xref: /openbsd/gnu/gcc/gcc/c-typeck.c (revision 64bcbf86)
1 /* Build expressions with type checking for C compiler.
2    Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4    Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING.  If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA.  */
22 
23 
24 /* This file is part of the C front end.
25    It contains routines to build C expressions given their operands,
26    including computing the types of the result, C-specific error checks,
27    and some optimization.  */
28 
29 #include "config.h"
30 #include "system.h"
31 #include "coretypes.h"
32 #include "tm.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "langhooks.h"
36 #include "c-tree.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "output.h"
40 #include "expr.h"
41 #include "toplev.h"
42 #include "intl.h"
43 #include "ggc.h"
44 #include "target.h"
45 #include "tree-iterator.h"
46 #include "tree-gimple.h"
47 #include "tree-flow.h"
48 
49 /* Possible cases of implicit bad conversions.  Used to select
50    diagnostic messages in convert_for_assignment.  */
51 enum impl_conv {
52   ic_argpass,
53   ic_argpass_nonproto,
54   ic_assign,
55   ic_init,
56   ic_return
57 };
58 
59 /* The level of nesting inside "__alignof__".  */
60 int in_alignof;
61 
62 /* The level of nesting inside "sizeof".  */
63 int in_sizeof;
64 
65 /* The level of nesting inside "typeof".  */
66 int in_typeof;
67 
68 struct c_label_context_se *label_context_stack_se;
69 struct c_label_context_vm *label_context_stack_vm;
70 
71 /* Nonzero if we've already printed a "missing braces around initializer"
72    message within this initializer.  */
73 static int missing_braces_mentioned;
74 
75 static int require_constant_value;
76 static int require_constant_elements;
77 
78 static bool null_pointer_constant_p (tree);
79 static tree qualify_type (tree, tree);
80 static int tagged_types_tu_compatible_p (tree, tree);
81 static int comp_target_types (tree, tree);
82 static int function_types_compatible_p (tree, tree);
83 static int type_lists_compatible_p (tree, tree);
84 static tree decl_constant_value_for_broken_optimization (tree);
85 static tree lookup_field (tree, tree);
86 static tree convert_arguments (tree, tree, tree, tree);
87 static tree pointer_diff (tree, tree);
88 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89 				    int);
90 static tree valid_compound_expr_initializer (tree, tree);
91 static void push_string (const char *);
92 static void push_member_name (tree);
93 static int spelling_length (void);
94 static char *print_spelling (char *);
95 static void warning_init (const char *);
96 static tree digest_init (tree, tree, bool, int);
97 static void output_init_element (tree, bool, tree, tree, int);
98 static void output_pending_init_elements (int);
99 static int set_designator (int);
100 static void push_range_stack (tree);
101 static void add_pending_init (tree, tree);
102 static void set_nonincremental_init (void);
103 static void set_nonincremental_init_from_string (tree);
104 static tree find_init_member (tree);
105 static void readonly_error (tree, enum lvalue_use);
106 static int lvalue_or_else (tree, enum lvalue_use);
107 static int lvalue_p (tree);
108 static void record_maybe_used_decl (tree);
109 static int comptypes_internal (tree, tree);
110 
111 /* Return true if EXP is a null pointer constant, false otherwise.  */
112 
113 static bool
null_pointer_constant_p(tree expr)114 null_pointer_constant_p (tree expr)
115 {
116   /* This should really operate on c_expr structures, but they aren't
117      yet available everywhere required.  */
118   tree type = TREE_TYPE (expr);
119   return (TREE_CODE (expr) == INTEGER_CST
120 	  && !TREE_CONSTANT_OVERFLOW (expr)
121 	  && integer_zerop (expr)
122 	  && (INTEGRAL_TYPE_P (type)
123 	      || (TREE_CODE (type) == POINTER_TYPE
124 		  && VOID_TYPE_P (TREE_TYPE (type))
125 		  && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126 }
127 /* This is a cache to hold if two types are compatible or not.  */
128 
129 struct tagged_tu_seen_cache {
130   const struct tagged_tu_seen_cache * next;
131   tree t1;
132   tree t2;
133   /* The return value of tagged_types_tu_compatible_p if we had seen
134      these two types already.  */
135   int val;
136 };
137 
138 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140 
141 /* Do `exp = require_complete_type (exp);' to make sure exp
142    does not have an incomplete type.  (That includes void types.)  */
143 
144 tree
require_complete_type(tree value)145 require_complete_type (tree value)
146 {
147   tree type = TREE_TYPE (value);
148 
149   if (value == error_mark_node || type == error_mark_node)
150     return error_mark_node;
151 
152   /* First, detect a valid value with a complete type.  */
153   if (COMPLETE_TYPE_P (type))
154     return value;
155 
156   c_incomplete_type_error (value, type);
157   return error_mark_node;
158 }
159 
160 /* Print an error message for invalid use of an incomplete type.
161    VALUE is the expression that was used (or 0 if that isn't known)
162    and TYPE is the type that was invalid.  */
163 
164 void
c_incomplete_type_error(tree value,tree type)165 c_incomplete_type_error (tree value, tree type)
166 {
167   const char *type_code_string;
168 
169   /* Avoid duplicate error message.  */
170   if (TREE_CODE (type) == ERROR_MARK)
171     return;
172 
173   if (value != 0 && (TREE_CODE (value) == VAR_DECL
174 		     || TREE_CODE (value) == PARM_DECL))
175     error ("%qD has an incomplete type", value);
176   else
177     {
178     retry:
179       /* We must print an error message.  Be clever about what it says.  */
180 
181       switch (TREE_CODE (type))
182 	{
183 	case RECORD_TYPE:
184 	  type_code_string = "struct";
185 	  break;
186 
187 	case UNION_TYPE:
188 	  type_code_string = "union";
189 	  break;
190 
191 	case ENUMERAL_TYPE:
192 	  type_code_string = "enum";
193 	  break;
194 
195 	case VOID_TYPE:
196 	  error ("invalid use of void expression");
197 	  return;
198 
199 	case ARRAY_TYPE:
200 	  if (TYPE_DOMAIN (type))
201 	    {
202 	      if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203 		{
204 		  error ("invalid use of flexible array member");
205 		  return;
206 		}
207 	      type = TREE_TYPE (type);
208 	      goto retry;
209 	    }
210 	  error ("invalid use of array with unspecified bounds");
211 	  return;
212 
213 	default:
214 	  gcc_unreachable ();
215 	}
216 
217       if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218 	error ("invalid use of undefined type %<%s %E%>",
219 	       type_code_string, TYPE_NAME (type));
220       else
221 	/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
222 	error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223     }
224 }
225 
226 /* Given a type, apply default promotions wrt unnamed function
227    arguments and return the new type.  */
228 
229 tree
c_type_promotes_to(tree type)230 c_type_promotes_to (tree type)
231 {
232   if (TYPE_MAIN_VARIANT (type) == float_type_node)
233     return double_type_node;
234 
235   if (c_promoting_integer_type_p (type))
236     {
237       /* Preserve unsignedness if not really getting any wider.  */
238       if (TYPE_UNSIGNED (type)
239 	  && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240 	return unsigned_type_node;
241       return integer_type_node;
242     }
243 
244   return type;
245 }
246 
247 /* Return a variant of TYPE which has all the type qualifiers of LIKE
248    as well as those of TYPE.  */
249 
250 static tree
qualify_type(tree type,tree like)251 qualify_type (tree type, tree like)
252 {
253   return c_build_qualified_type (type,
254 				 TYPE_QUALS (type) | TYPE_QUALS (like));
255 }
256 
257 /* Return true iff the given tree T is a variable length array.  */
258 
259 bool
c_vla_type_p(tree t)260 c_vla_type_p (tree t)
261 {
262   if (TREE_CODE (t) == ARRAY_TYPE
263       && C_TYPE_VARIABLE_SIZE (t))
264     return true;
265   return false;
266 }
267 
268 /* Return the composite type of two compatible types.
269 
270    We assume that comptypes has already been done and returned
271    nonzero; if that isn't so, this may crash.  In particular, we
272    assume that qualifiers match.  */
273 
274 tree
composite_type(tree t1,tree t2)275 composite_type (tree t1, tree t2)
276 {
277   enum tree_code code1;
278   enum tree_code code2;
279   tree attributes;
280 
281   /* Save time if the two types are the same.  */
282 
283   if (t1 == t2) return t1;
284 
285   /* If one type is nonsense, use the other.  */
286   if (t1 == error_mark_node)
287     return t2;
288   if (t2 == error_mark_node)
289     return t1;
290 
291   code1 = TREE_CODE (t1);
292   code2 = TREE_CODE (t2);
293 
294   /* Merge the attributes.  */
295   attributes = targetm.merge_type_attributes (t1, t2);
296 
297   /* If one is an enumerated type and the other is the compatible
298      integer type, the composite type might be either of the two
299      (DR#013 question 3).  For consistency, use the enumerated type as
300      the composite type.  */
301 
302   if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303     return t1;
304   if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305     return t2;
306 
307   gcc_assert (code1 == code2);
308 
309   switch (code1)
310     {
311     case POINTER_TYPE:
312       /* For two pointers, do this recursively on the target type.  */
313       {
314 	tree pointed_to_1 = TREE_TYPE (t1);
315 	tree pointed_to_2 = TREE_TYPE (t2);
316 	tree target = composite_type (pointed_to_1, pointed_to_2);
317 	t1 = build_pointer_type (target);
318 	t1 = build_type_attribute_variant (t1, attributes);
319 	return qualify_type (t1, t2);
320       }
321 
322     case ARRAY_TYPE:
323       {
324 	tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325 	int quals;
326 	tree unqual_elt;
327 	tree d1 = TYPE_DOMAIN (t1);
328 	tree d2 = TYPE_DOMAIN (t2);
329 	bool d1_variable, d2_variable;
330 	bool d1_zero, d2_zero;
331 
332 	/* We should not have any type quals on arrays at all.  */
333 	gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334 
335 	d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336 	d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337 
338 	d1_variable = (!d1_zero
339 		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340 			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341 	d2_variable = (!d2_zero
342 		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343 			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344 	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345 	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346 
347 	/* Save space: see if the result is identical to one of the args.  */
348 	if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349 	    && (d2_variable || d2_zero || !d1_variable))
350 	  return build_type_attribute_variant (t1, attributes);
351 	if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352 	    && (d1_variable || d1_zero || !d2_variable))
353 	  return build_type_attribute_variant (t2, attributes);
354 
355 	if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356 	  return build_type_attribute_variant (t1, attributes);
357 	if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358 	  return build_type_attribute_variant (t2, attributes);
359 
360 	/* Merge the element types, and have a size if either arg has
361 	   one.  We may have qualifiers on the element types.  To set
362 	   up TYPE_MAIN_VARIANT correctly, we need to form the
363 	   composite of the unqualified types and add the qualifiers
364 	   back at the end.  */
365 	quals = TYPE_QUALS (strip_array_types (elt));
366 	unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367 	t1 = build_array_type (unqual_elt,
368 			       TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369 					     && (d2_variable
370 						 || d2_zero
371 						 || !d1_variable))
372 					    ? t1
373 					    : t2));
374 	t1 = c_build_qualified_type (t1, quals);
375 	return build_type_attribute_variant (t1, attributes);
376       }
377 
378     case ENUMERAL_TYPE:
379     case RECORD_TYPE:
380     case UNION_TYPE:
381       if (attributes != NULL)
382 	{
383 	  /* Try harder not to create a new aggregate type.  */
384 	  if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385 	    return t1;
386 	  if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387 	    return t2;
388 	}
389       return build_type_attribute_variant (t1, attributes);
390 
391     case FUNCTION_TYPE:
392       /* Function types: prefer the one that specified arg types.
393 	 If both do, merge the arg types.  Also merge the return types.  */
394       {
395 	tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396 	tree p1 = TYPE_ARG_TYPES (t1);
397 	tree p2 = TYPE_ARG_TYPES (t2);
398 	int len;
399 	tree newargs, n;
400 	int i;
401 
402 	/* Save space: see if the result is identical to one of the args.  */
403 	if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404 	  return build_type_attribute_variant (t1, attributes);
405 	if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406 	  return build_type_attribute_variant (t2, attributes);
407 
408 	/* Simple way if one arg fails to specify argument types.  */
409 	if (TYPE_ARG_TYPES (t1) == 0)
410 	 {
411 	    t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412 	    t1 = build_type_attribute_variant (t1, attributes);
413 	    return qualify_type (t1, t2);
414 	 }
415 	if (TYPE_ARG_TYPES (t2) == 0)
416 	 {
417 	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418 	   t1 = build_type_attribute_variant (t1, attributes);
419 	   return qualify_type (t1, t2);
420 	 }
421 
422 	/* If both args specify argument types, we must merge the two
423 	   lists, argument by argument.  */
424 	/* Tell global_bindings_p to return false so that variable_size
425 	   doesn't die on VLAs in parameter types.  */
426 	c_override_global_bindings_to_false = true;
427 
428 	len = list_length (p1);
429 	newargs = 0;
430 
431 	for (i = 0; i < len; i++)
432 	  newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433 
434 	n = newargs;
435 
436 	for (; p1;
437 	     p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438 	  {
439 	    /* A null type means arg type is not specified.
440 	       Take whatever the other function type has.  */
441 	    if (TREE_VALUE (p1) == 0)
442 	      {
443 		TREE_VALUE (n) = TREE_VALUE (p2);
444 		goto parm_done;
445 	      }
446 	    if (TREE_VALUE (p2) == 0)
447 	      {
448 		TREE_VALUE (n) = TREE_VALUE (p1);
449 		goto parm_done;
450 	      }
451 
452 	    /* Given  wait (union {union wait *u; int *i} *)
453 	       and  wait (union wait *),
454 	       prefer  union wait *  as type of parm.  */
455 	    if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456 		&& TREE_VALUE (p1) != TREE_VALUE (p2))
457 	      {
458 		tree memb;
459 		tree mv2 = TREE_VALUE (p2);
460 		if (mv2 && mv2 != error_mark_node
461 		    && TREE_CODE (mv2) != ARRAY_TYPE)
462 		  mv2 = TYPE_MAIN_VARIANT (mv2);
463 		for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464 		     memb; memb = TREE_CHAIN (memb))
465 		  {
466 		    tree mv3 = TREE_TYPE (memb);
467 		    if (mv3 && mv3 != error_mark_node
468 			&& TREE_CODE (mv3) != ARRAY_TYPE)
469 		      mv3 = TYPE_MAIN_VARIANT (mv3);
470 		    if (comptypes (mv3, mv2))
471 		      {
472 			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473 							 TREE_VALUE (p2));
474 			if (pedantic)
475 			  pedwarn ("function types not truly compatible in ISO C");
476 			goto parm_done;
477 		      }
478 		  }
479 	      }
480 	    if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481 		&& TREE_VALUE (p2) != TREE_VALUE (p1))
482 	      {
483 		tree memb;
484 		tree mv1 = TREE_VALUE (p1);
485 		if (mv1 && mv1 != error_mark_node
486 		    && TREE_CODE (mv1) != ARRAY_TYPE)
487 		  mv1 = TYPE_MAIN_VARIANT (mv1);
488 		for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489 		     memb; memb = TREE_CHAIN (memb))
490 		  {
491 		    tree mv3 = TREE_TYPE (memb);
492 		    if (mv3 && mv3 != error_mark_node
493 			&& TREE_CODE (mv3) != ARRAY_TYPE)
494 		      mv3 = TYPE_MAIN_VARIANT (mv3);
495 		    if (comptypes (mv3, mv1))
496 		      {
497 			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498 							 TREE_VALUE (p1));
499 			if (pedantic)
500 			  pedwarn ("function types not truly compatible in ISO C");
501 			goto parm_done;
502 		      }
503 		  }
504 	      }
505 	    TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506 	  parm_done: ;
507 	  }
508 
509 	c_override_global_bindings_to_false = false;
510 	t1 = build_function_type (valtype, newargs);
511 	t1 = qualify_type (t1, t2);
512 	/* ... falls through ...  */
513       }
514 
515     default:
516       return build_type_attribute_variant (t1, attributes);
517     }
518 
519 }
520 
521 /* Return the type of a conditional expression between pointers to
522    possibly differently qualified versions of compatible types.
523 
524    We assume that comp_target_types has already been done and returned
525    nonzero; if that isn't so, this may crash.  */
526 
527 static tree
common_pointer_type(tree t1,tree t2)528 common_pointer_type (tree t1, tree t2)
529 {
530   tree attributes;
531   tree pointed_to_1, mv1;
532   tree pointed_to_2, mv2;
533   tree target;
534 
535   /* Save time if the two types are the same.  */
536 
537   if (t1 == t2) return t1;
538 
539   /* If one type is nonsense, use the other.  */
540   if (t1 == error_mark_node)
541     return t2;
542   if (t2 == error_mark_node)
543     return t1;
544 
545   gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546 	      && TREE_CODE (t2) == POINTER_TYPE);
547 
548   /* Merge the attributes.  */
549   attributes = targetm.merge_type_attributes (t1, t2);
550 
551   /* Find the composite type of the target types, and combine the
552      qualifiers of the two types' targets.  Do not lose qualifiers on
553      array element types by taking the TYPE_MAIN_VARIANT.  */
554   mv1 = pointed_to_1 = TREE_TYPE (t1);
555   mv2 = pointed_to_2 = TREE_TYPE (t2);
556   if (TREE_CODE (mv1) != ARRAY_TYPE)
557     mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558   if (TREE_CODE (mv2) != ARRAY_TYPE)
559     mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560   target = composite_type (mv1, mv2);
561   t1 = build_pointer_type (c_build_qualified_type
562 			   (target,
563 			    TYPE_QUALS (pointed_to_1) |
564 			    TYPE_QUALS (pointed_to_2)));
565   return build_type_attribute_variant (t1, attributes);
566 }
567 
568 /* Return the common type for two arithmetic types under the usual
569    arithmetic conversions.  The default conversions have already been
570    applied, and enumerated types converted to their compatible integer
571    types.  The resulting type is unqualified and has no attributes.
572 
573    This is the type for the result of most arithmetic operations
574    if the operands have the given two types.  */
575 
576 static tree
c_common_type(tree t1,tree t2)577 c_common_type (tree t1, tree t2)
578 {
579   enum tree_code code1;
580   enum tree_code code2;
581 
582   /* If one type is nonsense, use the other.  */
583   if (t1 == error_mark_node)
584     return t2;
585   if (t2 == error_mark_node)
586     return t1;
587 
588   if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589     t1 = TYPE_MAIN_VARIANT (t1);
590 
591   if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592     t2 = TYPE_MAIN_VARIANT (t2);
593 
594   if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595     t1 = build_type_attribute_variant (t1, NULL_TREE);
596 
597   if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598     t2 = build_type_attribute_variant (t2, NULL_TREE);
599 
600   /* Save time if the two types are the same.  */
601 
602   if (t1 == t2) return t1;
603 
604   code1 = TREE_CODE (t1);
605   code2 = TREE_CODE (t2);
606 
607   gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608 	      || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609   gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610 	      || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611 
612   /* When one operand is a decimal float type, the other operand cannot be
613      a generic float type or a complex type.  We also disallow vector types
614      here.  */
615   if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616       && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617     {
618       if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619 	{
620 	  error ("can%'t mix operands of decimal float and vector types");
621 	  return error_mark_node;
622 	}
623       if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624 	{
625 	  error ("can%'t mix operands of decimal float and complex types");
626 	  return error_mark_node;
627 	}
628       if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629 	{
630 	  error ("can%'t mix operands of decimal float and other float types");
631 	  return error_mark_node;
632 	}
633     }
634 
635   /* If one type is a vector type, return that type.  (How the usual
636      arithmetic conversions apply to the vector types extension is not
637      precisely specified.)  */
638   if (code1 == VECTOR_TYPE)
639     return t1;
640 
641   if (code2 == VECTOR_TYPE)
642     return t2;
643 
644   /* If one type is complex, form the common type of the non-complex
645      components, then make that complex.  Use T1 or T2 if it is the
646      required type.  */
647   if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648     {
649       tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650       tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651       tree subtype = c_common_type (subtype1, subtype2);
652 
653       if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654 	return t1;
655       else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656 	return t2;
657       else
658 	return build_complex_type (subtype);
659     }
660 
661   /* If only one is real, use it as the result.  */
662 
663   if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664     return t1;
665 
666   if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667     return t2;
668 
669   /* If both are real and either are decimal floating point types, use
670      the decimal floating point type with the greater precision. */
671 
672   if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673     {
674       if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675 	  || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676 	return dfloat128_type_node;
677       else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678 	       || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679 	return dfloat64_type_node;
680       else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681 	       || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682 	return dfloat32_type_node;
683     }
684 
685   /* Both real or both integers; use the one with greater precision.  */
686 
687   if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688     return t1;
689   else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690     return t2;
691 
692   /* Same precision.  Prefer long longs to longs to ints when the
693      same precision, following the C99 rules on integer type rank
694      (which are equivalent to the C90 rules for C90 types).  */
695 
696   if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697       || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698     return long_long_unsigned_type_node;
699 
700   if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701       || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702     {
703       if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704 	return long_long_unsigned_type_node;
705       else
706 	return long_long_integer_type_node;
707     }
708 
709   if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710       || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711     return long_unsigned_type_node;
712 
713   if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714       || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715     {
716       /* But preserve unsignedness from the other type,
717 	 since long cannot hold all the values of an unsigned int.  */
718       if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719 	return long_unsigned_type_node;
720       else
721 	return long_integer_type_node;
722     }
723 
724   /* Likewise, prefer long double to double even if same size.  */
725   if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726       || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727     return long_double_type_node;
728 
729   /* Otherwise prefer the unsigned one.  */
730 
731   if (TYPE_UNSIGNED (t1))
732     return t1;
733   else
734     return t2;
735 }
736 
737 /* Wrapper around c_common_type that is used by c-common.c and other
738    front end optimizations that remove promotions.  ENUMERAL_TYPEs
739    are allowed here and are converted to their compatible integer types.
740    BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741    preferably a non-Boolean type as the common type.  */
742 tree
common_type(tree t1,tree t2)743 common_type (tree t1, tree t2)
744 {
745   if (TREE_CODE (t1) == ENUMERAL_TYPE)
746     t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747   if (TREE_CODE (t2) == ENUMERAL_TYPE)
748     t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749 
750   /* If both types are BOOLEAN_TYPE, then return boolean_type_node.  */
751   if (TREE_CODE (t1) == BOOLEAN_TYPE
752       && TREE_CODE (t2) == BOOLEAN_TYPE)
753     return boolean_type_node;
754 
755   /* If either type is BOOLEAN_TYPE, then return the other.  */
756   if (TREE_CODE (t1) == BOOLEAN_TYPE)
757     return t2;
758   if (TREE_CODE (t2) == BOOLEAN_TYPE)
759     return t1;
760 
761   return c_common_type (t1, t2);
762 }
763 
764 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765    or various other operations.  Return 2 if they are compatible
766    but a warning may be needed if you use them together.  */
767 
768 int
comptypes(tree type1,tree type2)769 comptypes (tree type1, tree type2)
770 {
771   const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772   int val;
773 
774   val = comptypes_internal (type1, type2);
775   free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776 
777   return val;
778 }
779 
780 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781    or various other operations.  Return 2 if they are compatible
782    but a warning may be needed if you use them together.  This
783    differs from comptypes, in that we don't free the seen types.  */
784 
785 static int
comptypes_internal(tree type1,tree type2)786 comptypes_internal (tree type1, tree type2)
787 {
788   tree t1 = type1;
789   tree t2 = type2;
790   int attrval, val;
791 
792   /* Suppress errors caused by previously reported errors.  */
793 
794   if (t1 == t2 || !t1 || !t2
795       || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796     return 1;
797 
798   /* If either type is the internal version of sizetype, return the
799      language version.  */
800   if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801       && TYPE_ORIG_SIZE_TYPE (t1))
802     t1 = TYPE_ORIG_SIZE_TYPE (t1);
803 
804   if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805       && TYPE_ORIG_SIZE_TYPE (t2))
806     t2 = TYPE_ORIG_SIZE_TYPE (t2);
807 
808 
809   /* Enumerated types are compatible with integer types, but this is
810      not transitive: two enumerated types in the same translation unit
811      are compatible with each other only if they are the same type.  */
812 
813   if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814     t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815   else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816     t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817 
818   if (t1 == t2)
819     return 1;
820 
821   /* Different classes of types can't be compatible.  */
822 
823   if (TREE_CODE (t1) != TREE_CODE (t2))
824     return 0;
825 
826   /* Qualifiers must match. C99 6.7.3p9 */
827 
828   if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829     return 0;
830 
831   /* Allow for two different type nodes which have essentially the same
832      definition.  Note that we already checked for equality of the type
833      qualifiers (just above).  */
834 
835   if (TREE_CODE (t1) != ARRAY_TYPE
836       && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837     return 1;
838 
839   /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
840   if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841      return 0;
842 
843   /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
844   val = 0;
845 
846   switch (TREE_CODE (t1))
847     {
848     case POINTER_TYPE:
849       /* Do not remove mode or aliasing information.  */
850       if (TYPE_MODE (t1) != TYPE_MODE (t2)
851 	  || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852 	break;
853       val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854 	     ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855       break;
856 
857     case FUNCTION_TYPE:
858       val = function_types_compatible_p (t1, t2);
859       break;
860 
861     case ARRAY_TYPE:
862       {
863 	tree d1 = TYPE_DOMAIN (t1);
864 	tree d2 = TYPE_DOMAIN (t2);
865 	bool d1_variable, d2_variable;
866 	bool d1_zero, d2_zero;
867 	val = 1;
868 
869 	/* Target types must match incl. qualifiers.  */
870 	if (TREE_TYPE (t1) != TREE_TYPE (t2)
871 	    && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872 	  return 0;
873 
874 	/* Sizes must match unless one is missing or variable.  */
875 	if (d1 == 0 || d2 == 0 || d1 == d2)
876 	  break;
877 
878 	d1_zero = !TYPE_MAX_VALUE (d1);
879 	d2_zero = !TYPE_MAX_VALUE (d2);
880 
881 	d1_variable = (!d1_zero
882 		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883 			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884 	d2_variable = (!d2_zero
885 		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886 			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887 	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888 	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889 
890 	if (d1_variable || d2_variable)
891 	  break;
892 	if (d1_zero && d2_zero)
893 	  break;
894 	if (d1_zero || d2_zero
895 	    || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896 	    || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897 	  val = 0;
898 
899 	break;
900       }
901 
902     case ENUMERAL_TYPE:
903     case RECORD_TYPE:
904     case UNION_TYPE:
905       if (val != 1 && !same_translation_unit_p (t1, t2))
906 	{
907 	  tree a1 = TYPE_ATTRIBUTES (t1);
908 	  tree a2 = TYPE_ATTRIBUTES (t2);
909 
910 	  if (! attribute_list_contained (a1, a2)
911 	      && ! attribute_list_contained (a2, a1))
912 	    break;
913 
914 	  if (attrval != 2)
915 	    return tagged_types_tu_compatible_p (t1, t2);
916 	  val = tagged_types_tu_compatible_p (t1, t2);
917 	}
918       break;
919 
920     case VECTOR_TYPE:
921       val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922 	    && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923       break;
924 
925     default:
926       break;
927     }
928   return attrval == 2 && val == 1 ? 2 : val;
929 }
930 
931 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
932    ignoring their qualifiers.  */
933 
934 static int
comp_target_types(tree ttl,tree ttr)935 comp_target_types (tree ttl, tree ttr)
936 {
937   int val;
938   tree mvl, mvr;
939 
940   /* Do not lose qualifiers on element types of array types that are
941      pointer targets by taking their TYPE_MAIN_VARIANT.  */
942   mvl = TREE_TYPE (ttl);
943   mvr = TREE_TYPE (ttr);
944   if (TREE_CODE (mvl) != ARRAY_TYPE)
945     mvl = TYPE_MAIN_VARIANT (mvl);
946   if (TREE_CODE (mvr) != ARRAY_TYPE)
947     mvr = TYPE_MAIN_VARIANT (mvr);
948   val = comptypes (mvl, mvr);
949 
950   if (val == 2 && pedantic)
951     pedwarn ("types are not quite compatible");
952   return val;
953 }
954 
955 /* Subroutines of `comptypes'.  */
956 
957 /* Determine whether two trees derive from the same translation unit.
958    If the CONTEXT chain ends in a null, that tree's context is still
959    being parsed, so if two trees have context chains ending in null,
960    they're in the same translation unit.  */
961 int
same_translation_unit_p(tree t1,tree t2)962 same_translation_unit_p (tree t1, tree t2)
963 {
964   while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965     switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966       {
967       case tcc_declaration:
968 	t1 = DECL_CONTEXT (t1); break;
969       case tcc_type:
970 	t1 = TYPE_CONTEXT (t1); break;
971       case tcc_exceptional:
972 	t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
973       default: gcc_unreachable ();
974       }
975 
976   while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977     switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978       {
979       case tcc_declaration:
980 	t2 = DECL_CONTEXT (t2); break;
981       case tcc_type:
982 	t2 = TYPE_CONTEXT (t2); break;
983       case tcc_exceptional:
984 	t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
985       default: gcc_unreachable ();
986       }
987 
988   return t1 == t2;
989 }
990 
991 /* Allocate the seen two types, assuming that they are compatible. */
992 
993 static struct tagged_tu_seen_cache *
alloc_tagged_tu_seen_cache(tree t1,tree t2)994 alloc_tagged_tu_seen_cache (tree t1, tree t2)
995 {
996   struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997   tu->next = tagged_tu_seen_base;
998   tu->t1 = t1;
999   tu->t2 = t2;
1000 
1001   tagged_tu_seen_base = tu;
1002 
1003   /* The C standard says that two structures in different translation
1004      units are compatible with each other only if the types of their
1005      fields are compatible (among other things).  We assume that they
1006      are compatible until proven otherwise when building the cache.
1007      An example where this can occur is:
1008      struct a
1009      {
1010        struct a *next;
1011      };
1012      If we are comparing this against a similar struct in another TU,
1013      and did not assume they were compatible, we end up with an infinite
1014      loop.  */
1015   tu->val = 1;
1016   return tu;
1017 }
1018 
1019 /* Free the seen types until we get to TU_TIL. */
1020 
1021 static void
free_all_tagged_tu_seen_up_to(const struct tagged_tu_seen_cache * tu_til)1022 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023 {
1024   const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025   while (tu != tu_til)
1026     {
1027       struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
1028       tu = tu1->next;
1029       free (tu1);
1030     }
1031   tagged_tu_seen_base = tu_til;
1032 }
1033 
1034 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1035    compatible.  If the two types are not the same (which has been
1036    checked earlier), this can only happen when multiple translation
1037    units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
1038    rules.  */
1039 
1040 static int
tagged_types_tu_compatible_p(tree t1,tree t2)1041 tagged_types_tu_compatible_p (tree t1, tree t2)
1042 {
1043   tree s1, s2;
1044   bool needs_warning = false;
1045 
1046   /* We have to verify that the tags of the types are the same.  This
1047      is harder than it looks because this may be a typedef, so we have
1048      to go look at the original type.  It may even be a typedef of a
1049      typedef...
1050      In the case of compiler-created builtin structs the TYPE_DECL
1051      may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
1052   while (TYPE_NAME (t1)
1053 	 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1054 	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1055     t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1056 
1057   while (TYPE_NAME (t2)
1058 	 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1059 	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1060     t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1061 
1062   /* C90 didn't have the requirement that the two tags be the same.  */
1063   if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1064     return 0;
1065 
1066   /* C90 didn't say what happened if one or both of the types were
1067      incomplete; we choose to follow C99 rules here, which is that they
1068      are compatible.  */
1069   if (TYPE_SIZE (t1) == NULL
1070       || TYPE_SIZE (t2) == NULL)
1071     return 1;
1072 
1073   {
1074     const struct tagged_tu_seen_cache * tts_i;
1075     for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1076       if (tts_i->t1 == t1 && tts_i->t2 == t2)
1077 	return tts_i->val;
1078   }
1079 
1080   switch (TREE_CODE (t1))
1081     {
1082     case ENUMERAL_TYPE:
1083       {
1084 	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1085 	/* Speed up the case where the type values are in the same order.  */
1086 	tree tv1 = TYPE_VALUES (t1);
1087 	tree tv2 = TYPE_VALUES (t2);
1088 
1089 	if (tv1 == tv2)
1090 	  {
1091 	    return 1;
1092 	  }
1093 
1094 	for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1095 	  {
1096 	    if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1097 	      break;
1098 	    if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1099 	      {
1100 		tu->val = 0;
1101 		return 0;
1102 	      }
1103 	  }
1104 
1105 	if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1106 	  {
1107 	    return 1;
1108 	  }
1109 	if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1110 	  {
1111 	    tu->val = 0;
1112 	    return 0;
1113 	  }
1114 
1115 	if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1116 	  {
1117 	    tu->val = 0;
1118 	    return 0;
1119 	  }
1120 
1121 	for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1122 	  {
1123 	    s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1124 	    if (s2 == NULL
1125 		|| simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1126 	      {
1127 		tu->val = 0;
1128 		return 0;
1129 	      }
1130 	  }
1131 	return 1;
1132       }
1133 
1134     case UNION_TYPE:
1135       {
1136 	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1137 	if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1138 	  {
1139 	    tu->val = 0;
1140 	    return 0;
1141 	  }
1142 
1143 	/*  Speed up the common case where the fields are in the same order. */
1144 	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1145 	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1146 	  {
1147 	    int result;
1148 
1149 
1150 	    if (DECL_NAME (s1) == NULL
1151 		|| DECL_NAME (s1) != DECL_NAME (s2))
1152 	      break;
1153 	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1154 	    if (result == 0)
1155 	      {
1156 		tu->val = 0;
1157 		return 0;
1158 	      }
1159 	    if (result == 2)
1160 	      needs_warning = true;
1161 
1162 	    if (TREE_CODE (s1) == FIELD_DECL
1163 		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1164 				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1165 	      {
1166 		tu->val = 0;
1167 		return 0;
1168 	      }
1169 	  }
1170 	if (!s1 && !s2)
1171 	  {
1172 	    tu->val = needs_warning ? 2 : 1;
1173 	    return tu->val;
1174 	  }
1175 
1176 	for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1177 	  {
1178 	    bool ok = false;
1179 
1180 	    if (DECL_NAME (s1) != NULL)
1181 	      for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1182 		if (DECL_NAME (s1) == DECL_NAME (s2))
1183 		  {
1184 		    int result;
1185 		    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1186 		    if (result == 0)
1187 		      {
1188 			tu->val = 0;
1189 			return 0;
1190 		      }
1191 		    if (result == 2)
1192 		      needs_warning = true;
1193 
1194 		    if (TREE_CODE (s1) == FIELD_DECL
1195 			&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1196 					     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1197 		      break;
1198 
1199 		    ok = true;
1200 		    break;
1201 		  }
1202 	    if (!ok)
1203 	      {
1204 		tu->val = 0;
1205 		return 0;
1206 	      }
1207 	  }
1208 	tu->val = needs_warning ? 2 : 10;
1209 	return tu->val;
1210       }
1211 
1212     case RECORD_TYPE:
1213       {
1214 	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1215 
1216 	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1217 	     s1 && s2;
1218 	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1219 	  {
1220 	    int result;
1221 	    if (TREE_CODE (s1) != TREE_CODE (s2)
1222 		|| DECL_NAME (s1) != DECL_NAME (s2))
1223 	      break;
1224 	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1225 	    if (result == 0)
1226 	      break;
1227 	    if (result == 2)
1228 	      needs_warning = true;
1229 
1230 	    if (TREE_CODE (s1) == FIELD_DECL
1231 		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1232 				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1233 	      break;
1234 	  }
1235 	if (s1 && s2)
1236 	  tu->val = 0;
1237 	else
1238 	  tu->val = needs_warning ? 2 : 1;
1239 	return tu->val;
1240       }
1241 
1242     default:
1243       gcc_unreachable ();
1244     }
1245 }
1246 
1247 /* Return 1 if two function types F1 and F2 are compatible.
1248    If either type specifies no argument types,
1249    the other must specify a fixed number of self-promoting arg types.
1250    Otherwise, if one type specifies only the number of arguments,
1251    the other must specify that number of self-promoting arg types.
