			 * PV_KENTER pv and we need to copy this one to
939 			 * pvh_first
940 			 */
941 			if (pvp) {
942 				/*
943 				 * The previous PV_KENTER pv needs to point to
944 				 * this PV_KENTER pv
945 				 */
946 				pvp->pv_next = pv;
947 			} else {
948 				pv_entry_t fpv = &mdpg->mdpg_first;
949 				*fpv = *pv;
950 				KASSERT(fpv->pv_pmap == pmap_kernel());
951 			}
952 			pvp = pv;
953 			continue;
954 		}
955 #endif
956 		const pmap_t pmap = pv->pv_pmap;
957 		vaddr_t va = trunc_page(pv->pv_va);
958 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
959 		KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
960 		    pmap_limits.virtual_end);
961 		pt_entry_t pte = *ptep;
962 		UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %#jx"
963 		    " pte %#jx", (uintptr_t)pv, (uintptr_t)pmap, va,
964 		    pte_value(pte));
965 		if (!pte_valid_p(pte))
966 			continue;
967 		const bool is_kernel_pmap_p = (pmap == pmap_kernel());
968 		if (is_kernel_pmap_p) {
969 			PMAP_COUNT(remove_kernel_pages);
970 		} else {
971 			PMAP_COUNT(remove_user_pages);
972 		}
973 		if (pte_wired_p(pte))
974 			pmap->pm_stats.wired_count--;
975 		pmap->pm_stats.resident_count--;
976 
977 		pmap_tlb_miss_lock_enter();
978 		const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
979 		pte_set(ptep, npte);
980 		if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
981 			/*
982 			 * Flush the TLB for the given address.
983 			 */
984 			pmap_tlb_invalidate_addr(pmap, va);
985 		}
986 		pmap_tlb_miss_lock_exit();
987 
988 		/*
989 		 * non-null means this is a non-pvh_first pv, so we should
990 		 * free it.
991 		 */
992 		if (pvp) {
993 			KASSERT(pvp->pv_pmap == pmap_kernel());
994 			KASSERT(pvp->pv_next == NULL);
995 			pmap_pv_free(pv);
996 		} else {
997 			pv->pv_pmap = NULL;
998 			pv->pv_next = NULL;
999 		}
1000 	}
1001 
1002 	pmap_pvlist_check(mdpg);
1003 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1004 	kpreempt_enable();
1005 
1006 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1007 }
1008 
1009 #ifdef __HAVE_PMAP_PV_TRACK
1010 /*
1011  * pmap_pv_protect: change protection of an unmanaged pv-tracked page from
1012  * all pmaps that map it
1013  */
1014 void
pmap_pv_protect(paddr_t pa,vm_prot_t prot)1015 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
1016 {
1017 
1018 	/* the only case is remove at the moment */
1019 	KASSERT(prot == VM_PROT_NONE);
1020 	struct pmap_page *pp;
1021 
1022 	pp = pmap_pv_tracked(pa);
1023 	if (pp == NULL)
1024 		panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
1025 		    pa);
1026 
1027 	struct vm_page_md *mdpg = PMAP_PAGE_TO_MD(pp);
1028 	pmap_page_remove(mdpg);
1029 }
1030 #endif
1031 
1032 /*
1033  *	Make a previously active pmap (vmspace) inactive.
1034  */
1035 void
pmap_deactivate(struct lwp * l)1036 pmap_deactivate(struct lwp *l)
1037 {
1038 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1039 
1040 	UVMHIST_FUNC(__func__);
1041 	UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
1042 	    (uintptr_t)pmap, 0, 0);
1043 	PMAP_COUNT(deactivate);
1044 
1045 	kpreempt_disable();
1046 	KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
1047 	pmap_tlb_miss_lock_enter();
1048 	pmap_tlb_asid_deactivate(pmap);
1049 	pmap_segtab_deactivate(pmap);
1050 	pmap_tlb_miss_lock_exit();
1051 	kpreempt_enable();
1052 
1053 	UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
1054 	    l->l_lid, 0, 0);
1055 }
1056 
1057 void
pmap_update(struct pmap * pmap)1058 pmap_update(struct pmap *pmap)
1059 {
1060 	UVMHIST_FUNC(__func__);
1061 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
1062 	PMAP_COUNT(update);
1063 
1064 	kpreempt_disable();
1065 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
1066 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
1067 	if (pending && pmap_tlb_shootdown_bystanders(pmap))
1068 		PMAP_COUNT(shootdown_ipis);
1069 #endif
1070 	pmap_tlb_miss_lock_enter();
1071 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
1072 	pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
1073 #endif /* DEBUG */
1074 
1075 	/*
1076 	 * If pmap_remove_all was called, we deactivated ourselves and nuked
1077 	 * our ASID.  Now we have to reactivate ourselves.
1078 	 */
1079 	if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
1080 		pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
1081 		pmap_tlb_asid_acquire(pmap, curlwp);
1082 		pmap_segtab_activate(pmap, curlwp);
1083 	}
1084 	pmap_tlb_miss_lock_exit();
1085 	kpreempt_enable();
1086 
1087 	UVMHIST_LOG(pmaphist, " <-- done (kernel=%jd)",
1088 		    (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0);
1089 }
1090 
1091 /*
1092  *	Remove the given range of addresses from the specified map.
1093  *
1094  *	It is assumed that the start and end are properly
1095  *	rounded to the page size.
1096  */
1097 
1098 static bool
pmap_pte_remove(pmap_t pmap,vaddr_t sva,vaddr_t eva,pt_entry_t * ptep,uintptr_t flags)1099 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1100     uintptr_t flags)
1101 {
1102 	const pt_entry_t npte = flags;
1103 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1104 
1105 	UVMHIST_FUNC(__func__);
1106 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jd va=%#jx..%#jx)",
1107 	    (uintptr_t)pmap, (is_kernel_pmap_p ? 1 : 0), sva, eva);
1108 	UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
1109 	    (uintptr_t)ptep, flags, 0, 0);
1110 
1111 	KASSERT(kpreempt_disabled());
1112 
1113 	for (; sva < eva; sva += NBPG, ptep++) {
1114 		const pt_entry_t pte = *ptep;
1115 		if (!pte_valid_p(pte))
1116 			continue;
1117 		if (is_kernel_pmap_p) {
1118 			PMAP_COUNT(remove_kernel_pages);
1119 		} else {
1120 			PMAP_COUNT(remove_user_pages);
1121 		}
1122 		if (pte_wired_p(pte))
1123 			pmap->pm_stats.wired_count--;
1124 		pmap->pm_stats.resident_count--;
1125 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1126 		if (__predict_true(pg != NULL)) {
1127 			pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
1128 		}
1129 		pmap_tlb_miss_lock_enter();
1130 		pte_set(ptep, npte);
1131 		if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
1132 			/*
1133 			 * Flush the TLB for the given address.
