xref: /openbsd/gnu/gcc/gcc/calls.c (revision 404b540a)
1 /* Convert function calls to rtl insns, for GNU C compiler.
2    Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005
4    Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING.  If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA.  */
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "except.h"
44 
45 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits.  */
46 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
47 
48 /* Data structure and subroutines used within expand_call.  */
49 
50 struct arg_data
51 {
52   /* Tree node for this argument.  */
53   tree tree_value;
54   /* Mode for value; TYPE_MODE unless promoted.  */
55   enum machine_mode mode;
56   /* Current RTL value for argument, or 0 if it isn't precomputed.  */
57   rtx value;
58   /* Initially-compute RTL value for argument; only for const functions.  */
59   rtx initial_value;
60   /* Register to pass this argument in, 0 if passed on stack, or an
61      PARALLEL if the arg is to be copied into multiple non-contiguous
62      registers.  */
63   rtx reg;
64   /* Register to pass this argument in when generating tail call sequence.
65      This is not the same register as for normal calls on machines with
66      register windows.  */
67   rtx tail_call_reg;
68   /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
69      form for emit_group_move.  */
70   rtx parallel_value;
71   /* If REG was promoted from the actual mode of the argument expression,
72      indicates whether the promotion is sign- or zero-extended.  */
73   int unsignedp;
74   /* Number of bytes to put in registers.  0 means put the whole arg
75      in registers.  Also 0 if not passed in registers.  */
76   int partial;
77   /* Nonzero if argument must be passed on stack.
78      Note that some arguments may be passed on the stack
79      even though pass_on_stack is zero, just because FUNCTION_ARG says so.
80      pass_on_stack identifies arguments that *cannot* go in registers.  */
81   int pass_on_stack;
82   /* Some fields packaged up for locate_and_pad_parm.  */
83   struct locate_and_pad_arg_data locate;
84   /* Location on the stack at which parameter should be stored.  The store
85      has already been done if STACK == VALUE.  */
86   rtx stack;
87   /* Location on the stack of the start of this argument slot.  This can
88      differ from STACK if this arg pads downward.  This location is known
89      to be aligned to FUNCTION_ARG_BOUNDARY.  */
90   rtx stack_slot;
91   /* Place that this stack area has been saved, if needed.  */
92   rtx save_area;
93   /* If an argument's alignment does not permit direct copying into registers,
94      copy in smaller-sized pieces into pseudos.  These are stored in a
95      block pointed to by this field.  The next field says how many
96      word-sized pseudos we made.  */
97   rtx *aligned_regs;
98   int n_aligned_regs;
99 };
100 
101 /* A vector of one char per byte of stack space.  A byte if nonzero if
102    the corresponding stack location has been used.
103    This vector is used to prevent a function call within an argument from
104    clobbering any stack already set up.  */
105 static char *stack_usage_map;
106 
107 /* Size of STACK_USAGE_MAP.  */
108 static int highest_outgoing_arg_in_use;
109 
110 /* A bitmap of virtual-incoming stack space.  Bit is set if the corresponding
111    stack location's tail call argument has been already stored into the stack.
112    This bitmap is used to prevent sibling call optimization if function tries
113    to use parent's incoming argument slots when they have been already
114    overwritten with tail call arguments.  */
115 static sbitmap stored_args_map;
116 
117 /* stack_arg_under_construction is nonzero when an argument may be
118    initialized with a constructor call (including a C function that
119    returns a BLKmode struct) and expand_call must take special action
120    to make sure the object being constructed does not overlap the
121    argument list for the constructor call.  */
122 static int stack_arg_under_construction;
123 
124 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
125 			 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
126 			 CUMULATIVE_ARGS *);
127 static void precompute_register_parameters (int, struct arg_data *, int *);
128 static int store_one_arg (struct arg_data *, rtx, int, int, int);
129 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
130 static int finalize_must_preallocate (int, int, struct arg_data *,
131 				      struct args_size *);
132 static void precompute_arguments (int, int, struct arg_data *);
133 static int compute_argument_block_size (int, struct args_size *, int);
134 static void initialize_argument_information (int, struct arg_data *,
135 					     struct args_size *, int, tree,
136 					     tree, CUMULATIVE_ARGS *, int,
137 					     rtx *, int *, int *, int *,
138 					     bool *, bool);
139 static void compute_argument_addresses (struct arg_data *, rtx, int);
140 static rtx rtx_for_function_call (tree, tree);
141 static void load_register_parameters (struct arg_data *, int, rtx *, int,
142 				      int, int *);
143 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
144 				      enum machine_mode, int, va_list);
145 static int special_function_p (tree, int);
146 static int check_sibcall_argument_overlap_1 (rtx);
147 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
148 
149 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
150 						      unsigned int);
151 static tree split_complex_values (tree);
152 static tree split_complex_types (tree);
153 
154 #ifdef REG_PARM_STACK_SPACE
155 static rtx save_fixed_argument_area (int, rtx, int *, int *);
156 static void restore_fixed_argument_area (rtx, rtx, int, int);
157 #endif
158 
159 /* Force FUNEXP into a form suitable for the address of a CALL,
160    and return that as an rtx.  Also load the static chain register
161    if FNDECL is a nested function.
162 
163    CALL_FUSAGE points to a variable holding the prospective
164    CALL_INSN_FUNCTION_USAGE information.  */
165 
166 rtx
prepare_call_address(rtx funexp,rtx static_chain_value,rtx * call_fusage,int reg_parm_seen,int sibcallp)167 prepare_call_address (rtx funexp, rtx static_chain_value,
168 		      rtx *call_fusage, int reg_parm_seen, int sibcallp)
169 {
170   /* Make a valid memory address and copy constants through pseudo-regs,
171      but not for a constant address if -fno-function-cse.  */
172   if (GET_CODE (funexp) != SYMBOL_REF)
173     /* If we are using registers for parameters, force the
174        function address into a register now.  */
175     funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
176 	      ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
177 	      : memory_address (FUNCTION_MODE, funexp));
178   else if (! sibcallp)
179     {
180 #ifndef NO_FUNCTION_CSE
181       if (optimize && ! flag_no_function_cse)
182 	funexp = force_reg (Pmode, funexp);
183 #endif
184     }
185 
186   if (static_chain_value != 0)
187     {
188       static_chain_value = convert_memory_address (Pmode, static_chain_value);
189       emit_move_insn (static_chain_rtx, static_chain_value);
190 
191       if (REG_P (static_chain_rtx))
192 	use_reg (call_fusage, static_chain_rtx);
193     }
194 
195   return funexp;
196 }
197 
198 /* Generate instructions to call function FUNEXP,
199    and optionally pop the results.
200    The CALL_INSN is the first insn generated.
201 
202    FNDECL is the declaration node of the function.  This is given to the
203    macro RETURN_POPS_ARGS to determine whether this function pops its own args.
204 
205    FUNTYPE is the data type of the function.  This is given to the macro
206    RETURN_POPS_ARGS to determine whether this function pops its own args.
207    We used to allow an identifier for library functions, but that doesn't
208    work when the return type is an aggregate type and the calling convention
209    says that the pointer to this aggregate is to be popped by the callee.
210 
211    STACK_SIZE is the number of bytes of arguments on the stack,
212    ROUNDED_STACK_SIZE is that number rounded up to
213    PREFERRED_STACK_BOUNDARY; zero if the size is variable.  This is
214    both to put into the call insn and to generate explicit popping
215    code if necessary.
216 
217    STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
218    It is zero if this call doesn't want a structure value.
219 
220    NEXT_ARG_REG is the rtx that results from executing
221      FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
222    just after all the args have had their registers assigned.
223    This could be whatever you like, but normally it is the first
224    arg-register beyond those used for args in this call,
225    or 0 if all the arg-registers are used in this call.
226    It is passed on to `gen_call' so you can put this info in the call insn.
227 
228    VALREG is a hard register in which a value is returned,
229    or 0 if the call does not return a value.
230 
231    OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
232    the args to this call were processed.
233    We restore `inhibit_defer_pop' to that value.
234 
235    CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
236    denote registers used by the called function.  */
237 
238 static void
emit_call_1(rtx funexp,tree fntree,tree fndecl ATTRIBUTE_UNUSED,tree funtype ATTRIBUTE_UNUSED,HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,HOST_WIDE_INT rounded_stack_size,HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,rtx next_arg_reg ATTRIBUTE_UNUSED,rtx valreg,int old_inhibit_defer_pop,rtx call_fusage,int ecf_flags,CUMULATIVE_ARGS * args_so_far ATTRIBUTE_UNUSED)239 emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
240 	     tree funtype ATTRIBUTE_UNUSED,
241 	     HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
242 	     HOST_WIDE_INT rounded_stack_size,
243 	     HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
244 	     rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
245 	     int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
246 	     CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
247 {
248   rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
249   rtx call_insn;
250   int already_popped = 0;
251   HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
252 #if defined (HAVE_call) && defined (HAVE_call_value)
253   rtx struct_value_size_rtx;
254   struct_value_size_rtx = GEN_INT (struct_value_size);
255 #endif
256 
257 #ifdef CALL_POPS_ARGS
258   n_popped += CALL_POPS_ARGS (* args_so_far);
259 #endif
260 
261   /* Ensure address is valid.  SYMBOL_REF is already valid, so no need,
262      and we don't want to load it into a register as an optimization,
263      because prepare_call_address already did it if it should be done.  */
264   if (GET_CODE (funexp) != SYMBOL_REF)
265     funexp = memory_address (FUNCTION_MODE, funexp);
266 
267 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
268   if ((ecf_flags & ECF_SIBCALL)
269       && HAVE_sibcall_pop && HAVE_sibcall_value_pop
270       && (n_popped > 0 || stack_size == 0))
271     {
272       rtx n_pop = GEN_INT (n_popped);
273       rtx pat;
274 
275       /* If this subroutine pops its own args, record that in the call insn
276 	 if possible, for the sake of frame pointer elimination.  */
277 
278       if (valreg)
279 	pat = GEN_SIBCALL_VALUE_POP (valreg,
280 				     gen_rtx_MEM (FUNCTION_MODE, funexp),
281 				     rounded_stack_size_rtx, next_arg_reg,
282 				     n_pop);
283       else
284 	pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
285 			       rounded_stack_size_rtx, next_arg_reg, n_pop);
286 
287       emit_call_insn (pat);
288       already_popped = 1;
289     }
290   else
291 #endif
292 
293 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
294   /* If the target has "call" or "call_value" insns, then prefer them
295      if no arguments are actually popped.  If the target does not have
296      "call" or "call_value" insns, then we must use the popping versions
297      even if the call has no arguments to pop.  */
298 #if defined (HAVE_call) && defined (HAVE_call_value)
299   if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
300       && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
301 #else
302   if (HAVE_call_pop && HAVE_call_value_pop)
303 #endif
304     {
305       rtx n_pop = GEN_INT (n_popped);
306       rtx pat;
307 
308       /* If this subroutine pops its own args, record that in the call insn
309 	 if possible, for the sake of frame pointer elimination.  */
310 
311       if (valreg)
312 	pat = GEN_CALL_VALUE_POP (valreg,
313 				  gen_rtx_MEM (FUNCTION_MODE, funexp),
314 				  rounded_stack_size_rtx, next_arg_reg, n_pop);
315       else
316 	pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
317 			    rounded_stack_size_rtx, next_arg_reg, n_pop);
318 
319       emit_call_insn (pat);
320       already_popped = 1;
321     }
322   else
323 #endif
324 
325 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
326   if ((ecf_flags & ECF_SIBCALL)
327       && HAVE_sibcall && HAVE_sibcall_value)
328     {
329       if (valreg)
330 	emit_call_insn (GEN_SIBCALL_VALUE (valreg,
331 					   gen_rtx_MEM (FUNCTION_MODE, funexp),
332 					   rounded_stack_size_rtx,
333 					   next_arg_reg, NULL_RTX));
334       else
335 	emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
336 				     rounded_stack_size_rtx, next_arg_reg,
337 				     struct_value_size_rtx));
338     }
339   else
340 #endif
341 
342 #if defined (HAVE_call) && defined (HAVE_call_value)
343   if (HAVE_call && HAVE_call_value)
344     {
345       if (valreg)
346 	emit_call_insn (GEN_CALL_VALUE (valreg,
347 					gen_rtx_MEM (FUNCTION_MODE, funexp),
348 					rounded_stack_size_rtx, next_arg_reg,
349 					NULL_RTX));
350       else
351 	emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
352 				  rounded_stack_size_rtx, next_arg_reg,
353 				  struct_value_size_rtx));
354     }
355   else
356 #endif
357     gcc_unreachable ();
358 
359   /* Find the call we just emitted.  */
360   call_insn = last_call_insn ();
361 
362   /* Mark memory as used for "pure" function call.  */
363   if (ecf_flags & ECF_PURE)
364     call_fusage
365       = gen_rtx_EXPR_LIST
366 	(VOIDmode,
367 	 gen_rtx_USE (VOIDmode,
368 		      gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
369 	 call_fusage);
370 
371   /* Put the register usage information there.  */
372   add_function_usage_to (call_insn, call_fusage);
373 
374   /* If this is a const call, then set the insn's unchanging bit.  */
375   if (ecf_flags & (ECF_CONST | ECF_PURE))
376     CONST_OR_PURE_CALL_P (call_insn) = 1;
377 
378   /* If this call can't throw, attach a REG_EH_REGION reg note to that
379      effect.  */
380   if (ecf_flags & ECF_NOTHROW)
381     REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
382 					       REG_NOTES (call_insn));
383   else
384     {
385       int rn = lookup_stmt_eh_region (fntree);
386 
387       /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
388 	 throw, which we already took care of.  */
389       if (rn > 0)
390 	REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
391 						   REG_NOTES (call_insn));
392       note_current_region_may_contain_throw ();
393     }
394 
395   if (ecf_flags & ECF_NORETURN)
396     REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
397 					       REG_NOTES (call_insn));
398 
399   if (ecf_flags & ECF_RETURNS_TWICE)
400     {
401       REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
402 						 REG_NOTES (call_insn));
403       current_function_calls_setjmp = 1;
404     }
405 
406   SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
407 
408   /* Restore this now, so that we do defer pops for this call's args
409      if the context of the call as a whole permits.  */
410   inhibit_defer_pop = old_inhibit_defer_pop;
411 
412   if (n_popped > 0)
413     {
414       if (!already_popped)
415 	CALL_INSN_FUNCTION_USAGE (call_insn)
416 	  = gen_rtx_EXPR_LIST (VOIDmode,
417 			       gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
418 			       CALL_INSN_FUNCTION_USAGE (call_insn));
419       rounded_stack_size -= n_popped;
420       rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
421       stack_pointer_delta -= n_popped;
422     }
423 
424   if (!ACCUMULATE_OUTGOING_ARGS)
425     {
426       /* If returning from the subroutine does not automatically pop the args,
427 	 we need an instruction to pop them sooner or later.
428 	 Perhaps do it now; perhaps just record how much space to pop later.
429 
430 	 If returning from the subroutine does pop the args, indicate that the
431 	 stack pointer will be changed.  */
432 
433       if (rounded_stack_size != 0)
434 	{
435 	  if (ecf_flags & (ECF_SP_DEPRESSED | ECF_NORETURN))
436 	    /* Just pretend we did the pop.  */
437 	    stack_pointer_delta -= rounded_stack_size;
438 	  else if (flag_defer_pop && inhibit_defer_pop == 0
439 	      && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
440 	    pending_stack_adjust += rounded_stack_size;
441 	  else
442 	    adjust_stack (rounded_stack_size_rtx);
443 	}
444     }
445   /* When we accumulate outgoing args, we must avoid any stack manipulations.
446      Restore the stack pointer to its original value now.  Usually
447      ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
448      On  i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
449      popping variants of functions exist as well.
450 
451      ??? We may optimize similar to defer_pop above, but it is
452      probably not worthwhile.
453 
454      ??? It will be worthwhile to enable combine_stack_adjustments even for
455      such machines.  */
456   else if (n_popped)
457     anti_adjust_stack (GEN_INT (n_popped));
458 }
459 
460 /* Determine if the function identified by NAME and FNDECL is one with
461    special properties we wish to know about.
462 
463    For example, if the function might return more than one time (setjmp), then
464    set RETURNS_TWICE to a nonzero value.
465 
466    Similarly set NORETURN if the function is in the longjmp family.
467 
468    Set MAY_BE_ALLOCA for any memory allocation function that might allocate
469    space from the stack such as alloca.  */
470 
471 static int
special_function_p(tree fndecl,int flags)472 special_function_p (tree fndecl, int flags)
473 {
474   if (fndecl && DECL_NAME (fndecl)
475       && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
476       /* Exclude functions not at the file scope, or not `extern',
477 	 since they are not the magic functions we would otherwise
478 	 think they are.
479 	 FIXME: this should be handled with attributes, not with this
480 	 hacky imitation of DECL_ASSEMBLER_NAME.  It's (also) wrong
481 	 because you can declare fork() inside a function if you
482 	 wish.  */
483       && (DECL_CONTEXT (fndecl) == NULL_TREE
484 	  || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
485       && TREE_PUBLIC (fndecl))
486     {
487       const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
488       const char *tname = name;
489 
490       /* We assume that alloca will always be called by name.  It
491 	 makes no sense to pass it as a pointer-to-function to
492 	 anything that does not understand its behavior.  */
493       if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
494 	    && name[0] == 'a'
495 	    && ! strcmp (name, "alloca"))
496 	   || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
497 	       && name[0] == '_'
498 	       && ! strcmp (name, "__builtin_alloca"))))
499 	flags |= ECF_MAY_BE_ALLOCA;
500 
501       /* Disregard prefix _, __ or __x.  */
502       if (name[0] == '_')
503 	{
504 	  if (name[1] == '_' && name[2] == 'x')
505 	    tname += 3;
506 	  else if (name[1] == '_')
507 	    tname += 2;
508 	  else
509 	    tname += 1;
510 	}
511 
512       if (tname[0] == 's')
513 	{
514 	  if ((tname[1] == 'e'
515 	       && (! strcmp (tname, "setjmp")
516 		   || ! strcmp (tname, "setjmp_syscall")))
517 	      || (tname[1] == 'i'
518 		  && ! strcmp (tname, "sigsetjmp"))
519 	      || (tname[1] == 'a'
520 		  && ! strcmp (tname, "savectx")))
521 	    flags |= ECF_RETURNS_TWICE;
522 
523 	  if (tname[1] == 'i'
524 	      && ! strcmp (tname, "siglongjmp"))
525 	    flags |= ECF_NORETURN;
526 	}
527       else if ((tname[0] == 'q' && tname[1] == 's'
528 		&& ! strcmp (tname, "qsetjmp"))
529 	       || (tname[0] == 'v' && tname[1] == 'f'
530 		   && ! strcmp (tname, "vfork"))
531 	       || (tname[0] == 'g' && tname[1] == 'e'
532 		   && !strcmp (tname, "getcontext")))
533 	flags |= ECF_RETURNS_TWICE;
534 
535       else if (tname[0] == 'l' && tname[1] == 'o'
536 	       && ! strcmp (tname, "longjmp"))
537 	flags |= ECF_NORETURN;
538     }
539 
540   return flags;
541 }
542 
543 /* Return nonzero when FNDECL represents a call to setjmp.  */
544 
545 int
setjmp_call_p(tree fndecl)546 setjmp_call_p (tree fndecl)
547 {
548   return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
549 }
550 
551 /* Return true when exp contains alloca call.  */
552 bool
alloca_call_p(tree exp)553 alloca_call_p (tree exp)
554 {
555   if (TREE_CODE (exp) == CALL_EXPR
556       && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
557       && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
558 	  == FUNCTION_DECL)
559       && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
560 			      0) & ECF_MAY_BE_ALLOCA))
561     return true;
562   return false;
563 }
564 
565 /* Detect flags (function attributes) from the function decl or type node.  */
566 
567 int
flags_from_decl_or_type(tree exp)568 flags_from_decl_or_type (tree exp)
569 {
570   int flags = 0;
571   tree type = exp;
572 
573   if (DECL_P (exp))
574     {
575       type = TREE_TYPE (exp);
576 
577       /* The function exp may have the `malloc' attribute.  */
578       if (DECL_IS_MALLOC (exp))
579 	flags |= ECF_MALLOC;
580 
581       /* The function exp may have the `returns_twice' attribute.  */
582       if (DECL_IS_RETURNS_TWICE (exp))
583 	flags |= ECF_RETURNS_TWICE;
584 
585       /* The function exp may have the `pure' attribute.  */
586       if (DECL_IS_PURE (exp))
587 	flags |= ECF_PURE;
588 
589       if (DECL_IS_NOVOPS (exp))
590 	flags |= ECF_NOVOPS;
591 
592       if (TREE_NOTHROW (exp))
593 	flags |= ECF_NOTHROW;
594 
595       if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
596 	flags |= ECF_CONST;
597 
598       flags = special_function_p (exp, flags);
599     }
600   else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
601     flags |= ECF_CONST;
602 
603   if (TREE_THIS_VOLATILE (exp))
604     flags |= ECF_NORETURN;
605 
606   /* Mark if the function returns with the stack pointer depressed.   We
607      cannot consider it pure or constant in that case.  */
608   if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
609     {
610       flags |= ECF_SP_DEPRESSED;
611       flags &= ~(ECF_PURE | ECF_CONST);
612     }
613 
614   return flags;
615 }
616 
617 /* Detect flags from a CALL_EXPR.  */
618 
619 int
call_expr_flags(tree t)620 call_expr_flags (tree t)
621 {
622   int flags;
623   tree decl = get_callee_fndecl (t);
624 
625   if (decl)
626     flags = flags_from_decl_or_type (decl);
627   else
628     {
629       t = TREE_TYPE (TREE_OPERAND (t, 0));
630       if (t && TREE_CODE (t) == POINTER_TYPE)
631 	flags = flags_from_decl_or_type (TREE_TYPE (t));
632       else
633 	flags = 0;
634     }
635 
636   return flags;
637 }
638 
639 /* Precompute all register parameters as described by ARGS, storing values
640    into fields within the ARGS array.