1252    Otherwise, the argument types must match.  */
1253 
1254 static int
function_types_compatible_p(tree f1,tree f2)1255 function_types_compatible_p (tree f1, tree f2)
1256 {
1257   tree args1, args2;
1258   /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1259   int val = 1;
1260   int val1;
1261   tree ret1, ret2;
1262 
1263   ret1 = TREE_TYPE (f1);
1264   ret2 = TREE_TYPE (f2);
1265 
1266   /* 'volatile' qualifiers on a function's return type used to mean
1267      the function is noreturn.  */
1268   if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1269     pedwarn ("function return types not compatible due to %<volatile%>");
1270   if (TYPE_VOLATILE (ret1))
1271     ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1272 				 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1273   if (TYPE_VOLATILE (ret2))
1274     ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1275 				 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1276   val = comptypes_internal (ret1, ret2);
1277   if (val == 0)
1278     return 0;
1279 
1280   args1 = TYPE_ARG_TYPES (f1);
1281   args2 = TYPE_ARG_TYPES (f2);
1282 
1283   /* An unspecified parmlist matches any specified parmlist
1284      whose argument types don't need default promotions.  */
1285 
1286   if (args1 == 0)
1287     {
1288       if (!self_promoting_args_p (args2))
1289 	return 0;
1290       /* If one of these types comes from a non-prototype fn definition,
1291 	 compare that with the other type's arglist.
1292 	 If they don't match, ask for a warning (but no error).  */
1293       if (TYPE_ACTUAL_ARG_TYPES (f1)
1294 	  && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1295 	val = 2;
1296       return val;
1297     }
1298   if (args2 == 0)
1299     {
1300       if (!self_promoting_args_p (args1))
1301 	return 0;
1302       if (TYPE_ACTUAL_ARG_TYPES (f2)
1303 	  && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1304 	val = 2;
1305       return val;
1306     }
1307 
1308   /* Both types have argument lists: compare them and propagate results.  */
1309   val1 = type_lists_compatible_p (args1, args2);
1310   return val1 != 1 ? val1 : val;
1311 }
1312 
1313 /* Check two lists of types for compatibility,
1314    returning 0 for incompatible, 1 for compatible,
1315    or 2 for compatible with warning.  */
1316 
1317 static int
type_lists_compatible_p(tree args1,tree args2)1318 type_lists_compatible_p (tree args1, tree args2)
1319 {
1320   /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1321   int val = 1;
1322   int newval = 0;
1323 
1324   while (1)
1325     {
1326       tree a1, mv1, a2, mv2;
1327       if (args1 == 0 && args2 == 0)
1328 	return val;
1329       /* If one list is shorter than the other,
1330 	 they fail to match.  */
1331       if (args1 == 0 || args2 == 0)
1332 	return 0;
1333       mv1 = a1 = TREE_VALUE (args1);
1334       mv2 = a2 = TREE_VALUE (args2);
1335       if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1336 	mv1 = TYPE_MAIN_VARIANT (mv1);
1337       if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1338 	mv2 = TYPE_MAIN_VARIANT (mv2);
1339       /* A null pointer instead of a type
1340 	 means there is supposed to be an argument
1341 	 but nothing is specified about what type it has.
1342 	 So match anything that self-promotes.  */
1343       if (a1 == 0)
1344 	{
1345 	  if (c_type_promotes_to (a2) != a2)
1346 	    return 0;
1347 	}
1348       else if (a2 == 0)
1349 	{
1350 	  if (c_type_promotes_to (a1) != a1)
1351 	    return 0;
1352 	}
1353       /* If one of the lists has an error marker, ignore this arg.  */
1354       else if (TREE_CODE (a1) == ERROR_MARK
1355 	       || TREE_CODE (a2) == ERROR_MARK)
1356 	;
1357       else if (!(newval = comptypes_internal (mv1, mv2)))
1358 	{
1359 	  /* Allow  wait (union {union wait *u; int *i} *)
1360 	     and  wait (union wait *)  to be compatible.  */
1361 	  if (TREE_CODE (a1) == UNION_TYPE
1362 	      && (TYPE_NAME (a1) == 0
1363 		  || TYPE_TRANSPARENT_UNION (a1))
1364 	      && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1365 	      && tree_int_cst_equal (TYPE_SIZE (a1),
1366 				     TYPE_SIZE (a2)))
1367 	    {
1368 	      tree memb;
1369 	      for (memb = TYPE_FIELDS (a1);
1370 		   memb; memb = TREE_CHAIN (memb))
1371 		{
1372 		  tree mv3 = TREE_TYPE (memb);
1373 		  if (mv3 && mv3 != error_mark_node
1374 		      && TREE_CODE (mv3) != ARRAY_TYPE)
1375 		    mv3 = TYPE_MAIN_VARIANT (mv3);
1376 		  if (comptypes_internal (mv3, mv2))
1377 		    break;
1378 		}
1379 	      if (memb == 0)
1380 		return 0;
1381 	    }
1382 	  else if (TREE_CODE (a2) == UNION_TYPE
1383 		   && (TYPE_NAME (a2) == 0
1384 		       || TYPE_TRANSPARENT_UNION (a2))
1385 		   && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1386 		   && tree_int_cst_equal (TYPE_SIZE (a2),
1387 					  TYPE_SIZE (a1)))
1388 	    {
1389 	      tree memb;
1390 	      for (memb = TYPE_FIELDS (a2);
1391 		   memb; memb = TREE_CHAIN (memb))
1392 		{
1393 		  tree mv3 = TREE_TYPE (memb);
1394 		  if (mv3 && mv3 != error_mark_node
1395 		      && TREE_CODE (mv3) != ARRAY_TYPE)
1396 		    mv3 = TYPE_MAIN_VARIANT (mv3);
1397 		  if (comptypes_internal (mv3, mv1))
1398 		    break;
1399 		}
1400 	      if (memb == 0)
1401 		return 0;
1402 	    }
1403 	  else
1404 	    return 0;
1405 	}
1406 
1407       /* comptypes said ok, but record if it said to warn.  */
1408       if (newval > val)
1409 	val = newval;
1410 
1411       args1 = TREE_CHAIN (args1);
1412       args2 = TREE_CHAIN (args2);
1413     }
1414 }
1415 
1416 /* Compute the size to increment a pointer by.  */
1417 
1418 static tree
c_size_in_bytes(tree type)1419 c_size_in_bytes (tree type)
1420 {
1421   enum tree_code code = TREE_CODE (type);
1422 
1423   if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1424     return size_one_node;
1425 
1426   if (!COMPLETE_OR_VOID_TYPE_P (type))
1427     {
1428       error ("arithmetic on pointer to an incomplete type");
1429       return size_one_node;
1430     }
1431 
1432   /* Convert in case a char is more than one unit.  */
1433   return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1434 		     size_int (TYPE_PRECISION (char_type_node)
1435 			       / BITS_PER_UNIT));
1436 }
1437 
1438 /* Return either DECL or its known constant value (if it has one).  */
1439 
1440 tree
decl_constant_value(tree decl)1441 decl_constant_value (tree decl)
1442 {
1443   if (/* Don't change a variable array bound or initial value to a constant
1444 	 in a place where a variable is invalid.  Note that DECL_INITIAL
1445 	 isn't valid for a PARM_DECL.  */
1446       current_function_decl != 0
1447       && TREE_CODE (decl) != PARM_DECL
1448       && !TREE_THIS_VOLATILE (decl)
1449       && TREE_READONLY (decl)
1450       && DECL_INITIAL (decl) != 0
1451       && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1452       /* This is invalid if initial value is not constant.
1453 	 If it has either a function call, a memory reference,
1454 	 or a variable, then re-evaluating it could give different results.  */
1455       && TREE_CONSTANT (DECL_INITIAL (decl))
1456       /* Check for cases where this is sub-optimal, even though valid.  */
1457       && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1458     return DECL_INITIAL (decl);
1459   return decl;
1460 }
1461 
1462 /* Return either DECL or its known constant value (if it has one), but
1463    return DECL if pedantic or DECL has mode BLKmode.  This is for
1464    bug-compatibility with the old behavior of decl_constant_value
1465    (before GCC 3.0); every use of this function is a bug and it should
1466    be removed before GCC 3.1.  It is not appropriate to use pedantic
1467    in a way that affects optimization, and BLKmode is probably not the
1468    right test for avoiding misoptimizations either.  */
1469 
1470 static tree
decl_constant_value_for_broken_optimization(tree decl)1471 decl_constant_value_for_broken_optimization (tree decl)
1472 {
1473   tree ret;
1474 
1475   if (pedantic || DECL_MODE (decl) == BLKmode)
1476     return decl;
1477 
1478   ret = decl_constant_value (decl);
1479   /* Avoid unwanted tree sharing between the initializer and current
1480      function's body where the tree can be modified e.g. by the
1481      gimplifier.  */
1482   if (ret != decl && TREE_STATIC (decl))
1483     ret = unshare_expr (ret);
1484   return ret;
1485 }
1486 
1487 /* Convert the array expression EXP to a pointer.  */
1488 static tree
array_to_pointer_conversion(tree exp)1489 array_to_pointer_conversion (tree exp)
1490 {
1491   tree orig_exp = exp;
1492   tree type = TREE_TYPE (exp);
1493   tree adr;
1494   tree restype = TREE_TYPE (type);
1495   tree ptrtype;
1496 
1497   gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1498 
1499   STRIP_TYPE_NOPS (exp);
1500 
1501   if (TREE_NO_WARNING (orig_exp))
1502     TREE_NO_WARNING (exp) = 1;
1503 
1504   ptrtype = build_pointer_type (restype);
1505 
1506   if (TREE_CODE (exp) == INDIRECT_REF)
1507     return convert (ptrtype, TREE_OPERAND (exp, 0));
1508 
1509   if (TREE_CODE (exp) == VAR_DECL)
1510     {
1511       /* We are making an ADDR_EXPR of ptrtype.  This is a valid
1512 	 ADDR_EXPR because it's the best way of representing what
1513 	 happens in C when we take the address of an array and place
1514 	 it in a pointer to the element type.  */
1515       adr = build1 (ADDR_EXPR, ptrtype, exp);
1516       if (!c_mark_addressable (exp))
1517 	return error_mark_node;
1518       TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
1519       return adr;
1520     }
1521 
1522   /* This way is better for a COMPONENT_REF since it can
1523      simplify the offset for a component.  */
1524   adr = build_unary_op (ADDR_EXPR, exp, 1);
1525   return convert (ptrtype, adr);
1526 }
1527 
1528 /* Convert the function expression EXP to a pointer.  */
1529 static tree
function_to_pointer_conversion(tree exp)1530 function_to_pointer_conversion (tree exp)
1531 {
1532   tree orig_exp = exp;
1533 
1534   gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1535 
1536   STRIP_TYPE_NOPS (exp);
1537 
1538   if (TREE_NO_WARNING (orig_exp))
1539     TREE_NO_WARNING (exp) = 1;
1540 
1541   return build_unary_op (ADDR_EXPR, exp, 0);
1542 }
1543 
1544 /* Perform the default conversion of arrays and functions to pointers.
1545    Return the result of converting EXP.  For any other expression, just
1546    return EXP after removing NOPs.  */
1547 
1548 struct c_expr
default_function_array_conversion(struct c_expr exp)1549 default_function_array_conversion (struct c_expr exp)
1550 {
1551   tree orig_exp = exp.value;
1552   tree type = TREE_TYPE (exp.value);
1553   enum tree_code code = TREE_CODE (type);
1554 
1555   switch (code)
1556     {
1557     case ARRAY_TYPE:
1558       {
1559 	bool not_lvalue = false;
1560 	bool lvalue_array_p;
1561 
1562 	while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1563 		|| TREE_CODE (exp.value) == NOP_EXPR
1564 		|| TREE_CODE (exp.value) == CONVERT_EXPR)
1565 	       && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1566 	  {
1567 	    if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1568 	      not_lvalue = true;
1569 	    exp.value = TREE_OPERAND (exp.value, 0);
1570 	  }
1571 
1572 	if (TREE_NO_WARNING (orig_exp))
1573 	  TREE_NO_WARNING (exp.value) = 1;
1574 
1575 	lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1576 	if (!flag_isoc99 && !lvalue_array_p)
1577 	  {
1578 	    /* Before C99, non-lvalue arrays do not decay to pointers.
1579 	       Normally, using such an array would be invalid; but it can
1580 	       be used correctly inside sizeof or as a statement expression.
1581 	       Thus, do not give an error here; an error will result later.  */
1582 	    return exp;
1583 	  }
1584 
1585 	exp.value = array_to_pointer_conversion (exp.value);
1586       }
1587       break;
1588     case FUNCTION_TYPE:
1589       exp.value = function_to_pointer_conversion (exp.value);
1590       break;
1591     default:
1592       STRIP_TYPE_NOPS (exp.value);
1593       if (TREE_NO_WARNING (orig_exp))
1594 	TREE_NO_WARNING (exp.value) = 1;
1595       break;
1596     }
1597 
1598   return exp;
1599 }
1600 
1601 
1602 /* EXP is an expression of integer type.  Apply the integer promotions
1603    to it and return the promoted value.  */
1604 
1605 tree
perform_integral_promotions(tree exp)1606 perform_integral_promotions (tree exp)
1607 {
1608   tree type = TREE_TYPE (exp);
1609   enum tree_code code = TREE_CODE (type);
1610 
1611   gcc_assert (INTEGRAL_TYPE_P (type));
1612 
1613   /* Normally convert enums to int,
1614      but convert wide enums to something wider.  */
1615   if (code == ENUMERAL_TYPE)
1616     {
1617       type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1618 					  TYPE_PRECISION (integer_type_node)),
1619 				     ((TYPE_PRECISION (type)
1620 				       >= TYPE_PRECISION (integer_type_node))
1621 				      && TYPE_UNSIGNED (type)));
1622 
1623       return convert (type, exp);
1624     }
1625 
1626   /* ??? This should no longer be needed now bit-fields have their
1627      proper types.  */
1628   if (TREE_CODE (exp) == COMPONENT_REF
1629       && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1630       /* If it's thinner than an int, promote it like a
1631 	 c_promoting_integer_type_p, otherwise leave it alone.  */
1632       && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1633 			       TYPE_PRECISION (integer_type_node)))
1634     return convert (integer_type_node, exp);
1635 
1636   if (c_promoting_integer_type_p (type))
1637     {
1638       /* Preserve unsignedness if not really getting any wider.  */
1639       if (TYPE_UNSIGNED (type)
1640 	  && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1641 	return convert (unsigned_type_node, exp);
1642 
1643       return convert (integer_type_node, exp);
1644     }
1645 
1646   return exp;
1647 }
1648 
1649 
1650 /* Perform default promotions for C data used in expressions.
1651    Enumeral types or short or char are converted to int.
1652    In addition, manifest constants symbols are replaced by their values.  */
1653 
1654 tree
default_conversion(tree exp)1655 default_conversion (tree exp)
1656 {
1657   tree orig_exp;
1658   tree type = TREE_TYPE (exp);
1659   enum tree_code code = TREE_CODE (type);
1660 
1661   /* Functions and arrays have been converted during parsing.  */
1662   gcc_assert (code != FUNCTION_TYPE);
1663   if (code == ARRAY_TYPE)
1664     return exp;
1665 
1666   /* Constants can be used directly unless they're not loadable.  */
1667   if (TREE_CODE (exp) == CONST_DECL)
1668     exp = DECL_INITIAL (exp);
1669 
1670   /* Replace a nonvolatile const static variable with its value unless
1671      it is an array, in which case we must be sure that taking the
1672      address of the array produces consistent results.  */
1673   else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1674     {
1675       exp = decl_constant_value_for_broken_optimization (exp);
1676       type = TREE_TYPE (exp);
1677     }
1678 
1679   /* Strip no-op conversions.  */
1680   orig_exp = exp;
1681   STRIP_TYPE_NOPS (exp);
1682 
1683   if (TREE_NO_WARNING (orig_exp))
1684     TREE_NO_WARNING (exp) = 1;
1685 
1686   if (INTEGRAL_TYPE_P (type))
1687     return perform_integral_promotions (exp);
1688 
1689   if (code == VOID_TYPE)
1690     {
1691       error ("void value not ignored as it ought to be");
1692       return error_mark_node;
1693     }
1694   return exp;
1695 }
1696 
1697 /* Look up COMPONENT in a structure or union DECL.
1698 
1699    If the component name is not found, returns NULL_TREE.  Otherwise,
1700    the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1701    stepping down the chain to the component, which is in the last
1702    TREE_VALUE of the list.  Normally the list is of length one, but if
1703    the component is embedded within (nested) anonymous structures or
1704    unions, the list steps down the chain to the component.  */
1705 
1706 static tree
lookup_field(tree decl,tree component)1707 lookup_field (tree decl, tree component)
1708 {
1709   tree type = TREE_TYPE (decl);
1710   tree field;
1711 
1712   /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1713      to the field elements.  Use a binary search on this array to quickly
1714      find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
1715      will always be set for structures which have many elements.  */
1716 
1717   if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1718     {
1719       int bot, top, half;
1720       tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1721 
1722       field = TYPE_FIELDS (type);
1723       bot = 0;
1724       top = TYPE_LANG_SPECIFIC (type)->s->len;
1725       while (top - bot > 1)
1726 	{
1727 	  half = (top - bot + 1) >> 1;
1728 	  field = field_array[bot+half];
1729 
1730 	  if (DECL_NAME (field) == NULL_TREE)
1731 	    {
1732 	      /* Step through all anon unions in linear fashion.  */
1733 	      while (DECL_NAME (field_array[bot]) == NULL_TREE)
1734 		{
1735 		  field = field_array[bot++];
1736 		  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1737 		      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1738 		    {
1739 		      tree anon = lookup_field (field, component);
1740 
1741 		      if (anon)
1742 			return tree_cons (NULL_TREE, field, anon);
1743 		    }
1744 		}
1745 
1746 	      /* Entire record is only anon unions.  */
1747 	      if (bot > top)
1748 		return NULL_TREE;
1749 
1750 	      /* Restart the binary search, with new lower bound.  */
1751 	      continue;
1752 	    }
1753 
1754 	  if (DECL_NAME (field) == component)
1755 	    break;
1756 	  if (DECL_NAME (field) < component)
1757 	    bot += half;
1758 	  else
1759 	    top = bot + half;
1760 	}
1761 
1762       if (DECL_NAME (field_array[bot]) == component)
1763 	field = field_array[bot];
1764       else if (DECL_NAME (field) != component)
1765 	return NULL_TREE;
1766     }
1767   else
1768     {
1769       for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1770 	{
1771 	  if (DECL_NAME (field) == NULL_TREE
1772 	      && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1773 		  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1774 	    {
1775 	      tree anon = lookup_field (field, component);
1776 
1777 	      if (anon)
1778 		return tree_cons (NULL_TREE, field, anon);
1779 	    }
1780 
1781 	  if (DECL_NAME (field) == component)
1782 	    break;
1783 	}
1784 
1785       if (field == NULL_TREE)
1786 	return NULL_TREE;
1787     }
1788 
1789   return tree_cons (NULL_TREE, field, NULL_TREE);
1790 }
1791 
1792 /* Make an expression to refer to the COMPONENT field of
1793    structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
1794 
1795 tree
build_component_ref(tree datum,tree component)1796 build_component_ref (tree datum, tree component)
1797 {
1798   tree type = TREE_TYPE (datum);
1799   enum tree_code code = TREE_CODE (type);
1800   tree field = NULL;
1801   tree ref;
1802 
1803   if (!objc_is_public (datum, component))
1804     return error_mark_node;
1805 
1806   /* See if there is a field or component with name COMPONENT.  */
1807 
1808   if (code == RECORD_TYPE || code == UNION_TYPE)
1809     {
1810       if (!COMPLETE_TYPE_P (type))
1811 	{
1812 	  c_incomplete_type_error (NULL_TREE, type);
1813 	  return error_mark_node;
1814 	}
1815 
1816       field = lookup_field (datum, component);
1817 
1818       if (!field)
1819 	{
1820 	  error ("%qT has no member named %qE", type, component);
1821 	  return error_mark_node;
1822 	}
1823 
1824       /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1825 	 This might be better solved in future the way the C++ front
1826 	 end does it - by giving the anonymous entities each a
1827 	 separate name and type, and then have build_component_ref
1828 	 recursively call itself.  We can't do that here.  */
1829       do
1830 	{
1831 	  tree subdatum = TREE_VALUE (field);
1832 	  int quals;
1833 	  tree subtype;
1834 
1835 	  if (TREE_TYPE (subdatum) == error_mark_node)
1836 	    return error_mark_node;
1837 
1838 	  quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1839 	  quals |= TYPE_QUALS (TREE_TYPE (datum));
1840 	  subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1841 
1842 	  ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1843 			NULL_TREE);
1844 	  if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1845 	    TREE_READONLY (ref) = 1;
1846 	  if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1847 	    TREE_THIS_VOLATILE (ref) = 1;
1848 
1849 	  if (TREE_DEPRECATED (subdatum))
1850 	    warn_deprecated_use (subdatum);
1851 
1852 	  datum = ref;
1853 
1854 	  field = TREE_CHAIN (field);
1855 	}
1856       while (field);
1857 
1858       return ref;
1859     }
1860   else if (code != ERROR_MARK)
1861     error ("request for member %qE in something not a structure or union",
1862 	   component);
1863 
1864   return error_mark_node;
1865 }
1866 
1867 /* Given an expression PTR for a pointer, return an expression
1868    for the value pointed to.
1869    ERRORSTRING is the name of the operator to appear in error messages.  */
1870 
1871 tree
build_indirect_ref(tree ptr,const char * errorstring)1872 build_indirect_ref (tree ptr, const char *errorstring)
1873 {
1874   tree pointer = default_conversion (ptr);
1875   tree type = TREE_TYPE (pointer);
1876 
1877   if (TREE_CODE (type) == POINTER_TYPE)
1878     {
1879       if (TREE_CODE (pointer) == ADDR_EXPR
1880 	  && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1881 	      == TREE_TYPE (type)))
1882 	return TREE_OPERAND (pointer, 0);
1883       else
1884 	{
1885 	  tree t = TREE_TYPE (type);
1886 	  tree ref;
1887 
1888 	  ref = build1 (INDIRECT_REF, t, pointer);
1889 
1890 	  if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1891 	    {
1892 	      error ("dereferencing pointer to incomplete type");
1893 	      return error_mark_node;
1894 	    }
1895 	  if (VOID_TYPE_P (t) && skip_evaluation == 0)
1896 	    warning (0, "dereferencing %<void *%> pointer");
1897 
1898 	  /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1899 	     so that we get the proper error message if the result is used
1900 	     to assign to.  Also, &* is supposed to be a no-op.
1901 	     And ANSI C seems to specify that the type of the result
1902 	     should be the const type.  */
1903 	  /* A de-reference of a pointer to const is not a const.  It is valid
1904 	     to change it via some other pointer.  */
1905 	  TREE_READONLY (ref) = TYPE_READONLY (t);
1906 	  TREE_SIDE_EFFECTS (ref)
1907 	    = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1908 	  TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1909 	  return ref;
1910 	}
1911     }
1912   else if (TREE_CODE (pointer) != ERROR_MARK)
1913     error ("invalid type argument of %qs", errorstring);
1914   return error_mark_node;
1915 }
1916 
1917 /* This handles expressions of the form "a[i]", which denotes
1918    an array reference.
1919 
1920    This is logically equivalent in C to *(a+i), but we may do it differently.
1921    If A is a variable or a member, we generate a primitive ARRAY_REF.
1922    This avoids forcing the array out of registers, and can work on
1923    arrays that are not lvalues (for example, members of structures returned
1924    by functions).  */
1925 
1926 tree
build_array_ref(tree array,tree index)1927 build_array_ref (tree array, tree index)
1928 {
1929   bool swapped = false;
1930   if (TREE_TYPE (array) == error_mark_node
1931       || TREE_TYPE (index) == error_mark_node)
1932     return error_mark_node;
1933 
1934   if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1935       && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1936     {
1937       tree temp;
1938       if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1939 	  && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1940 	{
1941 	  error ("subscripted value is neither array nor pointer");
1942 	  return error_mark_node;
1943 	}
1944       temp = array;
1945       array = index;
1946       index = temp;
1947       swapped = true;
1948     }
1949 
1950   if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1951     {
1952       error ("array subscript is not an integer");
1953       return error_mark_node;
1954     }
1955 
1956   if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1957     {
1958       error ("subscripted value is pointer to function");
1959       return error_mark_node;
1960     }
1961 
1962   /* ??? Existing practice has been to warn only when the char
1963      index is syntactically the index, not for char[array].  */
1964   if (!swapped)
1965      warn_array_subscript_with_type_char (index);
1966 
1967   /* Apply default promotions *after* noticing character types.  */
1968   index = default_conversion (index);
1969 
1970   gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1971 
1972   if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1973     {
1974       tree rval, type;
1975 
1976       /* An array that is indexed by a non-constant
1977 	 cannot be stored in a register; we must be able to do
1978 	 address arithmetic on its address.
1979 	 Likewise an array of elements of variable size.  */
1980       if (TREE_CODE (index) != INTEGER_CST
1981 	  || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1982 	      && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1983 	{
1984 	  if (!c_mark_addressable (array))
1985 	    return error_mark_node;
1986 	}
1987       /* An array that is indexed by a constant value which is not within
1988 	 the array bounds cannot be stored in a register either; because we
1989 	 would get a crash in store_bit_field/extract_bit_field when trying
1990 	 to access a non-existent part of the register.  */
1991       if (TREE_CODE (index) == INTEGER_CST
1992 	  && TYPE_DOMAIN (TREE_TYPE (array))
1993 	  && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
1994 	{
1995 	  if (!c_mark_addressable (array))
1996 	    return error_mark_node;
1997 	}
1998 
1999       if (pedantic)
2000 	{
2001 	  tree foo = array;
2002 	  while (TREE_CODE (foo) == COMPONENT_REF)
2003 	    foo = TREE_OPERAND (foo, 0);
2004 	  if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2005 	    pedwarn ("ISO C forbids subscripting %<register%> array");
2006 	  else if (!flag_isoc99 && !lvalue_p (foo))
2007 	    pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2008 	}
2009 
2010       type = TREE_TYPE (TREE_TYPE (array));
2011       if (TREE_CODE (type) != ARRAY_TYPE)
2012 	type = TYPE_MAIN_VARIANT (type);
2013       rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2014       /* Array ref is const/volatile if the array elements are
2015 	 or if the array is.  */
2016       TREE_READONLY (rval)
2017 	|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2018 	    | TREE_READONLY (array));
2019       TREE_SIDE_EFFECTS (rval)
2020 	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2021 	    | TREE_SIDE_EFFECTS (array));
2022       TREE_THIS_VOLATILE (rval)
2023 	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2024 	    /* This was added by rms on 16 Nov 91.
2025 	       It fixes  vol struct foo *a;  a->elts[1]
2026 	       in an inline function.
2027 	       Hope it doesn't break something else.  */
2028 	    | TREE_THIS_VOLATILE (array));
2029       return require_complete_type (fold (rval));
2030     }
2031   else
2032     {
2033       tree ar = default_conversion (array);
2034 
2035       if (ar == error_mark_node)
2036 	return ar;
2037 
2038       gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2039       gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2040 
2041       return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2042 				 "array indexing");
2043     }
2044 }
2045 
2046 /* Build an external reference to identifier ID.  FUN indicates
2047    whether this will be used for a function call.  LOC is the source
2048    location of the identifier.  */
2049 tree
build_external_ref(tree id,int fun,location_t loc)2050 build_external_ref (tree id, int fun, location_t loc)
2051 {
2052   tree ref;
2053   tree decl = lookup_name (id);
2054 
2055   /* In Objective-C, an instance variable (ivar) may be preferred to
2056      whatever lookup_name() found.  */
2057   decl = objc_lookup_ivar (decl, id);
2058 
2059   if (decl && decl != error_mark_node)
2060     ref = decl;
2061   else if (fun)
2062     /* Implicit function declaration.  */
2063     ref = implicitly_declare (id);
2064   else if (decl == error_mark_node)
2065     /* Don't complain about something that's already been
2066        complained about.  */
2067     return error_mark_node;
2068   else
2069     {
2070       undeclared_variable (id, loc);
2071       return error_mark_node;
2072     }
2073 
2074   if (TREE_TYPE (ref) == error_mark_node)
2075     return error_mark_node;
2076 
2077   if (TREE_DEPRECATED (ref))
2078     warn_deprecated_use (ref);
2079 
2080   if (!skip_evaluation)
2081     assemble_external (ref);
2082   TREE_USED (ref) = 1;
2083 
2084   if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2085     {
2086       if (!in_sizeof && !in_typeof)
2087 	C_DECL_USED (ref) = 1;
2088       else if (DECL_INITIAL (ref) == 0
2089 	       && DECL_EXTERNAL (ref)
2090 	       && !TREE_PUBLIC (ref))
2091 	record_maybe_used_decl (ref);
2092     }
2093 
2094   if (TREE_CODE (ref) == CONST_DECL)
2095     {
2096       used_types_insert (TREE_TYPE (ref));
2097       ref = DECL_INITIAL (ref);
2098       TREE_CONSTANT (ref) = 1;
2099       TREE_INVARIANT (ref) = 1;
2100     }
2101   else if (current_function_decl != 0
2102 	   && !DECL_FILE_SCOPE_P (current_function_decl)
2103 	   && (TREE_CODE (ref) == VAR_DECL
2104 	       || TREE_CODE (ref) == PARM_DECL
2105 	       || TREE_CODE (ref) == FUNCTION_DECL))
2106     {
2107       tree context = decl_function_context (ref);
2108 
2109       if (context != 0 && context != current_function_decl)
2110 	DECL_NONLOCAL (ref) = 1;
2111     }
2112 
2113   return ref;
2114 }
2115 
2116 /* Record details of decls possibly used inside sizeof or typeof.  */
2117 struct maybe_used_decl
2118 {
2119   /* The decl.  */
2120   tree decl;
2121   /* The level seen at (in_sizeof + in_typeof).  */
2122   int level;
2123   /* The next one at this level or above, or NULL.  */
2124   struct maybe_used_decl *next;
2125 };
2126 
2127 static struct maybe_used_decl *maybe_used_decls;
2128 
2129 /* Record that DECL, an undefined static function reference seen
2130    inside sizeof or typeof, might be used if the operand of sizeof is
2131    a VLA type or the operand of typeof is a variably modified
2132    type.  */
2133 
2134 static void
record_maybe_used_decl(tree decl)2135 record_maybe_used_decl (tree decl)
2136 {
2137   struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2138   t->decl = decl;
2139   t->level = in_sizeof + in_typeof;
2140   t->next = maybe_used_decls;
2141   maybe_used_decls = t;
2142 }
2143 
2144 /* Pop the stack of decls possibly used inside sizeof or typeof.  If
2145    USED is false, just discard them.  If it is true, mark them used
2146    (if no longer inside sizeof or typeof) or move them to the next
2147    level up (if still inside sizeof or typeof).  */
2148 
2149 void
pop_maybe_used(bool used)2150 pop_maybe_used (bool used)
2151 {
2152   struct maybe_used_decl *p = maybe_used_decls;
2153   int cur_level = in_sizeof + in_typeof;
2154   while (p && p->level > cur_level)
2155     {
2156       if (used)
2157 	{
2158 	  if (cur_level == 0)
2159 	    C_DECL_USED (p->decl) = 1;
2160 	  else
2161 	    p->level = cur_level;
2162 	}
2163       p = p->next;
2164     }
2165   if (!used || cur_level == 0)
2166     maybe_used_decls = p;
2167 }
2168 
2169 /* Return the result of sizeof applied to EXPR.  */
2170 
2171 struct c_expr
c_expr_sizeof_expr(struct c_expr expr)2172 c_expr_sizeof_expr (struct c_expr expr)
2173 {
2174   struct c_expr ret;
2175   if (expr.value == error_mark_node)
2176     {
2177       ret.value = error_mark_node;
2178       ret.original_code = ERROR_MARK;
2179       pop_maybe_used (false);
2180     }
2181   else
2182     {
2183       ret.value = c_sizeof (TREE_TYPE (expr.value));
2184       ret.original_code = ERROR_MARK;
2185       if (c_vla_type_p (TREE_TYPE (expr.value)))
2186 	{
2187 	  /* sizeof is evaluated when given a vla (C99 6.5.3.4p2).  */
2188 	  ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2189 	}
2190       pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2191     }
2192   return ret;
2193 }
2194 
2195 /* Return the result of sizeof applied to T, a structure for the type
2196    name passed to sizeof (rather than the type itself).  */
2197 
2198 struct c_expr
c_expr_sizeof_type(struct c_type_name * t)2199 c_expr_sizeof_type (struct c_type_name *t)
2200 {
2201   tree type;
2202   struct c_expr ret;
2203   type = groktypename (t);
2204   ret.value = c_sizeof (type);
2205   ret.original_code = ERROR_MARK;
2206   pop_maybe_used (type != error_mark_node
2207 		  ? C_TYPE_VARIABLE_SIZE (type) : false);
2208   return ret;
2209 }
2210 
2211 /* Build a function call to function FUNCTION with parameters PARAMS.
2212    PARAMS is a list--a chain of TREE_LIST nodes--in which the
2213    TREE_VALUE of each node is a parameter-expression.
2214    FUNCTION's data type may be a function type or a pointer-to-function.  */
2215 
2216 tree
build_function_call(tree function,tree params)2217 build_function_call (tree function, tree params)
2218 {
2219   tree fntype, fundecl = 0;
2220   tree coerced_params;
2221   tree name = NULL_TREE, result;
2222   tree tem;
2223 
2224   /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
2225   STRIP_TYPE_NOPS (function);
2226 
2227   /* Convert anything with function type to a pointer-to-function.  */
2228   if (TREE_CODE (function) == FUNCTION_DECL)
2229     {
2230       /* Implement type-directed function overloading for builtins.
2231 	 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2232 	 handle all the type checking.  The result is a complete expression
2233 	 that implements this function call.  */
2234       tem = resolve_overloaded_builtin (function, params);
2235       if (tem)
2236 	return tem;
2237 
2238       name = DECL_NAME (function);
2239       fundecl = function;
2240     }
2241   if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2242     function = function_to_pointer_conversion (function);
2243 
2244   /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2245      expressions, like those used for ObjC messenger dispatches.  */
2246   function = objc_rewrite_function_call (function, params);
2247 
2248   fntype = TREE_TYPE (function);
2249 
2250   if (TREE_CODE (fntype) == ERROR_MARK)
2251     return error_mark_node;
2252 
2253   if (!(TREE_CODE (fntype) == POINTER_TYPE
2254 	&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2255     {
2256       error ("called object %qE is not a function", function);
2257       return error_mark_node;
2258     }
2259 
2260   if (fundecl && TREE_THIS_VOLATILE (fundecl))
2261     current_function_returns_abnormally = 1;
2262 
2263   /* fntype now gets the type of function pointed to.  */
2264   fntype = TREE_TYPE (fntype);
2265 
2266   /* Check that the function is called through a compatible prototype.
2267      If it is not, replace the call by a trap, wrapped up in a compound
2268      expression if necessary.  This has the nice side-effect to prevent
2269      the tree-inliner from generating invalid assignment trees which may
2270      blow up in the RTL expander later.  */
2271   if ((TREE_CODE (function) == NOP_EXPR
2272        || TREE_CODE (function) == CONVERT_EXPR)
2273       && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2274       && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2275       && !comptypes (fntype, TREE_TYPE (tem)))
2276     {
2277       tree return_type = TREE_TYPE (fntype);
2278       tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2279 				       NULL_TREE);
2280 
2281       /* This situation leads to run-time undefined behavior.  We can't,
2282 	 therefore, simply error unless we can prove that all possible
2283 	 executions of the program must execute the code.  */
2284       warning (0, "function called through a non-compatible type");
2285 
2286       /* We can, however, treat "undefined" any way we please.
2287 	 Call abort to encourage the user to fix the program.  */
2288       inform ("if this code is reached, the program will abort");
2289 
2290       if (VOID_TYPE_P (return_type))
2291 	return trap;
2292       else
2293 	{
2294 	  tree rhs;
2295 
2296 	  if (AGGREGATE_TYPE_P (return_type))
2297 	    rhs = build_compound_literal (return_type,
2298 					  build_constructor (return_type, 0));
2299 	  else
2300 	    rhs = fold_convert (return_type, integer_zero_node);
2301 
2302 	  return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2303 	}
2304     }
2305 
2306   /* Convert the parameters to the types declared in the
2307      function prototype, or apply default promotions.  */
2308 
2309   coerced_params
2310     = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2311 
2312   if (coerced_params == error_mark_node)
2313     return error_mark_node;
2314 
2315   /* Check that the arguments to the function are valid.  */
2316 
2317   check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2318 			    TYPE_ARG_TYPES (fntype));
2319 
2320   if (require_constant_value)
2321     {
2322       result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2323 					function, coerced_params, NULL_TREE);
2324 
2325       if (TREE_CONSTANT (result)
2326 	  && (name == NULL_TREE
2327 	      || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2328 	pedwarn_init ("initializer element is not constant");
2329     }
2330   else
2331     result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2332 			  function, coerced_params, NULL_TREE);
2333 
2334   if (VOID_TYPE_P (TREE_TYPE (result)))
2335     return result;
2336   return require_complete_type (result);
2337 }
2338 
2339 /* Convert the argument expressions in the list VALUES
2340    to the types in the list TYPELIST.  The result is a list of converted
2341    argument expressions, unless there are too few arguments in which
2342    case it is error_mark_node.