1134 			 */
1135 			pmap_tlb_invalidate_addr(pmap, sva);
1136 		}
1137 		pmap_tlb_miss_lock_exit();
1138 	}
1139 
1140 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1141 
1142 	return false;
1143 }
1144 
1145 void
pmap_remove(pmap_t pmap,vaddr_t sva,vaddr_t eva)1146 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
1147 {
1148 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1149 	const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
1150 
1151 	UVMHIST_FUNC(__func__);
1152 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)",
1153 	    (uintptr_t)pmap, sva, eva, 0);
1154 
1155 	if (is_kernel_pmap_p) {
1156 		PMAP_COUNT(remove_kernel_calls);
1157 	} else {
1158 		PMAP_COUNT(remove_user_calls);
1159 	}
1160 #ifdef PMAP_FAULTINFO
1161 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1162 	curpcb->pcb_faultinfo.pfi_repeats = 0;
1163 	curpcb->pcb_faultinfo.pfi_faultptep = NULL;
1164 #endif
1165 	kpreempt_disable();
1166 	pmap_addr_range_check(pmap, sva, eva, __func__);
1167 	pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
1168 	kpreempt_enable();
1169 
1170 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1171 }
1172 
1173 /*
1174  *	pmap_page_protect:
1175  *
1176  *	Lower the permission for all mappings to a given page.
1177  */
1178 void
pmap_page_protect(struct vm_page * pg,vm_prot_t prot)1179 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1180 {
1181 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1182 	pv_entry_t pv;
1183 	vaddr_t va;
1184 
1185 	UVMHIST_FUNC(__func__);
1186 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)",
1187 	    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0);
1188 	PMAP_COUNT(page_protect);
1189 
1190 	switch (prot) {
1191 	case VM_PROT_READ | VM_PROT_WRITE:
1192 	case VM_PROT_ALL:
1193 		break;
1194 
1195 	/* copy_on_write */
1196 	case VM_PROT_READ:
1197 	case VM_PROT_READ | VM_PROT_EXECUTE:
1198 		pv = &mdpg->mdpg_first;
1199 		kpreempt_disable();
1200 		VM_PAGEMD_PVLIST_READLOCK(mdpg);
1201 		pmap_pvlist_check(mdpg);
1202 		/*
1203 		 * Loop over all current mappings setting/clearing as
1204 		 * appropriate.
1205 		 */
1206 		if (pv->pv_pmap != NULL) {
1207 			while (pv != NULL) {
1208 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1209 				if (PV_ISKENTER_P(pv)) {
1210 					pv = pv->pv_next;
1211 					continue;
1212 				}
1213 #endif
1214 				const pmap_t pmap = pv->pv_pmap;
1215 				va = trunc_page(pv->pv_va);
1216 				const uintptr_t gen =
1217 				    VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1218 				pmap_protect(pmap, va, va + PAGE_SIZE, prot);
1219 				KASSERT(pv->pv_pmap == pmap);
1220 				pmap_update(pmap);
1221 				if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
1222 					pv = &mdpg->mdpg_first;
1223 				} else {
1224 					pv = pv->pv_next;
1225 				}
1226 				pmap_pvlist_check(mdpg);
1227 			}
1228 		}
1229 		pmap_pvlist_check(mdpg);
1230 		VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1231 		kpreempt_enable();
1232 		break;
1233 
1234 	/* remove_all */
1235 	default:
1236 		pmap_page_remove(mdpg);
1237 	}
1238 
1239 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1240 }
1241 
1242 static bool
pmap_pte_protect(pmap_t pmap,vaddr_t sva,vaddr_t eva,pt_entry_t * ptep,uintptr_t flags)1243 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1244 	uintptr_t flags)
1245 {
1246 	const vm_prot_t prot = (flags & VM_PROT_ALL);
1247 
1248 	UVMHIST_FUNC(__func__);
1249 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jd va=%#jx..%#jx)",
1250 	    (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
1251 	UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
1252 	    (uintptr_t)ptep, flags, 0, 0);
1253 
1254 	KASSERT(kpreempt_disabled());
1255 	/*
1256 	 * Change protection on every valid mapping within this segment.
1257 	 */
1258 	for (; sva < eva; sva += NBPG, ptep++) {
1259 		pt_entry_t pte = *ptep;
1260 		if (!pte_valid_p(pte))
1261 			continue;
1262 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1263 		if (pg != NULL && pte_modified_p(pte)) {
1264 			struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1265 			if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1266 				KASSERT(!VM_PAGEMD_PVLIST_EMPTY_P(mdpg));
1267 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1268 				if (VM_PAGEMD_CACHED_P(mdpg)) {
1269 #endif
1270 					UVMHIST_LOG(pmapexechist,
1271 					    "pg %#jx (pa %#jx): "
1272 					    "syncicached performed",
1273 					    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg),
1274 					    0, 0);
1275 					pmap_page_syncicache(pg);
1276 					PMAP_COUNT(exec_synced_protect);
1277 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1278 				}
1279 #endif
1280 			}
1281 		}
1282 		pte = pte_prot_downgrade(pte, prot);
1283 		if (*ptep != pte) {
1284 			pmap_tlb_miss_lock_enter();
1285 			pte_set(ptep, pte);
1286 			/*
1287 			 * Update the TLB if needed.
1288 			 */
1289 			pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1290 			pmap_tlb_miss_lock_exit();
1291 		}
1292 	}
1293 
1294 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1295 
1296 	return false;
1297 }
1298 
1299 /*
1300  *	Set the physical protection on the
1301  *	specified range of this map as requested.
1302  */
1303 void
pmap_protect(pmap_t pmap,vaddr_t sva,vaddr_t eva,vm_prot_t prot)1304 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1305 {
1306 	UVMHIST_FUNC(__func__);
1307 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)",
1308 	    (uintptr_t)pmap, sva, eva, prot);
1309 	PMAP_COUNT(protect);
1310 
1311 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1312 		pmap_remove(pmap, sva, eva);
1313 		UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1314 		return;
1315 	}
1316 
1317 	/*
1318 	 * Change protection on every valid mapping within this segment.
1319 	 */
1320 	kpreempt_disable();
1321 	pmap_addr_range_check(pmap, sva, eva, __func__);
1322 	pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1323 	kpreempt_enable();
1324 
1325 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1326 }
1327 
1328 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1329 /*
1330  *	pmap_page_cache:
1331  *
1332  *	Change all mappings of a managed page to cached/uncached.