641 
642    NUM_ACTUALS indicates the total number elements in the ARGS array.
643 
644    Set REG_PARM_SEEN if we encounter a register parameter.  */
645 
646 static void
precompute_register_parameters(int num_actuals,struct arg_data * args,int * reg_parm_seen)647 precompute_register_parameters (int num_actuals, struct arg_data *args,
648 				int *reg_parm_seen)
649 {
650   int i;
651 
652   *reg_parm_seen = 0;
653 
654   for (i = 0; i < num_actuals; i++)
655     if (args[i].reg != 0 && ! args[i].pass_on_stack)
656       {
657 	*reg_parm_seen = 1;
658 
659 	if (args[i].value == 0)
660 	  {
661 	    push_temp_slots ();
662 	    args[i].value = expand_normal (args[i].tree_value);
663 	    preserve_temp_slots (args[i].value);
664 	    pop_temp_slots ();
665 	  }
666 
667 	/* If the value is a non-legitimate constant, force it into a
668 	   pseudo now.  TLS symbols sometimes need a call to resolve.  */
669 	if (CONSTANT_P (args[i].value)
670 	    && !LEGITIMATE_CONSTANT_P (args[i].value))
671 	  args[i].value = force_reg (args[i].mode, args[i].value);
672 
673 	/* If we are to promote the function arg to a wider mode,
674 	   do it now.  */
675 
676 	if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
677 	  args[i].value
678 	    = convert_modes (args[i].mode,
679 			     TYPE_MODE (TREE_TYPE (args[i].tree_value)),
680 			     args[i].value, args[i].unsignedp);
681 
682 	/* If we're going to have to load the value by parts, pull the
683 	   parts into pseudos.  The part extraction process can involve
684 	   non-trivial computation.  */
685 	if (GET_CODE (args[i].reg) == PARALLEL)
686 	  {
687 	    tree type = TREE_TYPE (args[i].tree_value);
688 	    args[i].parallel_value
689 	      = emit_group_load_into_temps (args[i].reg, args[i].value,
690 					    type, int_size_in_bytes (type));
691 	  }
692 
693 	/* If the value is expensive, and we are inside an appropriately
694 	   short loop, put the value into a pseudo and then put the pseudo
695 	   into the hard reg.
696 
697 	   For small register classes, also do this if this call uses
698 	   register parameters.  This is to avoid reload conflicts while
699 	   loading the parameters registers.  */
700 
701 	else if ((! (REG_P (args[i].value)
702 		     || (GET_CODE (args[i].value) == SUBREG
703 			 && REG_P (SUBREG_REG (args[i].value)))))
704 		 && args[i].mode != BLKmode
705 		 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
706 		 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
707 		     || optimize))
708 	  args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
709       }
710 }
711 
712 #ifdef REG_PARM_STACK_SPACE
713 
714   /* The argument list is the property of the called routine and it
715      may clobber it.  If the fixed area has been used for previous
716      parameters, we must save and restore it.  */
717 
718 static rtx
save_fixed_argument_area(int reg_parm_stack_space,rtx argblock,int * low_to_save,int * high_to_save)719 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
720 {
721   int low;
722   int high;
723 
724   /* Compute the boundary of the area that needs to be saved, if any.  */
725   high = reg_parm_stack_space;
726 #ifdef ARGS_GROW_DOWNWARD
727   high += 1;
728 #endif
729   if (high > highest_outgoing_arg_in_use)
730     high = highest_outgoing_arg_in_use;
731 
732   for (low = 0; low < high; low++)
733     if (stack_usage_map[low] != 0)
734       {
735 	int num_to_save;
736 	enum machine_mode save_mode;
737 	int delta;
738 	rtx stack_area;
739 	rtx save_area;
740 
741 	while (stack_usage_map[--high] == 0)
742 	  ;
743 
744 	*low_to_save = low;
745 	*high_to_save = high;
746 
747 	num_to_save = high - low + 1;
748 	save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
749 
750 	/* If we don't have the required alignment, must do this
751 	   in BLKmode.  */
752 	if ((low & (MIN (GET_MODE_SIZE (save_mode),
753 			 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
754 	  save_mode = BLKmode;
755 
756 #ifdef ARGS_GROW_DOWNWARD
757 	delta = -high;
758 #else
759 	delta = low;
760 #endif
761 	stack_area = gen_rtx_MEM (save_mode,
762 				  memory_address (save_mode,
763 						  plus_constant (argblock,
764 								 delta)));
765 
766 	set_mem_align (stack_area, PARM_BOUNDARY);
767 	if (save_mode == BLKmode)
768 	  {
769 	    save_area = assign_stack_temp (BLKmode, num_to_save, 0);
770 	    emit_block_move (validize_mem (save_area), stack_area,
771 			     GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
772 	  }
773 	else
774 	  {
775 	    save_area = gen_reg_rtx (save_mode);
776 	    emit_move_insn (save_area, stack_area);
777 	  }
778 
779 	return save_area;
780       }
781 
782   return NULL_RTX;
783 }
784 
785 static void
restore_fixed_argument_area(rtx save_area,rtx argblock,int high_to_save,int low_to_save)786 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
787 {
788   enum machine_mode save_mode = GET_MODE (save_area);
789   int delta;
790   rtx stack_area;
791 
792 #ifdef ARGS_GROW_DOWNWARD
793   delta = -high_to_save;
794 #else
795   delta = low_to_save;
796 #endif
797   stack_area = gen_rtx_MEM (save_mode,
798 			    memory_address (save_mode,
799 					    plus_constant (argblock, delta)));
800   set_mem_align (stack_area, PARM_BOUNDARY);
801 
802   if (save_mode != BLKmode)
803     emit_move_insn (stack_area, save_area);
804   else
805     emit_block_move (stack_area, validize_mem (save_area),
806 		     GEN_INT (high_to_save - low_to_save + 1),
807 		     BLOCK_OP_CALL_PARM);
808 }
809 #endif /* REG_PARM_STACK_SPACE */
810 
811 /* If any elements in ARGS refer to parameters that are to be passed in
812    registers, but not in memory, and whose alignment does not permit a
813    direct copy into registers.  Copy the values into a group of pseudos
814    which we will later copy into the appropriate hard registers.
815 
816    Pseudos for each unaligned argument will be stored into the array
817    args[argnum].aligned_regs.  The caller is responsible for deallocating
818    the aligned_regs array if it is nonzero.  */
819 
820 static void
store_unaligned_arguments_into_pseudos(struct arg_data * args,int num_actuals)821 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
822 {
823   int i, j;
824 
825   for (i = 0; i < num_actuals; i++)
826     if (args[i].reg != 0 && ! args[i].pass_on_stack
827 	&& args[i].mode == BLKmode
828 	&& (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
829 	    < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
830       {
831 	int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
832 	int endian_correction = 0;
833 
834 	if (args[i].partial)
835 	  {
836 	    gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
837 	    args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
838 	  }
839 	else
840 	  {
841 	    args[i].n_aligned_regs
842 	      = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
843 	  }
844 
845 	args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
846 
847 	/* Structures smaller than a word are normally aligned to the
848 	   least significant byte.  On a BYTES_BIG_ENDIAN machine,
849 	   this means we must skip the empty high order bytes when
850 	   calculating the bit offset.  */
851 	if (bytes < UNITS_PER_WORD
852 #ifdef BLOCK_REG_PADDING
853 	    && (BLOCK_REG_PADDING (args[i].mode,
854 				   TREE_TYPE (args[i].tree_value), 1)
855 		== downward)
856 #else
857 	    && BYTES_BIG_ENDIAN
858 #endif
859 	    )
860 	  endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
861 
862 	for (j = 0; j < args[i].n_aligned_regs; j++)
863 	  {
864 	    rtx reg = gen_reg_rtx (word_mode);
865 	    rtx word = operand_subword_force (args[i].value, j, BLKmode);
866 	    int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
867 
868 	    args[i].aligned_regs[j] = reg;
869 	    word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
870 				      word_mode, word_mode);
871 
872 	    /* There is no need to restrict this code to loading items
873 	       in TYPE_ALIGN sized hunks.  The bitfield instructions can
874 	       load up entire word sized registers efficiently.
875 
876 	       ??? This may not be needed anymore.
877 	       We use to emit a clobber here but that doesn't let later
878 	       passes optimize the instructions we emit.  By storing 0 into
879 	       the register later passes know the first AND to zero out the
880 	       bitfield being set in the register is unnecessary.  The store
881 	       of 0 will be deleted as will at least the first AND.  */
882 
883 	    emit_move_insn (reg, const0_rtx);
884 
885 	    bytes -= bitsize / BITS_PER_UNIT;
886 	    store_bit_field (reg, bitsize, endian_correction, word_mode,
887 			     word);
888 	  }
889       }
890 }
891 
892 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
893    ACTPARMS.
894 
895    NUM_ACTUALS is the total number of parameters.
896 
897    N_NAMED_ARGS is the total number of named arguments.
898 
899    FNDECL is the tree code for the target of this call (if known)
900 
901    ARGS_SO_FAR holds state needed by the target to know where to place
902    the next argument.
903 
904    REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
905    for arguments which are passed in registers.
906 
907    OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
908    and may be modified by this routine.
909 
910    OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
911    flags which may may be modified by this routine.
912 
913    MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
914    that requires allocation of stack space.
915 
916    CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
917    the thunked-to function.  */
918 
919 static void
initialize_argument_information(int num_actuals ATTRIBUTE_UNUSED,struct arg_data * args,struct args_size * args_size,int n_named_args ATTRIBUTE_UNUSED,tree actparms,tree fndecl,CUMULATIVE_ARGS * args_so_far,int reg_parm_stack_space,rtx * old_stack_level,int * old_pending_adj,int * must_preallocate,int * ecf_flags,bool * may_tailcall,bool call_from_thunk_p)920 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
921 				 struct arg_data *args,
922 				 struct args_size *args_size,
923 				 int n_named_args ATTRIBUTE_UNUSED,
924 				 tree actparms, tree fndecl,
925 				 CUMULATIVE_ARGS *args_so_far,
926 				 int reg_parm_stack_space,
927 				 rtx *old_stack_level, int *old_pending_adj,
928 				 int *must_preallocate, int *ecf_flags,
929 				 bool *may_tailcall, bool call_from_thunk_p)
930 {
931   /* 1 if scanning parms front to back, -1 if scanning back to front.  */
932   int inc;
933 
934   /* Count arg position in order args appear.  */
935   int argpos;
936 
937   int i;
938   tree p;
939 
940   args_size->constant = 0;
941   args_size->var = 0;
942 
943   /* In this loop, we consider args in the order they are written.
944      We fill up ARGS from the front or from the back if necessary
945      so that in any case the first arg to be pushed ends up at the front.  */
946 
947   if (PUSH_ARGS_REVERSED)
948     {
949       i = num_actuals - 1, inc = -1;
950       /* In this case, must reverse order of args
951 	 so that we compute and push the last arg first.  */
952     }
953   else
954     {
955       i = 0, inc = 1;
956     }
957 
958   /* I counts args in order (to be) pushed; ARGPOS counts in order written.  */
959   for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
960     {
961       tree type = TREE_TYPE (TREE_VALUE (p));
962       int unsignedp;
963       enum machine_mode mode;
964 
965       args[i].tree_value = TREE_VALUE (p);
966 
967       /* Replace erroneous argument with constant zero.  */
968       if (type == error_mark_node || !COMPLETE_TYPE_P (type))
969 	args[i].tree_value = integer_zero_node, type = integer_type_node;
970 
971       /* If TYPE is a transparent union, pass things the way we would
972 	 pass the first field of the union.  We have already verified that
973 	 the modes are the same.  */
974       if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
975 	type = TREE_TYPE (TYPE_FIELDS (type));
976 
977       /* Decide where to pass this arg.
978 
979 	 args[i].reg is nonzero if all or part is passed in registers.
980 
981 	 args[i].partial is nonzero if part but not all is passed in registers,
982 	 and the exact value says how many bytes are passed in registers.
983 
984 	 args[i].pass_on_stack is nonzero if the argument must at least be
985 	 computed on the stack.  It may then be loaded back into registers
986 	 if args[i].reg is nonzero.
987 
988 	 These decisions are driven by the FUNCTION_... macros and must agree
989 	 with those made by function.c.  */
990 
991       /* See if this argument should be passed by invisible reference.  */
992       if (pass_by_reference (args_so_far, TYPE_MODE (type),
993 			     type, argpos < n_named_args))
994 	{
995 	  bool callee_copies;
996 	  tree base;
997 
998 	  callee_copies
999 	    = reference_callee_copied (args_so_far, TYPE_MODE (type),
1000 				       type, argpos < n_named_args);
1001 
1002 	  /* If we're compiling a thunk, pass through invisible references
1003 	     instead of making a copy.  */
1004 	  if (call_from_thunk_p
1005 	      || (callee_copies
1006 		  && !TREE_ADDRESSABLE (type)
1007 		  && (base = get_base_address (args[i].tree_value))
1008 		  && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1009 	    {
1010 	      /* We can't use sibcalls if a callee-copied argument is
1011 		 stored in the current function's frame.  */
1012 	      if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1013 		*may_tailcall = false;
1014 
1015 	      args[i].tree_value = build_fold_addr_expr (args[i].tree_value);
1016 	      type = TREE_TYPE (args[i].tree_value);
1017 
1018 	      *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1019 	    }
1020 	  else
1021 	    {
1022 	      /* We make a copy of the object and pass the address to the
1023 		 function being called.  */
1024 	      rtx copy;
1025 
1026 	      if (!COMPLETE_TYPE_P (type)
1027 		  || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1028 		  || (flag_stack_check && ! STACK_CHECK_BUILTIN
1029 		      && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
1030 						STACK_CHECK_MAX_VAR_SIZE))))
1031 		{
1032 		  /* This is a variable-sized object.  Make space on the stack
1033 		     for it.  */
1034 		  rtx size_rtx = expr_size (TREE_VALUE (p));
1035 
1036 		  if (*old_stack_level == 0)
1037 		    {
1038 		      emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1039 		      *old_pending_adj = pending_stack_adjust;
1040 		      pending_stack_adjust = 0;
1041 		    }
1042 
1043 		  copy = gen_rtx_MEM (BLKmode,
1044 				      allocate_dynamic_stack_space
1045 				      (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1046 		  set_mem_attributes (copy, type, 1);
1047 		}
1048 	      else
1049 		copy = assign_temp (type, 0, 1, 0);
1050 
1051 	      store_expr (args[i].tree_value, copy, 0);
1052 
1053 	      if (callee_copies)
1054 		*ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1055 	      else
1056 		*ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1057 
1058 	      args[i].tree_value
1059 		= build_fold_addr_expr (make_tree (type, copy));
1060 	      type = TREE_TYPE (args[i].tree_value);
1061 	      *may_tailcall = false;
1062 	    }
1063 	}
1064 
1065       mode = TYPE_MODE (type);
1066       unsignedp = TYPE_UNSIGNED (type);
1067 
1068       if (targetm.calls.promote_function_args (fndecl ? TREE_TYPE (fndecl) : 0))
1069 	mode = promote_mode (type, mode, &unsignedp, 1);
1070 
1071       args[i].unsignedp = unsignedp;
1072       args[i].mode = mode;
1073 
1074       args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1075 				  argpos < n_named_args);
1076 #ifdef FUNCTION_INCOMING_ARG
1077       /* If this is a sibling call and the machine has register windows, the
1078 	 register window has to be unwinded before calling the routine, so
1079 	 arguments have to go into the incoming registers.  */
1080       args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1081 						     argpos < n_named_args);
1082 #else
1083       args[i].tail_call_reg = args[i].reg;
1084 #endif
1085 
1086       if (args[i].reg)
1087 	args[i].partial
1088 	  = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1089 					     argpos < n_named_args);
1090 
1091       args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1092 
1093       /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1094 	 it means that we are to pass this arg in the register(s) designated
1095 	 by the PARALLEL, but also to pass it in the stack.  */
1096       if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1097 	  && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1098 	args[i].pass_on_stack = 1;
1099 
1100       /* If this is an addressable type, we must preallocate the stack
1101 	 since we must evaluate the object into its final location.
1102 
1103 	 If this is to be passed in both registers and the stack, it is simpler
1104 	 to preallocate.  */
1105       if (TREE_ADDRESSABLE (type)
1106 	  || (args[i].pass_on_stack && args[i].reg != 0))
1107 	*must_preallocate = 1;
1108 
1109       /* If this is an addressable type, we cannot pre-evaluate it.  Thus,
1110 	 we cannot consider this function call constant.  */
1111       if (TREE_ADDRESSABLE (type))
1112 	*ecf_flags &= ~ECF_LIBCALL_BLOCK;
1113 
1114       /* Compute the stack-size of this argument.  */
1115       if (args[i].reg == 0 || args[i].partial != 0
1116 	  || reg_parm_stack_space > 0
1117 	  || args[i].pass_on_stack)
1118 	locate_and_pad_parm (mode, type,
1119 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1120 			     1,
1121 #else
1122 			     args[i].reg != 0,
1123 #endif
1124 			     args[i].pass_on_stack ? 0 : args[i].partial,
1125 			     fndecl, args_size, &args[i].locate);
1126 #ifdef BLOCK_REG_PADDING
1127       else
1128 	/* The argument is passed entirely in registers.  See at which
1129 	   end it should be padded.  */
1130 	args[i].locate.where_pad =
1131 	  BLOCK_REG_PADDING (mode, type,
1132 			     int_size_in_bytes (type) <= UNITS_PER_WORD);
1133 #endif
1134 
1135       /* Update ARGS_SIZE, the total stack space for args so far.  */
1136 
1137       args_size->constant += args[i].locate.size.constant;
1138       if (args[i].locate.size.var)
1139 	ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1140 
1141       /* Increment ARGS_SO_FAR, which has info about which arg-registers
1142 	 have been used, etc.  */
1143 
1144       FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1145 			    argpos < n_named_args);
1146     }
1147 }
1148 
1149 /* Update ARGS_SIZE to contain the total size for the argument block.
