xref: /openbsd/gnu/gcc/gcc/dwarf2out.c (revision c31aa7c2)
1 /* Output Dwarf2 format symbol table information from GCC.
2    Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4    Contributed by Gary Funck (gary@intrepid.com).
5    Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6    Extensively modified by Jason Merrill (jason@cygnus.com).
7 
8 This file is part of GCC.
9 
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14 
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING.  If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA.  */
24 
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 	   the file numbers are used by .debug_info.  Alternately, leave
27 	   out locations for types and decls.
28 	 Avoid talking about ctors and op= for PODs.
29 	 Factor out common prologue sequences into multiple CIEs.  */
30 
31 /* The first part of this file deals with the DWARF 2 frame unwind
32    information, which is also used by the GCC efficient exception handling
33    mechanism.  The second part, controlled only by an #ifdef
34    DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35    information.  */
36 
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
70 
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
74 
75 /* DWARF2 Abbreviation Glossary:
76    CFA = Canonical Frame Address
77 	   a fixed address on the stack which identifies a call frame.
78 	   We define it to be the value of SP just before the call insn.
79 	   The CFA register and offset, which may change during the course
80 	   of the function, are used to calculate its value at runtime.
81    CFI = Call Frame Instruction
82 	   an instruction for the DWARF2 abstract machine
83    CIE = Common Information Entry
84 	   information describing information common to one or more FDEs
85    DIE = Debugging Information Entry
86    FDE = Frame Description Entry
87 	   information describing the stack call frame, in particular,
88 	   how to restore registers
89 
90    DW_CFA_... = DWARF2 CFA call frame instruction
91    DW_TAG_... = DWARF2 DIE tag */
92 
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 #  define DWARF2_FRAME_INFO \
96   (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 #  define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
101 
102 /* Map register numbers held in the call frame info that gcc has
103    collected using DWARF_FRAME_REGNUM to those that should be output in
104    .debug_frame and .eh_frame.  */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
108 
109 /* Decide whether we want to emit frame unwind information for the current
110    translation unit.  */
111 
112 int
dwarf2out_do_frame(void)113 dwarf2out_do_frame (void)
114 {
115   /* We want to emit correct CFA location expressions or lists, so we
116      have to return true if we're going to output debug info, even if
117      we're not going to output frame or unwind info.  */
118   return (write_symbols == DWARF2_DEBUG
119 	  || write_symbols == VMS_AND_DWARF2_DEBUG
120 	  || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 	  || (DWARF2_UNWIND_INFO
123 	      && (flag_unwind_tables
124 		  || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
126 	  );
127 }
128 
129 /* The size of the target's pointer type.  */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
133 
134 /* Array of RTXes referenced by the debugging information, which therefore
135    must be kept around forever.  */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
137 
138 /* A pointer to the base of a list of incomplete types which might be
139    completed at some later time.  incomplete_types_list needs to be a
140    VEC(tree,gc) because we want to tell the garbage collector about
141    it.  */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
143 
144 /* A pointer to the base of a table of references to declaration
145    scopes.  This table is a display which tracks the nesting
146    of declaration scopes at the current scope and containing
147    scopes.  This table is used to find the proper place to
148    define type declaration DIE's.  */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
150 
151 /* Pointers to various DWARF2 sections.  */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_str_section;
160 static GTY(()) section *debug_ranges_section;
161 static GTY(()) section *debug_frame_section;
162 
163 /* How to start an assembler comment.  */
164 #ifndef ASM_COMMENT_START
165 #define ASM_COMMENT_START ";#"
166 #endif
167 
168 typedef struct dw_cfi_struct *dw_cfi_ref;
169 typedef struct dw_fde_struct *dw_fde_ref;
170 typedef union  dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
171 
172 /* Call frames are described using a sequence of Call Frame
173    Information instructions.  The register number, offset
174    and address fields are provided as possible operands;
175    their use is selected by the opcode field.  */
176 
177 enum dw_cfi_oprnd_type {
178   dw_cfi_oprnd_unused,
179   dw_cfi_oprnd_reg_num,
180   dw_cfi_oprnd_offset,
181   dw_cfi_oprnd_addr,
182   dw_cfi_oprnd_loc
183 };
184 
185 typedef union dw_cfi_oprnd_struct GTY(())
186 {
187   unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
188   HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
189   const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
190   struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
191 }
192 dw_cfi_oprnd;
193 
194 typedef struct dw_cfi_struct GTY(())
195 {
196   dw_cfi_ref dw_cfi_next;
197   enum dwarf_call_frame_info dw_cfi_opc;
198   dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
199     dw_cfi_oprnd1;
200   dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
201     dw_cfi_oprnd2;
202 }
203 dw_cfi_node;
204 
205 /* This is how we define the location of the CFA. We use to handle it
206    as REG + OFFSET all the time,  but now it can be more complex.
207    It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
208    Instead of passing around REG and OFFSET, we pass a copy
209    of this structure.  */
210 typedef struct cfa_loc GTY(())
211 {
212   HOST_WIDE_INT offset;
213   HOST_WIDE_INT base_offset;
214   unsigned int reg;
215   int indirect;            /* 1 if CFA is accessed via a dereference.  */
216 } dw_cfa_location;
217 
218 /* All call frame descriptions (FDE's) in the GCC generated DWARF
219    refer to a single Common Information Entry (CIE), defined at
220    the beginning of the .debug_frame section.  This use of a single
221    CIE obviates the need to keep track of multiple CIE's
222    in the DWARF generation routines below.  */
223 
224 typedef struct dw_fde_struct GTY(())
225 {
226   tree decl;
227   const char *dw_fde_begin;
228   const char *dw_fde_current_label;
229   const char *dw_fde_end;
230   const char *dw_fde_hot_section_label;
231   const char *dw_fde_hot_section_end_label;
232   const char *dw_fde_unlikely_section_label;
233   const char *dw_fde_unlikely_section_end_label;
234   bool dw_fde_switched_sections;
235   dw_cfi_ref dw_fde_cfi;
236   unsigned funcdef_number;
237   unsigned all_throwers_are_sibcalls : 1;
238   unsigned nothrow : 1;
239   unsigned uses_eh_lsda : 1;
240 }
241 dw_fde_node;
242 
243 /* Maximum size (in bytes) of an artificially generated label.  */
244 #define MAX_ARTIFICIAL_LABEL_BYTES	30
245 
246 /* The size of addresses as they appear in the Dwarf 2 data.
247    Some architectures use word addresses to refer to code locations,
248    but Dwarf 2 info always uses byte addresses.  On such machines,
249    Dwarf 2 addresses need to be larger than the architecture's
250    pointers.  */
251 #ifndef DWARF2_ADDR_SIZE
252 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
253 #endif
254 
255 /* The size in bytes of a DWARF field indicating an offset or length
256    relative to a debug info section, specified to be 4 bytes in the
257    DWARF-2 specification.  The SGI/MIPS ABI defines it to be the same
258    as PTR_SIZE.  */
259 
260 #ifndef DWARF_OFFSET_SIZE
261 #define DWARF_OFFSET_SIZE 4
262 #endif
263 
264 /* According to the (draft) DWARF 3 specification, the initial length
265    should either be 4 or 12 bytes.  When it's 12 bytes, the first 4
266    bytes are 0xffffffff, followed by the length stored in the next 8
267    bytes.
268 
269    However, the SGI/MIPS ABI uses an initial length which is equal to
270    DWARF_OFFSET_SIZE.  It is defined (elsewhere) accordingly.  */
271 
272 #ifndef DWARF_INITIAL_LENGTH_SIZE
273 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
274 #endif
275 
276 #define DWARF_VERSION 2
277 
278 /* Round SIZE up to the nearest BOUNDARY.  */
279 #define DWARF_ROUND(SIZE,BOUNDARY) \
280   ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
281 
282 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
283 #ifndef DWARF_CIE_DATA_ALIGNMENT
284 #ifdef STACK_GROWS_DOWNWARD
285 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
286 #else
287 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
288 #endif
289 #endif
290 
291 /* CIE identifier.  */
292 #if HOST_BITS_PER_WIDE_INT >= 64
293 #define DWARF_CIE_ID \
294   (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
295 #else
296 #define DWARF_CIE_ID DW_CIE_ID
297 #endif
298 
299 /* A pointer to the base of a table that contains frame description
300    information for each routine.  */
301 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
302 
303 /* Number of elements currently allocated for fde_table.  */
304 static GTY(()) unsigned fde_table_allocated;
305 
306 /* Number of elements in fde_table currently in use.  */
307 static GTY(()) unsigned fde_table_in_use;
308 
309 /* Size (in elements) of increments by which we may expand the
310    fde_table.  */
311 #define FDE_TABLE_INCREMENT 256
312 
313 /* A list of call frame insns for the CIE.  */
314 static GTY(()) dw_cfi_ref cie_cfi_head;
315 
316 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
317 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
318    attribute that accelerates the lookup of the FDE associated
319    with the subprogram.  This variable holds the table index of the FDE
320    associated with the current function (body) definition.  */
321 static unsigned current_funcdef_fde;
322 #endif
323 
324 struct indirect_string_node GTY(())
325 {
326   const char *str;
327   unsigned int refcount;
328   unsigned int form;
329   char *label;
330 };
331 
332 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
333 
334 static GTY(()) int dw2_string_counter;
335 static GTY(()) unsigned long dwarf2out_cfi_label_num;
336 
337 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
338 
339 /* Forward declarations for functions defined in this file.  */
340 
341 static char *stripattributes (const char *);
342 static const char *dwarf_cfi_name (unsigned);
343 static dw_cfi_ref new_cfi (void);
344 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
345 static void add_fde_cfi (const char *, dw_cfi_ref);
346 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
347 static void lookup_cfa (dw_cfa_location *);
348 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
349 static void initial_return_save (rtx);
350 static HOST_WIDE_INT stack_adjust_offset (rtx);
351 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
352 static void output_call_frame_info (int);
353 static void dwarf2out_stack_adjust (rtx, bool);
354 static void flush_queued_reg_saves (void);
355 static bool clobbers_queued_reg_save (rtx);
356 static void dwarf2out_frame_debug_expr (rtx, const char *);
357 
358 /* Support for complex CFA locations.  */
359 static void output_cfa_loc (dw_cfi_ref);
360 static void get_cfa_from_loc_descr (dw_cfa_location *,
361 				    struct dw_loc_descr_struct *);
362 static struct dw_loc_descr_struct *build_cfa_loc
363   (dw_cfa_location *, HOST_WIDE_INT);
364 static void def_cfa_1 (const char *, dw_cfa_location *);
365 
366 /* How to start an assembler comment.  */
367 #ifndef ASM_COMMENT_START
368 #define ASM_COMMENT_START ";#"
369 #endif
370 
371 /* Data and reference forms for relocatable data.  */
372 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
373 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
374 
375 #ifndef DEBUG_FRAME_SECTION
376 #define DEBUG_FRAME_SECTION	".debug_frame"
377 #endif
378 
379 #ifndef FUNC_BEGIN_LABEL
380 #define FUNC_BEGIN_LABEL	"LFB"
381 #endif
382 
383 #ifndef FUNC_END_LABEL
384 #define FUNC_END_LABEL		"LFE"
385 #endif
386 
387 #ifndef FRAME_BEGIN_LABEL
388 #define FRAME_BEGIN_LABEL	"Lframe"
389 #endif
390 #define CIE_AFTER_SIZE_LABEL	"LSCIE"
391 #define CIE_END_LABEL		"LECIE"
392 #define FDE_LABEL		"LSFDE"
393 #define FDE_AFTER_SIZE_LABEL	"LASFDE"
394 #define FDE_END_LABEL		"LEFDE"
395 #define LINE_NUMBER_BEGIN_LABEL	"LSLT"
396 #define LINE_NUMBER_END_LABEL	"LELT"
397 #define LN_PROLOG_AS_LABEL	"LASLTP"
398 #define LN_PROLOG_END_LABEL	"LELTP"
399 #define DIE_LABEL_PREFIX	"DW"
400 
401 /* The DWARF 2 CFA column which tracks the return address.  Normally this
402    is the column for PC, or the first column after all of the hard
403    registers.  */
404 #ifndef DWARF_FRAME_RETURN_COLUMN
405 #ifdef PC_REGNUM
406 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (PC_REGNUM)
407 #else
408 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGISTERS
409 #endif
410 #endif
411 
412 /* The mapping from gcc register number to DWARF 2 CFA column number.  By
413    default, we just provide columns for all registers.  */
414 #ifndef DWARF_FRAME_REGNUM
415 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
416 #endif
417 
418 /* Hook used by __throw.  */
419 
420 rtx
expand_builtin_dwarf_sp_column(void)421 expand_builtin_dwarf_sp_column (void)
422 {
423   unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
424   return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
425 }
426 
427 /* Return a pointer to a copy of the section string name S with all
428    attributes stripped off, and an asterisk prepended (for assemble_name).  */
429 
430 static inline char *
stripattributes(const char * s)431 stripattributes (const char *s)
432 {
433   char *stripped = XNEWVEC (char, strlen (s) + 2);
434   char *p = stripped;
435 
436   *p++ = '*';
437 
438   while (*s && *s != ',')
439     *p++ = *s++;
440 
441   *p = '\0';
442   return stripped;
443 }
444 
445 /* Generate code to initialize the register size table.  */
446 
447 void
expand_builtin_init_dwarf_reg_sizes(tree address)448 expand_builtin_init_dwarf_reg_sizes (tree address)
449 {
450   unsigned int i;
451   enum machine_mode mode = TYPE_MODE (char_type_node);
452   rtx addr = expand_normal (address);
453   rtx mem = gen_rtx_MEM (BLKmode, addr);
454   bool wrote_return_column = false;
455 
456   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
457     {
458       int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
459 
460       if (rnum < DWARF_FRAME_REGISTERS)
461 	{
462 	  HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
463 	  enum machine_mode save_mode = reg_raw_mode[i];
464 	  HOST_WIDE_INT size;
465 
466 	  if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
467 	    save_mode = choose_hard_reg_mode (i, 1, true);
468 	  if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
469 	    {
470 	      if (save_mode == VOIDmode)
471 		continue;
472 	      wrote_return_column = true;
473 	    }
474 	  size = GET_MODE_SIZE (save_mode);
475 	  if (offset < 0)
476 	    continue;
477 
478 	  emit_move_insn (adjust_address (mem, mode, offset),
479 			  gen_int_mode (size, mode));
480 	}
481     }
482 
483 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
484   gcc_assert (wrote_return_column);
485   i = DWARF_ALT_FRAME_RETURN_COLUMN;
486   wrote_return_column = false;
487 #else
488   i = DWARF_FRAME_RETURN_COLUMN;
489 #endif
490 
491   if (! wrote_return_column)
492     {
493       enum machine_mode save_mode = Pmode;
494       HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
495       HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
496       emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
497     }
498 }
499 
500 /* Convert a DWARF call frame info. operation to its string name */
501 
502 static const char *
dwarf_cfi_name(unsigned int cfi_opc)503 dwarf_cfi_name (unsigned int cfi_opc)
504 {
505   switch (cfi_opc)
506     {
507     case DW_CFA_advance_loc:
508       return "DW_CFA_advance_loc";
509     case DW_CFA_offset:
510       return "DW_CFA_offset";
511     case DW_CFA_restore:
512       return "DW_CFA_restore";
513     case DW_CFA_nop:
514       return "DW_CFA_nop";
515     case DW_CFA_set_loc:
516       return "DW_CFA_set_loc";
517     case DW_CFA_advance_loc1:
518       return "DW_CFA_advance_loc1";
519     case DW_CFA_advance_loc2:
520       return "DW_CFA_advance_loc2";
521     case DW_CFA_advance_loc4:
522       return "DW_CFA_advance_loc4";
523     case DW_CFA_offset_extended:
524       return "DW_CFA_offset_extended";
525     case DW_CFA_restore_extended:
526       return "DW_CFA_restore_extended";
527     case DW_CFA_undefined:
528       return "DW_CFA_undefined";
529     case DW_CFA_same_value:
530       return "DW_CFA_same_value";
531     case DW_CFA_register:
532       return "DW_CFA_register";
533     case DW_CFA_remember_state:
534       return "DW_CFA_remember_state";
535     case DW_CFA_restore_state:
536       return "DW_CFA_restore_state";
537     case DW_CFA_def_cfa:
538       return "DW_CFA_def_cfa";
539     case DW_CFA_def_cfa_register:
540       return "DW_CFA_def_cfa_register";
541     case DW_CFA_def_cfa_offset:
542       return "DW_CFA_def_cfa_offset";
543 
544     /* DWARF 3 */
545     case DW_CFA_def_cfa_expression:
546       return "DW_CFA_def_cfa_expression";
547     case DW_CFA_expression:
548       return "DW_CFA_expression";
549     case DW_CFA_offset_extended_sf:
550       return "DW_CFA_offset_extended_sf";
551     case DW_CFA_def_cfa_sf:
552       return "DW_CFA_def_cfa_sf";
553     case DW_CFA_def_cfa_offset_sf:
554       return "DW_CFA_def_cfa_offset_sf";
555 
556     /* SGI/MIPS specific */
557     case DW_CFA_MIPS_advance_loc8:
558       return "DW_CFA_MIPS_advance_loc8";
559 
560     /* GNU extensions */
561     case DW_CFA_GNU_window_save:
562       return "DW_CFA_GNU_window_save";
563     case DW_CFA_GNU_args_size:
564       return "DW_CFA_GNU_args_size";
565     case DW_CFA_GNU_negative_offset_extended:
566       return "DW_CFA_GNU_negative_offset_extended";
567 
568     default:
569       return "DW_CFA_<unknown>";
570     }
571 }
572 
573 /* Return a pointer to a newly allocated Call Frame Instruction.  */
574 
575 static inline dw_cfi_ref
new_cfi(void)576 new_cfi (void)
577 {
578   dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
579 
580   cfi->dw_cfi_next = NULL;
581   cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
582   cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
583 
584   return cfi;
585 }
586 
587 /* Add a Call Frame Instruction to list of instructions.  */
588 
589 static inline void
add_cfi(dw_cfi_ref * list_head,dw_cfi_ref cfi)590 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
591 {
592   dw_cfi_ref *p;
593 
594   /* Find the end of the chain.  */
595   for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
596     ;
597 
598   *p = cfi;
599 }
600 
601 /* Generate a new label for the CFI info to refer to.  */
602 
603 char *
dwarf2out_cfi_label(void)604 dwarf2out_cfi_label (void)
605 {
606   static char label[20];
607 
608   ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
609   ASM_OUTPUT_LABEL (asm_out_file, label);
610   return label;
611 }
612 
613 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
614    or to the CIE if LABEL is NULL.  */
615 
616 static void
add_fde_cfi(const char * label,dw_cfi_ref cfi)617 add_fde_cfi (const char *label, dw_cfi_ref cfi)
618 {
619   if (label)
620     {
621       dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
622 
623       if (*label == 0)
624 	label = dwarf2out_cfi_label ();
625 
626       if (fde->dw_fde_current_label == NULL
627 	  || strcmp (label, fde->dw_fde_current_label) != 0)
628 	{
629 	  dw_cfi_ref xcfi;
630 
631 	  label = xstrdup (label);
632 
633 	  /* Set the location counter to the new label.  */
634 	  xcfi = new_cfi ();
635 	  /* If we have a current label, advance from there, otherwise
636 	     set the location directly using set_loc.  */
637 	  xcfi->dw_cfi_opc = fde->dw_fde_current_label
638 			     ? DW_CFA_advance_loc4
639 			     : DW_CFA_set_loc;
640 	  xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
641 	  add_cfi (&fde->dw_fde_cfi, xcfi);
642 
643 	  fde->dw_fde_current_label = label;
644 	}
645 
646       add_cfi (&fde->dw_fde_cfi, cfi);
647     }
648 
649   else
650     add_cfi (&cie_cfi_head, cfi);
651 }
652 
653 /* Subroutine of lookup_cfa.  */
654 
655 static void
lookup_cfa_1(dw_cfi_ref cfi,dw_cfa_location * loc)656 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
657 {
658   switch (cfi->dw_cfi_opc)
659     {
660     case DW_CFA_def_cfa_offset:
661       loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
662       break;
663     case DW_CFA_def_cfa_offset_sf:
664       loc->offset
665 	= cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
666       break;
667     case DW_CFA_def_cfa_register:
668       loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
669       break;
670     case DW_CFA_def_cfa:
671       loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
672       loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
673       break;
674     case DW_CFA_def_cfa_sf:
675       loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
676       loc->offset
677 	= cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
678       break;
679     case DW_CFA_def_cfa_expression:
680       get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
681       break;
682     default:
683       break;
684     }
685 }
686 
687 /* Find the previous value for the CFA.  */
688 
689 static void
lookup_cfa(dw_cfa_location * loc)690 lookup_cfa (dw_cfa_location *loc)
691 {
692   dw_cfi_ref cfi;
693 
694   loc->reg = INVALID_REGNUM;
695   loc->offset = 0;
696   loc->indirect = 0;
697   loc->base_offset = 0;
698 
699   for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
700     lookup_cfa_1 (cfi, loc);
701 
702   if (fde_table_in_use)
703     {
704       dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
705       for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
706 	lookup_cfa_1 (cfi, loc);
707     }
708 }
709 
710 /* The current rule for calculating the DWARF2 canonical frame address.  */
711 static dw_cfa_location cfa;
712 
713 /* The register used for saving registers to the stack, and its offset
714    from the CFA.  */
715 static dw_cfa_location cfa_store;
716 
717 /* The running total of the size of arguments pushed onto the stack.  */
718 static HOST_WIDE_INT args_size;
719 
720 /* The last args_size we actually output.  */
721 static HOST_WIDE_INT old_args_size;
722 
723 /* Entry point to update the canonical frame address (CFA).
724    LABEL is passed to add_fde_cfi.  The value of CFA is now to be
725    calculated from REG+OFFSET.  */
726 
727 void
dwarf2out_def_cfa(const char * label,unsigned int reg,HOST_WIDE_INT offset)728 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
729 {
730   dw_cfa_location loc;
731   loc.indirect = 0;
732   loc.base_offset = 0;
733   loc.reg = reg;
734   loc.offset = offset;
735   def_cfa_1 (label, &loc);
736 }
737 
738 /* Determine if two dw_cfa_location structures define the same data.  */
739 
740 static bool
cfa_equal_p(const dw_cfa_location * loc1,const dw_cfa_location * loc2)741 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
742 {
743   return (loc1->reg == loc2->reg
744 	  && loc1->offset == loc2->offset
745 	  && loc1->indirect == loc2->indirect
746 	  && (loc1->indirect == 0
747 	      || loc1->base_offset == loc2->base_offset));
748 }
749 
750 /* This routine does the actual work.  The CFA is now calculated from
751    the dw_cfa_location structure.  */
752 
753 static void
def_cfa_1(const char * label,dw_cfa_location * loc_p)754 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
755 {
756   dw_cfi_ref cfi;
757   dw_cfa_location old_cfa, loc;
758 
759   cfa = *loc_p;
760   loc = *loc_p;
761 
762   if (cfa_store.reg == loc.reg && loc.indirect == 0)
763     cfa_store.offset = loc.offset;
764 
765   loc.reg = DWARF_FRAME_REGNUM (loc.reg);
766   lookup_cfa (&old_cfa);
767 
768   /* If nothing changed, no need to issue any call frame instructions.  */
769   if (cfa_equal_p (&loc, &old_cfa))
770     return;
771 
772   cfi = new_cfi ();
773 
774   if (loc.reg == old_cfa.reg && !loc.indirect)
775     {
776       /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
777 	 the CFA register did not change but the offset did.  */
778       if (loc.offset < 0)
779 	{
780 	  HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
781 	  gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
782 
783 	  cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
784 	  cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
785 	}
786       else
787 	{
788 	  cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
789 	  cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
790 	}
791     }
792 
793 #ifndef MIPS_DEBUGGING_INFO  /* SGI dbx thinks this means no offset.  */
794   else if (loc.offset == old_cfa.offset
795 	   && old_cfa.reg != INVALID_REGNUM
796 	   && !loc.indirect)
797     {
798       /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
799 	 indicating the CFA register has changed to <register> but the
800 	 offset has not changed.  */
801       cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
802       cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
803     }
804 #endif
805 
806   else if (loc.indirect == 0)
807     {
808       /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
809 	 indicating the CFA register has changed to <register> with
810 	 the specified offset.  */
811       if (loc.offset < 0)
812 	{
813 	  HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
814 	  gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
815 
816 	  cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
817 	  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
818 	  cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
819 	}
820       else
821 	{
822 	  cfi->dw_cfi_opc = DW_CFA_def_cfa;
823 	  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
824 	  cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
825 	}
826     }
827   else
828     {
829       /* Construct a DW_CFA_def_cfa_expression instruction to
830 	 calculate the CFA using a full location expression since no
831 	 register-offset pair is available.  */
832       struct dw_loc_descr_struct *loc_list;
833 
834       cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
835       loc_list = build_cfa_loc (&loc, 0);
836       cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
837     }
838 
839   add_fde_cfi (label, cfi);
840 }
841 
842 /* Add the CFI for saving a register.  REG is the CFA column number.
843    LABEL is passed to add_fde_cfi.
844    If SREG is -1, the register is saved at OFFSET from the CFA;
845    otherwise it is saved in SREG.  */
846 
847 static void
reg_save(const char * label,unsigned int reg,unsigned int sreg,HOST_WIDE_INT offset)848 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
849 {
850   dw_cfi_ref cfi = new_cfi ();
851 
852   cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
853 
854   if (sreg == INVALID_REGNUM)
855     {
856       if (reg & ~0x3f)
857 	/* The register number won't fit in 6 bits, so we have to use
858 	   the long form.  */
859 	cfi->dw_cfi_opc = DW_CFA_offset_extended;
860       else
861 	cfi->dw_cfi_opc = DW_CFA_offset;
862 
863 #ifdef ENABLE_CHECKING
864       {
865 	/* If we get an offset that is not a multiple of
866 	   DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
867 	   definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
868 	   description.  */
869 	HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
870 
871 	gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
872       }
873 #endif
874       offset /= DWARF_CIE_DATA_ALIGNMENT;
875       if (offset < 0)
876 	cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
877 
878       cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
879     }
880   else if (sreg == reg)
881     cfi->dw_cfi_opc = DW_CFA_same_value;
882   else
883     {
884       cfi->dw_cfi_opc = DW_CFA_register;
885       cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
886     }
887 
888   add_fde_cfi (label, cfi);
889 }
890 
891 /* Add the CFI for saving a register window.  LABEL is passed to reg_save.
892    This CFI tells the unwinder that it needs to restore the window registers
893    from the previous frame's window save area.
894 
895    ??? Perhaps we should note in the CIE where windows are saved (instead of
896    assuming 0(cfa)) and what registers are in the window.  */
897 
898 void
dwarf2out_window_save(const char * label)899 dwarf2out_window_save (const char *label)
900 {
901   dw_cfi_ref cfi = new_cfi ();
902 
903   cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
904   add_fde_cfi (label, cfi);
905 }
906 
907 /* Add a CFI to update the running total of the size of arguments
908    pushed onto the stack.  */
909 
910 void
dwarf2out_args_size(const char * label,HOST_WIDE_INT size)911 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
912 {
913   dw_cfi_ref cfi;
914 
915   if (size == old_args_size)
916     return;
917 
918   old_args_size = size;
919 
920   cfi = new_cfi ();
921   cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
922   cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
923   add_fde_cfi (label, cfi);
924 }
925 
926 /* Entry point for saving a register to the stack.  REG is the GCC register
927    number.  LABEL and OFFSET are passed to reg_save.  */
928 
929 void
dwarf2out_reg_save(const char * label,unsigned int reg,HOST_WIDE_INT offset)930 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
931 {
932   reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
933 }
934 
935 /* Entry point for saving the return address in the stack.
936    LABEL and OFFSET are passed to reg_save.  */
937 
938 void
dwarf2out_return_save(const char * label,HOST_WIDE_INT offset)939 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
940 {
941   reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
942 }
943 
944 /* Entry point for saving the return address in a register.
945    LABEL and SREG are passed to reg_save.  */
946 
947 void
dwarf2out_return_reg(const char * label,unsigned int sreg)948 dwarf2out_return_reg (const char *label, unsigned int sreg)
949 {
950   reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
951 }
952 
953 /* Record the initial position of the return address.  RTL is
954    INCOMING_RETURN_ADDR_RTX.  */
955 
956 static void
initial_return_save(rtx rtl)957 initial_return_save (rtx rtl)
958 {
959   unsigned int reg = INVALID_REGNUM;
960   HOST_WIDE_INT offset = 0;
961 
962   switch (GET_CODE (rtl))
963     {
964     case REG:
965       /* RA is in a register.  */
966       reg = DWARF_FRAME_REGNUM (REGNO (rtl));
967       break;
968 
969     case MEM:
970       /* RA is on the stack.  */
971       rtl = XEXP (rtl, 0);
972       switch (GET_CODE (rtl))
973 	{
974 	case REG:
975 	  gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
976 	  offset = 0;
977 	  break;
978 
979 	case PLUS:
980 	  gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
981 	  offset = INTVAL (XEXP (rtl, 1));
982 	  break;
983 
984 	case MINUS:
985 	  gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
986 	  offset = -INTVAL (XEXP (rtl, 1));
987 	  break;
988 
989 	default:
990 	  gcc_unreachable ();
991 	}
992 
993       break;
994 
995     case PLUS:
996       /* The return address is at some offset from any value we can
997 	 actually load.  For instance, on the SPARC it is in %i7+8. Just
998 	 ignore the offset for now; it doesn't matter for unwinding frames.  */
999       gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1000       initial_return_save (XEXP (rtl, 0));
1001       return;
1002 
1003     default:
1004       gcc_unreachable ();
1005     }
1006 
1007   if (reg != DWARF_FRAME_RETURN_COLUMN)
1008     reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1009 }
1010 
1011 /* Given a SET, calculate the amount of stack adjustment it
1012    contains.  */
1013 
1014 static HOST_WIDE_INT
stack_adjust_offset(rtx pattern)1015 stack_adjust_offset (rtx pattern)
1016 {
1017   rtx src = SET_SRC (pattern);
1018   rtx dest = SET_DEST (pattern);
1019   HOST_WIDE_INT offset = 0;
1020   enum rtx_code code;
1021 
1022   if (dest == stack_pointer_rtx)
1023     {
1024       /* (set (reg sp) (plus (reg sp) (const_int))) */
1025       code = GET_CODE (src);
1026       if (! (code == PLUS || code == MINUS)
1027 	  || XEXP (src, 0) != stack_pointer_rtx
1028 	  || GET_CODE (XEXP (src, 1)) != CONST_INT)
1029 	return 0;
1030 
1031       offset = INTVAL (XEXP (src, 1));
1032       if (code == PLUS)
1033 	offset = -offset;
1034     }
1035   else if (MEM_P (dest))
1036     {
1037       /* (set (mem (pre_dec (reg sp))) (foo)) */
1038       src = XEXP (dest, 0);
1039       code = GET_CODE (src);
1040 
1041       switch (code)
1042 	{
1043 	case PRE_MODIFY:
1044 	case POST_MODIFY:
1045 	  if (XEXP (src, 0) == stack_pointer_rtx)
1046 	    {
1047 	      rtx val = XEXP (XEXP (src, 1), 1);
1048 	      /* We handle only adjustments by constant amount.  */
1049 	      gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1050 			  && GET_CODE (val) == CONST_INT);
1051 	      offset = -INTVAL (val);
1052 	      break;
1053 	    }
1054 	  return 0;
1055 
1056 	case PRE_DEC:
1057 	case POST_DEC:
1058 	  if (XEXP (src, 0) == stack_pointer_rtx)
1059 	    {
1060 	      offset = GET_MODE_SIZE (GET_MODE (dest));
1061 	      break;
1062 	    }
1063 	  return 0;
1064 
1065 	case PRE_INC:
1066 	case POST_INC:
1067 	  if (XEXP (src, 0) == stack_pointer_rtx)
1068 	    {
1069 	      offset = -GET_MODE_SIZE (GET_MODE (dest));
1070 	      break;
1071 	    }
1072 	  return 0;
1073 
1074 	default:
1075 	  return 0;
1076 	}
1077     }
1078   else
1079     return 0;
1080 
1081   return offset;
1082 }
1083 
1084 /* Check INSN to see if it looks like a push or a stack adjustment, and
1085    make a note of it if it does.  EH uses this information to find out how
1086    much extra space it needs to pop off the stack.  */
1087 
1088 static void
dwarf2out_stack_adjust(rtx insn,bool after_p)1089 dwarf2out_stack_adjust (rtx insn, bool after_p)
1090 {
1091   HOST_WIDE_INT offset;
1092   const char *label;
1093   int i;
1094 
1095   /* Don't handle epilogues at all.  Certainly it would be wrong to do so
1096      with this function.  Proper support would require all frame-related
1097      insns to be marked, and to be able to handle saving state around
1098      epilogues textually in the middle of the function.  */
1099   if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1100     return;
1101 
1102   /* If only calls can throw, and we have a frame pointer,
1103      save up adjustments until we see the CALL_INSN.  */
1104   if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1105     {
1106       if (CALL_P (insn) && !after_p)
1107 	{
1108 	  /* Extract the size of the args from the CALL rtx itself.  */
1109 	  insn = PATTERN (insn);
1110 	  if (GET_CODE (insn) == PARALLEL)
1111 	    insn = XVECEXP (insn, 0, 0);
1112 	  if (GET_CODE (insn) == SET)
1113 	    insn = SET_SRC (insn);
1114 	  gcc_assert (GET_CODE (insn) == CALL);
1115 	  dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1116 	}
1117       return;
1118     }
1119 
1120   if (CALL_P (insn) && !after_p)
1121     {
1122       if (!flag_asynchronous_unwind_tables)
1123 	dwarf2out_args_size ("", args_size);
1124       return;
1125     }
1126   else if (BARRIER_P (insn))
1127     {
1128       /* When we see a BARRIER, we know to reset args_size to 0.  Usually
1129 	 the compiler will have already emitted a stack adjustment, but
1130 	 doesn't bother for calls to noreturn functions.  */
1131 #ifdef STACK_GROWS_DOWNWARD
1132       offset = -args_size;
1133 #else
1134       offset = args_size;
1135 #endif
1136     }
1137   else if (GET_CODE (PATTERN (insn)) == SET)
1138     offset = stack_adjust_offset (PATTERN (insn));
1139   else if (GET_CODE (PATTERN (insn)) == PARALLEL
1140 	   || GET_CODE (PATTERN (insn)) == SEQUENCE)
1141     {
1142       /* There may be stack adjustments inside compound insns.  Search
1143 	 for them.  */
1144       for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1145 	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1146 	  offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1147     }
1148   else
1149     return;
1150 
1151   if (offset == 0)
1152     return;
1153 
1154   if (cfa.reg == STACK_POINTER_REGNUM)
1155     cfa.offset += offset;
1156 
1157 #ifndef STACK_GROWS_DOWNWARD
1158   offset = -offset;
1159 #endif
1160 
1161   args_size += offset;
1162   if (args_size < 0)
1163     args_size = 0;
1164 
1165   label = dwarf2out_cfi_label ();
1166   def_cfa_1 (label, &cfa);
1167   if (flag_asynchronous_unwind_tables)
1168     dwarf2out_args_size (label, args_size);
1169 }
1170 
1171 #endif
1172 
1173 /* We delay emitting a register save until either (a) we reach the end
1174    of the prologue or (b) the register is clobbered.  This clusters
1175    register saves so that there are fewer pc advances.  */
1176 
1177 struct queued_reg_save GTY(())
1178 {
1179   struct queued_reg_save *next;
1180   rtx reg;
1181   HOST_WIDE_INT cfa_offset;
1182   rtx saved_reg;
1183 };
1184 
1185 static GTY(()) struct queued_reg_save *queued_reg_saves;
1186 
1187 /* The caller's ORIG_REG is saved in SAVED_IN_REG.  */
1188 struct reg_saved_in_data GTY(()) {
1189   rtx orig_reg;
1190   rtx saved_in_reg;
1191 };
1192 
1193 /* A list of registers saved in other registers.