1333  */
1334 void
pmap_page_cache(struct vm_page_md * mdpg,bool cached)1335 pmap_page_cache(struct vm_page_md *mdpg, bool cached)
1336 {
1337 #ifdef UVMHIST
1338 	const bool vmpage_p = VM_PAGEMD_VMPAGE_P(mdpg);
1339 	struct vm_page * const pg = vmpage_p ? VM_MD_TO_PAGE(mdpg) : NULL;
1340 #endif
1341 
1342 	UVMHIST_FUNC(__func__);
1343 	UVMHIST_CALLARGS(pmaphist, "(mdpg=%#jx (pa %#jx) cached=%jd vmpage %jd)",
1344 	    (uintptr_t)mdpg, pg ? VM_PAGE_TO_PHYS(pg) : 0, cached, vmpage_p);
1345 
1346 	KASSERT(kpreempt_disabled());
1347 	KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1348 
1349 	if (cached) {
1350 		pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1351 		PMAP_COUNT(page_cache_restorations);
1352 	} else {
1353 		pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1354 		PMAP_COUNT(page_cache_evictions);
1355 	}
1356 
1357 	for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1358 		pmap_t pmap = pv->pv_pmap;
1359 		vaddr_t va = trunc_page(pv->pv_va);
1360 
1361 		KASSERT(pmap != NULL);
1362 		KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1363 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1364 		if (ptep == NULL)
1365 			continue;
1366 		pt_entry_t pte = *ptep;
1367 		if (pte_valid_p(pte)) {
1368 			pte = pte_cached_change(pte, cached);
1369 			pmap_tlb_miss_lock_enter();
1370 			pte_set(ptep, pte);
1371 			pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1372 			pmap_tlb_miss_lock_exit();
1373 		}
1374 	}
1375 
1376 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1377 }
1378 #endif	/* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1379 
1380 /*
1381  *	Insert the given physical page (p) at
1382  *	the specified virtual address (v) in the
1383  *	target physical map with the protection requested.
1384  *
1385  *	If specified, the page will be wired down, meaning
1386  *	that the related pte can not be reclaimed.
1387  *
1388  *	NB:  This is the only routine which MAY NOT lazy-evaluate
1389  *	or lose information.  That is, this routine must actually
1390  *	insert this page into the given map NOW.
1391  */
1392 int
pmap_enter(pmap_t pmap,vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags)1393 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1394 {
1395 	const bool wired = (flags & PMAP_WIRED) != 0;
1396 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1397 #if defined(EFI_RUNTIME)
1398 	const bool is_efirt_pmap_p = (pmap == pmap_efirt());
1399 #else
1400 	const bool is_efirt_pmap_p = false;
1401 #endif
1402 	u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1403 #ifdef UVMHIST
1404 	struct kern_history * const histp =
1405 	    ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1406 #endif
1407 
1408 	UVMHIST_FUNC(__func__);
1409 	UVMHIST_CALLARGS(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx",
1410 	    (uintptr_t)pmap, va, pa, 0);
1411 	UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0);
1412 
1413 	const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1414 	if (is_kernel_pmap_p) {
1415 		PMAP_COUNT(kernel_mappings);
1416 		if (!good_color)
1417 			PMAP_COUNT(kernel_mappings_bad);
1418 	} else {
1419 		PMAP_COUNT(user_mappings);
1420 		if (!good_color)
1421 			PMAP_COUNT(user_mappings_bad);
1422 	}
1423 	pmap_addr_range_check(pmap, va, va, __func__);
1424 
1425 	KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1426 	    VM_PROT_READ, prot);
1427 
1428 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1429 	struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1430 
1431 	struct vm_page_md *mdpp = NULL;
1432 #ifdef __HAVE_PMAP_PV_TRACK
1433 	struct pmap_page *pp = pmap_pv_tracked(pa);
1434 	mdpp = pp ? PMAP_PAGE_TO_MD(pp) : NULL;
1435 #endif
1436 
1437 	if (mdpg) {
1438 		/* Set page referenced/modified status based on flags */
1439 		if (flags & VM_PROT_WRITE) {
1440 			pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED | VM_PAGEMD_REFERENCED);
1441 		} else if (flags & VM_PROT_ALL) {
1442 			pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1443 		}
1444 
1445 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1446 		if (!VM_PAGEMD_CACHED_P(mdpg)) {
1447 			flags |= PMAP_NOCACHE;
1448 			PMAP_COUNT(uncached_mappings);
1449 		}
1450 #endif
1451 
1452 		PMAP_COUNT(managed_mappings);
1453 	} else if (mdpp) {
1454 #ifdef __HAVE_PMAP_PV_TRACK
1455 		pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1456 
1457 		PMAP_COUNT(pvtracked_mappings);
1458 #endif
1459 	} else if (is_efirt_pmap_p) {
1460 		PMAP_COUNT(efirt_mappings);
1461 	} else {
1462 		/*
1463 		 * Assumption: if it is not part of our managed memory
1464 		 * then it must be device memory which may be volatile.
1465 		 */
1466 		if ((flags & PMAP_CACHE_MASK) == 0)
1467 			flags |= PMAP_NOCACHE;
1468 		PMAP_COUNT(unmanaged_mappings);
1469 	}
1470 
1471 	KASSERTMSG(mdpg == NULL || mdpp == NULL || is_efirt_pmap_p,
1472 	    "mdpg %p mdpp %p efirt %s", mdpg, mdpp,
1473 	    is_efirt_pmap_p ? "true" : "false");
1474 
1475 	struct vm_page_md *md = (mdpg != NULL) ? mdpg : mdpp;
1476 	pt_entry_t npte = is_efirt_pmap_p ?
1477 	    pte_make_enter_efirt(pa, prot, flags) :
1478 	    pte_make_enter(pa, md, prot, flags, is_kernel_pmap_p);
1479 
1480 	kpreempt_disable();
1481 
1482 	pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1483 	if (__predict_false(ptep == NULL)) {
1484 		kpreempt_enable();
1485 		UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1486 		return ENOMEM;
1487 	}
1488 	const pt_entry_t opte = *ptep;
1489 	const bool resident = pte_valid_p(opte);
1490 	bool remap = false;
1491 	if (resident) {
1492 		if (pte_to_paddr(opte) != pa) {
1493 			KASSERT(!is_kernel_pmap_p);
1494 			const pt_entry_t rpte = pte_nv_entry(false);
1495 
1496 			pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1497 			pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1498 			    rpte);
1499 			PMAP_COUNT(user_mappings_changed);
1500 			remap = true;
1501 		}
1502 		update_flags |= PMAP_TLB_NEED_IPI;
1503 	}
1504 
1505 	if (!resident || remap) {
1506 		pmap->pm_stats.resident_count++;
1507 	}
1508 
1509 	/* Done after case that may sleep/return. */
1510 	if (md)
1511 		pmap_enter_pv(pmap, va, pa, md, &npte, 0);
1512 
1513 	/*
1514 	 * Now validate mapping with desired protection/wiring.