1150    Return the original constant component of the argument block's size.
1151 
1152    REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1153    for arguments passed in registers.  */
1154 
1155 static int
compute_argument_block_size(int reg_parm_stack_space,struct args_size * args_size,int preferred_stack_boundary ATTRIBUTE_UNUSED)1156 compute_argument_block_size (int reg_parm_stack_space,
1157 			     struct args_size *args_size,
1158 			     int preferred_stack_boundary ATTRIBUTE_UNUSED)
1159 {
1160   int unadjusted_args_size = args_size->constant;
1161 
1162   /* For accumulate outgoing args mode we don't need to align, since the frame
1163      will be already aligned.  Align to STACK_BOUNDARY in order to prevent
1164      backends from generating misaligned frame sizes.  */
1165   if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1166     preferred_stack_boundary = STACK_BOUNDARY;
1167 
1168   /* Compute the actual size of the argument block required.  The variable
1169      and constant sizes must be combined, the size may have to be rounded,
1170      and there may be a minimum required size.  */
1171 
1172   if (args_size->var)
1173     {
1174       args_size->var = ARGS_SIZE_TREE (*args_size);
1175       args_size->constant = 0;
1176 
1177       preferred_stack_boundary /= BITS_PER_UNIT;
1178       if (preferred_stack_boundary > 1)
1179 	{
1180 	  /* We don't handle this case yet.  To handle it correctly we have
1181 	     to add the delta, round and subtract the delta.
1182 	     Currently no machine description requires this support.  */
1183 	  gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1184 	  args_size->var = round_up (args_size->var, preferred_stack_boundary);
1185 	}
1186 
1187       if (reg_parm_stack_space > 0)
1188 	{
1189 	  args_size->var
1190 	    = size_binop (MAX_EXPR, args_size->var,
1191 			  ssize_int (reg_parm_stack_space));
1192 
1193 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1194 	  /* The area corresponding to register parameters is not to count in
1195 	     the size of the block we need.  So make the adjustment.  */
1196 	  args_size->var
1197 	    = size_binop (MINUS_EXPR, args_size->var,
1198 			  ssize_int (reg_parm_stack_space));
1199 #endif
1200 	}
1201     }
1202   else
1203     {
1204       preferred_stack_boundary /= BITS_PER_UNIT;
1205       if (preferred_stack_boundary < 1)
1206 	preferred_stack_boundary = 1;
1207       args_size->constant = (((args_size->constant
1208 			       + stack_pointer_delta
1209 			       + preferred_stack_boundary - 1)
1210 			      / preferred_stack_boundary
1211 			      * preferred_stack_boundary)
1212 			     - stack_pointer_delta);
1213 
1214       args_size->constant = MAX (args_size->constant,
1215 				 reg_parm_stack_space);
1216 
1217 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1218       args_size->constant -= reg_parm_stack_space;
1219 #endif
1220     }
1221   return unadjusted_args_size;
1222 }
1223 
1224 /* Precompute parameters as needed for a function call.
1225 
1226    FLAGS is mask of ECF_* constants.
1227 
1228    NUM_ACTUALS is the number of arguments.
1229 
1230    ARGS is an array containing information for each argument; this
1231    routine fills in the INITIAL_VALUE and VALUE fields for each
1232    precomputed argument.  */
1233 
1234 static void
precompute_arguments(int flags,int num_actuals,struct arg_data * args)1235 precompute_arguments (int flags, int num_actuals, struct arg_data *args)
1236 {
1237   int i;
1238 
1239   /* If this is a libcall, then precompute all arguments so that we do not
1240      get extraneous instructions emitted as part of the libcall sequence.  */
1241 
1242   /* If we preallocated the stack space, and some arguments must be passed
1243      on the stack, then we must precompute any parameter which contains a
1244      function call which will store arguments on the stack.
1245      Otherwise, evaluating the parameter may clobber previous parameters
1246      which have already been stored into the stack.  (we have code to avoid
1247      such case by saving the outgoing stack arguments, but it results in
1248      worse code)  */
1249   if ((flags & ECF_LIBCALL_BLOCK) == 0 && !ACCUMULATE_OUTGOING_ARGS)
1250     return;
1251 
1252   for (i = 0; i < num_actuals; i++)
1253     {
1254       enum machine_mode mode;
1255 
1256       if ((flags & ECF_LIBCALL_BLOCK) == 0
1257 	  && TREE_CODE (args[i].tree_value) != CALL_EXPR)
1258 	continue;
1259 
1260       /* If this is an addressable type, we cannot pre-evaluate it.  */
1261       gcc_assert (!TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)));
1262 
1263       args[i].initial_value = args[i].value
1264 	= expand_normal (args[i].tree_value);
1265 
1266       mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1267       if (mode != args[i].mode)
1268 	{
1269 	  args[i].value
1270 	    = convert_modes (args[i].mode, mode,
1271 			     args[i].value, args[i].unsignedp);
1272 #if defined(PROMOTE_FUNCTION_MODE) && !defined(PROMOTE_MODE)
1273 	  /* CSE will replace this only if it contains args[i].value
1274 	     pseudo, so convert it down to the declared mode using
1275 	     a SUBREG.  */
1276 	  if (REG_P (args[i].value)
1277 	      && GET_MODE_CLASS (args[i].mode) == MODE_INT)
1278 	    {
1279 	      args[i].initial_value
1280 		= gen_lowpart_SUBREG (mode, args[i].value);
1281 	      SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1282 	      SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1283 					    args[i].unsignedp);
1284 	    }
1285 #endif
1286 	}
1287     }
1288 }
1289 
1290 /* Given the current state of MUST_PREALLOCATE and information about
1291    arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1292    compute and return the final value for MUST_PREALLOCATE.  */
1293 
1294 static int
finalize_must_preallocate(int must_preallocate,int num_actuals,struct arg_data * args,struct args_size * args_size)1295 finalize_must_preallocate (int must_preallocate, int num_actuals, struct arg_data *args, struct args_size *args_size)
1296 {
1297   /* See if we have or want to preallocate stack space.
1298 
1299      If we would have to push a partially-in-regs parm
1300      before other stack parms, preallocate stack space instead.
1301 
1302      If the size of some parm is not a multiple of the required stack
1303      alignment, we must preallocate.
1304 
1305      If the total size of arguments that would otherwise create a copy in
1306      a temporary (such as a CALL) is more than half the total argument list
1307      size, preallocation is faster.
1308 
1309      Another reason to preallocate is if we have a machine (like the m88k)
1310      where stack alignment is required to be maintained between every
1311      pair of insns, not just when the call is made.  However, we assume here
1312      that such machines either do not have push insns (and hence preallocation
1313      would occur anyway) or the problem is taken care of with
1314      PUSH_ROUNDING.  */
1315 
1316   if (! must_preallocate)
1317     {
1318       int partial_seen = 0;
1319       int copy_to_evaluate_size = 0;
1320       int i;
1321 
1322       for (i = 0; i < num_actuals && ! must_preallocate; i++)
1323 	{
1324 	  if (args[i].partial > 0 && ! args[i].pass_on_stack)
1325 	    partial_seen = 1;
1326 	  else if (partial_seen && args[i].reg == 0)
1327 	    must_preallocate = 1;
1328 
1329 	  if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1330 	      && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1331 		  || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1332 		  || TREE_CODE (args[i].tree_value) == COND_EXPR
1333 		  || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1334 	    copy_to_evaluate_size
1335 	      += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1336 	}
1337 
1338       if (copy_to_evaluate_size * 2 >= args_size->constant
1339 	  && args_size->constant > 0)
1340 	must_preallocate = 1;
1341     }
1342   return must_preallocate;
1343 }
1344 
1345 /* If we preallocated stack space, compute the address of each argument
1346    and store it into the ARGS array.
1347 
1348    We need not ensure it is a valid memory address here; it will be
1349    validized when it is used.
1350 
1351    ARGBLOCK is an rtx for the address of the outgoing arguments.  */
1352 
1353 static void
compute_argument_addresses(struct arg_data * args,rtx argblock,int num_actuals)1354 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1355 {
1356   if (argblock)
1357     {
1358       rtx arg_reg = argblock;
1359       int i, arg_offset = 0;
1360 
1361       if (GET_CODE (argblock) == PLUS)
1362 	arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1363 
1364       for (i = 0; i < num_actuals; i++)
1365 	{
1366 	  rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1367 	  rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1368 	  rtx addr;
1369 	  unsigned int align, boundary;
1370 	  unsigned int units_on_stack = 0;
1371 	  enum machine_mode partial_mode = VOIDmode;
1372 
1373 	  /* Skip this parm if it will not be passed on the stack.  */
1374 	  if (! args[i].pass_on_stack
1375 	      && args[i].reg != 0
1376 	      && args[i].partial == 0)
1377 	    continue;
1378 
1379 	  if (GET_CODE (offset) == CONST_INT)
1380 	    addr = plus_constant (arg_reg, INTVAL (offset));
1381 	  else
1382 	    addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1383 
1384 	  addr = plus_constant (addr, arg_offset);
1385 
1386 	  if (args[i].partial != 0)
1387 	    {
1388 	      /* Only part of the parameter is being passed on the stack.
1389 		 Generate a simple memory reference of the correct size.  */
1390 	      units_on_stack = args[i].locate.size.constant;
1391 	      partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1392 					    MODE_INT, 1);
1393 	      args[i].stack = gen_rtx_MEM (partial_mode, addr);
1394 	      set_mem_size (args[i].stack, GEN_INT (units_on_stack));
1395 	    }
1396 	  else
1397 	    {
1398 	      args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1399 	      set_mem_attributes (args[i].stack,
1400 				  TREE_TYPE (args[i].tree_value), 1);
1401 	    }
1402 	  align = BITS_PER_UNIT;
1403 	  boundary = args[i].locate.boundary;
1404 	  if (args[i].locate.where_pad != downward)
1405 	    align = boundary;
1406 	  else if (GET_CODE (offset) == CONST_INT)
1407 	    {
1408 	      align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1409 	      align = align & -align;
1410 	    }
1411 	  set_mem_align (args[i].stack, align);
1412 
1413 	  if (GET_CODE (slot_offset) == CONST_INT)
1414 	    addr = plus_constant (arg_reg, INTVAL (slot_offset));
1415 	  else
1416 	    addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1417 
1418 	  addr = plus_constant (addr, arg_offset);
1419 
1420 	  if (args[i].partial != 0)
1421 	    {
1422 	      /* Only part of the parameter is being passed on the stack.
1423 		 Generate a simple memory reference of the correct size.  */
1424 	      args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1425 	      set_mem_size (args[i].stack_slot, GEN_INT (units_on_stack));
1426 	    }
1427 	  else
1428 	    {
1429 	      args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1430 	      set_mem_attributes (args[i].stack_slot,
1431 				  TREE_TYPE (args[i].tree_value), 1);
1432 	    }
1433 	  set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1434 
1435 	  /* Function incoming arguments may overlap with sibling call
1436 	     outgoing arguments and we cannot allow reordering of reads
1437 	     from function arguments with stores to outgoing arguments
1438 	     of sibling calls.  */
1439 	  set_mem_alias_set (args[i].stack, 0);
1440 	  set_mem_alias_set (args[i].stack_slot, 0);
1441 	}
1442     }
1443 }
1444 
1445 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1446    in a call instruction.
1447 
1448    FNDECL is the tree node for the target function.  For an indirect call
1449    FNDECL will be NULL_TREE.
1450 
1451    ADDR is the operand 0 of CALL_EXPR for this call.  */
1452 
1453 static rtx
rtx_for_function_call(tree fndecl,tree addr)1454 rtx_for_function_call (tree fndecl, tree addr)
1455 {
1456   rtx funexp;
1457 
1458   /* Get the function to call, in the form of RTL.  */
1459   if (fndecl)
1460     {
1461       /* If this is the first use of the function, see if we need to
1462 	 make an external definition for it.  */
1463       if (! TREE_USED (fndecl))
1464 	{
1465 	  assemble_external (fndecl);
1466 	  TREE_USED (fndecl) = 1;
1467 	}
1468 
1469       /* Get a SYMBOL_REF rtx for the function address.  */
1470       funexp = XEXP (DECL_RTL (fndecl), 0);
1471     }
1472   else
1473     /* Generate an rtx (probably a pseudo-register) for the address.  */
1474     {
1475       push_temp_slots ();
1476       funexp = expand_normal (addr);
1477       pop_temp_slots ();	/* FUNEXP can't be BLKmode.  */
1478     }
1479   return funexp;
1480 }
1481 
1482 /* Return true if and only if SIZE storage units (usually bytes)
1483    starting from address ADDR overlap with already clobbered argument
1484    area.  This function is used to determine if we should give up a
1485    sibcall.  */
1486 
1487 static bool
mem_overlaps_already_clobbered_arg_p(rtx addr,unsigned HOST_WIDE_INT size)1488 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1489 {
1490   HOST_WIDE_INT i;
1491 
1492   if (addr == current_function_internal_arg_pointer)
1493     i = 0;
1494   else if (GET_CODE (addr) == PLUS
1495 	   && XEXP (addr, 0) == current_function_internal_arg_pointer
1496 	   && GET_CODE (XEXP (addr, 1)) == CONST_INT)
1497     i = INTVAL (XEXP (addr, 1));
1498   /* Return true for arg pointer based indexed addressing.  */
1499   else if (GET_CODE (addr) == PLUS
1500 	   && (XEXP (addr, 0) == current_function_internal_arg_pointer
1501 	       || XEXP (addr, 1) == current_function_internal_arg_pointer))
1502     return true;
1503   else
1504     return false;
1505 
1506 #ifdef ARGS_GROW_DOWNWARD
1507   i = -i - size;
1508 #endif
1509   if (size > 0)
1510     {
1511       unsigned HOST_WIDE_INT k;
1512 
1513       for (k = 0; k < size; k++)
1514 	if (i + k < stored_args_map->n_bits
1515 	    && TEST_BIT (stored_args_map, i + k))
1516 	  return true;
1517     }
1518 
1519   return false;
1520 }
1521 
1522 /* Do the register loads required for any wholly-register parms or any
1523    parms which are passed both on the stack and in a register.  Their
1524    expressions were already evaluated.
1525 
1526    Mark all register-parms as living through the call, putting these USE
1527    insns in the CALL_INSN_FUNCTION_USAGE field.
1528 
1529    When IS_SIBCALL, perform the check_sibcall_argument_overlap
1530    checking, setting *SIBCALL_FAILURE if appropriate.  */
1531 
1532 static void
load_register_parameters(struct arg_data * args,int num_actuals,rtx * call_fusage,int flags,int is_sibcall,int * sibcall_failure)1533 load_register_parameters (struct arg_data *args, int num_actuals,
1534 			  rtx *call_fusage, int flags, int is_sibcall,
1535 			  int *sibcall_failure)
1536 {
1537   int i, j;
1538 
1539   for (i = 0; i < num_actuals; i++)
1540     {
1541       rtx reg = ((flags & ECF_SIBCALL)
1542 		 ? args[i].tail_call_reg : args[i].reg);
1543       if (reg)
1544 	{
1545 	  int partial = args[i].partial;
1546 	  int nregs;
1547 	  int size = 0;
1548 	  rtx before_arg = get_last_insn ();
1549 	  /* Set non-negative if we must move a word at a time, even if
1550 	     just one word (e.g, partial == 4 && mode == DFmode).  Set
1551 	     to -1 if we just use a normal move insn.  This value can be
1552 	     zero if the argument is a zero size structure.  */
1553 	  nregs = -1;
1554 	  if (GET_CODE (reg) == PARALLEL)
1555 	    ;
1556 	  else if (partial)
1557 	    {
1558 	      gcc_assert (partial % UNITS_PER_WORD == 0);
1559 	      nregs = partial / UNITS_PER_WORD;
1560 	    }
1561 	  else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1562 	    {
1563 	      size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1564 	      nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1565 	    }
1566 	  else
1567 	    size = GET_MODE_SIZE (args[i].mode);
1568 
1569 	  /* Handle calls that pass values in multiple non-contiguous
1570 	     locations.  The Irix 6 ABI has examples of this.  */
1571 
1572 	  if (GET_CODE (reg) == PARALLEL)
1573 	    emit_group_move (reg, args[i].parallel_value);
1574 
1575 	  /* If simple case, just do move.  If normal partial, store_one_arg
1576 	     has already loaded the register for us.  In all other cases,
1577 	     load the register(s) from memory.  */
1578 
1579 	  else if (nregs == -1)
1580 	    {
1581 	      emit_move_insn (reg, args[i].value);
1582 #ifdef BLOCK_REG_PADDING
1583 	      /* Handle case where we have a value that needs shifting
1584 		 up to the msb.  eg. a QImode value and we're padding
1585 		 upward on a BYTES_BIG_ENDIAN machine.  */
1586 	      if (size < UNITS_PER_WORD
1587 		  && (args[i].locate.where_pad
1588 		      == (BYTES_BIG_ENDIAN ? upward : downward)))
1589 		{
1590 		  rtx x;
1591 		  int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1592 
1593 		  /* Assigning REG here rather than a temp makes CALL_FUSAGE
1594 		     report the whole reg as used.  Strictly speaking, the
1595 		     call only uses SIZE bytes at the msb end, but it doesn't
1596 		     seem worth generating rtl to say that.  */
1597 		  reg = gen_rtx_REG (word_mode, REGNO (reg));
1598 		  x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1599 				    build_int_cst (NULL_TREE, shift),
1600 				    reg, 1);
1601 		  if (x != reg)
1602 		    emit_move_insn (reg, x);
1603 		}
1604 #endif
1605 	    }
1606 
1607 	  /* If we have pre-computed the values to put in the registers in
1608 	     the case of non-aligned structures, copy them in now.  */
1609 
1610 	  else if (args[i].n_aligned_regs != 0)
1611 	    for (j = 0; j < args[i].n_aligned_regs; j++)
1612 	      emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1613 			      args[i].aligned_regs[j]);
1614 
1615 	  else if (partial == 0 || args[i].pass_on_stack)
1616 	    {
1617 	      rtx mem = validize_mem (args[i].value);
1618 
1619 	      /* Check for overlap with already clobbered argument area.  */
1620 	      if (is_sibcall
1621 		  && mem_overlaps_already_clobbered_arg_p (XEXP (args[i].value, 0),
1622 							   size))
1623 		*sibcall_failure = 1;
1624 
1625 	      /* Handle a BLKmode that needs shifting.  */
1626 	      if (nregs == 1 && size < UNITS_PER_WORD
1627 #ifdef BLOCK_REG_PADDING
1628 		  && args[i].locate.where_pad == downward
1629 #else
1630 		  && BYTES_BIG_ENDIAN
1631 #endif
1632 		 )
1633 		{
1634 		  rtx tem = operand_subword_force (mem, 0, args[i].mode);
1635 		  rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1636 		  rtx x = gen_reg_rtx (word_mode);
1637 		  int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1638 		  enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1639 							: LSHIFT_EXPR;
1640 
1641 		  emit_move_insn (x, tem);
1642 		  x = expand_shift (dir, word_mode, x,
1643 				    build_int_cst (NULL_TREE, shift),
1644 				    ri, 1);
1645 		  if (x != ri)
1646 		    emit_move_insn (ri, x);
1647 		}
1648 	      else
1649 		move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1650 	    }
1651 
1652 	  /* When a parameter is a block, and perhaps in other cases, it is
1653 	     possible that it did a load from an argument slot that was
1654 	     already clobbered.  */
1655 	  if (is_sibcall
1656 	      && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1657 	    *sibcall_failure = 1;
1658 
1659 	  /* Handle calls that pass values in multiple non-contiguous
1660 	     locations.  The Irix 6 ABI has examples of this.  */
1661 	  if (GET_CODE (reg) == PARALLEL)
1662 	    use_group_regs (call_fusage, reg);
1663 	  else if (nregs == -1)
1664 	    use_reg (call_fusage, reg);
1665 	  else if (nregs > 0)
1666 	    use_regs (call_fusage, REGNO (reg), nregs);
1667 	}
1668     }
1669 }
1670 
1671 /* We need to pop PENDING_STACK_ADJUST bytes.  But, if the arguments
1672    wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1673    bytes, then we would need to push some additional bytes to pad the
1674    arguments.  So, we compute an adjust to the stack pointer for an
1675    amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1676    bytes.  Then, when the arguments are pushed the stack will be perfectly
1677    aligned.  ARGS_SIZE->CONSTANT is set to the number of bytes that should
1678    be popped after the call.  Returns the adjustment.  */
1679 
1680 static int
combine_pending_stack_adjustment_and_call(int unadjusted_args_size,struct args_size * args_size,unsigned int preferred_unit_stack_boundary)1681 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1682 					   struct args_size *args_size,
1683 					   unsigned int preferred_unit_stack_boundary)
1684 {
1685   /* The number of bytes to pop so that the stack will be
1686      under-aligned by UNADJUSTED_ARGS_SIZE bytes.  */
1687   HOST_WIDE_INT adjustment;
1688   /* The alignment of the stack after the arguments are pushed, if we
1689      just pushed the arguments without adjust the stack here.  */
1690   unsigned HOST_WIDE_INT unadjusted_alignment;
1691 
1692   unadjusted_alignment
1693     = ((stack_pointer_delta + unadjusted_args_size)
1694        % preferred_unit_stack_boundary);
1695 
1696   /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1697      as possible -- leaving just enough left to cancel out the
1698      UNADJUSTED_ALIGNMENT.  In other words, we want to ensure that the
1699      PENDING_STACK_ADJUST is non-negative, and congruent to
1700      -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY.  */
1701 
1702   /* Begin by trying to pop all the bytes.  */
1703   unadjusted_alignment
1704     = (unadjusted_alignment
1705        - (pending_stack_adjust % preferred_unit_stack_boundary));
1706   adjustment = pending_stack_adjust;
1707   /* Push enough additional bytes that the stack will be aligned
1708      after the arguments are pushed.  */
1709   if (preferred_unit_stack_boundary > 1)
1710     {
1711       if (unadjusted_alignment > 0)
1712 	adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1713       else
1714 	adjustment += unadjusted_alignment;
1715     }
1716 
1717   /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1718      bytes after the call.  The right number is the entire
1719      PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1720      by the arguments in the first place.  */
1721   args_size->constant
1722     = pending_stack_adjust - adjustment + unadjusted_args_size;
1723 
1724   return adjustment;
1725 }
1726 
1727 /* Scan X expression if it does not dereference any argument slots
1728    we already clobbered by tail call arguments (as noted in stored_args_map
1729    bitmap).