1194    The list intentionally has a small maximum capacity of 4; if your
1195    port needs more than that, you might consider implementing a
1196    more efficient data structure.  */
1197 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1198 static GTY(()) size_t num_regs_saved_in_regs;
1199 
1200 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1201 static const char *last_reg_save_label;
1202 
1203 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1204    SREG, or if SREG is NULL then it is saved at OFFSET to the CFA.  */
1205 
1206 static void
queue_reg_save(const char * label,rtx reg,rtx sreg,HOST_WIDE_INT offset)1207 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1208 {
1209   struct queued_reg_save *q;
1210 
1211   /* Duplicates waste space, but it's also necessary to remove them
1212      for correctness, since the queue gets output in reverse
1213      order.  */
1214   for (q = queued_reg_saves; q != NULL; q = q->next)
1215     if (REGNO (q->reg) == REGNO (reg))
1216       break;
1217 
1218   if (q == NULL)
1219     {
1220       q = ggc_alloc (sizeof (*q));
1221       q->next = queued_reg_saves;
1222       queued_reg_saves = q;
1223     }
1224 
1225   q->reg = reg;
1226   q->cfa_offset = offset;
1227   q->saved_reg = sreg;
1228 
1229   last_reg_save_label = label;
1230 }
1231 
1232 /* Output all the entries in QUEUED_REG_SAVES.  */
1233 
1234 static void
flush_queued_reg_saves(void)1235 flush_queued_reg_saves (void)
1236 {
1237   struct queued_reg_save *q;
1238 
1239   for (q = queued_reg_saves; q; q = q->next)
1240     {
1241       size_t i;
1242       unsigned int reg, sreg;
1243 
1244       for (i = 0; i < num_regs_saved_in_regs; i++)
1245 	if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1246 	  break;
1247       if (q->saved_reg && i == num_regs_saved_in_regs)
1248 	{
1249 	  gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1250 	  num_regs_saved_in_regs++;
1251 	}
1252       if (i != num_regs_saved_in_regs)
1253 	{
1254 	  regs_saved_in_regs[i].orig_reg = q->reg;
1255 	  regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1256 	}
1257 
1258       reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1259       if (q->saved_reg)
1260 	sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1261       else
1262 	sreg = INVALID_REGNUM;
1263       reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1264     }
1265 
1266   queued_reg_saves = NULL;
1267   last_reg_save_label = NULL;
1268 }
1269 
1270 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1271    location for?  Or, does it clobber a register which we've previously
1272    said that some other register is saved in, and for which we now
1273    have a new location for?  */
1274 
1275 static bool
clobbers_queued_reg_save(rtx insn)1276 clobbers_queued_reg_save (rtx insn)
1277 {
1278   struct queued_reg_save *q;
1279 
1280   for (q = queued_reg_saves; q; q = q->next)
1281     {
1282       size_t i;
1283       if (modified_in_p (q->reg, insn))
1284 	return true;
1285       for (i = 0; i < num_regs_saved_in_regs; i++)
1286 	if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1287 	    && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1288 	  return true;
1289     }
1290 
1291   return false;
1292 }
1293 
1294 /* Entry point for saving the first register into the second.  */
1295 
1296 void
dwarf2out_reg_save_reg(const char * label,rtx reg,rtx sreg)1297 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1298 {
1299   size_t i;
1300   unsigned int regno, sregno;
1301 
1302   for (i = 0; i < num_regs_saved_in_regs; i++)
1303     if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1304       break;
1305   if (i == num_regs_saved_in_regs)
1306     {
1307       gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1308       num_regs_saved_in_regs++;
1309     }
1310   regs_saved_in_regs[i].orig_reg = reg;
1311   regs_saved_in_regs[i].saved_in_reg = sreg;
1312 
1313   regno = DWARF_FRAME_REGNUM (REGNO (reg));
1314   sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1315   reg_save (label, regno, sregno, 0);
1316 }
1317 
1318 /* What register, if any, is currently saved in REG?  */
1319 
1320 static rtx
reg_saved_in(rtx reg)1321 reg_saved_in (rtx reg)
1322 {
1323   unsigned int regn = REGNO (reg);
1324   size_t i;
1325   struct queued_reg_save *q;
1326 
1327   for (q = queued_reg_saves; q; q = q->next)
1328     if (q->saved_reg && regn == REGNO (q->saved_reg))
1329       return q->reg;
1330 
1331   for (i = 0; i < num_regs_saved_in_regs; i++)
1332     if (regs_saved_in_regs[i].saved_in_reg
1333 	&& regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1334       return regs_saved_in_regs[i].orig_reg;
1335 
1336   return NULL_RTX;
1337 }
1338 
1339 
1340 /* A temporary register holding an integral value used in adjusting SP
1341    or setting up the store_reg.  The "offset" field holds the integer
1342    value, not an offset.  */
1343 static dw_cfa_location cfa_temp;
1344 
1345 /* Record call frame debugging information for an expression EXPR,
1346    which either sets SP or FP (adjusting how we calculate the frame
1347    address) or saves a register to the stack or another register.
1348    LABEL indicates the address of EXPR.
1349 
1350    This function encodes a state machine mapping rtxes to actions on
1351    cfa, cfa_store, and cfa_temp.reg.  We describe these rules so
1352    users need not read the source code.
1353 
1354   The High-Level Picture
1355 
1356   Changes in the register we use to calculate the CFA: Currently we
1357   assume that if you copy the CFA register into another register, we
1358   should take the other one as the new CFA register; this seems to
1359   work pretty well.  If it's wrong for some target, it's simple
1360   enough not to set RTX_FRAME_RELATED_P on the insn in question.
1361 
1362   Changes in the register we use for saving registers to the stack:
1363   This is usually SP, but not always.  Again, we deduce that if you
1364   copy SP into another register (and SP is not the CFA register),
1365   then the new register is the one we will be using for register
1366   saves.  This also seems to work.
1367 
1368   Register saves: There's not much guesswork about this one; if
1369   RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1370   register save, and the register used to calculate the destination
1371   had better be the one we think we're using for this purpose.
1372   It's also assumed that a copy from a call-saved register to another
1373   register is saving that register if RTX_FRAME_RELATED_P is set on
1374   that instruction.  If the copy is from a call-saved register to
1375   the *same* register, that means that the register is now the same
1376   value as in the caller.
1377 
1378   Except: If the register being saved is the CFA register, and the
1379   offset is nonzero, we are saving the CFA, so we assume we have to
1380   use DW_CFA_def_cfa_expression.  If the offset is 0, we assume that
1381   the intent is to save the value of SP from the previous frame.
1382 
1383   In addition, if a register has previously been saved to a different
1384   register,
1385 
1386   Invariants / Summaries of Rules
1387 
1388   cfa	       current rule for calculating the CFA.  It usually
1389 	       consists of a register and an offset.
1390   cfa_store    register used by prologue code to save things to the stack
1391 	       cfa_store.offset is the offset from the value of
1392 	       cfa_store.reg to the actual CFA
1393   cfa_temp     register holding an integral value.  cfa_temp.offset
1394 	       stores the value, which will be used to adjust the
1395 	       stack pointer.  cfa_temp is also used like cfa_store,
1396 	       to track stores to the stack via fp or a temp reg.
1397 
1398   Rules  1- 4: Setting a register's value to cfa.reg or an expression
1399 	       with cfa.reg as the first operand changes the cfa.reg and its
1400 	       cfa.offset.  Rule 1 and 4 also set cfa_temp.reg and
1401 	       cfa_temp.offset.
1402 
1403   Rules  6- 9: Set a non-cfa.reg register value to a constant or an
1404 	       expression yielding a constant.  This sets cfa_temp.reg
1405 	       and cfa_temp.offset.
1406 
1407   Rule 5:      Create a new register cfa_store used to save items to the
1408 	       stack.
1409 
1410   Rules 10-14: Save a register to the stack.  Define offset as the
1411 	       difference of the original location and cfa_store's
1412 	       location (or cfa_temp's location if cfa_temp is used).
1413 
1414   The Rules
1415 
1416   "{a,b}" indicates a choice of a xor b.
1417   "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1418 
1419   Rule 1:
1420   (set <reg1> <reg2>:cfa.reg)
1421   effects: cfa.reg = <reg1>
1422 	   cfa.offset unchanged
1423 	   cfa_temp.reg = <reg1>
1424 	   cfa_temp.offset = cfa.offset
1425 
1426   Rule 2:
1427   (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1428 			      {<const_int>,<reg>:cfa_temp.reg}))
1429   effects: cfa.reg = sp if fp used
1430 	   cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1431 	   cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1432 	     if cfa_store.reg==sp
1433 
1434   Rule 3:
1435   (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1436   effects: cfa.reg = fp
1437 	   cfa_offset += +/- <const_int>
1438 
1439   Rule 4:
1440   (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1441   constraints: <reg1> != fp
1442 	       <reg1> != sp
1443   effects: cfa.reg = <reg1>
1444 	   cfa_temp.reg = <reg1>
1445 	   cfa_temp.offset = cfa.offset
1446 
1447   Rule 5:
1448   (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1449   constraints: <reg1> != fp
1450 	       <reg1> != sp
1451   effects: cfa_store.reg = <reg1>
1452 	   cfa_store.offset = cfa.offset - cfa_temp.offset
1453 
1454   Rule 6:
1455   (set <reg> <const_int>)
1456   effects: cfa_temp.reg = <reg>
1457 	   cfa_temp.offset = <const_int>
1458 
1459   Rule 7:
1460   (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1461   effects: cfa_temp.reg = <reg1>
1462 	   cfa_temp.offset |= <const_int>
1463 
1464   Rule 8:
1465   (set <reg> (high <exp>))
1466   effects: none
1467 
1468   Rule 9:
1469   (set <reg> (lo_sum <exp> <const_int>))
1470   effects: cfa_temp.reg = <reg>
1471 	   cfa_temp.offset = <const_int>
1472 
1473   Rule 10:
1474   (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1475   effects: cfa_store.offset -= <const_int>
1476 	   cfa.offset = cfa_store.offset if cfa.reg == sp
1477 	   cfa.reg = sp
1478 	   cfa.base_offset = -cfa_store.offset
1479 
1480   Rule 11:
1481   (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1482   effects: cfa_store.offset += -/+ mode_size(mem)
1483 	   cfa.offset = cfa_store.offset if cfa.reg == sp
1484 	   cfa.reg = sp
1485 	   cfa.base_offset = -cfa_store.offset
1486 
1487   Rule 12:
1488   (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1489 
1490        <reg2>)
1491   effects: cfa.reg = <reg1>
1492 	   cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1493 
1494   Rule 13:
1495   (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1496   effects: cfa.reg = <reg1>
1497 	   cfa.base_offset = -{cfa_store,cfa_temp}.offset
1498 
1499   Rule 14:
1500   (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1501   effects: cfa.reg = <reg1>
1502 	   cfa.base_offset = -cfa_temp.offset
1503 	   cfa_temp.offset -= mode_size(mem)
1504 
1505   Rule 15:
1506   (set <reg> {unspec, unspec_volatile})
1507   effects: target-dependent  */
1508 
1509 static void
dwarf2out_frame_debug_expr(rtx expr,const char * label)1510 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1511 {
1512   rtx src, dest;
1513   HOST_WIDE_INT offset;
1514 
1515   /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1516      the PARALLEL independently. The first element is always processed if
1517      it is a SET. This is for backward compatibility.   Other elements
1518      are processed only if they are SETs and the RTX_FRAME_RELATED_P
1519      flag is set in them.  */
1520   if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1521     {
1522       int par_index;
1523       int limit = XVECLEN (expr, 0);
1524 
1525       for (par_index = 0; par_index < limit; par_index++)
1526 	if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1527 	    && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1528 		|| par_index == 0))
1529 	  dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1530 
1531       return;
1532     }
1533 
1534   gcc_assert (GET_CODE (expr) == SET);
1535 
1536   src = SET_SRC (expr);
1537   dest = SET_DEST (expr);
1538 
1539   if (REG_P (src))
1540     {
1541       rtx rsi = reg_saved_in (src);
1542       if (rsi)
1543 	src = rsi;
1544     }
1545 
1546   switch (GET_CODE (dest))
1547     {
1548     case REG:
1549       switch (GET_CODE (src))
1550 	{
1551 	  /* Setting FP from SP.  */
1552 	case REG:
1553 	  if (cfa.reg == (unsigned) REGNO (src))
1554 	    {
1555 	      /* Rule 1 */
1556 	      /* Update the CFA rule wrt SP or FP.  Make sure src is
1557 		 relative to the current CFA register.
1558 
1559 		 We used to require that dest be either SP or FP, but the
1560 		 ARM copies SP to a temporary register, and from there to
1561 		 FP.  So we just rely on the backends to only set
1562 		 RTX_FRAME_RELATED_P on appropriate insns.  */
1563 	      cfa.reg = REGNO (dest);
1564 	      cfa_temp.reg = cfa.reg;
1565 	      cfa_temp.offset = cfa.offset;
1566 	    }
1567 	  else
1568 	    {
1569 	      /* Saving a register in a register.  */
1570 	      gcc_assert (!fixed_regs [REGNO (dest)]
1571 			  /* For the SPARC and its register window.  */
1572 			  || (DWARF_FRAME_REGNUM (REGNO (src))
1573 			      == DWARF_FRAME_RETURN_COLUMN));
1574 	      queue_reg_save (label, src, dest, 0);
1575 	    }
1576 	  break;
1577 
1578 	case PLUS:
1579 	case MINUS:
1580 	case LO_SUM:
1581 	  if (dest == stack_pointer_rtx)
1582 	    {
1583 	      /* Rule 2 */
1584 	      /* Adjusting SP.  */
1585 	      switch (GET_CODE (XEXP (src, 1)))
1586 		{
1587 		case CONST_INT:
1588 		  offset = INTVAL (XEXP (src, 1));
1589 		  break;
1590 		case REG:
1591 		  gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1592 			      == cfa_temp.reg);
1593 		  offset = cfa_temp.offset;
1594 		  break;
1595 		default:
1596 		  gcc_unreachable ();
1597 		}
1598 
1599 	      if (XEXP (src, 0) == hard_frame_pointer_rtx)
1600 		{
1601 		  /* Restoring SP from FP in the epilogue.  */
1602 		  gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1603 		  cfa.reg = STACK_POINTER_REGNUM;
1604 		}
1605 	      else if (GET_CODE (src) == LO_SUM)
1606 		/* Assume we've set the source reg of the LO_SUM from sp.  */
1607 		;
1608 	      else
1609 		gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1610 
1611 	      if (GET_CODE (src) != MINUS)
1612 		offset = -offset;
1613 	      if (cfa.reg == STACK_POINTER_REGNUM)
1614 		cfa.offset += offset;
1615 	      if (cfa_store.reg == STACK_POINTER_REGNUM)
1616 		cfa_store.offset += offset;
1617 	    }
1618 	  else if (dest == hard_frame_pointer_rtx)
1619 	    {
1620 	      /* Rule 3 */
1621 	      /* Either setting the FP from an offset of the SP,
1622 		 or adjusting the FP */
1623 	      gcc_assert (frame_pointer_needed);
1624 
1625 	      gcc_assert (REG_P (XEXP (src, 0))
1626 			  && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1627 			  && GET_CODE (XEXP (src, 1)) == CONST_INT);
1628 	      offset = INTVAL (XEXP (src, 1));
1629 	      if (GET_CODE (src) != MINUS)
1630 		offset = -offset;
1631 	      cfa.offset += offset;
1632 	      cfa.reg = HARD_FRAME_POINTER_REGNUM;
1633 	    }
1634 	  else
1635 	    {
1636 	      gcc_assert (GET_CODE (src) != MINUS);
1637 
1638 	      /* Rule 4 */
1639 	      if (REG_P (XEXP (src, 0))
1640 		  && REGNO (XEXP (src, 0)) == cfa.reg
1641 		  && GET_CODE (XEXP (src, 1)) == CONST_INT)
1642 		{
1643 		  /* Setting a temporary CFA register that will be copied
1644 		     into the FP later on.  */
1645 		  offset = - INTVAL (XEXP (src, 1));
1646 		  cfa.offset += offset;
1647 		  cfa.reg = REGNO (dest);
1648 		  /* Or used to save regs to the stack.  */
1649 		  cfa_temp.reg = cfa.reg;
1650 		  cfa_temp.offset = cfa.offset;
1651 		}
1652 
1653 	      /* Rule 5 */
1654 	      else if (REG_P (XEXP (src, 0))
1655 		       && REGNO (XEXP (src, 0)) == cfa_temp.reg
1656 		       && XEXP (src, 1) == stack_pointer_rtx)
1657 		{
1658 		  /* Setting a scratch register that we will use instead
1659 		     of SP for saving registers to the stack.  */
1660 		  gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1661 		  cfa_store.reg = REGNO (dest);
1662 		  cfa_store.offset = cfa.offset - cfa_temp.offset;
1663 		}
1664 
1665 	      /* Rule 9 */
1666 	      else if (GET_CODE (src) == LO_SUM
1667 		       && GET_CODE (XEXP (src, 1)) == CONST_INT)
1668 		{
1669 		  cfa_temp.reg = REGNO (dest);
1670 		  cfa_temp.offset = INTVAL (XEXP (src, 1));
1671 		}
1672 	      else
1673 		gcc_unreachable ();
1674 	    }
1675 	  break;
1676 
1677 	  /* Rule 6 */
1678 	case CONST_INT:
1679 	  cfa_temp.reg = REGNO (dest);
1680 	  cfa_temp.offset = INTVAL (src);
1681 	  break;
1682 
1683 	  /* Rule 7 */
1684 	case IOR:
1685 	  gcc_assert (REG_P (XEXP (src, 0))
1686 		      && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1687 		      && GET_CODE (XEXP (src, 1)) == CONST_INT);
1688 
1689 	  if ((unsigned) REGNO (dest) != cfa_temp.reg)
1690 	    cfa_temp.reg = REGNO (dest);
1691 	  cfa_temp.offset |= INTVAL (XEXP (src, 1));
1692 	  break;
1693 
1694 	  /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1695 	     which will fill in all of the bits.  */
1696 	  /* Rule 8 */
1697 	case HIGH:
1698 	  break;
1699 
1700 	  /* Rule 15 */
1701 	case UNSPEC:
1702 	case UNSPEC_VOLATILE:
1703 	  gcc_assert (targetm.dwarf_handle_frame_unspec);
1704 	  targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1705 	  return;
1706 
1707 	default:
1708 	  gcc_unreachable ();
1709 	}
1710 
1711       def_cfa_1 (label, &cfa);
1712       break;
1713 
1714     case MEM:
1715       gcc_assert (REG_P (src));
1716 
1717       /* Saving a register to the stack.  Make sure dest is relative to the
1718 	 CFA register.  */
1719       switch (GET_CODE (XEXP (dest, 0)))
1720 	{
1721 	  /* Rule 10 */
1722 	  /* With a push.  */
1723 	case PRE_MODIFY:
1724 	  /* We can't handle variable size modifications.  */
1725 	  gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1726 		      == CONST_INT);
1727 	  offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1728 
1729 	  gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1730 		      && cfa_store.reg == STACK_POINTER_REGNUM);
1731 
1732 	  cfa_store.offset += offset;
1733 	  if (cfa.reg == STACK_POINTER_REGNUM)
1734 	    cfa.offset = cfa_store.offset;
1735 
1736 	  offset = -cfa_store.offset;
1737 	  break;
1738 
1739 	  /* Rule 11 */
1740 	case PRE_INC:
1741 	case PRE_DEC:
1742 	  offset = GET_MODE_SIZE (GET_MODE (dest));
1743 	  if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1744 	    offset = -offset;
1745 
1746 	  gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1747 		      && cfa_store.reg == STACK_POINTER_REGNUM);
1748 
1749 	  cfa_store.offset += offset;
1750 	  if (cfa.reg == STACK_POINTER_REGNUM)
1751 	    cfa.offset = cfa_store.offset;
1752 
1753 	  offset = -cfa_store.offset;
1754 	  break;
1755 
1756 	  /* Rule 12 */
1757 	  /* With an offset.  */
1758 	case PLUS:
1759 	case MINUS:
1760 	case LO_SUM:
1761 	  {
1762 	    int regno;
1763 
1764 	    gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1765 			&& REG_P (XEXP (XEXP (dest, 0), 0)));
1766 	    offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1767 	    if (GET_CODE (XEXP (dest, 0)) == MINUS)
1768 	      offset = -offset;
1769 
1770 	    regno = REGNO (XEXP (XEXP (dest, 0), 0));
1771 
1772 	    if (cfa_store.reg == (unsigned) regno)
1773 	      offset -= cfa_store.offset;
1774 	    else
1775 	      {
1776 		gcc_assert (cfa_temp.reg == (unsigned) regno);
1777 		offset -= cfa_temp.offset;
1778 	      }
1779 	  }
1780 	  break;
1781 
1782 	  /* Rule 13 */
1783 	  /* Without an offset.  */
1784 	case REG:
1785 	  {
1786 	    int regno = REGNO (XEXP (dest, 0));
1787 
1788 	    if (cfa_store.reg == (unsigned) regno)
1789 	      offset = -cfa_store.offset;
1790 	    else
1791 	      {
1792 		gcc_assert (cfa_temp.reg == (unsigned) regno);
1793 		offset = -cfa_temp.offset;
1794 	      }
1795 	  }
1796 	  break;
1797 
1798 	  /* Rule 14 */
1799 	case POST_INC:
1800 	  gcc_assert (cfa_temp.reg
1801 		      == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1802 	  offset = -cfa_temp.offset;
1803 	  cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1804 	  break;
1805 
1806 	default:
1807 	  gcc_unreachable ();
1808 	}
1809 
1810       if (REGNO (src) != STACK_POINTER_REGNUM
1811 	  && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1812 	  && (unsigned) REGNO (src) == cfa.reg)
1813 	{
1814 	  /* We're storing the current CFA reg into the stack.  */
1815 
1816 	  if (cfa.offset == 0)
1817 	    {
1818 	      /* If the source register is exactly the CFA, assume
1819 		 we're saving SP like any other register; this happens
1820 		 on the ARM.  */
1821 	      def_cfa_1 (label, &cfa);
1822 	      queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1823 	      break;
1824 	    }
1825 	  else
1826 	    {
1827 	      /* Otherwise, we'll need to look in the stack to
1828 		 calculate the CFA.  */
1829 	      rtx x = XEXP (dest, 0);
1830 
1831 	      if (!REG_P (x))
1832 		x = XEXP (x, 0);
1833 	      gcc_assert (REG_P (x));
1834 
1835 	      cfa.reg = REGNO (x);
1836 	      cfa.base_offset = offset;
1837 	      cfa.indirect = 1;
1838 	      def_cfa_1 (label, &cfa);
1839 	      break;
1840 	    }
1841 	}
1842 
1843       def_cfa_1 (label, &cfa);
1844       queue_reg_save (label, src, NULL_RTX, offset);
1845       break;
1846 
1847     default:
1848       gcc_unreachable ();
1849     }
1850 }
1851 
1852 /* Record call frame debugging information for INSN, which either
1853    sets SP or FP (adjusting how we calculate the frame address) or saves a
1854    register to the stack.  If INSN is NULL_RTX, initialize our state.