1515 	 */
1516 	if (wired) {
1517 		pmap->pm_stats.wired_count++;
1518 		npte = pte_wire_entry(npte);
1519 	}
1520 
1521 	UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)",
1522 	    pte_value(npte), pa, 0, 0);
1523 
1524 	KASSERT(pte_valid_p(npte));
1525 
1526 	pmap_tlb_miss_lock_enter();
1527 	pte_set(ptep, npte);
1528 	pmap_tlb_update_addr(pmap, va, npte, update_flags);
1529 	pmap_tlb_miss_lock_exit();
1530 	kpreempt_enable();
1531 
1532 	if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1533 		KASSERT(mdpg != NULL);
1534 		PMAP_COUNT(exec_mappings);
1535 		if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1536 			if (!pte_deferred_exec_p(npte)) {
1537 				UVMHIST_LOG(*histp, "va=%#jx pg %#jx: "
1538 				    "immediate syncicache",
1539 				    va, (uintptr_t)pg, 0, 0);
1540 				pmap_page_syncicache(pg);
1541 				pmap_page_set_attributes(mdpg,
1542 				    VM_PAGEMD_EXECPAGE);
1543 				PMAP_COUNT(exec_synced_mappings);
1544 			} else {
1545 				UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer "
1546 				    "syncicache: pte %#jx",
1547 				    va, (uintptr_t)pg, npte, 0);
1548 			}
1549 		} else {
1550 			UVMHIST_LOG(*histp,
1551 			    "va=%#jx pg %#jx: no syncicache cached %jd",
1552 			    va, (uintptr_t)pg, pte_cached_p(npte), 0);
1553 		}
1554 	} else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1555 		KASSERT(mdpg != NULL);
1556 		KASSERT(prot & VM_PROT_WRITE);
1557 		PMAP_COUNT(exec_mappings);
1558 		pmap_page_syncicache(pg);
1559 		pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1560 		UVMHIST_LOG(*histp,
1561 		    "va=%#jx pg %#jx: immediate syncicache (writeable)",
1562 		    va, (uintptr_t)pg, 0, 0);
1563 	}
1564 
1565 	UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1566 	return 0;
1567 }
1568 
1569 void
pmap_kenter_pa(vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags)1570 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1571 {
1572 	pmap_t pmap = pmap_kernel();
1573 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1574 	struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1575 
1576 	UVMHIST_FUNC(__func__);
1577 	UVMHIST_CALLARGS(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)",
1578 	    va, pa, prot, flags);
1579 	PMAP_COUNT(kenter_pa);
1580 
1581 	if (mdpg == NULL) {
1582 		PMAP_COUNT(kenter_pa_unmanaged);
1583 		if ((flags & PMAP_CACHE_MASK) == 0)
1584 			flags |= PMAP_NOCACHE;
1585 	} else {
1586 		if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1587 			PMAP_COUNT(kenter_pa_bad);
1588 	}
1589 
1590 	pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1591 	kpreempt_disable();
1592 	pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, 0);
1593 
1594 	KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1595 	    pmap_limits.virtual_end);
1596 	KASSERT(!pte_valid_p(*ptep));
1597 
1598 	/*
1599 	 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1600 	 */
1601 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1602 	if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1603 	    && pmap_md_virtual_cache_aliasing_p()) {
1604 		pmap_enter_pv(pmap, va, pa, mdpg, &npte, PV_KENTER);
1605 	}
1606 #endif
1607 
1608 	/*
1609 	 * We have the option to force this mapping into the TLB but we
1610 	 * don't.  Instead let the next reference to the page do it.
1611 	 */
1612 	pmap_tlb_miss_lock_enter();
1613 	pte_set(ptep, npte);
1614 	pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1615 	pmap_tlb_miss_lock_exit();
1616 	kpreempt_enable();
1617 #if DEBUG > 1
1618 	for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1619 		if (((long *)va)[i] != ((long *)pa)[i])
1620 			panic("%s: contents (%lx) of va %#"PRIxVADDR
1621 			    " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1622 			    ((long *)va)[i], va, ((long *)pa)[i], pa);
1623 	}
1624 #endif
1625 
1626 	UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0,
1627 	    0);
1628 }
1629 
1630 /*
1631  *	Remove the given range of addresses from the kernel map.
1632  *
1633  *	It is assumed that the start and end are properly
1634  *	rounded to the page size.
1635  */
1636 
1637 static bool
pmap_pte_kremove(pmap_t pmap,vaddr_t sva,vaddr_t eva,pt_entry_t * ptep,uintptr_t flags)1638 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1639 	uintptr_t flags)
1640 {
1641 	const pt_entry_t new_pte = pte_nv_entry(true);
1642 
1643 	UVMHIST_FUNC(__func__);
1644 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)",
1645 	    (uintptr_t)pmap, sva, eva, (uintptr_t)ptep);
1646 
1647 	KASSERT(kpreempt_disabled());
1648 
1649 	for (; sva < eva; sva += NBPG, ptep++) {
1650 		pt_entry_t pte = *ptep;
1651 		if (!pte_valid_p(pte))
1652 			continue;
1653 
1654 		PMAP_COUNT(kremove_pages);
1655 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1656 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1657 		if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1658 			pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1659 		}
1660 #endif
1661 
1662 		pmap_tlb_miss_lock_enter();
1663 		pte_set(ptep, new_pte);
1664 		pmap_tlb_invalidate_addr(pmap, sva);
1665 		pmap_tlb_miss_lock_exit();
1666 	}
1667 
1668 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1669 
1670 	return false;
1671 }
1672 
1673 void
pmap_kremove(vaddr_t va,vsize_t len)1674 pmap_kremove(vaddr_t va, vsize_t len)
1675 {
1676 	const vaddr_t sva = trunc_page(va);
1677 	const vaddr_t eva = round_page(va + len);
1678 
1679 	UVMHIST_FUNC(__func__);
1680 	UVMHIST_CALLARGS(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0);
1681 
1682 	kpreempt_disable();
1683 	pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1684 	kpreempt_enable();
1685 
1686 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1687 }
1688 
1689 bool
pmap_remove_all(struct pmap * pmap)1690 pmap_remove_all(struct pmap *pmap)
1691 {
1692 	UVMHIST_FUNC(__func__);
1693 	UVMHIST_CALLARGS(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0);
1694 
1695 	KASSERT(pmap != pmap_kernel());
1696 
1697 	kpreempt_disable();
1698 	/*
1699 	 * Free all of our ASIDs which means we can skip doing all the
1700 	 * tlb_invalidate_addrs().