2343 
2344    If TYPELIST is exhausted, or when an element has NULL as its type,
2345    perform the default conversions.
2346 
2347    PARMLIST is the chain of parm decls for the function being called.
2348    It may be 0, if that info is not available.
2349    It is used only for generating error messages.
2350 
2351    FUNCTION is a tree for the called function.  It is used only for
2352    error messages, where it is formatted with %qE.
2353 
2354    This is also where warnings about wrong number of args are generated.
2355 
2356    Both VALUES and the returned value are chains of TREE_LIST nodes
2357    with the elements of the list in the TREE_VALUE slots of those nodes.  */
2358 
2359 static tree
convert_arguments(tree typelist,tree values,tree function,tree fundecl)2360 convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2361 {
2362   tree typetail, valtail;
2363   tree result = NULL;
2364   int parmnum;
2365   tree selector;
2366 
2367   /* Change pointer to function to the function itself for
2368      diagnostics.  */
2369   if (TREE_CODE (function) == ADDR_EXPR
2370       && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2371     function = TREE_OPERAND (function, 0);
2372 
2373   /* Handle an ObjC selector specially for diagnostics.  */
2374   selector = objc_message_selector ();
2375 
2376   /* Scan the given expressions and types, producing individual
2377      converted arguments and pushing them on RESULT in reverse order.  */
2378 
2379   for (valtail = values, typetail = typelist, parmnum = 0;
2380        valtail;
2381        valtail = TREE_CHAIN (valtail), parmnum++)
2382     {
2383       tree type = typetail ? TREE_VALUE (typetail) : 0;
2384       tree val = TREE_VALUE (valtail);
2385       tree rname = function;
2386       int argnum = parmnum + 1;
2387       const char *invalid_func_diag;
2388 
2389       if (type == void_type_node)
2390 	{
2391 	  error ("too many arguments to function %qE", function);
2392 	  break;
2393 	}
2394 
2395       if (selector && argnum > 2)
2396 	{
2397 	  rname = selector;
2398 	  argnum -= 2;
2399 	}
2400 
2401       STRIP_TYPE_NOPS (val);
2402 
2403       val = require_complete_type (val);
2404 
2405       if (type != 0)
2406 	{
2407 	  /* Formal parm type is specified by a function prototype.  */
2408 	  tree parmval;
2409 
2410 	  if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2411 	    {
2412 	      error ("type of formal parameter %d is incomplete", parmnum + 1);
2413 	      parmval = val;
2414 	    }
2415 	  else
2416 	    {
2417 	      /* Optionally warn about conversions that
2418 		 differ from the default conversions.  */
2419 	      if (warn_conversion || warn_traditional)
2420 		{
2421 		  unsigned int formal_prec = TYPE_PRECISION (type);
2422 
2423 		  if (INTEGRAL_TYPE_P (type)
2424 		      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2425 		    warning (0, "passing argument %d of %qE as integer "
2426 			     "rather than floating due to prototype",
2427 			     argnum, rname);
2428 		  if (INTEGRAL_TYPE_P (type)
2429 		      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2430 		    warning (0, "passing argument %d of %qE as integer "
2431 			     "rather than complex due to prototype",
2432 			     argnum, rname);
2433 		  else if (TREE_CODE (type) == COMPLEX_TYPE
2434 			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2435 		    warning (0, "passing argument %d of %qE as complex "
2436 			     "rather than floating due to prototype",
2437 			     argnum, rname);
2438 		  else if (TREE_CODE (type) == REAL_TYPE
2439 			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2440 		    warning (0, "passing argument %d of %qE as floating "
2441 			     "rather than integer due to prototype",
2442 			     argnum, rname);
2443 		  else if (TREE_CODE (type) == COMPLEX_TYPE
2444 			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2445 		    warning (0, "passing argument %d of %qE as complex "
2446 			     "rather than integer due to prototype",
2447 			     argnum, rname);
2448 		  else if (TREE_CODE (type) == REAL_TYPE
2449 			   && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2450 		    warning (0, "passing argument %d of %qE as floating "
2451 			     "rather than complex due to prototype",
2452 			     argnum, rname);
2453 		  /* ??? At some point, messages should be written about
2454 		     conversions between complex types, but that's too messy
2455 		     to do now.  */
2456 		  else if (TREE_CODE (type) == REAL_TYPE
2457 			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2458 		    {
2459 		      /* Warn if any argument is passed as `float',
2460 			 since without a prototype it would be `double'.  */
2461 		      if (formal_prec == TYPE_PRECISION (float_type_node)
2462 			  && type != dfloat32_type_node)
2463 			warning (0, "passing argument %d of %qE as %<float%> "
2464 				 "rather than %<double%> due to prototype",
2465 				 argnum, rname);
2466 
2467 		      /* Warn if mismatch between argument and prototype
2468 			 for decimal float types.  Warn of conversions with
2469 			 binary float types and of precision narrowing due to
2470 			 prototype. */
2471  		      else if (type != TREE_TYPE (val)
2472 			       && (type == dfloat32_type_node
2473 				   || type == dfloat64_type_node
2474 				   || type == dfloat128_type_node
2475 				   || TREE_TYPE (val) == dfloat32_type_node
2476 				   || TREE_TYPE (val) == dfloat64_type_node
2477 				   || TREE_TYPE (val) == dfloat128_type_node)
2478 			       && (formal_prec
2479 				   <= TYPE_PRECISION (TREE_TYPE (val))
2480 				   || (type == dfloat128_type_node
2481 				       && (TREE_TYPE (val)
2482 					   != dfloat64_type_node
2483 					   && (TREE_TYPE (val)
2484 					       != dfloat32_type_node)))
2485 				   || (type == dfloat64_type_node
2486 				       && (TREE_TYPE (val)
2487 					   != dfloat32_type_node))))
2488 			warning (0, "passing argument %d of %qE as %qT "
2489 				 "rather than %qT due to prototype",
2490 				 argnum, rname, type, TREE_TYPE (val));
2491 
2492 		    }
2493 		  /* Detect integer changing in width or signedness.
2494 		     These warnings are only activated with
2495 		     -Wconversion, not with -Wtraditional.  */
2496 		  else if (warn_conversion && INTEGRAL_TYPE_P (type)
2497 			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2498 		    {
2499 		      tree would_have_been = default_conversion (val);
2500 		      tree type1 = TREE_TYPE (would_have_been);
2501 
2502 		      if (TREE_CODE (type) == ENUMERAL_TYPE
2503 			  && (TYPE_MAIN_VARIANT (type)
2504 			      == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2505 			/* No warning if function asks for enum
2506 			   and the actual arg is that enum type.  */
2507 			;
2508 		      else if (formal_prec != TYPE_PRECISION (type1))
2509 			warning (OPT_Wconversion, "passing argument %d of %qE "
2510 				 "with different width due to prototype",
2511 				 argnum, rname);
2512 		      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2513 			;
2514 		      /* Don't complain if the formal parameter type
2515 			 is an enum, because we can't tell now whether
2516 			 the value was an enum--even the same enum.  */
2517 		      else if (TREE_CODE (type) == ENUMERAL_TYPE)
2518 			;
2519 		      else if (TREE_CODE (val) == INTEGER_CST
2520 			       && int_fits_type_p (val, type))
2521 			/* Change in signedness doesn't matter
2522 			   if a constant value is unaffected.  */
2523 			;
2524 		      /* If the value is extended from a narrower
2525 			 unsigned type, it doesn't matter whether we
2526 			 pass it as signed or unsigned; the value
2527 			 certainly is the same either way.  */
2528 		      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2529 			       && TYPE_UNSIGNED (TREE_TYPE (val)))
2530 			;
2531 		      else if (TYPE_UNSIGNED (type))
2532 			warning (OPT_Wconversion, "passing argument %d of %qE "
2533 				 "as unsigned due to prototype",
2534 				 argnum, rname);
2535 		      else
2536 			warning (OPT_Wconversion, "passing argument %d of %qE "
2537 				 "as signed due to prototype", argnum, rname);
2538 		    }
2539 		}
2540 
2541 	      parmval = convert_for_assignment (type, val, ic_argpass,
2542 						fundecl, function,
2543 						parmnum + 1);
2544 
2545 	      if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2546 		  && INTEGRAL_TYPE_P (type)
2547 		  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2548 		parmval = default_conversion (parmval);
2549 	    }
2550 	  result = tree_cons (NULL_TREE, parmval, result);
2551 	}
2552       else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2553 	       && (TYPE_PRECISION (TREE_TYPE (val))
2554 		   < TYPE_PRECISION (double_type_node))
2555 	       && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2556 	/* Convert `float' to `double'.  */
2557 	result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2558       else if ((invalid_func_diag =
2559 		targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2560 	{
2561 	  error (invalid_func_diag);
2562 	  return error_mark_node;
2563 	}
2564       else
2565 	/* Convert `short' and `char' to full-size `int'.  */
2566 	result = tree_cons (NULL_TREE, default_conversion (val), result);
2567 
2568       if (typetail)
2569 	typetail = TREE_CHAIN (typetail);
2570     }
2571 
2572   if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2573     {
2574       error ("too few arguments to function %qE", function);
2575       return error_mark_node;
2576     }
2577 
2578   return nreverse (result);
2579 }
2580 
2581 /* This is the entry point used by the parser to build unary operators
2582    in the input.  CODE, a tree_code, specifies the unary operator, and
2583    ARG is the operand.  For unary plus, the C parser currently uses
2584    CONVERT_EXPR for code.  */
2585 
2586 struct c_expr
parser_build_unary_op(enum tree_code code,struct c_expr arg)2587 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2588 {
2589   struct c_expr result;
2590 
2591   result.original_code = ERROR_MARK;
2592   result.value = build_unary_op (code, arg.value, 0);
2593   overflow_warning (result.value);
2594   return result;
2595 }
2596 
2597 /* This is the entry point used by the parser to build binary operators
2598    in the input.  CODE, a tree_code, specifies the binary operator, and
2599    ARG1 and ARG2 are the operands.  In addition to constructing the
2600    expression, we check for operands that were written with other binary
2601    operators in a way that is likely to confuse the user.  */
2602 
2603 struct c_expr
parser_build_binary_op(enum tree_code code,struct c_expr arg1,struct c_expr arg2)2604 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2605 			struct c_expr arg2)
2606 {
2607   struct c_expr result;
2608 
2609   enum tree_code code1 = arg1.original_code;
2610   enum tree_code code2 = arg2.original_code;
2611 
2612   result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2613   result.original_code = code;
2614 
2615   if (TREE_CODE (result.value) == ERROR_MARK)
2616     return result;
2617 
2618   /* Check for cases such as x+y<<z which users are likely
2619      to misinterpret.  */
2620   if (warn_parentheses)
2621     {
2622       if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
2623 	{
2624 	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2625 	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2626 	    warning (OPT_Wparentheses,
2627 		     "suggest parentheses around + or - inside shift");
2628 	}
2629 
2630       if (code == TRUTH_ORIF_EXPR)
2631 	{
2632 	  if (code1 == TRUTH_ANDIF_EXPR
2633 	      || code2 == TRUTH_ANDIF_EXPR)
2634 	    warning (OPT_Wparentheses,
2635 		     "suggest parentheses around && within ||");
2636 	}
2637 
2638       if (code == BIT_IOR_EXPR)
2639 	{
2640 	  if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
2641 	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2642 	      || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
2643 	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2644 	    warning (OPT_Wparentheses,
2645 		     "suggest parentheses around arithmetic in operand of |");
2646 	  /* Check cases like x|y==z */
2647 	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2648 	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2649 	    warning (OPT_Wparentheses,
2650 		     "suggest parentheses around comparison in operand of |");
2651 	}
2652 
2653       if (code == BIT_XOR_EXPR)
2654 	{
2655 	  if (code1 == BIT_AND_EXPR
2656 	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2657 	      || code2 == BIT_AND_EXPR
2658 	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2659 	    warning (OPT_Wparentheses,
2660 		     "suggest parentheses around arithmetic in operand of ^");
2661 	  /* Check cases like x^y==z */
2662 	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2663 	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2664 	    warning (OPT_Wparentheses,
2665 		     "suggest parentheses around comparison in operand of ^");
2666 	}
2667 
2668       if (code == BIT_AND_EXPR)
2669 	{
2670 	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2671 	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2672 	    warning (OPT_Wparentheses,
2673 		     "suggest parentheses around + or - in operand of &");
2674 	  /* Check cases like x&y==z */
2675 	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2676 	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2677 	    warning (OPT_Wparentheses,
2678 		     "suggest parentheses around comparison in operand of &");
2679 	}
2680       /* Similarly, check for cases like 1<=i<=10 that are probably errors.  */
2681       if (TREE_CODE_CLASS (code) == tcc_comparison
2682 	  && (TREE_CODE_CLASS (code1) == tcc_comparison
2683 	      || TREE_CODE_CLASS (code2) == tcc_comparison))
2684 	warning (OPT_Wparentheses, "comparisons like X<=Y<=Z do not "
2685 		 "have their mathematical meaning");
2686 
2687     }
2688 
2689   /* Warn about comparisons against string literals, with the exception
2690      of testing for equality or inequality of a string literal with NULL.  */
2691   if (code == EQ_EXPR || code == NE_EXPR)
2692     {
2693       if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2694 	  || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2695 	warning (OPT_Waddress,
2696                  "comparison with string literal results in unspecified behaviour");
2697     }
2698   else if (TREE_CODE_CLASS (code) == tcc_comparison
2699 	   && (code1 == STRING_CST || code2 == STRING_CST))
2700     warning (OPT_Waddress,
2701              "comparison with string literal results in unspecified behaviour");
2702 
2703   overflow_warning (result.value);
2704 
2705   return result;
2706 }
2707 
2708 /* Return a tree for the difference of pointers OP0 and OP1.
2709    The resulting tree has type int.  */
2710 
2711 static tree
pointer_diff(tree op0,tree op1)2712 pointer_diff (tree op0, tree op1)
2713 {
2714   tree restype = ptrdiff_type_node;
2715 
2716   tree target_type = TREE_TYPE (TREE_TYPE (op0));
2717   tree con0, con1, lit0, lit1;
2718   tree orig_op1 = op1;
2719 
2720   if (pedantic || warn_pointer_arith)
2721     {
2722       if (TREE_CODE (target_type) == VOID_TYPE)
2723 	pedwarn ("pointer of type %<void *%> used in subtraction");
2724       if (TREE_CODE (target_type) == FUNCTION_TYPE)
2725 	pedwarn ("pointer to a function used in subtraction");
2726     }
2727 
2728   /* If the conversion to ptrdiff_type does anything like widening or
2729      converting a partial to an integral mode, we get a convert_expression
2730      that is in the way to do any simplifications.
2731      (fold-const.c doesn't know that the extra bits won't be needed.
2732      split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2733      different mode in place.)
2734      So first try to find a common term here 'by hand'; we want to cover
2735      at least the cases that occur in legal static initializers.  */
2736   if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2737       && (TYPE_PRECISION (TREE_TYPE (op0))
2738 	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2739     con0 = TREE_OPERAND (op0, 0);
2740   else
2741     con0 = op0;
2742   if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2743       && (TYPE_PRECISION (TREE_TYPE (op1))
2744 	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2745     con1 = TREE_OPERAND (op1, 0);
2746   else
2747     con1 = op1;
2748 
2749   if (TREE_CODE (con0) == PLUS_EXPR)
2750     {
2751       lit0 = TREE_OPERAND (con0, 1);
2752       con0 = TREE_OPERAND (con0, 0);
2753     }
2754   else
2755     lit0 = integer_zero_node;
2756 
2757   if (TREE_CODE (con1) == PLUS_EXPR)
2758     {
2759       lit1 = TREE_OPERAND (con1, 1);
2760       con1 = TREE_OPERAND (con1, 0);
2761     }
2762   else
2763     lit1 = integer_zero_node;
2764 
2765   if (operand_equal_p (con0, con1, 0))
2766     {
2767       op0 = lit0;
2768       op1 = lit1;
2769     }
2770 
2771 
2772   /* First do the subtraction as integers;
2773      then drop through to build the divide operator.
2774      Do not do default conversions on the minus operator
2775      in case restype is a short type.  */
2776 
2777   op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2778 			 convert (restype, op1), 0);
2779   /* This generates an error if op1 is pointer to incomplete type.  */
2780   if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2781     error ("arithmetic on pointer to an incomplete type");
2782 
2783   /* This generates an error if op0 is pointer to incomplete type.  */
2784   op1 = c_size_in_bytes (target_type);
2785 
2786   /* Divide by the size, in easiest possible way.  */
2787   return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2788 }
2789 
2790 /* Construct and perhaps optimize a tree representation
2791    for a unary operation.  CODE, a tree_code, specifies the operation
2792    and XARG is the operand.
2793    For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2794    the default promotions (such as from short to int).
2795    For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2796    allows non-lvalues; this is only used to handle conversion of non-lvalue
2797    arrays to pointers in C99.  */
2798 
2799 tree
build_unary_op(enum tree_code code,tree xarg,int flag)2800 build_unary_op (enum tree_code code, tree xarg, int flag)
2801 {
2802   /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
2803   tree arg = xarg;
2804   tree argtype = 0;
2805   enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2806   tree val;
2807   int noconvert = flag;
2808   const char *invalid_op_diag;
2809 
2810   if (typecode == ERROR_MARK)
2811     return error_mark_node;
2812   if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2813     typecode = INTEGER_TYPE;
2814 
2815   if ((invalid_op_diag
2816        = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2817     {
2818       error (invalid_op_diag);
2819       return error_mark_node;
2820     }
2821 
2822   switch (code)
2823     {
2824     case CONVERT_EXPR:
2825       /* This is used for unary plus, because a CONVERT_EXPR
2826 	 is enough to prevent anybody from looking inside for
2827 	 associativity, but won't generate any code.  */
2828       if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2829 	    || typecode == COMPLEX_TYPE
2830 	    || typecode == VECTOR_TYPE))
2831 	{
2832 	  error ("wrong type argument to unary plus");
2833 	  return error_mark_node;
2834 	}
2835       else if (!noconvert)
2836 	arg = default_conversion (arg);
2837       arg = non_lvalue (arg);
2838       break;
2839 
2840     case NEGATE_EXPR:
2841       if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2842 	    || typecode == COMPLEX_TYPE
2843 	    || typecode == VECTOR_TYPE))
2844 	{
2845 	  error ("wrong type argument to unary minus");
2846 	  return error_mark_node;
2847 	}
2848       else if (!noconvert)
2849 	arg = default_conversion (arg);
2850       break;
2851 
2852     case BIT_NOT_EXPR:
2853       if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2854 	{
2855 	  if (!noconvert)
2856 	    arg = default_conversion (arg);
2857 	}
2858       else if (typecode == COMPLEX_TYPE)
2859 	{
2860 	  code = CONJ_EXPR;
2861 	  if (pedantic)
2862 	    pedwarn ("ISO C does not support %<~%> for complex conjugation");
2863 	  if (!noconvert)
2864 	    arg = default_conversion (arg);
2865 	}
2866       else
2867 	{
2868 	  error ("wrong type argument to bit-complement");
2869 	  return error_mark_node;
2870 	}
2871       break;
2872 
2873     case ABS_EXPR:
2874       if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2875 	{
2876 	  error ("wrong type argument to abs");
2877 	  return error_mark_node;
2878 	}
2879       else if (!noconvert)
2880 	arg = default_conversion (arg);
2881       break;
2882 
2883     case CONJ_EXPR:
2884       /* Conjugating a real value is a no-op, but allow it anyway.  */
2885       if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2886 	    || typecode == COMPLEX_TYPE))
2887 	{
2888 	  error ("wrong type argument to conjugation");
2889 	  return error_mark_node;
2890 	}
2891       else if (!noconvert)
2892 	arg = default_conversion (arg);
2893       break;
2894 
2895     case TRUTH_NOT_EXPR:
2896       if (typecode != INTEGER_TYPE
2897 	  && typecode != REAL_TYPE && typecode != POINTER_TYPE
2898 	  && typecode != COMPLEX_TYPE)
2899 	{
2900 	  error ("wrong type argument to unary exclamation mark");
2901 	  return error_mark_node;
2902 	}
2903       arg = c_objc_common_truthvalue_conversion (arg);
2904       return invert_truthvalue (arg);
2905 
2906     case REALPART_EXPR:
2907       if (TREE_CODE (arg) == COMPLEX_CST)
2908 	return TREE_REALPART (arg);
2909       else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2910 	return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2911       else
2912 	return arg;
2913 
2914     case IMAGPART_EXPR:
2915       if (TREE_CODE (arg) == COMPLEX_CST)
2916 	return TREE_IMAGPART (arg);
2917       else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2918 	return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2919       else
2920 	return convert (TREE_TYPE (arg), integer_zero_node);
2921 
2922     case PREINCREMENT_EXPR:
2923     case POSTINCREMENT_EXPR:
2924     case PREDECREMENT_EXPR:
2925     case POSTDECREMENT_EXPR:
2926 
2927       /* Increment or decrement the real part of the value,
2928 	 and don't change the imaginary part.  */
2929       if (typecode == COMPLEX_TYPE)
2930 	{
2931 	  tree real, imag;
2932 
2933 	  if (pedantic)
2934 	    pedwarn ("ISO C does not support %<++%> and %<--%>"
2935 		     " on complex types");
2936 
2937 	  arg = stabilize_reference (arg);
2938 	  real = build_unary_op (REALPART_EXPR, arg, 1);
2939 	  imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2940 	  return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2941 			 build_unary_op (code, real, 1), imag);
2942 	}
2943 
2944       /* Report invalid types.  */
2945 
2946       if (typecode != POINTER_TYPE
2947 	  && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2948 	{
2949 	  if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2950 	    error ("wrong type argument to increment");
2951 	  else
2952 	    error ("wrong type argument to decrement");
2953 
2954 	  return error_mark_node;
2955 	}
2956 
2957       {
2958 	tree inc;
2959 	tree result_type = TREE_TYPE (arg);
2960 
2961 	arg = get_unwidened (arg, 0);
2962 	argtype = TREE_TYPE (arg);
2963 
2964 	/* Compute the increment.  */
2965 
2966 	if (typecode == POINTER_TYPE)
2967 	  {
2968 	    /* If pointer target is an undefined struct,
2969 	       we just cannot know how to do the arithmetic.  */
2970 	    if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2971 	      {
2972 		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2973 		  error ("increment of pointer to unknown structure");
2974 		else
2975 		  error ("decrement of pointer to unknown structure");
2976 	      }
2977 	    else if ((pedantic || warn_pointer_arith)
2978 		     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2979 			 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2980 	      {
2981 		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2982 		  pedwarn ("wrong type argument to increment");
2983 		else
2984 		  pedwarn ("wrong type argument to decrement");
2985 	      }
2986 
2987 	    inc = c_size_in_bytes (TREE_TYPE (result_type));
2988 	  }
2989 	else
2990 	  inc = integer_one_node;
2991 
2992 	inc = convert (argtype, inc);
2993 
2994 	/* Complain about anything else that is not a true lvalue.  */
2995 	if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2996 				    || code == POSTINCREMENT_EXPR)
2997 				   ? lv_increment
2998 				   : lv_decrement)))
2999 	  return error_mark_node;
3000 
3001 	/* Report a read-only lvalue.  */
3002 	if (TREE_READONLY (arg))
3003 	  {
3004 	    readonly_error (arg,
3005 			    ((code == PREINCREMENT_EXPR
3006 			      || code == POSTINCREMENT_EXPR)
3007 			     ? lv_increment : lv_decrement));
3008 	    return error_mark_node;
3009 	  }
3010 
3011 	if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3012 	  val = boolean_increment (code, arg);
3013 	else
3014 	  val = build2 (code, TREE_TYPE (arg), arg, inc);
3015 	TREE_SIDE_EFFECTS (val) = 1;
3016 	val = convert (result_type, val);
3017 	if (TREE_CODE (val) != code)
3018 	  TREE_NO_WARNING (val) = 1;
3019 	return val;
3020       }
3021 
3022     case ADDR_EXPR:
3023       /* Note that this operation never does default_conversion.  */
3024 
3025       /* Let &* cancel out to simplify resulting code.  */
3026       if (TREE_CODE (arg) == INDIRECT_REF)
3027 	{
3028 	  /* Don't let this be an lvalue.  */
3029 	  if (lvalue_p (TREE_OPERAND (arg, 0)))
3030 	    return non_lvalue (TREE_OPERAND (arg, 0));
3031 	  return TREE_OPERAND (arg, 0);
3032 	}
3033 
3034       /* For &x[y], return x+y */
3035       if (TREE_CODE (arg) == ARRAY_REF)
3036 	{
3037 	  tree op0 = TREE_OPERAND (arg, 0);
3038 	  if (!c_mark_addressable (op0))
3039 	    return error_mark_node;
3040 	  return build_binary_op (PLUS_EXPR,
3041 				  (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3042 				   ? array_to_pointer_conversion (op0)
3043 				   : op0),
3044 				  TREE_OPERAND (arg, 1), 1);
3045 	}
3046 
3047       /* Anything not already handled and not a true memory reference
3048 	 or a non-lvalue array is an error.  */
3049       else if (typecode != FUNCTION_TYPE && !flag
3050 	       && !lvalue_or_else (arg, lv_addressof))
3051 	return error_mark_node;
3052 
3053       /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
3054       argtype = TREE_TYPE (arg);
3055 
3056       /* If the lvalue is const or volatile, merge that into the type
3057 	 to which the address will point.  Note that you can't get a
3058 	 restricted pointer by taking the address of something, so we
3059 	 only have to deal with `const' and `volatile' here.  */
3060       if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3061 	  && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3062 	  argtype = c_build_type_variant (argtype,
3063 					  TREE_READONLY (arg),
3064 					  TREE_THIS_VOLATILE (arg));
3065 
3066       if (!c_mark_addressable (arg))
3067 	return error_mark_node;
3068 
3069       gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3070 		  || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3071 
3072       argtype = build_pointer_type (argtype);
3073 
3074       /* ??? Cope with user tricks that amount to offsetof.  Delete this
3075 	 when we have proper support for integer constant expressions.  */
3076       val = get_base_address (arg);
3077       if (val && TREE_CODE (val) == INDIRECT_REF
3078           && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3079 	{
3080 	  tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
3081 
3082 	  op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3083 	  return fold_build2 (PLUS_EXPR, argtype, op0, op1);
3084 	}
3085 
3086       val = build1 (ADDR_EXPR, argtype, arg);
3087 
3088       return val;
3089 
3090     default:
3091       gcc_unreachable ();
3092     }
3093 
3094   if (argtype == 0)
3095     argtype = TREE_TYPE (arg);
3096   return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3097 				: fold_build1 (code, argtype, arg);
3098 }
3099 
3100 /* Return nonzero if REF is an lvalue valid for this language.
3101    Lvalues can be assigned, unless their type has TYPE_READONLY.
3102    Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */
3103 
3104 static int
lvalue_p(tree ref)3105 lvalue_p (tree ref)
3106 {
3107   enum tree_code code = TREE_CODE (ref);
3108 
3109   switch (code)
3110     {
3111     case REALPART_EXPR:
3112     case IMAGPART_EXPR:
3113     case COMPONENT_REF:
3114       return lvalue_p (TREE_OPERAND (ref, 0));
3115 
3116     case COMPOUND_LITERAL_EXPR:
3117     case STRING_CST:
3118       return 1;
3119 
3120     case INDIRECT_REF:
3121     case ARRAY_REF:
3122     case VAR_DECL:
3123     case PARM_DECL:
3124     case RESULT_DECL:
3125     case ERROR_MARK:
3126       return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3127 	      && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3128 
3129     case BIND_EXPR:
3130       return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3131 
3132     default:
3133       return 0;
3134     }
3135 }
3136 
3137 /* Give an error for storing in something that is 'const'.  */
3138 
3139 static void
readonly_error(tree arg,enum lvalue_use use)3140 readonly_error (tree arg, enum lvalue_use use)
3141 {
3142   gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3143 	      || use == lv_asm);
3144   /* Using this macro rather than (for example) arrays of messages
3145      ensures that all the format strings are checked at compile
3146      time.  */
3147 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A)		\
3148 				   : (use == lv_increment ? (I)		\
3149 				   : (use == lv_decrement ? (D) : (AS))))
3150   if (TREE_CODE (arg) == COMPONENT_REF)
3151     {
3152       if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3153 	readonly_error (TREE_OPERAND (arg, 0), use);
3154       else
3155 	error (READONLY_MSG (G_("assignment of read-only member %qD"),
3156 			     G_("increment of read-only member %qD"),
3157 			     G_("decrement of read-only member %qD"),
3158 			     G_("read-only member %qD used as %<asm%> output")),
3159 	       TREE_OPERAND (arg, 1));
3160     }
3161   else if (TREE_CODE (arg) == VAR_DECL)
3162     error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3163 			 G_("increment of read-only variable %qD"),
3164 			 G_("decrement of read-only variable %qD"),
3165 			 G_("read-only variable %qD used as %<asm%> output")),
3166 	   arg);
3167   else
3168     error (READONLY_MSG (G_("assignment of read-only location"),
3169 			 G_("increment of read-only location"),
3170 			 G_("decrement of read-only location"),
3171 			 G_("read-only location used as %<asm%> output")));
3172 }
3173 
3174 
3175 /* Return nonzero if REF is an lvalue valid for this language;
3176    otherwise, print an error message and return zero.  USE says
3177    how the lvalue is being used and so selects the error message.  */
3178 
3179 static int
lvalue_or_else(tree ref,enum lvalue_use use)3180 lvalue_or_else (tree ref, enum lvalue_use use)
3181 {
3182   int win = lvalue_p (ref);
3183 
3184   if (!win)
3185     lvalue_error (use);
3186 
3187   return win;
3188 }
3189 
3190 /* Mark EXP saying that we need to be able to take the
3191    address of it; it should not be allocated in a register.
3192    Returns true if successful.  */
3193 
3194 bool
c_mark_addressable(tree exp)3195 c_mark_addressable (tree exp)
3196 {
3197   tree x = exp;
3198 
3199   while (1)
3200     switch (TREE_CODE (x))
3201       {
3202       case COMPONENT_REF:
3203 	if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3204 	  {
3205 	    error
3206 	      ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3207 	    return false;
3208 	  }
3209 
3210 	/* ... fall through ...  */
3211 
3212       case ADDR_EXPR:
3213       case ARRAY_REF:
3214       case REALPART_EXPR:
3215       case IMAGPART_EXPR:
3216 	x = TREE_OPERAND (x, 0);
3217 	break;
3218 
3219       case COMPOUND_LITERAL_EXPR:
3220       case CONSTRUCTOR:
3221 	TREE_ADDRESSABLE (x) = 1;
3222 	return true;
3223 
3224       case VAR_DECL:
3225       case CONST_DECL:
3226       case PARM_DECL:
3227       case RESULT_DECL:
3228 	if (C_DECL_REGISTER (x)
3229 	    && DECL_NONLOCAL (x))
3230 	  {
3231 	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3232 	      {
3233 		error
3234 		  ("global register variable %qD used in nested function", x);
3235 		return false;
3236 	      }
3237 	    pedwarn ("register variable %qD used in nested function", x);
3238 	  }
3239 	else if (C_DECL_REGISTER (x))
3240 	  {
3241 	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3242 	      error ("address of global register variable %qD requested", x);
3243 	    else
3244 	      error ("address of register variable %qD requested", x);
3245 	    return false;
3246 	  }
3247 
3248 	/* drops in */
3249       case FUNCTION_DECL:
3250 	TREE_ADDRESSABLE (x) = 1;
3251 	/* drops out */
3252       default:
3253 	return true;
3254     }
3255 }
3256 
3257 /* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
3258 
3259 tree
build_conditional_expr(tree ifexp,tree op1,tree op2)3260 build_conditional_expr (tree ifexp, tree op1, tree op2)
3261 {
3262   tree type1;
3263   tree type2;
3264   enum tree_code code1;
3265   enum tree_code code2;
3266   tree result_type = NULL;
3267   tree orig_op1 = op1, orig_op2 = op2;
3268 
3269   /* Promote both alternatives.  */
3270 
3271   if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3272     op1 = default_conversion (op1);
3273   if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3274     op2 = default_conversion (op2);
3275 
3276   if (TREE_CODE (ifexp) == ERROR_MARK
3277       || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3278       || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3279     return error_mark_node;
3280 
3281   type1 = TREE_TYPE (op1);
3282   code1 = TREE_CODE (type1);
3283   type2 = TREE_TYPE (op2);
3284   code2 = TREE_CODE (type2);
3285 
3286   /* C90 does not permit non-lvalue arrays in conditional expressions.
3287      In C99 they will be pointers by now.  */
3288   if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3289     {
3290       error ("non-lvalue array in conditional expression");
3291       return error_mark_node;
3292     }
3293 
3294   /* Quickly detect the usual case where op1 and op2 have the same type
3295      after promotion.  */
3296   if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3297     {
3298       if (type1 == type2)
3299 	result_type = type1;
3300       else
3301 	result_type = TYPE_MAIN_VARIANT (type1);
3302     }
3303   else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3304 	    || code1 == COMPLEX_TYPE)
3305 	   && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3306 	       || code2 == COMPLEX_TYPE))
3307     {
3308       result_type = c_common_type (type1, type2);
3309 
3310       /* If -Wsign-compare, warn here if type1 and type2 have
3311 	 different signedness.  We'll promote the signed to unsigned
3312 	 and later code won't know it used to be different.