1855 
1856    If AFTER_P is false, we're being called before the insn is emitted,
1857    otherwise after.  Call instructions get invoked twice.  */
1858 
1859 void
dwarf2out_frame_debug(rtx insn,bool after_p)1860 dwarf2out_frame_debug (rtx insn, bool after_p)
1861 {
1862   const char *label;
1863   rtx src;
1864 
1865   if (insn == NULL_RTX)
1866     {
1867       size_t i;
1868 
1869       /* Flush any queued register saves.  */
1870       flush_queued_reg_saves ();
1871 
1872       /* Set up state for generating call frame debug info.  */
1873       lookup_cfa (&cfa);
1874       gcc_assert (cfa.reg
1875 		  == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1876 
1877       cfa.reg = STACK_POINTER_REGNUM;
1878       cfa_store = cfa;
1879       cfa_temp.reg = -1;
1880       cfa_temp.offset = 0;
1881 
1882       for (i = 0; i < num_regs_saved_in_regs; i++)
1883 	{
1884 	  regs_saved_in_regs[i].orig_reg = NULL_RTX;
1885 	  regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1886 	}
1887       num_regs_saved_in_regs = 0;
1888       return;
1889     }
1890 
1891   if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1892     flush_queued_reg_saves ();
1893 
1894   if (! RTX_FRAME_RELATED_P (insn))
1895     {
1896       if (!ACCUMULATE_OUTGOING_ARGS)
1897 	dwarf2out_stack_adjust (insn, after_p);
1898       return;
1899     }
1900 
1901   label = dwarf2out_cfi_label ();
1902   src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1903   if (src)
1904     insn = XEXP (src, 0);
1905   else
1906     insn = PATTERN (insn);
1907 
1908   dwarf2out_frame_debug_expr (insn, label);
1909 }
1910 
1911 #endif
1912 
1913 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used.  */
1914 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1915  (enum dwarf_call_frame_info cfi);
1916 
1917 static enum dw_cfi_oprnd_type
dw_cfi_oprnd1_desc(enum dwarf_call_frame_info cfi)1918 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1919 {
1920   switch (cfi)
1921     {
1922     case DW_CFA_nop:
1923     case DW_CFA_GNU_window_save:
1924       return dw_cfi_oprnd_unused;
1925 
1926     case DW_CFA_set_loc:
1927     case DW_CFA_advance_loc1:
1928     case DW_CFA_advance_loc2:
1929     case DW_CFA_advance_loc4:
1930     case DW_CFA_MIPS_advance_loc8:
1931       return dw_cfi_oprnd_addr;
1932 
1933     case DW_CFA_offset:
1934     case DW_CFA_offset_extended:
1935     case DW_CFA_def_cfa:
1936     case DW_CFA_offset_extended_sf:
1937     case DW_CFA_def_cfa_sf:
1938     case DW_CFA_restore_extended:
1939     case DW_CFA_undefined:
1940     case DW_CFA_same_value:
1941     case DW_CFA_def_cfa_register:
1942     case DW_CFA_register:
1943       return dw_cfi_oprnd_reg_num;
1944 
1945     case DW_CFA_def_cfa_offset:
1946     case DW_CFA_GNU_args_size:
1947     case DW_CFA_def_cfa_offset_sf:
1948       return dw_cfi_oprnd_offset;
1949 
1950     case DW_CFA_def_cfa_expression:
1951     case DW_CFA_expression:
1952       return dw_cfi_oprnd_loc;
1953 
1954     default:
1955       gcc_unreachable ();
1956     }
1957 }
1958 
1959 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used.  */
1960 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1961  (enum dwarf_call_frame_info cfi);
1962 
1963 static enum dw_cfi_oprnd_type
dw_cfi_oprnd2_desc(enum dwarf_call_frame_info cfi)1964 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1965 {
1966   switch (cfi)
1967     {
1968     case DW_CFA_def_cfa:
1969     case DW_CFA_def_cfa_sf:
1970     case DW_CFA_offset:
1971     case DW_CFA_offset_extended_sf:
1972     case DW_CFA_offset_extended:
1973       return dw_cfi_oprnd_offset;
1974 
1975     case DW_CFA_register:
1976       return dw_cfi_oprnd_reg_num;
1977 
1978     default:
1979       return dw_cfi_oprnd_unused;
1980     }
1981 }
1982 
1983 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1984 
1985 /* Switch to eh_frame_section.  If we don't have an eh_frame_section,
1986    switch to the data section instead, and write out a synthetic label
1987    for collect2.  */
1988 
1989 static void
switch_to_eh_frame_section(void)1990 switch_to_eh_frame_section (void)
1991 {
1992   tree label;
1993 
1994 #ifdef EH_FRAME_SECTION_NAME
1995   if (eh_frame_section == 0)
1996     {
1997       int flags;
1998 
1999       if (EH_TABLES_CAN_BE_READ_ONLY)
2000 	{
2001 	  int fde_encoding;
2002 	  int per_encoding;
2003 	  int lsda_encoding;
2004 
2005 	  fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2006 						       /*global=*/0);
2007 	  per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2008 						       /*global=*/1);
2009 	  lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2010 							/*global=*/0);
2011 	  flags = ((! flag_pic
2012 		    || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2013 			&& (fde_encoding & 0x70) != DW_EH_PE_aligned
2014 			&& (per_encoding & 0x70) != DW_EH_PE_absptr
2015 			&& (per_encoding & 0x70) != DW_EH_PE_aligned
2016 			&& (lsda_encoding & 0x70) != DW_EH_PE_absptr
2017 			&& (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2018 		   ? 0 : SECTION_WRITE);
2019 	}
2020       else
2021 	flags = SECTION_WRITE;
2022       eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2023     }
2024 #endif
2025 
2026   if (eh_frame_section)
2027     switch_to_section (eh_frame_section);
2028   else
2029     {
2030       /* We have no special eh_frame section.  Put the information in
2031 	 the data section and emit special labels to guide collect2.  */
2032       switch_to_section (data_section);
2033       label = get_file_function_name ('F');
2034       ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2035       targetm.asm_out.globalize_label (asm_out_file,
2036 				       IDENTIFIER_POINTER (label));
2037       ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2038     }
2039 }
2040 
2041 /* Output a Call Frame Information opcode and its operand(s).  */
2042 
2043 static void
output_cfi(dw_cfi_ref cfi,dw_fde_ref fde,int for_eh)2044 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2045 {
2046   unsigned long r;
2047   if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2048     dw2_asm_output_data (1, (cfi->dw_cfi_opc
2049 			     | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2050 			 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2051 			 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2052   else if (cfi->dw_cfi_opc == DW_CFA_offset)
2053     {
2054       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2055       dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2056 			   "DW_CFA_offset, column 0x%lx", r);
2057       dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2058     }
2059   else if (cfi->dw_cfi_opc == DW_CFA_restore)
2060     {
2061       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2062       dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2063 			   "DW_CFA_restore, column 0x%lx", r);
2064     }
2065   else
2066     {
2067       dw2_asm_output_data (1, cfi->dw_cfi_opc,
2068 			   "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2069 
2070       switch (cfi->dw_cfi_opc)
2071 	{
2072 	case DW_CFA_set_loc:
2073 	  if (for_eh)
2074 	    dw2_asm_output_encoded_addr_rtx (
2075 		ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2076 		gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2077 		false, NULL);
2078 	  else
2079 	    dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2080 				 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2081 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2082 	  break;
2083 
2084 	case DW_CFA_advance_loc1:
2085 	  dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2086 				fde->dw_fde_current_label, NULL);
2087 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2088 	  break;
2089 
2090 	case DW_CFA_advance_loc2:
2091 	  dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2092 				fde->dw_fde_current_label, NULL);
2093 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2094 	  break;
2095 
2096 	case DW_CFA_advance_loc4:
2097 	  dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2098 				fde->dw_fde_current_label, NULL);
2099 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2100 	  break;
2101 
2102 	case DW_CFA_MIPS_advance_loc8:
2103 	  dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2104 				fde->dw_fde_current_label, NULL);
2105 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2106 	  break;
2107 
2108 	case DW_CFA_offset_extended:
2109 	case DW_CFA_def_cfa:
2110 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2111 	  dw2_asm_output_data_uleb128 (r, NULL);
2112 	  dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2113 	  break;
2114 
2115 	case DW_CFA_offset_extended_sf:
2116 	case DW_CFA_def_cfa_sf:
2117 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2118 	  dw2_asm_output_data_uleb128 (r, NULL);
2119 	  dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2120 	  break;
2121 
2122 	case DW_CFA_restore_extended:
2123 	case DW_CFA_undefined:
2124 	case DW_CFA_same_value:
2125 	case DW_CFA_def_cfa_register:
2126 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2127 	  dw2_asm_output_data_uleb128 (r, NULL);
2128 	  break;
2129 
2130 	case DW_CFA_register:
2131 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2132 	  dw2_asm_output_data_uleb128 (r, NULL);
2133 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2134 	  dw2_asm_output_data_uleb128 (r, NULL);
2135 	  break;
2136 
2137 	case DW_CFA_def_cfa_offset:
2138 	case DW_CFA_GNU_args_size:
2139 	  dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2140 	  break;
2141 
2142 	case DW_CFA_def_cfa_offset_sf:
2143 	  dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2144 	  break;
2145 
2146 	case DW_CFA_GNU_window_save:
2147 	  break;
2148 
2149 	case DW_CFA_def_cfa_expression:
2150 	case DW_CFA_expression:
2151 	  output_cfa_loc (cfi);
2152 	  break;
2153 
2154 	case DW_CFA_GNU_negative_offset_extended:
2155 	  /* Obsoleted by DW_CFA_offset_extended_sf.  */
2156 	  gcc_unreachable ();
2157 
2158 	default:
2159 	  break;
2160 	}
2161     }
2162 }
2163 
2164 /* Output the call frame information used to record information
2165    that relates to calculating the frame pointer, and records the
2166    location of saved registers.  */
2167 
2168 static void
output_call_frame_info(int for_eh)2169 output_call_frame_info (int for_eh)
2170 {
2171   unsigned int i;
2172   dw_fde_ref fde;
2173   dw_cfi_ref cfi;
2174   char l1[20], l2[20], section_start_label[20];
2175   bool any_lsda_needed = false;
2176   char augmentation[6];
2177   int augmentation_size;
2178   int fde_encoding = DW_EH_PE_absptr;
2179   int per_encoding = DW_EH_PE_absptr;
2180   int lsda_encoding = DW_EH_PE_absptr;
2181   int return_reg;
2182 
2183   /* Don't emit a CIE if there won't be any FDEs.  */
2184   if (fde_table_in_use == 0)
2185     return;
2186 
2187   /* If we make FDEs linkonce, we may have to emit an empty label for
2188      an FDE that wouldn't otherwise be emitted.  We want to avoid
2189      having an FDE kept around when the function it refers to is
2190      discarded.  Example where this matters: a primary function
2191      template in C++ requires EH information, but an explicit
2192      specialization doesn't.  */
2193   if (TARGET_USES_WEAK_UNWIND_INFO
2194       && ! flag_asynchronous_unwind_tables
2195       && for_eh)
2196     for (i = 0; i < fde_table_in_use; i++)
2197       if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2198           && !fde_table[i].uses_eh_lsda
2199 	  && ! DECL_WEAK (fde_table[i].decl))
2200 	targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2201 				      for_eh, /* empty */ 1);
2202 
2203   /* If we don't have any functions we'll want to unwind out of, don't
2204      emit any EH unwind information.  Note that if exceptions aren't
2205      enabled, we won't have collected nothrow information, and if we
2206      asked for asynchronous tables, we always want this info.  */
2207   if (for_eh)
2208     {
2209       bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2210 
2211       for (i = 0; i < fde_table_in_use; i++)
2212 	if (fde_table[i].uses_eh_lsda)
2213 	  any_eh_needed = any_lsda_needed = true;
2214         else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2215 	  any_eh_needed = true;
2216 	else if (! fde_table[i].nothrow
2217 		 && ! fde_table[i].all_throwers_are_sibcalls)
2218 	  any_eh_needed = true;
2219 
2220       if (! any_eh_needed)
2221 	return;
2222     }
2223 
2224   /* We're going to be generating comments, so turn on app.  */
2225   if (flag_debug_asm)
2226     app_enable ();
2227 
2228   if (for_eh)
2229     switch_to_eh_frame_section ();
2230   else
2231     {
2232       if (!debug_frame_section)
2233 	debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2234 					   SECTION_DEBUG, NULL);
2235       switch_to_section (debug_frame_section);
2236     }
2237 
2238   ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2239   ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2240 
2241   /* Output the CIE.  */
2242   ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2243   ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2244   if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2245     dw2_asm_output_data (4, 0xffffffff,
2246       "Initial length escape value indicating 64-bit DWARF extension");
2247   dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2248 			"Length of Common Information Entry");
2249   ASM_OUTPUT_LABEL (asm_out_file, l1);
2250 
2251   /* Now that the CIE pointer is PC-relative for EH,
2252      use 0 to identify the CIE.  */
2253   dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2254 		       (for_eh ? 0 : DWARF_CIE_ID),
2255 		       "CIE Identifier Tag");
2256 
2257   dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2258 
2259   augmentation[0] = 0;
2260   augmentation_size = 0;
2261   if (for_eh)
2262     {
2263       char *p;
2264 
2265       /* Augmentation:
2266 	 z	Indicates that a uleb128 is present to size the
2267 		augmentation section.
2268 	 L	Indicates the encoding (and thus presence) of
2269 		an LSDA pointer in the FDE augmentation.
2270 	 R	Indicates a non-default pointer encoding for
2271 		FDE code pointers.
2272 	 P	Indicates the presence of an encoding + language
2273 		personality routine in the CIE augmentation.  */
2274 
2275       fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2276       per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2277       lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2278 
2279       p = augmentation + 1;
2280       if (eh_personality_libfunc)
2281 	{
2282 	  *p++ = 'P';
2283 	  augmentation_size += 1 + size_of_encoded_value (per_encoding);
2284 	}
2285       if (any_lsda_needed)
2286 	{
2287 	  *p++ = 'L';
2288 	  augmentation_size += 1;
2289 	}
2290       if (fde_encoding != DW_EH_PE_absptr)
2291 	{
2292 	  *p++ = 'R';
2293 	  augmentation_size += 1;
2294 	}
2295       if (p > augmentation + 1)
2296 	{
2297 	  augmentation[0] = 'z';
2298 	  *p = '\0';
2299 	}
2300 
2301       /* Ug.  Some platforms can't do unaligned dynamic relocations at all.  */
2302       if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2303 	{
2304 	  int offset = (  4		/* Length */
2305 			+ 4		/* CIE Id */
2306 			+ 1		/* CIE version */
2307 			+ strlen (augmentation) + 1	/* Augmentation */
2308 			+ size_of_uleb128 (1)		/* Code alignment */
2309 			+ size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2310 			+ 1		/* RA column */
2311 			+ 1		/* Augmentation size */
2312 			+ 1		/* Personality encoding */ );
2313 	  int pad = -offset & (PTR_SIZE - 1);
2314 
2315 	  augmentation_size += pad;
2316 
2317 	  /* Augmentations should be small, so there's scarce need to
2318 	     iterate for a solution.  Die if we exceed one uleb128 byte.  */
2319 	  gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2320 	}
2321     }
2322 
2323   dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2324   dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2325   dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2326 			       "CIE Data Alignment Factor");
2327 
2328   return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2329   if (DW_CIE_VERSION == 1)
2330     dw2_asm_output_data (1, return_reg, "CIE RA Column");
2331   else
2332     dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2333 
2334   if (augmentation[0])
2335     {
2336       dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2337       if (eh_personality_libfunc)
2338 	{
2339 	  dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2340 			       eh_data_format_name (per_encoding));
2341 	  dw2_asm_output_encoded_addr_rtx (per_encoding,
2342 					   eh_personality_libfunc,
2343 					   true, NULL);
2344 	}
2345 
2346       if (any_lsda_needed)
2347 	dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2348 			     eh_data_format_name (lsda_encoding));
2349 
2350       if (fde_encoding != DW_EH_PE_absptr)
2351 	dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2352 			     eh_data_format_name (fde_encoding));
2353     }
2354 
2355   for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2356     output_cfi (cfi, NULL, for_eh);
2357 
2358   /* Pad the CIE out to an address sized boundary.  */
2359   ASM_OUTPUT_ALIGN (asm_out_file,
2360 		    floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2361   ASM_OUTPUT_LABEL (asm_out_file, l2);
2362 
2363   /* Loop through all of the FDE's.  */
2364   for (i = 0; i < fde_table_in_use; i++)
2365     {
2366       fde = &fde_table[i];
2367 
2368       /* Don't emit EH unwind info for leaf functions that don't need it.  */
2369       if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2370 	  && (fde->nothrow || fde->all_throwers_are_sibcalls)
2371 	  && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2372 	  && !fde->uses_eh_lsda)
2373 	continue;
2374 
2375       targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2376       targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2377       ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2378       ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2379       if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2380 	dw2_asm_output_data (4, 0xffffffff,
2381 			     "Initial length escape value indicating 64-bit DWARF extension");
2382       dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2383 			    "FDE Length");
2384       ASM_OUTPUT_LABEL (asm_out_file, l1);
2385 
2386       if (for_eh)
2387 	dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2388       else
2389 	dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2390 			       debug_frame_section, "FDE CIE offset");
2391 
2392       if (for_eh)
2393 	{
2394 	  rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2395 	  SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2396 	  dw2_asm_output_encoded_addr_rtx (fde_encoding,
2397 					   sym_ref,
2398 					   false,
2399 					   "FDE initial location");
2400 	  if (fde->dw_fde_switched_sections)
2401 	    {
2402 	      rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2403 				      fde->dw_fde_unlikely_section_label);
2404 	      rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2405 				      fde->dw_fde_hot_section_label);
2406 	      SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2407 	      SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2408 	      dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2409 					       "FDE initial location");
2410 	      dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2411 				    fde->dw_fde_hot_section_end_label,
2412 				    fde->dw_fde_hot_section_label,
2413 				    "FDE address range");
2414 	      dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2415 					       "FDE initial location");
2416 	      dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2417 				    fde->dw_fde_unlikely_section_end_label,
2418 				    fde->dw_fde_unlikely_section_label,
2419 				    "FDE address range");
2420 	    }
2421 	  else
2422 	    dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2423 				  fde->dw_fde_end, fde->dw_fde_begin,
2424 				  "FDE address range");
2425 	}
2426       else
2427 	{
2428 	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2429 			       "FDE initial location");
2430 	  if (fde->dw_fde_switched_sections)
2431 	    {
2432 	      dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2433 				   fde->dw_fde_hot_section_label,
2434 				   "FDE initial location");
2435 	      dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2436 				    fde->dw_fde_hot_section_end_label,
2437 				    fde->dw_fde_hot_section_label,
2438 				    "FDE address range");
2439 	      dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2440 				   fde->dw_fde_unlikely_section_label,
2441 				   "FDE initial location");
2442 	      dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2443 				    fde->dw_fde_unlikely_section_end_label,
2444 				    fde->dw_fde_unlikely_section_label,
2445 				    "FDE address range");
2446 	    }
2447 	  else
2448 	    dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2449 				  fde->dw_fde_end, fde->dw_fde_begin,
2450 				  "FDE address range");
2451 	}
2452 
2453       if (augmentation[0])
2454 	{
2455 	  if (any_lsda_needed)
2456 	    {
2457 	      int size = size_of_encoded_value (lsda_encoding);
2458 
2459 	      if (lsda_encoding == DW_EH_PE_aligned)
2460 		{
2461 		  int offset = (  4		/* Length */
2462 				+ 4		/* CIE offset */
2463 				+ 2 * size_of_encoded_value (fde_encoding)
2464 				+ 1		/* Augmentation size */ );
2465 		  int pad = -offset & (PTR_SIZE - 1);
2466 
2467 		  size += pad;
2468 		  gcc_assert (size_of_uleb128 (size) == 1);
2469 		}
2470 
2471 	      dw2_asm_output_data_uleb128 (size, "Augmentation size");
2472 
2473 	      if (fde->uses_eh_lsda)
2474 		{
2475 		  ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2476 					       fde->funcdef_number);
2477 		  dw2_asm_output_encoded_addr_rtx (
2478 			lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2479 			false, "Language Specific Data Area");
2480 		}
2481 	      else
2482 		{
2483 		  if (lsda_encoding == DW_EH_PE_aligned)
2484 		    ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2485 		  dw2_asm_output_data
2486 		    (size_of_encoded_value (lsda_encoding), 0,
2487 		     "Language Specific Data Area (none)");
2488 		}
2489 	    }
2490 	  else
2491 	    dw2_asm_output_data_uleb128 (0, "Augmentation size");
2492 	}
2493 
2494       /* Loop through the Call Frame Instructions associated with
2495 	 this FDE.  */
2496       fde->dw_fde_current_label = fde->dw_fde_begin;
2497       for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2498 	output_cfi (cfi, fde, for_eh);
2499 
2500       /* Pad the FDE out to an address sized boundary.  */
2501       ASM_OUTPUT_ALIGN (asm_out_file,
2502 			floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2503       ASM_OUTPUT_LABEL (asm_out_file, l2);
2504     }
2505 
2506   if (for_eh && targetm.terminate_dw2_eh_frame_info)
2507     dw2_asm_output_data (4, 0, "End of Table");
2508 #ifdef MIPS_DEBUGGING_INFO
2509   /* Work around Irix 6 assembler bug whereby labels at the end of a section
2510      get a value of 0.  Putting .align 0 after the label fixes it.  */
2511   ASM_OUTPUT_ALIGN (asm_out_file, 0);
2512 #endif
2513 
2514   /* Turn off app to make assembly quicker.  */
2515   if (flag_debug_asm)
2516     app_disable ();
2517 }
2518 
2519 /* Output a marker (i.e. a label) for the beginning of a function, before
2520    the prologue.  */
2521 
2522 void
dwarf2out_begin_prologue(unsigned int line ATTRIBUTE_UNUSED,const char * file ATTRIBUTE_UNUSED)2523 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2524 			  const char *file ATTRIBUTE_UNUSED)
2525 {
2526   char label[MAX_ARTIFICIAL_LABEL_BYTES];
2527   char * dup_label;
2528   dw_fde_ref fde;
2529 
2530   current_function_func_begin_label = NULL;
2531 
2532 #ifdef TARGET_UNWIND_INFO
2533   /* ??? current_function_func_begin_label is also used by except.c
2534      for call-site information.  We must emit this label if it might
2535      be used.  */
2536   if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2537       && ! dwarf2out_do_frame ())
2538     return;
2539 #else
2540   if (! dwarf2out_do_frame ())
2541     return;
2542 #endif
2543 
2544   switch_to_section (function_section (current_function_decl));
2545   ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2546 			       current_function_funcdef_no);
2547   ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2548 			  current_function_funcdef_no);
2549   dup_label = xstrdup (label);
2550   current_function_func_begin_label = dup_label;
2551 
2552 #ifdef TARGET_UNWIND_INFO
2553   /* We can elide the fde allocation if we're not emitting debug info.  */
2554   if (! dwarf2out_do_frame ())
2555     return;
2556 #endif
2557 
2558   /* Expand the fde table if necessary.  */
2559   if (fde_table_in_use == fde_table_allocated)
2560     {
2561       fde_table_allocated += FDE_TABLE_INCREMENT;
2562       fde_table = ggc_realloc (fde_table,
2563 			       fde_table_allocated * sizeof (dw_fde_node));
2564       memset (fde_table + fde_table_in_use, 0,
2565 	      FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2566     }
2567 
2568   /* Record the FDE associated with this function.  */
2569   current_funcdef_fde = fde_table_in_use;
2570 
2571   /* Add the new FDE at the end of the fde_table.  */
2572   fde = &fde_table[fde_table_in_use++];
2573   fde->decl = current_function_decl;
2574   fde->dw_fde_begin = dup_label;
2575   fde->dw_fde_current_label = dup_label;
2576   fde->dw_fde_hot_section_label = NULL;
2577   fde->dw_fde_hot_section_end_label = NULL;
2578   fde->dw_fde_unlikely_section_label = NULL;
2579   fde->dw_fde_unlikely_section_end_label = NULL;
2580   fde->dw_fde_switched_sections = false;
2581   fde->dw_fde_end = NULL;
2582   fde->dw_fde_cfi = NULL;
2583   fde->funcdef_number = current_function_funcdef_no;
2584   fde->nothrow = TREE_NOTHROW (current_function_decl);
2585   fde->uses_eh_lsda = cfun->uses_eh_lsda;
2586   fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2587 
2588   args_size = old_args_size = 0;
2589 
2590   /* We only want to output line number information for the genuine dwarf2
2591      prologue case, not the eh frame case.  */
2592 #ifdef DWARF2_DEBUGGING_INFO
2593   if (file)
2594     dwarf2out_source_line (line, file);
2595 #endif
2596 }
2597 
2598 /* Output a marker (i.e. a label) for the absolute end of the generated code
2599    for a function definition.  This gets called *after* the epilogue code has
2600    been generated.  */
2601 
2602 void
dwarf2out_end_epilogue(unsigned int line ATTRIBUTE_UNUSED,const char * file ATTRIBUTE_UNUSED)2603 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2604 			const char *file ATTRIBUTE_UNUSED)
2605 {
2606   dw_fde_ref fde;
2607   char label[MAX_ARTIFICIAL_LABEL_BYTES];
2608 
2609   /* Output a label to mark the endpoint of the code generated for this
2610      function.  */
2611   ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2612 			       current_function_funcdef_no);
2613   ASM_OUTPUT_LABEL (asm_out_file, label);
2614   fde = &fde_table[fde_table_in_use - 1];
2615   fde->dw_fde_end = xstrdup (label);
2616 }
2617 
2618 void
dwarf2out_frame_init(void)2619 dwarf2out_frame_init (void)
2620 {
2621   /* Allocate the initial hunk of the fde_table.  */
2622   fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2623   fde_table_allocated = FDE_TABLE_INCREMENT;
2624   fde_table_in_use = 0;
2625 
2626   /* Generate the CFA instructions common to all FDE's.  Do it now for the
2627      sake of lookup_cfa.  */
2628 
2629   /* On entry, the Canonical Frame Address is at SP.  */
2630   dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2631 
2632 #ifdef DWARF2_UNWIND_INFO
2633   if (DWARF2_UNWIND_INFO)
2634     initial_return_save (INCOMING_RETURN_ADDR_RTX);
2635 #endif
2636 }
2637 
2638 void
dwarf2out_frame_finish(void)2639 dwarf2out_frame_finish (void)
2640 {
2641   /* Output call frame information.  */
2642   if (DWARF2_FRAME_INFO)
2643     output_call_frame_info (0);
2644 
2645 #ifndef TARGET_UNWIND_INFO
2646   /* Output another copy for the unwinder.  */
2647   if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2648     output_call_frame_info (1);
2649 #endif
2650 }
2651 #endif
2652 
2653 /* And now, the subset of the debugging information support code necessary
2654    for emitting location expressions.  */
2655 
2656 /* Data about a single source file.  */
2657 struct dwarf_file_data GTY(())
2658 {
2659   const char * filename;
2660   int emitted_number;
2661 };
2662 
2663 /* We need some way to distinguish DW_OP_addr with a direct symbol
2664    relocation from DW_OP_addr with a dtp-relative symbol relocation.  */
2665 #define INTERNAL_DW_OP_tls_addr		(0x100 + DW_OP_addr)
2666 
2667 
2668 typedef struct dw_val_struct *dw_val_ref;
2669 typedef struct die_struct *dw_die_ref;
2670 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2671 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2672 
2673 /* Each DIE may have a series of attribute/value pairs.  Values
2674    can take on several forms.  The forms that are used in this
2675    implementation are listed below.  */
2676 
2677 enum dw_val_class
2678 {
2679   dw_val_class_addr,
2680   dw_val_class_offset,
2681   dw_val_class_loc,
2682   dw_val_class_loc_list,
2683   dw_val_class_range_list,
2684   dw_val_class_const,
2685   dw_val_class_unsigned_const,
2686   dw_val_class_long_long,
2687   dw_val_class_vec,
2688   dw_val_class_flag,
2689   dw_val_class_die_ref,
2690   dw_val_class_fde_ref,
2691   dw_val_class_lbl_id,
2692   dw_val_class_lineptr,
2693   dw_val_class_str,
2694   dw_val_class_macptr,
2695   dw_val_class_file
2696 };
2697 
2698 /* Describe a double word constant value.  */
2699 /* ??? Every instance of long_long in the code really means CONST_DOUBLE.  */
2700 
2701 typedef struct dw_long_long_struct GTY(())
2702 {
2703   unsigned long hi;
2704   unsigned long low;
2705 }
2706 dw_long_long_const;
2707 
2708 /* Describe a floating point constant value, or a vector constant value.  */
2709 
2710 typedef struct dw_vec_struct GTY(())
2711 {
2712   unsigned char * GTY((length ("%h.length"))) array;
2713   unsigned length;
2714   unsigned elt_size;
2715 }
2716 dw_vec_const;
2717 
2718 /* The dw_val_node describes an attribute's value, as it is
2719    represented internally.  */
2720 
2721 typedef struct dw_val_struct GTY(())
2722 {
2723   enum dw_val_class val_class;
2724   union dw_val_struct_union
2725     {
2726       rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2727       unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2728       dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2729       dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2730       HOST_WIDE_INT GTY ((default)) val_int;
2731       unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2732       dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2733       dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2734       struct dw_val_die_union
2735 	{
2736 	  dw_die_ref die;
2737 	  int external;
2738 	} GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2739       unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2740       struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2741       char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2742       unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2743       struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2744     }
2745   GTY ((desc ("%1.val_class"))) v;
2746 }
2747 dw_val_node;
2748 
2749 /* Locations in memory are described using a sequence of stack machine
2750    operations.  */
2751 
2752 typedef struct dw_loc_descr_struct GTY(())
2753 {
2754   dw_loc_descr_ref dw_loc_next;
2755   enum dwarf_location_atom dw_loc_opc;
2756   dw_val_node dw_loc_oprnd1;
2757   dw_val_node dw_loc_oprnd2;
2758   int dw_loc_addr;
2759 }
2760 dw_loc_descr_node;
2761 
2762 /* Location lists are ranges + location descriptions for that range,
2763    so you can track variables that are in different places over
2764    their entire life.  */
2765 typedef struct dw_loc_list_struct GTY(())
2766 {
2767   dw_loc_list_ref dw_loc_next;
2768   const char *begin; /* Label for begin address of range */
2769   const char *end;  /* Label for end address of range */
2770   char *ll_symbol; /* Label for beginning of location list.