1730    Return nonzero if X expression dereferences such argument slots,
1731    zero otherwise.  */
1732 
1733 static int
check_sibcall_argument_overlap_1(rtx x)1734 check_sibcall_argument_overlap_1 (rtx x)
1735 {
1736   RTX_CODE code;
1737   int i, j;
1738   const char *fmt;
1739 
1740   if (x == NULL_RTX)
1741     return 0;
1742 
1743   code = GET_CODE (x);
1744 
1745   if (code == MEM)
1746     return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1747 						 GET_MODE_SIZE (GET_MODE (x)));
1748 
1749   /* Scan all subexpressions.  */
1750   fmt = GET_RTX_FORMAT (code);
1751   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1752     {
1753       if (*fmt == 'e')
1754 	{
1755 	  if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1756 	    return 1;
1757 	}
1758       else if (*fmt == 'E')
1759 	{
1760 	  for (j = 0; j < XVECLEN (x, i); j++)
1761 	    if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1762 	      return 1;
1763 	}
1764     }
1765   return 0;
1766 }
1767 
1768 /* Scan sequence after INSN if it does not dereference any argument slots
1769    we already clobbered by tail call arguments (as noted in stored_args_map
1770    bitmap).  If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1771    stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1772    should be 0).  Return nonzero if sequence after INSN dereferences such argument
1773    slots, zero otherwise.  */
1774 
1775 static int
check_sibcall_argument_overlap(rtx insn,struct arg_data * arg,int mark_stored_args_map)1776 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1777 {
1778   int low, high;
1779 
1780   if (insn == NULL_RTX)
1781     insn = get_insns ();
1782   else
1783     insn = NEXT_INSN (insn);
1784 
1785   for (; insn; insn = NEXT_INSN (insn))
1786     if (INSN_P (insn)
1787 	&& check_sibcall_argument_overlap_1 (PATTERN (insn)))
1788       break;
1789 
1790   if (mark_stored_args_map)
1791     {
1792 #ifdef ARGS_GROW_DOWNWARD
1793       low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1794 #else
1795       low = arg->locate.slot_offset.constant;
1796 #endif
1797 
1798       for (high = low + arg->locate.size.constant; low < high; low++)
1799 	SET_BIT (stored_args_map, low);
1800     }
1801   return insn != NULL_RTX;
1802 }
1803 
1804 /* Given that a function returns a value of mode MODE at the most
1805    significant end of hard register VALUE, shift VALUE left or right
1806    as specified by LEFT_P.  Return true if some action was needed.  */
1807 
1808 bool
shift_return_value(enum machine_mode mode,bool left_p,rtx value)1809 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1810 {
1811   HOST_WIDE_INT shift;
1812 
1813   gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1814   shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1815   if (shift == 0)
1816     return false;
1817 
1818   /* Use ashr rather than lshr for right shifts.  This is for the benefit
1819      of the MIPS port, which requires SImode values to be sign-extended
1820      when stored in 64-bit registers.  */
1821   if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1822 			   value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1823     gcc_unreachable ();
1824   return true;
1825 }
1826 
1827 /* Generate all the code for a function call
1828    and return an rtx for its value.
1829    Store the value in TARGET (specified as an rtx) if convenient.
1830    If the value is stored in TARGET then TARGET is returned.
1831    If IGNORE is nonzero, then we ignore the value of the function call.  */
1832 
1833 rtx
expand_call(tree exp,rtx target,int ignore)1834 expand_call (tree exp, rtx target, int ignore)
1835 {
1836   /* Nonzero if we are currently expanding a call.  */
1837   static int currently_expanding_call = 0;
1838 
1839   /* List of actual parameters.  */
1840   tree actparms = TREE_OPERAND (exp, 1);
1841   /* RTX for the function to be called.  */
1842   rtx funexp;
1843   /* Sequence of insns to perform a normal "call".  */
1844   rtx normal_call_insns = NULL_RTX;
1845   /* Sequence of insns to perform a tail "call".  */
1846   rtx tail_call_insns = NULL_RTX;
1847   /* Data type of the function.  */
1848   tree funtype;
1849   tree type_arg_types;
1850   /* Declaration of the function being called,
1851      or 0 if the function is computed (not known by name).  */
1852   tree fndecl = 0;
1853   /* The type of the function being called.  */
1854   tree fntype;
1855   bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1856   int pass;
1857 
1858   /* Register in which non-BLKmode value will be returned,
1859      or 0 if no value or if value is BLKmode.  */
1860   rtx valreg;
1861   /* Address where we should return a BLKmode value;
1862      0 if value not BLKmode.  */
1863   rtx structure_value_addr = 0;
1864   /* Nonzero if that address is being passed by treating it as
1865      an extra, implicit first parameter.  Otherwise,
1866      it is passed by being copied directly into struct_value_rtx.  */
1867   int structure_value_addr_parm = 0;
1868   /* Size of aggregate value wanted, or zero if none wanted
1869      or if we are using the non-reentrant PCC calling convention
1870      or expecting the value in registers.  */
1871   HOST_WIDE_INT struct_value_size = 0;
1872   /* Nonzero if called function returns an aggregate in memory PCC style,
1873      by returning the address of where to find it.  */
1874   int pcc_struct_value = 0;
1875   rtx struct_value = 0;
1876 
1877   /* Number of actual parameters in this call, including struct value addr.  */
1878   int num_actuals;
1879   /* Number of named args.  Args after this are anonymous ones
1880      and they must all go on the stack.  */
1881   int n_named_args;
1882 
1883   /* Vector of information about each argument.
1884      Arguments are numbered in the order they will be pushed,
1885      not the order they are written.  */
1886   struct arg_data *args;
1887 
1888   /* Total size in bytes of all the stack-parms scanned so far.  */
1889   struct args_size args_size;
1890   struct args_size adjusted_args_size;
1891   /* Size of arguments before any adjustments (such as rounding).  */
1892   int unadjusted_args_size;
1893   /* Data on reg parms scanned so far.  */
1894   CUMULATIVE_ARGS args_so_far;
1895   /* Nonzero if a reg parm has been scanned.  */
1896   int reg_parm_seen;
1897   /* Nonzero if this is an indirect function call.  */
1898 
1899   /* Nonzero if we must avoid push-insns in the args for this call.
1900      If stack space is allocated for register parameters, but not by the
1901      caller, then it is preallocated in the fixed part of the stack frame.
1902      So the entire argument block must then be preallocated (i.e., we
1903      ignore PUSH_ROUNDING in that case).  */
1904 
1905   int must_preallocate = !PUSH_ARGS;
1906 
1907   /* Size of the stack reserved for parameter registers.  */
1908   int reg_parm_stack_space = 0;
1909 
1910   /* Address of space preallocated for stack parms
1911      (on machines that lack push insns), or 0 if space not preallocated.  */
1912   rtx argblock = 0;
1913 
1914   /* Mask of ECF_ flags.  */
1915   int flags = 0;
1916 #ifdef REG_PARM_STACK_SPACE
1917   /* Define the boundary of the register parm stack space that needs to be
1918      saved, if any.  */
1919   int low_to_save, high_to_save;
1920   rtx save_area = 0;		/* Place that it is saved */
1921 #endif
1922 
1923   int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
1924   char *initial_stack_usage_map = stack_usage_map;
1925   char *stack_usage_map_buf = NULL;
1926 
1927   int old_stack_allocated;
1928 
1929   /* State variables to track stack modifications.  */
1930   rtx old_stack_level = 0;
1931   int old_stack_arg_under_construction = 0;
1932   int old_pending_adj = 0;
1933   int old_inhibit_defer_pop = inhibit_defer_pop;
1934 
1935   /* Some stack pointer alterations we make are performed via
1936      allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
1937      which we then also need to save/restore along the way.  */
1938   int old_stack_pointer_delta = 0;
1939 
1940   rtx call_fusage;
1941   tree p = TREE_OPERAND (exp, 0);
1942   tree addr = TREE_OPERAND (exp, 0);
1943   int i;
1944   /* The alignment of the stack, in bits.  */
1945   unsigned HOST_WIDE_INT preferred_stack_boundary;
1946   /* The alignment of the stack, in bytes.  */
1947   unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
1948   /* The static chain value to use for this call.  */
1949   rtx static_chain_value;
1950   /* See if this is "nothrow" function call.  */
1951   if (TREE_NOTHROW (exp))
1952     flags |= ECF_NOTHROW;
1953 
1954   /* See if we can find a DECL-node for the actual function, and get the
1955      function attributes (flags) from the function decl or type node.  */
1956   fndecl = get_callee_fndecl (exp);
1957   if (fndecl)
1958     {
1959       fntype = TREE_TYPE (fndecl);
1960       flags |= flags_from_decl_or_type (fndecl);
1961     }
1962   else
1963     {
1964       fntype = TREE_TYPE (TREE_TYPE (p));
1965       flags |= flags_from_decl_or_type (fntype);
1966     }
1967 
1968   struct_value = targetm.calls.struct_value_rtx (fntype, 0);
1969 
1970   /* Warn if this value is an aggregate type,
1971      regardless of which calling convention we are using for it.  */
1972   if (AGGREGATE_TYPE_P (TREE_TYPE (exp)))
1973     warning (OPT_Waggregate_return, "function call has aggregate value");
1974 
1975   /* If the result of a pure or const function call is ignored (or void),
1976      and none of its arguments are volatile, we can avoid expanding the
1977      call and just evaluate the arguments for side-effects.  */
1978   if ((flags & (ECF_CONST | ECF_PURE))
1979       && (ignore || target == const0_rtx
1980 	  || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
1981     {
1982       bool volatilep = false;
1983       tree arg;
1984 
1985       for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1986 	if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
1987 	  {
1988 	    volatilep = true;
1989 	    break;
1990 	  }
1991 
1992       if (! volatilep)
1993 	{
1994 	  for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1995 	    expand_expr (TREE_VALUE (arg), const0_rtx,
1996 			 VOIDmode, EXPAND_NORMAL);
1997 	  return const0_rtx;
1998 	}
1999     }
2000 
2001 #ifdef REG_PARM_STACK_SPACE
2002   reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
2003 #endif
2004 
2005 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2006   if (reg_parm_stack_space > 0 && PUSH_ARGS)
2007     must_preallocate = 1;
2008 #endif
2009 
2010   /* Set up a place to return a structure.  */
2011 
2012   /* Cater to broken compilers.  */
2013   if (aggregate_value_p (exp, fndecl))
2014     {
2015       /* This call returns a big structure.  */
2016       flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
2017 
2018 #ifdef PCC_STATIC_STRUCT_RETURN
2019       {
2020 	pcc_struct_value = 1;
2021       }
2022 #else /* not PCC_STATIC_STRUCT_RETURN */
2023       {
2024 	struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
2025 
2026 	if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
2027 	  structure_value_addr = XEXP (target, 0);
2028 	else
2029 	  {
2030 	    /* For variable-sized objects, we must be called with a target
2031 	       specified.  If we were to allocate space on the stack here,
2032 	       we would have no way of knowing when to free it.  */
2033 	    rtx d = assign_temp (TREE_TYPE (exp), 0, 1, 1);
2034 
2035 	    mark_temp_addr_taken (d);
2036 	    structure_value_addr = XEXP (d, 0);
2037 	    target = 0;
2038 	  }
2039       }
2040 #endif /* not PCC_STATIC_STRUCT_RETURN */
2041     }
2042 
2043   /* Figure out the amount to which the stack should be aligned.  */
2044   preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2045   if (fndecl)
2046     {
2047       struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2048       if (i && i->preferred_incoming_stack_boundary)
2049 	preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2050     }
2051 
2052   /* Operand 0 is a pointer-to-function; get the type of the function.  */
2053   funtype = TREE_TYPE (addr);
2054   gcc_assert (POINTER_TYPE_P (funtype));
2055   funtype = TREE_TYPE (funtype);
2056 
2057   /* Munge the tree to split complex arguments into their imaginary
2058      and real parts.  */
2059   if (targetm.calls.split_complex_arg)
2060     {
2061       type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2062       actparms = split_complex_values (actparms);
2063     }
2064   else
2065     type_arg_types = TYPE_ARG_TYPES (funtype);
2066 
2067   if (flags & ECF_MAY_BE_ALLOCA)
2068     current_function_calls_alloca = 1;
2069 
2070   /* If struct_value_rtx is 0, it means pass the address
2071      as if it were an extra parameter.  */
2072   if (structure_value_addr && struct_value == 0)
2073     {
2074       /* If structure_value_addr is a REG other than
2075 	 virtual_outgoing_args_rtx, we can use always use it.  If it
2076 	 is not a REG, we must always copy it into a register.
2077 	 If it is virtual_outgoing_args_rtx, we must copy it to another
2078 	 register in some cases.  */
2079       rtx temp = (!REG_P (structure_value_addr)
2080 		  || (ACCUMULATE_OUTGOING_ARGS
2081 		      && stack_arg_under_construction
2082 		      && structure_value_addr == virtual_outgoing_args_rtx)
2083 		  ? copy_addr_to_reg (convert_memory_address
2084 				      (Pmode, structure_value_addr))
2085 		  : structure_value_addr);
2086 
2087       actparms
2088 	= tree_cons (error_mark_node,
2089 		     make_tree (build_pointer_type (TREE_TYPE (funtype)),
2090 				temp),
2091 		     actparms);
2092       structure_value_addr_parm = 1;
2093     }
2094 
2095   /* Count the arguments and set NUM_ACTUALS.  */
2096   for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
2097     num_actuals++;
2098 
2099   /* Compute number of named args.
2100      First, do a raw count of the args for INIT_CUMULATIVE_ARGS.  */
2101 
2102   if (type_arg_types != 0)
2103     n_named_args
2104       = (list_length (type_arg_types)
2105 	 /* Count the struct value address, if it is passed as a parm.  */
2106 	 + structure_value_addr_parm);
2107   else
2108     /* If we know nothing, treat all args as named.  */
2109     n_named_args = num_actuals;
2110 
2111   /* Start updating where the next arg would go.
2112 
2113      On some machines (such as the PA) indirect calls have a different
2114      calling convention than normal calls.  The fourth argument in
2115      INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2116      or not.  */
2117   INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2118 
2119   /* Now possibly adjust the number of named args.
2120      Normally, don't include the last named arg if anonymous args follow.
2121      We do include the last named arg if
2122      targetm.calls.strict_argument_naming() returns nonzero.
2123      (If no anonymous args follow, the result of list_length is actually
2124      one too large.  This is harmless.)
2125 
2126      If targetm.calls.pretend_outgoing_varargs_named() returns
2127      nonzero, and targetm.calls.strict_argument_naming() returns zero,
2128      this machine will be able to place unnamed args that were passed
2129      in registers into the stack.  So treat all args as named.  This
2130      allows the insns emitting for a specific argument list to be
2131      independent of the function declaration.
2132 
2133      If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2134      we do not have any reliable way to pass unnamed args in
2135      registers, so we must force them into memory.  */
2136 
2137   if (type_arg_types != 0
2138       && targetm.calls.strict_argument_naming (&args_so_far))
2139     ;
2140   else if (type_arg_types != 0
2141 	   && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2142     /* Don't include the last named arg.  */
2143     --n_named_args;
2144   else
2145     /* Treat all args as named.  */
2146     n_named_args = num_actuals;
2147 
2148   /* Make a vector to hold all the information about each arg.  */
2149   args = alloca (num_actuals * sizeof (struct arg_data));
2150   memset (args, 0, num_actuals * sizeof (struct arg_data));
2151 
2152   /* Build up entries in the ARGS array, compute the size of the
2153      arguments into ARGS_SIZE, etc.  */
2154   initialize_argument_information (num_actuals, args, &args_size,
2155 				   n_named_args, actparms, fndecl,
2156 				   &args_so_far, reg_parm_stack_space,
2157 				   &old_stack_level, &old_pending_adj,
2158 				   &must_preallocate, &flags,
2159 				   &try_tail_call, CALL_FROM_THUNK_P (exp));
2160 
2161   if (args_size.var)
2162     {
2163       /* If this function requires a variable-sized argument list, don't
2164 	 try to make a cse'able block for this call.  We may be able to
2165 	 do this eventually, but it is too complicated to keep track of
2166 	 what insns go in the cse'able block and which don't.  */
2167 
2168       flags &= ~ECF_LIBCALL_BLOCK;
2169       must_preallocate = 1;
2170     }
2171 
2172   /* Now make final decision about preallocating stack space.  */
2173   must_preallocate = finalize_must_preallocate (must_preallocate,
2174 						num_actuals, args,
2175 						&args_size);
2176 
2177   /* If the structure value address will reference the stack pointer, we
2178      must stabilize it.  We don't need to do this if we know that we are
2179      not going to adjust the stack pointer in processing this call.  */
2180 
2181   if (structure_value_addr
2182       && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2183 	  || reg_mentioned_p (virtual_outgoing_args_rtx,
2184 			      structure_value_addr))
2185       && (args_size.var
2186 	  || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2187     structure_value_addr = copy_to_reg (structure_value_addr);
2188 
2189   /* Tail calls can make things harder to debug, and we've traditionally
2190      pushed these optimizations into -O2.  Don't try if we're already
2191      expanding a call, as that means we're an argument.  Don't try if
2192      there's cleanups, as we know there's code to follow the call.  */
2193 
2194   if (currently_expanding_call++ != 0
2195       || !flag_optimize_sibling_calls
2196       || args_size.var
2197       || lookup_stmt_eh_region (exp) >= 0)
2198     try_tail_call = 0;
2199 
2200   /*  Rest of purposes for tail call optimizations to fail.  */
2201   if (
2202 #ifdef HAVE_sibcall_epilogue
2203       !HAVE_sibcall_epilogue
2204 #else
2205       1
2206 #endif
2207       || !try_tail_call
2208       /* Doing sibling call optimization needs some work, since
2209 	 structure_value_addr can be allocated on the stack.