3313 	 Do this check on the original types, so that explicit casts
3314 	 will be considered, but default promotions won't.  */
3315       if (warn_sign_compare && !skip_evaluation)
3316 	{
3317 	  int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3318 	  int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3319 
3320 	  if (unsigned_op1 ^ unsigned_op2)
3321 	    {
3322 	      bool ovf;
3323 
3324 	      /* Do not warn if the result type is signed, since the
3325 		 signed type will only be chosen if it can represent
3326 		 all the values of the unsigned type.  */
3327 	      if (!TYPE_UNSIGNED (result_type))
3328 		/* OK */;
3329 	      /* Do not warn if the signed quantity is an unsuffixed
3330 		 integer literal (or some static constant expression
3331 		 involving such literals) and it is non-negative.  */
3332 	      else if ((unsigned_op2
3333 			&& tree_expr_nonnegative_warnv_p (op1, &ovf))
3334 		       || (unsigned_op1
3335 			   && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3336 		/* OK */;
3337 	      else
3338 		warning (0, "signed and unsigned type in conditional expression");
3339 	    }
3340 	}
3341     }
3342   else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3343     {
3344       if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3345 	pedwarn ("ISO C forbids conditional expr with only one void side");
3346       result_type = void_type_node;
3347     }
3348   else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3349     {
3350       if (comp_target_types (type1, type2))
3351 	result_type = common_pointer_type (type1, type2);
3352       else if (null_pointer_constant_p (orig_op1))
3353 	result_type = qualify_type (type2, type1);
3354       else if (null_pointer_constant_p (orig_op2))
3355 	result_type = qualify_type (type1, type2);
3356       else if (VOID_TYPE_P (TREE_TYPE (type1)))
3357 	{
3358 	  if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3359 	    pedwarn ("ISO C forbids conditional expr between "
3360 		     "%<void *%> and function pointer");
3361 	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3362 							  TREE_TYPE (type2)));
3363 	}
3364       else if (VOID_TYPE_P (TREE_TYPE (type2)))
3365 	{
3366 	  if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3367 	    pedwarn ("ISO C forbids conditional expr between "
3368 		     "%<void *%> and function pointer");
3369 	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3370 							  TREE_TYPE (type1)));
3371 	}
3372       else
3373 	{
3374 	  pedwarn ("pointer type mismatch in conditional expression");
3375 	  result_type = build_pointer_type (void_type_node);
3376 	}
3377     }
3378   else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3379     {
3380       if (!null_pointer_constant_p (orig_op2))
3381 	pedwarn ("pointer/integer type mismatch in conditional expression");
3382       else
3383 	{
3384 	  op2 = null_pointer_node;
3385 	}
3386       result_type = type1;
3387     }
3388   else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3389     {
3390       if (!null_pointer_constant_p (orig_op1))
3391 	pedwarn ("pointer/integer type mismatch in conditional expression");
3392       else
3393 	{
3394 	  op1 = null_pointer_node;
3395 	}
3396       result_type = type2;
3397     }
3398 
3399   if (!result_type)
3400     {
3401       if (flag_cond_mismatch)
3402 	result_type = void_type_node;
3403       else
3404 	{
3405 	  error ("type mismatch in conditional expression");
3406 	  return error_mark_node;
3407 	}
3408     }
3409 
3410   /* Merge const and volatile flags of the incoming types.  */
3411   result_type
3412     = build_type_variant (result_type,
3413 			  TREE_READONLY (op1) || TREE_READONLY (op2),
3414 			  TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3415 
3416   if (result_type != TREE_TYPE (op1))
3417     op1 = convert_and_check (result_type, op1);
3418   if (result_type != TREE_TYPE (op2))
3419     op2 = convert_and_check (result_type, op2);
3420 
3421   return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3422 }
3423 
3424 /* Return a compound expression that performs two expressions and
3425    returns the value of the second of them.  */
3426 
3427 tree
build_compound_expr(tree expr1,tree expr2)3428 build_compound_expr (tree expr1, tree expr2)
3429 {
3430   if (!TREE_SIDE_EFFECTS (expr1))
3431     {
3432       /* The left-hand operand of a comma expression is like an expression
3433 	 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3434 	 any side-effects, unless it was explicitly cast to (void).  */
3435       if (warn_unused_value)
3436 	{
3437 	  if (VOID_TYPE_P (TREE_TYPE (expr1))
3438 	      && (TREE_CODE (expr1) == NOP_EXPR
3439 		  || TREE_CODE (expr1) == CONVERT_EXPR))
3440 	    ; /* (void) a, b */
3441 	  else if (VOID_TYPE_P (TREE_TYPE (expr1))
3442 		   && TREE_CODE (expr1) == COMPOUND_EXPR
3443 		   && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3444 		       || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3445 	    ; /* (void) a, (void) b, c */
3446 	  else
3447 	    warning (0, "left-hand operand of comma expression has no effect");
3448 	}
3449     }
3450 
3451   /* With -Wunused, we should also warn if the left-hand operand does have
3452      side-effects, but computes a value which is not used.  For example, in
3453      `foo() + bar(), baz()' the result of the `+' operator is not used,
3454      so we should issue a warning.  */
3455   else if (warn_unused_value)
3456     warn_if_unused_value (expr1, input_location);
3457 
3458   if (expr2 == error_mark_node)
3459     return error_mark_node;
3460 
3461   return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3462 }
3463 
3464 /* Build an expression representing a cast to type TYPE of expression EXPR.  */
3465 
3466 tree
build_c_cast(tree type,tree expr)3467 build_c_cast (tree type, tree expr)
3468 {
3469   tree value = expr;
3470 
3471   if (type == error_mark_node || expr == error_mark_node)
3472     return error_mark_node;
3473 
3474   /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3475      only in <protocol> qualifications.  But when constructing cast expressions,
3476      the protocols do matter and must be kept around.  */
3477   if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3478     return build1 (NOP_EXPR, type, expr);
3479 
3480   type = TYPE_MAIN_VARIANT (type);
3481 
3482   if (TREE_CODE (type) == ARRAY_TYPE)
3483     {
3484       error ("cast specifies array type");
3485       return error_mark_node;
3486     }
3487 
3488   if (TREE_CODE (type) == FUNCTION_TYPE)
3489     {
3490       error ("cast specifies function type");
3491       return error_mark_node;
3492     }
3493 
3494   if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3495     {
3496       if (pedantic)
3497 	{
3498 	  if (TREE_CODE (type) == RECORD_TYPE
3499 	      || TREE_CODE (type) == UNION_TYPE)
3500 	    pedwarn ("ISO C forbids casting nonscalar to the same type");
3501 	}
3502     }
3503   else if (TREE_CODE (type) == UNION_TYPE)
3504     {
3505       tree field;
3506 
3507       for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3508 	if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3509 		       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3510 	  break;
3511 
3512       if (field)
3513 	{
3514 	  tree t;
3515 
3516 	  if (pedantic)
3517 	    pedwarn ("ISO C forbids casts to union type");
3518 	  t = digest_init (type,
3519 			   build_constructor_single (type, field, value),
3520 			   true, 0);
3521 	  TREE_CONSTANT (t) = TREE_CONSTANT (value);
3522 	  TREE_INVARIANT (t) = TREE_INVARIANT (value);
3523 	  return t;
3524 	}
3525       error ("cast to union type from type not present in union");
3526       return error_mark_node;
3527     }
3528   else
3529     {
3530       tree otype, ovalue;
3531 
3532       if (type == void_type_node)
3533 	return build1 (CONVERT_EXPR, type, value);
3534 
3535       otype = TREE_TYPE (value);
3536 
3537       /* Optionally warn about potentially worrisome casts.  */
3538 
3539       if (warn_cast_qual
3540 	  && TREE_CODE (type) == POINTER_TYPE
3541 	  && TREE_CODE (otype) == POINTER_TYPE)
3542 	{
3543 	  tree in_type = type;
3544 	  tree in_otype = otype;
3545 	  int added = 0;
3546 	  int discarded = 0;
3547 
3548 	  /* Check that the qualifiers on IN_TYPE are a superset of
3549 	     the qualifiers of IN_OTYPE.  The outermost level of
3550 	     POINTER_TYPE nodes is uninteresting and we stop as soon
3551 	     as we hit a non-POINTER_TYPE node on either type.  */
3552 	  do
3553 	    {
3554 	      in_otype = TREE_TYPE (in_otype);
3555 	      in_type = TREE_TYPE (in_type);
3556 
3557 	      /* GNU C allows cv-qualified function types.  'const'
3558 		 means the function is very pure, 'volatile' means it
3559 		 can't return.  We need to warn when such qualifiers
3560 		 are added, not when they're taken away.  */
3561 	      if (TREE_CODE (in_otype) == FUNCTION_TYPE
3562 		  && TREE_CODE (in_type) == FUNCTION_TYPE)
3563 		added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3564 	      else
3565 		discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3566 	    }
3567 	  while (TREE_CODE (in_type) == POINTER_TYPE
3568 		 && TREE_CODE (in_otype) == POINTER_TYPE);
3569 
3570 	  if (added)
3571 	    warning (0, "cast adds new qualifiers to function type");
3572 
3573 	  if (discarded)
3574 	    /* There are qualifiers present in IN_OTYPE that are not
3575 	       present in IN_TYPE.  */
3576 	    warning (0, "cast discards qualifiers from pointer target type");
3577 	}
3578 
3579       /* Warn about possible alignment problems.  */
3580       if (STRICT_ALIGNMENT
3581 	  && TREE_CODE (type) == POINTER_TYPE
3582 	  && TREE_CODE (otype) == POINTER_TYPE
3583 	  && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3584 	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3585 	  /* Don't warn about opaque types, where the actual alignment
3586 	     restriction is unknown.  */
3587 	  && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3588 		|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3589 	       && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3590 	  && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3591 	warning (OPT_Wcast_align,
3592 		 "cast increases required alignment of target type");
3593 
3594       if (TREE_CODE (type) == INTEGER_TYPE
3595 	  && TREE_CODE (otype) == POINTER_TYPE
3596 	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3597       /* Unlike conversion of integers to pointers, where the
3598          warning is disabled for converting constants because
3599          of cases such as SIG_*, warn about converting constant
3600          pointers to integers. In some cases it may cause unwanted
3601          sign extension, and a warning is appropriate.  */
3602 	warning (OPT_Wpointer_to_int_cast,
3603 		 "cast from pointer to integer of different size");
3604 
3605       if (TREE_CODE (value) == CALL_EXPR
3606 	  && TREE_CODE (type) != TREE_CODE (otype))
3607 	warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3608 		 "to non-matching type %qT", otype, type);
3609 
3610       if (TREE_CODE (type) == POINTER_TYPE
3611 	  && TREE_CODE (otype) == INTEGER_TYPE
3612 	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3613 	  /* Don't warn about converting any constant.  */
3614 	  && !TREE_CONSTANT (value))
3615 	warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3616 		 "of different size");
3617 
3618       strict_aliasing_warning (otype, type, expr);
3619 
3620       /* If pedantic, warn for conversions between function and object
3621 	 pointer types, except for converting a null pointer constant
3622 	 to function pointer type.  */
3623       if (pedantic
3624 	  && TREE_CODE (type) == POINTER_TYPE
3625 	  && TREE_CODE (otype) == POINTER_TYPE
3626 	  && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3627 	  && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3628 	pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3629 
3630       if (pedantic
3631 	  && TREE_CODE (type) == POINTER_TYPE
3632 	  && TREE_CODE (otype) == POINTER_TYPE
3633 	  && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3634 	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3635 	  && !null_pointer_constant_p (value))
3636 	pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3637 
3638       ovalue = value;
3639       value = convert (type, value);
3640 
3641       /* Ignore any integer overflow caused by the cast.  */
3642       if (TREE_CODE (value) == INTEGER_CST)
3643 	{
3644 	  if (CONSTANT_CLASS_P (ovalue)
3645 	      && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3646 	    {
3647 	      /* Avoid clobbering a shared constant.  */
3648 	      value = copy_node (value);
3649 	      TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3650 	      TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3651 	    }
3652 	  else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3653 	    /* Reset VALUE's overflow flags, ensuring constant sharing.  */
3654 	    value = build_int_cst_wide (TREE_TYPE (value),
3655 					TREE_INT_CST_LOW (value),
3656 					TREE_INT_CST_HIGH (value));
3657 	}
3658     }
3659 
3660   /* Don't let a cast be an lvalue.  */
3661   if (value == expr)
3662     value = non_lvalue (value);
3663 
3664   return value;
3665 }
3666 
3667 /* Interpret a cast of expression EXPR to type TYPE.  */
3668 tree
c_cast_expr(struct c_type_name * type_name,tree expr)3669 c_cast_expr (struct c_type_name *type_name, tree expr)
3670 {
3671   tree type;
3672   int saved_wsp = warn_strict_prototypes;
3673 
3674   /* This avoids warnings about unprototyped casts on
3675      integers.  E.g. "#define SIG_DFL (void(*)())0".  */
3676   if (TREE_CODE (expr) == INTEGER_CST)
3677     warn_strict_prototypes = 0;
3678   type = groktypename (type_name);
3679   warn_strict_prototypes = saved_wsp;
3680 
3681   return build_c_cast (type, expr);
3682 }
3683 
3684 /* Build an assignment expression of lvalue LHS from value RHS.
3685    MODIFYCODE is the code for a binary operator that we use
3686    to combine the old value of LHS with RHS to get the new value.
3687    Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
3688 
3689 tree
build_modify_expr(tree lhs,enum tree_code modifycode,tree rhs)3690 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3691 {
3692   tree result;
3693   tree newrhs;
3694   tree lhstype = TREE_TYPE (lhs);
3695   tree olhstype = lhstype;
3696 
3697   /* Types that aren't fully specified cannot be used in assignments.  */
3698   lhs = require_complete_type (lhs);
3699 
3700   /* Avoid duplicate error messages from operands that had errors.  */
3701   if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3702     return error_mark_node;
3703 
3704   if (!lvalue_or_else (lhs, lv_assign))
3705     return error_mark_node;
3706 
3707   STRIP_TYPE_NOPS (rhs);
3708 
3709   newrhs = rhs;
3710 
3711   /* If a binary op has been requested, combine the old LHS value with the RHS
3712      producing the value we should actually store into the LHS.  */
3713 
3714   if (modifycode != NOP_EXPR)
3715     {
3716       lhs = stabilize_reference (lhs);
3717       newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3718     }
3719 
3720   /* Give an error for storing in something that is 'const'.  */
3721 
3722   if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3723       || ((TREE_CODE (lhstype) == RECORD_TYPE
3724 	   || TREE_CODE (lhstype) == UNION_TYPE)
3725 	  && C_TYPE_FIELDS_READONLY (lhstype)))
3726     {
3727       readonly_error (lhs, lv_assign);
3728       return error_mark_node;
3729     }
3730 
3731   /* If storing into a structure or union member,
3732      it has probably been given type `int'.
3733      Compute the type that would go with
3734      the actual amount of storage the member occupies.  */
3735 
3736   if (TREE_CODE (lhs) == COMPONENT_REF
3737       && (TREE_CODE (lhstype) == INTEGER_TYPE
3738 	  || TREE_CODE (lhstype) == BOOLEAN_TYPE
3739 	  || TREE_CODE (lhstype) == REAL_TYPE
3740 	  || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3741     lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3742 
3743   /* If storing in a field that is in actuality a short or narrower than one,
3744      we must store in the field in its actual type.  */
3745 
3746   if (lhstype != TREE_TYPE (lhs))
3747     {
3748       lhs = copy_node (lhs);
3749       TREE_TYPE (lhs) = lhstype;
3750     }
3751 
3752   /* Convert new value to destination type.  */
3753 
3754   newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3755 				   NULL_TREE, NULL_TREE, 0);
3756   if (TREE_CODE (newrhs) == ERROR_MARK)
3757     return error_mark_node;
3758 
3759   /* Emit ObjC write barrier, if necessary.  */
3760   if (c_dialect_objc () && flag_objc_gc)
3761     {
3762       result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3763       if (result)
3764 	return result;
3765     }
3766 
3767   /* Scan operands.  */
3768 
3769   result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3770   TREE_SIDE_EFFECTS (result) = 1;
3771 
3772   /* If we got the LHS in a different type for storing in,
3773      convert the result back to the nominal type of LHS
3774      so that the value we return always has the same type
3775      as the LHS argument.  */
3776 
3777   if (olhstype == TREE_TYPE (result))
3778     return result;
3779   return convert_for_assignment (olhstype, result, ic_assign,
3780 				 NULL_TREE, NULL_TREE, 0);
3781 }
3782 
3783 /* Convert value RHS to type TYPE as preparation for an assignment
3784    to an lvalue of type TYPE.
3785    The real work of conversion is done by `convert'.
3786    The purpose of this function is to generate error messages
3787    for assignments that are not allowed in C.
3788    ERRTYPE says whether it is argument passing, assignment,
3789    initialization or return.
3790 
3791    FUNCTION is a tree for the function being called.
3792    PARMNUM is the number of the argument, for printing in error messages.  */
3793 
3794 static tree
convert_for_assignment(tree type,tree rhs,enum impl_conv errtype,tree fundecl,tree function,int parmnum)3795 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3796 			tree fundecl, tree function, int parmnum)
3797 {
3798   enum tree_code codel = TREE_CODE (type);
3799   tree rhstype;
3800   enum tree_code coder;
3801   tree rname = NULL_TREE;
3802   bool objc_ok = false;
3803 
3804   if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3805     {
3806       tree selector;
3807       /* Change pointer to function to the function itself for
3808 	 diagnostics.  */
3809       if (TREE_CODE (function) == ADDR_EXPR
3810 	  && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3811 	function = TREE_OPERAND (function, 0);
3812 
3813       /* Handle an ObjC selector specially for diagnostics.  */
3814       selector = objc_message_selector ();
3815       rname = function;
3816       if (selector && parmnum > 2)
3817 	{
3818 	  rname = selector;
3819 	  parmnum -= 2;
3820 	}
3821     }
3822 
3823   /* This macro is used to emit diagnostics to ensure that all format
3824      strings are complete sentences, visible to gettext and checked at
3825      compile time.  */
3826 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE)	\
3827   do {						\
3828     switch (errtype)				\
3829       {						\
3830       case ic_argpass:				\
3831 	pedwarn (AR, parmnum, rname);		\
3832 	break;					\
3833       case ic_argpass_nonproto:			\
3834 	warning (0, AR, parmnum, rname);		\
3835 	break;					\
3836       case ic_assign:				\
3837 	pedwarn (AS);				\
3838 	break;					\
3839       case ic_init:				\
3840 	pedwarn (IN);				\
3841 	break;					\
3842       case ic_return:				\
3843 	pedwarn (RE);				\
3844 	break;					\
3845       default:					\
3846 	gcc_unreachable ();			\
3847       }						\
3848   } while (0)
3849 
3850   STRIP_TYPE_NOPS (rhs);
3851 
3852   if (optimize && TREE_CODE (rhs) == VAR_DECL
3853 	   && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3854     rhs = decl_constant_value_for_broken_optimization (rhs);
3855 
3856   rhstype = TREE_TYPE (rhs);
3857   coder = TREE_CODE (rhstype);
3858 
3859   if (coder == ERROR_MARK)
3860     return error_mark_node;
3861 
3862   if (c_dialect_objc ())
3863     {
3864       int parmno;
3865 
3866       switch (errtype)
3867 	{
3868 	case ic_return:
3869 	  parmno = 0;
3870 	  break;
3871 
3872 	case ic_assign:
3873 	  parmno = -1;
3874 	  break;
3875 
3876 	case ic_init:
3877 	  parmno = -2;
3878 	  break;
3879 
3880 	default:
3881 	  parmno = parmnum;
3882 	  break;
3883 	}
3884 
3885       objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3886     }
3887 
3888   if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3889     {
3890       overflow_warning (rhs);
3891       return rhs;
3892     }
3893 
3894   if (coder == VOID_TYPE)
3895     {
3896       /* Except for passing an argument to an unprototyped function,
3897 	 this is a constraint violation.  When passing an argument to
3898 	 an unprototyped function, it is compile-time undefined;
3899 	 making it a constraint in that case was rejected in
3900 	 DR#252.  */
3901       error ("void value not ignored as it ought to be");
3902       return error_mark_node;
3903     }
3904   /* A type converts to a reference to it.
3905      This code doesn't fully support references, it's just for the
3906      special case of va_start and va_copy.  */
3907   if (codel == REFERENCE_TYPE
3908       && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3909     {
3910       if (!lvalue_p (rhs))
3911 	{
3912 	  error ("cannot pass rvalue to reference parameter");
3913 	  return error_mark_node;
3914 	}
3915       if (!c_mark_addressable (rhs))
3916 	return error_mark_node;
3917       rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3918 
3919       /* We already know that these two types are compatible, but they
3920 	 may not be exactly identical.  In fact, `TREE_TYPE (type)' is
3921 	 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3922 	 likely to be va_list, a typedef to __builtin_va_list, which
3923 	 is different enough that it will cause problems later.  */
3924       if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3925 	rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3926 
3927       rhs = build1 (NOP_EXPR, type, rhs);
3928       return rhs;
3929     }
3930   /* Some types can interconvert without explicit casts.  */
3931   else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3932 	   && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3933     return convert (type, rhs);
3934   /* Arithmetic types all interconvert, and enum is treated like int.  */
3935   else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3936 	    || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3937 	    || codel == BOOLEAN_TYPE)
3938 	   && (coder == INTEGER_TYPE || coder == REAL_TYPE
3939 	       || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3940 	       || coder == BOOLEAN_TYPE))
3941     return convert_and_check (type, rhs);
3942 
3943   /* Aggregates in different TUs might need conversion.  */
3944   if ((codel == RECORD_TYPE || codel == UNION_TYPE)
3945       && codel == coder
3946       && comptypes (type, rhstype))
3947     return convert_and_check (type, rhs);
3948 
3949   /* Conversion to a transparent union from its member types.
3950      This applies only to function arguments.  */
3951   if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3952       && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3953     {
3954       tree memb, marginal_memb = NULL_TREE;
3955 
3956       for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3957 	{
3958 	  tree memb_type = TREE_TYPE (memb);
3959 
3960 	  if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3961 			 TYPE_MAIN_VARIANT (rhstype)))
3962 	    break;
3963 
3964 	  if (TREE_CODE (memb_type) != POINTER_TYPE)
3965 	    continue;
3966 
3967 	  if (coder == POINTER_TYPE)
3968 	    {
3969 	      tree ttl = TREE_TYPE (memb_type);
3970 	      tree ttr = TREE_TYPE (rhstype);
3971 
3972 	      /* Any non-function converts to a [const][volatile] void *
3973 		 and vice versa; otherwise, targets must be the same.
3974 		 Meanwhile, the lhs target must have all the qualifiers of
3975 		 the rhs.  */
3976 	      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3977 		  || comp_target_types (memb_type, rhstype))
3978 		{
3979 		  /* If this type won't generate any warnings, use it.  */
3980 		  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3981 		      || ((TREE_CODE (ttr) == FUNCTION_TYPE
3982 			   && TREE_CODE (ttl) == FUNCTION_TYPE)
3983 			  ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3984 			     == TYPE_QUALS (ttr))
3985 			  : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3986 			     == TYPE_QUALS (ttl))))
3987 		    break;
3988 
3989 		  /* Keep looking for a better type, but remember this one.  */
3990 		  if (!marginal_memb)
3991 		    marginal_memb = memb;
3992 		}
3993 	    }
3994 
3995 	  /* Can convert integer zero to any pointer type.  */
3996 	  if (null_pointer_constant_p (rhs))
3997 	    {
3998 	      rhs = null_pointer_node;
3999 	      break;
4000 	    }
4001 	}
4002 
4003       if (memb || marginal_memb)
4004 	{
4005 	  if (!memb)
4006 	    {
4007 	      /* We have only a marginally acceptable member type;
4008 		 it needs a warning.  */
4009 	      tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
4010 	      tree ttr = TREE_TYPE (rhstype);
4011 
4012 	      /* Const and volatile mean something different for function
4013 		 types, so the usual warnings are not appropriate.  */
4014 	      if (TREE_CODE (ttr) == FUNCTION_TYPE
4015 		  && TREE_CODE (ttl) == FUNCTION_TYPE)
4016 		{
4017 		  /* Because const and volatile on functions are
4018 		     restrictions that say the function will not do
4019 		     certain things, it is okay to use a const or volatile
4020 		     function where an ordinary one is wanted, but not
4021 		     vice-versa.  */
4022 		  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4023 		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
4024 					    "makes qualified function "
4025 					    "pointer from unqualified"),
4026 					 G_("assignment makes qualified "
4027 					    "function pointer from "
4028 					    "unqualified"),
4029 					 G_("initialization makes qualified "
4030 					    "function pointer from "
4031 					    "unqualified"),
4032 					 G_("return makes qualified function "
4033 					    "pointer from unqualified"));
4034 		}
4035 	      else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4036 		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4037 					"qualifiers from pointer target type"),
4038 				     G_("assignment discards qualifiers "
4039 					"from pointer target type"),
4040 				     G_("initialization discards qualifiers "
4041 					"from pointer target type"),
4042 				     G_("return discards qualifiers from "
4043 					"pointer target type"));
4044 
4045 	      memb = marginal_memb;
4046 	    }
4047 
4048 	  if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4049 	    pedwarn ("ISO C prohibits argument conversion to union type");
4050 
4051 	  return build_constructor_single (type, memb, rhs);
4052 	}
4053     }
4054 
4055   /* Conversions among pointers */
4056   else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4057 	   && (coder == codel))
4058     {
4059       tree ttl = TREE_TYPE (type);
4060       tree ttr = TREE_TYPE (rhstype);
4061       tree mvl = ttl;
4062       tree mvr = ttr;
4063       bool is_opaque_pointer;
4064       int target_cmp = 0;   /* Cache comp_target_types () result.  */
4065 
4066       if (TREE_CODE (mvl) != ARRAY_TYPE)
4067 	mvl = TYPE_MAIN_VARIANT (mvl);
4068       if (TREE_CODE (mvr) != ARRAY_TYPE)
4069 	mvr = TYPE_MAIN_VARIANT (mvr);
4070       /* Opaque pointers are treated like void pointers.  */
4071       is_opaque_pointer = (targetm.vector_opaque_p (type)
4072 			   || targetm.vector_opaque_p (rhstype))
4073 	&& TREE_CODE (ttl) == VECTOR_TYPE
4074 	&& TREE_CODE (ttr) == VECTOR_TYPE;
4075 
4076       /* C++ does not allow the implicit conversion void* -> T*.  However,
4077 	 for the purpose of reducing the number of false positives, we
4078 	 tolerate the special case of
4079 
4080 		int *p = NULL;
4081 
4082 	 where NULL is typically defined in C to be '(void *) 0'.  */
4083       if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4084 	warning (OPT_Wc___compat, "request for implicit conversion from "
4085 		 "%qT to %qT not permitted in C++", rhstype, type);
4086 
4087       /* Check if the right-hand side has a format attribute but the
4088 	 left-hand side doesn't.  */
4089       if (warn_missing_format_attribute
4090 	  && check_missing_format_attribute (type, rhstype))
4091 	{
4092 	  switch (errtype)
4093 	  {
4094 	  case ic_argpass:
4095 	  case ic_argpass_nonproto:
4096 	    warning (OPT_Wmissing_format_attribute,
4097 		     "argument %d of %qE might be "
4098 		     "a candidate for a format attribute",
4099 		     parmnum, rname);
4100 	    break;
4101 	  case ic_assign:
4102 	    warning (OPT_Wmissing_format_attribute,
4103 		     "assignment left-hand side might be "
4104 		     "a candidate for a format attribute");
4105 	    break;
4106 	  case ic_init:
4107 	    warning (OPT_Wmissing_format_attribute,
4108 		     "initialization left-hand side might be "
4109 		     "a candidate for a format attribute");
4110 	    break;
4111 	  case ic_return:
4112 	    warning (OPT_Wmissing_format_attribute,
4113 		     "return type might be "
4114 		     "a candidate for a format attribute");
4115 	    break;
4116 	  default:
4117 	    gcc_unreachable ();
4118 	  }
4119 	}
4120 
4121       /* Any non-function converts to a [const][volatile] void *
4122 	 and vice versa; otherwise, targets must be the same.
4123 	 Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
4124       if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4125 	  || (target_cmp = comp_target_types (type, rhstype))
4126 	  || is_opaque_pointer
4127 	  || (c_common_unsigned_type (mvl)
4128 	      == c_common_unsigned_type (mvr)))
4129 	{
4130 	  if (pedantic
4131 	      && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4132 		  ||
4133 		  (VOID_TYPE_P (ttr)
4134 		   && !null_pointer_constant_p (rhs)
4135 		   && TREE_CODE (ttl) == FUNCTION_TYPE)))
4136 	    WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4137 				    "%qE between function pointer "
4138 				    "and %<void *%>"),
4139 				 G_("ISO C forbids assignment between "
4140 				    "function pointer and %<void *%>"),
4141 				 G_("ISO C forbids initialization between "
4142 				    "function pointer and %<void *%>"),
4143 				 G_("ISO C forbids return between function "
4144 				    "pointer and %<void *%>"));
4145 	  /* Const and volatile mean something different for function types,
4146 	     so the usual warnings are not appropriate.  */
4147 	  else if (TREE_CODE (ttr) != FUNCTION_TYPE
4148 		   && TREE_CODE (ttl) != FUNCTION_TYPE)
4149 	    {
4150 	      if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4151 		{
4152 		  /* Types differing only by the presence of the 'volatile'
4153 		     qualifier are acceptable if the 'volatile' has been added
4154 		     in by the Objective-C EH machinery.  */
4155 		  if (!objc_type_quals_match (ttl, ttr))
4156 		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4157 					    "qualifiers from pointer target type"),
4158 					 G_("assignment discards qualifiers "
4159 					    "from pointer target type"),
4160 					 G_("initialization discards qualifiers "
4161 					    "from pointer target type"),
4162 					 G_("return discards qualifiers from "
4163 					    "pointer target type"));
4164 		}
4165 	      /* If this is not a case of ignoring a mismatch in signedness,
4166 		 no warning.  */
4167 	      else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4168 		       || target_cmp)
4169 		;
4170 	      /* If there is a mismatch, do warn.  */
4171 	      else if (warn_pointer_sign)
4172 		WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4173 					"%d of %qE differ in signedness"),
4174 				     G_("pointer targets in assignment "
4175 					"differ in signedness"),
4176 				     G_("pointer targets in initialization "
4177 					"differ in signedness"),
4178 				     G_("pointer targets in return differ "
4179 					"in signedness"));
4180 	    }
4181 	  else if (TREE_CODE (ttl) == FUNCTION_TYPE
4182 		   && TREE_CODE (ttr) == FUNCTION_TYPE)
4183 	    {
4184 	      /* Because const and volatile on functions are restrictions
4185 		 that say the function will not do certain things,
4186 		 it is okay to use a const or volatile function
4187 		 where an ordinary one is wanted, but not vice-versa.  */
4188 	      if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4189 		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4190 					"qualified function pointer "
4191 					"from unqualified"),
4192 				     G_("assignment makes qualified function "
4193 					"pointer from unqualified"),
4194 				     G_("initialization makes qualified "
4195 					"function pointer from unqualified"),
4196 				     G_("return makes qualified function "
4197 					"pointer from unqualified"));
4198 	    }
4199 	}
4200       else
4201 	/* Avoid warning about the volatile ObjC EH puts on decls.  */
4202 	if (!objc_ok)
4203 	  WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4204 				  "incompatible pointer type"),
4205 			       G_("assignment from incompatible pointer type"),
4206 			       G_("initialization from incompatible "
4207 				  "pointer type"),
4208 			       G_("return from incompatible pointer type"));
4209 
4210       return convert (type, rhs);
4211     }
4212   else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4213     {
4214       /* ??? This should not be an error when inlining calls to
4215 	 unprototyped functions.  */
4216       error ("invalid use of non-lvalue array");
4217       return error_mark_node;
4218     }
4219   else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4220     {
4221       /* An explicit constant 0 can convert to a pointer,
4222 	 or one that results from arithmetic, even including
4223 	 a cast to integer type.  */
4224       if (!null_pointer_constant_p (rhs))
4225 	WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4226 				"pointer from integer without a cast"),
4227 			     G_("assignment makes pointer from integer "
4228 				"without a cast"),
4229 			     G_("initialization makes pointer from "
4230 				"integer without a cast"),
4231 			     G_("return makes pointer from integer "
4232 				"without a cast"));
4233 
4234       return convert (type, rhs);
4235     }
4236   else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4237     {
4238       WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4239 			      "from pointer without a cast"),
4240 			   G_("assignment makes integer from pointer "
4241 			      "without a cast"),
4242 			   G_("initialization makes integer from pointer "
4243 			      "without a cast"),
4244 			   G_("return makes integer from pointer "
4245 			      "without a cast"));
4246       return convert (type, rhs);
4247     }
4248   else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4249     return convert (type, rhs);
4250 
4251   switch (errtype)
4252     {
4253     case ic_argpass:
4254     case ic_argpass_nonproto:
4255       /* ??? This should not be an error when inlining calls to
4256 	 unprototyped functions.  */
4257       error ("incompatible type for argument %d of %qE", parmnum, rname);
4258       break;
4259     case ic_assign:
4260       error ("incompatible types in assignment");
4261       break;
4262     case ic_init:
4263       error ("incompatible types in initialization");
4264       break;
4265     case ic_return:
4266       error ("incompatible types in return");
4267       break;
4268     default:
4269       gcc_unreachable ();
4270     }
4271 
4272   return error_mark_node;
4273 }
4274 
4275 /* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
4276    is used for error and warning reporting and indicates which argument
4277    is being processed.  */
4278 
4279 tree
c_convert_parm_for_inlining(tree parm,tree value,tree fn,int argnum)4280 c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4281 {
4282   tree ret, type;
4283 
4284   /* If FN was prototyped at the call site, the value has been converted
4285      already in convert_arguments.
4286      However, we might see a prototype now that was not in place when
4287      the function call was seen, so check that the VALUE actually matches
4288      PARM before taking an early exit.  */
4289   if (!value
4290       || (TYPE_ARG_TYPES (TREE_TYPE (fn))
4291 	  && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
4292 	      == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
4293     return value;
4294 
4295   type = TREE_TYPE (parm);
4296   ret = convert_for_assignment (type, value,
4297 				ic_argpass_nonproto, fn,
4298 				fn, argnum);
4299   if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4300       && INTEGRAL_TYPE_P (type)
4301       && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4302     ret = default_conversion (ret);
4303   return ret;
4304 }
4305 
4306 /* If VALUE is a compound expr all of whose expressions are constant, then
4307    return its value.  Otherwise, return error_mark_node.
4308 
4309    This is for handling COMPOUND_EXPRs as initializer elements
4310    which is allowed with a warning when -pedantic is specified.  */
4311 
4312 static tree
valid_compound_expr_initializer(tree value,tree endtype)4313 valid_compound_expr_initializer (tree value, tree endtype)
4314 {
4315   if (TREE_CODE (value) == COMPOUND_EXPR)
4316     {
4317       if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4318 	  == error_mark_node)
4319 	return error_mark_node;
4320       return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4321 					      endtype);
4322     }
4323   else if (!initializer_constant_valid_p (value, endtype))
4324     return error_mark_node;
4325   else
4326     return value;
4327 }
4328 
4329 /* Perform appropriate conversions on the initial value of a variable,
4330    store it in the declaration DECL,
4331    and print any error messages that are appropriate.
4332    If the init is invalid, store an ERROR_MARK.  */
4333 
4334 void
store_init_value(tree decl,tree init)4335 store_init_value (tree decl, tree init)
4336 {
4337   tree value, type;
4338 
4339   /* If variable's type was invalidly declared, just ignore it.  */
4340 
4341   type = TREE_TYPE (decl);
4342   if (TREE_CODE (type) == ERROR_MARK)
4343     return;
4344 
4345   /* Digest the specified initializer into an expression.  */
4346 
4347   value = digest_init (type, init, true, TREE_STATIC (decl));
4348 
4349   /* Store the expression if valid; else report error.  */
4350 
4351   if (!in_system_header
4352       && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4353     warning (OPT_Wtraditional, "traditional C rejects automatic "
4354 	     "aggregate initialization");
4355 
4356   DECL_INITIAL (decl) = value;
4357 
4358   /* ANSI wants warnings about out-of-range constant initializers.  */
4359   STRIP_TYPE_NOPS (value);
4360   constant_expression_warning (value);
4361 
4362   /* Check if we need to set array size from compound literal size.  */
4363   if (TREE_CODE (type) == ARRAY_TYPE
4364       && TYPE_DOMAIN (type) == 0
4365       && value != error_mark_node)
4366     {
4367       tree inside_init = init;
4368 
4369       STRIP_TYPE_NOPS (inside_init);
4370       inside_init = fold (inside_init);
4371 
4372       if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4373 	{
4374 	  tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4375 
4376 	  if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4377 	    {
4378 	      /* For int foo[] = (int [3]){1}; we need to set array size
4379 		 now since later on array initializer will be just the
4380 		 brace enclosed list of the compound literal.  */
4381 	      type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4382 	      TREE_TYPE (decl) = type;
4383 	      TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4384 	      layout_type (type);
4385 	      layout_decl (cldecl, 0);
4386 	    }
4387 	}
4388     }
4389 }
4390 
4391 /* Methods for storing and printing names for error messages.  */
4392 
4393 /* Implement a spelling stack that allows components of a name to be pushed
4394    and popped.  Each element on the stack is this structure.  */
4395 
4396 struct spelling
4397 {
4398   int kind;
4399   union
4400     {
4401       unsigned HOST_WIDE_INT i;
4402       const char *s;
4403     } u;
4404 };
4405 
4406 #define SPELLING_STRING 1
4407 #define SPELLING_MEMBER 2
4408 #define SPELLING_BOUNDS 3
4409 
4410 static struct spelling *spelling;	/* Next stack element (unused).  */
4411 static struct spelling *spelling_base;	/* Spelling stack base.  */
4412 static int spelling_size;		/* Size of the spelling stack.  */
4413 
4414 /* Macros to save and restore the spelling stack around push_... functions.