2771 		      Only on head of list */
2772   const char *section; /* Section this loclist is relative to */
2773   dw_loc_descr_ref expr;
2774 } dw_loc_list_node;
2775 
2776 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2777 
2778 static const char *dwarf_stack_op_name (unsigned);
2779 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2780 				       unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2781 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2782 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2783 static unsigned long size_of_locs (dw_loc_descr_ref);
2784 static void output_loc_operands (dw_loc_descr_ref);
2785 static void output_loc_sequence (dw_loc_descr_ref);
2786 
2787 /* Convert a DWARF stack opcode into its string name.  */
2788 
2789 static const char *
dwarf_stack_op_name(unsigned int op)2790 dwarf_stack_op_name (unsigned int op)
2791 {
2792   switch (op)
2793     {
2794     case DW_OP_addr:
2795     case INTERNAL_DW_OP_tls_addr:
2796       return "DW_OP_addr";
2797     case DW_OP_deref:
2798       return "DW_OP_deref";
2799     case DW_OP_const1u:
2800       return "DW_OP_const1u";
2801     case DW_OP_const1s:
2802       return "DW_OP_const1s";
2803     case DW_OP_const2u:
2804       return "DW_OP_const2u";
2805     case DW_OP_const2s:
2806       return "DW_OP_const2s";
2807     case DW_OP_const4u:
2808       return "DW_OP_const4u";
2809     case DW_OP_const4s:
2810       return "DW_OP_const4s";
2811     case DW_OP_const8u:
2812       return "DW_OP_const8u";
2813     case DW_OP_const8s:
2814       return "DW_OP_const8s";
2815     case DW_OP_constu:
2816       return "DW_OP_constu";
2817     case DW_OP_consts:
2818       return "DW_OP_consts";
2819     case DW_OP_dup:
2820       return "DW_OP_dup";
2821     case DW_OP_drop:
2822       return "DW_OP_drop";
2823     case DW_OP_over:
2824       return "DW_OP_over";
2825     case DW_OP_pick:
2826       return "DW_OP_pick";
2827     case DW_OP_swap:
2828       return "DW_OP_swap";
2829     case DW_OP_rot:
2830       return "DW_OP_rot";
2831     case DW_OP_xderef:
2832       return "DW_OP_xderef";
2833     case DW_OP_abs:
2834       return "DW_OP_abs";
2835     case DW_OP_and:
2836       return "DW_OP_and";
2837     case DW_OP_div:
2838       return "DW_OP_div";
2839     case DW_OP_minus:
2840       return "DW_OP_minus";
2841     case DW_OP_mod:
2842       return "DW_OP_mod";
2843     case DW_OP_mul:
2844       return "DW_OP_mul";
2845     case DW_OP_neg:
2846       return "DW_OP_neg";
2847     case DW_OP_not:
2848       return "DW_OP_not";
2849     case DW_OP_or:
2850       return "DW_OP_or";
2851     case DW_OP_plus:
2852       return "DW_OP_plus";
2853     case DW_OP_plus_uconst:
2854       return "DW_OP_plus_uconst";
2855     case DW_OP_shl:
2856       return "DW_OP_shl";
2857     case DW_OP_shr:
2858       return "DW_OP_shr";
2859     case DW_OP_shra:
2860       return "DW_OP_shra";
2861     case DW_OP_xor:
2862       return "DW_OP_xor";
2863     case DW_OP_bra:
2864       return "DW_OP_bra";
2865     case DW_OP_eq:
2866       return "DW_OP_eq";
2867     case DW_OP_ge:
2868       return "DW_OP_ge";
2869     case DW_OP_gt:
2870       return "DW_OP_gt";
2871     case DW_OP_le:
2872       return "DW_OP_le";
2873     case DW_OP_lt:
2874       return "DW_OP_lt";
2875     case DW_OP_ne:
2876       return "DW_OP_ne";
2877     case DW_OP_skip:
2878       return "DW_OP_skip";
2879     case DW_OP_lit0:
2880       return "DW_OP_lit0";
2881     case DW_OP_lit1:
2882       return "DW_OP_lit1";
2883     case DW_OP_lit2:
2884       return "DW_OP_lit2";
2885     case DW_OP_lit3:
2886       return "DW_OP_lit3";
2887     case DW_OP_lit4:
2888       return "DW_OP_lit4";
2889     case DW_OP_lit5:
2890       return "DW_OP_lit5";
2891     case DW_OP_lit6:
2892       return "DW_OP_lit6";
2893     case DW_OP_lit7:
2894       return "DW_OP_lit7";
2895     case DW_OP_lit8:
2896       return "DW_OP_lit8";
2897     case DW_OP_lit9:
2898       return "DW_OP_lit9";
2899     case DW_OP_lit10:
2900       return "DW_OP_lit10";
2901     case DW_OP_lit11:
2902       return "DW_OP_lit11";
2903     case DW_OP_lit12:
2904       return "DW_OP_lit12";
2905     case DW_OP_lit13:
2906       return "DW_OP_lit13";
2907     case DW_OP_lit14:
2908       return "DW_OP_lit14";
2909     case DW_OP_lit15:
2910       return "DW_OP_lit15";
2911     case DW_OP_lit16:
2912       return "DW_OP_lit16";
2913     case DW_OP_lit17:
2914       return "DW_OP_lit17";
2915     case DW_OP_lit18:
2916       return "DW_OP_lit18";
2917     case DW_OP_lit19:
2918       return "DW_OP_lit19";
2919     case DW_OP_lit20:
2920       return "DW_OP_lit20";
2921     case DW_OP_lit21:
2922       return "DW_OP_lit21";
2923     case DW_OP_lit22:
2924       return "DW_OP_lit22";
2925     case DW_OP_lit23:
2926       return "DW_OP_lit23";
2927     case DW_OP_lit24:
2928       return "DW_OP_lit24";
2929     case DW_OP_lit25:
2930       return "DW_OP_lit25";
2931     case DW_OP_lit26:
2932       return "DW_OP_lit26";
2933     case DW_OP_lit27:
2934       return "DW_OP_lit27";
2935     case DW_OP_lit28:
2936       return "DW_OP_lit28";
2937     case DW_OP_lit29:
2938       return "DW_OP_lit29";
2939     case DW_OP_lit30:
2940       return "DW_OP_lit30";
2941     case DW_OP_lit31:
2942       return "DW_OP_lit31";
2943     case DW_OP_reg0:
2944       return "DW_OP_reg0";
2945     case DW_OP_reg1:
2946       return "DW_OP_reg1";
2947     case DW_OP_reg2:
2948       return "DW_OP_reg2";
2949     case DW_OP_reg3:
2950       return "DW_OP_reg3";
2951     case DW_OP_reg4:
2952       return "DW_OP_reg4";
2953     case DW_OP_reg5:
2954       return "DW_OP_reg5";
2955     case DW_OP_reg6:
2956       return "DW_OP_reg6";
2957     case DW_OP_reg7:
2958       return "DW_OP_reg7";
2959     case DW_OP_reg8:
2960       return "DW_OP_reg8";
2961     case DW_OP_reg9:
2962       return "DW_OP_reg9";
2963     case DW_OP_reg10:
2964       return "DW_OP_reg10";
2965     case DW_OP_reg11:
2966       return "DW_OP_reg11";
2967     case DW_OP_reg12:
2968       return "DW_OP_reg12";
2969     case DW_OP_reg13:
2970       return "DW_OP_reg13";
2971     case DW_OP_reg14:
2972       return "DW_OP_reg14";
2973     case DW_OP_reg15:
2974       return "DW_OP_reg15";
2975     case DW_OP_reg16:
2976       return "DW_OP_reg16";
2977     case DW_OP_reg17:
2978       return "DW_OP_reg17";
2979     case DW_OP_reg18:
2980       return "DW_OP_reg18";
2981     case DW_OP_reg19:
2982       return "DW_OP_reg19";
2983     case DW_OP_reg20:
2984       return "DW_OP_reg20";
2985     case DW_OP_reg21:
2986       return "DW_OP_reg21";
2987     case DW_OP_reg22:
2988       return "DW_OP_reg22";
2989     case DW_OP_reg23:
2990       return "DW_OP_reg23";
2991     case DW_OP_reg24:
2992       return "DW_OP_reg24";
2993     case DW_OP_reg25:
2994       return "DW_OP_reg25";
2995     case DW_OP_reg26:
2996       return "DW_OP_reg26";
2997     case DW_OP_reg27:
2998       return "DW_OP_reg27";
2999     case DW_OP_reg28:
3000       return "DW_OP_reg28";
3001     case DW_OP_reg29:
3002       return "DW_OP_reg29";
3003     case DW_OP_reg30:
3004       return "DW_OP_reg30";
3005     case DW_OP_reg31:
3006       return "DW_OP_reg31";
3007     case DW_OP_breg0:
3008       return "DW_OP_breg0";
3009     case DW_OP_breg1:
3010       return "DW_OP_breg1";
3011     case DW_OP_breg2:
3012       return "DW_OP_breg2";
3013     case DW_OP_breg3:
3014       return "DW_OP_breg3";
3015     case DW_OP_breg4:
3016       return "DW_OP_breg4";
3017     case DW_OP_breg5:
3018       return "DW_OP_breg5";
3019     case DW_OP_breg6:
3020       return "DW_OP_breg6";
3021     case DW_OP_breg7:
3022       return "DW_OP_breg7";
3023     case DW_OP_breg8:
3024       return "DW_OP_breg8";
3025     case DW_OP_breg9:
3026       return "DW_OP_breg9";
3027     case DW_OP_breg10:
3028       return "DW_OP_breg10";
3029     case DW_OP_breg11:
3030       return "DW_OP_breg11";
3031     case DW_OP_breg12:
3032       return "DW_OP_breg12";
3033     case DW_OP_breg13:
3034       return "DW_OP_breg13";
3035     case DW_OP_breg14:
3036       return "DW_OP_breg14";
3037     case DW_OP_breg15:
3038       return "DW_OP_breg15";
3039     case DW_OP_breg16:
3040       return "DW_OP_breg16";
3041     case DW_OP_breg17:
3042       return "DW_OP_breg17";
3043     case DW_OP_breg18:
3044       return "DW_OP_breg18";
3045     case DW_OP_breg19:
3046       return "DW_OP_breg19";
3047     case DW_OP_breg20:
3048       return "DW_OP_breg20";
3049     case DW_OP_breg21:
3050       return "DW_OP_breg21";
3051     case DW_OP_breg22:
3052       return "DW_OP_breg22";
3053     case DW_OP_breg23:
3054       return "DW_OP_breg23";
3055     case DW_OP_breg24:
3056       return "DW_OP_breg24";
3057     case DW_OP_breg25:
3058       return "DW_OP_breg25";
3059     case DW_OP_breg26:
3060       return "DW_OP_breg26";
3061     case DW_OP_breg27:
3062       return "DW_OP_breg27";
3063     case DW_OP_breg28:
3064       return "DW_OP_breg28";
3065     case DW_OP_breg29:
3066       return "DW_OP_breg29";
3067     case DW_OP_breg30:
3068       return "DW_OP_breg30";
3069     case DW_OP_breg31:
3070       return "DW_OP_breg31";
3071     case DW_OP_regx:
3072       return "DW_OP_regx";
3073     case DW_OP_fbreg:
3074       return "DW_OP_fbreg";
3075     case DW_OP_bregx:
3076       return "DW_OP_bregx";
3077     case DW_OP_piece:
3078       return "DW_OP_piece";
3079     case DW_OP_deref_size:
3080       return "DW_OP_deref_size";
3081     case DW_OP_xderef_size:
3082       return "DW_OP_xderef_size";
3083     case DW_OP_nop:
3084       return "DW_OP_nop";
3085     case DW_OP_push_object_address:
3086       return "DW_OP_push_object_address";
3087     case DW_OP_call2:
3088       return "DW_OP_call2";
3089     case DW_OP_call4:
3090       return "DW_OP_call4";
3091     case DW_OP_call_ref:
3092       return "DW_OP_call_ref";
3093     case DW_OP_GNU_push_tls_address:
3094       return "DW_OP_GNU_push_tls_address";
3095     default:
3096       return "OP_<unknown>";
3097     }
3098 }
3099 
3100 /* Return a pointer to a newly allocated location description.  Location
3101    descriptions are simple expression terms that can be strung
3102    together to form more complicated location (address) descriptions.  */
3103 
3104 static inline dw_loc_descr_ref
new_loc_descr(enum dwarf_location_atom op,unsigned HOST_WIDE_INT oprnd1,unsigned HOST_WIDE_INT oprnd2)3105 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3106 	       unsigned HOST_WIDE_INT oprnd2)
3107 {
3108   dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3109 
3110   descr->dw_loc_opc = op;
3111   descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3112   descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3113   descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3114   descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3115 
3116   return descr;
3117 }
3118 
3119 /* Add a location description term to a location description expression.  */
3120 
3121 static inline void
add_loc_descr(dw_loc_descr_ref * list_head,dw_loc_descr_ref descr)3122 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3123 {
3124   dw_loc_descr_ref *d;
3125 
3126   /* Find the end of the chain.  */
3127   for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3128     ;
3129 
3130   *d = descr;
3131 }
3132 
3133 /* Return the size of a location descriptor.  */
3134 
3135 static unsigned long
size_of_loc_descr(dw_loc_descr_ref loc)3136 size_of_loc_descr (dw_loc_descr_ref loc)
3137 {
3138   unsigned long size = 1;
3139 
3140   switch (loc->dw_loc_opc)
3141     {
3142     case DW_OP_addr:
3143     case INTERNAL_DW_OP_tls_addr:
3144       size += DWARF2_ADDR_SIZE;
3145       break;
3146     case DW_OP_const1u:
3147     case DW_OP_const1s:
3148       size += 1;
3149       break;
3150     case DW_OP_const2u:
3151     case DW_OP_const2s:
3152       size += 2;
3153       break;
3154     case DW_OP_const4u:
3155     case DW_OP_const4s:
3156       size += 4;
3157       break;
3158     case DW_OP_const8u:
3159     case DW_OP_const8s:
3160       size += 8;
3161       break;
3162     case DW_OP_constu:
3163       size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3164       break;
3165     case DW_OP_consts:
3166       size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3167       break;
3168     case DW_OP_pick:
3169       size += 1;
3170       break;
3171     case DW_OP_plus_uconst:
3172       size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3173       break;
3174     case DW_OP_skip:
3175     case DW_OP_bra:
3176       size += 2;
3177       break;
3178     case DW_OP_breg0:
3179     case DW_OP_breg1:
3180     case DW_OP_breg2:
3181     case DW_OP_breg3:
3182     case DW_OP_breg4:
3183     case DW_OP_breg5:
3184     case DW_OP_breg6:
3185     case DW_OP_breg7:
3186     case DW_OP_breg8:
3187     case DW_OP_breg9:
3188     case DW_OP_breg10:
3189     case DW_OP_breg11:
3190     case DW_OP_breg12:
3191     case DW_OP_breg13:
3192     case DW_OP_breg14:
3193     case DW_OP_breg15:
3194     case DW_OP_breg16:
3195     case DW_OP_breg17:
3196     case DW_OP_breg18:
3197     case DW_OP_breg19:
3198     case DW_OP_breg20:
3199     case DW_OP_breg21:
3200     case DW_OP_breg22:
3201     case DW_OP_breg23:
3202     case DW_OP_breg24:
3203     case DW_OP_breg25:
3204     case DW_OP_breg26:
3205     case DW_OP_breg27:
3206     case DW_OP_breg28:
3207     case DW_OP_breg29:
3208     case DW_OP_breg30:
3209     case DW_OP_breg31:
3210       size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3211       break;
3212     case DW_OP_regx:
3213       size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3214       break;
3215     case DW_OP_fbreg:
3216       size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3217       break;
3218     case DW_OP_bregx:
3219       size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3220       size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3221       break;
3222     case DW_OP_piece:
3223       size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3224       break;
3225     case DW_OP_deref_size:
3226     case DW_OP_xderef_size:
3227       size += 1;
3228       break;
3229     case DW_OP_call2:
3230       size += 2;
3231       break;
3232     case DW_OP_call4:
3233       size += 4;
3234       break;
3235     case DW_OP_call_ref:
3236       size += DWARF2_ADDR_SIZE;
3237       break;
3238     default:
3239       break;
3240     }
3241 
3242   return size;
3243 }
3244 
3245 /* Return the size of a series of location descriptors.  */
3246 
3247 static unsigned long
size_of_locs(dw_loc_descr_ref loc)3248 size_of_locs (dw_loc_descr_ref loc)
3249 {
3250   dw_loc_descr_ref l;
3251   unsigned long size;
3252 
3253   /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3254      field, to avoid writing to a PCH file.  */
3255   for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3256     {
3257       if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3258 	break;
3259       size += size_of_loc_descr (l);
3260     }
3261   if (! l)
3262     return size;
3263 
3264   for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3265     {
3266       l->dw_loc_addr = size;
3267       size += size_of_loc_descr (l);
3268     }
3269 
3270   return size;
3271 }
3272 
3273 /* Output location description stack opcode's operands (if any).  */
3274 
3275 static void
output_loc_operands(dw_loc_descr_ref loc)3276 output_loc_operands (dw_loc_descr_ref loc)
3277 {
3278   dw_val_ref val1 = &loc->dw_loc_oprnd1;
3279   dw_val_ref val2 = &loc->dw_loc_oprnd2;
3280 
3281   switch (loc->dw_loc_opc)
3282     {
3283 #ifdef DWARF2_DEBUGGING_INFO
3284     case DW_OP_addr:
3285       dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3286       break;
3287     case DW_OP_const2u:
3288     case DW_OP_const2s:
3289       dw2_asm_output_data (2, val1->v.val_int, NULL);
3290       break;
3291     case DW_OP_const4u:
3292     case DW_OP_const4s:
3293       dw2_asm_output_data (4, val1->v.val_int, NULL);
3294       break;
3295     case DW_OP_const8u:
3296     case DW_OP_const8s:
3297       gcc_assert (HOST_BITS_PER_LONG >= 64);
3298       dw2_asm_output_data (8, val1->v.val_int, NULL);
3299       break;
3300     case DW_OP_skip:
3301     case DW_OP_bra:
3302       {
3303 	int offset;
3304 
3305 	gcc_assert (val1->val_class == dw_val_class_loc);
3306 	offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3307 
3308 	dw2_asm_output_data (2, offset, NULL);
3309       }
3310       break;
3311 #else
3312     case DW_OP_addr:
3313     case DW_OP_const2u:
3314     case DW_OP_const2s:
3315     case DW_OP_const4u:
3316     case DW_OP_const4s:
3317     case DW_OP_const8u:
3318     case DW_OP_const8s:
3319     case DW_OP_skip:
3320     case DW_OP_bra:
3321       /* We currently don't make any attempt to make sure these are
3322 	 aligned properly like we do for the main unwind info, so
3323 	 don't support emitting things larger than a byte if we're
3324 	 only doing unwinding.  */
3325       gcc_unreachable ();
3326 #endif
3327     case DW_OP_const1u:
3328     case DW_OP_const1s:
3329       dw2_asm_output_data (1, val1->v.val_int, NULL);
3330       break;
3331     case DW_OP_constu:
3332       dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3333       break;
3334     case DW_OP_consts:
3335       dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3336       break;
3337     case DW_OP_pick:
3338       dw2_asm_output_data (1, val1->v.val_int, NULL);
3339       break;
3340     case DW_OP_plus_uconst:
3341       dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3342       break;
3343     case DW_OP_breg0:
3344     case DW_OP_breg1:
3345     case DW_OP_breg2:
3346     case DW_OP_breg3:
3347     case DW_OP_breg4:
3348     case DW_OP_breg5:
3349     case DW_OP_breg6:
3350     case DW_OP_breg7:
3351     case DW_OP_breg8:
3352     case DW_OP_breg9:
3353     case DW_OP_breg10:
3354     case DW_OP_breg11:
3355     case DW_OP_breg12:
3356     case DW_OP_breg13:
3357     case DW_OP_breg14:
3358     case DW_OP_breg15:
3359     case DW_OP_breg16:
3360     case DW_OP_breg17:
3361     case DW_OP_breg18:
3362     case DW_OP_breg19:
3363     case DW_OP_breg20:
3364     case DW_OP_breg21:
3365     case DW_OP_breg22:
3366     case DW_OP_breg23:
3367     case DW_OP_breg24:
3368     case DW_OP_breg25:
3369     case DW_OP_breg26:
3370     case DW_OP_breg27:
3371     case DW_OP_breg28:
3372     case DW_OP_breg29:
3373     case DW_OP_breg30:
3374     case DW_OP_breg31:
3375       dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3376       break;
3377     case DW_OP_regx:
3378       dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3379       break;
3380     case DW_OP_fbreg:
3381       dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3382       break;
3383     case DW_OP_bregx:
3384       dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3385       dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3386       break;
3387     case DW_OP_piece:
3388       dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3389       break;
3390     case DW_OP_deref_size:
3391     case DW_OP_xderef_size:
3392       dw2_asm_output_data (1, val1->v.val_int, NULL);
3393       break;
3394 
3395     case INTERNAL_DW_OP_tls_addr:
3396       if (targetm.asm_out.output_dwarf_dtprel)
3397 	{
3398 	  targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3399 					       DWARF2_ADDR_SIZE,
3400 					       val1->v.val_addr);
3401 	  fputc ('\n', asm_out_file);
3402 	}
3403       else
3404 	gcc_unreachable ();
3405       break;
3406 
3407     default:
3408       /* Other codes have no operands.  */
3409       break;
3410     }
3411 }
3412 
3413 /* Output a sequence of location operations.  */
3414 
3415 static void
output_loc_sequence(dw_loc_descr_ref loc)3416 output_loc_sequence (dw_loc_descr_ref loc)
3417 {
3418   for (; loc != NULL; loc = loc->dw_loc_next)
3419     {
3420       /* Output the opcode.  */
3421       dw2_asm_output_data (1, loc->dw_loc_opc,
3422 			   "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3423 
3424       /* Output the operand(s) (if any).  */
3425       output_loc_operands (loc);
3426     }
3427 }
3428 
3429 /* This routine will generate the correct assembly data for a location
3430    description based on a cfi entry with a complex address.  */
3431 
3432 static void
output_cfa_loc(dw_cfi_ref cfi)3433 output_cfa_loc (dw_cfi_ref cfi)
3434 {
3435   dw_loc_descr_ref loc;
3436   unsigned long size;
3437 
3438   /* Output the size of the block.  */
3439   loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3440   size = size_of_locs (loc);
3441   dw2_asm_output_data_uleb128 (size, NULL);
3442 
3443   /* Now output the operations themselves.  */
3444   output_loc_sequence (loc);
3445 }
3446 
3447 /* This function builds a dwarf location descriptor sequence from a
3448    dw_cfa_location, adding the given OFFSET to the result of the
3449    expression.  */
3450 
3451 static struct dw_loc_descr_struct *
build_cfa_loc(dw_cfa_location * cfa,HOST_WIDE_INT offset)3452 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3453 {
3454   struct dw_loc_descr_struct *head, *tmp;
3455 
3456   offset += cfa->offset;
3457 
3458   if (cfa->indirect)
3459     {
3460       if (cfa->base_offset)
3461 	{
3462 	  if (cfa->reg <= 31)
3463 	    head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3464 	  else
3465 	    head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3466 	}
3467       else if (cfa->reg <= 31)
3468 	head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3469       else
3470 	head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3471 
3472       head->dw_loc_oprnd1.val_class = dw_val_class_const;
3473       tmp = new_loc_descr (DW_OP_deref, 0, 0);
3474       add_loc_descr (&head, tmp);
3475       if (offset != 0)
3476 	{
3477 	  tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3478 	  add_loc_descr (&head, tmp);
3479 	}
3480     }
3481   else
3482     {
3483       if (offset == 0)
3484 	if (cfa->reg <= 31)
3485 	  head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3486 	else
3487 	  head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3488       else if (cfa->reg <= 31)
3489 	head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3490       else
3491 	head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3492     }
3493 
3494   return head;
3495 }
3496 
3497 /* This function fills in aa dw_cfa_location structure from a dwarf location
3498    descriptor sequence.  */
3499 
3500 static void
get_cfa_from_loc_descr(dw_cfa_location * cfa,struct dw_loc_descr_struct * loc)3501 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3502 {
3503   struct dw_loc_descr_struct *ptr;
3504   cfa->offset = 0;
3505   cfa->base_offset = 0;
3506   cfa->indirect = 0;
3507   cfa->reg = -1;
3508 
3509   for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3510     {
3511       enum dwarf_location_atom op = ptr->dw_loc_opc;
3512 
3513       switch (op)
3514 	{
3515 	case DW_OP_reg0:
3516 	case DW_OP_reg1:
3517 	case DW_OP_reg2:
3518 	case DW_OP_reg3:
3519 	case DW_OP_reg4:
3520 	case DW_OP_reg5:
3521 	case DW_OP_reg6:
3522 	case DW_OP_reg7:
3523 	case DW_OP_reg8:
3524 	case DW_OP_reg9:
3525 	case DW_OP_reg10:
3526 	case DW_OP_reg11:
3527 	case DW_OP_reg12:
3528 	case DW_OP_reg13:
3529 	case DW_OP_reg14:
3530 	case DW_OP_reg15:
3531 	case DW_OP_reg16:
3532 	case DW_OP_reg17:
3533 	case DW_OP_reg18:
3534 	case DW_OP_reg19:
3535 	case DW_OP_reg20:
3536 	case DW_OP_reg21:
3537 	case DW_OP_reg22:
3538 	case DW_OP_reg23:
3539 	case DW_OP_reg24:
3540 	case DW_OP_reg25:
3541 	case DW_OP_reg26:
3542 	case DW_OP_reg27:
3543 	case DW_OP_reg28:
3544 	case DW_OP_reg29:
3545 	case DW_OP_reg30:
3546 	case DW_OP_reg31:
3547 	  cfa->reg = op - DW_OP_reg0;
3548 	  break;
3549 	case DW_OP_regx:
3550 	  cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3551 	  break;
3552 	case DW_OP_breg0:
3553 	case DW_OP_breg1:
3554 	case DW_OP_breg2:
3555 	case DW_OP_breg3:
3556 	case DW_OP_breg4:
3557 	case DW_OP_breg5:
3558 	case DW_OP_breg6:
3559 	case DW_OP_breg7:
3560 	case DW_OP_breg8:
3561 	case DW_OP_breg9:
3562 	case DW_OP_breg10:
3563 	case DW_OP_breg11:
3564 	case DW_OP_breg12:
3565 	case DW_OP_breg13:
3566 	case DW_OP_breg14:
3567 	case DW_OP_breg15:
3568 	case DW_OP_breg16:
3569 	case DW_OP_breg17:
3570 	case DW_OP_breg18:
3571 	case DW_OP_breg19:
3572 	case DW_OP_breg20:
3573 	case DW_OP_breg21:
3574 	case DW_OP_breg22:
3575 	case DW_OP_breg23:
3576 	case DW_OP_breg24:
3577 	case DW_OP_breg25:
3578 	case DW_OP_breg26:
3579 	case DW_OP_breg27:
3580 	case DW_OP_breg28:
3581 	case DW_OP_breg29:
3582 	case DW_OP_breg30:
3583 	case DW_OP_breg31:
3584 	  cfa->reg = op - DW_OP_breg0;
3585 	  cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3586 	  break;
3587 	case DW_OP_bregx:
3588 	  cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3589 	  cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3590 	  break;
3591 	case DW_OP_deref:
3592 	  cfa->indirect = 1;
3593 	  break;
3594 	case DW_OP_plus_uconst:
3595 	  cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3596 	  break;
3597 	default:
3598 	  internal_error ("DW_LOC_OP %s not implemented",
3599 			  dwarf_stack_op_name (ptr->dw_loc_opc));
3600 	}
3601     }
3602 }
3603 #endif /* .debug_frame support */
3604 
3605 /* And now, the support for symbolic debugging information.  */
3606 #ifdef DWARF2_DEBUGGING_INFO
3607 
3608 /* .debug_str support.  */
3609 static int output_indirect_string (void **, void *);
3610 
3611 static void dwarf2out_init (const char *);
3612 static void dwarf2out_finish (const char *);
3613 static void dwarf2out_define (unsigned int, const char *);
3614 static void dwarf2out_undef (unsigned int, const char *);
3615 static void dwarf2out_start_source_file (unsigned, const char *);
3616 static void dwarf2out_end_source_file (unsigned);
3617 static void dwarf2out_begin_block (unsigned, unsigned);
3618 static void dwarf2out_end_block (unsigned, unsigned);
3619 static bool dwarf2out_ignore_block (tree);
3620 static void dwarf2out_global_decl (tree);
3621 static void dwarf2out_type_decl (tree, int);
3622 static void dwarf2out_imported_module_or_decl (tree, tree);
3623 static void dwarf2out_abstract_function (tree);
3624 static void dwarf2out_var_location (rtx);
3625 static void dwarf2out_begin_function (tree);
3626 static void dwarf2out_switch_text_section (void);
3627 
3628 /* The debug hooks structure.  */
3629 
3630 const struct gcc_debug_hooks dwarf2_debug_hooks =
3631 {
3632   dwarf2out_init,
3633   dwarf2out_finish,
3634   dwarf2out_define,
3635   dwarf2out_undef,
3636   dwarf2out_start_source_file,
3637   dwarf2out_end_source_file,
3638   dwarf2out_begin_block,
3639   dwarf2out_end_block,
3640   dwarf2out_ignore_block,
3641   dwarf2out_source_line,
3642   dwarf2out_begin_prologue,
3643   debug_nothing_int_charstar,	/* end_prologue */
3644   dwarf2out_end_epilogue,
3645   dwarf2out_begin_function,
3646   debug_nothing_int,		/* end_function */
3647   dwarf2out_decl,		/* function_decl */
3648   dwarf2out_global_decl,
3649   dwarf2out_type_decl,		/* type_decl */
3650   dwarf2out_imported_module_or_decl,
3651   debug_nothing_tree,		/* deferred_inline_function */
3652   /* The DWARF 2 backend tries to reduce debugging bloat by not
3653      emitting the abstract description of inline functions until
3654      something tries to reference them.  */
3655   dwarf2out_abstract_function,	/* outlining_inline_function */
3656   debug_nothing_rtx,		/* label */
3657   debug_nothing_int,		/* handle_pch */
3658   dwarf2out_var_location,
3659   dwarf2out_switch_text_section,
3660   1                             /* start_end_main_source_file */
3661 };
3662 #endif
3663 
3664 /* NOTE: In the comments in this file, many references are made to
3665    "Debugging Information Entries".  This term is abbreviated as `DIE'
3666    throughout the remainder of this file.  */
3667 
3668 /* An internal representation of the DWARF output is built, and then
3669    walked to generate the DWARF debugging info.  The walk of the internal
3670    representation is done after the entire program has been compiled.
3671    The types below are used to describe the internal representation.  */
3672 
3673 /* Various DIE's use offsets relative to the beginning of the
3674    .debug_info section to refer to each other.  */
3675 
3676 typedef long int dw_offset;
3677 
3678 /* Define typedefs here to avoid circular dependencies.  */
3679 
3680 typedef struct dw_attr_struct *dw_attr_ref;
3681 typedef struct dw_line_info_struct *dw_line_info_ref;
3682 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3683 typedef struct pubname_struct *pubname_ref;
3684 typedef struct dw_ranges_struct *dw_ranges_ref;
3685 
3686 /* Each entry in the line_info_table maintains the file and
3687    line number associated with the label generated for that
3688    entry.  The label gives the PC value associated with
3689    the line number entry.  */
3690 
3691 typedef struct dw_line_info_struct GTY(())
3692 {
3693   unsigned long dw_file_num;
3694   unsigned long dw_line_num;
3695 }
3696 dw_line_info_entry;
3697 
3698 /* Line information for functions in separate sections; each one gets its
3699    own sequence.  */
3700 typedef struct dw_separate_line_info_struct GTY(())
3701 {
3702   unsigned long dw_file_num;
3703   unsigned long dw_line_num;
3704   unsigned long function;
3705 }
3706 dw_separate_line_info_entry;
3707 
3708 /* Each DIE attribute has a field specifying the attribute kind,
3709    a link to the next attribute in the chain, and an attribute value.
3710    Attributes are typically linked below the DIE they modify.  */
3711 
3712 typedef struct dw_attr_struct GTY(())
3713 {
3714   enum dwarf_attribute dw_attr;
3715   dw_val_node dw_attr_val;
3716 }
3717 dw_attr_node;
3718 
3719 DEF_VEC_O(dw_attr_node);
3720 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3721 
3722 /* The Debugging Information Entry (DIE) structure.  DIEs form a tree.
3723    The children of each node form a circular list linked by
3724    die_sib.  die_child points to the node *before* the "first" child node.  */
3725 
3726 typedef struct die_struct GTY(())
3727 {
3728   enum dwarf_tag die_tag;
3729   char *die_symbol;
3730   VEC(dw_attr_node,gc) * die_attr;
3731   dw_die_ref die_parent;
3732   dw_die_ref die_child;
3733   dw_die_ref die_sib;
3734   dw_die_ref die_definition; /* ref from a specification to its definition */
3735   dw_offset die_offset;
3736   unsigned long die_abbrev;
3737   int die_mark;
3738   /* Die is used and must not be pruned as unused.  */
3739   int die_perennial_p;
3740   unsigned int decl_id;
3741 }
3742 die_node;
3743 
3744 /* Evaluate 'expr' while 'c' is set to each child of DIE in order.  */
3745 #define FOR_EACH_CHILD(die, c, expr) do {	\
3746   c = die->die_child;				\
3747   if (c) do {					\
3748     c = c->die_sib;				\
3749     expr;					\
3750   } while (c != die->die_child);		\
3751 } while (0)
3752 
3753 /* The pubname structure */
3754 
3755 typedef struct pubname_struct GTY(())
3756 {
3757   dw_die_ref die;
3758   char *name;
3759 }
3760 pubname_entry;
3761 
3762 struct dw_ranges_struct GTY(())
3763 {
3764   int block_num;
3765 };
3766 
3767 /* The limbo die list structure.  */
3768 typedef struct limbo_die_struct GTY(())
3769 {
3770   dw_die_ref die;
3771   tree created_for;
3772   struct limbo_die_struct *next;
3773 }
3774 limbo_die_node;
3775 
3776 /* How to start an assembler comment.  */
3777 #ifndef ASM_COMMENT_START
3778 #define ASM_COMMENT_START ";#"
3779 #endif
3780 
3781 /* Define a macro which returns nonzero for a TYPE_DECL which was
3782    implicitly generated for a tagged type.
3783 
3784    Note that unlike the gcc front end (which generates a NULL named
3785    TYPE_DECL node for each complete tagged type, each array type, and
3786    each function type node created) the g++ front end generates a
3787    _named_ TYPE_DECL node for each tagged type node created.
3788    These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3789    generate a DW_TAG_typedef DIE for them.  */
3790 
3791 #define TYPE_DECL_IS_STUB(decl)				\
3792   (DECL_NAME (decl) == NULL_TREE			\
3793    || (DECL_ARTIFICIAL (decl)				\
3794        && is_tagged_type (TREE_TYPE (decl))		\
3795        && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl)))	\
3796 	   /* This is necessary for stub decls that	\
3797 	      appear in nested inline functions.  */	\
3798 	   || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE	\
3799 	       && (decl_ultimate_origin (decl)		\
3800 		   == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3801 
3802 /* Information concerning the compilation unit's programming
3803    language, and compiler version.  */
3804 
3805 /* Fixed size portion of the DWARF compilation unit header.  */
3806 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3807   (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3808 
3809 /* Fixed size portion of public names info.  */
3810 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3811 
3812 /* Fixed size portion of the address range info.  */
3813 #define DWARF_ARANGES_HEADER_SIZE					\
3814   (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4,	\
3815                 DWARF2_ADDR_SIZE * 2)					\
3816    - DWARF_INITIAL_LENGTH_SIZE)
3817 
3818 /* Size of padding portion in the address range info.  It must be
3819    aligned to twice the pointer size.  */
3820 #define DWARF_ARANGES_PAD_SIZE \
3821   (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3822                 DWARF2_ADDR_SIZE * 2) \
3823    - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3824 
3825 /* Use assembler line directives if available.  */
3826 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3827 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3828 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3829 #else
3830 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3831 #endif
3832 #endif
3833 
3834 /* Minimum line offset in a special line info. opcode.
3835    This value was chosen to give a reasonable range of values.  */
3836 #define DWARF_LINE_BASE  -10
3837 
3838 /* First special line opcode - leave room for the standard opcodes.  */
3839 #define DWARF_LINE_OPCODE_BASE  10
3840 
3841 /* Range of line offsets in a special line info. opcode.  */
3842 #define DWARF_LINE_RANGE  (254-DWARF_LINE_OPCODE_BASE+1)
3843 
3844 /* Flag that indicates the initial value of the is_stmt_start flag.
3845    In the present implementation, we do not mark any lines as
3846    the beginning of a source statement, because that information
3847    is not made available by the GCC front-end.  */
3848 #define	DWARF_LINE_DEFAULT_IS_STMT_START 1
3849 
3850 #ifdef DWARF2_DEBUGGING_INFO
3851 /* This location is used by calc_die_sizes() to keep track
3852    the offset of each DIE within the .debug_info section.  */
3853 static unsigned long next_die_offset;
3854 #endif
3855 
3856 /* Record the root of the DIE's built for the current compilation unit.  */
3857 static GTY(()) dw_die_ref comp_unit_die;
3858 
3859 /* A list of DIEs with a NULL parent waiting to be relocated.  */
3860 static GTY(()) limbo_die_node *limbo_die_list;
3861 
3862 /* Filenames referenced by this compilation unit.  */
3863 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3864 
3865 /* A hash table of references to DIE's that describe declarations.