1701 	 */
1702 	pmap_tlb_miss_lock_enter();
1703 #ifdef MULTIPROCESSOR
1704 	// This should be the last CPU with this pmap onproc
1705 	KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1706 	if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1707 #endif
1708 		pmap_tlb_asid_deactivate(pmap);
1709 #ifdef MULTIPROCESSOR
1710 	KASSERT(kcpuset_iszero(pmap->pm_onproc));
1711 #endif
1712 	pmap_tlb_asid_release_all(pmap);
1713 	pmap_tlb_miss_lock_exit();
1714 	pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1715 
1716 #ifdef PMAP_FAULTINFO
1717 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1718 	curpcb->pcb_faultinfo.pfi_repeats = 0;
1719 	curpcb->pcb_faultinfo.pfi_faultptep = NULL;
1720 #endif
1721 	kpreempt_enable();
1722 
1723 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1724 	return false;
1725 }
1726 
1727 /*
1728  *	Routine:	pmap_unwire
1729  *	Function:	Clear the wired attribute for a map/virtual-address
1730  *			pair.
1731  *	In/out conditions:
1732  *			The mapping must already exist in the pmap.
1733  */
1734 void
pmap_unwire(pmap_t pmap,vaddr_t va)1735 pmap_unwire(pmap_t pmap, vaddr_t va)
1736 {
1737 	UVMHIST_FUNC(__func__);
1738 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va,
1739 	    0, 0);
1740 	PMAP_COUNT(unwire);
1741 
1742 	/*
1743 	 * Don't need to flush the TLB since PG_WIRED is only in software.
1744 	 */
1745 	kpreempt_disable();
1746 	pmap_addr_range_check(pmap, va, va, __func__);
1747 	pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1748 	KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1749 	    pmap, va);
1750 	pt_entry_t pte = *ptep;
1751 	KASSERTMSG(pte_valid_p(pte),
1752 	    "pmap %p va %#" PRIxVADDR " invalid PTE %#" PRIxPTE " @ %p",
1753 	    pmap, va, pte_value(pte), ptep);
1754 
1755 	if (pte_wired_p(pte)) {
1756 		pmap_tlb_miss_lock_enter();
1757 		pte_set(ptep, pte_unwire_entry(pte));
1758 		pmap_tlb_miss_lock_exit();
1759 		pmap->pm_stats.wired_count--;
1760 	}
1761 #ifdef DIAGNOSTIC
1762 	else {
1763 		printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1764 		    __func__, pmap, va);
1765 	}
1766 #endif
1767 	kpreempt_enable();
1768 
1769 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1770 }
1771 
1772 /*
1773  *	Routine:	pmap_extract
1774  *	Function:
1775  *		Extract the physical page address associated
1776  *		with the given map/virtual_address pair.
1777  */
1778 bool
pmap_extract(pmap_t pmap,vaddr_t va,paddr_t * pap)1779 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1780 {
1781 	paddr_t pa;
1782 
1783 	if (pmap == pmap_kernel()) {
1784 		if (pmap_md_direct_mapped_vaddr_p(va)) {
1785 			pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1786 			goto done;
1787 		}
1788 		if (pmap_md_io_vaddr_p(va))
1789 			panic("pmap_extract: io address %#"PRIxVADDR"", va);
1790 
1791 		if (va >= pmap_limits.virtual_end)
1792 			panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1793 			    __func__, va);
1794 	}
1795 	kpreempt_disable();
1796 	const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1797 	if (ptep == NULL || !pte_valid_p(*ptep)) {
1798 		kpreempt_enable();
1799 		return false;
1800 	}
1801 	pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1802 	kpreempt_enable();
1803 done:
1804 	if (pap != NULL) {
1805 		*pap = pa;
1806 	}
1807 	return true;
1808 }
1809 
1810 /*
1811  *	Copy the range specified by src_addr/len
1812  *	from the source map to the range dst_addr/len
1813  *	in the destination map.
1814  *
1815  *	This routine is only advisory and need not do anything.
1816  */
1817 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vaddr_t dst_addr,vsize_t len,vaddr_t src_addr)1818 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1819     vaddr_t src_addr)
1820 {
1821 	UVMHIST_FUNC(__func__);
1822 	UVMHIST_CALLED(pmaphist);
1823 	PMAP_COUNT(copy);
1824 }
1825 
1826 /*
1827  *	pmap_clear_reference:
1828  *
1829  *	Clear the reference bit on the specified physical page.
1830  */
1831 bool
pmap_clear_reference(struct vm_page * pg)1832 pmap_clear_reference(struct vm_page *pg)
1833 {
1834 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1835 
1836 	UVMHIST_FUNC(__func__);
1837 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx))",
1838 	   (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1839 
1840 	bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1841 
1842 	UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0);
1843 
1844 	return rv;
1845 }
1846 
1847 /*
1848  *	pmap_is_referenced:
1849  *
1850  *	Return whether or not the specified physical page is referenced
1851  *	by any physical maps.
1852  */
1853 bool
pmap_is_referenced(struct vm_page * pg)1854 pmap_is_referenced(struct vm_page *pg)
1855 {
1856 	return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1857 }
1858 
1859 /*
1860  *	Clear the modify bits on the specified physical page.
1861  */
1862 bool
pmap_clear_modify(struct vm_page * pg)1863 pmap_clear_modify(struct vm_page *pg)
1864 {
1865 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1866 	pv_entry_t pv = &mdpg->mdpg_first;
1867 	pv_entry_t pv_next;
1868 
1869 	UVMHIST_FUNC(__func__);
1870 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (%#jx))",
1871 	    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1872 	PMAP_COUNT(clear_modify);
1873 
1874 	if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1875 		if (pv->pv_pmap == NULL) {
1876 			UVMHIST_LOG(pmapexechist,
1877 			    "pg %#jx (pa %#jx): execpage cleared",
1878 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1879 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1880 			PMAP_COUNT(exec_uncached_clear_modify);
1881 		} else {
1882 			UVMHIST_LOG(pmapexechist,
1883 			    "pg %#jx (pa %#jx): syncicache performed",
1884 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1885 			pmap_page_syncicache(pg);
1886 			PMAP_COUNT(exec_synced_clear_modify);
1887 		}
1888 	}
1889 	if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1890 		UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1891 		return false;
1892 	}
1893 	if (pv->pv_pmap == NULL) {
1894 		UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1895 		return true;
1896 	}
1897 
1898 	/*
1899 	 * remove write access from any pages that are dirty
1900 	 * so we can tell if they are written to again later.
1901 	 * flush the VAC first if there is one.