4415    Alternative to SAVE_SPELLING_STACK.  */
4416 
4417 #define SPELLING_DEPTH() (spelling - spelling_base)
4418 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4419 
4420 /* Push an element on the spelling stack with type KIND and assign VALUE
4421    to MEMBER.  */
4422 
4423 #define PUSH_SPELLING(KIND, VALUE, MEMBER)				\
4424 {									\
4425   int depth = SPELLING_DEPTH ();					\
4426 									\
4427   if (depth >= spelling_size)						\
4428     {									\
4429       spelling_size += 10;						\
4430       spelling_base = XRESIZEVEC (struct spelling, spelling_base,	\
4431 				  spelling_size);			\
4432       RESTORE_SPELLING_DEPTH (depth);					\
4433     }									\
4434 									\
4435   spelling->kind = (KIND);						\
4436   spelling->MEMBER = (VALUE);						\
4437   spelling++;								\
4438 }
4439 
4440 /* Push STRING on the stack.  Printed literally.  */
4441 
4442 static void
push_string(const char * string)4443 push_string (const char *string)
4444 {
4445   PUSH_SPELLING (SPELLING_STRING, string, u.s);
4446 }
4447 
4448 /* Push a member name on the stack.  Printed as '.' STRING.  */
4449 
4450 static void
push_member_name(tree decl)4451 push_member_name (tree decl)
4452 {
4453   const char *const string
4454     = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4455   PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4456 }
4457 
4458 /* Push an array bounds on the stack.  Printed as [BOUNDS].  */
4459 
4460 static void
push_array_bounds(unsigned HOST_WIDE_INT bounds)4461 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4462 {
4463   PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4464 }
4465 
4466 /* Compute the maximum size in bytes of the printed spelling.  */
4467 
4468 static int
spelling_length(void)4469 spelling_length (void)
4470 {
4471   int size = 0;
4472   struct spelling *p;
4473 
4474   for (p = spelling_base; p < spelling; p++)
4475     {
4476       if (p->kind == SPELLING_BOUNDS)
4477 	size += 25;
4478       else
4479 	size += strlen (p->u.s) + 1;
4480     }
4481 
4482   return size;
4483 }
4484 
4485 /* Print the spelling to BUFFER and return it.  */
4486 
4487 static char *
print_spelling(char * buffer)4488 print_spelling (char *buffer)
4489 {
4490   char *d = buffer;
4491   struct spelling *p;
4492 
4493   for (p = spelling_base; p < spelling; p++)
4494     if (p->kind == SPELLING_BOUNDS)
4495       {
4496 	sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4497 	d += strlen (d);
4498       }
4499     else
4500       {
4501 	const char *s;
4502 	if (p->kind == SPELLING_MEMBER)
4503 	  *d++ = '.';
4504 	for (s = p->u.s; (*d = *s++); d++)
4505 	  ;
4506       }
4507   *d++ = '\0';
4508   return buffer;
4509 }
4510 
4511 /* Issue an error message for a bad initializer component.
4512    MSGID identifies the message.
4513    The component name is taken from the spelling stack.  */
4514 
4515 void
error_init(const char * msgid)4516 error_init (const char *msgid)
4517 {
4518   char *ofwhat;
4519 
4520   error ("%s", _(msgid));
4521   ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4522   if (*ofwhat)
4523     error ("(near initialization for %qs)", ofwhat);
4524 }
4525 
4526 /* Issue a pedantic warning for a bad initializer component.
4527    MSGID identifies the message.
4528    The component name is taken from the spelling stack.  */
4529 
4530 void
pedwarn_init(const char * msgid)4531 pedwarn_init (const char *msgid)
4532 {
4533   char *ofwhat;
4534 
4535   pedwarn ("%s", _(msgid));
4536   ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4537   if (*ofwhat)
4538     pedwarn ("(near initialization for %qs)", ofwhat);
4539 }
4540 
4541 /* Issue a warning for a bad initializer component.
4542    MSGID identifies the message.
4543    The component name is taken from the spelling stack.  */
4544 
4545 static void
warning_init(const char * msgid)4546 warning_init (const char *msgid)
4547 {
4548   char *ofwhat;
4549 
4550   warning (0, "%s", _(msgid));
4551   ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4552   if (*ofwhat)
4553     warning (0, "(near initialization for %qs)", ofwhat);
4554 }
4555 
4556 /* If TYPE is an array type and EXPR is a parenthesized string
4557    constant, warn if pedantic that EXPR is being used to initialize an
4558    object of type TYPE.  */
4559 
4560 void
maybe_warn_string_init(tree type,struct c_expr expr)4561 maybe_warn_string_init (tree type, struct c_expr expr)
4562 {
4563   if (pedantic
4564       && TREE_CODE (type) == ARRAY_TYPE
4565       && TREE_CODE (expr.value) == STRING_CST
4566       && expr.original_code != STRING_CST)
4567     pedwarn_init ("array initialized from parenthesized string constant");
4568 }
4569 
4570 /* Digest the parser output INIT as an initializer for type TYPE.
4571    Return a C expression of type TYPE to represent the initial value.
4572 
4573    If INIT is a string constant, STRICT_STRING is true if it is
4574    unparenthesized or we should not warn here for it being parenthesized.
4575    For other types of INIT, STRICT_STRING is not used.
4576 
4577    REQUIRE_CONSTANT requests an error if non-constant initializers or
4578    elements are seen.  */
4579 
4580 static tree
digest_init(tree type,tree init,bool strict_string,int require_constant)4581 digest_init (tree type, tree init, bool strict_string, int require_constant)
4582 {
4583   enum tree_code code = TREE_CODE (type);
4584   tree inside_init = init;
4585 
4586   if (type == error_mark_node
4587       || !init
4588       || init == error_mark_node
4589       || TREE_TYPE (init) == error_mark_node)
4590     return error_mark_node;
4591 
4592   STRIP_TYPE_NOPS (inside_init);
4593 
4594   inside_init = fold (inside_init);
4595 
4596   /* Initialization of an array of chars from a string constant
4597      optionally enclosed in braces.  */
4598 
4599   if (code == ARRAY_TYPE && inside_init
4600       && TREE_CODE (inside_init) == STRING_CST)
4601     {
4602       tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4603       /* Note that an array could be both an array of character type
4604 	 and an array of wchar_t if wchar_t is signed char or unsigned
4605 	 char.  */
4606       bool char_array = (typ1 == char_type_node
4607 			 || typ1 == signed_char_type_node
4608 			 || typ1 == unsigned_char_type_node);
4609       bool wchar_array = !!comptypes (typ1, wchar_type_node);
4610       if (char_array || wchar_array)
4611 	{
4612 	  struct c_expr expr;
4613 	  bool char_string;
4614 	  expr.value = inside_init;
4615 	  expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4616 	  maybe_warn_string_init (type, expr);
4617 
4618 	  char_string
4619 	    = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4620 	       == char_type_node);
4621 
4622 	  if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4623 			 TYPE_MAIN_VARIANT (type)))
4624 	    return inside_init;
4625 
4626 	  if (!wchar_array && !char_string)
4627 	    {
4628 	      error_init ("char-array initialized from wide string");
4629 	      return error_mark_node;
4630 	    }
4631 	  if (char_string && !char_array)
4632 	    {
4633 	      error_init ("wchar_t-array initialized from non-wide string");
4634 	      return error_mark_node;
4635 	    }
4636 
4637 	  TREE_TYPE (inside_init) = type;
4638 	  if (TYPE_DOMAIN (type) != 0
4639 	      && TYPE_SIZE (type) != 0
4640 	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4641 	      /* Subtract 1 (or sizeof (wchar_t))
4642 		 because it's ok to ignore the terminating null char
4643 		 that is counted in the length of the constant.  */
4644 	      && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4645 				       TREE_STRING_LENGTH (inside_init)
4646 				       - ((TYPE_PRECISION (typ1)
4647 					   != TYPE_PRECISION (char_type_node))
4648 					  ? (TYPE_PRECISION (wchar_type_node)
4649 					     / BITS_PER_UNIT)
4650 					  : 1)))
4651 	    pedwarn_init ("initializer-string for array of chars is too long");
4652 
4653 	  return inside_init;
4654 	}
4655       else if (INTEGRAL_TYPE_P (typ1))
4656 	{
4657 	  error_init ("array of inappropriate type initialized "
4658 		      "from string constant");
4659 	  return error_mark_node;
4660 	}
4661     }
4662 
4663   /* Build a VECTOR_CST from a *constant* vector constructor.  If the
4664      vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4665      below and handle as a constructor.  */
4666   if (code == VECTOR_TYPE
4667       && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4668       && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4669       && TREE_CONSTANT (inside_init))
4670     {
4671       if (TREE_CODE (inside_init) == VECTOR_CST
4672 	  && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4673 			TYPE_MAIN_VARIANT (type)))
4674 	return inside_init;
4675 
4676       if (TREE_CODE (inside_init) == CONSTRUCTOR)
4677 	{
4678 	  unsigned HOST_WIDE_INT ix;
4679 	  tree value;
4680 	  bool constant_p = true;
4681 
4682 	  /* Iterate through elements and check if all constructor
4683 	     elements are *_CSTs.  */
4684 	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4685 	    if (!CONSTANT_CLASS_P (value))
4686 	      {
4687 		constant_p = false;
4688 		break;
4689 	      }
4690 
4691 	  if (constant_p)
4692 	    return build_vector_from_ctor (type,
4693 					   CONSTRUCTOR_ELTS (inside_init));
4694 	}
4695     }
4696 
4697   /* Any type can be initialized
4698      from an expression of the same type, optionally with braces.  */
4699 
4700   if (inside_init && TREE_TYPE (inside_init) != 0
4701       && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4702 		     TYPE_MAIN_VARIANT (type))
4703 	  || (code == ARRAY_TYPE
4704 	      && comptypes (TREE_TYPE (inside_init), type))
4705 	  || (code == VECTOR_TYPE
4706 	      && comptypes (TREE_TYPE (inside_init), type))
4707 	  || (code == POINTER_TYPE
4708 	      && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4709 	      && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4710 			    TREE_TYPE (type)))))
4711     {
4712       if (code == POINTER_TYPE)
4713 	{
4714 	  if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4715 	    {
4716 	      if (TREE_CODE (inside_init) == STRING_CST
4717 		  || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4718 		inside_init = array_to_pointer_conversion (inside_init);
4719 	      else
4720 		{
4721 		  error_init ("invalid use of non-lvalue array");
4722 		  return error_mark_node;
4723 		}
4724 	    }
4725 	}
4726 
4727       if (code == VECTOR_TYPE)
4728 	/* Although the types are compatible, we may require a
4729 	   conversion.  */
4730 	inside_init = convert (type, inside_init);
4731 
4732       if (require_constant
4733 	  && (code == VECTOR_TYPE || !flag_isoc99)
4734 	  && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4735 	{
4736 	  /* As an extension, allow initializing objects with static storage
4737 	     duration with compound literals (which are then treated just as
4738 	     the brace enclosed list they contain).  Also allow this for
4739 	     vectors, as we can only assign them with compound literals.  */
4740 	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4741 	  inside_init = DECL_INITIAL (decl);
4742 	}
4743 
4744       if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4745 	  && TREE_CODE (inside_init) != CONSTRUCTOR)
4746 	{
4747 	  error_init ("array initialized from non-constant array expression");
4748 	  return error_mark_node;
4749 	}
4750 
4751       if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4752 	inside_init = decl_constant_value_for_broken_optimization (inside_init);
4753 
4754       /* Compound expressions can only occur here if -pedantic or
4755 	 -pedantic-errors is specified.  In the later case, we always want
4756 	 an error.  In the former case, we simply want a warning.  */
4757       if (require_constant && pedantic
4758 	  && TREE_CODE (inside_init) == COMPOUND_EXPR)
4759 	{
4760 	  inside_init
4761 	    = valid_compound_expr_initializer (inside_init,
4762 					       TREE_TYPE (inside_init));
4763 	  if (inside_init == error_mark_node)
4764 	    error_init ("initializer element is not constant");
4765 	  else
4766 	    pedwarn_init ("initializer element is not constant");
4767 	  if (flag_pedantic_errors)
4768 	    inside_init = error_mark_node;
4769 	}
4770       else if (require_constant
4771 	       && !initializer_constant_valid_p (inside_init,
4772 						 TREE_TYPE (inside_init)))
4773 	{
4774 	  error_init ("initializer element is not constant");
4775 	  inside_init = error_mark_node;
4776 	}
4777 
4778       /* Added to enable additional -Wmissing-format-attribute warnings.  */
4779       if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4780 	inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4781 					      NULL_TREE, 0);
4782       return inside_init;
4783     }
4784 
4785   /* Handle scalar types, including conversions.  */
4786 
4787   if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4788       || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4789       || code == VECTOR_TYPE)
4790     {
4791       if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4792 	  && (TREE_CODE (init) == STRING_CST
4793 	      || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4794 	init = array_to_pointer_conversion (init);
4795       inside_init
4796 	= convert_for_assignment (type, init, ic_init,
4797 				  NULL_TREE, NULL_TREE, 0);
4798 
4799       /* Check to see if we have already given an error message.  */
4800       if (inside_init == error_mark_node)
4801 	;
4802       else if (require_constant && !TREE_CONSTANT (inside_init))
4803 	{
4804 	  error_init ("initializer element is not constant");
4805 	  inside_init = error_mark_node;
4806 	}
4807       else if (require_constant
4808 	       && !initializer_constant_valid_p (inside_init,
4809 						 TREE_TYPE (inside_init)))
4810 	{
4811 	  error_init ("initializer element is not computable at load time");
4812 	  inside_init = error_mark_node;
4813 	}
4814 
4815       return inside_init;
4816     }
4817 
4818   /* Come here only for records and arrays.  */
4819 
4820   if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4821     {
4822       error_init ("variable-sized object may not be initialized");
4823       return error_mark_node;
4824     }
4825 
4826   error_init ("invalid initializer");
4827   return error_mark_node;
4828 }
4829 
4830 /* Handle initializers that use braces.  */
4831 
4832 /* Type of object we are accumulating a constructor for.
4833    This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
4834 static tree constructor_type;
4835 
4836 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4837    left to fill.  */
4838 static tree constructor_fields;
4839 
4840 /* For an ARRAY_TYPE, this is the specified index
4841    at which to store the next element we get.  */
4842 static tree constructor_index;
4843 
4844 /* For an ARRAY_TYPE, this is the maximum index.  */
4845 static tree constructor_max_index;
4846 
4847 /* For a RECORD_TYPE, this is the first field not yet written out.  */
4848 static tree constructor_unfilled_fields;
4849 
4850 /* For an ARRAY_TYPE, this is the index of the first element
4851    not yet written out.  */
4852 static tree constructor_unfilled_index;
4853 
4854 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4855    This is so we can generate gaps between fields, when appropriate.  */
4856 static tree constructor_bit_index;
4857 
4858 /* If we are saving up the elements rather than allocating them,
4859    this is the list of elements so far (in reverse order,
4860    most recent first).  */
4861 static VEC(constructor_elt,gc) *constructor_elements;
4862 
4863 /* 1 if constructor should be incrementally stored into a constructor chain,
4864    0 if all the elements should be kept in AVL tree.  */
4865 static int constructor_incremental;
4866 
4867 /* 1 if so far this constructor's elements are all compile-time constants.  */
4868 static int constructor_constant;
4869 
4870 /* 1 if so far this constructor's elements are all valid address constants.  */
4871 static int constructor_simple;
4872 
4873 /* 1 if this constructor is erroneous so far.  */
4874 static int constructor_erroneous;
4875 
4876 /* 1 if this constructor is a zero init. */
4877 static int constructor_zeroinit;
4878 
4879 /* Structure for managing pending initializer elements, organized as an
4880    AVL tree.  */
4881 
4882 struct init_node
4883 {
4884   struct init_node *left, *right;
4885   struct init_node *parent;
4886   int balance;
4887   tree purpose;
4888   tree value;
4889 };
4890 
4891 /* Tree of pending elements at this constructor level.
4892    These are elements encountered out of order
4893    which belong at places we haven't reached yet in actually
4894    writing the output.
4895    Will never hold tree nodes across GC runs.  */
4896 static struct init_node *constructor_pending_elts;
4897 
4898 /* The SPELLING_DEPTH of this constructor.  */
4899 static int constructor_depth;
4900 
4901 /* DECL node for which an initializer is being read.
4902    0 means we are reading a constructor expression
4903    such as (struct foo) {...}.  */
4904 static tree constructor_decl;
4905 
4906 /* Nonzero if this is an initializer for a top-level decl.  */
4907 static int constructor_top_level;
4908 
4909 /* Nonzero if there were any member designators in this initializer.  */
4910 static int constructor_designated;
4911 
4912 /* Nesting depth of designator list.  */
4913 static int designator_depth;
4914 
4915 /* Nonzero if there were diagnosed errors in this designator list.  */
4916 static int designator_erroneous;
4917 
4918 
4919 /* This stack has a level for each implicit or explicit level of
4920    structuring in the initializer, including the outermost one.  It
4921    saves the values of most of the variables above.  */
4922 
4923 struct constructor_range_stack;
4924 
4925 struct constructor_stack
4926 {
4927   struct constructor_stack *next;
4928   tree type;
4929   tree fields;
4930   tree index;
4931   tree max_index;
4932   tree unfilled_index;
4933   tree unfilled_fields;
4934   tree bit_index;
4935   VEC(constructor_elt,gc) *elements;
4936   struct init_node *pending_elts;
4937   int offset;
4938   int depth;
4939   /* If value nonzero, this value should replace the entire
4940      constructor at this level.  */
4941   struct c_expr replacement_value;
4942   struct constructor_range_stack *range_stack;
4943   char constant;
4944   char simple;
4945   char implicit;
4946   char erroneous;
4947   char outer;
4948   char incremental;
4949   char designated;
4950 };
4951 
4952 static struct constructor_stack *constructor_stack;
4953 
4954 /* This stack represents designators from some range designator up to
4955    the last designator in the list.  */
4956 
4957 struct constructor_range_stack
4958 {
4959   struct constructor_range_stack *next, *prev;
4960   struct constructor_stack *stack;
4961   tree range_start;
4962   tree index;
4963   tree range_end;
4964   tree fields;
4965 };
4966 
4967 static struct constructor_range_stack *constructor_range_stack;
4968 
4969 /* This stack records separate initializers that are nested.
4970    Nested initializers can't happen in ANSI C, but GNU C allows them
4971    in cases like { ... (struct foo) { ... } ... }.  */
4972 
4973 struct initializer_stack
4974 {
4975   struct initializer_stack *next;
4976   tree decl;
4977   struct constructor_stack *constructor_stack;
4978   struct constructor_range_stack *constructor_range_stack;
4979   VEC(constructor_elt,gc) *elements;
4980   struct spelling *spelling;
4981   struct spelling *spelling_base;
4982   int spelling_size;
4983   char top_level;
4984   char require_constant_value;
4985   char require_constant_elements;
4986 };
4987 
4988 static struct initializer_stack *initializer_stack;
4989 
4990 /* Prepare to parse and output the initializer for variable DECL.  */
4991 
4992 void
start_init(tree decl,tree asmspec_tree ATTRIBUTE_UNUSED,int top_level)4993 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4994 {
4995   const char *locus;
4996   struct initializer_stack *p = XNEW (struct initializer_stack);
4997 
4998   p->decl = constructor_decl;
4999   p->require_constant_value = require_constant_value;
5000   p->require_constant_elements = require_constant_elements;
5001   p->constructor_stack = constructor_stack;
5002   p->constructor_range_stack = constructor_range_stack;
5003   p->elements = constructor_elements;
5004   p->spelling = spelling;
5005   p->spelling_base = spelling_base;
5006   p->spelling_size = spelling_size;
5007   p->top_level = constructor_top_level;
5008   p->next = initializer_stack;
5009   initializer_stack = p;
5010 
5011   constructor_decl = decl;
5012   constructor_designated = 0;
5013   constructor_top_level = top_level;
5014 
5015   if (decl != 0 && decl != error_mark_node)
5016     {
5017       require_constant_value = TREE_STATIC (decl);
5018       require_constant_elements
5019 	= ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5020 	   /* For a scalar, you can always use any value to initialize,
5021 	      even within braces.  */
5022 	   && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5023 	       || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5024 	       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5025 	       || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5026       locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5027     }
5028   else
5029     {
5030       require_constant_value = 0;
5031       require_constant_elements = 0;
5032       locus = "(anonymous)";
5033     }
5034 
5035   constructor_stack = 0;
5036   constructor_range_stack = 0;
5037 
5038   constructor_zeroinit = 0;
5039   missing_braces_mentioned = 0;
5040 
5041   spelling_base = 0;
5042   spelling_size = 0;
5043   RESTORE_SPELLING_DEPTH (0);
5044 
5045   if (locus)
5046     push_string (locus);
5047 }
5048 
5049 void
finish_init(void)5050 finish_init (void)
5051 {
5052   struct initializer_stack *p = initializer_stack;
5053 
5054   /* Free the whole constructor stack of this initializer.  */
5055   while (constructor_stack)
5056     {
5057       struct constructor_stack *q = constructor_stack;
5058       constructor_stack = q->next;
5059       free (q);
5060     }
5061 
5062   gcc_assert (!constructor_range_stack);
5063 
5064   /* Pop back to the data of the outer initializer (if any).  */
5065   free (spelling_base);
5066 
5067   constructor_decl = p->decl;
5068   require_constant_value = p->require_constant_value;
5069   require_constant_elements = p->require_constant_elements;
5070   constructor_stack = p->constructor_stack;
5071   constructor_range_stack = p->constructor_range_stack;
5072   constructor_elements = p->elements;
5073   spelling = p->spelling;
5074   spelling_base = p->spelling_base;
5075   spelling_size = p->spelling_size;
5076   constructor_top_level = p->top_level;
5077   initializer_stack = p->next;
5078   free (p);
5079 }
5080 
5081 /* Call here when we see the initializer is surrounded by braces.
5082    This is instead of a call to push_init_level;
5083    it is matched by a call to pop_init_level.
5084 
5085    TYPE is the type to initialize, for a constructor expression.
5086    For an initializer for a decl, TYPE is zero.  */
5087 
5088 void
really_start_incremental_init(tree type)5089 really_start_incremental_init (tree type)
5090 {
5091   struct constructor_stack *p = XNEW (struct constructor_stack);
5092 
5093   if (type == 0)
5094     type = TREE_TYPE (constructor_decl);
5095 
5096   if (targetm.vector_opaque_p (type))
5097     error ("opaque vector types cannot be initialized");
5098 
5099   p->type = constructor_type;
5100   p->fields = constructor_fields;
5101   p->index = constructor_index;
5102   p->max_index = constructor_max_index;
5103   p->unfilled_index = constructor_unfilled_index;
5104   p->unfilled_fields = constructor_unfilled_fields;
5105   p->bit_index = constructor_bit_index;
5106   p->elements = constructor_elements;
5107   p->constant = constructor_constant;
5108   p->simple = constructor_simple;
5109   p->erroneous = constructor_erroneous;
5110   p->pending_elts = constructor_pending_elts;
5111   p->depth = constructor_depth;
5112   p->replacement_value.value = 0;
5113   p->replacement_value.original_code = ERROR_MARK;
5114   p->implicit = 0;
5115   p->range_stack = 0;
5116   p->outer = 0;
5117   p->incremental = constructor_incremental;
5118   p->designated = constructor_designated;
5119   p->next = 0;
5120   constructor_stack = p;
5121 
5122   constructor_constant = 1;
5123   constructor_simple = 1;
5124   constructor_depth = SPELLING_DEPTH ();
5125   constructor_elements = 0;
5126   constructor_pending_elts = 0;
5127   constructor_type = type;
5128   constructor_incremental = 1;
5129   constructor_designated = 0;
5130   designator_depth = 0;
5131   designator_erroneous = 0;
5132 
5133   if (TREE_CODE (constructor_type) == RECORD_TYPE
5134       || TREE_CODE (constructor_type) == UNION_TYPE)
5135     {
5136       constructor_fields = TYPE_FIELDS (constructor_type);
5137       /* Skip any nameless bit fields at the beginning.  */
5138       while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5139 	     && DECL_NAME (constructor_fields) == 0)
5140 	constructor_fields = TREE_CHAIN (constructor_fields);
5141 
5142       constructor_unfilled_fields = constructor_fields;
5143       constructor_bit_index = bitsize_zero_node;
5144     }
5145   else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5146     {
5147       if (TYPE_DOMAIN (constructor_type))
5148 	{
5149 	  constructor_max_index
5150 	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5151 
5152 	  /* Detect non-empty initializations of zero-length arrays.  */
5153 	  if (constructor_max_index == NULL_TREE
5154 	      && TYPE_SIZE (constructor_type))
5155 	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5156 
5157 	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5158 	     to initialize VLAs will cause a proper error; avoid tree
5159 	     checking errors as well by setting a safe value.  */
5160 	  if (constructor_max_index
5161 	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5162 	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5163 
5164 	  constructor_index
5165 	    = convert (bitsizetype,
5166 		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5167 	}
5168       else
5169 	{
5170 	  constructor_index = bitsize_zero_node;
5171 	  constructor_max_index = NULL_TREE;
5172 	}
5173 
5174       constructor_unfilled_index = constructor_index;
5175     }
5176   else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5177     {
5178       /* Vectors are like simple fixed-size arrays.  */
5179       constructor_max_index =
5180 	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5181       constructor_index = bitsize_zero_node;
5182       constructor_unfilled_index = constructor_index;
5183     }
5184   else
5185     {
5186       /* Handle the case of int x = {5}; */
5187       constructor_fields = constructor_type;
5188       constructor_unfilled_fields = constructor_type;
5189     }
5190 }
5191 
5192 /* Push down into a subobject, for initialization.
5193    If this is for an explicit set of braces, IMPLICIT is 0.
5194    If it is because the next element belongs at a lower level,
5195    IMPLICIT is 1 (or 2 if the push is because of designator list).  */
5196 
5197 void
push_init_level(int implicit)5198 push_init_level (int implicit)
5199 {
5200   struct constructor_stack *p;
5201   tree value = NULL_TREE;
5202 
5203   /* If we've exhausted any levels that didn't have braces,
5204      pop them now.  If implicit == 1, this will have been done in
5205      process_init_element; do not repeat it here because in the case
5206      of excess initializers for an empty aggregate this leads to an
5207      infinite cycle of popping a level and immediately recreating
5208      it.  */
5209   if (implicit != 1)
5210     {
5211       while (constructor_stack->implicit)
5212 	{
5213 	  if ((TREE_CODE (constructor_type) == RECORD_TYPE
5214 	       || TREE_CODE (constructor_type) == UNION_TYPE)
5215 	      && constructor_fields == 0)
5216 	    process_init_element (pop_init_level (1));
5217 	  else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5218 		   && constructor_max_index
5219 		   && tree_int_cst_lt (constructor_max_index,
5220 				       constructor_index))
5221 	    process_init_element (pop_init_level (1));
5222 	  else
5223 	    break;
5224 	}
5225     }
5226 
5227   /* Unless this is an explicit brace, we need to preserve previous
5228      content if any.  */
5229   if (implicit)
5230     {
5231       if ((TREE_CODE (constructor_type) == RECORD_TYPE
5232 	   || TREE_CODE (constructor_type) == UNION_TYPE)
5233 	  && constructor_fields)
5234 	value = find_init_member (constructor_fields);
5235       else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5236 	value = find_init_member (constructor_index);
5237     }
5238 
5239   p = XNEW (struct constructor_stack);
5240   p->type = constructor_type;
5241   p->fields = constructor_fields;
5242   p->index = constructor_index;
5243   p->max_index = constructor_max_index;
5244   p->unfilled_index = constructor_unfilled_index;
5245   p->unfilled_fields = constructor_unfilled_fields;
5246   p->bit_index = constructor_bit_index;
5247   p->elements = constructor_elements;
5248   p->constant = constructor_constant;
5249   p->simple = constructor_simple;
5250   p->erroneous = constructor_erroneous;
5251   p->pending_elts = constructor_pending_elts;
5252   p->depth = constructor_depth;
5253   p->replacement_value.value = 0;
5254   p->replacement_value.original_code = ERROR_MARK;
5255   p->implicit = implicit;
5256   p->outer = 0;
5257   p->incremental = constructor_incremental;
5258   p->designated = constructor_designated;
5259   p->next = constructor_stack;
5260   p->range_stack = 0;
5261   constructor_stack = p;
5262 
5263   constructor_constant = 1;
5264   constructor_simple = 1;
5265   constructor_depth = SPELLING_DEPTH ();
5266   constructor_elements = 0;
5267   constructor_incremental = 1;
5268   constructor_designated = 0;
5269   constructor_pending_elts = 0;
5270   if (!implicit)
5271     {
5272       p->range_stack = constructor_range_stack;
5273       constructor_range_stack = 0;
5274       designator_depth = 0;
5275       designator_erroneous = 0;
5276     }
5277 
5278   /* Don't die if an entire brace-pair level is superfluous
5279      in the containing level.  */
5280   if (constructor_type == 0)
5281     ;
5282   else if (TREE_CODE (constructor_type) == RECORD_TYPE
5283 	   || TREE_CODE (constructor_type) == UNION_TYPE)
5284     {
5285       /* Don't die if there are extra init elts at the end.  */
5286       if (constructor_fields == 0)
5287 	constructor_type = 0;
5288       else
5289 	{
5290 	  constructor_type = TREE_TYPE (constructor_fields);
5291 	  push_member_name (constructor_fields);
5292 	  constructor_depth++;
5293 	}
5294     }
5295   else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5296     {
5297       constructor_type = TREE_TYPE (constructor_type);
5298       push_array_bounds (tree_low_cst (constructor_index, 1));
5299       constructor_depth++;
5300     }
5301 
5302   if (constructor_type == 0)
5303     {
5304       error_init ("extra brace group at end of initializer");
5305       constructor_fields = 0;
5306       constructor_unfilled_fields = 0;
5307       return;
5308     }
5309 
5310   if (value && TREE_CODE (value) == CONSTRUCTOR)
5311     {
5312       constructor_constant = TREE_CONSTANT (value);
5313       constructor_simple = TREE_STATIC (value);
5314       constructor_elements = CONSTRUCTOR_ELTS (value);
5315       if (!VEC_empty (constructor_elt, constructor_elements)
5316 	  && (TREE_CODE (constructor_type) == RECORD_TYPE
5317 	      || TREE_CODE (constructor_type) == ARRAY_TYPE))
5318 	set_nonincremental_init ();
5319     }
5320 
5321   if (TREE_CODE (constructor_type) == RECORD_TYPE
5322 	   || TREE_CODE (constructor_type) == UNION_TYPE)
5323     {
5324       constructor_fields = TYPE_FIELDS (constructor_type);
5325       /* Skip any nameless bit fields at the beginning.  */
5326       while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5327 	     && DECL_NAME (constructor_fields) == 0)
5328 	constructor_fields = TREE_CHAIN (constructor_fields);
5329 
5330       constructor_unfilled_fields = constructor_fields;
5331       constructor_bit_index = bitsize_zero_node;
5332     }
5333   else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5334     {
5335       /* Vectors are like simple fixed-size arrays.  */
5336       constructor_max_index =
5337 	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5338       constructor_index = convert (bitsizetype, integer_zero_node);
5339       constructor_unfilled_index = constructor_index;
5340     }
5341   else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5342     {
5343       if (TYPE_DOMAIN (constructor_type))
5344 	{
5345 	  constructor_max_index
5346 	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5347 
5348 	  /* Detect non-empty initializations of zero-length arrays.  */
5349 	  if (constructor_max_index == NULL_TREE
5350 	      && TYPE_SIZE (constructor_type))
5351 	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5352 
5353 	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5354 	     to initialize VLAs will cause a proper error; avoid tree
5355 	     checking errors as well by setting a safe value.  */
5356 	  if (constructor_max_index
5357 	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5358 	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5359 
5360 	  constructor_index
5361 	    = convert (bitsizetype,
5362 		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5363 	}
5364       else
5365 	constructor_index = bitsize_zero_node;
5366 
5367       constructor_unfilled_index = constructor_index;
5368       if (value && TREE_CODE (value) == STRING_CST)
5369 	{
5370 	  /* We need to split the char/wchar array into individual
5371 	     characters, so that we don't have to special case it
5372 	     everywhere.  */
5373 	  set_nonincremental_init_from_string (value);
5374 	}
5375     }
5376   else
5377     {
5378       if (constructor_type != error_mark_node)
5379 	warning_init ("braces around scalar initializer");
5380       constructor_fields = constructor_type;
5381       constructor_unfilled_fields = constructor_type;
5382     }
5383 }
5384 
5385 /* At the end of an implicit or explicit brace level,
5386    finish up that level of constructor.  If a single expression
5387    with redundant braces initialized that level, return the
5388    c_expr structure for that expression.  Otherwise, the original_code
5389    element is set to ERROR_MARK.
5390    If we were outputting the elements as they are read, return 0 as the value
5391    from inner levels (process_init_element ignores that),
5392    but return error_mark_node as the value from the outermost level
5393    (that's what we want to put in DECL_INITIAL).
5394    Otherwise, return a CONSTRUCTOR expression as the value.  */
5395 
5396 struct c_expr
pop_init_level(int implicit)5397 pop_init_level (int implicit)
5398 {
5399   struct constructor_stack *p;
5400   struct c_expr ret;
5401   ret.value = 0;
5402   ret.original_code = ERROR_MARK;
5403 
5404   if (implicit == 0)
5405     {
5406       /* When we come to an explicit close brace,
5407 	 pop any inner levels that didn't have explicit braces.  */
5408       while (constructor_stack->implicit)
5409 	process_init_element (pop_init_level (1));
5410 
5411       gcc_assert (!constructor_range_stack);
5412     }
5413 
5414   /* Now output all pending elements.  */
5415   constructor_incremental = 1;
5416   output_pending_init_elements (1);
5417 
5418   p = constructor_stack;
5419 
5420   /* Error for initializing a flexible array member, or a zero-length
5421      array member in an inappropriate context.  */
5422   if (constructor_type && constructor_fields
5423       && TREE_CODE (constructor_type) == ARRAY_TYPE
5424       && TYPE_DOMAIN (constructor_type)
5425       && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5426     {
5427       /* Silently discard empty initializations.  The parser will
5428 	 already have pedwarned for empty brackets.  */
5429       if (integer_zerop (constructor_unfilled_index))
5430 	constructor_type = NULL_TREE;
5431       else
5432 	{
5433 	  gcc_assert (!TYPE_SIZE (constructor_type));
5434 
5435 	  if (constructor_depth > 2)
5436 	    error_init ("initialization of flexible array member in a nested context");
5437 	  else if (pedantic)
5438 	    pedwarn_init ("initialization of a flexible array member");
5439 
5440 	  /* We have already issued an error message for the existence
5441 	     of a flexible array member not at the end of the structure.
5442 	     Discard the initializer so that we do not die later.  */
5443 	  if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5444 	    constructor_type = NULL_TREE;
5445 	}
5446     }
5447 
5448   if (VEC_length (constructor_elt,constructor_elements) == 0)
5449      constructor_zeroinit = 1;
5450   else if (VEC_length (constructor_elt,constructor_elements) == 1 &&
5451       initializer_zerop (VEC_index (constructor_elt,constructor_elements,0)->value))
5452      constructor_zeroinit = 1;
5453   else
5454      constructor_zeroinit = 0;
5455 
5456   /* only warn for missing braces unless it is { 0 } */
5457   if (p->implicit == 1 && warn_missing_braces && !missing_braces_mentioned &&
5458       !constructor_zeroinit)
5459     {
5460       missing_braces_mentioned = 1;
5461       warning_init ("missing braces around initializer");
5462     }
5463 
5464   /* Warn when some struct elements are implicitly initialized to zero.  */
5465   if (warn_missing_field_initializers
5466       && constructor_type
5467       && TREE_CODE (constructor_type) == RECORD_TYPE
5468       && constructor_unfilled_fields)
5469     {
5470 	/* Do not warn for flexible array members or zero-length arrays.  */
5471 	while (constructor_unfilled_fields
5472 	       && (!DECL_SIZE (constructor_unfilled_fields)
5473 		   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5474 	  constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5475 
5476 	/* Do not warn if this level of the initializer uses member
5477 	   designators; it is likely to be deliberate.  */
5478 	if (constructor_unfilled_fields && !constructor_designated)
5479 	  {
5480 	    push_member_name (constructor_unfilled_fields);
5481 	    warning_init ("missing initializer");
5482 	    RESTORE_SPELLING_DEPTH (constructor_depth);
5483 	  }
5484     }
5485 
5486   /* Pad out the end of the structure.  */
5487   if (p->replacement_value.value)
5488     /* If this closes a superfluous brace pair,
5489        just pass out the element between them.  */
5490     ret = p->replacement_value;
5491   else if (constructor_type == 0)
5492     ;
5493   else if (TREE_CODE (constructor_type) != RECORD_TYPE
5494 	   && TREE_CODE (constructor_type) != UNION_TYPE
5495 	   && TREE_CODE (constructor_type) != ARRAY_TYPE
5496 	   && TREE_CODE (constructor_type) != VECTOR_TYPE)
5497     {
5498       /* A nonincremental scalar initializer--just return
5499 	 the element, after verifying there is just one.  */
5500       if (VEC_empty (constructor_elt,constructor_elements))
5501 	{
5502 	  if (!constructor_erroneous)
5503 	    error_init ("empty scalar initializer");
5504 	  ret.value = error_mark_node;
5505 	}
5506       else if (VEC_length (constructor_elt,constructor_elements) != 1)
5507 	{
5508 	  error_init ("extra elements in scalar initializer");
5509 	  ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5510 	}
5511       else
5512 	ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5513     }
5514   else
5515     {
5516       if (constructor_erroneous)
5517 	ret.value = error_mark_node;
5518       else
5519 	{
5520 	  ret.value = build_constructor (constructor_type,
5521 					 constructor_elements);
5522 	  if (constructor_constant)
5523 	    TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5524 	  if (constructor_constant && constructor_simple)
5525 	    TREE_STATIC (ret.value) = 1;
5526 	}
5527     }
5528 
5529   constructor_type = p->type;
5530   constructor_fields = p->fields;
5531   constructor_index = p->index;
5532   constructor_max_index = p->max_index;
5533   constructor_unfilled_index = p->unfilled_index;
5534   constructor_unfilled_fields = p->unfilled_fields;
5535   constructor_bit_index = p->bit_index;
5536   constructor_elements = p->elements;
5537   constructor_constant = p->constant;
5538   constructor_simple = p->simple;
5539   constructor_erroneous = p->erroneous;
5540   constructor_incremental = p->incremental;
5541   constructor_designated = p->designated;
5542   constructor_pending_elts = p->pending_elts;
5543   constructor_depth = p->depth;
5544   if (!p->implicit)
5545     constructor_range_stack = p->range_stack;
5546   RESTORE_SPELLING_DEPTH (constructor_depth);
5547 
5548   constructor_stack = p->next;
5549   free (p);
5550 
5551   if (ret.value == 0 && constructor_stack == 0)
5552     ret.value = error_mark_node;
5553   return ret;
5554 }
5555 
5556 /* Common handling for both array range and field name designators.