3866    The key is a DECL_UID() which is a unique number identifying each decl.  */
3867 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3868 
3869 /* Node of the variable location list.  */
3870 struct var_loc_node GTY ((chain_next ("%h.next")))
3871 {
3872   rtx GTY (()) var_loc_note;
3873   const char * GTY (()) label;
3874   const char * GTY (()) section_label;
3875   struct var_loc_node * GTY (()) next;
3876 };
3877 
3878 /* Variable location list.  */
3879 struct var_loc_list_def GTY (())
3880 {
3881   struct var_loc_node * GTY (()) first;
3882 
3883   /* Do not mark the last element of the chained list because
3884      it is marked through the chain.  */
3885   struct var_loc_node * GTY ((skip ("%h"))) last;
3886 
3887   /* DECL_UID of the variable decl.  */
3888   unsigned int decl_id;
3889 };
3890 typedef struct var_loc_list_def var_loc_list;
3891 
3892 
3893 /* Table of decl location linked lists.  */
3894 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3895 
3896 /* A pointer to the base of a list of references to DIE's that
3897    are uniquely identified by their tag, presence/absence of
3898    children DIE's, and list of attribute/value pairs.  */
3899 static GTY((length ("abbrev_die_table_allocated")))
3900   dw_die_ref *abbrev_die_table;
3901 
3902 /* Number of elements currently allocated for abbrev_die_table.  */
3903 static GTY(()) unsigned abbrev_die_table_allocated;
3904 
3905 /* Number of elements in type_die_table currently in use.  */
3906 static GTY(()) unsigned abbrev_die_table_in_use;
3907 
3908 /* Size (in elements) of increments by which we may expand the
3909    abbrev_die_table.  */
3910 #define ABBREV_DIE_TABLE_INCREMENT 256
3911 
3912 /* A pointer to the base of a table that contains line information
3913    for each source code line in .text in the compilation unit.  */
3914 static GTY((length ("line_info_table_allocated")))
3915      dw_line_info_ref line_info_table;
3916 
3917 /* Number of elements currently allocated for line_info_table.  */
3918 static GTY(()) unsigned line_info_table_allocated;
3919 
3920 /* Number of elements in line_info_table currently in use.  */
3921 static GTY(()) unsigned line_info_table_in_use;
3922 
3923 /* True if the compilation unit places functions in more than one section.  */
3924 static GTY(()) bool have_multiple_function_sections = false;
3925 
3926 /* A pointer to the base of a table that contains line information
3927    for each source code line outside of .text in the compilation unit.  */
3928 static GTY ((length ("separate_line_info_table_allocated")))
3929      dw_separate_line_info_ref separate_line_info_table;
3930 
3931 /* Number of elements currently allocated for separate_line_info_table.  */
3932 static GTY(()) unsigned separate_line_info_table_allocated;
3933 
3934 /* Number of elements in separate_line_info_table currently in use.  */
3935 static GTY(()) unsigned separate_line_info_table_in_use;
3936 
3937 /* Size (in elements) of increments by which we may expand the
3938    line_info_table.  */
3939 #define LINE_INFO_TABLE_INCREMENT 1024
3940 
3941 /* A pointer to the base of a table that contains a list of publicly
3942    accessible names.  */
3943 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3944 
3945 /* Number of elements currently allocated for pubname_table.  */
3946 static GTY(()) unsigned pubname_table_allocated;
3947 
3948 /* Number of elements in pubname_table currently in use.  */
3949 static GTY(()) unsigned pubname_table_in_use;
3950 
3951 /* Size (in elements) of increments by which we may expand the
3952    pubname_table.  */
3953 #define PUBNAME_TABLE_INCREMENT 64
3954 
3955 /* Array of dies for which we should generate .debug_arange info.  */
3956 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3957 
3958 /* Number of elements currently allocated for arange_table.  */
3959 static GTY(()) unsigned arange_table_allocated;
3960 
3961 /* Number of elements in arange_table currently in use.  */
3962 static GTY(()) unsigned arange_table_in_use;
3963 
3964 /* Size (in elements) of increments by which we may expand the
3965    arange_table.  */
3966 #define ARANGE_TABLE_INCREMENT 64
3967 
3968 /* Array of dies for which we should generate .debug_ranges info.  */
3969 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3970 
3971 /* Number of elements currently allocated for ranges_table.  */
3972 static GTY(()) unsigned ranges_table_allocated;
3973 
3974 /* Number of elements in ranges_table currently in use.  */
3975 static GTY(()) unsigned ranges_table_in_use;
3976 
3977 /* Size (in elements) of increments by which we may expand the
3978    ranges_table.  */
3979 #define RANGES_TABLE_INCREMENT 64
3980 
3981 /* Whether we have location lists that need outputting */
3982 static GTY(()) bool have_location_lists;
3983 
3984 /* Unique label counter.  */
3985 static GTY(()) unsigned int loclabel_num;
3986 
3987 #ifdef DWARF2_DEBUGGING_INFO
3988 /* Record whether the function being analyzed contains inlined functions.  */
3989 static int current_function_has_inlines;
3990 #endif
3991 #if 0 && defined (MIPS_DEBUGGING_INFO)
3992 static int comp_unit_has_inlines;
3993 #endif
3994 
3995 /* The last file entry emitted by maybe_emit_file().  */
3996 static GTY(()) struct dwarf_file_data * last_emitted_file;
3997 
3998 /* Number of internal labels generated by gen_internal_sym().  */
3999 static GTY(()) int label_num;
4000 
4001 /* Cached result of previous call to lookup_filename.  */
4002 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4003 
4004 #ifdef DWARF2_DEBUGGING_INFO
4005 
4006 /* Offset from the "steady-state frame pointer" to the frame base,
4007    within the current function.  */
4008 static HOST_WIDE_INT frame_pointer_fb_offset;
4009 
4010 /* Forward declarations for functions defined in this file.  */
4011 
4012 static int is_pseudo_reg (rtx);
4013 static tree type_main_variant (tree);
4014 static int is_tagged_type (tree);
4015 static const char *dwarf_tag_name (unsigned);
4016 static const char *dwarf_attr_name (unsigned);
4017 static const char *dwarf_form_name (unsigned);
4018 static tree decl_ultimate_origin (tree);
4019 static tree block_ultimate_origin (tree);
4020 static tree decl_class_context (tree);
4021 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4022 static inline enum dw_val_class AT_class (dw_attr_ref);
4023 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4024 static inline unsigned AT_flag (dw_attr_ref);
4025 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4026 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4027 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4028 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4029 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4030 			      unsigned long);
4031 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4032 			       unsigned int, unsigned char *);
4033 static hashval_t debug_str_do_hash (const void *);
4034 static int debug_str_eq (const void *, const void *);
4035 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4036 static inline const char *AT_string (dw_attr_ref);
4037 static int AT_string_form (dw_attr_ref);
4038 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4039 static void add_AT_specification (dw_die_ref, dw_die_ref);
4040 static inline dw_die_ref AT_ref (dw_attr_ref);
4041 static inline int AT_ref_external (dw_attr_ref);
4042 static inline void set_AT_ref_external (dw_attr_ref, int);
4043 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4044 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4045 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4046 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4047 			     dw_loc_list_ref);
4048 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4049 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4050 static inline rtx AT_addr (dw_attr_ref);
4051 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4052 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4053 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4054 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4055 			   unsigned HOST_WIDE_INT);
4056 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4057 			       unsigned long);
4058 static inline const char *AT_lbl (dw_attr_ref);
4059 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4060 static const char *get_AT_low_pc (dw_die_ref);
4061 static const char *get_AT_hi_pc (dw_die_ref);
4062 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4063 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4064 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4065 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4066 static bool is_c_family (void);
4067 static bool is_cxx (void);
4068 static bool is_java (void);
4069 static bool is_fortran (void);
4070 static bool is_ada (void);
4071 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4072 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4073 static void add_child_die (dw_die_ref, dw_die_ref);
4074 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4075 static dw_die_ref lookup_type_die (tree);
4076 static void equate_type_number_to_die (tree, dw_die_ref);
4077 static hashval_t decl_die_table_hash (const void *);
4078 static int decl_die_table_eq (const void *, const void *);
4079 static dw_die_ref lookup_decl_die (tree);
4080 static hashval_t decl_loc_table_hash (const void *);
4081 static int decl_loc_table_eq (const void *, const void *);
4082 static var_loc_list *lookup_decl_loc (tree);
4083 static void equate_decl_number_to_die (tree, dw_die_ref);
4084 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4085 static void print_spaces (FILE *);
4086 static void print_die (dw_die_ref, FILE *);
4087 static void print_dwarf_line_table (FILE *);
4088 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4089 static dw_die_ref pop_compile_unit (dw_die_ref);
4090 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4091 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4092 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4093 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4094 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4095 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4096 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4097 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4098 static void compute_section_prefix (dw_die_ref);
4099 static int is_type_die (dw_die_ref);
4100 static int is_comdat_die (dw_die_ref);
4101 static int is_symbol_die (dw_die_ref);
4102 static void assign_symbol_names (dw_die_ref);
4103 static void break_out_includes (dw_die_ref);
4104 static hashval_t htab_cu_hash (const void *);
4105 static int htab_cu_eq (const void *, const void *);
4106 static void htab_cu_del (void *);
4107 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4108 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4109 static void add_sibling_attributes (dw_die_ref);
4110 static void build_abbrev_table (dw_die_ref);
4111 static void output_location_lists (dw_die_ref);
4112 static int constant_size (long unsigned);
4113 static unsigned long size_of_die (dw_die_ref);
4114 static void calc_die_sizes (dw_die_ref);
4115 static void mark_dies (dw_die_ref);
4116 static void unmark_dies (dw_die_ref);
4117 static void unmark_all_dies (dw_die_ref);
4118 static unsigned long size_of_pubnames (void);
4119 static unsigned long size_of_aranges (void);
4120 static enum dwarf_form value_format (dw_attr_ref);
4121 static void output_value_format (dw_attr_ref);
4122 static void output_abbrev_section (void);
4123 static void output_die_symbol (dw_die_ref);
4124 static void output_die (dw_die_ref);
4125 static void output_compilation_unit_header (void);
4126 static void output_comp_unit (dw_die_ref, int);
4127 static const char *dwarf2_name (tree, int);
4128 static void add_pubname (tree, dw_die_ref);
4129 static void output_pubnames (void);
4130 static void add_arange (tree, dw_die_ref);
4131 static void output_aranges (void);
4132 static unsigned int add_ranges (tree);
4133 static void output_ranges (void);
4134 static void output_line_info (void);
4135 static void output_file_names (void);
4136 static dw_die_ref base_type_die (tree);
4137 static tree root_type (tree);
4138 static int is_base_type (tree);
4139 static bool is_subrange_type (tree);
4140 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4141 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4142 static int type_is_enum (tree);
4143 static unsigned int dbx_reg_number (rtx);
4144 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4145 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4146 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4147 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4148 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4149 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4150 static int is_based_loc (rtx);
4151 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4152 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4153 static dw_loc_descr_ref loc_descriptor (rtx);
4154 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4155 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4156 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4157 static tree field_type (tree);
4158 static unsigned int simple_type_align_in_bits (tree);
4159 static unsigned int simple_decl_align_in_bits (tree);
4160 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4161 static HOST_WIDE_INT field_byte_offset (tree);
4162 static void add_AT_location_description	(dw_die_ref, enum dwarf_attribute,
4163 					 dw_loc_descr_ref);
4164 static void add_data_member_location_attribute (dw_die_ref, tree);
4165 static void add_const_value_attribute (dw_die_ref, rtx);
4166 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4167 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4168 static void insert_float (rtx, unsigned char *);
4169 static rtx rtl_for_decl_location (tree);
4170 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4171 						   enum dwarf_attribute);
4172 static void tree_add_const_value_attribute (dw_die_ref, tree);
4173 static void add_name_attribute (dw_die_ref, const char *);
4174 static void add_comp_dir_attribute (dw_die_ref);
4175 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4176 static void add_subscript_info (dw_die_ref, tree);
4177 static void add_byte_size_attribute (dw_die_ref, tree);
4178 static void add_bit_offset_attribute (dw_die_ref, tree);
4179 static void add_bit_size_attribute (dw_die_ref, tree);
4180 static void add_prototyped_attribute (dw_die_ref, tree);
4181 static void add_abstract_origin_attribute (dw_die_ref, tree);
4182 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4183 static void add_src_coords_attributes (dw_die_ref, tree);
4184 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4185 static void push_decl_scope (tree);
4186 static void pop_decl_scope (void);
4187 static dw_die_ref scope_die_for (tree, dw_die_ref);
4188 static inline int local_scope_p (dw_die_ref);
4189 static inline int class_or_namespace_scope_p (dw_die_ref);
4190 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4191 static void add_calling_convention_attribute (dw_die_ref, tree);
4192 static const char *type_tag (tree);
4193 static tree member_declared_type (tree);
4194 #if 0
4195 static const char *decl_start_label (tree);
4196 #endif
4197 static void gen_array_type_die (tree, dw_die_ref);
4198 #if 0
4199 static void gen_entry_point_die (tree, dw_die_ref);
4200 #endif
4201 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4202 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4203 static void gen_inlined_union_type_die (tree, dw_die_ref);
4204 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4205 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4206 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4207 static void gen_formal_types_die (tree, dw_die_ref);
4208 static void gen_subprogram_die (tree, dw_die_ref);
4209 static void gen_variable_die (tree, dw_die_ref);
4210 static void gen_label_die (tree, dw_die_ref);
4211 static void gen_lexical_block_die (tree, dw_die_ref, int);
4212 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4213 static void gen_field_die (tree, dw_die_ref);
4214 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4215 static dw_die_ref gen_compile_unit_die (const char *);
4216 static void gen_inheritance_die (tree, tree, dw_die_ref);
4217 static void gen_member_die (tree, dw_die_ref);
4218 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4219 static void gen_subroutine_type_die (tree, dw_die_ref);
4220 static void gen_typedef_die (tree, dw_die_ref);
4221 static void gen_type_die (tree, dw_die_ref);
4222 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4223 static void gen_block_die (tree, dw_die_ref, int);
4224 static void decls_for_scope (tree, dw_die_ref, int);
4225 static int is_redundant_typedef (tree);
4226 static void gen_namespace_die (tree);
4227 static void gen_decl_die (tree, dw_die_ref);
4228 static dw_die_ref force_decl_die (tree);
4229 static dw_die_ref force_type_die (tree);
4230 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4231 static void declare_in_namespace (tree, dw_die_ref);
4232 static struct dwarf_file_data * lookup_filename (const char *);
4233 static void retry_incomplete_types (void);
4234 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4235 static void splice_child_die (dw_die_ref, dw_die_ref);
4236 static int file_info_cmp (const void *, const void *);
4237 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4238 				     const char *, const char *, unsigned);
4239 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4240 				       const char *, const char *,
4241 				       const char *);
4242 static void output_loc_list (dw_loc_list_ref);
4243 static char *gen_internal_sym (const char *);
4244 
4245 static void prune_unmark_dies (dw_die_ref);
4246 static void prune_unused_types_mark (dw_die_ref, int);
4247 static void prune_unused_types_walk (dw_die_ref);
4248 static void prune_unused_types_walk_attribs (dw_die_ref);
4249 static void prune_unused_types_prune (dw_die_ref);
4250 static void prune_unused_types (void);
4251 static int maybe_emit_file (struct dwarf_file_data *fd);
4252 
4253 /* Section names used to hold DWARF debugging information.  */
4254 #ifndef DEBUG_INFO_SECTION
4255 #define DEBUG_INFO_SECTION	".debug_info"
4256 #endif
4257 #ifndef DEBUG_ABBREV_SECTION
4258 #define DEBUG_ABBREV_SECTION	".debug_abbrev"
4259 #endif
4260 #ifndef DEBUG_ARANGES_SECTION
4261 #define DEBUG_ARANGES_SECTION	".debug_aranges"
4262 #endif
4263 #ifndef DEBUG_MACINFO_SECTION
4264 #define DEBUG_MACINFO_SECTION	".debug_macinfo"
4265 #endif
4266 #ifndef DEBUG_LINE_SECTION
4267 #define DEBUG_LINE_SECTION	".debug_line"
4268 #endif
4269 #ifndef DEBUG_LOC_SECTION
4270 #define DEBUG_LOC_SECTION	".debug_loc"
4271 #endif
4272 #ifndef DEBUG_PUBNAMES_SECTION
4273 #define DEBUG_PUBNAMES_SECTION	".debug_pubnames"
4274 #endif
4275 #ifndef DEBUG_STR_SECTION
4276 #define DEBUG_STR_SECTION	".debug_str"
4277 #endif
4278 #ifndef DEBUG_RANGES_SECTION
4279 #define DEBUG_RANGES_SECTION	".debug_ranges"
4280 #endif
4281 
4282 /* Standard ELF section names for compiled code and data.  */
4283 #ifndef TEXT_SECTION_NAME
4284 #define TEXT_SECTION_NAME	".text"
4285 #endif
4286 
4287 /* Section flags for .debug_str section.  */
4288 #define DEBUG_STR_SECTION_FLAGS \
4289   (HAVE_GAS_SHF_MERGE && flag_merge_constants			\
4290    ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1	\
4291    : SECTION_DEBUG)
4292 
4293 /* Labels we insert at beginning sections we can reference instead of
4294    the section names themselves.  */
4295 
4296 #ifndef TEXT_SECTION_LABEL
4297 #define TEXT_SECTION_LABEL		"Ltext"
4298 #endif
4299 #ifndef COLD_TEXT_SECTION_LABEL
4300 #define COLD_TEXT_SECTION_LABEL         "Ltext_cold"
4301 #endif
4302 #ifndef DEBUG_LINE_SECTION_LABEL
4303 #define DEBUG_LINE_SECTION_LABEL	"Ldebug_line"
4304 #endif
4305 #ifndef DEBUG_INFO_SECTION_LABEL
4306 #define DEBUG_INFO_SECTION_LABEL	"Ldebug_info"
4307 #endif
4308 #ifndef DEBUG_ABBREV_SECTION_LABEL
4309 #define DEBUG_ABBREV_SECTION_LABEL	"Ldebug_abbrev"
4310 #endif
4311 #ifndef DEBUG_LOC_SECTION_LABEL
4312 #define DEBUG_LOC_SECTION_LABEL		"Ldebug_loc"
4313 #endif
4314 #ifndef DEBUG_RANGES_SECTION_LABEL
4315 #define DEBUG_RANGES_SECTION_LABEL	"Ldebug_ranges"
4316 #endif
4317 #ifndef DEBUG_MACINFO_SECTION_LABEL
4318 #define DEBUG_MACINFO_SECTION_LABEL     "Ldebug_macinfo"
4319 #endif
4320 
4321 /* Definitions of defaults for formats and names of various special
4322    (artificial) labels which may be generated within this file (when the -g
4323    options is used and DWARF2_DEBUGGING_INFO is in effect.
4324    If necessary, these may be overridden from within the tm.h file, but
4325    typically, overriding these defaults is unnecessary.  */
4326 
4327 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4328 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4329 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4330 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4331 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4332 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4333 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4334 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4335 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4336 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4337 
4338 #ifndef TEXT_END_LABEL
4339 #define TEXT_END_LABEL		"Letext"
4340 #endif
4341 #ifndef COLD_END_LABEL
4342 #define COLD_END_LABEL          "Letext_cold"
4343 #endif
4344 #ifndef BLOCK_BEGIN_LABEL
4345 #define BLOCK_BEGIN_LABEL	"LBB"
4346 #endif
4347 #ifndef BLOCK_END_LABEL
4348 #define BLOCK_END_LABEL		"LBE"
4349 #endif
4350 #ifndef LINE_CODE_LABEL
4351 #define LINE_CODE_LABEL		"LM"
4352 #endif
4353 #ifndef SEPARATE_LINE_CODE_LABEL
4354 #define SEPARATE_LINE_CODE_LABEL	"LSM"
4355 #endif
4356 
4357 /* We allow a language front-end to designate a function that is to be
4358    called to "demangle" any name before it is put into a DIE.  */
4359 
4360 static const char *(*demangle_name_func) (const char *);
4361 
4362 void
dwarf2out_set_demangle_name_func(const char * (* func)(const char *))4363 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4364 {
4365   demangle_name_func = func;
4366 }
4367 
4368 /* Test if rtl node points to a pseudo register.  */
4369 
4370 static inline int
is_pseudo_reg(rtx rtl)4371 is_pseudo_reg (rtx rtl)
4372 {
4373   return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4374 	  || (GET_CODE (rtl) == SUBREG
4375 	      && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4376 }
4377 
4378 /* Return a reference to a type, with its const and volatile qualifiers
4379    removed.  */
4380 
4381 static inline tree
type_main_variant(tree type)4382 type_main_variant (tree type)
4383 {
4384   type = TYPE_MAIN_VARIANT (type);
4385 
4386   /* ??? There really should be only one main variant among any group of
4387      variants of a given type (and all of the MAIN_VARIANT values for all
4388      members of the group should point to that one type) but sometimes the C
4389      front-end messes this up for array types, so we work around that bug
4390      here.  */
4391   if (TREE_CODE (type) == ARRAY_TYPE)
4392     while (type != TYPE_MAIN_VARIANT (type))
4393       type = TYPE_MAIN_VARIANT (type);
4394 
4395   return type;
4396 }
4397 
4398 /* Return nonzero if the given type node represents a tagged type.  */
4399 
4400 static inline int
is_tagged_type(tree type)4401 is_tagged_type (tree type)
4402 {
4403   enum tree_code code = TREE_CODE (type);
4404 
4405   return (code == RECORD_TYPE || code == UNION_TYPE
4406 	  || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4407 }
4408 
4409 /* Convert a DIE tag into its string name.  */
4410 
4411 static const char *
dwarf_tag_name(unsigned int tag)4412 dwarf_tag_name (unsigned int tag)
4413 {
4414   switch (tag)
4415     {
4416     case DW_TAG_padding:
4417       return "DW_TAG_padding";
4418     case DW_TAG_array_type:
4419       return "DW_TAG_array_type";
4420     case DW_TAG_class_type:
4421       return "DW_TAG_class_type";
4422     case DW_TAG_entry_point:
4423       return "DW_TAG_entry_point";
4424     case DW_TAG_enumeration_type:
4425       return "DW_TAG_enumeration_type";
4426     case DW_TAG_formal_parameter:
4427       return "DW_TAG_formal_parameter";
4428     case DW_TAG_imported_declaration:
4429       return "DW_TAG_imported_declaration";
4430     case DW_TAG_label:
4431       return "DW_TAG_label";
4432     case DW_TAG_lexical_block:
4433       return "DW_TAG_lexical_block";
4434     case DW_TAG_member:
4435       return "DW_TAG_member";
4436     case DW_TAG_pointer_type:
4437       return "DW_TAG_pointer_type";
4438     case DW_TAG_reference_type:
4439       return "DW_TAG_reference_type";
4440     case DW_TAG_compile_unit:
4441       return "DW_TAG_compile_unit";
4442     case DW_TAG_string_type:
4443       return "DW_TAG_string_type";
4444     case DW_TAG_structure_type:
4445       return "DW_TAG_structure_type";
4446     case DW_TAG_subroutine_type:
4447       return "DW_TAG_subroutine_type";
4448     case DW_TAG_typedef:
4449       return "DW_TAG_typedef";
4450     case DW_TAG_union_type:
4451       return "DW_TAG_union_type";
4452     case DW_TAG_unspecified_parameters:
4453       return "DW_TAG_unspecified_parameters";
4454     case DW_TAG_variant:
4455       return "DW_TAG_variant";
4456     case DW_TAG_common_block:
4457       return "DW_TAG_common_block";
4458     case DW_TAG_common_inclusion:
4459       return "DW_TAG_common_inclusion";
4460     case DW_TAG_inheritance:
4461       return "DW_TAG_inheritance";
4462     case DW_TAG_inlined_subroutine:
4463       return "DW_TAG_inlined_subroutine";
4464     case DW_TAG_module:
4465       return "DW_TAG_module";
4466     case DW_TAG_ptr_to_member_type:
4467       return "DW_TAG_ptr_to_member_type";
4468     case DW_TAG_set_type:
4469       return "DW_TAG_set_type";
4470     case DW_TAG_subrange_type:
4471       return "DW_TAG_subrange_type";
4472     case DW_TAG_with_stmt:
4473       return "DW_TAG_with_stmt";
4474     case DW_TAG_access_declaration:
4475       return "DW_TAG_access_declaration";
4476     case DW_TAG_base_type:
4477       return "DW_TAG_base_type";
4478     case DW_TAG_catch_block:
4479       return "DW_TAG_catch_block";
4480     case DW_TAG_const_type:
4481       return "DW_TAG_const_type";
4482     case DW_TAG_constant:
4483       return "DW_TAG_constant";
4484     case DW_TAG_enumerator:
4485       return "DW_TAG_enumerator";
4486     case DW_TAG_file_type:
4487       return "DW_TAG_file_type";
4488     case DW_TAG_friend:
4489       return "DW_TAG_friend";
4490     case DW_TAG_namelist:
4491       return "DW_TAG_namelist";
4492     case DW_TAG_namelist_item:
4493       return "DW_TAG_namelist_item";
4494     case DW_TAG_namespace:
4495       return "DW_TAG_namespace";
4496     case DW_TAG_packed_type:
4497       return "DW_TAG_packed_type";
4498     case DW_TAG_subprogram:
4499       return "DW_TAG_subprogram";
4500     case DW_TAG_template_type_param:
4501       return "DW_TAG_template_type_param";
4502     case DW_TAG_template_value_param:
4503       return "DW_TAG_template_value_param";
4504     case DW_TAG_thrown_type:
4505       return "DW_TAG_thrown_type";
4506     case DW_TAG_try_block:
4507       return "DW_TAG_try_block";
4508     case DW_TAG_variant_part:
4509       return "DW_TAG_variant_part";
4510     case DW_TAG_variable:
4511       return "DW_TAG_variable";
4512     case DW_TAG_volatile_type:
4513       return "DW_TAG_volatile_type";
4514     case DW_TAG_imported_module:
4515       return "DW_TAG_imported_module";
4516     case DW_TAG_MIPS_loop:
4517       return "DW_TAG_MIPS_loop";
4518     case DW_TAG_format_label:
4519       return "DW_TAG_format_label";
4520     case DW_TAG_function_template:
4521       return "DW_TAG_function_template";
4522     case DW_TAG_class_template:
4523       return "DW_TAG_class_template";
4524     case DW_TAG_GNU_BINCL:
4525       return "DW_TAG_GNU_BINCL";
4526     case DW_TAG_GNU_EINCL:
4527       return "DW_TAG_GNU_EINCL";
4528     default:
4529       return "DW_TAG_<unknown>";
4530     }
4531 }
4532 
4533 /* Convert a DWARF attribute code into its string name.  */
4534 
4535 static const char *
dwarf_attr_name(unsigned int attr)4536 dwarf_attr_name (unsigned int attr)
4537 {
4538   switch (attr)
4539     {
4540     case DW_AT_sibling:
4541       return "DW_AT_sibling";
4542     case DW_AT_location:
4543       return "DW_AT_location";
4544     case DW_AT_name:
4545       return "DW_AT_name";
4546     case DW_AT_ordering:
4547       return "DW_AT_ordering";
4548     case DW_AT_subscr_data:
4549       return "DW_AT_subscr_data";
4550     case DW_AT_byte_size:
4551       return "DW_AT_byte_size";
4552     case DW_AT_bit_offset:
4553       return "DW_AT_bit_offset";
4554     case DW_AT_bit_size:
4555       return "DW_AT_bit_size";
4556     case DW_AT_element_list:
4557       return "DW_AT_element_list";
4558     case DW_AT_stmt_list:
4559       return "DW_AT_stmt_list";
4560     case DW_AT_low_pc:
4561       return "DW_AT_low_pc";
4562     case DW_AT_high_pc:
4563       return "DW_AT_high_pc";
4564     case DW_AT_language:
4565       return "DW_AT_language";
4566     case DW_AT_member:
4567       return "DW_AT_member";
4568     case DW_AT_discr:
4569       return "DW_AT_discr";
4570     case DW_AT_discr_value:
4571       return "DW_AT_discr_value";
4572     case DW_AT_visibility:
4573       return "DW_AT_visibility";
4574     case DW_AT_import:
4575       return "DW_AT_import";
4576     case DW_AT_string_length:
4577       return "DW_AT_string_length";
4578     case DW_AT_common_reference:
4579       return "DW_AT_common_reference";
4580     case DW_AT_comp_dir:
4581       return "DW_AT_comp_dir";
4582     case DW_AT_const_value:
4583       return "DW_AT_const_value";
4584     case DW_AT_containing_type:
4585       return "DW_AT_containing_type";
4586     case DW_AT_default_value:
4587       return "DW_AT_default_value";
4588     case DW_AT_inline:
4589       return "DW_AT_inline";
4590     case DW_AT_is_optional:
4591       return "DW_AT_is_optional";
4592     case DW_AT_lower_bound:
4593       return "DW_AT_lower_bound";
4594     case DW_AT_producer:
4595       return "DW_AT_producer";
4596     case DW_AT_prototyped:
4597       return "DW_AT_prototyped";
4598     case DW_AT_return_addr:
4599       return "DW_AT_return_addr";
4600     case DW_AT_start_scope:
4601       return "DW_AT_start_scope";
4602     case DW_AT_stride_size:
4603       return "DW_AT_stride_size";
4604     case DW_AT_upper_bound:
4605       return "DW_AT_upper_bound";
4606     case DW_AT_abstract_origin:
4607       return "DW_AT_abstract_origin";
4608     case DW_AT_accessibility:
4609       return "DW_AT_accessibility";
4610     case DW_AT_address_class:
4611       return "DW_AT_address_class";
4612     case DW_AT_artificial:
4613       return "DW_AT_artificial";
4614     case DW_AT_base_types:
4615       return "DW_AT_base_types";
4616     case DW_AT_calling_convention:
4617       return "DW_AT_calling_convention";
4618     case DW_AT_count:
4619       return "DW_AT_count";
4620     case DW_AT_data_member_location:
4621       return "DW_AT_data_member_location";
4622     case DW_AT_decl_column:
4623       return "DW_AT_decl_column";
4624     case DW_AT_decl_file:
4625       return "DW_AT_decl_file";
4626     case DW_AT_decl_line:
4627       return "DW_AT_decl_line";
4628     case DW_AT_declaration:
4629       return "DW_AT_declaration";
4630     case DW_AT_discr_list:
4631       return "DW_AT_discr_list";
4632     case DW_AT_encoding:
4633       return "DW_AT_encoding";
4634     case DW_AT_external:
4635       return "DW_AT_external";
4636     case DW_AT_frame_base:
4637       return "DW_AT_frame_base";
4638     case DW_AT_friend:
4639       return "DW_AT_friend";
4640     case DW_AT_identifier_case:
4641       return "DW_AT_identifier_case";
4642     case DW_AT_macro_info:
4643       return "DW_AT_macro_info";
4644     case DW_AT_namelist_items:
4645       return "DW_AT_namelist_items";
4646     case DW_AT_priority:
4647       return "DW_AT_priority";
4648     case DW_AT_segment:
4649       return "DW_AT_segment";
4650     case DW_AT_specification:
4651       return "DW_AT_specification";
4652     case DW_AT_static_link:
4653       return "DW_AT_static_link";
4654     case DW_AT_type:
4655       return "DW_AT_type";
4656     case DW_AT_use_location:
4657       return "DW_AT_use_location";
4658     case DW_AT_variable_parameter:
4659       return "DW_AT_variable_parameter";
4660     case DW_AT_virtuality:
4661       return "DW_AT_virtuality";
4662     case DW_AT_vtable_elem_location:
4663       return "DW_AT_vtable_elem_location";
4664 
4665     case DW_AT_allocated:
4666       return "DW_AT_allocated";
4667     case DW_AT_associated:
4668       return "DW_AT_associated";
4669     case DW_AT_data_location:
4670       return "DW_AT_data_location";
4671     case DW_AT_stride:
4672       return "DW_AT_stride";
4673     case DW_AT_entry_pc:
4674       return "DW_AT_entry_pc";
4675     case DW_AT_use_UTF8:
4676       return "DW_AT_use_UTF8";
4677     case DW_AT_extension:
4678       return "DW_AT_extension";
4679     case DW_AT_ranges:
4680       return "DW_AT_ranges";
4681     case DW_AT_trampoline:
4682       return "DW_AT_trampoline";
4683     case DW_AT_call_column:
4684       return "DW_AT_call_column";
4685     case DW_AT_call_file:
4686       return "DW_AT_call_file";
4687     case DW_AT_call_line:
4688       return "DW_AT_call_line";
4689 
4690     case DW_AT_MIPS_fde:
4691       return "DW_AT_MIPS_fde";
4692     case DW_AT_MIPS_loop_begin:
4693       return "DW_AT_MIPS_loop_begin";
4694     case DW_AT_MIPS_tail_loop_begin:
4695       return "DW_AT_MIPS_tail_loop_begin";
4696     case DW_AT_MIPS_epilog_begin:
4697       return "DW_AT_MIPS_epilog_begin";
4698     case DW_AT_MIPS_loop_unroll_factor:
4699       return "DW_AT_MIPS_loop_unroll_factor";
4700     case DW_AT_MIPS_software_pipeline_depth:
4701       return "DW_AT_MIPS_software_pipeline_depth";
4702     case DW_AT_MIPS_linkage_name:
4703       return "DW_AT_MIPS_linkage_name";
4704     case DW_AT_MIPS_stride:
4705       return "DW_AT_MIPS_stride";
4706     case DW_AT_MIPS_abstract_name:
4707       return "DW_AT_MIPS_abstract_name";
4708     case DW_AT_MIPS_clone_origin:
4709       return "DW_AT_MIPS_clone_origin";
4710     case DW_AT_MIPS_has_inlines:
4711       return "DW_AT_MIPS_has_inlines";
4712 
4713     case DW_AT_sf_names:
4714       return "DW_AT_sf_names";
4715     case DW_AT_src_info:
4716       return "DW_AT_src_info";
4717     case DW_AT_mac_info:
4718       return "DW_AT_mac_info";
4719     case DW_AT_src_coords:
4720       return "DW_AT_src_coords";
4721     case DW_AT_body_begin:
4722       return "DW_AT_body_begin";
4723     case DW_AT_body_end:
4724       return "DW_AT_body_end";
4725     case DW_AT_GNU_vector:
4726       return "DW_AT_GNU_vector";
4727 
4728     case DW_AT_VMS_rtnbeg_pd_address:
4729       return "DW_AT_VMS_rtnbeg_pd_address";
4730 
4731     default:
4732       return "DW_AT_<unknown>";
4733     }
4734 }
4735 
4736 /* Convert a DWARF value form code into its string name.  */
4737 
4738 static const char *
dwarf_form_name(unsigned int form)4739 dwarf_form_name (unsigned int form)
4740 {
4741   switch (form)
4742     {
4743     case DW_FORM_addr:
4744       return "DW_FORM_addr";
4745     case DW_FORM_block2:
4746       return "DW_FORM_block2";
4747     case DW_FORM_block4:
4748       return "DW_FORM_block4";
4749     case DW_FORM_data2:
4750       return "DW_FORM_data2";
4751     case DW_FORM_data4:
4752       return "DW_FORM_data4";
4753     case DW_FORM_data8:
4754       return "DW_FORM_data8";
4755     case DW_FORM_string:
4756       return "DW_FORM_string";
4757     case DW_FORM_block:
4758       return "DW_FORM_block";
4759     case DW_FORM_block1:
4760       return "DW_FORM_block1";
4761     case DW_FORM_data1:
4762       return "DW_FORM_data1";
4763     case DW_FORM_flag:
4764       return "DW_FORM_flag";
4765     case DW_FORM_sdata:
4766       return "DW_FORM_sdata";
4767     case DW_FORM_strp:
4768       return "DW_FORM_strp";
4769     case DW_FORM_udata:
4770       return "DW_FORM_udata";
4771     case DW_FORM_ref_addr:
4772       return "DW_FORM_ref_addr";
4773     case DW_FORM_ref1:
4774       return "DW_FORM_ref1";
4775     case DW_FORM_ref2:
4776       return "DW_FORM_ref2";
4777     case DW_FORM_ref4:
4778       return "DW_FORM_ref4";
4779     case DW_FORM_ref8:
4780       return "DW_FORM_ref8";
4781     case DW_FORM_ref_udata:
4782       return "DW_FORM_ref_udata";
4783     case DW_FORM_indirect:
4784       return "DW_FORM_indirect";
4785     default:
4786       return "DW_FORM_<unknown>";
4787     }
4788 }
4789 
4790 /* Determine the "ultimate origin" of a decl.  The decl may be an inlined
4791    instance of an inlined instance of a decl which is local to an inline
4792    function, so we have to trace all of the way back through the origin chain
4793    to find out what sort of node actually served as the original seed for the
4794    given block.  */
4795 
4796 static tree
decl_ultimate_origin(tree decl)4797 decl_ultimate_origin (tree decl)
4798 {
4799   if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4800     return NULL_TREE;
4801 
4802   /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4803      nodes in the function to point to themselves; ignore that if
4804      we're trying to output the abstract instance of this function.  */
4805   if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4806     return NULL_TREE;
4807 
4808   /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4809      most distant ancestor, this should never happen.  */
4810   gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4811 
4812   return DECL_ABSTRACT_ORIGIN (decl);
4813 }
4814 
4815 /* Determine the "ultimate origin" of a block.  The block may be an inlined
4816    instance of an inlined instance of a block which is local to an inline
4817    function, so we have to trace all of the way back through the origin chain
4818    to find out what sort of node actually served as the original seed for the
4819    given block.  */
4820 
4821 static tree
block_ultimate_origin(tree block)4822 block_ultimate_origin (tree block)
4823 {
4824   tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4825 
4826   /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4827      nodes in the function to point to themselves; ignore that if
4828      we're trying to output the abstract instance of this function.  */
4829   if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4830     return NULL_TREE;
4831 
4832   if (immediate_origin == NULL_TREE)
4833     return NULL_TREE;
4834   else
4835     {
4836       tree ret_val;
4837       tree lookahead = immediate_origin;
4838 
4839       do
4840 	{
4841 	  ret_val = lookahead;
4842 	  lookahead = (TREE_CODE (ret_val) == BLOCK
4843 		       ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4844 	}
4845       while (lookahead != NULL && lookahead != ret_val);
4846 
4847       /* The block's abstract origin chain may not be the *ultimate* origin of
4848 	 the block. It could lead to a DECL that has an abstract origin set.