2210 	 It does not seem worth the effort since few optimizable
2211 	 sibling calls will return a structure.  */
2212       || structure_value_addr != NULL_RTX
2213       /* Check whether the target is able to optimize the call
2214 	 into a sibcall.  */
2215       || !targetm.function_ok_for_sibcall (fndecl, exp)
2216       /* Functions that do not return exactly once may not be sibcall
2217 	 optimized.  */
2218       || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2219       || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2220       /* If the called function is nested in the current one, it might access
2221 	 some of the caller's arguments, but could clobber them beforehand if
2222 	 the argument areas are shared.  */
2223       || (fndecl && decl_function_context (fndecl) == current_function_decl)
2224       /* If this function requires more stack slots than the current
2225 	 function, we cannot change it into a sibling call.
2226 	 current_function_pretend_args_size is not part of the
2227 	 stack allocated by our caller.  */
2228       || args_size.constant > (current_function_args_size
2229 			       - current_function_pretend_args_size)
2230       /* If the callee pops its own arguments, then it must pop exactly
2231 	 the same number of arguments as the current function.  */
2232       || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2233 	  != RETURN_POPS_ARGS (current_function_decl,
2234 			       TREE_TYPE (current_function_decl),
2235 			       current_function_args_size))
2236       || !lang_hooks.decls.ok_for_sibcall (fndecl))
2237     try_tail_call = 0;
2238 
2239   /* Ensure current function's preferred stack boundary is at least
2240      what we need.  We don't have to increase alignment for recursive
2241      functions.  */
2242   if (cfun->preferred_stack_boundary < preferred_stack_boundary
2243       && fndecl != current_function_decl)
2244     cfun->preferred_stack_boundary = preferred_stack_boundary;
2245   if (fndecl == current_function_decl)
2246     cfun->recursive_call_emit = true;
2247 
2248   preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2249 
2250   /* We want to make two insn chains; one for a sibling call, the other
2251      for a normal call.  We will select one of the two chains after
2252      initial RTL generation is complete.  */
2253   for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2254     {
2255       int sibcall_failure = 0;
2256       /* We want to emit any pending stack adjustments before the tail
2257 	 recursion "call".  That way we know any adjustment after the tail
2258 	 recursion call can be ignored if we indeed use the tail
2259 	 call expansion.  */
2260       int save_pending_stack_adjust = 0;
2261       int save_stack_pointer_delta = 0;
2262       rtx insns;
2263       rtx before_call, next_arg_reg;
2264 
2265       if (pass == 0)
2266 	{
2267 	  /* State variables we need to save and restore between
2268 	     iterations.  */
2269 	  save_pending_stack_adjust = pending_stack_adjust;
2270 	  save_stack_pointer_delta = stack_pointer_delta;
2271 	}
2272       if (pass)
2273 	flags &= ~ECF_SIBCALL;
2274       else
2275 	flags |= ECF_SIBCALL;
2276 
2277       /* Other state variables that we must reinitialize each time
2278 	 through the loop (that are not initialized by the loop itself).  */
2279       argblock = 0;
2280       call_fusage = 0;
2281 
2282       /* Start a new sequence for the normal call case.
2283 
2284 	 From this point on, if the sibling call fails, we want to set
2285 	 sibcall_failure instead of continuing the loop.  */
2286       start_sequence ();
2287 
2288       /* Don't let pending stack adjusts add up to too much.
2289 	 Also, do all pending adjustments now if there is any chance
2290 	 this might be a call to alloca or if we are expanding a sibling
2291 	 call sequence or if we are calling a function that is to return
2292 	 with stack pointer depressed.
2293 	 Also do the adjustments before a throwing call, otherwise
2294 	 exception handling can fail; PR 19225. */
2295       if (pending_stack_adjust >= 32
2296 	  || (pending_stack_adjust > 0
2297 	      && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
2298 	  || (pending_stack_adjust > 0
2299 	      && flag_exceptions && !(flags & ECF_NOTHROW))
2300 	  || pass == 0)
2301 	do_pending_stack_adjust ();
2302 
2303       /* When calling a const function, we must pop the stack args right away,
2304 	 so that the pop is deleted or moved with the call.  */
2305       if (pass && (flags & ECF_LIBCALL_BLOCK))
2306 	NO_DEFER_POP;
2307 
2308       /* Precompute any arguments as needed.  */
2309       if (pass)
2310 	precompute_arguments (flags, num_actuals, args);
2311 
2312       /* Now we are about to start emitting insns that can be deleted
2313 	 if a libcall is deleted.  */
2314       if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
2315 	start_sequence ();
2316 
2317       if (pass == 0 && cfun->stack_protect_guard)
2318 	stack_protect_epilogue ();
2319 
2320       adjusted_args_size = args_size;
2321       /* Compute the actual size of the argument block required.  The variable
2322 	 and constant sizes must be combined, the size may have to be rounded,
2323 	 and there may be a minimum required size.  When generating a sibcall
2324 	 pattern, do not round up, since we'll be re-using whatever space our
2325 	 caller provided.  */
2326       unadjusted_args_size
2327 	= compute_argument_block_size (reg_parm_stack_space,
2328 				       &adjusted_args_size,
2329 				       (pass == 0 ? 0
2330 					: preferred_stack_boundary));
2331 
2332       old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2333 
2334       /* The argument block when performing a sibling call is the
2335 	 incoming argument block.  */
2336       if (pass == 0)
2337 	{
2338 	  argblock = virtual_incoming_args_rtx;
2339 	  argblock
2340 #ifdef STACK_GROWS_DOWNWARD
2341 	    = plus_constant (argblock, current_function_pretend_args_size);
2342 #else
2343 	    = plus_constant (argblock, -current_function_pretend_args_size);
2344 #endif
2345 	  stored_args_map = sbitmap_alloc (args_size.constant);
2346 	  sbitmap_zero (stored_args_map);
2347 	}
2348 
2349       /* If we have no actual push instructions, or shouldn't use them,
2350 	 make space for all args right now.  */
2351       else if (adjusted_args_size.var != 0)
2352 	{
2353 	  if (old_stack_level == 0)
2354 	    {
2355 	      emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2356 	      old_stack_pointer_delta = stack_pointer_delta;
2357 	      old_pending_adj = pending_stack_adjust;
2358 	      pending_stack_adjust = 0;
2359 	      /* stack_arg_under_construction says whether a stack arg is
2360 		 being constructed at the old stack level.  Pushing the stack
2361 		 gets a clean outgoing argument block.  */
2362 	      old_stack_arg_under_construction = stack_arg_under_construction;
2363 	      stack_arg_under_construction = 0;
2364 	    }
2365 	  argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2366 	}
2367       else
2368 	{
2369 	  /* Note that we must go through the motions of allocating an argument
2370 	     block even if the size is zero because we may be storing args
2371 	     in the area reserved for register arguments, which may be part of
2372 	     the stack frame.  */
2373 
2374 	  int needed = adjusted_args_size.constant;
2375 
2376 	  /* Store the maximum argument space used.  It will be pushed by
2377 	     the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2378 	     checking).  */
2379 
2380 	  if (needed > current_function_outgoing_args_size)
2381 	    current_function_outgoing_args_size = needed;
2382 
2383 	  if (must_preallocate)
2384 	    {
2385 	      if (ACCUMULATE_OUTGOING_ARGS)
2386 		{
2387 		  /* Since the stack pointer will never be pushed, it is
2388 		     possible for the evaluation of a parm to clobber
2389 		     something we have already written to the stack.
2390 		     Since most function calls on RISC machines do not use
2391 		     the stack, this is uncommon, but must work correctly.
2392 
2393 		     Therefore, we save any area of the stack that was already
2394 		     written and that we are using.  Here we set up to do this
2395 		     by making a new stack usage map from the old one.  The
2396 		     actual save will be done by store_one_arg.
2397 
2398 		     Another approach might be to try to reorder the argument
2399 		     evaluations to avoid this conflicting stack usage.  */
2400 
2401 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2402 		  /* Since we will be writing into the entire argument area,
2403 		     the map must be allocated for its entire size, not just
2404 		     the part that is the responsibility of the caller.  */
2405 		  needed += reg_parm_stack_space;
2406 #endif
2407 
2408 #ifdef ARGS_GROW_DOWNWARD
2409 		  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2410 						     needed + 1);
2411 #else
2412 		  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2413 						     needed);
2414 #endif
2415 		  if (stack_usage_map_buf)
2416 		    free (stack_usage_map_buf);
2417 		  stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2418 		  stack_usage_map = stack_usage_map_buf;
2419 
2420 		  if (initial_highest_arg_in_use)
2421 		    memcpy (stack_usage_map, initial_stack_usage_map,
2422 			    initial_highest_arg_in_use);
2423 
2424 		  if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2425 		    memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2426 			   (highest_outgoing_arg_in_use
2427 			    - initial_highest_arg_in_use));
2428 		  needed = 0;
2429 
2430 		  /* The address of the outgoing argument list must not be
2431 		     copied to a register here, because argblock would be left
2432 		     pointing to the wrong place after the call to
2433 		     allocate_dynamic_stack_space below.  */
2434 
2435 		  argblock = virtual_outgoing_args_rtx;
2436 		}
2437 	      else
2438 		{
2439 		  if (inhibit_defer_pop == 0)
2440 		    {
2441 		      /* Try to reuse some or all of the pending_stack_adjust
2442 			 to get this space.  */
2443 		      needed
2444 			= (combine_pending_stack_adjustment_and_call
2445 			   (unadjusted_args_size,
2446 			    &adjusted_args_size,
2447 			    preferred_unit_stack_boundary));
2448 
2449 		      /* combine_pending_stack_adjustment_and_call computes
2450 			 an adjustment before the arguments are allocated.
2451 			 Account for them and see whether or not the stack
2452 			 needs to go up or down.  */
2453 		      needed = unadjusted_args_size - needed;
2454 
2455 		      if (needed < 0)
2456 			{
2457 			  /* We're releasing stack space.  */
2458 			  /* ??? We can avoid any adjustment at all if we're
2459 			     already aligned.  FIXME.  */
2460 			  pending_stack_adjust = -needed;
2461 			  do_pending_stack_adjust ();
2462 			  needed = 0;
2463 			}
2464 		      else
2465 			/* We need to allocate space.  We'll do that in
2466 			   push_block below.  */
2467 			pending_stack_adjust = 0;
2468 		    }
2469 
2470 		  /* Special case this because overhead of `push_block' in
2471 		     this case is non-trivial.  */
2472 		  if (needed == 0)
2473 		    argblock = virtual_outgoing_args_rtx;
2474 		  else
2475 		    {
2476 		      argblock = push_block (GEN_INT (needed), 0, 0);
2477 #ifdef ARGS_GROW_DOWNWARD
2478 		      argblock = plus_constant (argblock, needed);
2479 #endif
2480 		    }
2481 
2482 		  /* We only really need to call `copy_to_reg' in the case
2483 		     where push insns are going to be used to pass ARGBLOCK
2484 		     to a function call in ARGS.  In that case, the stack
2485 		     pointer changes value from the allocation point to the
2486 		     call point, and hence the value of
2487 		     VIRTUAL_OUTGOING_ARGS_RTX changes as well.  But might
2488 		     as well always do it.  */
2489 		  argblock = copy_to_reg (argblock);
2490 		}
2491 	    }
2492 	}
2493 
2494       if (ACCUMULATE_OUTGOING_ARGS)
2495 	{
2496 	  /* The save/restore code in store_one_arg handles all
2497 	     cases except one: a constructor call (including a C
2498 	     function returning a BLKmode struct) to initialize
2499 	     an argument.  */
2500 	  if (stack_arg_under_construction)
2501 	    {
2502 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2503 	      rtx push_size = GEN_INT (reg_parm_stack_space
2504 				       + adjusted_args_size.constant);
2505 #else
2506 	      rtx push_size = GEN_INT (adjusted_args_size.constant);
2507 #endif
2508 	      if (old_stack_level == 0)
2509 		{
2510 		  emit_stack_save (SAVE_BLOCK, &old_stack_level,
2511 				   NULL_RTX);
2512 		  old_stack_pointer_delta = stack_pointer_delta;
2513 		  old_pending_adj = pending_stack_adjust;
2514 		  pending_stack_adjust = 0;
2515 		  /* stack_arg_under_construction says whether a stack
2516 		     arg is being constructed at the old stack level.
2517 		     Pushing the stack gets a clean outgoing argument
2518 		     block.  */
2519 		  old_stack_arg_under_construction
2520 		    = stack_arg_under_construction;
2521 		  stack_arg_under_construction = 0;
2522 		  /* Make a new map for the new argument list.  */
2523 		  if (stack_usage_map_buf)
2524 		    free (stack_usage_map_buf);
2525 		  stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2526 		  stack_usage_map = stack_usage_map_buf;
2527 		  memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
2528 		  highest_outgoing_arg_in_use = 0;
2529 		}
2530 	      allocate_dynamic_stack_space (push_size, NULL_RTX,
2531 					    BITS_PER_UNIT);
2532 	    }
2533 
2534 	  /* If argument evaluation might modify the stack pointer,
2535 	     copy the address of the argument list to a register.  */
2536 	  for (i = 0; i < num_actuals; i++)
2537 	    if (args[i].pass_on_stack)
2538 	      {
2539 		argblock = copy_addr_to_reg (argblock);
2540 		break;
2541 	      }
2542 	}
2543 
2544       compute_argument_addresses (args, argblock, num_actuals);
2545 
2546       /* If we push args individually in reverse order, perform stack alignment
2547 	 before the first push (the last arg).  */
2548       if (PUSH_ARGS_REVERSED && argblock == 0
2549 	  && adjusted_args_size.constant != unadjusted_args_size)
2550 	{
2551 	  /* When the stack adjustment is pending, we get better code
2552 	     by combining the adjustments.  */
2553 	  if (pending_stack_adjust
2554 	      && ! (flags & ECF_LIBCALL_BLOCK)
2555 	      && ! inhibit_defer_pop)
2556 	    {
2557 	      pending_stack_adjust
2558 		= (combine_pending_stack_adjustment_and_call
2559 		   (unadjusted_args_size,
2560 		    &adjusted_args_size,
2561 		    preferred_unit_stack_boundary));
2562 	      do_pending_stack_adjust ();
2563 	    }
2564 	  else if (argblock == 0)
2565 	    anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2566 					- unadjusted_args_size));
2567 	}
2568       /* Now that the stack is properly aligned, pops can't safely
2569 	 be deferred during the evaluation of the arguments.  */
2570       NO_DEFER_POP;
2571 
2572       funexp = rtx_for_function_call (fndecl, addr);
2573 
2574       /* Figure out the register where the value, if any, will come back.  */
2575       valreg = 0;
2576       if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2577 	  && ! structure_value_addr)
2578 	{
2579 	  if (pcc_struct_value)
2580 	    valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2581 					  fndecl, NULL, (pass == 0));
2582 	  else
2583 	    valreg = hard_function_value (TREE_TYPE (exp), fndecl, fntype,
2584 					  (pass == 0));
2585 	}
2586 
2587       /* Precompute all register parameters.  It isn't safe to compute anything
2588 	 once we have started filling any specific hard regs.  */
2589       precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2590 
2591       if (TREE_OPERAND (exp, 2))
2592 	static_chain_value = expand_normal (TREE_OPERAND (exp, 2));
2593       else
2594 	static_chain_value = 0;
2595 
2596 #ifdef REG_PARM_STACK_SPACE
2597       /* Save the fixed argument area if it's part of the caller's frame and
2598 	 is clobbered by argument setup for this call.  */
2599       if (ACCUMULATE_OUTGOING_ARGS && pass)
2600 	save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2601 					      &low_to_save, &high_to_save);
2602 #endif
2603 
2604       /* Now store (and compute if necessary) all non-register parms.
2605 	 These come before register parms, since they can require block-moves,
2606 	 which could clobber the registers used for register parms.
2607 	 Parms which have partial registers are not stored here,
2608 	 but we do preallocate space here if they want that.  */
2609 
2610       for (i = 0; i < num_actuals; i++)
2611 	if (args[i].reg == 0 || args[i].pass_on_stack)
2612 	  {
2613 	    rtx before_arg = get_last_insn ();
2614 
2615 	    if (store_one_arg (&args[i], argblock, flags,
2616 			       adjusted_args_size.var != 0,
2617 			       reg_parm_stack_space)
2618 		|| (pass == 0
2619 		    && check_sibcall_argument_overlap (before_arg,
2620 						       &args[i], 1)))
2621 	      sibcall_failure = 1;
2622 
2623 	    if (flags & ECF_CONST
2624 		&& args[i].stack
2625 		&& args[i].value == args[i].stack)
2626 	      call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2627 					       gen_rtx_USE (VOIDmode,
2628 							    args[i].value),
2629 					       call_fusage);
2630 	  }
2631 
2632       /* If we have a parm that is passed in registers but not in memory
2633 	 and whose alignment does not permit a direct copy into registers,
2634 	 make a group of pseudos that correspond to each register that we
2635 	 will later fill.  */
2636       if (STRICT_ALIGNMENT)
2637 	store_unaligned_arguments_into_pseudos (args, num_actuals);
2638 
2639       /* Now store any partially-in-registers parm.
2640 	 This is the last place a block-move can happen.  */
2641       if (reg_parm_seen)
2642 	for (i = 0; i < num_actuals; i++)
2643 	  if (args[i].partial != 0 && ! args[i].pass_on_stack)
2644 	    {
2645 	      rtx before_arg = get_last_insn ();
2646 
2647 	      if (store_one_arg (&args[i], argblock, flags,
2648 				 adjusted_args_size.var != 0,
2649 				 reg_parm_stack_space)
2650 		  || (pass == 0
2651 		      && check_sibcall_argument_overlap (before_arg,
2652 							 &args[i], 1)))
2653 		sibcall_failure = 1;
2654 	    }
2655 
2656       /* If we pushed args in forward order, perform stack alignment
2657 	 after pushing the last arg.  */
2658       if (!PUSH_ARGS_REVERSED && argblock == 0)
2659 	anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2660 				    - unadjusted_args_size));
2661 
2662       /* If register arguments require space on the stack and stack space
2663 	 was not preallocated, allocate stack space here for arguments
2664 	 passed in registers.  */
2665 #ifdef OUTGOING_REG_PARM_STACK_SPACE
2666       if (!ACCUMULATE_OUTGOING_ARGS
2667 	  && must_preallocate == 0 && reg_parm_stack_space > 0)
2668 	anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2669 #endif
2670 
2671       /* Pass the function the address in which to return a
2672 	 structure value.  */
2673       if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2674 	{
2675 	  structure_value_addr
2676 	    = convert_memory_address (Pmode, structure_value_addr);
2677 	  emit_move_insn (struct_value,
2678 			  force_reg (Pmode,
2679 				     force_operand (structure_value_addr,
2680 						    NULL_RTX)));
2681 
2682 	  if (REG_P (struct_value))
2683 	    use_reg (&call_fusage, struct_value);
2684 	}
2685 
2686       funexp = prepare_call_address (funexp, static_chain_value,
2687 				     &call_fusage, reg_parm_seen, pass == 0);
2688 
2689       load_register_parameters (args, num_actuals, &call_fusage, flags,
2690 				pass == 0, &sibcall_failure);
2691 
2692       /* Save a pointer to the last insn before the call, so that we can
2693 	 later safely search backwards to find the CALL_INSN.  */
2694       before_call = get_last_insn ();
2695 
2696       /* Set up next argument register.  For sibling calls on machines
2697 	 with register windows this should be the incoming register.  */
2698 #ifdef FUNCTION_INCOMING_ARG
2699       if (pass == 0)
2700 	next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2701 					      void_type_node, 1);
2702       else
2703 #endif
2704 	next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2705 				     void_type_node, 1);
2706 
2707       /* All arguments and registers used for the call must be set up by
2708 	 now!  */
2709 
2710       /* Stack must be properly aligned now.  */
2711       gcc_assert (!pass
2712 		  || !(stack_pointer_delta % preferred_unit_stack_boundary));
2713 
2714       /* Generate the actual call instruction.  */
2715       emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2716 		   adjusted_args_size.constant, struct_value_size,
2717 		   next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2718 		   flags, & args_so_far);
2719 
2720       /* If a non-BLKmode value is returned at the most significant end
2721 	 of a register, shift the register right by the appropriate amount
2722 	 and update VALREG accordingly.  BLKmode values are handled by the
2723 	 group load/store machinery below.  */
2724       if (!structure_value_addr
2725 	  && !pcc_struct_value
2726 	  && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2727 	  && targetm.calls.return_in_msb (TREE_TYPE (exp)))
2728 	{
2729 	  if (shift_return_value (TYPE_MODE (TREE_TYPE (exp)), false, valreg))
2730 	    sibcall_failure = 1;
2731 	  valreg = gen_rtx_REG (TYPE_MODE (TREE_TYPE (exp)), REGNO (valreg));
2732 	}
2733 
2734       /* If call is cse'able, make appropriate pair of reg-notes around it.