5557    ARRAY argument is nonzero for array ranges.  Returns zero for success.  */
5558 
5559 static int
set_designator(int array)5560 set_designator (int array)
5561 {
5562   tree subtype;
5563   enum tree_code subcode;
5564 
5565   /* Don't die if an entire brace-pair level is superfluous
5566      in the containing level.  */
5567   if (constructor_type == 0)
5568     return 1;
5569 
5570   /* If there were errors in this designator list already, bail out
5571      silently.  */
5572   if (designator_erroneous)
5573     return 1;
5574 
5575   if (!designator_depth)
5576     {
5577       gcc_assert (!constructor_range_stack);
5578 
5579       /* Designator list starts at the level of closest explicit
5580 	 braces.  */
5581       while (constructor_stack->implicit)
5582 	process_init_element (pop_init_level (1));
5583       constructor_designated = 1;
5584       return 0;
5585     }
5586 
5587   switch (TREE_CODE (constructor_type))
5588     {
5589     case  RECORD_TYPE:
5590     case  UNION_TYPE:
5591       subtype = TREE_TYPE (constructor_fields);
5592       if (subtype != error_mark_node)
5593 	subtype = TYPE_MAIN_VARIANT (subtype);
5594       break;
5595     case ARRAY_TYPE:
5596       subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5597       break;
5598     default:
5599       gcc_unreachable ();
5600     }
5601 
5602   subcode = TREE_CODE (subtype);
5603   if (array && subcode != ARRAY_TYPE)
5604     {
5605       error_init ("array index in non-array initializer");
5606       return 1;
5607     }
5608   else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5609     {
5610       error_init ("field name not in record or union initializer");
5611       return 1;
5612     }
5613 
5614   constructor_designated = 1;
5615   push_init_level (2);
5616   return 0;
5617 }
5618 
5619 /* If there are range designators in designator list, push a new designator
5620    to constructor_range_stack.  RANGE_END is end of such stack range or
5621    NULL_TREE if there is no range designator at this level.  */
5622 
5623 static void
push_range_stack(tree range_end)5624 push_range_stack (tree range_end)
5625 {
5626   struct constructor_range_stack *p;
5627 
5628   p = GGC_NEW (struct constructor_range_stack);
5629   p->prev = constructor_range_stack;
5630   p->next = 0;
5631   p->fields = constructor_fields;
5632   p->range_start = constructor_index;
5633   p->index = constructor_index;
5634   p->stack = constructor_stack;
5635   p->range_end = range_end;
5636   if (constructor_range_stack)
5637     constructor_range_stack->next = p;
5638   constructor_range_stack = p;
5639 }
5640 
5641 /* Within an array initializer, specify the next index to be initialized.
5642    FIRST is that index.  If LAST is nonzero, then initialize a range
5643    of indices, running from FIRST through LAST.  */
5644 
5645 void
set_init_index(tree first,tree last)5646 set_init_index (tree first, tree last)
5647 {
5648   if (set_designator (1))
5649     return;
5650 
5651   designator_erroneous = 1;
5652 
5653   if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5654       || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5655     {
5656       error_init ("array index in initializer not of integer type");
5657       return;
5658     }
5659 
5660   if (TREE_CODE (first) != INTEGER_CST)
5661     error_init ("nonconstant array index in initializer");
5662   else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5663     error_init ("nonconstant array index in initializer");
5664   else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5665     error_init ("array index in non-array initializer");
5666   else if (tree_int_cst_sgn (first) == -1)
5667     error_init ("array index in initializer exceeds array bounds");
5668   else if (constructor_max_index
5669 	   && tree_int_cst_lt (constructor_max_index, first))
5670     error_init ("array index in initializer exceeds array bounds");
5671   else
5672     {
5673       constructor_index = convert (bitsizetype, first);
5674 
5675       if (last)
5676 	{
5677 	  if (tree_int_cst_equal (first, last))
5678 	    last = 0;
5679 	  else if (tree_int_cst_lt (last, first))
5680 	    {
5681 	      error_init ("empty index range in initializer");
5682 	      last = 0;
5683 	    }
5684 	  else
5685 	    {
5686 	      last = convert (bitsizetype, last);
5687 	      if (constructor_max_index != 0
5688 		  && tree_int_cst_lt (constructor_max_index, last))
5689 		{
5690 		  error_init ("array index range in initializer exceeds array bounds");
5691 		  last = 0;
5692 		}
5693 	    }
5694 	}
5695 
5696       designator_depth++;
5697       designator_erroneous = 0;
5698       if (constructor_range_stack || last)
5699 	push_range_stack (last);
5700     }
5701 }
5702 
5703 /* Within a struct initializer, specify the next field to be initialized.  */
5704 
5705 void
set_init_label(tree fieldname)5706 set_init_label (tree fieldname)
5707 {
5708   tree anon = NULL_TREE;
5709   tree tail;
5710 
5711   if (set_designator (0))
5712     return;
5713 
5714   designator_erroneous = 1;
5715 
5716   if (TREE_CODE (constructor_type) != RECORD_TYPE
5717       && TREE_CODE (constructor_type) != UNION_TYPE)
5718     {
5719       error_init ("field name not in record or union initializer");
5720       return;
5721     }
5722 
5723   for (tail = TYPE_FIELDS (constructor_type); tail;
5724        tail = TREE_CHAIN (tail))
5725     {
5726       if (DECL_NAME (tail) == NULL_TREE
5727 	  && (TREE_CODE (TREE_TYPE (tail)) == RECORD_TYPE
5728 	      || TREE_CODE (TREE_TYPE (tail)) == UNION_TYPE))
5729 	{
5730 	  anon = lookup_field (tail, fieldname);
5731 	  if (anon)
5732 	    break;
5733 	}
5734 
5735       if (DECL_NAME (tail) == fieldname)
5736 	break;
5737     }
5738 
5739   if (tail == 0)
5740     error ("unknown field %qE specified in initializer", fieldname);
5741 
5742   while (tail)
5743     {
5744       constructor_fields = tail;
5745       designator_depth++;
5746       designator_erroneous = 0;
5747       if (constructor_range_stack)
5748 	push_range_stack (NULL_TREE);
5749 
5750       if (anon)
5751 	{
5752 	  if (set_designator (0))
5753 	    return;
5754 	  tail = TREE_VALUE(anon);
5755 	  anon = TREE_CHAIN(anon);
5756 	}
5757       else
5758 	tail = NULL_TREE;
5759     }
5760 }
5761 
5762 /* Add a new initializer to the tree of pending initializers.  PURPOSE
5763    identifies the initializer, either array index or field in a structure.
5764    VALUE is the value of that index or field.  */
5765 
5766 static void
add_pending_init(tree purpose,tree value)5767 add_pending_init (tree purpose, tree value)
5768 {
5769   struct init_node *p, **q, *r;
5770 
5771   q = &constructor_pending_elts;
5772   p = 0;
5773 
5774   if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5775     {
5776       while (*q != 0)
5777 	{
5778 	  p = *q;
5779 	  if (tree_int_cst_lt (purpose, p->purpose))
5780 	    q = &p->left;
5781 	  else if (tree_int_cst_lt (p->purpose, purpose))
5782 	    q = &p->right;
5783 	  else
5784 	    {
5785 	      if (TREE_SIDE_EFFECTS (p->value))
5786 		warning_init ("initialized field with side-effects overwritten");
5787 	      else if (warn_override_init)
5788 		warning_init ("initialized field overwritten");
5789 	      p->value = value;
5790 	      return;
5791 	    }
5792 	}
5793     }
5794   else
5795     {
5796       tree bitpos;
5797 
5798       bitpos = bit_position (purpose);
5799       while (*q != NULL)
5800 	{
5801 	  p = *q;
5802 	  if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5803 	    q = &p->left;
5804 	  else if (p->purpose != purpose)
5805 	    q = &p->right;
5806 	  else
5807 	    {
5808 	      if (TREE_SIDE_EFFECTS (p->value))
5809 		warning_init ("initialized field with side-effects overwritten");
5810 	      else if (warn_override_init)
5811 		warning_init ("initialized field overwritten");
5812 	      p->value = value;
5813 	      return;
5814 	    }
5815 	}
5816     }
5817 
5818   r = GGC_NEW (struct init_node);
5819   r->purpose = purpose;
5820   r->value = value;
5821 
5822   *q = r;
5823   r->parent = p;
5824   r->left = 0;
5825   r->right = 0;
5826   r->balance = 0;
5827 
5828   while (p)
5829     {
5830       struct init_node *s;
5831 
5832       if (r == p->left)
5833 	{
5834 	  if (p->balance == 0)
5835 	    p->balance = -1;
5836 	  else if (p->balance < 0)
5837 	    {
5838 	      if (r->balance < 0)
5839 		{
5840 		  /* L rotation.  */
5841 		  p->left = r->right;
5842 		  if (p->left)
5843 		    p->left->parent = p;
5844 		  r->right = p;
5845 
5846 		  p->balance = 0;
5847 		  r->balance = 0;
5848 
5849 		  s = p->parent;
5850 		  p->parent = r;
5851 		  r->parent = s;
5852 		  if (s)
5853 		    {
5854 		      if (s->left == p)
5855 			s->left = r;
5856 		      else
5857 			s->right = r;
5858 		    }
5859 		  else
5860 		    constructor_pending_elts = r;
5861 		}
5862 	      else
5863 		{
5864 		  /* LR rotation.  */
5865 		  struct init_node *t = r->right;
5866 
5867 		  r->right = t->left;
5868 		  if (r->right)
5869 		    r->right->parent = r;
5870 		  t->left = r;
5871 
5872 		  p->left = t->right;
5873 		  if (p->left)
5874 		    p->left->parent = p;
5875 		  t->right = p;
5876 
5877 		  p->balance = t->balance < 0;
5878 		  r->balance = -(t->balance > 0);
5879 		  t->balance = 0;
5880 
5881 		  s = p->parent;
5882 		  p->parent = t;
5883 		  r->parent = t;
5884 		  t->parent = s;
5885 		  if (s)
5886 		    {
5887 		      if (s->left == p)
5888 			s->left = t;
5889 		      else
5890 			s->right = t;
5891 		    }
5892 		  else
5893 		    constructor_pending_elts = t;
5894 		}
5895 	      break;
5896 	    }
5897 	  else
5898 	    {
5899 	      /* p->balance == +1; growth of left side balances the node.  */
5900 	      p->balance = 0;
5901 	      break;
5902 	    }
5903 	}
5904       else /* r == p->right */
5905 	{
5906 	  if (p->balance == 0)
5907 	    /* Growth propagation from right side.  */
5908 	    p->balance++;
5909 	  else if (p->balance > 0)
5910 	    {
5911 	      if (r->balance > 0)
5912 		{
5913 		  /* R rotation.  */
5914 		  p->right = r->left;
5915 		  if (p->right)
5916 		    p->right->parent = p;
5917 		  r->left = p;
5918 
5919 		  p->balance = 0;
5920 		  r->balance = 0;
5921 
5922 		  s = p->parent;
5923 		  p->parent = r;
5924 		  r->parent = s;
5925 		  if (s)
5926 		    {
5927 		      if (s->left == p)
5928 			s->left = r;
5929 		      else
5930 			s->right = r;
5931 		    }
5932 		  else
5933 		    constructor_pending_elts = r;
5934 		}
5935 	      else /* r->balance == -1 */
5936 		{
5937 		  /* RL rotation */
5938 		  struct init_node *t = r->left;
5939 
5940 		  r->left = t->right;
5941 		  if (r->left)
5942 		    r->left->parent = r;
5943 		  t->right = r;
5944 
5945 		  p->right = t->left;
5946 		  if (p->right)
5947 		    p->right->parent = p;
5948 		  t->left = p;
5949 
5950 		  r->balance = (t->balance < 0);
5951 		  p->balance = -(t->balance > 0);
5952 		  t->balance = 0;
5953 
5954 		  s = p->parent;
5955 		  p->parent = t;
5956 		  r->parent = t;
5957 		  t->parent = s;
5958 		  if (s)
5959 		    {
5960 		      if (s->left == p)
5961 			s->left = t;
5962 		      else
5963 			s->right = t;
5964 		    }
5965 		  else
5966 		    constructor_pending_elts = t;
5967 		}
5968 	      break;
5969 	    }
5970 	  else
5971 	    {
5972 	      /* p->balance == -1; growth of right side balances the node.  */
5973 	      p->balance = 0;
5974 	      break;
5975 	    }
5976 	}
5977 
5978       r = p;
5979       p = p->parent;
5980     }
5981 }
5982 
5983 /* Build AVL tree from a sorted chain.  */
5984 
5985 static void
set_nonincremental_init(void)5986 set_nonincremental_init (void)
5987 {
5988   unsigned HOST_WIDE_INT ix;
5989   tree index, value;
5990 
5991   if (TREE_CODE (constructor_type) != RECORD_TYPE
5992       && TREE_CODE (constructor_type) != ARRAY_TYPE)
5993     return;
5994 
5995   FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5996     add_pending_init (index, value);
5997   constructor_elements = 0;
5998   if (TREE_CODE (constructor_type) == RECORD_TYPE)
5999     {
6000       constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
6001       /* Skip any nameless bit fields at the beginning.  */
6002       while (constructor_unfilled_fields != 0
6003 	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6004 	     && DECL_NAME (constructor_unfilled_fields) == 0)
6005 	constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6006 
6007     }
6008   else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6009     {
6010       if (TYPE_DOMAIN (constructor_type))
6011 	constructor_unfilled_index
6012 	    = convert (bitsizetype,
6013 		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6014       else
6015 	constructor_unfilled_index = bitsize_zero_node;
6016     }
6017   constructor_incremental = 0;
6018 }
6019 
6020 /* Build AVL tree from a string constant.  */
6021 
6022 static void
set_nonincremental_init_from_string(tree str)6023 set_nonincremental_init_from_string (tree str)
6024 {
6025   tree value, purpose, type;
6026   HOST_WIDE_INT val[2];
6027   const char *p, *end;
6028   int byte, wchar_bytes, charwidth, bitpos;
6029 
6030   gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
6031 
6032   if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6033       == TYPE_PRECISION (char_type_node))
6034     wchar_bytes = 1;
6035   else
6036     {
6037       gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6038 		  == TYPE_PRECISION (wchar_type_node));
6039       wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
6040     }
6041   charwidth = TYPE_PRECISION (char_type_node);
6042   type = TREE_TYPE (constructor_type);
6043   p = TREE_STRING_POINTER (str);
6044   end = p + TREE_STRING_LENGTH (str);
6045 
6046   for (purpose = bitsize_zero_node;
6047        p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6048        purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6049     {
6050       if (wchar_bytes == 1)
6051 	{
6052 	  val[1] = (unsigned char) *p++;
6053 	  val[0] = 0;
6054 	}
6055       else
6056 	{
6057 	  val[0] = 0;
6058 	  val[1] = 0;
6059 	  for (byte = 0; byte < wchar_bytes; byte++)
6060 	    {
6061 	      if (BYTES_BIG_ENDIAN)
6062 		bitpos = (wchar_bytes - byte - 1) * charwidth;
6063 	      else
6064 		bitpos = byte * charwidth;
6065 	      val[bitpos < HOST_BITS_PER_WIDE_INT]
6066 		|= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6067 		   << (bitpos % HOST_BITS_PER_WIDE_INT);
6068 	    }
6069 	}
6070 
6071       if (!TYPE_UNSIGNED (type))
6072 	{
6073 	  bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6074 	  if (bitpos < HOST_BITS_PER_WIDE_INT)
6075 	    {
6076 	      if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6077 		{
6078 		  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6079 		  val[0] = -1;
6080 		}
6081 	    }
6082 	  else if (bitpos == HOST_BITS_PER_WIDE_INT)
6083 	    {
6084 	      if (val[1] < 0)
6085 		val[0] = -1;
6086 	    }
6087 	  else if (val[0] & (((HOST_WIDE_INT) 1)
6088 			     << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6089 	    val[0] |= ((HOST_WIDE_INT) -1)
6090 		      << (bitpos - HOST_BITS_PER_WIDE_INT);
6091 	}
6092 
6093       value = build_int_cst_wide (type, val[1], val[0]);
6094       add_pending_init (purpose, value);
6095     }
6096 
6097   constructor_incremental = 0;
6098 }
6099 
6100 /* Return value of FIELD in pending initializer or zero if the field was
6101    not initialized yet.  */
6102 
6103 static tree
find_init_member(tree field)6104 find_init_member (tree field)
6105 {
6106   struct init_node *p;
6107 
6108   if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6109     {
6110       if (constructor_incremental
6111 	  && tree_int_cst_lt (field, constructor_unfilled_index))
6112 	set_nonincremental_init ();
6113 
6114       p = constructor_pending_elts;
6115       while (p)
6116 	{
6117 	  if (tree_int_cst_lt (field, p->purpose))
6118 	    p = p->left;
6119 	  else if (tree_int_cst_lt (p->purpose, field))
6120 	    p = p->right;
6121 	  else
6122 	    return p->value;
6123 	}
6124     }
6125   else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6126     {
6127       tree bitpos = bit_position (field);
6128 
6129       if (constructor_incremental
6130 	  && (!constructor_unfilled_fields
6131 	      || tree_int_cst_lt (bitpos,
6132 				  bit_position (constructor_unfilled_fields))))
6133 	set_nonincremental_init ();
6134 
6135       p = constructor_pending_elts;
6136       while (p)
6137 	{
6138 	  if (field == p->purpose)
6139 	    return p->value;
6140 	  else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6141 	    p = p->left;
6142 	  else
6143 	    p = p->right;
6144 	}
6145     }
6146   else if (TREE_CODE (constructor_type) == UNION_TYPE)
6147     {
6148       if (!VEC_empty (constructor_elt, constructor_elements)
6149 	  && (VEC_last (constructor_elt, constructor_elements)->index
6150 	      == field))
6151 	return VEC_last (constructor_elt, constructor_elements)->value;
6152     }
6153   return 0;
6154 }
6155 
6156 /* "Output" the next constructor element.
6157    At top level, really output it to assembler code now.
6158    Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6159    TYPE is the data type that the containing data type wants here.
6160    FIELD is the field (a FIELD_DECL) or the index that this element fills.
6161    If VALUE is a string constant, STRICT_STRING is true if it is
6162    unparenthesized or we should not warn here for it being parenthesized.
6163    For other types of VALUE, STRICT_STRING is not used.
6164 
6165    PENDING if non-nil means output pending elements that belong
6166    right after this element.  (PENDING is normally 1;
6167    it is 0 while outputting pending elements, to avoid recursion.)  */
6168 
6169 static void
output_init_element(tree value,bool strict_string,tree type,tree field,int pending)6170 output_init_element (tree value, bool strict_string, tree type, tree field,
6171 		     int pending)
6172 {
6173   constructor_elt *celt;
6174 
6175   if (type == error_mark_node || value == error_mark_node)
6176     {
6177       constructor_erroneous = 1;
6178       return;
6179     }
6180   if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6181       && (TREE_CODE (value) == STRING_CST
6182 	  || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6183       && !(TREE_CODE (value) == STRING_CST
6184 	   && TREE_CODE (type) == ARRAY_TYPE
6185 	   && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6186       && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6187 		     TYPE_MAIN_VARIANT (type)))
6188     value = array_to_pointer_conversion (value);
6189 
6190   if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6191       && require_constant_value && !flag_isoc99 && pending)
6192     {
6193       /* As an extension, allow initializing objects with static storage
6194 	 duration with compound literals (which are then treated just as
6195 	 the brace enclosed list they contain).  */
6196       tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6197       value = DECL_INITIAL (decl);
6198     }
6199 
6200   if (value == error_mark_node)
6201     constructor_erroneous = 1;
6202   else if (!TREE_CONSTANT (value))
6203     constructor_constant = 0;
6204   else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6205 	   || ((TREE_CODE (constructor_type) == RECORD_TYPE
6206 		|| TREE_CODE (constructor_type) == UNION_TYPE)
6207 	       && DECL_C_BIT_FIELD (field)
6208 	       && TREE_CODE (value) != INTEGER_CST))
6209     constructor_simple = 0;
6210 
6211   if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6212     {
6213       if (require_constant_value)
6214 	{
6215 	  error_init ("initializer element is not constant");
6216 	  value = error_mark_node;
6217 	}
6218       else if (require_constant_elements)
6219 	pedwarn ("initializer element is not computable at load time");
6220     }
6221 
6222   /* If this field is empty (and not at the end of structure),
6223      don't do anything other than checking the initializer.  */
6224   if (field
6225       && (TREE_TYPE (field) == error_mark_node
6226 	  || (COMPLETE_TYPE_P (TREE_TYPE (field))
6227 	      && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6228 	      && (TREE_CODE (constructor_type) == ARRAY_TYPE
6229 		  || TREE_CHAIN (field)))))
6230     return;
6231 
6232   value = digest_init (type, value, strict_string, require_constant_value);
6233   if (value == error_mark_node)
6234     {
6235       constructor_erroneous = 1;
6236       return;
6237     }
6238 
6239   /* If this element doesn't come next in sequence,
6240      put it on constructor_pending_elts.  */
6241   if (TREE_CODE (constructor_type) == ARRAY_TYPE
6242       && (!constructor_incremental
6243 	  || !tree_int_cst_equal (field, constructor_unfilled_index)))
6244     {
6245       if (constructor_incremental
6246 	  && tree_int_cst_lt (field, constructor_unfilled_index))
6247 	set_nonincremental_init ();
6248 
6249       add_pending_init (field, value);
6250       return;
6251     }
6252   else if (TREE_CODE (constructor_type) == RECORD_TYPE
6253 	   && (!constructor_incremental
6254 	       || field != constructor_unfilled_fields))
6255     {
6256       /* We do this for records but not for unions.  In a union,
6257 	 no matter which field is specified, it can be initialized
6258 	 right away since it starts at the beginning of the union.  */
6259       if (constructor_incremental)
6260 	{
6261 	  if (!constructor_unfilled_fields)
6262 	    set_nonincremental_init ();
6263 	  else
6264 	    {
6265 	      tree bitpos, unfillpos;
6266 
6267 	      bitpos = bit_position (field);
6268 	      unfillpos = bit_position (constructor_unfilled_fields);
6269 
6270 	      if (tree_int_cst_lt (bitpos, unfillpos))
6271 		set_nonincremental_init ();
6272 	    }
6273 	}
6274 
6275       add_pending_init (field, value);
6276       return;
6277     }
6278   else if (TREE_CODE (constructor_type) == UNION_TYPE
6279 	   && !VEC_empty (constructor_elt, constructor_elements))
6280     {
6281       if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6282 				       constructor_elements)->value))
6283 	warning_init ("initialized field with side-effects overwritten");
6284       else if (warn_override_init)
6285 	warning_init ("initialized field overwritten");
6286 
6287       /* We can have just one union field set.  */
6288       constructor_elements = 0;
6289     }
6290 
6291   /* Otherwise, output this element either to
6292      constructor_elements or to the assembler file.  */
6293 
6294   celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6295   celt->index = field;
6296   celt->value = value;
6297 
6298   /* Advance the variable that indicates sequential elements output.  */
6299   if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6300     constructor_unfilled_index
6301       = size_binop (PLUS_EXPR, constructor_unfilled_index,
6302 		    bitsize_one_node);
6303   else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6304     {
6305       constructor_unfilled_fields
6306 	= TREE_CHAIN (constructor_unfilled_fields);
6307 
6308       /* Skip any nameless bit fields.  */
6309       while (constructor_unfilled_fields != 0
6310 	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6311 	     && DECL_NAME (constructor_unfilled_fields) == 0)
6312 	constructor_unfilled_fields =
6313 	  TREE_CHAIN (constructor_unfilled_fields);
6314     }
6315   else if (TREE_CODE (constructor_type) == UNION_TYPE)
6316     constructor_unfilled_fields = 0;
6317 
6318   /* Now output any pending elements which have become next.  */
6319   if (pending)
6320     output_pending_init_elements (0);
6321 }
6322 
6323 /* Output any pending elements which have become next.
6324    As we output elements, constructor_unfilled_{fields,index}
6325    advances, which may cause other elements to become next;
6326    if so, they too are output.
6327 
6328    If ALL is 0, we return when there are
6329    no more pending elements to output now.
6330 
6331    If ALL is 1, we output space as necessary so that
6332    we can output all the pending elements.  */
6333 
6334 static void
output_pending_init_elements(int all)6335 output_pending_init_elements (int all)
6336 {
6337   struct init_node *elt = constructor_pending_elts;
6338   tree next;
6339 
6340  retry:
6341 
6342   /* Look through the whole pending tree.
6343      If we find an element that should be output now,
6344      output it.  Otherwise, set NEXT to the element
6345      that comes first among those still pending.  */
6346 
6347   next = 0;
6348   while (elt)
6349     {
6350       if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6351 	{
6352 	  if (tree_int_cst_equal (elt->purpose,
6353 				  constructor_unfilled_index))
6354 	    output_init_element (elt->value, true,
6355 				 TREE_TYPE (constructor_type),
6356 				 constructor_unfilled_index, 0);
6357 	  else if (tree_int_cst_lt (constructor_unfilled_index,
6358 				    elt->purpose))
6359 	    {
6360 	      /* Advance to the next smaller node.  */
6361 	      if (elt->left)
6362 		elt = elt->left;
6363 	      else
6364 		{
6365 		  /* We have reached the smallest node bigger than the
6366 		     current unfilled index.  Fill the space first.  */
6367 		  next = elt->purpose;
6368 		  break;
6369 		}
6370 	    }
6371 	  else
6372 	    {
6373 	      /* Advance to the next bigger node.  */
6374 	      if (elt->right)
6375 		elt = elt->right;
6376 	      else
6377 		{
6378 		  /* We have reached the biggest node in a subtree.  Find
6379 		     the parent of it, which is the next bigger node.  */
6380 		  while (elt->parent && elt->parent->right == elt)
6381 		    elt = elt->parent;
6382 		  elt = elt->parent;
6383 		  if (elt && tree_int_cst_lt (constructor_unfilled_index,
6384 					      elt->purpose))
6385 		    {
6386 		      next = elt->purpose;
6387 		      break;
6388 		    }
6389 		}
6390 	    }
6391 	}
6392       else if (TREE_CODE (constructor_type) == RECORD_TYPE
6393 	       || TREE_CODE (constructor_type) == UNION_TYPE)
6394 	{
6395 	  tree ctor_unfilled_bitpos, elt_bitpos;
6396 
6397 	  /* If the current record is complete we are done.  */
6398 	  if (constructor_unfilled_fields == 0)
6399 	    break;
6400 
6401 	  ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6402 	  elt_bitpos = bit_position (elt->purpose);
6403 	  /* We can't compare fields here because there might be empty
6404 	     fields in between.  */
6405 	  if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6406 	    {
6407 	      constructor_unfilled_fields = elt->purpose;
6408 	      output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6409 				   elt->purpose, 0);
6410 	    }
6411 	  else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6412 	    {
6413 	      /* Advance to the next smaller node.  */
6414 	      if (elt->left)
6415 		elt = elt->left;
6416 	      else
6417 		{
6418 		  /* We have reached the smallest node bigger than the
6419 		     current unfilled field.  Fill the space first.  */
6420 		  next = elt->purpose;
6421 		  break;
6422 		}
6423 	    }
6424 	  else
6425 	    {
6426 	      /* Advance to the next bigger node.  */
6427 	      if (elt->right)
6428 		elt = elt->right;
6429 	      else
6430 		{
6431 		  /* We have reached the biggest node in a subtree.  Find
6432 		     the parent of it, which is the next bigger node.  */
6433 		  while (elt->parent && elt->parent->right == elt)
6434 		    elt = elt->parent;
6435 		  elt = elt->parent;
6436 		  if (elt
6437 		      && (tree_int_cst_lt (ctor_unfilled_bitpos,
6438 					   bit_position (elt->purpose))))
6439 		    {
6440 		      next = elt->purpose;
6441 		      break;
6442 		    }
6443 		}
6444 	    }
6445 	}
6446     }
6447 
6448   /* Ordinarily return, but not if we want to output all
6449      and there are elements left.  */
6450   if (!(all && next != 0))
6451     return;
6452 
6453   /* If it's not incremental, just skip over the gap, so that after
6454      jumping to retry we will output the next successive element.  */
6455   if (TREE_CODE (constructor_type) == RECORD_TYPE
6456       || TREE_CODE (constructor_type) == UNION_TYPE)
6457     constructor_unfilled_fields = next;
6458   else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6459     constructor_unfilled_index = next;
6460 
6461   /* ELT now points to the node in the pending tree with the next
6462      initializer to output.  */
6463   goto retry;
6464 }
6465 
6466 /* Add one non-braced element to the current constructor level.
6467    This adjusts the current position within the constructor's type.
6468    This may also start or terminate implicit levels
6469    to handle a partly-braced initializer.
6470 
6471    Once this has found the correct level for the new element,
6472    it calls output_init_element.  */
6473 
6474 void
process_init_element(struct c_expr value)6475 process_init_element (struct c_expr value)
6476 {
6477   tree orig_value = value.value;
6478   int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6479   bool strict_string = value.original_code == STRING_CST;
6480 
6481   designator_depth = 0;
6482   designator_erroneous = 0;
6483 
6484   /* Handle superfluous braces around string cst as in
6485      char x[] = {"foo"}; */
6486   if (string_flag
6487       && constructor_type
6488       && TREE_CODE (constructor_type) == ARRAY_TYPE
6489       && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6490       && integer_zerop (constructor_unfilled_index))
6491     {
6492       if (constructor_stack->replacement_value.value)
6493 	error_init ("excess elements in char array initializer");
6494       constructor_stack->replacement_value = value;
6495       return;
6496     }
6497 
6498   if (constructor_stack->replacement_value.value != 0)
6499     {
6500       error_init ("excess elements in struct initializer");
6501       return;
6502     }
6503 
6504   /* Ignore elements of a brace group if it is entirely superfluous
6505      and has already been diagnosed.  */
6506   if (constructor_type == 0)
6507     return;
6508 
6509   /* If we've exhausted any levels that didn't have braces,
6510      pop them now.  */
6511   while (constructor_stack->implicit)
6512     {
6513       if ((TREE_CODE (constructor_type) == RECORD_TYPE
6514 	   || TREE_CODE (constructor_type) == UNION_TYPE)
6515 	  && constructor_fields == 0)
6516 	process_init_element (pop_init_level (1));
6517       else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6518 	       && (constructor_max_index == 0
6519 		   || tree_int_cst_lt (constructor_max_index,
6520 				       constructor_index)))
6521 	process_init_element (pop_init_level (1));
6522       else
6523 	break;
6524     }
6525 
6526   /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
6527   if (constructor_range_stack)
6528     {
6529       /* If value is a compound literal and we'll be just using its
6530 	 content, don't put it into a SAVE_EXPR.  */
6531       if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6532 	  || !require_constant_value
6533 	  || flag_isoc99)
6534 	value.value = save_expr (value.value);
6535     }
6536 
6537   while (1)
6538     {
6539       if (TREE_CODE (constructor_type) == RECORD_TYPE)
6540 	{
6541 	  tree fieldtype;
6542 	  enum tree_code fieldcode;
6543 
6544 	  if (constructor_fields == 0)
6545 	    {
6546 	      pedwarn_init ("excess elements in struct initializer");
6547 	      break;
6548 	    }
6549 
6550 	  fieldtype = TREE_TYPE (constructor_fields);
6551 	  if (fieldtype != error_mark_node)
6552 	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6553 	  fieldcode = TREE_CODE (fieldtype);
6554 
6555 	  /* Error for non-static initialization of a flexible array member.  */
6556 	  if (fieldcode == ARRAY_TYPE
6557 	      && !require_constant_value
6558 	      && TYPE_SIZE (fieldtype) == NULL_TREE
6559 	      && TREE_CHAIN (constructor_fields) == NULL_TREE)
6560 	    {
6561 	      error_init ("non-static initialization of a flexible array member");
6562 	      break;
6563 	    }
6564 
6565 	  /* Accept a string constant to initialize a subarray.  */
6566 	  if (value.value != 0
6567 	      && fieldcode == ARRAY_TYPE
6568 	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6569 	      && string_flag)
6570 	    value.value = orig_value;
6571 	  /* Otherwise, if we have come to a subaggregate,
6572 	     and we don't have an element of its type, push into it.  */
6573 	  else if (value.value != 0
6574 		   && value.value != error_mark_node
6575 		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6576 		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6577 		       || fieldcode == UNION_TYPE))
6578 	    {
6579 	      push_init_level (1);
6580 	      continue;
6581 	    }
6582 
6583 	  if (value.value)
6584 	    {
6585 	      push_member_name (constructor_fields);
6586 	      output_init_element (value.value, strict_string,
6587 				   fieldtype, constructor_fields, 1);
6588 	      RESTORE_SPELLING_DEPTH (constructor_depth);
6589 	    }
6590 	  else
6591 	    /* Do the bookkeeping for an element that was
6592 	       directly output as a constructor.  */
6593 	    {
6594 	      /* For a record, keep track of end position of last field.  */
6595 	      if (DECL_SIZE (constructor_fields))
6596 		constructor_bit_index
6597 		  = size_binop (PLUS_EXPR,
6598 				bit_position (constructor_fields),
6599 				DECL_SIZE (constructor_fields));
6600 
6601 	      /* If the current field was the first one not yet written out,
6602 		 it isn't now, so update.  */
6603 	      if (constructor_unfilled_fields == constructor_fields)
6604 		{
6605 		  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6606 		  /* Skip any nameless bit fields.  */
6607 		  while (constructor_unfilled_fields != 0
6608 			 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6609 			 && DECL_NAME (constructor_unfilled_fields) == 0)
6610 		    constructor_unfilled_fields =
6611 		      TREE_CHAIN (constructor_unfilled_fields);
6612 		}
6613 	    }
6614 
6615 	  constructor_fields = TREE_CHAIN (constructor_fields);
6616 	  /* Skip any nameless bit fields at the beginning.  */
6617 	  while (constructor_fields != 0
6618 		 && DECL_C_BIT_FIELD (constructor_fields)
6619 		 && DECL_NAME (constructor_fields) == 0)
6620 	    constructor_fields = TREE_CHAIN (constructor_fields);
6621 	}
6622       else if (TREE_CODE (constructor_type) == UNION_TYPE)
6623 	{
6624 	  tree fieldtype;
6625 	  enum tree_code fieldcode;
6626 
6627 	  if (constructor_fields == 0)
6628 	    {
6629 	      pedwarn_init ("excess elements in union initializer");
6630 	      break;
6631 	    }
6632 
6633 	  fieldtype = TREE_TYPE (constructor_fields);
6634 	  if (fieldtype != error_mark_node)
6635 	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6636 	  fieldcode = TREE_CODE (fieldtype);
6637 
6638 	  /* Warn that traditional C rejects initialization of unions.
6639 	     We skip the warning if the value is zero.  This is done
6640 	     under the assumption that the zero initializer in user
6641 	     code appears conditioned on e.g. __STDC__ to avoid
6642 	     "missing initializer" warnings and relies on default
6643 	     initialization to zero in the traditional C case.