4849 	 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4850 	 will give us if it has one).  Note that DECL's abstract origins are
4851 	 supposed to be the most distant ancestor (or so decl_ultimate_origin
4852 	 claims), so we don't need to loop following the DECL origins.  */
4853       if (DECL_P (ret_val))
4854 	return DECL_ORIGIN (ret_val);
4855 
4856       return ret_val;
4857     }
4858 }
4859 
4860 /* Get the class to which DECL belongs, if any.  In g++, the DECL_CONTEXT
4861    of a virtual function may refer to a base class, so we check the 'this'
4862    parameter.  */
4863 
4864 static tree
decl_class_context(tree decl)4865 decl_class_context (tree decl)
4866 {
4867   tree context = NULL_TREE;
4868 
4869   if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4870     context = DECL_CONTEXT (decl);
4871   else
4872     context = TYPE_MAIN_VARIANT
4873       (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4874 
4875   if (context && !TYPE_P (context))
4876     context = NULL_TREE;
4877 
4878   return context;
4879 }
4880 
4881 /* Add an attribute/value pair to a DIE.  */
4882 
4883 static inline void
add_dwarf_attr(dw_die_ref die,dw_attr_ref attr)4884 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4885 {
4886   /* Maybe this should be an assert?  */
4887   if (die == NULL)
4888     return;
4889 
4890   if (die->die_attr == NULL)
4891     die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4892   VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4893 }
4894 
4895 static inline enum dw_val_class
AT_class(dw_attr_ref a)4896 AT_class (dw_attr_ref a)
4897 {
4898   return a->dw_attr_val.val_class;
4899 }
4900 
4901 /* Add a flag value attribute to a DIE.  */
4902 
4903 static inline void
add_AT_flag(dw_die_ref die,enum dwarf_attribute attr_kind,unsigned int flag)4904 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4905 {
4906   dw_attr_node attr;
4907 
4908   attr.dw_attr = attr_kind;
4909   attr.dw_attr_val.val_class = dw_val_class_flag;
4910   attr.dw_attr_val.v.val_flag = flag;
4911   add_dwarf_attr (die, &attr);
4912 }
4913 
4914 static inline unsigned
AT_flag(dw_attr_ref a)4915 AT_flag (dw_attr_ref a)
4916 {
4917   gcc_assert (a && AT_class (a) == dw_val_class_flag);
4918   return a->dw_attr_val.v.val_flag;
4919 }
4920 
4921 /* Add a signed integer attribute value to a DIE.  */
4922 
4923 static inline void
add_AT_int(dw_die_ref die,enum dwarf_attribute attr_kind,HOST_WIDE_INT int_val)4924 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4925 {
4926   dw_attr_node attr;
4927 
4928   attr.dw_attr = attr_kind;
4929   attr.dw_attr_val.val_class = dw_val_class_const;
4930   attr.dw_attr_val.v.val_int = int_val;
4931   add_dwarf_attr (die, &attr);
4932 }
4933 
4934 static inline HOST_WIDE_INT
AT_int(dw_attr_ref a)4935 AT_int (dw_attr_ref a)
4936 {
4937   gcc_assert (a && AT_class (a) == dw_val_class_const);
4938   return a->dw_attr_val.v.val_int;
4939 }
4940 
4941 /* Add an unsigned integer attribute value to a DIE.  */
4942 
4943 static inline void
add_AT_unsigned(dw_die_ref die,enum dwarf_attribute attr_kind,unsigned HOST_WIDE_INT unsigned_val)4944 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4945 		 unsigned HOST_WIDE_INT unsigned_val)
4946 {
4947   dw_attr_node attr;
4948 
4949   attr.dw_attr = attr_kind;
4950   attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4951   attr.dw_attr_val.v.val_unsigned = unsigned_val;
4952   add_dwarf_attr (die, &attr);
4953 }
4954 
4955 static inline unsigned HOST_WIDE_INT
AT_unsigned(dw_attr_ref a)4956 AT_unsigned (dw_attr_ref a)
4957 {
4958   gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4959   return a->dw_attr_val.v.val_unsigned;
4960 }
4961 
4962 /* Add an unsigned double integer attribute value to a DIE.  */
4963 
4964 static inline void
add_AT_long_long(dw_die_ref die,enum dwarf_attribute attr_kind,long unsigned int val_hi,long unsigned int val_low)4965 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4966 		  long unsigned int val_hi, long unsigned int val_low)
4967 {
4968   dw_attr_node attr;
4969 
4970   attr.dw_attr = attr_kind;
4971   attr.dw_attr_val.val_class = dw_val_class_long_long;
4972   attr.dw_attr_val.v.val_long_long.hi = val_hi;
4973   attr.dw_attr_val.v.val_long_long.low = val_low;
4974   add_dwarf_attr (die, &attr);
4975 }
4976 
4977 /* Add a floating point attribute value to a DIE and return it.  */
4978 
4979 static inline void
add_AT_vec(dw_die_ref die,enum dwarf_attribute attr_kind,unsigned int length,unsigned int elt_size,unsigned char * array)4980 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4981 	    unsigned int length, unsigned int elt_size, unsigned char *array)
4982 {
4983   dw_attr_node attr;
4984 
4985   attr.dw_attr = attr_kind;
4986   attr.dw_attr_val.val_class = dw_val_class_vec;
4987   attr.dw_attr_val.v.val_vec.length = length;
4988   attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4989   attr.dw_attr_val.v.val_vec.array = array;
4990   add_dwarf_attr (die, &attr);
4991 }
4992 
4993 /* Hash and equality functions for debug_str_hash.  */
4994 
4995 static hashval_t
debug_str_do_hash(const void * x)4996 debug_str_do_hash (const void *x)
4997 {
4998   return htab_hash_string (((const struct indirect_string_node *)x)->str);
4999 }
5000 
5001 static int
debug_str_eq(const void * x1,const void * x2)5002 debug_str_eq (const void *x1, const void *x2)
5003 {
5004   return strcmp ((((const struct indirect_string_node *)x1)->str),
5005 		 (const char *)x2) == 0;
5006 }
5007 
5008 /* Add a string attribute value to a DIE.  */
5009 
5010 static inline void
add_AT_string(dw_die_ref die,enum dwarf_attribute attr_kind,const char * str)5011 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5012 {
5013   dw_attr_node attr;
5014   struct indirect_string_node *node;
5015   void **slot;
5016 
5017   if (! debug_str_hash)
5018     debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5019 				      debug_str_eq, NULL);
5020 
5021   slot = htab_find_slot_with_hash (debug_str_hash, str,
5022 				   htab_hash_string (str), INSERT);
5023   if (*slot == NULL)
5024     *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5025   node = (struct indirect_string_node *) *slot;
5026   node->str = ggc_strdup (str);
5027   node->refcount++;
5028 
5029   attr.dw_attr = attr_kind;
5030   attr.dw_attr_val.val_class = dw_val_class_str;
5031   attr.dw_attr_val.v.val_str = node;
5032   add_dwarf_attr (die, &attr);
5033 }
5034 
5035 static inline const char *
AT_string(dw_attr_ref a)5036 AT_string (dw_attr_ref a)
5037 {
5038   gcc_assert (a && AT_class (a) == dw_val_class_str);
5039   return a->dw_attr_val.v.val_str->str;
5040 }
5041 
5042 /* Find out whether a string should be output inline in DIE
5043    or out-of-line in .debug_str section.  */
5044 
5045 static int
AT_string_form(dw_attr_ref a)5046 AT_string_form (dw_attr_ref a)
5047 {
5048   struct indirect_string_node *node;
5049   unsigned int len;
5050   char label[32];
5051 
5052   gcc_assert (a && AT_class (a) == dw_val_class_str);
5053 
5054   node = a->dw_attr_val.v.val_str;
5055   if (node->form)
5056     return node->form;
5057 
5058   len = strlen (node->str) + 1;
5059 
5060   /* If the string is shorter or equal to the size of the reference, it is
5061      always better to put it inline.  */
5062   if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5063     return node->form = DW_FORM_string;
5064 
5065   /* If we cannot expect the linker to merge strings in .debug_str
5066      section, only put it into .debug_str if it is worth even in this
5067      single module.  */
5068   if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5069       && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5070     return node->form = DW_FORM_string;
5071 
5072   ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5073   ++dw2_string_counter;
5074   node->label = xstrdup (label);
5075 
5076   return node->form = DW_FORM_strp;
5077 }
5078 
5079 /* Add a DIE reference attribute value to a DIE.  */
5080 
5081 static inline void
add_AT_die_ref(dw_die_ref die,enum dwarf_attribute attr_kind,dw_die_ref targ_die)5082 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5083 {
5084   dw_attr_node attr;
5085 
5086   attr.dw_attr = attr_kind;
5087   attr.dw_attr_val.val_class = dw_val_class_die_ref;
5088   attr.dw_attr_val.v.val_die_ref.die = targ_die;
5089   attr.dw_attr_val.v.val_die_ref.external = 0;
5090   add_dwarf_attr (die, &attr);
5091 }
5092 
5093 /* Add an AT_specification attribute to a DIE, and also make the back
5094    pointer from the specification to the definition.  */
5095 
5096 static inline void
add_AT_specification(dw_die_ref die,dw_die_ref targ_die)5097 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5098 {
5099   add_AT_die_ref (die, DW_AT_specification, targ_die);
5100   gcc_assert (!targ_die->die_definition);
5101   targ_die->die_definition = die;
5102 }
5103 
5104 static inline dw_die_ref
AT_ref(dw_attr_ref a)5105 AT_ref (dw_attr_ref a)
5106 {
5107   gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5108   return a->dw_attr_val.v.val_die_ref.die;
5109 }
5110 
5111 static inline int
AT_ref_external(dw_attr_ref a)5112 AT_ref_external (dw_attr_ref a)
5113 {
5114   if (a && AT_class (a) == dw_val_class_die_ref)
5115     return a->dw_attr_val.v.val_die_ref.external;
5116 
5117   return 0;
5118 }
5119 
5120 static inline void
set_AT_ref_external(dw_attr_ref a,int i)5121 set_AT_ref_external (dw_attr_ref a, int i)
5122 {
5123   gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5124   a->dw_attr_val.v.val_die_ref.external = i;
5125 }
5126 
5127 /* Add an FDE reference attribute value to a DIE.  */
5128 
5129 static inline void
add_AT_fde_ref(dw_die_ref die,enum dwarf_attribute attr_kind,unsigned int targ_fde)5130 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5131 {
5132   dw_attr_node attr;
5133 
5134   attr.dw_attr = attr_kind;
5135   attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5136   attr.dw_attr_val.v.val_fde_index = targ_fde;
5137   add_dwarf_attr (die, &attr);
5138 }
5139 
5140 /* Add a location description attribute value to a DIE.  */
5141 
5142 static inline void
add_AT_loc(dw_die_ref die,enum dwarf_attribute attr_kind,dw_loc_descr_ref loc)5143 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5144 {
5145   dw_attr_node attr;
5146 
5147   attr.dw_attr = attr_kind;
5148   attr.dw_attr_val.val_class = dw_val_class_loc;
5149   attr.dw_attr_val.v.val_loc = loc;
5150   add_dwarf_attr (die, &attr);
5151 }
5152 
5153 static inline dw_loc_descr_ref
AT_loc(dw_attr_ref a)5154 AT_loc (dw_attr_ref a)
5155 {
5156   gcc_assert (a && AT_class (a) == dw_val_class_loc);
5157   return a->dw_attr_val.v.val_loc;
5158 }
5159 
5160 static inline void
add_AT_loc_list(dw_die_ref die,enum dwarf_attribute attr_kind,dw_loc_list_ref loc_list)5161 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5162 {
5163   dw_attr_node attr;
5164 
5165   attr.dw_attr = attr_kind;
5166   attr.dw_attr_val.val_class = dw_val_class_loc_list;
5167   attr.dw_attr_val.v.val_loc_list = loc_list;
5168   add_dwarf_attr (die, &attr);
5169   have_location_lists = true;
5170 }
5171 
5172 static inline dw_loc_list_ref
AT_loc_list(dw_attr_ref a)5173 AT_loc_list (dw_attr_ref a)
5174 {
5175   gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5176   return a->dw_attr_val.v.val_loc_list;
5177 }
5178 
5179 /* Add an address constant attribute value to a DIE.  */
5180 
5181 static inline void
add_AT_addr(dw_die_ref die,enum dwarf_attribute attr_kind,rtx addr)5182 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5183 {
5184   dw_attr_node attr;
5185 
5186   attr.dw_attr = attr_kind;
5187   attr.dw_attr_val.val_class = dw_val_class_addr;
5188   attr.dw_attr_val.v.val_addr = addr;
5189   add_dwarf_attr (die, &attr);
5190 }
5191 
5192 /* Get the RTX from to an address DIE attribute.  */
5193 
5194 static inline rtx
AT_addr(dw_attr_ref a)5195 AT_addr (dw_attr_ref a)
5196 {
5197   gcc_assert (a && AT_class (a) == dw_val_class_addr);
5198   return a->dw_attr_val.v.val_addr;
5199 }
5200 
5201 /* Add a file attribute value to a DIE.  */
5202 
5203 static inline void
add_AT_file(dw_die_ref die,enum dwarf_attribute attr_kind,struct dwarf_file_data * fd)5204 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5205 	     struct dwarf_file_data *fd)
5206 {
5207   dw_attr_node attr;
5208 
5209   attr.dw_attr = attr_kind;
5210   attr.dw_attr_val.val_class = dw_val_class_file;
5211   attr.dw_attr_val.v.val_file = fd;
5212   add_dwarf_attr (die, &attr);
5213 }
5214 
5215 /* Get the dwarf_file_data from a file DIE attribute.  */
5216 
5217 static inline struct dwarf_file_data *
AT_file(dw_attr_ref a)5218 AT_file (dw_attr_ref a)
5219 {
5220   gcc_assert (a && AT_class (a) == dw_val_class_file);
5221   return a->dw_attr_val.v.val_file;
5222 }
5223 
5224 /* Add a label identifier attribute value to a DIE.  */
5225 
5226 static inline void
add_AT_lbl_id(dw_die_ref die,enum dwarf_attribute attr_kind,const char * lbl_id)5227 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5228 {
5229   dw_attr_node attr;
5230 
5231   attr.dw_attr = attr_kind;
5232   attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5233   attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5234   add_dwarf_attr (die, &attr);
5235 }
5236 
5237 /* Add a section offset attribute value to a DIE, an offset into the
5238    debug_line section.  */
5239 
5240 static inline void
add_AT_lineptr(dw_die_ref die,enum dwarf_attribute attr_kind,const char * label)5241 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5242 		const char *label)
5243 {
5244   dw_attr_node attr;
5245 
5246   attr.dw_attr = attr_kind;
5247   attr.dw_attr_val.val_class = dw_val_class_lineptr;
5248   attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5249   add_dwarf_attr (die, &attr);
5250 }
5251 
5252 /* Add a section offset attribute value to a DIE, an offset into the
5253    debug_macinfo section.  */
5254 
5255 static inline void
add_AT_macptr(dw_die_ref die,enum dwarf_attribute attr_kind,const char * label)5256 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5257 	       const char *label)
5258 {
5259   dw_attr_node attr;
5260 
5261   attr.dw_attr = attr_kind;
5262   attr.dw_attr_val.val_class = dw_val_class_macptr;
5263   attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5264   add_dwarf_attr (die, &attr);
5265 }
5266 
5267 /* Add an offset attribute value to a DIE.  */
5268 
5269 static inline void
add_AT_offset(dw_die_ref die,enum dwarf_attribute attr_kind,unsigned HOST_WIDE_INT offset)5270 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5271 	       unsigned HOST_WIDE_INT offset)
5272 {
5273   dw_attr_node attr;
5274 
5275   attr.dw_attr = attr_kind;
5276   attr.dw_attr_val.val_class = dw_val_class_offset;
5277   attr.dw_attr_val.v.val_offset = offset;
5278   add_dwarf_attr (die, &attr);
5279 }
5280 
5281 /* Add an range_list attribute value to a DIE.  */
5282 
5283 static void
add_AT_range_list(dw_die_ref die,enum dwarf_attribute attr_kind,long unsigned int offset)5284 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5285 		   long unsigned int offset)
5286 {
5287   dw_attr_node attr;
5288 
5289   attr.dw_attr = attr_kind;
5290   attr.dw_attr_val.val_class = dw_val_class_range_list;
5291   attr.dw_attr_val.v.val_offset = offset;
5292   add_dwarf_attr (die, &attr);
5293 }
5294 
5295 static inline const char *
AT_lbl(dw_attr_ref a)5296 AT_lbl (dw_attr_ref a)
5297 {
5298   gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5299 		    || AT_class (a) == dw_val_class_lineptr
5300 		    || AT_class (a) == dw_val_class_macptr));
5301   return a->dw_attr_val.v.val_lbl_id;
5302 }
5303 
5304 /* Get the attribute of type attr_kind.  */
5305 
5306 static dw_attr_ref
get_AT(dw_die_ref die,enum dwarf_attribute attr_kind)5307 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5308 {
5309   dw_attr_ref a;
5310   unsigned ix;
5311   dw_die_ref spec = NULL;
5312 
5313   if (! die)
5314     return NULL;
5315 
5316   for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5317     if (a->dw_attr == attr_kind)
5318       return a;
5319     else if (a->dw_attr == DW_AT_specification
5320 	     || a->dw_attr == DW_AT_abstract_origin)
5321       spec = AT_ref (a);
5322 
5323   if (spec)
5324     return get_AT (spec, attr_kind);
5325 
5326   return NULL;
5327 }
5328 
5329 /* Return the "low pc" attribute value, typically associated with a subprogram
5330    DIE.  Return null if the "low pc" attribute is either not present, or if it
5331    cannot be represented as an assembler label identifier.  */
5332 
5333 static inline const char *
get_AT_low_pc(dw_die_ref die)5334 get_AT_low_pc (dw_die_ref die)
5335 {
5336   dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5337 
5338   return a ? AT_lbl (a) : NULL;
5339 }
5340 
5341 /* Return the "high pc" attribute value, typically associated with a subprogram
5342    DIE.  Return null if the "high pc" attribute is either not present, or if it
5343    cannot be represented as an assembler label identifier.  */
5344 
5345 static inline const char *
get_AT_hi_pc(dw_die_ref die)5346 get_AT_hi_pc (dw_die_ref die)
5347 {
5348   dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5349 
5350   return a ? AT_lbl (a) : NULL;
5351 }
5352 
5353 /* Return the value of the string attribute designated by ATTR_KIND, or
5354    NULL if it is not present.  */
5355 
5356 static inline const char *
get_AT_string(dw_die_ref die,enum dwarf_attribute attr_kind)5357 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5358 {
5359   dw_attr_ref a = get_AT (die, attr_kind);
5360 
5361   return a ? AT_string (a) : NULL;
5362 }
5363 
5364 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5365    if it is not present.  */
5366 
5367 static inline int
get_AT_flag(dw_die_ref die,enum dwarf_attribute attr_kind)5368 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5369 {
5370   dw_attr_ref a = get_AT (die, attr_kind);
5371 
5372   return a ? AT_flag (a) : 0;
5373 }
5374 
5375 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5376    if it is not present.  */
5377 
5378 static inline unsigned
get_AT_unsigned(dw_die_ref die,enum dwarf_attribute attr_kind)5379 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5380 {
5381   dw_attr_ref a = get_AT (die, attr_kind);
5382 
5383   return a ? AT_unsigned (a) : 0;
5384 }
5385 
5386 static inline dw_die_ref
get_AT_ref(dw_die_ref die,enum dwarf_attribute attr_kind)5387 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5388 {
5389   dw_attr_ref a = get_AT (die, attr_kind);
5390 
5391   return a ? AT_ref (a) : NULL;
5392 }
5393 
5394 static inline struct dwarf_file_data *
get_AT_file(dw_die_ref die,enum dwarf_attribute attr_kind)5395 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5396 {
5397   dw_attr_ref a = get_AT (die, attr_kind);
5398 
5399   return a ? AT_file (a) : NULL;
5400 }
5401 
5402 /* Return TRUE if the language is C or C++.  */
5403 
5404 static inline bool
is_c_family(void)5405 is_c_family (void)
5406 {
5407   unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5408 
5409   return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5410 	  || lang == DW_LANG_C99
5411 	  || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5412 }
5413 
5414 /* Return TRUE if the language is C++.  */
5415 
5416 static inline bool
is_cxx(void)5417 is_cxx (void)
5418 {
5419   unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5420 
5421   return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5422 }
5423 
5424 /* Return TRUE if the language is Fortran.  */
5425 
5426 static inline bool
is_fortran(void)5427 is_fortran (void)
5428 {
5429   unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5430 
5431   return (lang == DW_LANG_Fortran77
5432 	  || lang == DW_LANG_Fortran90
5433 	  || lang == DW_LANG_Fortran95);
5434 }
5435 
5436 /* Return TRUE if the language is Java.  */
5437 
5438 static inline bool
is_java(void)5439 is_java (void)
5440 {
5441   unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5442 
5443   return lang == DW_LANG_Java;
5444 }
5445 
5446 /* Return TRUE if the language is Ada.  */
5447 
5448 static inline bool
is_ada(void)5449 is_ada (void)
5450 {
5451   unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5452 
5453   return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5454 }
5455 
5456 /* Remove the specified attribute if present.  */
5457 
5458 static void
remove_AT(dw_die_ref die,enum dwarf_attribute attr_kind)5459 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5460 {
5461   dw_attr_ref a;
5462   unsigned ix;
5463 
5464   if (! die)
5465     return;
5466 
5467   for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5468     if (a->dw_attr == attr_kind)
5469       {
5470 	if (AT_class (a) == dw_val_class_str)
5471 	  if (a->dw_attr_val.v.val_str->refcount)
5472 	    a->dw_attr_val.v.val_str->refcount--;
5473 
5474 	/* VEC_ordered_remove should help reduce the number of abbrevs
5475 	   that are needed.  */
5476 	VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5477 	return;
5478       }
5479 }
5480 
5481 /* Remove CHILD from its parent.  PREV must have the property that
5482    PREV->DIE_SIB == CHILD.  Does not alter CHILD.  */
5483 
5484 static void
remove_child_with_prev(dw_die_ref child,dw_die_ref prev)5485 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5486 {
5487   gcc_assert (child->die_parent == prev->die_parent);
5488   gcc_assert (prev->die_sib == child);
5489   if (prev == child)
5490     {
5491       gcc_assert (child->die_parent->die_child == child);
5492       prev = NULL;
5493     }
5494   else
5495     prev->die_sib = child->die_sib;
5496   if (child->die_parent->die_child == child)
5497     child->die_parent->die_child = prev;
5498 }
5499 
5500 /* Remove child DIE whose die_tag is TAG.  Do nothing if no child
5501    matches TAG.  */
5502 
5503 static void
remove_child_TAG(dw_die_ref die,enum dwarf_tag tag)5504 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5505 {
5506   dw_die_ref c;
5507 
5508   c = die->die_child;
5509   if (c) do {
5510     dw_die_ref prev = c;
5511     c = c->die_sib;
5512     while (c->die_tag == tag)
5513       {
5514 	remove_child_with_prev (c, prev);
5515 	/* Might have removed every child.  */
5516 	if (c == c->die_sib)
5517 	  return;
5518 	c = c->die_sib;
5519       }
5520   } while (c != die->die_child);
5521 }
5522 
5523 /* Add a CHILD_DIE as the last child of DIE.  */
5524 
5525 static void
add_child_die(dw_die_ref die,dw_die_ref child_die)5526 add_child_die (dw_die_ref die, dw_die_ref child_die)
5527 {
5528   /* FIXME this should probably be an assert.  */
5529   if (! die || ! child_die)
5530     return;
5531   gcc_assert (die != child_die);
5532 
5533   child_die->die_parent = die;
5534   if (die->die_child)
5535     {
5536       child_die->die_sib = die->die_child->die_sib;
5537       die->die_child->die_sib = child_die;
5538     }
5539   else
5540     child_die->die_sib = child_die;
5541   die->die_child = child_die;
5542 }
5543 
5544 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5545    is the specification, to the end of PARENT's list of children.
5546    This is done by removing and re-adding it.  */
5547 
5548 static void
splice_child_die(dw_die_ref parent,dw_die_ref child)5549 splice_child_die (dw_die_ref parent, dw_die_ref child)
5550 {
5551   dw_die_ref p;
5552 
5553   /* We want the declaration DIE from inside the class, not the
5554      specification DIE at toplevel.  */
5555   if (child->die_parent != parent)
5556     {
5557       dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5558 
5559       if (tmp)
5560 	child = tmp;
5561     }
5562 
5563   gcc_assert (child->die_parent == parent
5564 	      || (child->die_parent
5565 		  == get_AT_ref (parent, DW_AT_specification)));
5566 
5567   for (p = child->die_parent->die_child; ; p = p->die_sib)
5568     if (p->die_sib == child)
5569       {
5570 	remove_child_with_prev (child, p);
5571 	break;
5572       }
5573 
5574   add_child_die (parent, child);
5575 }
5576 
5577 /* Return a pointer to a newly created DIE node.  */
5578 
5579 static inline dw_die_ref
new_die(enum dwarf_tag tag_value,dw_die_ref parent_die,tree t)5580 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5581 {
5582   dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5583 
5584   die->die_tag = tag_value;
5585 
5586   if (parent_die != NULL)
5587     add_child_die (parent_die, die);
5588   else
5589     {
5590       limbo_die_node *limbo_node;
5591 
5592       limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5593       limbo_node->die = die;
5594       limbo_node->created_for = t;
5595       limbo_node->next = limbo_die_list;
5596       limbo_die_list = limbo_node;
5597     }
5598 
5599   return die;
5600 }
5601 
5602 /* Return the DIE associated with the given type specifier.  */
5603 
5604 static inline dw_die_ref
lookup_type_die(tree type)5605 lookup_type_die (tree type)
5606 {
5607   return TYPE_SYMTAB_DIE (type);
5608 }
5609 
5610 /* Equate a DIE to a given type specifier.  */
5611 
5612 static inline void
equate_type_number_to_die(tree type,dw_die_ref type_die)5613 equate_type_number_to_die (tree type, dw_die_ref type_die)
5614 {
5615   TYPE_SYMTAB_DIE (type) = type_die;
5616 }
5617 
5618 /* Returns a hash value for X (which really is a die_struct).  */
5619 
5620 static hashval_t
decl_die_table_hash(const void * x)5621 decl_die_table_hash (const void *x)
5622 {
5623   return (hashval_t) ((const dw_die_ref) x)->decl_id;
5624 }
5625 
5626 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y.  */
5627 
5628 static int
decl_die_table_eq(const void * x,const void * y)5629 decl_die_table_eq (const void *x, const void *y)
5630 {
5631   return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5632 }
5633 
5634 /* Return the DIE associated with a given declaration.  */
5635 
5636 static inline dw_die_ref
lookup_decl_die(tree decl)5637 lookup_decl_die (tree decl)
5638 {
5639   return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5640 }
5641 
5642 /* Returns a hash value for X (which really is a var_loc_list).  */
5643 
5644 static hashval_t
decl_loc_table_hash(const void * x)5645 decl_loc_table_hash (const void *x)
5646 {
5647   return (hashval_t) ((const var_loc_list *) x)->decl_id;
5648 }
5649 
5650 /* Return nonzero if decl_id of var_loc_list X is the same as
5651    UID of decl *Y.  */
5652 
5653 static int
decl_loc_table_eq(const void * x,const void * y)5654 decl_loc_table_eq (const void *x, const void *y)
5655 {
5656   return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5657 }
5658 
5659 /* Return the var_loc list associated with a given declaration.  */
5660 
5661 static inline var_loc_list *
lookup_decl_loc(tree decl)5662 lookup_decl_loc (tree decl)
5663 {
5664   return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5665 }
5666 
5667 /* Equate a DIE to a particular declaration.  */
5668 
5669 static void
equate_decl_number_to_die(tree decl,dw_die_ref decl_die)5670 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5671 {
5672   unsigned int decl_id = DECL_UID (decl);
5673   void **slot;
5674 
5675   slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5676   *slot = decl_die;
5677   decl_die->decl_id = decl_id;
5678 }
5679 
5680 /* Add a variable location node to the linked list for DECL.  */
5681 
5682 static void
add_var_loc_to_decl(tree decl,struct var_loc_node * loc)5683 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5684 {
5685   unsigned int decl_id = DECL_UID (decl);
5686   var_loc_list *temp;
5687   void **slot;
5688 
5689   slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5690   if (*slot == NULL)
5691     {
5692       temp = ggc_alloc_cleared (sizeof (var_loc_list));
5693       temp->decl_id = decl_id;
5694       *slot = temp;
5695     }
5696   else
5697     temp = *slot;
5698 
5699   if (temp->last)
5700     {
5701       /* If the current location is the same as the end of the list,
5702 	 we have nothing to do.  */
5703       if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5704 			NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5705 	{
5706 	  /* Add LOC to the end of list and update LAST.  */
5707 	  temp->last->next = loc;
5708 	  temp->last = loc;
5709 	}
5710     }
5711   /* Do not add empty location to the beginning of the list.  */
5712   else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5713     {
5714       temp->first = loc;
5715       temp->last = loc;
5716     }
5717 }
5718 
5719 /* Keep track of the number of spaces used to indent the
5720    output of the debugging routines that print the structure of
5721    the DIE internal representation.  */
5722 static int print_indent;
5723 
5724 /* Indent the line the number of spaces given by print_indent.  */
5725 
5726 static inline void
print_spaces(FILE * outfile)5727 print_spaces (FILE *outfile)
5728 {
5729   fprintf (outfile, "%*s", print_indent, "");
5730 }
5731 
5732 /* Print the information associated with a given DIE, and its children.