2735 	 Test valreg so we don't crash; may safely ignore `const'
2736 	 if return type is void.  Disable for PARALLEL return values, because
2737 	 we have no way to move such values into a pseudo register.  */
2738       if (pass && (flags & ECF_LIBCALL_BLOCK))
2739 	{
2740 	  rtx insns;
2741 	  rtx insn;
2742 	  bool failed = valreg == 0 || GET_CODE (valreg) == PARALLEL;
2743 
2744 	  insns = get_insns ();
2745 
2746 	  /* Expansion of block moves possibly introduced a loop that may
2747 	     not appear inside libcall block.  */
2748 	  for (insn = insns; insn; insn = NEXT_INSN (insn))
2749 	    if (JUMP_P (insn))
2750 	      failed = true;
2751 
2752 	  if (failed)
2753 	    {
2754 	      end_sequence ();
2755 	      emit_insn (insns);
2756 	    }
2757 	  else
2758 	    {
2759 	      rtx note = 0;
2760 	      rtx temp = gen_reg_rtx (GET_MODE (valreg));
2761 
2762 	      /* Mark the return value as a pointer if needed.  */
2763 	      if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2764 		mark_reg_pointer (temp,
2765 				  TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));
2766 
2767 	      end_sequence ();
2768 	      if (flag_unsafe_math_optimizations
2769 		  && fndecl
2770 		  && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2771 		  && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRT
2772 		      || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTF
2773 		      || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTL))
2774 		note = gen_rtx_fmt_e (SQRT,
2775 				      GET_MODE (temp),
2776 				      args[0].initial_value);
2777 	      else
2778 		{
2779 		  /* Construct an "equal form" for the value which
2780 		     mentions all the arguments in order as well as
2781 		     the function name.  */
2782 		  for (i = 0; i < num_actuals; i++)
2783 		    note = gen_rtx_EXPR_LIST (VOIDmode,
2784 					      args[i].initial_value, note);
2785 		  note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
2786 
2787 		  if (flags & ECF_PURE)
2788 		    note = gen_rtx_EXPR_LIST (VOIDmode,
2789 			gen_rtx_USE (VOIDmode,
2790 				     gen_rtx_MEM (BLKmode,
2791 						  gen_rtx_SCRATCH (VOIDmode))),
2792 			note);
2793 		}
2794 	      emit_libcall_block (insns, temp, valreg, note);
2795 
2796 	      valreg = temp;
2797 	    }
2798 	}
2799       else if (pass && (flags & ECF_MALLOC))
2800 	{
2801 	  rtx temp = gen_reg_rtx (GET_MODE (valreg));
2802 	  rtx last, insns;
2803 
2804 	  /* The return value from a malloc-like function is a pointer.  */
2805 	  if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2806 	    mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2807 
2808 	  emit_move_insn (temp, valreg);
2809 
2810 	  /* The return value from a malloc-like function can not alias
2811 	     anything else.  */
2812 	  last = get_last_insn ();
2813 	  REG_NOTES (last) =
2814 	    gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
2815 
2816 	  /* Write out the sequence.  */
2817 	  insns = get_insns ();
2818 	  end_sequence ();
2819 	  emit_insn (insns);
2820 	  valreg = temp;
2821 	}
2822 
2823       /* For calls to `setjmp', etc., inform flow.c it should complain
2824 	 if nonvolatile values are live.  For functions that cannot return,
2825 	 inform flow that control does not fall through.  */
2826 
2827       if ((flags & ECF_NORETURN) || pass == 0)
2828 	{
2829 	  /* The barrier must be emitted
2830 	     immediately after the CALL_INSN.  Some ports emit more
2831 	     than just a CALL_INSN above, so we must search for it here.  */
2832 
2833 	  rtx last = get_last_insn ();
2834 	  while (!CALL_P (last))
2835 	    {
2836 	      last = PREV_INSN (last);
2837 	      /* There was no CALL_INSN?  */
2838 	      gcc_assert (last != before_call);
2839 	    }
2840 
2841 	  emit_barrier_after (last);
2842 
2843 	  /* Stack adjustments after a noreturn call are dead code.
2844 	     However when NO_DEFER_POP is in effect, we must preserve
2845 	     stack_pointer_delta.  */
2846 	  if (inhibit_defer_pop == 0)
2847 	    {
2848 	      stack_pointer_delta = old_stack_allocated;
2849 	      pending_stack_adjust = 0;
2850 	    }
2851 	}
2852 
2853       /* If value type not void, return an rtx for the value.  */
2854 
2855       if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
2856 	  || ignore)
2857 	target = const0_rtx;
2858       else if (structure_value_addr)
2859 	{
2860 	  if (target == 0 || !MEM_P (target))
2861 	    {
2862 	      target
2863 		= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2864 			       memory_address (TYPE_MODE (TREE_TYPE (exp)),
2865 					       structure_value_addr));
2866 	      set_mem_attributes (target, exp, 1);
2867 	    }
2868 	}
2869       else if (pcc_struct_value)
2870 	{
2871 	  /* This is the special C++ case where we need to
2872 	     know what the true target was.  We take care to
2873 	     never use this value more than once in one expression.  */
2874 	  target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2875 				copy_to_reg (valreg));
2876 	  set_mem_attributes (target, exp, 1);
2877 	}
2878       /* Handle calls that return values in multiple non-contiguous locations.
2879 	 The Irix 6 ABI has examples of this.  */
2880       else if (GET_CODE (valreg) == PARALLEL)
2881 	{
2882 	  if (target == 0)
2883 	    {
2884 	      /* This will only be assigned once, so it can be readonly.  */
2885 	      tree nt = build_qualified_type (TREE_TYPE (exp),
2886 					      (TYPE_QUALS (TREE_TYPE (exp))
2887 					       | TYPE_QUAL_CONST));
2888 
2889 	      target = assign_temp (nt, 0, 1, 1);
2890 	    }
2891 
2892 	  if (! rtx_equal_p (target, valreg))
2893 	    emit_group_store (target, valreg, TREE_TYPE (exp),
2894 			      int_size_in_bytes (TREE_TYPE (exp)));
2895 
2896 	  /* We can not support sibling calls for this case.  */
2897 	  sibcall_failure = 1;
2898 	}
2899       else if (target
2900 	       && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
2901 	       && GET_MODE (target) == GET_MODE (valreg))
2902 	{
2903 	  bool may_overlap = false;
2904 
2905 	  /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
2906 	     reg to a plain register.  */
2907 	  if (REG_P (valreg)
2908 	      && HARD_REGISTER_P (valreg)
2909 	      && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (valreg)))
2910 	      && !(REG_P (target) && !HARD_REGISTER_P (target)))
2911 	    valreg = copy_to_reg (valreg);
2912 
2913 	  /* If TARGET is a MEM in the argument area, and we have
2914 	     saved part of the argument area, then we can't store
2915 	     directly into TARGET as it may get overwritten when we
2916 	     restore the argument save area below.  Don't work too
2917 	     hard though and simply force TARGET to a register if it
2918 	     is a MEM; the optimizer is quite likely to sort it out.  */
2919 	  if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
2920 	    for (i = 0; i < num_actuals; i++)
2921 	      if (args[i].save_area)
2922 		{
2923 		  may_overlap = true;
2924 		  break;
2925 		}
2926 
2927 	  if (may_overlap)
2928 	    target = copy_to_reg (valreg);
2929 	  else
2930 	    {
2931 	      /* TARGET and VALREG cannot be equal at this point
2932 		 because the latter would not have
2933 		 REG_FUNCTION_VALUE_P true, while the former would if
2934 		 it were referring to the same register.
2935 
2936 		 If they refer to the same register, this move will be
2937 		 a no-op, except when function inlining is being
2938 		 done.  */
2939 	      emit_move_insn (target, valreg);
2940 
2941 	      /* If we are setting a MEM, this code must be executed.
2942 		 Since it is emitted after the call insn, sibcall
2943 		 optimization cannot be performed in that case.  */
2944 	      if (MEM_P (target))
2945 		sibcall_failure = 1;
2946 	    }
2947 	}
2948       else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2949 	{
2950 	  target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
2951 
2952 	  /* We can not support sibling calls for this case.  */
2953 	  sibcall_failure = 1;
2954 	}
2955       else
2956 	target = copy_to_reg (valreg);
2957 
2958       if (targetm.calls.promote_function_return(funtype))
2959 	{
2960 	  /* If we promoted this return value, make the proper SUBREG.
2961 	     TARGET might be const0_rtx here, so be careful.  */
2962 	  if (REG_P (target)
2963 	      && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2964 	      && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
2965 	    {
2966 	      tree type = TREE_TYPE (exp);
2967 	      int unsignedp = TYPE_UNSIGNED (type);
2968 	      int offset = 0;
2969 	      enum machine_mode pmode;
2970 
2971 	      pmode = promote_mode (type, TYPE_MODE (type), &unsignedp, 1);
2972 	      /* If we don't promote as expected, something is wrong.  */
2973 	      gcc_assert (GET_MODE (target) == pmode);
2974 
2975 	      if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
2976 		  && (GET_MODE_SIZE (GET_MODE (target))
2977 		      > GET_MODE_SIZE (TYPE_MODE (type))))
2978 		{
2979 		  offset = GET_MODE_SIZE (GET_MODE (target))
2980 		    - GET_MODE_SIZE (TYPE_MODE (type));
2981 		  if (! BYTES_BIG_ENDIAN)
2982 		    offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
2983 		  else if (! WORDS_BIG_ENDIAN)
2984 		    offset %= UNITS_PER_WORD;
2985 		}
2986 	      target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
2987 	      SUBREG_PROMOTED_VAR_P (target) = 1;
2988 	      SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
2989 	    }
2990 	}
2991 
2992       /* If size of args is variable or this was a constructor call for a stack
2993 	 argument, restore saved stack-pointer value.  */
2994 
2995       if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
2996 	{
2997 	  emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
2998 	  stack_pointer_delta = old_stack_pointer_delta;
2999 	  pending_stack_adjust = old_pending_adj;
3000 	  old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3001 	  stack_arg_under_construction = old_stack_arg_under_construction;
3002 	  highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3003 	  stack_usage_map = initial_stack_usage_map;
3004 	  sibcall_failure = 1;
3005 	}
3006       else if (ACCUMULATE_OUTGOING_ARGS && pass)
3007 	{
3008 #ifdef REG_PARM_STACK_SPACE
3009 	  if (save_area)
3010 	    restore_fixed_argument_area (save_area, argblock,
3011 					 high_to_save, low_to_save);
3012 #endif
3013 
3014 	  /* If we saved any argument areas, restore them.  */
3015 	  for (i = 0; i < num_actuals; i++)
3016 	    if (args[i].save_area)
3017 	      {
3018 		enum machine_mode save_mode = GET_MODE (args[i].save_area);
3019 		rtx stack_area
3020 		  = gen_rtx_MEM (save_mode,
3021 				 memory_address (save_mode,
3022 						 XEXP (args[i].stack_slot, 0)));
3023 
3024 		if (save_mode != BLKmode)
3025 		  emit_move_insn (stack_area, args[i].save_area);
3026 		else
3027 		  emit_block_move (stack_area, args[i].save_area,
3028 				   GEN_INT (args[i].locate.size.constant),
3029 				   BLOCK_OP_CALL_PARM);
3030 	      }
3031 
3032 	  highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3033 	  stack_usage_map = initial_stack_usage_map;
3034 	}
3035 
3036       /* If this was alloca, record the new stack level for nonlocal gotos.
3037 	 Check for the handler slots since we might not have a save area
3038 	 for non-local gotos.  */
3039 
3040       if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3041 	update_nonlocal_goto_save_area ();
3042 
3043       /* Free up storage we no longer need.  */
3044       for (i = 0; i < num_actuals; ++i)
3045 	if (args[i].aligned_regs)
3046 	  free (args[i].aligned_regs);
3047 
3048       insns = get_insns ();
3049       end_sequence ();
3050 
3051       if (pass == 0)
3052 	{
3053 	  tail_call_insns = insns;
3054 
3055 	  /* Restore the pending stack adjustment now that we have
3056 	     finished generating the sibling call sequence.  */
3057 
3058 	  pending_stack_adjust = save_pending_stack_adjust;
3059 	  stack_pointer_delta = save_stack_pointer_delta;
3060 
3061 	  /* Prepare arg structure for next iteration.  */
3062 	  for (i = 0; i < num_actuals; i++)
3063 	    {
3064 	      args[i].value = 0;
3065 	      args[i].aligned_regs = 0;
3066 	      args[i].stack = 0;
3067 	    }
3068 
3069 	  sbitmap_free (stored_args_map);
3070 	}
3071       else
3072 	{
3073 	  normal_call_insns = insns;
3074 
3075 	  /* Verify that we've deallocated all the stack we used.  */
3076 	  gcc_assert ((flags & ECF_NORETURN)
3077 		      || (old_stack_allocated
3078 			  == stack_pointer_delta - pending_stack_adjust));
3079 	}
3080 
3081       /* If something prevents making this a sibling call,
3082 	 zero out the sequence.  */
3083       if (sibcall_failure)
3084 	tail_call_insns = NULL_RTX;
3085       else
3086 	break;
3087     }
3088 
3089   /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3090      arguments too, as argument area is now clobbered by the call.  */
3091   if (tail_call_insns)
3092     {
3093       emit_insn (tail_call_insns);
3094       cfun->tail_call_emit = true;
3095     }
3096   else
3097     emit_insn (normal_call_insns);
3098 
3099   currently_expanding_call--;
3100 
3101   /* If this function returns with the stack pointer depressed, ensure
3102      this block saves and restores the stack pointer, show it was
3103      changed, and adjust for any outgoing arg space.  */
3104   if (flags & ECF_SP_DEPRESSED)
3105     {
3106       clear_pending_stack_adjust ();
3107       emit_insn (gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx));
3108       emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
3109     }
3110 
3111   if (stack_usage_map_buf)
3112     free (stack_usage_map_buf);
3113 
3114   return target;
3115 }
3116 
3117 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3118    this function's incoming arguments.