6644 	     We also skip the warning if the initializer is designated,
6645 	     again on the assumption that this must be conditional on
6646 	     __STDC__ anyway (and we've already complained about the
6647 	     member-designator already).  */
6648 	  if (!in_system_header && !constructor_designated
6649 	      && !(value.value && (integer_zerop (value.value)
6650 				   || real_zerop (value.value))))
6651 	    warning (OPT_Wtraditional, "traditional C rejects initialization "
6652 		     "of unions");
6653 
6654 	  /* Accept a string constant to initialize a subarray.  */
6655 	  if (value.value != 0
6656 	      && fieldcode == ARRAY_TYPE
6657 	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6658 	      && string_flag)
6659 	    value.value = orig_value;
6660 	  /* Otherwise, if we have come to a subaggregate,
6661 	     and we don't have an element of its type, push into it.  */
6662 	  else if (value.value != 0
6663 		   && value.value != error_mark_node
6664 		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6665 		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6666 		       || fieldcode == UNION_TYPE))
6667 	    {
6668 	      push_init_level (1);
6669 	      continue;
6670 	    }
6671 
6672 	  if (value.value)
6673 	    {
6674 	      push_member_name (constructor_fields);
6675 	      output_init_element (value.value, strict_string,
6676 				   fieldtype, constructor_fields, 1);
6677 	      RESTORE_SPELLING_DEPTH (constructor_depth);
6678 	    }
6679 	  else
6680 	    /* Do the bookkeeping for an element that was
6681 	       directly output as a constructor.  */
6682 	    {
6683 	      constructor_bit_index = DECL_SIZE (constructor_fields);
6684 	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6685 	    }
6686 
6687 	  constructor_fields = 0;
6688 	}
6689       else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6690 	{
6691 	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6692 	  enum tree_code eltcode = TREE_CODE (elttype);
6693 
6694 	  /* Accept a string constant to initialize a subarray.  */
6695 	  if (value.value != 0
6696 	      && eltcode == ARRAY_TYPE
6697 	      && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6698 	      && string_flag)
6699 	    value.value = orig_value;
6700 	  /* Otherwise, if we have come to a subaggregate,
6701 	     and we don't have an element of its type, push into it.  */
6702 	  else if (value.value != 0
6703 		   && value.value != error_mark_node
6704 		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6705 		   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6706 		       || eltcode == UNION_TYPE))
6707 	    {
6708 	      push_init_level (1);
6709 	      continue;
6710 	    }
6711 
6712 	  if (constructor_max_index != 0
6713 	      && (tree_int_cst_lt (constructor_max_index, constructor_index)
6714 		  || integer_all_onesp (constructor_max_index)))
6715 	    {
6716 	      pedwarn_init ("excess elements in array initializer");
6717 	      break;
6718 	    }
6719 
6720 	  /* Now output the actual element.  */
6721 	  if (value.value)
6722 	    {
6723 	      push_array_bounds (tree_low_cst (constructor_index, 1));
6724 	      output_init_element (value.value, strict_string,
6725 				   elttype, constructor_index, 1);
6726 	      RESTORE_SPELLING_DEPTH (constructor_depth);
6727 	    }
6728 
6729 	  constructor_index
6730 	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6731 
6732 	  if (!value.value)
6733 	    /* If we are doing the bookkeeping for an element that was
6734 	       directly output as a constructor, we must update
6735 	       constructor_unfilled_index.  */
6736 	    constructor_unfilled_index = constructor_index;
6737 	}
6738       else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6739 	{
6740 	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6741 
6742 	 /* Do a basic check of initializer size.  Note that vectors
6743 	    always have a fixed size derived from their type.  */
6744 	  if (tree_int_cst_lt (constructor_max_index, constructor_index))
6745 	    {
6746 	      pedwarn_init ("excess elements in vector initializer");
6747 	      break;
6748 	    }
6749 
6750 	  /* Now output the actual element.  */
6751 	  if (value.value)
6752 	    output_init_element (value.value, strict_string,
6753 				 elttype, constructor_index, 1);
6754 
6755 	  constructor_index
6756 	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6757 
6758 	  if (!value.value)
6759 	    /* If we are doing the bookkeeping for an element that was
6760 	       directly output as a constructor, we must update
6761 	       constructor_unfilled_index.  */
6762 	    constructor_unfilled_index = constructor_index;
6763 	}
6764 
6765       /* Handle the sole element allowed in a braced initializer
6766 	 for a scalar variable.  */
6767       else if (constructor_type != error_mark_node
6768 	       && constructor_fields == 0)
6769 	{
6770 	  pedwarn_init ("excess elements in scalar initializer");
6771 	  break;
6772 	}
6773       else
6774 	{
6775 	  if (value.value)
6776 	    output_init_element (value.value, strict_string,
6777 				 constructor_type, NULL_TREE, 1);
6778 	  constructor_fields = 0;
6779 	}
6780 
6781       /* Handle range initializers either at this level or anywhere higher
6782 	 in the designator stack.  */
6783       if (constructor_range_stack)
6784 	{
6785 	  struct constructor_range_stack *p, *range_stack;
6786 	  int finish = 0;
6787 
6788 	  range_stack = constructor_range_stack;
6789 	  constructor_range_stack = 0;
6790 	  while (constructor_stack != range_stack->stack)
6791 	    {
6792 	      gcc_assert (constructor_stack->implicit);
6793 	      process_init_element (pop_init_level (1));
6794 	    }
6795 	  for (p = range_stack;
6796 	       !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6797 	       p = p->prev)
6798 	    {
6799 	      gcc_assert (constructor_stack->implicit);
6800 	      process_init_element (pop_init_level (1));
6801 	    }
6802 
6803 	  p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6804 	  if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6805 	    finish = 1;
6806 
6807 	  while (1)
6808 	    {
6809 	      constructor_index = p->index;
6810 	      constructor_fields = p->fields;
6811 	      if (finish && p->range_end && p->index == p->range_start)
6812 		{
6813 		  finish = 0;
6814 		  p->prev = 0;
6815 		}
6816 	      p = p->next;
6817 	      if (!p)
6818 		break;
6819 	      push_init_level (2);
6820 	      p->stack = constructor_stack;
6821 	      if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6822 		p->index = p->range_start;
6823 	    }
6824 
6825 	  if (!finish)
6826 	    constructor_range_stack = range_stack;
6827 	  continue;
6828 	}
6829 
6830       break;
6831     }
6832 
6833   constructor_range_stack = 0;
6834 }
6835 
6836 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6837    (guaranteed to be 'volatile' or null) and ARGS (represented using
6838    an ASM_EXPR node).  */
6839 tree
build_asm_stmt(tree cv_qualifier,tree args)6840 build_asm_stmt (tree cv_qualifier, tree args)
6841 {
6842   if (!ASM_VOLATILE_P (args) && cv_qualifier)
6843     ASM_VOLATILE_P (args) = 1;
6844   return add_stmt (args);
6845 }
6846 
6847 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6848    some INPUTS, and some CLOBBERS.  The latter three may be NULL.
6849    SIMPLE indicates whether there was anything at all after the
6850    string in the asm expression -- asm("blah") and asm("blah" : )
6851    are subtly different.  We use a ASM_EXPR node to represent this.  */
6852 tree
build_asm_expr(tree string,tree outputs,tree inputs,tree clobbers,bool simple)6853 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6854 		bool simple)
6855 {
6856   tree tail;
6857   tree args;
6858   int i;
6859   const char *constraint;
6860   const char **oconstraints;
6861   bool allows_mem, allows_reg, is_inout;
6862   int ninputs, noutputs;
6863 
6864   ninputs = list_length (inputs);
6865   noutputs = list_length (outputs);
6866   oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6867 
6868   string = resolve_asm_operand_names (string, outputs, inputs);
6869 
6870   /* Remove output conversions that change the type but not the mode.  */
6871   for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6872     {
6873       tree output = TREE_VALUE (tail);
6874 
6875       /* ??? Really, this should not be here.  Users should be using a
6876 	 proper lvalue, dammit.  But there's a long history of using casts
6877 	 in the output operands.  In cases like longlong.h, this becomes a
6878 	 primitive form of typechecking -- if the cast can be removed, then
6879 	 the output operand had a type of the proper width; otherwise we'll
6880 	 get an error.  Gross, but ...  */
6881       STRIP_NOPS (output);
6882 
6883       if (!lvalue_or_else (output, lv_asm))
6884 	output = error_mark_node;
6885 
6886       if (output != error_mark_node
6887 	  && (TREE_READONLY (output)
6888 	      || TYPE_READONLY (TREE_TYPE (output))
6889 	      || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6890 		   || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6891 		  && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6892 	readonly_error (output, lv_asm);
6893 
6894       constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6895       oconstraints[i] = constraint;
6896 
6897       if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6898 				   &allows_mem, &allows_reg, &is_inout))
6899 	{
6900 	  /* If the operand is going to end up in memory,
6901 	     mark it addressable.  */
6902 	  if (!allows_reg && !c_mark_addressable (output))
6903 	    output = error_mark_node;
6904 	}
6905       else
6906 	output = error_mark_node;
6907 
6908       TREE_VALUE (tail) = output;
6909     }
6910 
6911   for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6912     {
6913       tree input;
6914 
6915       constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6916       input = TREE_VALUE (tail);
6917 
6918       if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6919 				  oconstraints, &allows_mem, &allows_reg))
6920 	{
6921 	  /* If the operand is going to end up in memory,
6922 	     mark it addressable.  */
6923 	  if (!allows_reg && allows_mem)
6924 	    {
6925 	      /* Strip the nops as we allow this case.  FIXME, this really
6926 		 should be rejected or made deprecated.  */
6927 	      STRIP_NOPS (input);
6928 	      if (!c_mark_addressable (input))
6929 		input = error_mark_node;
6930 	  }
6931 	}
6932       else
6933 	input = error_mark_node;
6934 
6935       TREE_VALUE (tail) = input;
6936     }
6937 
6938   args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6939 
6940   /* asm statements without outputs, including simple ones, are treated
6941      as volatile.  */
6942   ASM_INPUT_P (args) = simple;
6943   ASM_VOLATILE_P (args) = (noutputs == 0);
6944 
6945   return args;
6946 }
6947 
6948 /* Generate a goto statement to LABEL.  */
6949 
6950 tree
c_finish_goto_label(tree label)6951 c_finish_goto_label (tree label)
6952 {
6953   tree decl = lookup_label (label);
6954   if (!decl)
6955     return NULL_TREE;
6956 
6957   if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6958     {
6959       error ("jump into statement expression");
6960       return NULL_TREE;
6961     }
6962 
6963   if (C_DECL_UNJUMPABLE_VM (decl))
6964     {
6965       error ("jump into scope of identifier with variably modified type");
6966       return NULL_TREE;
6967     }
6968 
6969   if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6970     {
6971       /* No jump from outside this statement expression context, so
6972 	 record that there is a jump from within this context.  */
6973       struct c_label_list *nlist;
6974       nlist = XOBNEW (&parser_obstack, struct c_label_list);
6975       nlist->next = label_context_stack_se->labels_used;
6976       nlist->label = decl;
6977       label_context_stack_se->labels_used = nlist;
6978     }
6979 
6980   if (!C_DECL_UNDEFINABLE_VM (decl))
6981     {
6982       /* No jump from outside this context context of identifiers with
6983 	 variably modified type, so record that there is a jump from
6984 	 within this context.  */
6985       struct c_label_list *nlist;
6986       nlist = XOBNEW (&parser_obstack, struct c_label_list);
6987       nlist->next = label_context_stack_vm->labels_used;
6988       nlist->label = decl;
6989       label_context_stack_vm->labels_used = nlist;
6990     }
6991 
6992   TREE_USED (decl) = 1;
6993   return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6994 }
6995 
6996 /* Generate a computed goto statement to EXPR.  */
6997 
6998 tree
c_finish_goto_ptr(tree expr)6999 c_finish_goto_ptr (tree expr)
7000 {
7001   if (pedantic)
7002     pedwarn ("ISO C forbids %<goto *expr;%>");
7003   expr = convert (ptr_type_node, expr);
7004   return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
7005 }
7006 
7007 /* Generate a C `return' statement.  RETVAL is the expression for what
7008    to return, or a null pointer for `return;' with no value.  */
7009 
7010 tree
c_finish_return(tree retval)7011 c_finish_return (tree retval)
7012 {
7013   tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
7014   bool no_warning = false;
7015 
7016   if (TREE_THIS_VOLATILE (current_function_decl))
7017     warning (0, "function declared %<noreturn%> has a %<return%> statement");
7018 
7019   if (!retval)
7020     {
7021       current_function_returns_null = 1;
7022       if ((warn_return_type || flag_isoc99)
7023 	  && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
7024 	{
7025 	  pedwarn_c99 ("%<return%> with no value, in "
7026 		       "function returning non-void");
7027 	  no_warning = true;
7028 	}
7029     }
7030   else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
7031     {
7032       current_function_returns_null = 1;
7033       if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
7034 	pedwarn ("%<return%> with a value, in function returning void");
7035     }
7036   else
7037     {
7038       tree t = convert_for_assignment (valtype, retval, ic_return,
7039 				       NULL_TREE, NULL_TREE, 0);
7040       tree res = DECL_RESULT (current_function_decl);
7041       tree inner;
7042 
7043       current_function_returns_value = 1;
7044       if (t == error_mark_node)
7045 	return NULL_TREE;
7046 
7047       inner = t = convert (TREE_TYPE (res), t);
7048 
7049       /* Strip any conversions, additions, and subtractions, and see if
7050 	 we are returning the address of a local variable.  Warn if so.  */
7051       while (1)
7052 	{
7053 	  switch (TREE_CODE (inner))
7054 	    {
7055 	    case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
7056 	    case PLUS_EXPR:
7057 	      inner = TREE_OPERAND (inner, 0);
7058 	      continue;
7059 
7060 	    case MINUS_EXPR:
7061 	      /* If the second operand of the MINUS_EXPR has a pointer
7062 		 type (or is converted from it), this may be valid, so
7063 		 don't give a warning.  */
7064 	      {
7065 		tree op1 = TREE_OPERAND (inner, 1);
7066 
7067 		while (!POINTER_TYPE_P (TREE_TYPE (op1))
7068 		       && (TREE_CODE (op1) == NOP_EXPR
7069 			   || TREE_CODE (op1) == NON_LVALUE_EXPR
7070 			   || TREE_CODE (op1) == CONVERT_EXPR))
7071 		  op1 = TREE_OPERAND (op1, 0);
7072 
7073 		if (POINTER_TYPE_P (TREE_TYPE (op1)))
7074 		  break;
7075 
7076 		inner = TREE_OPERAND (inner, 0);
7077 		continue;
7078 	      }
7079 
7080 	    case ADDR_EXPR:
7081 	      inner = TREE_OPERAND (inner, 0);
7082 
7083 	      while (REFERENCE_CLASS_P (inner)
7084 		     && TREE_CODE (inner) != INDIRECT_REF)
7085 		inner = TREE_OPERAND (inner, 0);
7086 
7087 	      if (DECL_P (inner)
7088 		  && !DECL_EXTERNAL (inner)
7089 		  && !TREE_STATIC (inner)
7090 		  && DECL_CONTEXT (inner) == current_function_decl)
7091 		warning (0, "function returns address of local variable");
7092 	      break;
7093 
7094 	    default:
7095 	      break;
7096 	    }
7097 
7098 	  break;
7099 	}
7100 
7101       retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7102     }
7103 
7104   ret_stmt = build_stmt (RETURN_EXPR, retval);
7105   TREE_NO_WARNING (ret_stmt) |= no_warning;
7106   return add_stmt (ret_stmt);
7107 }
7108 
7109 struct c_switch {
7110   /* The SWITCH_EXPR being built.  */
7111   tree switch_expr;
7112 
7113   /* The original type of the testing expression, i.e. before the
7114      default conversion is applied.  */
7115   tree orig_type;
7116 
7117   /* A splay-tree mapping the low element of a case range to the high
7118      element, or NULL_TREE if there is no high element.  Used to
7119      determine whether or not a new case label duplicates an old case
7120      label.  We need a tree, rather than simply a hash table, because
7121      of the GNU case range extension.  */
7122   splay_tree cases;
7123 
7124   /* Number of nested statement expressions within this switch
7125      statement; if nonzero, case and default labels may not
7126      appear.  */
7127   unsigned int blocked_stmt_expr;
7128 
7129   /* Scope of outermost declarations of identifiers with variably
7130      modified type within this switch statement; if nonzero, case and
7131      default labels may not appear.  */
7132   unsigned int blocked_vm;
7133 
7134   /* The next node on the stack.  */
7135   struct c_switch *next;
7136 };
7137 
7138 /* A stack of the currently active switch statements.  The innermost
7139    switch statement is on the top of the stack.  There is no need to
7140    mark the stack for garbage collection because it is only active
7141    during the processing of the body of a function, and we never
7142    collect at that point.  */
7143 
7144 struct c_switch *c_switch_stack;
7145 
7146 /* Start a C switch statement, testing expression EXP.  Return the new
7147    SWITCH_EXPR.  */
7148 
7149 tree
c_start_case(tree exp)7150 c_start_case (tree exp)
7151 {
7152   tree orig_type = error_mark_node;
7153   struct c_switch *cs;
7154 
7155   if (exp != error_mark_node)
7156     {
7157       orig_type = TREE_TYPE (exp);
7158 
7159       if (!INTEGRAL_TYPE_P (orig_type))
7160 	{
7161 	  if (orig_type != error_mark_node)
7162 	    {
7163 	      error ("switch quantity not an integer");
7164 	      orig_type = error_mark_node;
7165 	    }
7166 	  exp = integer_zero_node;
7167 	}
7168       else
7169 	{
7170 	  tree type = TYPE_MAIN_VARIANT (orig_type);
7171 
7172 	  if (!in_system_header
7173 	      && (type == long_integer_type_node
7174 		  || type == long_unsigned_type_node))
7175 	    warning (OPT_Wtraditional, "%<long%> switch expression not "
7176 		     "converted to %<int%> in ISO C");
7177 
7178 	  exp = default_conversion (exp);
7179 	}
7180     }
7181 
7182   /* Add this new SWITCH_EXPR to the stack.  */
7183   cs = XNEW (struct c_switch);
7184   cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7185   cs->orig_type = orig_type;
7186   cs->cases = splay_tree_new (case_compare, NULL, NULL);
7187   cs->blocked_stmt_expr = 0;
7188   cs->blocked_vm = 0;
7189   cs->next = c_switch_stack;
7190   c_switch_stack = cs;
7191 
7192   return add_stmt (cs->switch_expr);
7193 }
7194 
7195 /* Process a case label.  */
7196 
7197 tree
do_case(tree low_value,tree high_value)7198 do_case (tree low_value, tree high_value)
7199 {
7200   tree label = NULL_TREE;
7201 
7202   if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7203       && !c_switch_stack->blocked_vm)
7204     {
7205       label = c_add_case_label (c_switch_stack->cases,
7206 				SWITCH_COND (c_switch_stack->switch_expr),
7207 				c_switch_stack->orig_type,
7208 				low_value, high_value);
7209       if (label == error_mark_node)
7210 	label = NULL_TREE;
7211     }
7212   else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7213     {
7214       if (low_value)
7215 	error ("case label in statement expression not containing "
7216 	       "enclosing switch statement");
7217       else
7218 	error ("%<default%> label in statement expression not containing "
7219 	       "enclosing switch statement");
7220     }
7221   else if (c_switch_stack && c_switch_stack->blocked_vm)
7222     {
7223       if (low_value)
7224 	error ("case label in scope of identifier with variably modified "
7225 	       "type not containing enclosing switch statement");
7226       else
7227 	error ("%<default%> label in scope of identifier with variably "
7228 	       "modified type not containing enclosing switch statement");
7229     }
7230   else if (low_value)
7231     error ("case label not within a switch statement");
7232   else
7233     error ("%<default%> label not within a switch statement");
7234 
7235   return label;
7236 }
7237 
7238 /* Finish the switch statement.  */
7239 
7240 void
c_finish_case(tree body)7241 c_finish_case (tree body)
7242 {
7243   struct c_switch *cs = c_switch_stack;
7244   location_t switch_location;
7245 
7246   SWITCH_BODY (cs->switch_expr) = body;
7247 
7248   /* We must not be within a statement expression nested in the switch
7249      at this point; we might, however, be within the scope of an
7250      identifier with variably modified type nested in the switch.  */
7251   gcc_assert (!cs->blocked_stmt_expr);
7252 
7253   /* Emit warnings as needed.  */
7254   if (EXPR_HAS_LOCATION (cs->switch_expr))
7255     switch_location = EXPR_LOCATION (cs->switch_expr);
7256   else
7257     switch_location = input_location;
7258   c_do_switch_warnings (cs->cases, switch_location,
7259 			TREE_TYPE (cs->switch_expr),
7260 			SWITCH_COND (cs->switch_expr));
7261 
7262   /* Pop the stack.  */
7263   c_switch_stack = cs->next;
7264   splay_tree_delete (cs->cases);
7265   XDELETE (cs);
7266 }
7267 
7268 /* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
7269    THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7270    may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
7271    statement, and was not surrounded with parenthesis.  */
7272 
7273 void
c_finish_if_stmt(location_t if_locus,tree cond,tree then_block,tree else_block,bool nested_if)7274 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7275 		  tree else_block, bool nested_if)
7276 {
7277   tree stmt;
7278 
7279   /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
7280   if (warn_parentheses && nested_if && else_block == NULL)
7281     {
7282       tree inner_if = then_block;
7283 
7284       /* We know from the grammar productions that there is an IF nested
7285 	 within THEN_BLOCK.  Due to labels and c99 conditional declarations,
7286 	 it might not be exactly THEN_BLOCK, but should be the last
7287 	 non-container statement within.  */
7288       while (1)
7289 	switch (TREE_CODE (inner_if))
7290 	  {
7291 	  case COND_EXPR:
7292 	    goto found;
7293 	  case BIND_EXPR:
7294 	    inner_if = BIND_EXPR_BODY (inner_if);
7295 	    break;
7296 	  case STATEMENT_LIST:
7297 	    inner_if = expr_last (then_block);
7298 	    break;
7299 	  case TRY_FINALLY_EXPR:
7300 	  case TRY_CATCH_EXPR:
7301 	    inner_if = TREE_OPERAND (inner_if, 0);
7302 	    break;
7303 	  default:
7304 	    gcc_unreachable ();
7305 	  }
7306     found:
7307 
7308       if (COND_EXPR_ELSE (inner_if))
7309 	 warning (OPT_Wparentheses,
7310 		  "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7311 		  &if_locus);
7312     }
7313 
7314   empty_body_warning (then_block, else_block);
7315 
7316   stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7317   SET_EXPR_LOCATION (stmt, if_locus);
7318   add_stmt (stmt);
7319 }
7320 
7321 /* Emit a general-purpose loop construct.  START_LOCUS is the location of
7322    the beginning of the loop.  COND is the loop condition.  COND_IS_FIRST
7323    is false for DO loops.  INCR is the FOR increment expression.  BODY is
7324    the statement controlled by the loop.  BLAB is the break label.  CLAB is
7325    the continue label.  Everything is allowed to be NULL.  */
7326 
7327 void
c_finish_loop(location_t start_locus,tree cond,tree incr,tree body,tree blab,tree clab,bool cond_is_first)7328 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7329 	       tree blab, tree clab, bool cond_is_first)
7330 {
7331   tree entry = NULL, exit = NULL, t;
7332 
7333   /* If the condition is zero don't generate a loop construct.  */
7334   if (cond && integer_zerop (cond))
7335     {
7336       if (cond_is_first)
7337 	{
7338 	  t = build_and_jump (&blab);
7339 	  SET_EXPR_LOCATION (t, start_locus);
7340 	  add_stmt (t);
7341 	}
7342     }
7343   else
7344     {
7345       tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7346 
7347       /* If we have an exit condition, then we build an IF with gotos either
7348 	 out of the loop, or to the top of it.  If there's no exit condition,
7349 	 then we just build a jump back to the top.  */
7350       exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7351 
7352       if (cond && !integer_nonzerop (cond))
7353 	{
7354 	  /* Canonicalize the loop condition to the end.  This means
7355 	     generating a branch to the loop condition.  Reuse the
7356 	     continue label, if possible.  */
7357 	  if (cond_is_first)
7358 	    {
7359 	      if (incr || !clab)
7360 		{
7361 		  entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7362 		  t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7363 		}
7364 	      else
7365 		t = build1 (GOTO_EXPR, void_type_node, clab);
7366 	      SET_EXPR_LOCATION (t, start_locus);
7367 	      add_stmt (t);
7368 	    }
7369 
7370 	  t = build_and_jump (&blab);
7371 	  exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7372 	  if (cond_is_first)
7373 	    SET_EXPR_LOCATION (exit, start_locus);
7374 	  else
7375 	    SET_EXPR_LOCATION (exit, input_location);
7376 	}
7377 
7378       add_stmt (top);
7379     }
7380 
7381   if (body)
7382     add_stmt (body);
7383   if (clab)
7384     add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7385   if (incr)
7386     add_stmt (incr);
7387   if (entry)
7388     add_stmt (entry);
7389   if (exit)
7390     add_stmt (exit);
7391   if (blab)
7392     add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7393 }
7394 
7395 tree
c_finish_bc_stmt(tree * label_p,bool is_break)7396 c_finish_bc_stmt (tree *label_p, bool is_break)
7397 {
7398   bool skip;
7399   tree label = *label_p;
7400 
7401   /* In switch statements break is sometimes stylistically used after
7402      a return statement.  This can lead to spurious warnings about
7403      control reaching the end of a non-void function when it is
7404      inlined.  Note that we are calling block_may_fallthru with
7405      language specific tree nodes; this works because
7406      block_may_fallthru returns true when given something it does not
7407      understand.  */
7408   skip = !block_may_fallthru (cur_stmt_list);
7409 
7410   if (!label)
7411     {
7412       if (!skip)
7413 	*label_p = label = create_artificial_label ();
7414     }
7415   else if (TREE_CODE (label) == LABEL_DECL)
7416     ;
7417   else switch (TREE_INT_CST_LOW (label))
7418     {
7419     case 0:
7420       if (is_break)
7421 	error ("break statement not within loop or switch");
7422       else
7423 	error ("continue statement not within a loop");
7424       return NULL_TREE;
7425 
7426     case 1:
7427       gcc_assert (is_break);
7428       error ("break statement used with OpenMP for loop");
7429       return NULL_TREE;
7430 
7431     default:
7432       gcc_unreachable ();
7433     }
7434 
7435   if (skip)
7436     return NULL_TREE;
7437 
7438   return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7439 }
7440 
7441 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */
7442 
7443 static void
emit_side_effect_warnings(tree expr)7444 emit_side_effect_warnings (tree expr)
7445 {
7446   if (expr == error_mark_node)
7447     ;
7448   else if (!TREE_SIDE_EFFECTS (expr))
7449     {
7450       if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7451 	warning (0, "%Hstatement with no effect",
7452 		 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7453     }
7454   else if (warn_unused_value)
7455     warn_if_unused_value (expr, input_location);
7456 }
7457 
7458 /* Process an expression as if it were a complete statement.  Emit
7459    diagnostics, but do not call ADD_STMT.  */
7460 
7461 tree
c_process_expr_stmt(tree expr)7462 c_process_expr_stmt (tree expr)
7463 {
7464   if (!expr)
7465     return NULL_TREE;
7466 
7467   if (warn_sequence_point)
7468     verify_sequence_points (expr);
7469 
7470   if (TREE_TYPE (expr) != error_mark_node
7471       && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7472       && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7473     error ("expression statement has incomplete type");
7474 
7475   /* If we're not processing a statement expression, warn about unused values.
7476      Warnings for statement expressions will be emitted later, once we figure
7477      out which is the result.  */
7478   if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7479       && (extra_warnings || warn_unused_value))
7480     emit_side_effect_warnings (expr);
7481 
7482   /* If the expression is not of a type to which we cannot assign a line
7483      number, wrap the thing in a no-op NOP_EXPR.  */
7484   if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7485     expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7486 
7487   if (EXPR_P (expr))
7488     SET_EXPR_LOCATION (expr, input_location);
7489 
7490   return expr;
7491 }
7492 
7493 /* Emit an expression as a statement.  */
7494 
7495 tree
c_finish_expr_stmt(tree expr)7496 c_finish_expr_stmt (tree expr)
7497 {
7498   if (expr)
7499     return add_stmt (c_process_expr_stmt (expr));
7500   else
7501     return NULL;
7502 }
7503 
7504 /* Do the opposite and emit a statement as an expression.  To begin,
7505    create a new binding level and return it.  */
7506 
7507 tree
c_begin_stmt_expr(void)7508 c_begin_stmt_expr (void)
7509 {
7510   tree ret;
7511   struct c_label_context_se *nstack;
7512   struct c_label_list *glist;
7513 
7514   /* We must force a BLOCK for this level so that, if it is not expanded
7515      later, there is a way to turn off the entire subtree of blocks that
7516      are contained in it.  */
7517   keep_next_level ();
7518   ret = c_begin_compound_stmt (true);
7519   if (c_switch_stack)
7520     {
7521       c_switch_stack->blocked_stmt_expr++;
7522       gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7523     }
7524   for (glist = label_context_stack_se->labels_used;
7525        glist != NULL;
7526        glist = glist->next)
7527     {
7528       C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7529     }
7530   nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7531   nstack->labels_def = NULL;
7532   nstack->labels_used = NULL;
7533   nstack->next = label_context_stack_se;
7534   label_context_stack_se = nstack;
7535 
7536   /* Mark the current statement list as belonging to a statement list.  */
7537   STATEMENT_LIST_STMT_EXPR (ret) = 1;
7538 
7539   return ret;
7540 }
7541 
7542 tree
c_finish_stmt_expr(tree body)7543 c_finish_stmt_expr (tree body)
7544 {
7545   tree last, type, tmp, val;
7546   tree *last_p;
7547   struct c_label_list *dlist, *glist, *glist_prev = NULL;
7548 
7549   body = c_end_compound_stmt (body, true);
7550   if (c_switch_stack)
7551     {
7552       gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7553       c_switch_stack->blocked_stmt_expr--;
7554     }
7555   /* It is no longer possible to jump to labels defined within this
7556      statement expression.  */
7557   for (dlist = label_context_stack_se->labels_def;
7558        dlist != NULL;
7559        dlist = dlist->next)
7560     {
7561       C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7562     }
7563   /* It is again possible to define labels with a goto just outside
7564      this statement expression.  */
7565   for (glist = label_context_stack_se->next->labels_used;
7566        glist != NULL;
7567        glist = glist->next)
7568     {
7569       C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7570       glist_prev = glist;
7571     }
7572   if (glist_prev != NULL)
7573     glist_prev->next = label_context_stack_se->labels_used;
7574   else
7575     label_context_stack_se->next->labels_used
7576       = label_context_stack_se->labels_used;
7577   label_context_stack_se = label_context_stack_se->next;
7578 
7579   /* Locate the last statement in BODY.  See c_end_compound_stmt
7580      about always returning a BIND_EXPR.  */
7581   last_p = &BIND_EXPR_BODY (body);
7582   last = BIND_EXPR_BODY (body);
7583 
7584  continue_searching:
7585   if (TREE_CODE (last) == STATEMENT_LIST)
7586     {
7587       tree_stmt_iterator i;
7588 
7589       /* This can happen with degenerate cases like ({ }).  No value.  */
7590       if (!TREE_SIDE_EFFECTS (last))
7591 	return body;
7592 
7593       /* If we're supposed to generate side effects warnings, process
7594 	 all of the statements except the last.  */
7595       if (extra_warnings || warn_unused_value)
7596 	{
7597 	  for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7598 	    emit_side_effect_warnings (tsi_stmt (i));
7599 	}
7600       else
7601 	i = tsi_last (last);
7602       last_p = tsi_stmt_ptr (i);
7603       last = *last_p;
7604     }
7605 
7606   /* If the end of the list is exception related, then the list was split
7607      by a call to push_cleanup.  Continue searching.  */
7608   if (TREE_CODE (last) == TRY_FINALLY_EXPR
7609       || TREE_CODE (last) == TRY_CATCH_EXPR)
7610     {
7611       last_p = &TREE_OPERAND (last, 0);
7612       last = *last_p;
7613       goto continue_searching;
7614     }
7615 
7616   /* In the case that the BIND_EXPR is not necessary, return the
7617      expression out from inside it.  */
7618   if (last == error_mark_node
7619       || (last == BIND_EXPR_BODY (body)
7620 	  && BIND_EXPR_VARS (body) == NULL))
7621     {
7622       /* Do not warn if the return value of a statement expression is
7623 	 unused.  */
7624       if (EXPR_P (last))
7625 	TREE_NO_WARNING (last) = 1;
7626       return last;
7627     }
7628 
7629   /* Extract the type of said expression.  */
7630   type = TREE_TYPE (last);
7631 
7632   /* If we're not returning a value at all, then the BIND_EXPR that
7633      we already have is a fine expression to return.  */
7634   if (!type || VOID_TYPE_P (type))
7635     return body;
7636 
7637   /* Now that we've located the expression containing the value, it seems
7638      silly to make voidify_wrapper_expr repeat the process.  Create a
7639      temporary of the appropriate type and stick it in a TARGET_EXPR.  */
7640   tmp = create_tmp_var_raw (type, NULL);
7641 
7642   /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
7643      tree_expr_nonnegative_p giving up immediately.  */
7644   val = last;
7645   if (TREE_CODE (val) == NOP_EXPR
7646       && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7647     val = TREE_OPERAND (val, 0);
7648 
7649   *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7650   SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7651 
7652   return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7653 }
7654 
7655 /* Begin the scope of an identifier of variably modified type, scope
7656    number SCOPE.  Jumping from outside this scope to inside it is not
7657    permitted.  */
7658 
7659 void
c_begin_vm_scope(unsigned int scope)7660 c_begin_vm_scope (unsigned int scope)
7661 {
7662   struct c_label_context_vm *nstack;
7663   struct c_label_list *glist;
7664 
7665   gcc_assert (scope > 0);
7666 
7667   /* At file_scope, we don't have to do any processing.  */
7668   if (label_context_stack_vm == NULL)
7669     return;
7670 
7671   if (c_switch_stack && !c_switch_stack->blocked_vm)
7672     c_switch_stack->blocked_vm = scope;
7673   for (glist = label_context_stack_vm->labels_used;
7674        glist != NULL;
7675        glist = glist->next)
7676     {
7677       C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7678     }
7679   nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7680   nstack->labels_def = NULL;
7681   nstack->labels_used = NULL;
7682   nstack->scope = scope;
7683   nstack->next = label_context_stack_vm;
7684   label_context_stack_vm = nstack;
7685 }
7686 
7687 /* End a scope which may contain identifiers of variably modified
7688    type, scope number SCOPE.  */
7689 
7690 void
c_end_vm_scope(unsigned int scope)7691 c_end_vm_scope (unsigned int scope)
7692 {
7693   if (label_context_stack_vm == NULL)
7694     return;
7695   if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7696     c_switch_stack->blocked_vm = 0;
7697   /* We may have a number of nested scopes of identifiers with
7698      variably modified type, all at this depth.  Pop each in turn.  */
7699   while (label_context_stack_vm->scope == scope)
7700     {
7701       struct c_label_list *dlist, *glist, *glist_prev = NULL;
7702 
7703       /* It is no longer possible to jump to labels defined within this
7704 	 scope.  */
7705       for (dlist = label_context_stack_vm->labels_def;
7706 	   dlist != NULL;
7707 	   dlist = dlist->next)
7708 	{
7709 	  C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7710 	}
7711       /* It is again possible to define labels with a goto just outside
7712 	 this scope.  */
7713       for (glist = label_context_stack_vm->next->labels_used;
7714 	   glist != NULL;
7715 	   glist = glist->next)
7716 	{
7717 	  C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7718 	  glist_prev = glist;
7719 	}
7720       if (glist_prev != NULL)
7721 	glist_prev->next = label_context_stack_vm->labels_used;
7722       else
7723 	label_context_stack_vm->next->labels_used
7724 	  = label_context_stack_vm->labels_used;
7725       label_context_stack_vm = label_context_stack_vm->next;
7726     }
7727 }
7728 
7729 /* Begin and end compound statements.  This is as simple as pushing
7730    and popping new statement lists from the tree.  */
7731 
7732 tree
c_begin_compound_stmt(bool do_scope)7733 c_begin_compound_stmt (bool do_scope)
7734 {
7735   tree stmt = push_stmt_list ();
7736   if (do_scope)
7737     push_scope ();
7738   return stmt;
7739 }
7740 
7741 tree
c_end_compound_stmt(tree stmt,bool do_scope)7742 c_end_compound_stmt (tree stmt, bool do_scope)
7743 {
7744   tree block = NULL;
7745 
7746   if (do_scope)
7747     {
7748       if (c_dialect_objc ())
7749 	objc_clear_super_receiver ();
7750       block = pop_scope ();
7751     }
7752 
7753   stmt = pop_stmt_list (stmt);
7754   stmt = c_build_bind_expr (block, stmt);
7755 
7756   /* If this compound statement is nested immediately inside a statement
7757      expression, then force a BIND_EXPR to be created.  Otherwise we'll
7758      do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
7759      STATEMENT_LISTs merge, and thus we can lose track of what statement
7760      was really last.  */
7761   if (cur_stmt_list
7762       && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7763       && TREE_CODE (stmt) != BIND_EXPR)
7764     {
7765       stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7766       TREE_SIDE_EFFECTS (stmt) = 1;
7767     }
7768 
7769   return stmt;
7770 }
7771 
7772 /* Queue a cleanup.  CLEANUP is an expression/statement to be executed
7773    when the current scope is exited.  EH_ONLY is true when this is not
7774    meant to apply to normal control flow transfer.  */
7775 
7776 void
push_cleanup(tree ARG_UNUSED (decl),tree cleanup,bool eh_only)7777 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7778 {
7779   enum tree_code code;
7780   tree stmt, list;
7781   bool stmt_expr;
7782 
7783   code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7784   stmt = build_stmt (code, NULL, cleanup);
7785   add_stmt (stmt);
7786   stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7787   list = push_stmt_list ();
7788   TREE_OPERAND (stmt, 0) = list;
7789   STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7790 }
7791 
7792 /* Build a binary-operation expression without default conversions.