1902 	 */
1903 	kpreempt_disable();
1904 	VM_PAGEMD_PVLIST_READLOCK(mdpg);
1905 	pmap_pvlist_check(mdpg);
1906 	for (; pv != NULL; pv = pv_next) {
1907 		pmap_t pmap = pv->pv_pmap;
1908 		vaddr_t va = trunc_page(pv->pv_va);
1909 
1910 		pv_next = pv->pv_next;
1911 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1912 		if (PV_ISKENTER_P(pv))
1913 			continue;
1914 #endif
1915 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1916 		KASSERT(ptep);
1917 		pt_entry_t pte = pte_prot_nowrite(*ptep);
1918 		if (*ptep == pte) {
1919 			continue;
1920 		}
1921 		KASSERT(pte_valid_p(pte));
1922 		const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1923 		pmap_tlb_miss_lock_enter();
1924 		pte_set(ptep, pte);
1925 		pmap_tlb_invalidate_addr(pmap, va);
1926 		pmap_tlb_miss_lock_exit();
1927 		pmap_update(pmap);
1928 		if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1929 			/*
1930 			 * The list changed!  So restart from the beginning.
1931 			 */
1932 			pv_next = &mdpg->mdpg_first;
1933 			pmap_pvlist_check(mdpg);
1934 		}
1935 	}
1936 	pmap_pvlist_check(mdpg);
1937 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1938 	kpreempt_enable();
1939 
1940 	UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1941 	return true;
1942 }
1943 
1944 /*
1945  *	pmap_is_modified:
1946  *
1947  *	Return whether or not the specified physical page is modified
1948  *	by any physical maps.
1949  */
1950 bool
pmap_is_modified(struct vm_page * pg)1951 pmap_is_modified(struct vm_page *pg)
1952 {
1953 	return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1954 }
1955 
1956 /*
1957  *	pmap_set_modified:
1958  *
1959  *	Sets the page modified reference bit for the specified page.
1960  */
1961 void
pmap_set_modified(paddr_t pa)1962 pmap_set_modified(paddr_t pa)
1963 {
1964 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1965 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1966 	pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED | VM_PAGEMD_REFERENCED);
1967 }
1968 
1969 /******************** pv_entry management ********************/
1970 
1971 static void
pmap_pvlist_check(struct vm_page_md * mdpg)1972 pmap_pvlist_check(struct vm_page_md *mdpg)
1973 {
1974 #ifdef DEBUG
1975 	pv_entry_t pv = &mdpg->mdpg_first;
1976 	if (pv->pv_pmap != NULL) {
1977 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1978 		const u_int colormask = uvmexp.colormask;
1979 		u_int colors = 0;
1980 #endif
1981 		for (; pv != NULL; pv = pv->pv_next) {
1982 			KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1983 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1984 			colors |= __BIT(atop(pv->pv_va) & colormask);
1985 #endif
1986 		}
1987 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1988 		// Assert that if there is more than 1 color mapped, that the
1989 		// page is uncached.
1990 		KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1991 		    || colors == 0 || (colors & (colors-1)) == 0
1992 		    || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1993 		    colors, VM_PAGEMD_UNCACHED_P(mdpg));
1994 #endif
1995 	} else {
1996 		KASSERT(pv->pv_next == NULL);
1997 	}
1998 #endif /* DEBUG */
1999 }
2000 
2001 /*
2002  * Enter the pmap and virtual address into the
2003  * physical to virtual map table.
2004  */
2005 void
pmap_enter_pv(pmap_t pmap,vaddr_t va,paddr_t pa,struct vm_page_md * mdpg,pt_entry_t * nptep,u_int flags)2006 pmap_enter_pv(pmap_t pmap, vaddr_t va, paddr_t pa, struct vm_page_md *mdpg,
2007     pt_entry_t *nptep, u_int flags)
2008 {
2009 	pv_entry_t pv, npv, apv;
2010 #ifdef UVMHIST
2011 	bool first = false;
2012 	struct vm_page *pg = VM_PAGEMD_VMPAGE_P(mdpg) ? VM_MD_TO_PAGE(mdpg) :
2013 	    NULL;
2014 #endif
2015 
2016 	UVMHIST_FUNC(__func__);
2017 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx va=%#jx pg=%#jx (%#jx)",
2018 	    (uintptr_t)pmap, va, (uintptr_t)pg, pa);
2019 	UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))",
2020 	    (uintptr_t)nptep, pte_value(*nptep), 0, 0);
2021 
2022 	KASSERT(kpreempt_disabled());
2023 	KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
2024 	KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
2025 	    "va %#"PRIxVADDR, va);
2026 
2027 	apv = NULL;
2028 	VM_PAGEMD_PVLIST_LOCK(mdpg);
2029 again:
2030 	pv = &mdpg->mdpg_first;
2031 	pmap_pvlist_check(mdpg);
2032 	if (pv->pv_pmap == NULL) {
2033 		KASSERT(pv->pv_next == NULL);
2034 		/*
2035 		 * No entries yet, use header as the first entry
2036 		 */
2037 		PMAP_COUNT(primary_mappings);
2038 		PMAP_COUNT(mappings);
2039 #ifdef UVMHIST
2040 		first = true;
2041 #endif
2042 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2043 		KASSERT(VM_PAGEMD_CACHED_P(mdpg));
2044 		// If the new mapping has an incompatible color the last
2045 		// mapping of this page, clean the page before using it.
2046 		if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
2047 			pmap_md_vca_clean(mdpg, PMAP_WBINV);
2048 		}
2049 #endif
2050 		pv->pv_pmap = pmap;
2051 		pv->pv_va = va | flags;
2052 	} else {
2053 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2054 		if (pmap_md_vca_add(mdpg, va, nptep)) {
2055 			goto again;
2056 		}
2057 #endif
2058 
2059 		/*
2060 		 * There is at least one other VA mapping this page.
2061 		 * Place this entry after the header.
2062 		 *
2063 		 * Note: the entry may already be in the table if
2064 		 * we are only changing the protection bits.
2065 		 */
2066 
2067 		for (npv = pv; npv; npv = npv->pv_next) {
2068 			if (pmap == npv->pv_pmap
2069 			    && va == trunc_page(npv->pv_va)) {
2070 #ifdef PARANOIADIAG
2071 				pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
2072 				pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
2073 				if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
2074 					printf("%s: found va %#"PRIxVADDR
2075 					    " pa %#"PRIxPADDR
2076 					    " in pv_table but != %#"PRIxPTE"\n",
2077 					    __func__, va, pa, pte_value(pte));
2078 #endif
2079 				PMAP_COUNT(remappings);
2080 				VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2081 				if (__predict_false(apv != NULL))
2082 					pmap_pv_free(apv);
2083 
2084 				UVMHIST_LOG(pmaphist,
2085 				    " <-- done pv=%#jx (reused)",
2086 				    (uintptr_t)pv, 0, 0, 0);
2087 				return;
2088 			}
2089 		}
2090 		if (__predict_true(apv == NULL)) {
2091 			/*
2092 			 * To allocate a PV, we have to release the PVLIST lock
2093 			 * so get the page generation.  We allocate the PV, and
2094 			 * then reacquire the lock.