3119 
3120    At the start of RTL generation we know the only REG_EQUIV notes
3121    in the rtl chain are those for incoming arguments, so we can look
3122    for REG_EQUIV notes between the start of the function and the
3123    NOTE_INSN_FUNCTION_BEG.
3124 
3125    This is (slight) overkill.  We could keep track of the highest
3126    argument we clobber and be more selective in removing notes, but it
3127    does not seem to be worth the effort.  */
3128 
3129 void
fixup_tail_calls(void)3130 fixup_tail_calls (void)
3131 {
3132   rtx insn;
3133 
3134   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3135     {
3136       /* There are never REG_EQUIV notes for the incoming arguments
3137 	 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it.  */
3138       if (NOTE_P (insn)
3139 	  && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
3140 	break;
3141 
3142       while (1)
3143 	{
3144 	  rtx note = find_reg_note (insn, REG_EQUIV, 0);
3145 	  if (note)
3146 	    {
3147 	      /* Remove the note and keep looking at the notes for
3148 		 this insn.  */
3149 	      remove_note (insn, note);
3150 	      continue;
3151 	    }
3152 	  break;
3153 	}
3154     }
3155 }
3156 
3157 /* Traverse an argument list in VALUES and expand all complex
3158    arguments into their components.  */
3159 static tree
split_complex_values(tree values)3160 split_complex_values (tree values)
3161 {
3162   tree p;
3163 
3164   /* Before allocating memory, check for the common case of no complex.  */
3165   for (p = values; p; p = TREE_CHAIN (p))
3166     {
3167       tree type = TREE_TYPE (TREE_VALUE (p));
3168       if (type && TREE_CODE (type) == COMPLEX_TYPE
3169 	  && targetm.calls.split_complex_arg (type))
3170 	goto found;
3171     }
3172   return values;
3173 
3174  found:
3175   values = copy_list (values);
3176 
3177   for (p = values; p; p = TREE_CHAIN (p))
3178     {
3179       tree complex_value = TREE_VALUE (p);
3180       tree complex_type;
3181 
3182       complex_type = TREE_TYPE (complex_value);
3183       if (!complex_type)
3184 	continue;
3185 
3186       if (TREE_CODE (complex_type) == COMPLEX_TYPE
3187 	  && targetm.calls.split_complex_arg (complex_type))
3188 	{
3189 	  tree subtype;
3190 	  tree real, imag, next;
3191 
3192 	  subtype = TREE_TYPE (complex_type);
3193 	  complex_value = save_expr (complex_value);
3194 	  real = build1 (REALPART_EXPR, subtype, complex_value);
3195 	  imag = build1 (IMAGPART_EXPR, subtype, complex_value);
3196 
3197 	  TREE_VALUE (p) = real;
3198 	  next = TREE_CHAIN (p);
3199 	  imag = build_tree_list (NULL_TREE, imag);
3200 	  TREE_CHAIN (p) = imag;
3201 	  TREE_CHAIN (imag) = next;
3202 
3203 	  /* Skip the newly created node.  */
3204 	  p = TREE_CHAIN (p);
3205 	}
3206     }
3207 
3208   return values;
3209 }
3210 
3211 /* Traverse a list of TYPES and expand all complex types into their
3212    components.  */
3213 static tree
split_complex_types(tree types)3214 split_complex_types (tree types)
3215 {
3216   tree p;
3217 
3218   /* Before allocating memory, check for the common case of no complex.  */
3219   for (p = types; p; p = TREE_CHAIN (p))
3220     {
3221       tree type = TREE_VALUE (p);
3222       if (TREE_CODE (type) == COMPLEX_TYPE
3223 	  && targetm.calls.split_complex_arg (type))
3224 	goto found;
3225     }
3226   return types;
3227 
3228  found:
3229   types = copy_list (types);
3230 
3231   for (p = types; p; p = TREE_CHAIN (p))
3232     {
3233       tree complex_type = TREE_VALUE (p);
3234 
3235       if (TREE_CODE (complex_type) == COMPLEX_TYPE
3236 	  && targetm.calls.split_complex_arg (complex_type))
3237 	{
3238 	  tree next, imag;
3239 
3240 	  /* Rewrite complex type with component type.  */
3241 	  TREE_VALUE (p) = TREE_TYPE (complex_type);
3242 	  next = TREE_CHAIN (p);
3243 
3244 	  /* Add another component type for the imaginary part.  */
3245 	  imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3246 	  TREE_CHAIN (p) = imag;
3247 	  TREE_CHAIN (imag) = next;
3248 
3249 	  /* Skip the newly created node.  */
3250 	  p = TREE_CHAIN (p);
3251 	}
3252     }
3253 
3254   return types;
3255 }
3256 
3257 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3258    The RETVAL parameter specifies whether return value needs to be saved, other
3259    parameters are documented in the emit_library_call function below.  */
3260 
3261 static rtx
emit_library_call_value_1(int retval,rtx orgfun,rtx value,enum libcall_type fn_type,enum machine_mode outmode,int nargs,va_list p)3262 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3263 			   enum libcall_type fn_type,
3264 			   enum machine_mode outmode, int nargs, va_list p)
3265 {
3266   /* Total size in bytes of all the stack-parms scanned so far.  */
3267   struct args_size args_size;
3268   /* Size of arguments before any adjustments (such as rounding).  */
3269   struct args_size original_args_size;
3270   int argnum;
3271   rtx fun;
3272   int inc;
3273   int count;
3274   rtx argblock = 0;
3275   CUMULATIVE_ARGS args_so_far;
3276   struct arg
3277   {
3278     rtx value;
3279     enum machine_mode mode;
3280     rtx reg;
3281     int partial;
3282     struct locate_and_pad_arg_data locate;
3283     rtx save_area;
3284   };
3285   struct arg *argvec;
3286   int old_inhibit_defer_pop = inhibit_defer_pop;
3287   rtx call_fusage = 0;
3288   rtx mem_value = 0;
3289   rtx valreg;
3290   int pcc_struct_value = 0;
3291   int struct_value_size = 0;
3292   int flags;
3293   int reg_parm_stack_space = 0;
3294   int needed;
3295   rtx before_call;
3296   tree tfom;			/* type_for_mode (outmode, 0) */
3297 
3298 #ifdef REG_PARM_STACK_SPACE
3299   /* Define the boundary of the register parm stack space that needs to be
3300      save, if any.  */
3301   int low_to_save, high_to_save;
3302   rtx save_area = 0;            /* Place that it is saved.  */
3303 #endif
3304 
3305   /* Size of the stack reserved for parameter registers.  */
3306   int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3307   char *initial_stack_usage_map = stack_usage_map;
3308   char *stack_usage_map_buf = NULL;
3309 
3310   rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3311 
3312 #ifdef REG_PARM_STACK_SPACE
3313   reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3314 #endif
3315 
3316   /* By default, library functions can not throw.  */
3317   flags = ECF_NOTHROW;
3318 
3319   switch (fn_type)
3320     {
3321     case LCT_NORMAL:
3322       break;
3323     case LCT_CONST:
3324       flags |= ECF_CONST;
3325       break;
3326     case LCT_PURE:
3327       flags |= ECF_PURE;
3328       break;
3329     case LCT_CONST_MAKE_BLOCK:
3330       flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
3331       break;
3332     case LCT_PURE_MAKE_BLOCK:
3333       flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
3334       break;
3335     case LCT_NORETURN:
3336       flags |= ECF_NORETURN;
3337       break;
3338     case LCT_THROW:
3339       flags = ECF_NORETURN;
3340       break;
3341     case LCT_RETURNS_TWICE:
3342       flags = ECF_RETURNS_TWICE;
3343       break;
3344     }
3345   fun = orgfun;
3346 
3347   /* Ensure current function's preferred stack boundary is at least
3348      what we need.  */
3349   if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3350     cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3351 
3352   /* If this kind of value comes back in memory,
3353      decide where in memory it should come back.  */
3354   if (outmode != VOIDmode)
3355     {
3356       tfom = lang_hooks.types.type_for_mode (outmode, 0);
3357       if (aggregate_value_p (tfom, 0))
3358 	{
3359 #ifdef PCC_STATIC_STRUCT_RETURN
3360 	  rtx pointer_reg
3361 	    = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3362 	  mem_value = gen_rtx_MEM (outmode, pointer_reg);
3363 	  pcc_struct_value = 1;
3364 	  if (value == 0)
3365 	    value = gen_reg_rtx (outmode);
3366 #else /* not PCC_STATIC_STRUCT_RETURN */
3367 	  struct_value_size = GET_MODE_SIZE (outmode);
3368 	  if (value != 0 && MEM_P (value))
3369 	    mem_value = value;
3370 	  else
3371 	    mem_value = assign_temp (tfom, 0, 1, 1);
3372 #endif
3373 	  /* This call returns a big structure.  */
3374 	  flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3375 	}
3376     }
3377   else
3378     tfom = void_type_node;
3379 
3380   /* ??? Unfinished: must pass the memory address as an argument.  */
3381 
3382   /* Copy all the libcall-arguments out of the varargs data
3383      and into a vector ARGVEC.
3384 
3385      Compute how to pass each argument.  We only support a very small subset
3386      of the full argument passing conventions to limit complexity here since
3387      library functions shouldn't have many args.  */
3388 
3389   argvec = alloca ((nargs + 1) * sizeof (struct arg));
3390   memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3391 
3392 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3393   INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3394 #else
3395   INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3396 #endif
3397 
3398   args_size.constant = 0;
3399   args_size.var = 0;
3400 
3401   count = 0;
3402 
3403   /* Now we are about to start emitting insns that can be deleted
3404      if a libcall is deleted.  */
3405   if (flags & ECF_LIBCALL_BLOCK)
3406     start_sequence ();
3407 
3408   push_temp_slots ();
3409 
3410   /* If there's a structure value address to be passed,
3411      either pass it in the special place, or pass it as an extra argument.  */
3412   if (mem_value && struct_value == 0 && ! pcc_struct_value)
3413     {
3414       rtx addr = XEXP (mem_value, 0);
3415 
3416       nargs++;
3417 
3418       /* Make sure it is a reasonable operand for a move or push insn.  */
3419       if (!REG_P (addr) && !MEM_P (addr)
3420 	  && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3421 	addr = force_operand (addr, NULL_RTX);
3422 
3423       argvec[count].value = addr;
3424       argvec[count].mode = Pmode;
3425       argvec[count].partial = 0;
3426 
3427       argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3428       gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
3429 						   NULL_TREE, 1) == 0);
3430 
3431       locate_and_pad_parm (Pmode, NULL_TREE,
3432 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3433 			   1,
3434 #else
3435 			   argvec[count].reg != 0,
3436 #endif
3437 			   0, NULL_TREE, &args_size, &argvec[count].locate);
3438 
3439       if (argvec[count].reg == 0 || argvec[count].partial != 0
3440 	  || reg_parm_stack_space > 0)
3441 	args_size.constant += argvec[count].locate.size.constant;
3442 
3443       FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3444 
3445       count++;
3446     }
3447 
3448   for (; count < nargs; count++)
3449     {
3450       rtx val = va_arg (p, rtx);
3451       enum machine_mode mode = va_arg (p, enum machine_mode);
3452 
3453       /* We cannot convert the arg value to the mode the library wants here;
3454 	 must do it earlier where we know the signedness of the arg.  */
3455       gcc_assert (mode != BLKmode
3456 		  && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3457 
3458       /* Make sure it is a reasonable operand for a move or push insn.  */
3459       if (!REG_P (val) && !MEM_P (val)
3460 	  && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3461 	val = force_operand (val, NULL_RTX);
3462 
3463       if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3464 	{
3465 	  rtx slot;
3466 	  int must_copy
3467 	    = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3468 
3469 	  /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
3470 	     functions, so we have to pretend this isn't such a function.  */
3471 	  if (flags & ECF_LIBCALL_BLOCK)
3472 	    {
3473 	      rtx insns = get_insns ();
3474 	      end_sequence ();
3475 	      emit_insn (insns);
3476 	    }
3477 	  flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3478 
3479 	  /* If this was a CONST function, it is now PURE since
3480 	     it now reads memory.  */
3481 	  if (flags & ECF_CONST)
3482 	    {
3483 	      flags &= ~ECF_CONST;
3484 	      flags |= ECF_PURE;
3485 	    }
3486 
3487 	  if (GET_MODE (val) == MEM && !must_copy)
3488 	    slot = val;
3489 	  else
3490 	    {
3491 	      slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3492 				  0, 1, 1);
3493 	      emit_move_insn (slot, val);
3494 	    }
3495 
3496 	  call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3497 					   gen_rtx_USE (VOIDmode, slot),
3498 					   call_fusage);
3499 	  if (must_copy)
3500 	    call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3501 					     gen_rtx_CLOBBER (VOIDmode,
3502 							      slot),
3503 					     call_fusage);
3504 
3505 	  mode = Pmode;
3506 	  val = force_operand (XEXP (slot, 0), NULL_RTX);
3507 	}
3508 
3509       argvec[count].value = val;
3510       argvec[count].mode = mode;
3511 
3512       argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3513 
3514       argvec[count].partial
3515 	= targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
3516 
3517       locate_and_pad_parm (mode, NULL_TREE,
3518 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3519 			   1,
3520 #else
3521 			   argvec[count].reg != 0,
3522 #endif
3523 			   argvec[count].partial,
3524 			   NULL_TREE, &args_size, &argvec[count].locate);
3525 
3526       gcc_assert (!argvec[count].locate.size.var);
3527 
3528       if (argvec[count].reg == 0 || argvec[count].partial != 0
3529 	  || reg_parm_stack_space > 0)
3530 	args_size.constant += argvec[count].locate.size.constant;
3531 
3532       FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3533     }
3534 
3535   /* If this machine requires an external definition for library
3536      functions, write one out.  */
3537   assemble_external_libcall (fun);
3538 
3539   original_args_size = args_size;
3540   args_size.constant = (((args_size.constant
3541 			  + stack_pointer_delta
3542 			  + STACK_BYTES - 1)
3543 			  / STACK_BYTES
3544 			  * STACK_BYTES)
3545 			 - stack_pointer_delta);
3546 
3547   args_size.constant = MAX (args_size.constant,
3548 			    reg_parm_stack_space);
3549 
3550 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3551   args_size.constant -= reg_parm_stack_space;
3552 #endif
3553 
3554   if (args_size.constant > current_function_outgoing_args_size)
3555     current_function_outgoing_args_size = args_size.constant;
3556 
3557   if (ACCUMULATE_OUTGOING_ARGS)
3558     {
3559       /* Since the stack pointer will never be pushed, it is possible for
3560 	 the evaluation of a parm to clobber something we have already
3561 	 written to the stack.  Since most function calls on RISC machines
3562 	 do not use the stack, this is uncommon, but must work correctly.
3563 
3564 	 Therefore, we save any area of the stack that was already written
3565 	 and that we are using.  Here we set up to do this by making a new
3566 	 stack usage map from the old one.
3567 
3568 	 Another approach might be to try to reorder the argument
3569 	 evaluations to avoid this conflicting stack usage.  */
3570 
3571       needed = args_size.constant;
3572 
3573 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3574       /* Since we will be writing into the entire argument area, the
3575 	 map must be allocated for its entire size, not just the part that
3576 	 is the responsibility of the caller.  */
3577       needed += reg_parm_stack_space;
3578 #endif
3579 
3580 #ifdef ARGS_GROW_DOWNWARD
3581       highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3582 					 needed + 1);
3583 #else
3584       highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3585 					 needed);
3586 #endif
3587       stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3588       stack_usage_map = stack_usage_map_buf;
3589 
3590       if (initial_highest_arg_in_use)
3591 	memcpy (stack_usage_map, initial_stack_usage_map,
3592 		initial_highest_arg_in_use);
3593 
3594       if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3595 	memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3596 	       highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3597       needed = 0;
3598 
3599       /* We must be careful to use virtual regs before they're instantiated,
3600 	 and real regs afterwards.  Loop optimization, for example, can create
3601 	 new libcalls after we've instantiated the virtual regs, and if we
3602 	 use virtuals anyway, they won't match the rtl patterns.  */
3603 
3604       if (virtuals_instantiated)
3605 	argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3606       else
3607 	argblock = virtual_outgoing_args_rtx;
3608     }
3609   else
3610     {
3611       if (!PUSH_ARGS)
3612 	argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3613     }
3614 
3615   /* If we push args individually in reverse order, perform stack alignment
3616      before the first push (the last arg).  */
3617   if (argblock == 0 && PUSH_ARGS_REVERSED)
3618     anti_adjust_stack (GEN_INT (args_size.constant
3619 				- original_args_size.constant));
3620 
3621   if (PUSH_ARGS_REVERSED)
3622     {
3623       inc = -1;
3624       argnum = nargs - 1;
3625     }
3626   else
3627     {
3628       inc = 1;
3629       argnum = 0;
3630     }
3631 
3632 #ifdef REG_PARM_STACK_SPACE
3633   if (ACCUMULATE_OUTGOING_ARGS)
3634     {
3635       /* The argument list is the property of the called routine and it
3636 	 may clobber it.  If the fixed area has been used for previous
3637 	 parameters, we must save and restore it.  */
3638       save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3639 					    &low_to_save, &high_to_save);
3640     }
3641 #endif
3642 
3643   /* Push the args that need to be pushed.  */
3644 
3645   /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3646      are to be pushed.  */
3647   for (count = 0; count < nargs; count++, argnum += inc)
3648     {
3649       enum machine_mode mode = argvec[argnum].mode;
3650       rtx val = argvec[argnum].value;
3651       rtx reg = argvec[argnum].reg;
3652       int partial = argvec[argnum].partial;
3653       int lower_bound = 0, upper_bound = 0, i;
3654 
3655       if (! (reg != 0 && partial == 0))
3656 	{
3657 	  if (ACCUMULATE_OUTGOING_ARGS)
3658 	    {
3659 	      /* If this is being stored into a pre-allocated, fixed-size,
3660 		 stack area, save any previous data at that location.  */
3661 
3662 #ifdef ARGS_GROW_DOWNWARD
3663 	      /* stack_slot is negative, but we want to index stack_usage_map
3664 		 with positive values.  */
3665 	      upper_bound = -argvec[argnum].locate.offset.constant + 1;
3666 	      lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3667 #else
3668 	      lower_bound = argvec[argnum].locate.offset.constant;
3669 	      upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3670 #endif
3671 
3672 	      i = lower_bound;
3673 	      /* Don't worry about things in the fixed argument area;
3674 		 it has already been saved.  */
3675 	      if (i < reg_parm_stack_space)
3676 		i = reg_parm_stack_space;
3677 	      while (i < upper_bound && stack_usage_map[i] == 0)
3678 		i++;
3679 
3680 	      if (i < upper_bound)
3681 		{
3682 		  /* We need to make a save area.  */
3683 		  unsigned int size
3684 		    = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3685 		  enum machine_mode save_mode
3686 		    = mode_for_size (size, MODE_INT, 1);
3687 		  rtx adr
3688 		    = plus_constant (argblock,
3689 				     argvec[argnum].locate.offset.constant);
3690 		  rtx stack_area
3691 		    = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3692 
3693 		  if (save_mode == BLKmode)
3694 		    {
3695 		      argvec[argnum].save_area
3696 			= assign_stack_temp (BLKmode,
3697 					     argvec[argnum].locate.size.constant,
3698 					     0);
3699 
3700 		      emit_block_move (validize_mem (argvec[argnum].save_area),
3701 				       stack_area,
3702 				       GEN_INT (argvec[argnum].locate.size.constant),
3703 				       BLOCK_OP_CALL_PARM);
3704 		    }
3705 		  else
3706 		    {
3707 		      argvec[argnum].save_area = gen_reg_rtx (save_mode);
3708 
3709 		      emit_move_insn (argvec[argnum].save_area, stack_area);
3710 		    }
3711 		}
3712 	    }
3713 
3714 	  emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
3715 			  partial, reg, 0, argblock,
3716 			  GEN_INT (argvec[argnum].locate.offset.constant),
3717 			  reg_parm_stack_space,
3718 			  ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3719 
3720 	  /* Now mark the segment we just used.  */
3721 	  if (ACCUMULATE_OUTGOING_ARGS)
3722 	    for (i = lower_bound; i < upper_bound; i++)
3723 	      stack_usage_map[i] = 1;
3724 
3725 	  NO_DEFER_POP;
3726 
3727 	  if (flags & ECF_CONST)
3728 	    {
3729 	      rtx use;
3730 
3731 	      /* Indicate argument access so that alias.c knows that these
3732 		 values are live.  */
3733 	      if (argblock)
3734 		use = plus_constant (argblock,
3735 				     argvec[argnum].locate.offset.constant);
3736 	      else
3737 		/* When arguments are pushed, trying to tell alias.c where
3738 		   exactly this argument is won't work, because the
3739 		   auto-increment causes confusion.  So we merely indicate
3740 		   that we access something with a known mode somewhere on
3741 		   the stack.  */
3742 		use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3743 				    gen_rtx_SCRATCH (Pmode));
3744 	      use = gen_rtx_MEM (argvec[argnum].mode, use);
3745 	      use = gen_rtx_USE (VOIDmode, use);
3746 	      call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3747 	    }
3748 	}
3749     }
3750 
3751   /* If we pushed args in forward order, perform stack alignment
3752      after pushing the last arg.  */
3753   if (argblock == 0 && !PUSH_ARGS_REVERSED)
3754     anti_adjust_stack (GEN_INT (args_size.constant
3755 				- original_args_size.constant));
3756 
3757   if (PUSH_ARGS_REVERSED)
3758     argnum = nargs - 1;
3759   else
3760     argnum = 0;
3761 
3762   fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
3763 
3764   /* Now load any reg parms into their regs.  */
3765 
3766   /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3767      are to be pushed.  */
3768   for (count = 0; count < nargs; count++, argnum += inc)
3769     {
3770       enum machine_mode mode = argvec[argnum].mode;
3771       rtx val = argvec[argnum].value;
3772       rtx reg = argvec[argnum].reg;
3773       int partial = argvec[argnum].partial;
3774 
3775       /* Handle calls that pass values in multiple non-contiguous
3776 	 locations.  The PA64 has examples of this for library calls.  */
3777       if (reg != 0 && GET_CODE (reg) == PARALLEL)
3778 	emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3779       else if (reg != 0 && partial == 0)
3780 	emit_move_insn (reg, val);
3781 
3782       NO_DEFER_POP;
3783     }
3784 
3785   /* Any regs containing parms remain in use through the call.  */
3786   for (count = 0; count < nargs; count++)
3787     {
3788       rtx reg = argvec[count].reg;
3789       if (reg != 0 && GET_CODE (reg) == PARALLEL)
3790 	use_group_regs (&call_fusage, reg);
3791       else if (reg != 0)
3792 	use_reg (&call_fusage, reg);
3793     }
3794 
3795   /* Pass the function the address in which to return a structure value.  */
3796   if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3797     {
3798       emit_move_insn (struct_value,
3799 		      force_reg (Pmode,
3800 				 force_operand (XEXP (mem_value, 0),
3801 						NULL_RTX)));
3802       if (REG_P (struct_value))
3803 	use_reg (&call_fusage, struct_value);
3804     }
3805 
3806   /* Don't allow popping to be deferred, since then
3807      cse'ing of library calls could delete a call and leave the pop.  */
3808   NO_DEFER_POP;
3809   valreg = (mem_value == 0 && outmode != VOIDmode
3810 	    ? hard_libcall_value (outmode) : NULL_RTX);
3811 
3812   /* Stack must be properly aligned now.  */
3813   gcc_assert (!(stack_pointer_delta
3814 		& (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3815 
3816   before_call = get_last_insn ();
3817 
3818   /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3819      will set inhibit_defer_pop to that value.  */
3820   /* The return type is needed to decide how many bytes the function pops.