5733    This routine is a debugging aid only.  */
5734 
5735 static void
print_die(dw_die_ref die,FILE * outfile)5736 print_die (dw_die_ref die, FILE *outfile)
5737 {
5738   dw_attr_ref a;
5739   dw_die_ref c;
5740   unsigned ix;
5741 
5742   print_spaces (outfile);
5743   fprintf (outfile, "DIE %4lu: %s\n",
5744 	   die->die_offset, dwarf_tag_name (die->die_tag));
5745   print_spaces (outfile);
5746   fprintf (outfile, "  abbrev id: %lu", die->die_abbrev);
5747   fprintf (outfile, " offset: %lu\n", die->die_offset);
5748 
5749   for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5750     {
5751       print_spaces (outfile);
5752       fprintf (outfile, "  %s: ", dwarf_attr_name (a->dw_attr));
5753 
5754       switch (AT_class (a))
5755 	{
5756 	case dw_val_class_addr:
5757 	  fprintf (outfile, "address");
5758 	  break;
5759 	case dw_val_class_offset:
5760 	  fprintf (outfile, "offset");
5761 	  break;
5762 	case dw_val_class_loc:
5763 	  fprintf (outfile, "location descriptor");
5764 	  break;
5765 	case dw_val_class_loc_list:
5766 	  fprintf (outfile, "location list -> label:%s",
5767 		   AT_loc_list (a)->ll_symbol);
5768 	  break;
5769 	case dw_val_class_range_list:
5770 	  fprintf (outfile, "range list");
5771 	  break;
5772 	case dw_val_class_const:
5773 	  fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5774 	  break;
5775 	case dw_val_class_unsigned_const:
5776 	  fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5777 	  break;
5778 	case dw_val_class_long_long:
5779 	  fprintf (outfile, "constant (%lu,%lu)",
5780 		   a->dw_attr_val.v.val_long_long.hi,
5781 		   a->dw_attr_val.v.val_long_long.low);
5782 	  break;
5783 	case dw_val_class_vec:
5784 	  fprintf (outfile, "floating-point or vector constant");
5785 	  break;
5786 	case dw_val_class_flag:
5787 	  fprintf (outfile, "%u", AT_flag (a));
5788 	  break;
5789 	case dw_val_class_die_ref:
5790 	  if (AT_ref (a) != NULL)
5791 	    {
5792 	      if (AT_ref (a)->die_symbol)
5793 		fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5794 	      else
5795 		fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5796 	    }
5797 	  else
5798 	    fprintf (outfile, "die -> <null>");
5799 	  break;
5800 	case dw_val_class_lbl_id:
5801 	case dw_val_class_lineptr:
5802 	case dw_val_class_macptr:
5803 	  fprintf (outfile, "label: %s", AT_lbl (a));
5804 	  break;
5805 	case dw_val_class_str:
5806 	  if (AT_string (a) != NULL)
5807 	    fprintf (outfile, "\"%s\"", AT_string (a));
5808 	  else
5809 	    fprintf (outfile, "<null>");
5810 	  break;
5811 	case dw_val_class_file:
5812 	  fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5813 		   AT_file (a)->emitted_number);
5814 	  break;
5815 	default:
5816 	  break;
5817 	}
5818 
5819       fprintf (outfile, "\n");
5820     }
5821 
5822   if (die->die_child != NULL)
5823     {
5824       print_indent += 4;
5825       FOR_EACH_CHILD (die, c, print_die (c, outfile));
5826       print_indent -= 4;
5827     }
5828   if (print_indent == 0)
5829     fprintf (outfile, "\n");
5830 }
5831 
5832 /* Print the contents of the source code line number correspondence table.
5833    This routine is a debugging aid only.  */
5834 
5835 static void
print_dwarf_line_table(FILE * outfile)5836 print_dwarf_line_table (FILE *outfile)
5837 {
5838   unsigned i;
5839   dw_line_info_ref line_info;
5840 
5841   fprintf (outfile, "\n\nDWARF source line information\n");
5842   for (i = 1; i < line_info_table_in_use; i++)
5843     {
5844       line_info = &line_info_table[i];
5845       fprintf (outfile, "%5d: %4ld %6ld\n", i,
5846 	       line_info->dw_file_num,
5847 	       line_info->dw_line_num);
5848     }
5849 
5850   fprintf (outfile, "\n\n");
5851 }
5852 
5853 /* Print the information collected for a given DIE.  */
5854 
5855 void
debug_dwarf_die(dw_die_ref die)5856 debug_dwarf_die (dw_die_ref die)
5857 {
5858   print_die (die, stderr);
5859 }
5860 
5861 /* Print all DWARF information collected for the compilation unit.
5862    This routine is a debugging aid only.  */
5863 
5864 void
debug_dwarf(void)5865 debug_dwarf (void)
5866 {
5867   print_indent = 0;
5868   print_die (comp_unit_die, stderr);
5869   if (! DWARF2_ASM_LINE_DEBUG_INFO)
5870     print_dwarf_line_table (stderr);
5871 }
5872 
5873 /* Start a new compilation unit DIE for an include file.  OLD_UNIT is the CU
5874    for the enclosing include file, if any.  BINCL_DIE is the DW_TAG_GNU_BINCL
5875    DIE that marks the start of the DIEs for this include file.  */
5876 
5877 static dw_die_ref
push_new_compile_unit(dw_die_ref old_unit,dw_die_ref bincl_die)5878 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5879 {
5880   const char *filename = get_AT_string (bincl_die, DW_AT_name);
5881   dw_die_ref new_unit = gen_compile_unit_die (filename);
5882 
5883   new_unit->die_sib = old_unit;
5884   return new_unit;
5885 }
5886 
5887 /* Close an include-file CU and reopen the enclosing one.  */
5888 
5889 static dw_die_ref
pop_compile_unit(dw_die_ref old_unit)5890 pop_compile_unit (dw_die_ref old_unit)
5891 {
5892   dw_die_ref new_unit = old_unit->die_sib;
5893 
5894   old_unit->die_sib = NULL;
5895   return new_unit;
5896 }
5897 
5898 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5899 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5900 
5901 /* Calculate the checksum of a location expression.  */
5902 
5903 static inline void
loc_checksum(dw_loc_descr_ref loc,struct md5_ctx * ctx)5904 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5905 {
5906   CHECKSUM (loc->dw_loc_opc);
5907   CHECKSUM (loc->dw_loc_oprnd1);
5908   CHECKSUM (loc->dw_loc_oprnd2);
5909 }
5910 
5911 /* Calculate the checksum of an attribute.  */
5912 
5913 static void
attr_checksum(dw_attr_ref at,struct md5_ctx * ctx,int * mark)5914 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5915 {
5916   dw_loc_descr_ref loc;
5917   rtx r;
5918 
5919   CHECKSUM (at->dw_attr);
5920 
5921   /* We don't care that this was compiled with a different compiler
5922      snapshot; if the output is the same, that's what matters.  */
5923   if (at->dw_attr == DW_AT_producer)
5924     return;
5925 
5926   switch (AT_class (at))
5927     {
5928     case dw_val_class_const:
5929       CHECKSUM (at->dw_attr_val.v.val_int);
5930       break;
5931     case dw_val_class_unsigned_const:
5932       CHECKSUM (at->dw_attr_val.v.val_unsigned);
5933       break;
5934     case dw_val_class_long_long:
5935       CHECKSUM (at->dw_attr_val.v.val_long_long);
5936       break;
5937     case dw_val_class_vec:
5938       CHECKSUM (at->dw_attr_val.v.val_vec);
5939       break;
5940     case dw_val_class_flag:
5941       CHECKSUM (at->dw_attr_val.v.val_flag);
5942       break;
5943     case dw_val_class_str:
5944       CHECKSUM_STRING (AT_string (at));
5945       break;
5946 
5947     case dw_val_class_addr:
5948       r = AT_addr (at);
5949       gcc_assert (GET_CODE (r) == SYMBOL_REF);
5950       CHECKSUM_STRING (XSTR (r, 0));
5951       break;
5952 
5953     case dw_val_class_offset:
5954       CHECKSUM (at->dw_attr_val.v.val_offset);
5955       break;
5956 
5957     case dw_val_class_loc:
5958       for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5959 	loc_checksum (loc, ctx);
5960       break;
5961 
5962     case dw_val_class_die_ref:
5963       die_checksum (AT_ref (at), ctx, mark);
5964       break;
5965 
5966     case dw_val_class_fde_ref:
5967     case dw_val_class_lbl_id:
5968     case dw_val_class_lineptr:
5969     case dw_val_class_macptr:
5970       break;
5971 
5972     case dw_val_class_file:
5973       CHECKSUM_STRING (AT_file (at)->filename);
5974       break;
5975 
5976     default:
5977       break;
5978     }
5979 }
5980 
5981 /* Calculate the checksum of a DIE.  */
5982 
5983 static void
die_checksum(dw_die_ref die,struct md5_ctx * ctx,int * mark)5984 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5985 {
5986   dw_die_ref c;
5987   dw_attr_ref a;
5988   unsigned ix;
5989 
5990   /* To avoid infinite recursion.  */
5991   if (die->die_mark)
5992     {
5993       CHECKSUM (die->die_mark);
5994       return;
5995     }
5996   die->die_mark = ++(*mark);
5997 
5998   CHECKSUM (die->die_tag);
5999 
6000   for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6001     attr_checksum (a, ctx, mark);
6002 
6003   FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6004 }
6005 
6006 #undef CHECKSUM
6007 #undef CHECKSUM_STRING
6008 
6009 /* Do the location expressions look same?  */
6010 static inline int
same_loc_p(dw_loc_descr_ref loc1,dw_loc_descr_ref loc2,int * mark)6011 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6012 {
6013   return loc1->dw_loc_opc == loc2->dw_loc_opc
6014 	 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6015 	 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6016 }
6017 
6018 /* Do the values look the same?  */
6019 static int
same_dw_val_p(dw_val_node * v1,dw_val_node * v2,int * mark)6020 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
6021 {
6022   dw_loc_descr_ref loc1, loc2;
6023   rtx r1, r2;
6024 
6025   if (v1->val_class != v2->val_class)
6026     return 0;
6027 
6028   switch (v1->val_class)
6029     {
6030     case dw_val_class_const:
6031       return v1->v.val_int == v2->v.val_int;
6032     case dw_val_class_unsigned_const:
6033       return v1->v.val_unsigned == v2->v.val_unsigned;
6034     case dw_val_class_long_long:
6035       return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6036 	     && v1->v.val_long_long.low == v2->v.val_long_long.low;
6037     case dw_val_class_vec:
6038       if (v1->v.val_vec.length != v2->v.val_vec.length
6039 	  || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6040 	return 0;
6041       if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6042 		  v1->v.val_vec.length * v1->v.val_vec.elt_size))
6043 	return 0;
6044       return 1;
6045     case dw_val_class_flag:
6046       return v1->v.val_flag == v2->v.val_flag;
6047     case dw_val_class_str:
6048       return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6049 
6050     case dw_val_class_addr:
6051       r1 = v1->v.val_addr;
6052       r2 = v2->v.val_addr;
6053       if (GET_CODE (r1) != GET_CODE (r2))
6054 	return 0;
6055       gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6056       return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6057 
6058     case dw_val_class_offset:
6059       return v1->v.val_offset == v2->v.val_offset;
6060 
6061     case dw_val_class_loc:
6062       for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6063 	   loc1 && loc2;
6064 	   loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6065 	if (!same_loc_p (loc1, loc2, mark))
6066 	  return 0;
6067       return !loc1 && !loc2;
6068 
6069     case dw_val_class_die_ref:
6070       return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6071 
6072     case dw_val_class_fde_ref:
6073     case dw_val_class_lbl_id:
6074     case dw_val_class_lineptr:
6075     case dw_val_class_macptr:
6076       return 1;
6077 
6078     case dw_val_class_file:
6079       return v1->v.val_file == v2->v.val_file;
6080 
6081     default:
6082       return 1;
6083     }
6084 }
6085 
6086 /* Do the attributes look the same?  */
6087 
6088 static int
same_attr_p(dw_attr_ref at1,dw_attr_ref at2,int * mark)6089 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6090 {
6091   if (at1->dw_attr != at2->dw_attr)
6092     return 0;
6093 
6094   /* We don't care that this was compiled with a different compiler
6095      snapshot; if the output is the same, that's what matters. */
6096   if (at1->dw_attr == DW_AT_producer)
6097     return 1;
6098 
6099   return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6100 }
6101 
6102 /* Do the dies look the same?  */
6103 
6104 static int
same_die_p(dw_die_ref die1,dw_die_ref die2,int * mark)6105 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6106 {
6107   dw_die_ref c1, c2;
6108   dw_attr_ref a1;
6109   unsigned ix;
6110 
6111   /* To avoid infinite recursion.  */
6112   if (die1->die_mark)
6113     return die1->die_mark == die2->die_mark;
6114   die1->die_mark = die2->die_mark = ++(*mark);
6115 
6116   if (die1->die_tag != die2->die_tag)
6117     return 0;
6118 
6119   if (VEC_length (dw_attr_node, die1->die_attr)
6120       != VEC_length (dw_attr_node, die2->die_attr))
6121     return 0;
6122 
6123   for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6124     if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6125       return 0;
6126 
6127   c1 = die1->die_child;
6128   c2 = die2->die_child;
6129   if (! c1)
6130     {
6131       if (c2)
6132 	return 0;
6133     }
6134   else
6135     for (;;)
6136       {
6137 	if (!same_die_p (c1, c2, mark))
6138 	  return 0;
6139 	c1 = c1->die_sib;
6140 	c2 = c2->die_sib;
6141 	if (c1 == die1->die_child)
6142 	  {
6143 	    if (c2 == die2->die_child)
6144 	      break;
6145 	    else
6146 	      return 0;
6147 	  }
6148     }
6149 
6150   return 1;
6151 }
6152 
6153 /* Do the dies look the same?  Wrapper around same_die_p.  */
6154 
6155 static int
same_die_p_wrap(dw_die_ref die1,dw_die_ref die2)6156 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6157 {
6158   int mark = 0;
6159   int ret = same_die_p (die1, die2, &mark);
6160 
6161   unmark_all_dies (die1);
6162   unmark_all_dies (die2);
6163 
6164   return ret;
6165 }
6166 
6167 /* The prefix to attach to symbols on DIEs in the current comdat debug
6168    info section.  */
6169 static char *comdat_symbol_id;
6170 
6171 /* The index of the current symbol within the current comdat CU.  */
6172 static unsigned int comdat_symbol_number;
6173 
6174 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6175    children, and set comdat_symbol_id accordingly.  */
6176 
6177 static void
compute_section_prefix(dw_die_ref unit_die)6178 compute_section_prefix (dw_die_ref unit_die)
6179 {
6180   const char *die_name = get_AT_string (unit_die, DW_AT_name);
6181   const char *base = die_name ? lbasename (die_name) : "anonymous";
6182   char *name = alloca (strlen (base) + 64);
6183   char *p;
6184   int i, mark;
6185   unsigned char checksum[16];
6186   struct md5_ctx ctx;
6187 
6188   /* Compute the checksum of the DIE, then append part of it as hex digits to
6189      the name filename of the unit.  */
6190 
6191   md5_init_ctx (&ctx);
6192   mark = 0;
6193   die_checksum (unit_die, &ctx, &mark);
6194   unmark_all_dies (unit_die);
6195   md5_finish_ctx (&ctx, checksum);
6196 
6197   sprintf (name, "%s.", base);
6198   clean_symbol_name (name);
6199 
6200   p = name + strlen (name);
6201   for (i = 0; i < 4; i++)
6202     {
6203       sprintf (p, "%.2x", checksum[i]);
6204       p += 2;
6205     }
6206 
6207   comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6208   comdat_symbol_number = 0;
6209 }
6210 
6211 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P.  */
6212 
6213 static int
is_type_die(dw_die_ref die)6214 is_type_die (dw_die_ref die)
6215 {
6216   switch (die->die_tag)
6217     {
6218     case DW_TAG_array_type:
6219     case DW_TAG_class_type:
6220     case DW_TAG_enumeration_type:
6221     case DW_TAG_pointer_type:
6222     case DW_TAG_reference_type:
6223     case DW_TAG_string_type:
6224     case DW_TAG_structure_type:
6225     case DW_TAG_subroutine_type:
6226     case DW_TAG_union_type:
6227     case DW_TAG_ptr_to_member_type:
6228     case DW_TAG_set_type:
6229     case DW_TAG_subrange_type:
6230     case DW_TAG_base_type:
6231     case DW_TAG_const_type:
6232     case DW_TAG_file_type:
6233     case DW_TAG_packed_type:
6234     case DW_TAG_volatile_type:
6235     case DW_TAG_typedef:
6236       return 1;
6237     default:
6238       return 0;
6239     }
6240 }
6241 
6242 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6243    Basically, we want to choose the bits that are likely to be shared between
6244    compilations (types) and leave out the bits that are specific to individual
6245    compilations (functions).  */
6246 
6247 static int
is_comdat_die(dw_die_ref c)6248 is_comdat_die (dw_die_ref c)
6249 {
6250   /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6251      we do for stabs.  The advantage is a greater likelihood of sharing between
6252      objects that don't include headers in the same order (and therefore would
6253      put the base types in a different comdat).  jason 8/28/00 */
6254 
6255   if (c->die_tag == DW_TAG_base_type)
6256     return 0;
6257 
6258   if (c->die_tag == DW_TAG_pointer_type
6259       || c->die_tag == DW_TAG_reference_type
6260       || c->die_tag == DW_TAG_const_type
6261       || c->die_tag == DW_TAG_volatile_type)
6262     {
6263       dw_die_ref t = get_AT_ref (c, DW_AT_type);
6264 
6265       return t ? is_comdat_die (t) : 0;
6266     }
6267 
6268   return is_type_die (c);
6269 }
6270 
6271 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6272    compilation unit.  */
6273 
6274 static int
is_symbol_die(dw_die_ref c)6275 is_symbol_die (dw_die_ref c)
6276 {
6277   return (is_type_die (c)
6278 	  || (get_AT (c, DW_AT_declaration)
6279 	      && !get_AT (c, DW_AT_specification))
6280 	  || c->die_tag == DW_TAG_namespace);
6281 }
6282 
6283 static char *
gen_internal_sym(const char * prefix)6284 gen_internal_sym (const char *prefix)
6285 {
6286   char buf[256];
6287 
6288   ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6289   return xstrdup (buf);
6290 }
6291 
6292 /* Assign symbols to all worthy DIEs under DIE.  */
6293 
6294 static void
assign_symbol_names(dw_die_ref die)6295 assign_symbol_names (dw_die_ref die)
6296 {
6297   dw_die_ref c;
6298 
6299   if (is_symbol_die (die))
6300     {
6301       if (comdat_symbol_id)
6302 	{
6303 	  char *p = alloca (strlen (comdat_symbol_id) + 64);
6304 
6305 	  sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6306 		   comdat_symbol_id, comdat_symbol_number++);
6307 	  die->die_symbol = xstrdup (p);
6308 	}
6309       else
6310 	die->die_symbol = gen_internal_sym ("LDIE");
6311     }
6312 
6313   FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6314 }
6315 
6316 struct cu_hash_table_entry
6317 {
6318   dw_die_ref cu;
6319   unsigned min_comdat_num, max_comdat_num;
6320   struct cu_hash_table_entry *next;
6321 };
6322 
6323 /* Routines to manipulate hash table of CUs.  */
6324 static hashval_t
htab_cu_hash(const void * of)6325 htab_cu_hash (const void *of)
6326 {
6327   const struct cu_hash_table_entry *entry = of;
6328 
6329   return htab_hash_string (entry->cu->die_symbol);
6330 }
6331 
6332 static int
htab_cu_eq(const void * of1,const void * of2)6333 htab_cu_eq (const void *of1, const void *of2)
6334 {
6335   const struct cu_hash_table_entry *entry1 = of1;
6336   const struct die_struct *entry2 = of2;
6337 
6338   return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6339 }
6340 
6341 static void
htab_cu_del(void * what)6342 htab_cu_del (void *what)
6343 {
6344   struct cu_hash_table_entry *next, *entry = what;
6345 
6346   while (entry)
6347     {
6348       next = entry->next;
6349       free (entry);
6350       entry = next;
6351     }
6352 }
6353 
6354 /* Check whether we have already seen this CU and set up SYM_NUM
6355    accordingly.  */
6356 static int
check_duplicate_cu(dw_die_ref cu,htab_t htable,unsigned int * sym_num)6357 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6358 {
6359   struct cu_hash_table_entry dummy;
6360   struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6361 
6362   dummy.max_comdat_num = 0;
6363 
6364   slot = (struct cu_hash_table_entry **)
6365     htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6366 	INSERT);
6367   entry = *slot;
6368 
6369   for (; entry; last = entry, entry = entry->next)
6370     {
6371       if (same_die_p_wrap (cu, entry->cu))
6372 	break;
6373     }
6374 
6375   if (entry)
6376     {
6377       *sym_num = entry->min_comdat_num;
6378       return 1;
6379     }
6380 
6381   entry = XCNEW (struct cu_hash_table_entry);
6382   entry->cu = cu;
6383   entry->min_comdat_num = *sym_num = last->max_comdat_num;
6384   entry->next = *slot;
6385   *slot = entry;
6386 
6387   return 0;
6388 }
6389 
6390 /* Record SYM_NUM to record of CU in HTABLE.  */
6391 static void
record_comdat_symbol_number(dw_die_ref cu,htab_t htable,unsigned int sym_num)6392 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6393 {
6394   struct cu_hash_table_entry **slot, *entry;
6395 
6396   slot = (struct cu_hash_table_entry **)
6397     htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6398 	NO_INSERT);
6399   entry = *slot;
6400 
6401   entry->max_comdat_num = sym_num;
6402 }
6403 
6404 /* Traverse the DIE (which is always comp_unit_die), and set up
6405    additional compilation units for each of the include files we see
6406    bracketed by BINCL/EINCL.  */
6407 
6408 static void
break_out_includes(dw_die_ref die)6409 break_out_includes (dw_die_ref die)
6410 {
6411   dw_die_ref c;
6412   dw_die_ref unit = NULL;
6413   limbo_die_node *node, **pnode;
6414   htab_t cu_hash_table;
6415 
6416   c = die->die_child;
6417   if (c) do {
6418     dw_die_ref prev = c;
6419     c = c->die_sib;
6420     while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6421 	   || (unit && is_comdat_die (c)))
6422       {
6423 	dw_die_ref next = c->die_sib;
6424 
6425 	/* This DIE is for a secondary CU; remove it from the main one.  */
6426 	remove_child_with_prev (c, prev);
6427 
6428 	if (c->die_tag == DW_TAG_GNU_BINCL)
6429 	  unit = push_new_compile_unit (unit, c);
6430 	else if (c->die_tag == DW_TAG_GNU_EINCL)
6431 	  unit = pop_compile_unit (unit);
6432 	else
6433 	  add_child_die (unit, c);
6434 	c = next;
6435 	if (c == die->die_child)
6436 	  break;
6437       }
6438   } while (c != die->die_child);
6439 
6440 #if 0
6441   /* We can only use this in debugging, since the frontend doesn't check
6442      to make sure that we leave every include file we enter.  */
6443   gcc_assert (!unit);
6444 #endif
6445 
6446   assign_symbol_names (die);
6447   cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6448   for (node = limbo_die_list, pnode = &limbo_die_list;
6449        node;
6450        node = node->next)
6451     {
6452       int is_dupl;
6453 
6454       compute_section_prefix (node->die);
6455       is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6456 			&comdat_symbol_number);
6457       assign_symbol_names (node->die);
6458       if (is_dupl)
6459 	*pnode = node->next;
6460       else
6461 	{
6462 	  pnode = &node->next;
6463 	  record_comdat_symbol_number (node->die, cu_hash_table,
6464 		comdat_symbol_number);
6465 	}
6466     }
6467   htab_delete (cu_hash_table);
6468 }
6469 
6470 /* Traverse the DIE and add a sibling attribute if it may have the
6471    effect of speeding up access to siblings.  To save some space,
6472    avoid generating sibling attributes for DIE's without children.  */
6473 
6474 static void
add_sibling_attributes(dw_die_ref die)6475 add_sibling_attributes (dw_die_ref die)
6476 {
6477   dw_die_ref c;
6478 
6479   if (! die->die_child)
6480     return;
6481 
6482   if (die->die_parent && die != die->die_parent->die_child)
6483     add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6484 
6485   FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6486 }
6487 
6488 /* Output all location lists for the DIE and its children.  */
6489 
6490 static void
output_location_lists(dw_die_ref die)6491 output_location_lists (dw_die_ref die)
6492 {
6493   dw_die_ref c;
6494   dw_attr_ref a;
6495   unsigned ix;
6496 
6497   for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6498     if (AT_class (a) == dw_val_class_loc_list)
6499       output_loc_list (AT_loc_list (a));
6500 
6501   FOR_EACH_CHILD (die, c, output_location_lists (c));
6502 }
6503 
6504 /* The format of each DIE (and its attribute value pairs) is encoded in an
6505    abbreviation table.  This routine builds the abbreviation table and assigns
6506    a unique abbreviation id for each abbreviation entry.  The children of each
6507    die are visited recursively.  */
6508 
6509 static void
build_abbrev_table(dw_die_ref die)6510 build_abbrev_table (dw_die_ref die)
6511 {
6512   unsigned long abbrev_id;
6513   unsigned int n_alloc;
6514   dw_die_ref c;
6515   dw_attr_ref a;
6516   unsigned ix;
6517 
6518   /* Scan the DIE references, and mark as external any that refer to
6519      DIEs from other CUs (i.e. those which are not marked).  */
6520   for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6521     if (AT_class (a) == dw_val_class_die_ref
6522 	&& AT_ref (a)->die_mark == 0)
6523       {
6524 	gcc_assert (AT_ref (a)->die_symbol);
6525 
6526 	set_AT_ref_external (a, 1);
6527       }
6528 
6529   for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6530     {
6531       dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6532       dw_attr_ref die_a, abbrev_a;
6533       unsigned ix;
6534       bool ok = true;
6535 
6536       if (abbrev->die_tag != die->die_tag)
6537 	continue;
6538       if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6539 	continue;
6540 
6541       if (VEC_length (dw_attr_node, abbrev->die_attr)
6542 	  != VEC_length (dw_attr_node, die->die_attr))
6543 	continue;
6544 
6545       for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6546 	{
6547 	  abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6548 	  if ((abbrev_a->dw_attr != die_a->dw_attr)
6549 	      || (value_format (abbrev_a) != value_format (die_a)))
6550 	    {
6551 	      ok = false;
6552 	      break;
6553 	    }
6554 	}
6555       if (ok)
6556 	break;
6557     }
6558 
6559   if (abbrev_id >= abbrev_die_table_in_use)
6560     {
6561       if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6562 	{
6563 	  n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6564 	  abbrev_die_table = ggc_realloc (abbrev_die_table,
6565 					  sizeof (dw_die_ref) * n_alloc);
6566 
6567 	  memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6568 		 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6569 	  abbrev_die_table_allocated = n_alloc;
6570 	}
6571 
6572       ++abbrev_die_table_in_use;
6573       abbrev_die_table[abbrev_id] = die;
6574     }
6575 
6576   die->die_abbrev = abbrev_id;
6577   FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6578 }
6579 
6580 /* Return the power-of-two number of bytes necessary to represent VALUE.  */
6581 
6582 static int
constant_size(long unsigned int value)6583 constant_size (long unsigned int value)
6584 {
6585   int log;
6586 
6587   if (value == 0)
6588     log = 0;
6589   else
6590     log = floor_log2 (value);
6591 
6592   log = log / 8;
6593   log = 1 << (floor_log2 (log) + 1);
6594 
6595   return log;
6596 }
6597 
6598 /* Return the size of a DIE as it is represented in the
6599    .debug_info section.  */
6600 
6601 static unsigned long
size_of_die(dw_die_ref die)6602 size_of_die (dw_die_ref die)
6603 {
6604   unsigned long size = 0;
6605   dw_attr_ref a;
6606   unsigned ix;
6607 
6608   size += size_of_uleb128 (die->die_abbrev);
6609   for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6610     {
6611       switch (AT_class (a))
6612 	{
6613 	case dw_val_class_addr:
6614 	  size += DWARF2_ADDR_SIZE;
6615 	  break;
6616 	case dw_val_class_offset:
6617 	  size += DWARF_OFFSET_SIZE;
6618 	  break;
6619 	case dw_val_class_loc:
6620 	  {
6621 	    unsigned long lsize = size_of_locs (AT_loc (a));
6622 
6623 	    /* Block length.  */
6624 	    size += constant_size (lsize);
6625 	    size += lsize;
6626 	  }
6627 	  break;
6628 	case dw_val_class_loc_list:
6629 	  size += DWARF_OFFSET_SIZE;
6630 	  break;
6631 	case dw_val_class_range_list:
6632 	  size += DWARF_OFFSET_SIZE;
6633 	  break;
6634 	case dw_val_class_const:
6635 	  size += size_of_sleb128 (AT_int (a));
6636 	  break;
6637 	case dw_val_class_unsigned_const:
6638 	  size += constant_size (AT_unsigned (a));
6639 	  break;
6640 	case dw_val_class_long_long:
6641 	  size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6642 	  break;
6643 	case dw_val_class_vec:
6644 	  size += 1 + (a->dw_attr_val.v.val_vec.length
6645 		       * a->dw_attr_val.v.val_vec.elt_size); /* block */
6646 	  break;
6647 	case dw_val_class_flag:
6648 	  size += 1;
6649 	  break;
6650 	case dw_val_class_die_ref:
6651 	  if (AT_ref_external (a))
6652 	    size += DWARF2_ADDR_SIZE;
6653 	  else
6654 	    size += DWARF_OFFSET_SIZE;
6655 	  break;
6656 	case dw_val_class_fde_ref:
6657 	  size += DWARF_OFFSET_SIZE;
6658 	  break;
6659 	case dw_val_class_lbl_id:
6660 	  size += DWARF2_ADDR_SIZE;
6661 	  break;
6662 	case dw_val_class_lineptr:
6663 	case dw_val_class_macptr:
6664 	  size += DWARF_OFFSET_SIZE;
6665 	  break;
6666 	case dw_val_class_str:
6667 	  if (AT_string_form (a) == DW_FORM_strp)
6668 	    size += DWARF_OFFSET_SIZE;
6669 	  else
6670 	    size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6671 	  break;
6672 	case dw_val_class_file:
6673 	  size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6674 	  break;
6675 	default:
6676 	  gcc_unreachable ();
6677 	}
6678     }
6679 
6680   return size;
6681 }
6682 
6683 /* Size the debugging information associated with a given DIE.  Visits the
6684    DIE's children recursively.  Updates the global variable next_die_offset, on
6685    each time through.  Uses the current value of next_die_offset to update the
6686    die_offset field in each DIE.  */
6687 
6688 static void
calc_die_sizes(dw_die_ref die)6689 calc_die_sizes (dw_die_ref die)
6690 {
6691   dw_die_ref c;
6692 
6693   die->die_offset = next_die_offset;
6694   next_die_offset += size_of_die (die);
6695 
6696   FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6697 
6698   if (die->die_child != NULL)
6699     /* Count the null byte used to terminate sibling lists.  */
6700     next_die_offset += 1;
6701 }
6702 
6703 /* Set the marks for a die and its children.  We do this so
6704    that we know whether or not a reference needs to use FORM_ref_addr; only
6705    DIEs in the same CU will be marked.  We used to clear out the offset
6706    and use that as the flag, but ran into ordering problems.  */
6707 
6708 static void
mark_dies(dw_die_ref die)6709 mark_dies (dw_die_ref die)
6710 {
6711   dw_die_ref c;
6712 
6713   gcc_assert (!die->die_mark);
6714 
6715   die->die_mark = 1;
6716   FOR_EACH_CHILD (die, c, mark_dies (c));
6717 }
6718 
6719 /* Clear the marks for a die and its children.  */
6720 
6721 static void
unmark_dies(dw_die_ref die)6722 unmark_dies (dw_die_ref die)
6723 {
6724   dw_die_ref c;
6725 
6726   gcc_assert (die->die_mark);
6727 
6728   die->die_mark = 0;
6729   FOR_EACH_CHILD (die, c, unmark_dies (c));
6730 }
6731 
6732 /* Clear the marks for a die, its children and referred dies.  */
6733 
6734 static void
unmark_all_dies(dw_die_ref die)6735 unmark_all_dies (dw_die_ref die)
6736 {
6737   dw_die_ref c;
6738   dw_attr_ref a;
6739   unsigned ix;
6740 
6741   if (!die->die_mark)
6742     return;
6743   die->die_mark = 0;
6744 
6745   FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6746 
6747   for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6748     if (AT_class (a) == dw_val_class_die_ref)
6749       unmark_all_dies (AT_ref (a));
6750 }
6751 
6752 /* Return the size of the .debug_pubnames table  generated for the
6753    compilation unit.  */
6754 
6755 static unsigned long
size_of_pubnames(void)6756 size_of_pubnames (void)
6757 {
6758   unsigned long size;
6759   unsigned i;
6760 
6761   size = DWARF_PUBNAMES_HEADER_SIZE;
6762   for (i = 0; i < pubname_table_in_use; i++)
6763     {
6764       pubname_ref p = &pubname_table[i];
6765       size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6766     }
6767 
6768   size += DWARF_OFFSET_SIZE;
6769   return size;
6770 }
6771 
6772 /* Return the size of the information in the .debug_aranges section.  */
6773 
6774 static unsigned long
size_of_aranges(void)6775 size_of_aranges (void)
6776 {
6777   unsigned long size;
6778 
6779   size = DWARF_ARANGES_HEADER_SIZE;
6780 
6781   /* Count the address/length pair for this compilation unit.  */
6782   size += 2 * DWARF2_ADDR_SIZE;
6783   size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6784 
6785   /* Count the two zero words used to terminated the address range table.  */
6786   size += 2 * DWARF2_ADDR_SIZE;
6787   return size;
6788 }
6789 
6790 /* Select the encoding of an attribute value.  */
6791 
6792 static enum dwarf_form
value_format(dw_attr_ref a)6793 value_format (dw_attr_ref a)
6794 {
6795   switch (a->dw_attr_val.val_class)
6796     {
6797     case dw_val_class_addr:
6798       return DW_FORM_addr;
6799     case dw_val_class_range_list:
6800     case dw_val_class_offset:
6801     case dw_val_class_loc_list:
6802       switch (DWARF_OFFSET_SIZE)
6803 	{
6804 	case 4:
6805 	  return DW_FORM_data4;
6806 	case 8:
6807 	  return DW_FORM_data8;
6808 	default:
6809 	  gcc_unreachable ();
6810 	}
6811     case dw_val_class_loc:
6812       switch (constant_size (size_of_locs (AT_loc (a))))