2095 			 */
2096 			pmap_pvlist_check(mdpg);
2097 			const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2098 
2099 			apv = (pv_entry_t)pmap_pv_alloc();
2100 			if (apv == NULL)
2101 				panic("pmap_enter_pv: pmap_pv_alloc() failed");
2102 
2103 			/*
2104 			 * If the generation has changed, then someone else
2105 			 * tinkered with this page so we should start over.
2106 			 */
2107 			if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
2108 				goto again;
2109 		}
2110 		npv = apv;
2111 		apv = NULL;
2112 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2113 		/*
2114 		 * If need to deal with virtual cache aliases, keep mappings
2115 		 * in the kernel pmap at the head of the list.  This allows
2116 		 * the VCA code to easily use them for cache operations if
2117 		 * present.
2118 		 */
2119 		pmap_t kpmap = pmap_kernel();
2120 		if (pmap != kpmap) {
2121 			while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
2122 				pv = pv->pv_next;
2123 			}
2124 		}
2125 #endif
2126 		npv->pv_va = va | flags;
2127 		npv->pv_pmap = pmap;
2128 		npv->pv_next = pv->pv_next;
2129 		pv->pv_next = npv;
2130 		PMAP_COUNT(mappings);
2131 	}
2132 	pmap_pvlist_check(mdpg);
2133 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2134 	if (__predict_false(apv != NULL))
2135 		pmap_pv_free(apv);
2136 
2137 	UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv,
2138 	    first, 0, 0);
2139 }
2140 
2141 /*
2142  * Remove a physical to virtual address translation.
2143  * If cache was inhibited on this page, and there are no more cache
2144  * conflicts, restore caching.
2145  * Flush the cache if the last page is removed (should always be cached
2146  * at this point).
2147  */
2148 void
pmap_remove_pv(pmap_t pmap,vaddr_t va,struct vm_page * pg,bool dirty)2149 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
2150 {
2151 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2152 	pv_entry_t pv, npv;
2153 	bool last;
2154 
2155 	UVMHIST_FUNC(__func__);
2156 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)",
2157 	    (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
2158 	UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0);
2159 
2160 	KASSERT(kpreempt_disabled());
2161 	KASSERT((va & PAGE_MASK) == 0);
2162 	pv = &mdpg->mdpg_first;
2163 
2164 	VM_PAGEMD_PVLIST_LOCK(mdpg);
2165 	pmap_pvlist_check(mdpg);
2166 
2167 	/*
2168 	 * If it is the first entry on the list, it is actually
2169 	 * in the header and we must copy the following entry up
2170 	 * to the header.  Otherwise we must search the list for
2171 	 * the entry.  In either case we free the now unused entry.
2172 	 */
2173 
2174 	last = false;
2175 	if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
2176 		npv = pv->pv_next;
2177 		if (npv) {
2178 			*pv = *npv;
2179 			KASSERT(pv->pv_pmap != NULL);
2180 		} else {
2181 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2182 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
2183 #endif
2184 			pv->pv_pmap = NULL;
2185 			last = true;	/* Last mapping removed */
2186 		}
2187 		PMAP_COUNT(remove_pvfirst);
2188 	} else {
2189 		for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
2190 			PMAP_COUNT(remove_pvsearch);
2191 			if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
2192 				break;
2193 		}
2194 		if (npv) {
2195 			pv->pv_next = npv->pv_next;
2196 		}
2197 	}
2198 
2199 	pmap_pvlist_check(mdpg);
2200 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2201 
2202 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2203 	pmap_md_vca_remove(pg, va, dirty, last);
2204 #endif
2205 
2206 	/*
2207 	 * Free the pv_entry if needed.
2208 	 */
2209 	if (npv)
2210 		pmap_pv_free(npv);
2211 	if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
2212 		if (last) {
2213 			/*
2214 			 * If this was the page's last mapping, we no longer
2215 			 * care about its execness.
2216 			 */
2217 			UVMHIST_LOG(pmapexechist,
2218 			    "pg %#jx (pa %#jx)last %ju: execpage cleared",
2219 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2220 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
2221 			PMAP_COUNT(exec_uncached_remove);
2222 		} else {
2223 			/*
2224 			 * Someone still has it mapped as an executable page
2225 			 * so we must sync it.
2226 			 */
2227 			UVMHIST_LOG(pmapexechist,
2228 			    "pg %#jx (pa %#jx) last %ju: performed syncicache",
2229 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2230 			pmap_page_syncicache(pg);
2231 			PMAP_COUNT(exec_synced_remove);
2232 		}
2233 	}
2234 
2235 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
2236 }
2237 
2238 #if defined(MULTIPROCESSOR)
2239 struct pmap_pvlist_info {
2240 	kmutex_t *pli_locks[PAGE_SIZE / 32];
2241 	volatile u_int pli_lock_refs[PAGE_SIZE / 32];
2242 	volatile u_int pli_lock_index;
2243 	u_int pli_lock_mask;
2244 } pmap_pvlist_info;
2245 
2246 void
pmap_pvlist_lock_init(size_t cache_line_size)2247 pmap_pvlist_lock_init(size_t cache_line_size)
2248 {
2249 	struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2250 	const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
2251 	vaddr_t lock_va = lock_page;
2252 	if (sizeof(kmutex_t) > cache_line_size) {
2253 		cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2254 	}
2255 	const size_t nlocks = PAGE_SIZE / cache_line_size;
2256 	KASSERT((nlocks & (nlocks - 1)) == 0);
2257 	/*
2258 	 * Now divide the page into a number of mutexes, one per cacheline.
2259 	 */
2260 	for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2261 		kmutex_t * const lock = (kmutex_t *)lock_va;
2262 		mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2263 		pli->pli_locks[i] = lock;
2264 	}
2265 	pli->pli_lock_mask = nlocks - 1;
2266 }
2267 
2268 kmutex_t *
pmap_pvlist_lock_addr(struct vm_page_md * mdpg)2269 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2270 {
2271 	struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2272 	kmutex_t *lock = mdpg->mdpg_lock;
2273 
2274 	/*
2275 	 * Allocate a lock on an as-needed basis.  This will hopefully give us
2276 	 * semi-random distribution not based on page color.
2277 	 */
2278 	if (__predict_false(lock == NULL)) {
2279 		size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2280 		size_t lockid = locknum & pli->pli_lock_mask;
2281 		kmutex_t * const new_lock = pli->pli_locks[lockid];
2282 		/*
2283 		 * Set the lock.  If some other thread already did, just use
2284 		 * the one they assigned.
2285 		 */
2286 		lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2287 		if (lock == NULL) {
2288 			lock = new_lock;
2289 			atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2290 		}
2291 	}
2292 
2293 	/*
2294 	 * Now finally provide the lock.