3821      Signedness plays no role in that, so for simplicity, we pretend it's
3822      always signed.  We also assume that the list of arguments passed has
3823      no impact, so we pretend it is unknown.  */
3824 
3825   emit_call_1 (fun, NULL,
3826 	       get_identifier (XSTR (orgfun, 0)),
3827 	       build_function_type (tfom, NULL_TREE),
3828 	       original_args_size.constant, args_size.constant,
3829 	       struct_value_size,
3830 	       FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3831 	       valreg,
3832 	       old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3833 
3834   /* For calls to `setjmp', etc., inform flow.c it should complain
3835      if nonvolatile values are live.  For functions that cannot return,
3836      inform flow that control does not fall through.  */
3837 
3838   if (flags & ECF_NORETURN)
3839     {
3840       /* The barrier note must be emitted
3841 	 immediately after the CALL_INSN.  Some ports emit more than
3842 	 just a CALL_INSN above, so we must search for it here.  */
3843 
3844       rtx last = get_last_insn ();
3845       while (!CALL_P (last))
3846 	{
3847 	  last = PREV_INSN (last);
3848 	  /* There was no CALL_INSN?  */
3849 	  gcc_assert (last != before_call);
3850 	}
3851 
3852       emit_barrier_after (last);
3853     }
3854 
3855   /* Now restore inhibit_defer_pop to its actual original value.  */
3856   OK_DEFER_POP;
3857 
3858   /* If call is cse'able, make appropriate pair of reg-notes around it.
3859      Test valreg so we don't crash; may safely ignore `const'
3860      if return type is void.  Disable for PARALLEL return values, because
3861      we have no way to move such values into a pseudo register.  */
3862   if (flags & ECF_LIBCALL_BLOCK)
3863     {
3864       rtx insns;
3865 
3866       if (valreg == 0)
3867 	{
3868 	  insns = get_insns ();
3869 	  end_sequence ();
3870 	  emit_insn (insns);
3871 	}
3872       else
3873 	{
3874 	  rtx note = 0;
3875 	  rtx temp;
3876 	  int i;
3877 
3878 	  if (GET_CODE (valreg) == PARALLEL)
3879 	    {
3880 	      temp = gen_reg_rtx (outmode);
3881 	      emit_group_store (temp, valreg, NULL_TREE,
3882 				GET_MODE_SIZE (outmode));
3883 	      valreg = temp;
3884 	    }
3885 
3886 	  temp = gen_reg_rtx (GET_MODE (valreg));
3887 
3888 	  /* Construct an "equal form" for the value which mentions all the
3889 	     arguments in order as well as the function name.  */
3890 	  for (i = 0; i < nargs; i++)
3891 	    note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
3892 	  note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);
3893 
3894 	  insns = get_insns ();
3895 	  end_sequence ();
3896 
3897 	  if (flags & ECF_PURE)
3898 	    note = gen_rtx_EXPR_LIST (VOIDmode,
3899 			gen_rtx_USE (VOIDmode,
3900 				     gen_rtx_MEM (BLKmode,
3901 						  gen_rtx_SCRATCH (VOIDmode))),
3902 			note);
3903 
3904 	  emit_libcall_block (insns, temp, valreg, note);
3905 
3906 	  valreg = temp;
3907 	}
3908     }
3909   pop_temp_slots ();
3910 
3911   /* Copy the value to the right place.  */
3912   if (outmode != VOIDmode && retval)
3913     {
3914       if (mem_value)
3915 	{
3916 	  if (value == 0)
3917 	    value = mem_value;
3918 	  if (value != mem_value)
3919 	    emit_move_insn (value, mem_value);
3920 	}
3921       else if (GET_CODE (valreg) == PARALLEL)
3922 	{
3923 	  if (value == 0)
3924 	    value = gen_reg_rtx (outmode);
3925 	  emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3926 	}
3927       else if (value != 0)
3928 	emit_move_insn (value, valreg);
3929       else
3930 	value = valreg;
3931     }
3932 
3933   if (ACCUMULATE_OUTGOING_ARGS)
3934     {
3935 #ifdef REG_PARM_STACK_SPACE
3936       if (save_area)
3937 	restore_fixed_argument_area (save_area, argblock,
3938 				     high_to_save, low_to_save);
3939 #endif
3940 
3941       /* If we saved any argument areas, restore them.  */
3942       for (count = 0; count < nargs; count++)
3943 	if (argvec[count].save_area)
3944 	  {
3945 	    enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3946 	    rtx adr = plus_constant (argblock,
3947 				     argvec[count].locate.offset.constant);
3948 	    rtx stack_area = gen_rtx_MEM (save_mode,
3949 					  memory_address (save_mode, adr));
3950 
3951 	    if (save_mode == BLKmode)
3952 	      emit_block_move (stack_area,
3953 			       validize_mem (argvec[count].save_area),
3954 			       GEN_INT (argvec[count].locate.size.constant),
3955 			       BLOCK_OP_CALL_PARM);
3956 	    else
3957 	      emit_move_insn (stack_area, argvec[count].save_area);
3958 	  }
3959 
3960       highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3961       stack_usage_map = initial_stack_usage_map;
3962     }
3963 
3964   if (stack_usage_map_buf)
3965     free (stack_usage_map_buf);
3966 
3967   return value;
3968 
3969 }
3970 
3971 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3972    (emitting the queue unless NO_QUEUE is nonzero),
3973    for a value of mode OUTMODE,
3974    with NARGS different arguments, passed as alternating rtx values
3975    and machine_modes to convert them to.
3976 
3977    FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
3978    calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
3979    which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
3980    LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
3981    REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
3982    or other LCT_ value for other types of library calls.  */
3983 
3984 void
emit_library_call(rtx orgfun,enum libcall_type fn_type,enum machine_mode outmode,int nargs,...)3985 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3986 		   enum machine_mode outmode, int nargs, ...)
3987 {
3988   va_list p;
3989 
3990   va_start (p, nargs);
3991   emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3992   va_end (p);
3993 }
3994 
3995 /* Like emit_library_call except that an extra argument, VALUE,
3996    comes second and says where to store the result.
3997    (If VALUE is zero, this function chooses a convenient way
3998    to return the value.
3999 
4000    This function returns an rtx for where the value is to be found.
4001    If VALUE is nonzero, VALUE is returned.  */
4002 
4003 rtx
emit_library_call_value(rtx orgfun,rtx value,enum libcall_type fn_type,enum machine_mode outmode,int nargs,...)4004 emit_library_call_value (rtx orgfun, rtx value,
4005 			 enum libcall_type fn_type,
4006 			 enum machine_mode outmode, int nargs, ...)
4007 {
4008   rtx result;
4009   va_list p;
4010 
4011   va_start (p, nargs);
4012   result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
4013 				      nargs, p);
4014   va_end (p);
4015 
4016   return result;
4017 }
4018 
4019 /* Store a single argument for a function call
4020    into the register or memory area where it must be passed.
4021    *ARG describes the argument value and where to pass it.
4022 
4023    ARGBLOCK is the address of the stack-block for all the arguments,
4024    or 0 on a machine where arguments are pushed individually.
4025 
4026    MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
4027    so must be careful about how the stack is used.
4028 
4029    VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
4030    argument stack.  This is used if ACCUMULATE_OUTGOING_ARGS to indicate
4031    that we need not worry about saving and restoring the stack.
4032 
4033    FNDECL is the declaration of the function we are calling.
4034 
4035    Return nonzero if this arg should cause sibcall failure,
4036    zero otherwise.  */
4037 
4038 static int
store_one_arg(struct arg_data * arg,rtx argblock,int flags,int variable_size ATTRIBUTE_UNUSED,int reg_parm_stack_space)4039 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
4040 	       int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4041 {
4042   tree pval = arg->tree_value;
4043   rtx reg = 0;
4044   int partial = 0;
4045   int used = 0;
4046   int i, lower_bound = 0, upper_bound = 0;
4047   int sibcall_failure = 0;
4048 
4049   if (TREE_CODE (pval) == ERROR_MARK)
4050     return 1;
4051 
4052   /* Push a new temporary level for any temporaries we make for
4053      this argument.  */
4054   push_temp_slots ();
4055 
4056   if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4057     {
4058       /* If this is being stored into a pre-allocated, fixed-size, stack area,
4059 	 save any previous data at that location.  */
4060       if (argblock && ! variable_size && arg->stack)
4061 	{
4062 #ifdef ARGS_GROW_DOWNWARD
4063 	  /* stack_slot is negative, but we want to index stack_usage_map
4064 	     with positive values.  */
4065 	  if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4066 	    upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4067 	  else
4068 	    upper_bound = 0;
4069 
4070 	  lower_bound = upper_bound - arg->locate.size.constant;
4071 #else
4072 	  if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4073 	    lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4074 	  else
4075 	    lower_bound = 0;
4076 
4077 	  upper_bound = lower_bound + arg->locate.size.constant;
4078 #endif
4079 
4080 	  i = lower_bound;
4081 	  /* Don't worry about things in the fixed argument area;
4082 	     it has already been saved.  */
4083 	  if (i < reg_parm_stack_space)
4084 	    i = reg_parm_stack_space;
4085 	  while (i < upper_bound && stack_usage_map[i] == 0)
4086 	    i++;
4087 
4088 	  if (i < upper_bound)
4089 	    {
4090 	      /* We need to make a save area.  */
4091 	      unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4092 	      enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4093 	      rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4094 	      rtx stack_area = gen_rtx_MEM (save_mode, adr);
4095 
4096 	      if (save_mode == BLKmode)
4097 		{
4098 		  tree ot = TREE_TYPE (arg->tree_value);
4099 		  tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4100 						       | TYPE_QUAL_CONST));
4101 
4102 		  arg->save_area = assign_temp (nt, 0, 1, 1);
4103 		  preserve_temp_slots (arg->save_area);
4104 		  emit_block_move (validize_mem (arg->save_area), stack_area,
4105 				   GEN_INT (arg->locate.size.constant),
4106 				   BLOCK_OP_CALL_PARM);
4107 		}
4108 	      else
4109 		{
4110 		  arg->save_area = gen_reg_rtx (save_mode);
4111 		  emit_move_insn (arg->save_area, stack_area);
4112 		}
4113 	    }
4114 	}
4115     }
4116 
4117   /* If this isn't going to be placed on both the stack and in registers,
4118      set up the register and number of words.  */
4119   if (! arg->pass_on_stack)
4120     {
4121       if (flags & ECF_SIBCALL)
4122 	reg = arg->tail_call_reg;
4123       else
4124 	reg = arg->reg;
4125       partial = arg->partial;
4126     }
4127 
4128   /* Being passed entirely in a register.  We shouldn't be called in
4129      this case.  */
4130   gcc_assert (reg == 0 || partial != 0);
4131 
4132   /* If this arg needs special alignment, don't load the registers
4133      here.  */
4134   if (arg->n_aligned_regs != 0)
4135     reg = 0;
4136 
4137   /* If this is being passed partially in a register, we can't evaluate
4138      it directly into its stack slot.  Otherwise, we can.  */
4139   if (arg->value == 0)
4140     {
4141       /* stack_arg_under_construction is nonzero if a function argument is
4142 	 being evaluated directly into the outgoing argument list and
4143 	 expand_call must take special action to preserve the argument list
4144 	 if it is called recursively.
4145 
4146 	 For scalar function arguments stack_usage_map is sufficient to
4147 	 determine which stack slots must be saved and restored.  Scalar
4148 	 arguments in general have pass_on_stack == 0.
4149 
4150 	 If this argument is initialized by a function which takes the
4151 	 address of the argument (a C++ constructor or a C function
4152 	 returning a BLKmode structure), then stack_usage_map is
4153 	 insufficient and expand_call must push the stack around the
4154 	 function call.  Such arguments have pass_on_stack == 1.
4155 
4156 	 Note that it is always safe to set stack_arg_under_construction,
4157 	 but this generates suboptimal code if set when not needed.  */
4158 
4159       if (arg->pass_on_stack)
4160 	stack_arg_under_construction++;
4161 
4162       arg->value = expand_expr (pval,
4163 				(partial
4164 				 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4165 				? NULL_RTX : arg->stack,
4166 				VOIDmode, EXPAND_STACK_PARM);
4167 
4168       /* If we are promoting object (or for any other reason) the mode
4169 	 doesn't agree, convert the mode.  */
4170 
4171       if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4172 	arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4173 				    arg->value, arg->unsignedp);
4174 
4175       if (arg->pass_on_stack)
4176 	stack_arg_under_construction--;
4177     }
4178 
4179   /* Check for overlap with already clobbered argument area.  */
4180   if ((flags & ECF_SIBCALL)
4181       && MEM_P (arg->value)
4182       && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4183 					       arg->locate.size.constant))
4184     sibcall_failure = 1;
4185 
4186   /* Don't allow anything left on stack from computation
4187      of argument to alloca.  */
4188   if (flags & ECF_MAY_BE_ALLOCA)
4189     do_pending_stack_adjust ();
4190 
4191   if (arg->value == arg->stack)
4192     /* If the value is already in the stack slot, we are done.  */
4193     ;
4194   else if (arg->mode != BLKmode)
4195     {
4196       int size;
4197 
4198       /* Argument is a scalar, not entirely passed in registers.
4199 	 (If part is passed in registers, arg->partial says how much
4200 	 and emit_push_insn will take care of putting it there.)
4201 
4202 	 Push it, and if its size is less than the
4203 	 amount of space allocated to it,
4204 	 also bump stack pointer by the additional space.
4205 	 Note that in C the default argument promotions
4206 	 will prevent such mismatches.  */
4207 
4208       size = GET_MODE_SIZE (arg->mode);
4209       /* Compute how much space the push instruction will push.
4210 	 On many machines, pushing a byte will advance the stack
4211 	 pointer by a halfword.  */
4212 #ifdef PUSH_ROUNDING
4213       size = PUSH_ROUNDING (size);
4214 #endif
4215       used = size;
4216 
4217       /* Compute how much space the argument should get:
4218 	 round up to a multiple of the alignment for arguments.  */
4219       if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4220 	used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4221 		 / (PARM_BOUNDARY / BITS_PER_UNIT))
4222 		* (PARM_BOUNDARY / BITS_PER_UNIT));
4223 
4224       /* This isn't already where we want it on the stack, so put it there.
4225 	 This can either be done with push or copy insns.  */
4226       emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4227 		      PARM_BOUNDARY, partial, reg, used - size, argblock,
4228 		      ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4229 		      ARGS_SIZE_RTX (arg->locate.alignment_pad));
4230 
4231       /* Unless this is a partially-in-register argument, the argument is now
4232 	 in the stack.  */
4233       if (partial == 0)
4234 	arg->value = arg->stack;
4235     }
4236   else
4237     {
4238       /* BLKmode, at least partly to be pushed.  */
4239 
4240       unsigned int parm_align;
4241       int excess;
4242       rtx size_rtx;
4243 
4244       /* Pushing a nonscalar.
4245 	 If part is passed in registers, PARTIAL says how much
4246 	 and emit_push_insn will take care of putting it there.  */
4247 
4248       /* Round its size up to a multiple
4249 	 of the allocation unit for arguments.  */
4250 
4251       if (arg->locate.size.var != 0)
4252 	{
4253 	  excess = 0;
4254 	  size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4255 	}
4256       else
4257 	{
4258 	  /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4259 	     for BLKmode is careful to avoid it.  */
4260 	  excess = (arg->locate.size.constant
4261 		    - int_size_in_bytes (TREE_TYPE (pval))
4262 		    + partial);
4263 	  size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4264 				  NULL_RTX, TYPE_MODE (sizetype), 0);
4265 	}
4266 
4267       parm_align = arg->locate.boundary;
4268 
4269       /* When an argument is padded down, the block is aligned to
4270 	 PARM_BOUNDARY, but the actual argument isn't.  */
4271       if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4272 	{
4273 	  if (arg->locate.size.var)
4274 	    parm_align = BITS_PER_UNIT;
4275 	  else if (excess)
4276 	    {
4277 	      unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4278 	      parm_align = MIN (parm_align, excess_align);
4279 	    }
4280 	}
4281 
4282       if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4283 	{
4284 	  /* emit_push_insn might not work properly if arg->value and
4285 	     argblock + arg->locate.offset areas overlap.  */
4286 	  rtx x = arg->value;
4287 	  int i = 0;
4288 
4289 	  if (XEXP (x, 0) == current_function_internal_arg_pointer
4290 	      || (GET_CODE (XEXP (x, 0)) == PLUS
4291 		  && XEXP (XEXP (x, 0), 0) ==
4292 		     current_function_internal_arg_pointer
4293 		  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4294 	    {
4295 	      if (XEXP (x, 0) != current_function_internal_arg_pointer)
4296 		i = INTVAL (XEXP (XEXP (x, 0), 1));
4297 
4298 	      /* expand_call should ensure this.  */
4299 	      gcc_assert (!arg->locate.offset.var
4300 			  && GET_CODE (size_rtx) == CONST_INT);
4301 
4302 	      if (arg->locate.offset.constant > i)
4303 		{
4304 		  if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4305 		    sibcall_failure = 1;
4306 		}
4307 	      else if (arg->locate.offset.constant < i)
4308 		{
4309 		  if (i < arg->locate.offset.constant + INTVAL (size_rtx))
4310 		    sibcall_failure = 1;
4311 		}
4312 	    }
4313 	}
4314 
4315       emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4316 		      parm_align, partial, reg, excess, argblock,
4317 		      ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4318 		      ARGS_SIZE_RTX (arg->locate.alignment_pad));
4319 
4320       /* Unless this is a partially-in-register argument, the argument is now
4321 	 in the stack.
4322 
4323 	 ??? Unlike the case above, in which we want the actual
4324 	 address of the data, so that we can load it directly into a
4325 	 register, here we want the address of the stack slot, so that
4326 	 it's properly aligned for word-by-word copying or something
4327 	 like that.  It's not clear that this is always correct.  */
4328       if (partial == 0)
4329 	arg->value = arg->stack_slot;
4330     }
4331 
4332   if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4333     {
4334       tree type = TREE_TYPE (arg->tree_value);
4335       arg->parallel_value
4336 	= emit_group_load_into_temps (arg->reg, arg->value, type,
4337 				      int_size_in_bytes (type));
4338     }
4339 
4340   /* Mark all slots this store used.  */
4341   if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4342       && argblock && ! variable_size && arg->stack)
4343     for (i = lower_bound; i < upper_bound; i++)
4344       stack_usage_map[i] = 1;
4345 
4346   /* Once we have pushed something, pops can't safely
4347      be deferred during the rest of the arguments.  */
4348   NO_DEFER_POP;
4349 
4350   /* Free any temporary slots made in processing this argument.  Show
4351      that we might have taken the address of something and pushed that
4352      as an operand.  */
4353   preserve_temp_slots (NULL_RTX);
4354   free_temp_slots ();
4355   pop_temp_slots ();
4356 
4357   return sibcall_failure;
4358 }
4359 
4360 /* Nonzero if we do not know how to pass TYPE solely in registers.  */
4361 
4362 bool
must_pass_in_stack_var_size(enum machine_mode mode ATTRIBUTE_UNUSED,tree type)4363 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4364 			     tree type)
4365 {
4366   if (!type)
4367     return false;
4368 
4369   /* If the type has variable size...  */
4370   if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4371     return true;
4372 
4373   /* If the type is marked as addressable (it is required
4374      to be constructed into the stack)...  */
4375   if (TREE_ADDRESSABLE (type))
4376     return true;
4377 
4378   return false;
4379 }
4380 
4381 /* Another version of the TARGET_MUST_PASS_IN_STACK hook.  This one
4382    takes trailing padding of a structure into account.  */
4383 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING.  */
4384 
4385 bool
must_pass_in_stack_var_size_or_pad(enum machine_mode mode,tree type)4386 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, tree type)
4387 {
4388   if (!type)
4389     return false;
4390 
4391   /* If the type has variable size...  */
4392   if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4393     return true;
4394 
4395   /* If the type is marked as addressable (it is required
4396      to be constructed into the stack)...  */
4397   if (TREE_ADDRESSABLE (type))
4398     return true;
4399 
4400   /* If the padding and mode of the type is such that a copy into
4401      a register would put it into the wrong part of the register.  */
4402   if (mode == BLKmode
4403       && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4404       && (FUNCTION_ARG_PADDING (mode, type)
4405 	  == (BYTES_BIG_ENDIAN ? upward : downward)))
4406     return true;
4407 
4408   return false;
4409 }
4410