7793    CODE is the kind of expression to build.
7794    This function differs from `build' in several ways:
7795    the data type of the result is computed and recorded in it,
7796    warnings are generated if arg data types are invalid,
7797    special handling for addition and subtraction of pointers is known,
7798    and some optimization is done (operations on narrow ints
7799    are done in the narrower type when that gives the same result).
7800    Constant folding is also done before the result is returned.
7801 
7802    Note that the operands will never have enumeral types, or function
7803    or array types, because either they will have the default conversions
7804    performed or they have both just been converted to some other type in which
7805    the arithmetic is to be done.  */
7806 
7807 tree
build_binary_op(enum tree_code code,tree orig_op0,tree orig_op1,int convert_p)7808 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7809 		 int convert_p)
7810 {
7811   tree type0, type1;
7812   enum tree_code code0, code1;
7813   tree op0, op1;
7814   const char *invalid_op_diag;
7815 
7816   /* Expression code to give to the expression when it is built.
7817      Normally this is CODE, which is what the caller asked for,
7818      but in some special cases we change it.  */
7819   enum tree_code resultcode = code;
7820 
7821   /* Data type in which the computation is to be performed.
7822      In the simplest cases this is the common type of the arguments.  */
7823   tree result_type = NULL;
7824 
7825   /* Nonzero means operands have already been type-converted
7826      in whatever way is necessary.
7827      Zero means they need to be converted to RESULT_TYPE.  */
7828   int converted = 0;
7829 
7830   /* Nonzero means create the expression with this type, rather than
7831      RESULT_TYPE.  */
7832   tree build_type = 0;
7833 
7834   /* Nonzero means after finally constructing the expression
7835      convert it to this type.  */
7836   tree final_type = 0;
7837 
7838   /* Nonzero if this is an operation like MIN or MAX which can
7839      safely be computed in short if both args are promoted shorts.
7840      Also implies COMMON.
7841      -1 indicates a bitwise operation; this makes a difference
7842      in the exact conditions for when it is safe to do the operation
7843      in a narrower mode.  */
7844   int shorten = 0;
7845 
7846   /* Nonzero if this is a comparison operation;
7847      if both args are promoted shorts, compare the original shorts.
7848      Also implies COMMON.  */
7849   int short_compare = 0;
7850 
7851   /* Nonzero if this is a right-shift operation, which can be computed on the
7852      original short and then promoted if the operand is a promoted short.  */
7853   int short_shift = 0;
7854 
7855   /* Nonzero means set RESULT_TYPE to the common type of the args.  */
7856   int common = 0;
7857 
7858   /* True means types are compatible as far as ObjC is concerned.  */
7859   bool objc_ok;
7860 
7861   if (convert_p)
7862     {
7863       op0 = default_conversion (orig_op0);
7864       op1 = default_conversion (orig_op1);
7865     }
7866   else
7867     {
7868       op0 = orig_op0;
7869       op1 = orig_op1;
7870     }
7871 
7872   type0 = TREE_TYPE (op0);
7873   type1 = TREE_TYPE (op1);
7874 
7875   /* The expression codes of the data types of the arguments tell us
7876      whether the arguments are integers, floating, pointers, etc.  */
7877   code0 = TREE_CODE (type0);
7878   code1 = TREE_CODE (type1);
7879 
7880   /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
7881   STRIP_TYPE_NOPS (op0);
7882   STRIP_TYPE_NOPS (op1);
7883 
7884   /* If an error was already reported for one of the arguments,
7885      avoid reporting another error.  */
7886 
7887   if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7888     return error_mark_node;
7889 
7890   if ((invalid_op_diag
7891        = targetm.invalid_binary_op (code, type0, type1)))
7892     {
7893       error (invalid_op_diag);
7894       return error_mark_node;
7895     }
7896 
7897   objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7898 
7899   switch (code)
7900     {
7901     case PLUS_EXPR:
7902       /* Handle the pointer + int case.  */
7903       if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7904 	return pointer_int_sum (PLUS_EXPR, op0, op1);
7905       else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7906 	return pointer_int_sum (PLUS_EXPR, op1, op0);
7907       else
7908 	common = 1;
7909       break;
7910 
7911     case MINUS_EXPR:
7912       /* Subtraction of two similar pointers.
7913 	 We must subtract them as integers, then divide by object size.  */
7914       if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7915 	  && comp_target_types (type0, type1))
7916 	return pointer_diff (op0, op1);
7917       /* Handle pointer minus int.  Just like pointer plus int.  */
7918       else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7919 	return pointer_int_sum (MINUS_EXPR, op0, op1);
7920       else
7921 	common = 1;
7922       break;
7923 
7924     case MULT_EXPR:
7925       common = 1;
7926       break;
7927 
7928     case TRUNC_DIV_EXPR:
7929     case CEIL_DIV_EXPR:
7930     case FLOOR_DIV_EXPR:
7931     case ROUND_DIV_EXPR:
7932     case EXACT_DIV_EXPR:
7933       /* Floating point division by zero is a legitimate way to obtain
7934 	 infinities and NaNs.  */
7935       if (skip_evaluation == 0 && integer_zerop (op1))
7936 	warning (OPT_Wdiv_by_zero, "division by zero");
7937 
7938       if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7939 	   || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7940 	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7941 	      || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7942 	{
7943 	  enum tree_code tcode0 = code0, tcode1 = code1;
7944 
7945 	  if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7946 	    tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7947 	  if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7948 	    tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7949 
7950 	  if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7951 	    resultcode = RDIV_EXPR;
7952 	  else
7953 	    /* Although it would be tempting to shorten always here, that
7954 	       loses on some targets, since the modulo instruction is
7955 	       undefined if the quotient can't be represented in the
7956 	       computation mode.  We shorten only if unsigned or if
7957 	       dividing by something we know != -1.  */
7958 	    shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7959 		       || (TREE_CODE (op1) == INTEGER_CST
7960 			   && !integer_all_onesp (op1)));
7961 	  common = 1;
7962 	}
7963       break;
7964 
7965     case BIT_AND_EXPR:
7966     case BIT_IOR_EXPR:
7967     case BIT_XOR_EXPR:
7968       if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7969 	shorten = -1;
7970       else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7971 	common = 1;
7972       break;
7973 
7974     case TRUNC_MOD_EXPR:
7975     case FLOOR_MOD_EXPR:
7976       if (skip_evaluation == 0 && integer_zerop (op1))
7977 	warning (OPT_Wdiv_by_zero, "division by zero");
7978 
7979       if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7980 	{
7981 	  /* Although it would be tempting to shorten always here, that loses
7982 	     on some targets, since the modulo instruction is undefined if the
7983 	     quotient can't be represented in the computation mode.  We shorten
7984 	     only if unsigned or if dividing by something we know != -1.  */
7985 	  shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7986 		     || (TREE_CODE (op1) == INTEGER_CST
7987 			 && !integer_all_onesp (op1)));
7988 	  common = 1;
7989 	}
7990       break;
7991 
7992     case TRUTH_ANDIF_EXPR:
7993     case TRUTH_ORIF_EXPR:
7994     case TRUTH_AND_EXPR:
7995     case TRUTH_OR_EXPR:
7996     case TRUTH_XOR_EXPR:
7997       if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7998 	   || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7999 	  && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
8000 	      || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
8001 	{
8002 	  /* Result of these operations is always an int,
8003 	     but that does not mean the operands should be
8004 	     converted to ints!  */
8005 	  result_type = integer_type_node;
8006 	  op0 = c_common_truthvalue_conversion (op0);
8007 	  op1 = c_common_truthvalue_conversion (op1);
8008 	  converted = 1;
8009 	}
8010       break;
8011 
8012       /* Shift operations: result has same type as first operand;
8013 	 always convert second operand to int.
8014 	 Also set SHORT_SHIFT if shifting rightward.  */
8015 
8016     case RSHIFT_EXPR:
8017       if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8018 	{
8019 	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8020 	    {
8021 	      if (tree_int_cst_sgn (op1) < 0)
8022 		warning (0, "right shift count is negative");
8023 	      else
8024 		{
8025 		  if (!integer_zerop (op1))
8026 		    short_shift = 1;
8027 
8028 		  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8029 		    warning (0, "right shift count >= width of type");
8030 		}
8031 	    }
8032 
8033 	  /* Use the type of the value to be shifted.  */
8034 	  result_type = type0;
8035 	  /* Convert the shift-count to an integer, regardless of size
8036 	     of value being shifted.  */
8037 	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8038 	    op1 = convert (integer_type_node, op1);
8039 	  /* Avoid converting op1 to result_type later.  */
8040 	  converted = 1;
8041 	}
8042       break;
8043 
8044     case LSHIFT_EXPR:
8045       if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8046 	{
8047 	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8048 	    {
8049 	      if (tree_int_cst_sgn (op1) < 0)
8050 		warning (0, "left shift count is negative");
8051 
8052 	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8053 		warning (0, "left shift count >= width of type");
8054 	    }
8055 
8056 	  /* Use the type of the value to be shifted.  */
8057 	  result_type = type0;
8058 	  /* Convert the shift-count to an integer, regardless of size
8059 	     of value being shifted.  */
8060 	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8061 	    op1 = convert (integer_type_node, op1);
8062 	  /* Avoid converting op1 to result_type later.  */
8063 	  converted = 1;
8064 	}
8065       break;
8066 
8067     case EQ_EXPR:
8068     case NE_EXPR:
8069       if (code0 == REAL_TYPE || code1 == REAL_TYPE)
8070 	warning (OPT_Wfloat_equal,
8071 		 "comparing floating point with == or != is unsafe");
8072       /* Result of comparison is always int,
8073 	 but don't convert the args to int!  */
8074       build_type = integer_type_node;
8075       if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8076 	   || code0 == COMPLEX_TYPE)
8077 	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8078 	      || code1 == COMPLEX_TYPE))
8079 	short_compare = 1;
8080       else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8081 	{
8082 	  tree tt0 = TREE_TYPE (type0);
8083 	  tree tt1 = TREE_TYPE (type1);
8084 	  /* Anything compares with void *.  void * compares with anything.
8085 	     Otherwise, the targets must be compatible
8086 	     and both must be object or both incomplete.  */
8087 	  if (comp_target_types (type0, type1))
8088 	    result_type = common_pointer_type (type0, type1);
8089 	  else if (VOID_TYPE_P (tt0))
8090 	    {
8091 	      /* op0 != orig_op0 detects the case of something
8092 		 whose value is 0 but which isn't a valid null ptr const.  */
8093 	      if (pedantic && !null_pointer_constant_p (orig_op0)
8094 		  && TREE_CODE (tt1) == FUNCTION_TYPE)
8095 		pedwarn ("ISO C forbids comparison of %<void *%>"
8096 			 " with function pointer");
8097 	    }
8098 	  else if (VOID_TYPE_P (tt1))
8099 	    {
8100 	      if (pedantic && !null_pointer_constant_p (orig_op1)
8101 		  && TREE_CODE (tt0) == FUNCTION_TYPE)
8102 		pedwarn ("ISO C forbids comparison of %<void *%>"
8103 			 " with function pointer");
8104 	    }
8105 	  else
8106 	    /* Avoid warning about the volatile ObjC EH puts on decls.  */
8107 	    if (!objc_ok)
8108 	      pedwarn ("comparison of distinct pointer types lacks a cast");
8109 
8110 	  if (result_type == NULL_TREE)
8111 	    result_type = ptr_type_node;
8112 	}
8113       else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8114 	{
8115 	  if (TREE_CODE (op0) == ADDR_EXPR
8116 	      && DECL_P (TREE_OPERAND (op0, 0))
8117 	      && (TREE_CODE (TREE_OPERAND (op0, 0)) == PARM_DECL
8118 		  || TREE_CODE (TREE_OPERAND (op0, 0)) == LABEL_DECL
8119 		  || !DECL_WEAK (TREE_OPERAND (op0, 0))))
8120 	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8121 		     TREE_OPERAND (op0, 0));
8122 	  result_type = type0;
8123 	}
8124       else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8125 	{
8126 	  if (TREE_CODE (op1) == ADDR_EXPR
8127 	      && DECL_P (TREE_OPERAND (op1, 0))
8128 	      && (TREE_CODE (TREE_OPERAND (op1, 0)) == PARM_DECL
8129 		  || TREE_CODE (TREE_OPERAND (op1, 0)) == LABEL_DECL
8130 		  || !DECL_WEAK (TREE_OPERAND (op1, 0))))
8131 	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8132 		     TREE_OPERAND (op1, 0));
8133 	  result_type = type1;
8134 	}
8135       else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8136 	{
8137 	  result_type = type0;
8138 	  pedwarn ("comparison between pointer and integer");
8139 	}
8140       else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8141 	{
8142 	  result_type = type1;
8143 	  pedwarn ("comparison between pointer and integer");
8144 	}
8145       break;
8146 
8147     case LE_EXPR:
8148     case GE_EXPR:
8149     case LT_EXPR:
8150     case GT_EXPR:
8151       build_type = integer_type_node;
8152       if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8153 	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8154 	short_compare = 1;
8155       else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8156 	{
8157 	  if (comp_target_types (type0, type1))
8158 	    {
8159 	      result_type = common_pointer_type (type0, type1);
8160 	      if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8161 		  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8162 		pedwarn ("comparison of complete and incomplete pointers");
8163 	      else if (pedantic
8164 		       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8165 		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8166 	    }
8167 	  else
8168 	    {
8169 	      result_type = ptr_type_node;
8170 	      pedwarn ("comparison of distinct pointer types lacks a cast");
8171 	    }
8172 	}
8173       else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8174 	{
8175 	  result_type = type0;
8176 	  if (pedantic || extra_warnings)
8177 	    pedwarn ("ordered comparison of pointer with integer zero");
8178 	}
8179       else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8180 	{
8181 	  result_type = type1;
8182 	  if (pedantic)
8183 	    pedwarn ("ordered comparison of pointer with integer zero");
8184 	}
8185       else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8186 	{
8187 	  result_type = type0;
8188 	  pedwarn ("comparison between pointer and integer");
8189 	}
8190       else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8191 	{
8192 	  result_type = type1;
8193 	  pedwarn ("comparison between pointer and integer");
8194 	}
8195       break;
8196 
8197     default:
8198       gcc_unreachable ();
8199     }
8200 
8201   if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8202     return error_mark_node;
8203 
8204   if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8205       && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8206 	  || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8207 						    TREE_TYPE (type1))))
8208     {
8209       binary_op_error (code);
8210       return error_mark_node;
8211     }
8212 
8213   if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8214        || code0 == VECTOR_TYPE)
8215       &&
8216       (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8217        || code1 == VECTOR_TYPE))
8218     {
8219       int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8220 
8221       if (shorten || common || short_compare)
8222 	result_type = c_common_type (type0, type1);
8223 
8224       /* For certain operations (which identify themselves by shorten != 0)
8225 	 if both args were extended from the same smaller type,
8226 	 do the arithmetic in that type and then extend.
8227 
8228 	 shorten !=0 and !=1 indicates a bitwise operation.
8229 	 For them, this optimization is safe only if
8230 	 both args are zero-extended or both are sign-extended.
8231 	 Otherwise, we might change the result.
8232 	 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8233 	 but calculated in (unsigned short) it would be (unsigned short)-1.  */
8234 
8235       if (shorten && none_complex)
8236 	{
8237 	  int unsigned0, unsigned1;
8238 	  tree arg0, arg1;
8239 	  int uns;
8240 	  tree type;
8241 
8242 	  /* Cast OP0 and OP1 to RESULT_TYPE.  Doing so prevents
8243 	     excessive narrowing when we call get_narrower below.  For
8244 	     example, suppose that OP0 is of unsigned int extended
8245 	     from signed char and that RESULT_TYPE is long long int.
8246 	     If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8247 	     like
8248 
8249 	       (long long int) (unsigned int) signed_char
8250 
8251 	     which get_narrower would narrow down to
8252 
8253 	       (unsigned int) signed char
8254 
8255 	     If we do not cast OP0 first, get_narrower would return
8256 	     signed_char, which is inconsistent with the case of the
8257 	     explicit cast.  */
8258 	  op0 = convert (result_type, op0);
8259 	  op1 = convert (result_type, op1);
8260 
8261 	  arg0 = get_narrower (op0, &unsigned0);
8262 	  arg1 = get_narrower (op1, &unsigned1);
8263 
8264 	  /* UNS is 1 if the operation to be done is an unsigned one.  */
8265 	  uns = TYPE_UNSIGNED (result_type);
8266 
8267 	  final_type = result_type;
8268 
8269 	  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8270 	     but it *requires* conversion to FINAL_TYPE.  */
8271 
8272 	  if ((TYPE_PRECISION (TREE_TYPE (op0))
8273 	       == TYPE_PRECISION (TREE_TYPE (arg0)))
8274 	      && TREE_TYPE (op0) != final_type)
8275 	    unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8276 	  if ((TYPE_PRECISION (TREE_TYPE (op1))
8277 	       == TYPE_PRECISION (TREE_TYPE (arg1)))
8278 	      && TREE_TYPE (op1) != final_type)
8279 	    unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8280 
8281 	  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
8282 
8283 	  /* For bitwise operations, signedness of nominal type
8284 	     does not matter.  Consider only how operands were extended.  */
8285 	  if (shorten == -1)
8286 	    uns = unsigned0;
8287 
8288 	  /* Note that in all three cases below we refrain from optimizing
8289 	     an unsigned operation on sign-extended args.
8290 	     That would not be valid.  */
8291 
8292 	  /* Both args variable: if both extended in same way
8293 	     from same width, do it in that width.
8294 	     Do it unsigned if args were zero-extended.  */
8295 	  if ((TYPE_PRECISION (TREE_TYPE (arg0))
8296 	       < TYPE_PRECISION (result_type))
8297 	      && (TYPE_PRECISION (TREE_TYPE (arg1))
8298 		  == TYPE_PRECISION (TREE_TYPE (arg0)))
8299 	      && unsigned0 == unsigned1
8300 	      && (unsigned0 || !uns))
8301 	    result_type
8302 	      = c_common_signed_or_unsigned_type
8303 	      (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8304 	  else if (TREE_CODE (arg0) == INTEGER_CST
8305 		   && (unsigned1 || !uns)
8306 		   && (TYPE_PRECISION (TREE_TYPE (arg1))
8307 		       < TYPE_PRECISION (result_type))
8308 		   && (type
8309 		       = c_common_signed_or_unsigned_type (unsigned1,
8310 							   TREE_TYPE (arg1)),
8311 		       int_fits_type_p (arg0, type)))
8312 	    result_type = type;
8313 	  else if (TREE_CODE (arg1) == INTEGER_CST
8314 		   && (unsigned0 || !uns)
8315 		   && (TYPE_PRECISION (TREE_TYPE (arg0))
8316 		       < TYPE_PRECISION (result_type))
8317 		   && (type
8318 		       = c_common_signed_or_unsigned_type (unsigned0,
8319 							   TREE_TYPE (arg0)),
8320 		       int_fits_type_p (arg1, type)))
8321 	    result_type = type;
8322 	}
8323 
8324       /* Shifts can be shortened if shifting right.  */
8325 
8326       if (short_shift)
8327 	{
8328 	  int unsigned_arg;
8329 	  tree arg0 = get_narrower (op0, &unsigned_arg);
8330 
8331 	  final_type = result_type;
8332 
8333 	  if (arg0 == op0 && final_type == TREE_TYPE (op0))
8334 	    unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8335 
8336 	  if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8337 	      /* We can shorten only if the shift count is less than the
8338 		 number of bits in the smaller type size.  */
8339 	      && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8340 	      /* We cannot drop an unsigned shift after sign-extension.  */
8341 	      && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8342 	    {
8343 	      /* Do an unsigned shift if the operand was zero-extended.  */
8344 	      result_type
8345 		= c_common_signed_or_unsigned_type (unsigned_arg,
8346 						    TREE_TYPE (arg0));
8347 	      /* Convert value-to-be-shifted to that type.  */
8348 	      if (TREE_TYPE (op0) != result_type)
8349 		op0 = convert (result_type, op0);
8350 	      converted = 1;
8351 	    }
8352 	}
8353 
8354       /* Comparison operations are shortened too but differently.
8355 	 They identify themselves by setting short_compare = 1.  */
8356 
8357       if (short_compare)
8358 	{
8359 	  /* Don't write &op0, etc., because that would prevent op0
8360 	     from being kept in a register.
8361 	     Instead, make copies of the our local variables and
8362 	     pass the copies by reference, then copy them back afterward.  */
8363 	  tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8364 	  enum tree_code xresultcode = resultcode;
8365 	  tree val
8366 	    = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8367 
8368 	  if (val != 0)
8369 	    return val;
8370 
8371 	  op0 = xop0, op1 = xop1;
8372 	  converted = 1;
8373 	  resultcode = xresultcode;
8374 
8375 	  if (warn_sign_compare && skip_evaluation == 0)
8376 	    {
8377 	      int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8378 	      int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8379 	      int unsignedp0, unsignedp1;
8380 	      tree primop0 = get_narrower (op0, &unsignedp0);
8381 	      tree primop1 = get_narrower (op1, &unsignedp1);
8382 
8383 	      xop0 = orig_op0;
8384 	      xop1 = orig_op1;
8385 	      STRIP_TYPE_NOPS (xop0);
8386 	      STRIP_TYPE_NOPS (xop1);
8387 
8388 	      /* Give warnings for comparisons between signed and unsigned
8389 		 quantities that may fail.
8390 
8391 		 Do the checking based on the original operand trees, so that
8392 		 casts will be considered, but default promotions won't be.
8393 
8394 		 Do not warn if the comparison is being done in a signed type,
8395 		 since the signed type will only be chosen if it can represent
8396 		 all the values of the unsigned type.  */
8397 	      if (!TYPE_UNSIGNED (result_type))
8398 		/* OK */;
8399 	      /* Do not warn if both operands are the same signedness.  */
8400 	      else if (op0_signed == op1_signed)
8401 		/* OK */;
8402 	      else
8403 		{
8404 		  tree sop, uop;
8405 		  bool ovf;
8406 
8407 		  if (op0_signed)
8408 		    sop = xop0, uop = xop1;
8409 		  else
8410 		    sop = xop1, uop = xop0;
8411 
8412 		  /* Do not warn if the signed quantity is an
8413 		     unsuffixed integer literal (or some static
8414 		     constant expression involving such literals or a
8415 		     conditional expression involving such literals)
8416 		     and it is non-negative.  */
8417 		  if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8418 		    /* OK */;
8419 		  /* Do not warn if the comparison is an equality operation,
8420 		     the unsigned quantity is an integral constant, and it
8421 		     would fit in the result if the result were signed.  */
8422 		  else if (TREE_CODE (uop) == INTEGER_CST
8423 			   && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8424 			   && int_fits_type_p
8425 			   (uop, c_common_signed_type (result_type)))
8426 		    /* OK */;
8427 		  /* Do not warn if the unsigned quantity is an enumeration
8428 		     constant and its maximum value would fit in the result
8429 		     if the result were signed.  */
8430 		  else if (TREE_CODE (uop) == INTEGER_CST
8431 			   && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8432 			   && int_fits_type_p
8433 			   (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8434 			    c_common_signed_type (result_type)))
8435 		    /* OK */;
8436 		  else
8437 		    warning (0, "comparison between signed and unsigned");
8438 		}
8439 
8440 	      /* Warn if two unsigned values are being compared in a size
8441 		 larger than their original size, and one (and only one) is the
8442 		 result of a `~' operator.  This comparison will always fail.
8443 
8444 		 Also warn if one operand is a constant, and the constant
8445 		 does not have all bits set that are set in the ~ operand
8446 		 when it is extended.  */
8447 
8448 	      if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8449 		  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8450 		{
8451 		  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8452 		    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8453 					    &unsignedp0);
8454 		  else
8455 		    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8456 					    &unsignedp1);
8457 
8458 		  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8459 		    {
8460 		      tree primop;
8461 		      HOST_WIDE_INT constant, mask;
8462 		      int unsignedp, bits;
8463 
8464 		      if (host_integerp (primop0, 0))
8465 			{
8466 			  primop = primop1;
8467 			  unsignedp = unsignedp1;
8468 			  constant = tree_low_cst (primop0, 0);
8469 			}
8470 		      else
8471 			{
8472 			  primop = primop0;
8473 			  unsignedp = unsignedp0;
8474 			  constant = tree_low_cst (primop1, 0);
8475 			}
8476 
8477 		      bits = TYPE_PRECISION (TREE_TYPE (primop));
8478 		      if (bits < TYPE_PRECISION (result_type)
8479 			  && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8480 			{
8481 			  mask = (~(HOST_WIDE_INT) 0) << bits;
8482 			  if ((mask & constant) != mask)
8483 			    warning (0, "comparison of promoted ~unsigned with constant");
8484 			}
8485 		    }
8486 		  else if (unsignedp0 && unsignedp1
8487 			   && (TYPE_PRECISION (TREE_TYPE (primop0))
8488 			       < TYPE_PRECISION (result_type))
8489 			   && (TYPE_PRECISION (TREE_TYPE (primop1))
8490 			       < TYPE_PRECISION (result_type)))
8491 		    warning (0, "comparison of promoted ~unsigned with unsigned");
8492 		}
8493 	    }
8494 	}
8495     }
8496 
8497   /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8498      If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8499      Then the expression will be built.
8500      It will be given type FINAL_TYPE if that is nonzero;
8501      otherwise, it will be given type RESULT_TYPE.  */
8502 
8503   if (!result_type)
8504     {
8505       binary_op_error (code);
8506       return error_mark_node;
8507     }
8508 
8509   if (!converted)
8510     {
8511       if (TREE_TYPE (op0) != result_type)
8512 	op0 = convert_and_check (result_type, op0);
8513       if (TREE_TYPE (op1) != result_type)
8514 	op1 = convert_and_check (result_type, op1);
8515 
8516       /* This can happen if one operand has a vector type, and the other
8517 	 has a different type.  */
8518       if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8519 	return error_mark_node;
8520     }
8521 
8522   if (build_type == NULL_TREE)
8523     build_type = result_type;
8524 
8525   {
8526     /* Treat expressions in initializers specially as they can't trap.  */
8527     tree result = require_constant_value ? fold_build2_initializer (resultcode,
8528 								    build_type,
8529 								    op0, op1)
8530 					 : fold_build2 (resultcode, build_type,
8531 							op0, op1);
8532 
8533     if (final_type != 0)
8534       result = convert (final_type, result);
8535     return result;
8536   }
8537 }
8538 
8539 
8540 /* Convert EXPR to be a truth-value, validating its type for this
8541    purpose.  */
8542 
8543 tree
c_objc_common_truthvalue_conversion(tree expr)8544 c_objc_common_truthvalue_conversion (tree expr)
8545 {
8546   switch (TREE_CODE (TREE_TYPE (expr)))
8547     {
8548     case ARRAY_TYPE:
8549       error ("used array that cannot be converted to pointer where scalar is required");
8550       return error_mark_node;
8551 
8552     case RECORD_TYPE:
8553       error ("used struct type value where scalar is required");
8554       return error_mark_node;
8555 
8556     case UNION_TYPE:
8557       error ("used union type value where scalar is required");
8558       return error_mark_node;
8559 
8560     case FUNCTION_TYPE:
8561       gcc_unreachable ();
8562 
8563     default:
8564       break;
8565     }
8566 
8567   /* ??? Should we also give an error for void and vectors rather than
8568      leaving those to give errors later?  */
8569   return c_common_truthvalue_conversion (expr);
8570 }
8571 
8572 
8573 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8574    required.  */
8575 
8576 tree
c_expr_to_decl(tree expr,bool * tc ATTRIBUTE_UNUSED,bool * ti ATTRIBUTE_UNUSED,bool * se)8577 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8578 		bool *ti ATTRIBUTE_UNUSED, bool *se)
8579 {
8580   if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8581     {
8582       tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8583       /* Executing a compound literal inside a function reinitializes
8584 	 it.  */
8585       if (!TREE_STATIC (decl))
8586 	*se = true;
8587       return decl;
8588     }
8589   else
8590     return expr;
8591 }
8592 
8593 /* Like c_begin_compound_stmt, except force the retention of the BLOCK.  */
8594 
8595 tree
c_begin_omp_parallel(void)8596 c_begin_omp_parallel (void)
8597 {
8598   tree block;
8599 
8600   keep_next_level ();
8601   block = c_begin_compound_stmt (true);
8602 
8603   return block;
8604 }
8605 
8606 tree
c_finish_omp_parallel(tree clauses,tree block)8607 c_finish_omp_parallel (tree clauses, tree block)
8608 {
8609   tree stmt;
8610 
8611   block = c_end_compound_stmt (block, true);
8612 
8613   stmt = make_node (OMP_PARALLEL);
8614   TREE_TYPE (stmt) = void_type_node;
8615   OMP_PARALLEL_CLAUSES (stmt) = clauses;
8616   OMP_PARALLEL_BODY (stmt) = block;
8617 
8618   return add_stmt (stmt);
8619 }
8620 
8621 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8622    Remove any elements from the list that are invalid.  */
8623 
8624 tree
c_finish_omp_clauses(tree clauses)8625 c_finish_omp_clauses (tree clauses)
8626 {
8627   bitmap_head generic_head, firstprivate_head, lastprivate_head;
8628   tree c, t, *pc = &clauses;
8629   const char *name;
8630 
8631   bitmap_obstack_initialize (NULL);
8632   bitmap_initialize (&generic_head, &bitmap_default_obstack);
8633   bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8634   bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8635 
8636   for (pc = &clauses, c = clauses; c ; c = *pc)
8637     {
8638       bool remove = false;
8639       bool need_complete = false;
8640       bool need_implicitly_determined = false;
8641 
8642       switch (OMP_CLAUSE_CODE (c))
8643 	{
8644 	case OMP_CLAUSE_SHARED:
8645 	  name = "shared";
8646 	  need_implicitly_determined = true;
8647 	  goto check_dup_generic;
8648 
8649 	case OMP_CLAUSE_PRIVATE:
8650 	  name = "private";
8651 	  need_complete = true;
8652 	  need_implicitly_determined = true;
8653 	  goto check_dup_generic;
8654 
8655 	case OMP_CLAUSE_REDUCTION:
8656 	  name = "reduction";
8657 	  need_implicitly_determined = true;
8658 	  t = OMP_CLAUSE_DECL (c);
8659 	  if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8660 	      || POINTER_TYPE_P (TREE_TYPE (t)))
8661 	    {
8662 	      error ("%qE has invalid type for %<reduction%>", t);
8663 	      remove = true;
8664 	    }
8665 	  else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8666 	    {
8667 	      enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8668 	      const char *r_name = NULL;
8669 
8670 	      switch (r_code)
8671 		{
8672 		case PLUS_EXPR:
8673 		case MULT_EXPR:
8674 		case MINUS_EXPR:
8675 		  break;
8676 		case BIT_AND_EXPR:
8677 		  r_name = "&";
8678 		  break;
8679 		case BIT_XOR_EXPR:
8680 		  r_name = "^";
8681 		  break;
8682 		case BIT_IOR_EXPR:
8683 		  r_name = "|";
8684 		  break;
8685 		case TRUTH_ANDIF_EXPR:
8686 		  r_name = "&&";
8687 		  break;
8688 		case TRUTH_ORIF_EXPR:
8689 		  r_name = "||";
8690 		  break;
8691 		default:
8692 		  gcc_unreachable ();
8693 		}
8694 	      if (r_name)
8695 		{
8696 		  error ("%qE has invalid type for %<reduction(%s)%>",
8697 			 t, r_name);
8698 		  remove = true;
8699 		}
8700 	    }
8701 	  goto check_dup_generic;
8702 
8703 	case OMP_CLAUSE_COPYPRIVATE:
8704 	  name = "copyprivate";
8705 	  goto check_dup_generic;
8706 
8707 	case OMP_CLAUSE_COPYIN:
8708 	  name = "copyin";
8709 	  t = OMP_CLAUSE_DECL (c);
8710 	  if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8711 	    {
8712 	      error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8713 	      remove = true;
8714 	    }
8715 	  goto check_dup_generic;
8716 
8717 	check_dup_generic:
8718 	  t = OMP_CLAUSE_DECL (c);
8719 	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8720 	    {
8721 	      error ("%qE is not a variable in clause %qs", t, name);
8722 	      remove = true;
8723 	    }
8724 	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8725 		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8726 		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8727 	    {
8728 	      error ("%qE appears more than once in data clauses", t);
8729 	      remove = true;
8730 	    }
8731 	  else
8732 	    bitmap_set_bit (&generic_head, DECL_UID (t));
8733 	  break;
8734 
8735 	case OMP_CLAUSE_FIRSTPRIVATE:
8736 	  name = "firstprivate";
8737 	  t = OMP_CLAUSE_DECL (c);
8738 	  need_complete = true;
8739 	  need_implicitly_determined = true;
8740 	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8741 	    {
8742 	      error ("%qE is not a variable in clause %<firstprivate%>", t);
8743 	      remove = true;
8744 	    }
8745 	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8746 		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8747 	    {
8748 	      error ("%qE appears more than once in data clauses", t);
8749 	      remove = true;
8750 	    }
8751 	  else
8752 	    bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8753 	  break;
8754 
8755 	case OMP_CLAUSE_LASTPRIVATE:
8756 	  name = "lastprivate";
8757 	  t = OMP_CLAUSE_DECL (c);
8758 	  need_complete = true;
8759 	  need_implicitly_determined = true;
8760 	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8761 	    {
8762 	      error ("%qE is not a variable in clause %<lastprivate%>", t);
8763 	      remove = true;
8764 	    }
8765 	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8766 		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8767 	    {
8768 	      error ("%qE appears more than once in data clauses", t);
8769 	      remove = true;
8770 	    }
8771 	  else
8772 	    bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8773 	  break;
8774 
8775 	case OMP_CLAUSE_IF:
8776 	case OMP_CLAUSE_NUM_THREADS:
8777 	case OMP_CLAUSE_SCHEDULE:
8778 	case OMP_CLAUSE_NOWAIT:
8779 	case OMP_CLAUSE_ORDERED:
8780 	case OMP_CLAUSE_DEFAULT:
8781 	  pc = &OMP_CLAUSE_CHAIN (c);
8782 	  continue;
8783 
8784 	default:
8785 	  gcc_unreachable ();
8786 	}
8787 
8788       if (!remove)
8789 	{
8790 	  t = OMP_CLAUSE_DECL (c);
8791 
8792 	  if (need_complete)
8793 	    {
8794 	      t = require_complete_type (t);
8795 	      if (t == error_mark_node)
8796 		remove = true;
8797 	    }
8798 
8799 	  if (need_implicitly_determined)
8800 	    {
8801 	      const char *share_name = NULL;
8802 
8803 	      if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8804 		share_name = "threadprivate";
8805 	      else switch (c_omp_predetermined_sharing (t))
8806 		{
8807 		case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8808 		  break;
8809 		case OMP_CLAUSE_DEFAULT_SHARED:
8810 		  share_name = "shared";
8811 		  break;
8812 		case OMP_CLAUSE_DEFAULT_PRIVATE:
8813 		  share_name = "private";
8814 		  break;
8815 		default:
8816 		  gcc_unreachable ();
8817 		}
8818 	      if (share_name)
8819 		{
8820 		  error ("%qE is predetermined %qs for %qs",
8821 			 t, share_name, name);
8822 		  remove = true;
8823 		}
8824 	    }
8825 	}
8826 
8827       if (remove)
8828 	*pc = OMP_CLAUSE_CHAIN (c);
8829       else
8830 	pc = &OMP_CLAUSE_CHAIN (c);
8831     }
8832 
8833   bitmap_obstack_release (NULL);
8834   return clauses;
8835 }
8836