2295 	 */
2296 	return lock;
2297 }
2298 #else /* !MULTIPROCESSOR */
2299 void
pmap_pvlist_lock_init(size_t cache_line_size)2300 pmap_pvlist_lock_init(size_t cache_line_size)
2301 {
2302 	mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2303 }
2304 
2305 #ifdef MODULAR
2306 kmutex_t *
pmap_pvlist_lock_addr(struct vm_page_md * mdpg)2307 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2308 {
2309 	/*
2310 	 * We just use a global lock.
2311 	 */
2312 	if (__predict_false(mdpg->mdpg_lock == NULL)) {
2313 		mdpg->mdpg_lock = &pmap_pvlist_mutex;
2314 	}
2315 
2316 	/*
2317 	 * Now finally provide the lock.
2318 	 */
2319 	return mdpg->mdpg_lock;
2320 }
2321 #endif /* MODULAR */
2322 #endif /* !MULTIPROCESSOR */
2323 
2324 /*
2325  * pmap_pv_page_alloc:
2326  *
2327  *	Allocate a page for the pv_entry pool.
2328  */
2329 void *
pmap_pv_page_alloc(struct pool * pp,int flags)2330 pmap_pv_page_alloc(struct pool *pp, int flags)
2331 {
2332 	struct vm_page * const pg = pmap_md_alloc_poolpage(UVM_PGA_USERESERVE);
2333 	if (pg == NULL)
2334 		return NULL;
2335 
2336 	return (void *)pmap_md_map_poolpage(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2337 }
2338 
2339 /*
2340  * pmap_pv_page_free:
2341  *
2342  *	Free a pv_entry pool page.
2343  */
2344 void
pmap_pv_page_free(struct pool * pp,void * v)2345 pmap_pv_page_free(struct pool *pp, void *v)
2346 {
2347 	vaddr_t va = (vaddr_t)v;
2348 
2349 	KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2350 	const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2351 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2352 	KASSERT(pg != NULL);
2353 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2354 	kpreempt_disable();
2355 	pmap_md_vca_remove(pg, va, true, true);
2356 	kpreempt_enable();
2357 #endif
2358 	pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2359 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2360 	uvm_pagefree(pg);
2361 }
2362 
2363 #ifdef PMAP_PREFER
2364 /*
2365  * Find first virtual address >= *vap that doesn't cause
2366  * a cache alias conflict.
2367  */
2368 void
pmap_prefer(vaddr_t foff,vaddr_t * vap,vsize_t sz,int td)2369 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2370 {
2371 	vsize_t prefer_mask = ptoa(uvmexp.colormask);
2372 
2373 	PMAP_COUNT(prefer_requests);
2374 
2375 	prefer_mask |= pmap_md_cache_prefer_mask();
2376 
2377 	if (prefer_mask) {
2378 		vaddr_t	va = *vap;
2379 		vsize_t d = (foff - va) & prefer_mask;
2380 		if (d) {
2381 			if (td)
2382 				*vap = trunc_page(va - ((-d) & prefer_mask));
2383 			else
2384 				*vap = round_page(va + d);
2385 			PMAP_COUNT(prefer_adjustments);
2386 		}
2387 	}
2388 }
2389 #endif /* PMAP_PREFER */
2390 
2391 #ifdef PMAP_MAP_POOLPAGE
2392 vaddr_t
pmap_map_poolpage(paddr_t pa)2393 pmap_map_poolpage(paddr_t pa)
2394 {
2395 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2396 	KASSERT(pg);
2397 
2398 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2399 	KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
2400 
2401 	pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2402 
2403 	return pmap_md_map_poolpage(pa, NBPG);
2404 }
2405 
2406 paddr_t
pmap_unmap_poolpage(vaddr_t va)2407 pmap_unmap_poolpage(vaddr_t va)
2408 {
2409 	KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2410 	paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2411 
2412 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2413 	KASSERT(pg != NULL);
2414 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2415 
2416 	pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2417 	pmap_md_unmap_poolpage(va, NBPG);
2418 
2419 	return pa;
2420 }
2421 #endif /* PMAP_MAP_POOLPAGE */
2422 
2423 #ifdef DDB
2424 void
2425 pmap_db_mdpg_print(struct vm_page *pg, void (*pr)(const char *, ...) __printflike(1, 2))
2426 {
2427 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2428 	pv_entry_t pv = &mdpg->mdpg_first;
2429 
2430 	if (pv->pv_pmap == NULL) {
2431 		pr(" no mappings\n");
2432 		return;
2433 	}
2434 
2435 	int lcount = 0;
2436 	if (VM_PAGEMD_VMPAGE_P(mdpg)) {
2437 		pr(" vmpage");
2438 		lcount++;
2439 	}
2440 	if (VM_PAGEMD_POOLPAGE_P(mdpg)) {
2441 		if (lcount != 0)
2442 			pr(",");
2443 		pr(" pool");
2444 		lcount++;
2445 	}
2446 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2447 	if (VM_PAGEMD_UNCACHED_P(mdpg)) {
2448 		if (lcount != 0)
2449 			pr(",");
2450 		pr(" uncached\n");
2451 	}
2452 #endif
2453 	pr("\n");
2454 
2455 	lcount = 0;
2456 	if (VM_PAGEMD_REFERENCED_P(mdpg)) {
2457 		pr(" referened");
2458 		lcount++;
2459 	}
2460 	if (VM_PAGEMD_MODIFIED_P(mdpg)) {
2461 		if (lcount != 0)
2462 			pr(",");
2463 		pr(" modified");
2464 		lcount++;
2465 	}
2466 	if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
2467 		if (lcount != 0)
2468 			pr(",");
2469 		pr(" exec");
2470 		lcount++;
2471 	}
2472 	pr("\n");
2473 
2474 	for (size_t i = 0; pv != NULL; pv = pv->pv_next) {
2475 		pr("  pv[%zu] pv=%p\n", i, pv);
2476 		pr("    pv[%zu].pv_pmap = %p", i, pv->pv_pmap);
2477 		pr("    pv[%zu].pv_va   = %" PRIxVADDR " (kenter=%s)\n",
2478 		    i, trunc_page(pv->pv_va), PV_ISKENTER_P(pv) ? "true" : "false");
2479 		i++;
2480 	}
2481 }
2482 
2483 void
2484 pmap_db_pmap_print(struct pmap *pm,
2485     void (*pr)(const char *, ...) __printflike(1, 2))
2486 {
2487 #if defined(PMAP_HWPAGEWALKER)
2488 	pr(" pm_pdetab     = %p\n", pm->pm_pdetab);
2489 #endif
2490 #if !defined(PMAP_HWPAGEWALKER) || !defined(PMAP_MAP_PDETABPAGE)
2491 	pr(" pm_segtab     = %p\n", pm->pm_segtab);
2492 #endif
2493 
2494 	pmap_db_tlb_print(pm, pr);
2495 }
2496 #endif /* DDB */
2497