6813 	{
6814 	case 1:
6815 	  return DW_FORM_block1;
6816 	case 2:
6817 	  return DW_FORM_block2;
6818 	default:
6819 	  gcc_unreachable ();
6820 	}
6821     case dw_val_class_const:
6822       return DW_FORM_sdata;
6823     case dw_val_class_unsigned_const:
6824       switch (constant_size (AT_unsigned (a)))
6825 	{
6826 	case 1:
6827 	  return DW_FORM_data1;
6828 	case 2:
6829 	  return DW_FORM_data2;
6830 	case 4:
6831 	  return DW_FORM_data4;
6832 	case 8:
6833 	  return DW_FORM_data8;
6834 	default:
6835 	  gcc_unreachable ();
6836 	}
6837     case dw_val_class_long_long:
6838       return DW_FORM_block1;
6839     case dw_val_class_vec:
6840       return DW_FORM_block1;
6841     case dw_val_class_flag:
6842       return DW_FORM_flag;
6843     case dw_val_class_die_ref:
6844       if (AT_ref_external (a))
6845 	return DW_FORM_ref_addr;
6846       else
6847 	return DW_FORM_ref;
6848     case dw_val_class_fde_ref:
6849       return DW_FORM_data;
6850     case dw_val_class_lbl_id:
6851       return DW_FORM_addr;
6852     case dw_val_class_lineptr:
6853     case dw_val_class_macptr:
6854       return DW_FORM_data;
6855     case dw_val_class_str:
6856       return AT_string_form (a);
6857     case dw_val_class_file:
6858       switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6859 	{
6860 	case 1:
6861 	  return DW_FORM_data1;
6862 	case 2:
6863 	  return DW_FORM_data2;
6864 	case 4:
6865 	  return DW_FORM_data4;
6866 	default:
6867 	  gcc_unreachable ();
6868 	}
6869 
6870     default:
6871       gcc_unreachable ();
6872     }
6873 }
6874 
6875 /* Output the encoding of an attribute value.  */
6876 
6877 static void
output_value_format(dw_attr_ref a)6878 output_value_format (dw_attr_ref a)
6879 {
6880   enum dwarf_form form = value_format (a);
6881 
6882   dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6883 }
6884 
6885 /* Output the .debug_abbrev section which defines the DIE abbreviation
6886    table.  */
6887 
6888 static void
output_abbrev_section(void)6889 output_abbrev_section (void)
6890 {
6891   unsigned long abbrev_id;
6892 
6893   for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6894     {
6895       dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6896       unsigned ix;
6897       dw_attr_ref a_attr;
6898 
6899       dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6900       dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6901 				   dwarf_tag_name (abbrev->die_tag));
6902 
6903       if (abbrev->die_child != NULL)
6904 	dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6905       else
6906 	dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6907 
6908       for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6909 	   ix++)
6910 	{
6911 	  dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6912 				       dwarf_attr_name (a_attr->dw_attr));
6913 	  output_value_format (a_attr);
6914 	}
6915 
6916       dw2_asm_output_data (1, 0, NULL);
6917       dw2_asm_output_data (1, 0, NULL);
6918     }
6919 
6920   /* Terminate the table.  */
6921   dw2_asm_output_data (1, 0, NULL);
6922 }
6923 
6924 /* Output a symbol we can use to refer to this DIE from another CU.  */
6925 
6926 static inline void
output_die_symbol(dw_die_ref die)6927 output_die_symbol (dw_die_ref die)
6928 {
6929   char *sym = die->die_symbol;
6930 
6931   if (sym == 0)
6932     return;
6933 
6934   if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6935     /* We make these global, not weak; if the target doesn't support
6936        .linkonce, it doesn't support combining the sections, so debugging
6937        will break.  */
6938     targetm.asm_out.globalize_label (asm_out_file, sym);
6939 
6940   ASM_OUTPUT_LABEL (asm_out_file, sym);
6941 }
6942 
6943 /* Return a new location list, given the begin and end range, and the
6944    expression. gensym tells us whether to generate a new internal symbol for
6945    this location list node, which is done for the head of the list only.  */
6946 
6947 static inline dw_loc_list_ref
new_loc_list(dw_loc_descr_ref expr,const char * begin,const char * end,const char * section,unsigned int gensym)6948 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6949 	      const char *section, unsigned int gensym)
6950 {
6951   dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6952 
6953   retlist->begin = begin;
6954   retlist->end = end;
6955   retlist->expr = expr;
6956   retlist->section = section;
6957   if (gensym)
6958     retlist->ll_symbol = gen_internal_sym ("LLST");
6959 
6960   return retlist;
6961 }
6962 
6963 /* Add a location description expression to a location list.  */
6964 
6965 static inline void
add_loc_descr_to_loc_list(dw_loc_list_ref * list_head,dw_loc_descr_ref descr,const char * begin,const char * end,const char * section)6966 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6967 			   const char *begin, const char *end,
6968 			   const char *section)
6969 {
6970   dw_loc_list_ref *d;
6971 
6972   /* Find the end of the chain.  */
6973   for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6974     ;
6975 
6976   /* Add a new location list node to the list.  */
6977   *d = new_loc_list (descr, begin, end, section, 0);
6978 }
6979 
6980 static void
dwarf2out_switch_text_section(void)6981 dwarf2out_switch_text_section (void)
6982 {
6983   dw_fde_ref fde;
6984 
6985   gcc_assert (cfun);
6986 
6987   fde = &fde_table[fde_table_in_use - 1];
6988   fde->dw_fde_switched_sections = true;
6989   fde->dw_fde_hot_section_label = cfun->hot_section_label;
6990   fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6991   fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6992   fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6993   have_multiple_function_sections = true;
6994 
6995   /* Reset the current label on switching text sections, so that we
6996      don't attempt to advance_loc4 between labels in different sections.  */
6997   fde->dw_fde_current_label = NULL;
6998 }
6999 
7000 /* Output the location list given to us.  */
7001 
7002 static void
output_loc_list(dw_loc_list_ref list_head)7003 output_loc_list (dw_loc_list_ref list_head)
7004 {
7005   dw_loc_list_ref curr = list_head;
7006 
7007   ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7008 
7009   /* Walk the location list, and output each range + expression.  */
7010   for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7011     {
7012       unsigned long size;
7013       if (!have_multiple_function_sections)
7014 	{
7015 	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7016 				"Location list begin address (%s)",
7017 				list_head->ll_symbol);
7018 	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7019 				"Location list end address (%s)",
7020 				list_head->ll_symbol);
7021 	}
7022       else
7023 	{
7024 	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7025 			       "Location list begin address (%s)",
7026 			       list_head->ll_symbol);
7027 	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7028 			       "Location list end address (%s)",
7029 			       list_head->ll_symbol);
7030 	}
7031       size = size_of_locs (curr->expr);
7032 
7033       /* Output the block length for this list of location operations.  */
7034       gcc_assert (size <= 0xffff);
7035       dw2_asm_output_data (2, size, "%s", "Location expression size");
7036 
7037       output_loc_sequence (curr->expr);
7038     }
7039 
7040   dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7041 		       "Location list terminator begin (%s)",
7042 		       list_head->ll_symbol);
7043   dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7044 		       "Location list terminator end (%s)",
7045 		       list_head->ll_symbol);
7046 }
7047 
7048 /* Output the DIE and its attributes.  Called recursively to generate
7049    the definitions of each child DIE.  */
7050 
7051 static void
output_die(dw_die_ref die)7052 output_die (dw_die_ref die)
7053 {
7054   dw_attr_ref a;
7055   dw_die_ref c;
7056   unsigned long size;
7057   unsigned ix;
7058 
7059   /* If someone in another CU might refer to us, set up a symbol for
7060      them to point to.  */
7061   if (die->die_symbol)
7062     output_die_symbol (die);
7063 
7064   dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7065 			       die->die_offset, dwarf_tag_name (die->die_tag));
7066 
7067   for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7068     {
7069       const char *name = dwarf_attr_name (a->dw_attr);
7070 
7071       switch (AT_class (a))
7072 	{
7073 	case dw_val_class_addr:
7074 	  dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7075 	  break;
7076 
7077 	case dw_val_class_offset:
7078 	  dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7079 			       "%s", name);
7080 	  break;
7081 
7082 	case dw_val_class_range_list:
7083 	  {
7084 	    char *p = strchr (ranges_section_label, '\0');
7085 
7086 	    sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7087 		     a->dw_attr_val.v.val_offset);
7088 	    dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7089 				   debug_ranges_section, "%s", name);
7090 	    *p = '\0';
7091 	  }
7092 	  break;
7093 
7094 	case dw_val_class_loc:
7095 	  size = size_of_locs (AT_loc (a));
7096 
7097 	  /* Output the block length for this list of location operations.  */
7098 	  dw2_asm_output_data (constant_size (size), size, "%s", name);
7099 
7100 	  output_loc_sequence (AT_loc (a));
7101 	  break;
7102 
7103 	case dw_val_class_const:
7104 	  /* ??? It would be slightly more efficient to use a scheme like is
7105 	     used for unsigned constants below, but gdb 4.x does not sign
7106 	     extend.  Gdb 5.x does sign extend.  */
7107 	  dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7108 	  break;
7109 
7110 	case dw_val_class_unsigned_const:
7111 	  dw2_asm_output_data (constant_size (AT_unsigned (a)),
7112 			       AT_unsigned (a), "%s", name);
7113 	  break;
7114 
7115 	case dw_val_class_long_long:
7116 	  {
7117 	    unsigned HOST_WIDE_INT first, second;
7118 
7119 	    dw2_asm_output_data (1,
7120 				 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7121 				 "%s", name);
7122 
7123 	    if (WORDS_BIG_ENDIAN)
7124 	      {
7125 		first = a->dw_attr_val.v.val_long_long.hi;
7126 		second = a->dw_attr_val.v.val_long_long.low;
7127 	      }
7128 	    else
7129 	      {
7130 		first = a->dw_attr_val.v.val_long_long.low;
7131 		second = a->dw_attr_val.v.val_long_long.hi;
7132 	      }
7133 
7134 	    dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7135 				 first, "long long constant");
7136 	    dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7137 				 second, NULL);
7138 	  }
7139 	  break;
7140 
7141 	case dw_val_class_vec:
7142 	  {
7143 	    unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7144 	    unsigned int len = a->dw_attr_val.v.val_vec.length;
7145 	    unsigned int i;
7146 	    unsigned char *p;
7147 
7148 	    dw2_asm_output_data (1, len * elt_size, "%s", name);
7149 	    if (elt_size > sizeof (HOST_WIDE_INT))
7150 	      {
7151 		elt_size /= 2;
7152 		len *= 2;
7153 	      }
7154 	    for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7155 		 i < len;
7156 		 i++, p += elt_size)
7157 	      dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7158 				   "fp or vector constant word %u", i);
7159 	    break;
7160 	  }
7161 
7162 	case dw_val_class_flag:
7163 	  dw2_asm_output_data (1, AT_flag (a), "%s", name);
7164 	  break;
7165 
7166 	case dw_val_class_loc_list:
7167 	  {
7168 	    char *sym = AT_loc_list (a)->ll_symbol;
7169 
7170 	    gcc_assert (sym);
7171 	    dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7172 				   "%s", name);
7173 	  }
7174 	  break;
7175 
7176 	case dw_val_class_die_ref:
7177 	  if (AT_ref_external (a))
7178 	    {
7179 	      char *sym = AT_ref (a)->die_symbol;
7180 
7181 	      gcc_assert (sym);
7182 	      dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7183 				     "%s", name);
7184 	    }
7185 	  else
7186 	    {
7187 	      gcc_assert (AT_ref (a)->die_offset);
7188 	      dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7189 				   "%s", name);
7190 	    }
7191 	  break;
7192 
7193 	case dw_val_class_fde_ref:
7194 	  {
7195 	    char l1[20];
7196 
7197 	    ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7198 					 a->dw_attr_val.v.val_fde_index * 2);
7199 	    dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7200 				   "%s", name);
7201 	  }
7202 	  break;
7203 
7204 	case dw_val_class_lbl_id:
7205 	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7206 	  break;
7207 
7208 	case dw_val_class_lineptr:
7209 	  dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7210 				 debug_line_section, "%s", name);
7211 	  break;
7212 
7213 	case dw_val_class_macptr:
7214 	  dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7215 				 debug_macinfo_section, "%s", name);
7216 	  break;
7217 
7218 	case dw_val_class_str:
7219 	  if (AT_string_form (a) == DW_FORM_strp)
7220 	    dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7221 				   a->dw_attr_val.v.val_str->label,
7222 				   debug_str_section,
7223 				   "%s: \"%s\"", name, AT_string (a));
7224 	  else
7225 	    dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7226 	  break;
7227 
7228 	case dw_val_class_file:
7229 	  {
7230 	    int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7231 
7232 	    dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7233 				 a->dw_attr_val.v.val_file->filename);
7234 	    break;
7235 	  }
7236 
7237 	default:
7238 	  gcc_unreachable ();
7239 	}
7240     }
7241 
7242   FOR_EACH_CHILD (die, c, output_die (c));
7243 
7244   /* Add null byte to terminate sibling list.  */
7245   if (die->die_child != NULL)
7246     dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7247 			 die->die_offset);
7248 }
7249 
7250 /* Output the compilation unit that appears at the beginning of the
7251    .debug_info section, and precedes the DIE descriptions.  */
7252 
7253 static void
output_compilation_unit_header(void)7254 output_compilation_unit_header (void)
7255 {
7256   if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7257     dw2_asm_output_data (4, 0xffffffff,
7258       "Initial length escape value indicating 64-bit DWARF extension");
7259   dw2_asm_output_data (DWARF_OFFSET_SIZE,
7260                        next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7261 		       "Length of Compilation Unit Info");
7262   dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7263   dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7264 			 debug_abbrev_section,
7265 			 "Offset Into Abbrev. Section");
7266   dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7267 }
7268 
7269 /* Output the compilation unit DIE and its children.  */
7270 
7271 static void
output_comp_unit(dw_die_ref die,int output_if_empty)7272 output_comp_unit (dw_die_ref die, int output_if_empty)
7273 {
7274   const char *secname;
7275   char *oldsym, *tmp;
7276 
7277   /* Unless we are outputting main CU, we may throw away empty ones.  */
7278   if (!output_if_empty && die->die_child == NULL)
7279     return;
7280 
7281   /* Even if there are no children of this DIE, we must output the information
7282      about the compilation unit.  Otherwise, on an empty translation unit, we
7283      will generate a present, but empty, .debug_info section.  IRIX 6.5 `nm'
7284      will then complain when examining the file.  First mark all the DIEs in
7285      this CU so we know which get local refs.  */
7286   mark_dies (die);
7287 
7288   build_abbrev_table (die);
7289 
7290   /* Initialize the beginning DIE offset - and calculate sizes/offsets.  */
7291   next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7292   calc_die_sizes (die);
7293 
7294   oldsym = die->die_symbol;
7295   if (oldsym)
7296     {
7297       tmp = alloca (strlen (oldsym) + 24);
7298 
7299       sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7300       secname = tmp;
7301       die->die_symbol = NULL;
7302       switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7303     }
7304   else
7305     switch_to_section (debug_info_section);
7306 
7307   /* Output debugging information.  */
7308   output_compilation_unit_header ();
7309   output_die (die);
7310 
7311   /* Leave the marks on the main CU, so we can check them in
7312      output_pubnames.  */
7313   if (oldsym)
7314     {
7315       unmark_dies (die);
7316       die->die_symbol = oldsym;
7317     }
7318 }
7319 
7320 /* Return the DWARF2/3 pubname associated with a decl.  */
7321 
7322 static const char *
dwarf2_name(tree decl,int scope)7323 dwarf2_name (tree decl, int scope)
7324 {
7325   return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7326 }
7327 
7328 /* Add a new entry to .debug_pubnames if appropriate.  */
7329 
7330 static void
add_pubname(tree decl,dw_die_ref die)7331 add_pubname (tree decl, dw_die_ref die)
7332 {
7333   pubname_ref p;
7334 
7335   if (! TREE_PUBLIC (decl))
7336     return;
7337 
7338   if (pubname_table_in_use == pubname_table_allocated)
7339     {
7340       pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7341       pubname_table
7342 	= ggc_realloc (pubname_table,
7343 		       (pubname_table_allocated * sizeof (pubname_entry)));
7344       memset (pubname_table + pubname_table_in_use, 0,
7345 	      PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7346     }
7347 
7348   p = &pubname_table[pubname_table_in_use++];
7349   p->die = die;
7350   p->name = xstrdup (dwarf2_name (decl, 1));
7351 }
7352 
7353 /* Output the public names table used to speed up access to externally
7354    visible names.  For now, only generate entries for externally
7355    visible procedures.  */
7356 
7357 static void
output_pubnames(void)7358 output_pubnames (void)
7359 {
7360   unsigned i;
7361   unsigned long pubnames_length = size_of_pubnames ();
7362 
7363   if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7364     dw2_asm_output_data (4, 0xffffffff,
7365       "Initial length escape value indicating 64-bit DWARF extension");
7366   dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7367 		       "Length of Public Names Info");
7368   dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7369   dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7370 			 debug_info_section,
7371 			 "Offset of Compilation Unit Info");
7372   dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7373 		       "Compilation Unit Length");
7374 
7375   for (i = 0; i < pubname_table_in_use; i++)
7376     {
7377       pubname_ref pub = &pubname_table[i];
7378 
7379       /* We shouldn't see pubnames for DIEs outside of the main CU.  */
7380       gcc_assert (pub->die->die_mark);
7381 
7382       dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7383 			   "DIE offset");
7384 
7385       dw2_asm_output_nstring (pub->name, -1, "external name");
7386     }
7387 
7388   dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7389 }
7390 
7391 /* Add a new entry to .debug_aranges if appropriate.  */
7392 
7393 static void
add_arange(tree decl,dw_die_ref die)7394 add_arange (tree decl, dw_die_ref die)
7395 {
7396   if (! DECL_SECTION_NAME (decl))
7397     return;
7398 
7399   if (arange_table_in_use == arange_table_allocated)
7400     {
7401       arange_table_allocated += ARANGE_TABLE_INCREMENT;
7402       arange_table = ggc_realloc (arange_table,
7403 				  (arange_table_allocated
7404 				   * sizeof (dw_die_ref)));
7405       memset (arange_table + arange_table_in_use, 0,
7406 	      ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7407     }
7408 
7409   arange_table[arange_table_in_use++] = die;
7410 }
7411 
7412 /* Output the information that goes into the .debug_aranges table.
7413    Namely, define the beginning and ending address range of the
7414    text section generated for this compilation unit.  */
7415 
7416 static void
output_aranges(void)7417 output_aranges (void)
7418 {
7419   unsigned i;
7420   unsigned long aranges_length = size_of_aranges ();
7421 
7422   if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7423     dw2_asm_output_data (4, 0xffffffff,
7424       "Initial length escape value indicating 64-bit DWARF extension");
7425   dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7426 		       "Length of Address Ranges Info");
7427   dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7428   dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7429 			 debug_info_section,
7430 			 "Offset of Compilation Unit Info");
7431   dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7432   dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7433 
7434   /* We need to align to twice the pointer size here.  */
7435   if (DWARF_ARANGES_PAD_SIZE)
7436     {
7437       /* Pad using a 2 byte words so that padding is correct for any
7438 	 pointer size.  */
7439       dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7440 			   2 * DWARF2_ADDR_SIZE);
7441       for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7442 	dw2_asm_output_data (2, 0, NULL);
7443     }
7444 
7445   dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7446   dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7447 			text_section_label, "Length");
7448   if (flag_reorder_blocks_and_partition)
7449     {
7450       dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7451 			   "Address");
7452       dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7453 			    cold_text_section_label, "Length");
7454     }
7455 
7456   for (i = 0; i < arange_table_in_use; i++)
7457     {
7458       dw_die_ref die = arange_table[i];
7459 
7460       /* We shouldn't see aranges for DIEs outside of the main CU.  */
7461       gcc_assert (die->die_mark);
7462 
7463       if (die->die_tag == DW_TAG_subprogram)
7464 	{
7465 	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7466 			       "Address");
7467 	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7468 				get_AT_low_pc (die), "Length");
7469 	}
7470       else
7471 	{
7472 	  /* A static variable; extract the symbol from DW_AT_location.
7473 	     Note that this code isn't currently hit, as we only emit
7474 	     aranges for functions (jason 9/23/99).  */
7475 	  dw_attr_ref a = get_AT (die, DW_AT_location);
7476 	  dw_loc_descr_ref loc;
7477 
7478 	  gcc_assert (a && AT_class (a) == dw_val_class_loc);
7479 
7480 	  loc = AT_loc (a);
7481 	  gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7482 
7483 	  dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7484 				   loc->dw_loc_oprnd1.v.val_addr, "Address");
7485 	  dw2_asm_output_data (DWARF2_ADDR_SIZE,
7486 			       get_AT_unsigned (die, DW_AT_byte_size),
7487 			       "Length");
7488 	}
7489     }
7490 
7491   /* Output the terminator words.  */
7492   dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7493   dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7494 }
7495 
7496 /* Add a new entry to .debug_ranges.  Return the offset at which it
7497    was placed.  */
7498 
7499 static unsigned int
add_ranges(tree block)7500 add_ranges (tree block)
7501 {
7502   unsigned int in_use = ranges_table_in_use;
7503 
7504   if (in_use == ranges_table_allocated)
7505     {
7506       ranges_table_allocated += RANGES_TABLE_INCREMENT;
7507       ranges_table
7508 	= ggc_realloc (ranges_table, (ranges_table_allocated
7509 				      * sizeof (struct dw_ranges_struct)));
7510       memset (ranges_table + ranges_table_in_use, 0,
7511 	      RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7512     }
7513 
7514   ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7515   ranges_table_in_use = in_use + 1;
7516 
7517   return in_use * 2 * DWARF2_ADDR_SIZE;
7518 }
7519 
7520 static void
output_ranges(void)7521 output_ranges (void)
7522 {
7523   unsigned i;
7524   static const char *const start_fmt = "Offset 0x%x";
7525   const char *fmt = start_fmt;
7526 
7527   for (i = 0; i < ranges_table_in_use; i++)
7528     {
7529       int block_num = ranges_table[i].block_num;
7530 
7531       if (block_num)
7532 	{
7533 	  char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7534 	  char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7535 
7536 	  ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7537 	  ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7538 
7539 	  /* If all code is in the text section, then the compilation
7540 	     unit base address defaults to DW_AT_low_pc, which is the
7541 	     base of the text section.  */
7542 	  if (!have_multiple_function_sections)
7543 	    {
7544 	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7545 				    text_section_label,
7546 				    fmt, i * 2 * DWARF2_ADDR_SIZE);
7547 	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7548 				    text_section_label, NULL);
7549 	    }
7550 
7551 	  /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7552 	     compilation unit base address to zero, which allows us to
7553 	     use absolute addresses, and not worry about whether the
7554 	     target supports cross-section arithmetic.  */
7555 	  else
7556 	    {
7557 	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7558 				   fmt, i * 2 * DWARF2_ADDR_SIZE);
7559 	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7560 	    }
7561 
7562 	  fmt = NULL;
7563 	}
7564       else
7565 	{
7566 	  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7567 	  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7568 	  fmt = start_fmt;
7569 	}
7570     }
7571 }
7572 
7573 /* Data structure containing information about input files.  */
7574 struct file_info
7575 {
7576   const char *path;	/* Complete file name.  */
7577   const char *fname;	/* File name part.  */
7578   int length;		/* Length of entire string.  */
7579   struct dwarf_file_data * file_idx;	/* Index in input file table.  */
7580   int dir_idx;		/* Index in directory table.  */
7581 };
7582 
7583 /* Data structure containing information about directories with source
7584    files.  */
7585 struct dir_info
7586 {
7587   const char *path;	/* Path including directory name.  */
7588   int length;		/* Path length.  */
7589   int prefix;		/* Index of directory entry which is a prefix.  */
7590   int count;		/* Number of files in this directory.  */
7591   int dir_idx;		/* Index of directory used as base.  */
7592 };
7593 
7594 /* Callback function for file_info comparison.  We sort by looking at
7595    the directories in the path.  */
7596 
7597 static int
file_info_cmp(const void * p1,const void * p2)7598 file_info_cmp (const void *p1, const void *p2)
7599 {
7600   const struct file_info *s1 = p1;
7601   const struct file_info *s2 = p2;
7602   unsigned char *cp1;
7603   unsigned char *cp2;
7604 
7605   /* Take care of file names without directories.  We need to make sure that
7606      we return consistent values to qsort since some will get confused if
7607      we return the same value when identical operands are passed in opposite
7608      orders.  So if neither has a directory, return 0 and otherwise return
7609      1 or -1 depending on which one has the directory.  */
7610   if ((s1->path == s1->fname || s2->path == s2->fname))
7611     return (s2->path == s2->fname) - (s1->path == s1->fname);
7612 
7613   cp1 = (unsigned char *) s1->path;
7614   cp2 = (unsigned char *) s2->path;
7615 
7616   while (1)
7617     {
7618       ++cp1;
7619       ++cp2;
7620       /* Reached the end of the first path?  If so, handle like above.  */
7621       if ((cp1 == (unsigned char *) s1->fname)
7622 	  || (cp2 == (unsigned char *) s2->fname))
7623 	return ((cp2 == (unsigned char *) s2->fname)
7624 		- (cp1 == (unsigned char *) s1->fname));
7625 
7626       /* Character of current path component the same?  */
7627       else if (*cp1 != *cp2)
7628 	return *cp1 - *cp2;
7629     }
7630 }
7631 
7632 struct file_name_acquire_data
7633 {
7634   struct file_info *files;
7635   int used_files;
7636   int max_files;
7637 };
7638 
7639 /* Traversal function for the hash table.  */
7640 
7641 static int
file_name_acquire(void ** slot,void * data)7642 file_name_acquire (void ** slot, void *data)
7643 {
7644   struct file_name_acquire_data *fnad = data;
7645   struct dwarf_file_data *d = *slot;
7646   struct file_info *fi;
7647   const char *f;
7648 
7649   gcc_assert (fnad->max_files >= d->emitted_number);
7650 
7651   if (! d->emitted_number)
7652     return 1;
7653 
7654   gcc_assert (fnad->max_files != fnad->used_files);
7655 
7656   fi = fnad->files + fnad->used_files++;
7657 
7658   /* Skip all leading "./".  */
7659   f = d->filename;
7660   while (f[0] == '.' && f[1] == '/')
7661     f += 2;
7662 
7663   /* Create a new array entry.  */
7664   fi->path = f;
7665   fi->length = strlen (f);
7666   fi->file_idx = d;
7667 
7668   /* Search for the file name part.  */
7669   f = strrchr (f, '/');
7670   fi->fname = f == NULL ? fi->path : f + 1;
7671   return 1;
7672 }
7673 
7674 /* Output the directory table and the file name table.  We try to minimize
7675    the total amount of memory needed.  A heuristic is used to avoid large
7676    slowdowns with many input files.  */
7677 
7678 static void
output_file_names(void)7679 output_file_names (void)
7680 {
7681   struct file_name_acquire_data fnad;
7682   int numfiles;
7683   struct file_info *files;
7684   struct dir_info *dirs;
7685   int *saved;
7686   int *savehere;
7687   int *backmap;
7688   int ndirs;
7689   int idx_offset;
7690   int i;
7691   int idx;
7692 
7693   if (!last_emitted_file)
7694     {
7695       dw2_asm_output_data (1, 0, "End directory table");
7696       dw2_asm_output_data (1, 0, "End file name table");
7697       return;
7698     }
7699 
7700   numfiles = last_emitted_file->emitted_number;
7701 
7702   /* Allocate the various arrays we need.  */
7703   files = alloca (numfiles * sizeof (struct file_info));
7704   dirs = alloca (numfiles * sizeof (struct dir_info));
7705 
7706   fnad.files = files;
7707   fnad.used_files = 0;
7708   fnad.max_files = numfiles;
7709   htab_traverse (file_table, file_name_acquire, &fnad);
7710   gcc_assert (fnad.used_files == fnad.max_files);
7711 
7712   qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7713 
7714   /* Find all the different directories used.  */
7715   dirs[0].path = files[0].path;
7716   dirs[0].length = files[0].fname - files[0].path;
7717   dirs[0].prefix = -1;
7718   dirs[0].count = 1;
7719   dirs[0].dir_idx = 0;
7720   files[0].dir_idx = 0;
7721   ndirs = 1;
7722 
7723   for (i = 1; i < numfiles; i++)
7724     if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7725 	&& memcmp (dirs[ndirs - 1].path, files[i].path,
7726 		   dirs[ndirs - 1].length) == 0)
7727       {
7728 	/* Same directory as last entry.  */
7729 	files[i].dir_idx = ndirs - 1;
7730 	++dirs[ndirs - 1].count;
7731       }
7732     else
7733       {
7734 	int j;
7735 
7736 	/* This is a new directory.  */
7737 	dirs[ndirs].path = files[i].path;
7738 	dirs[ndirs].length = files[i].fname - files[i].path;
7739 	dirs[ndirs].count = 1;
7740 	dirs[ndirs].dir_idx = ndirs;
7741 	files[i].dir_idx = ndirs;
7742 
7743 	/* Search for a prefix.  */
7744 	dirs[ndirs].prefix = -1;
7745 	for (j = 0; j < ndirs; j++)
7746 	  if (dirs[j].length < dirs[ndirs].length
7747 	      && dirs[j].length > 1
7748 	      && (dirs[ndirs].prefix == -1
7749 		  || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7750 	      && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7751 	    dirs[ndirs].prefix = j;
7752 
7753 	++ndirs;
7754       }
7755 
7756   /* Now to the actual work.  We have to find a subset of the directories which
7757      allow expressing the file name using references to the directory table
7758      with the least amount of characters.  We do not do an exhaustive search
7759      where we would have to check out every combination of every single
7760      possible prefix.  Instead we use a heuristic which provides nearly optimal
7761      results in most cases and never is much off.  */
7762   saved = alloca (ndirs * sizeof (int));
7763   savehere = alloca (ndirs * sizeof (int));
7764 
7765   memset (saved, '\0', ndirs * sizeof (saved[0]));
7766   for (i = 0; i < ndirs; i++)
7767     {
7768       int j;
7769       int total;
7770 
7771       /* We can always save some space for the current directory.  But this
7772 	 does not mean it will be enough to justify adding the directory.  */
7773       savehere[i] = dirs[i].length;
7774       total = (savehere[i] - saved[i]) * dirs[i].count;
7775 
7776       for (j = i + 1; j < ndirs; j++)
7777 	{
7778 	  savehere[j] = 0;
7779 	  if (saved[j] < dirs[i].length)
7780 	    {
7781 	      /* Determine whether the dirs[i] path is a prefix of the
7782 		 dirs[j] path.  */
7783 	      int k;
7784 
7785 	      k = dirs[j].prefix;
7786 	      while (k != -1 && k != (int) i)
7787 		k = dirs[k].prefix;
7788 
7789 	      if (k == (int) i)
7790 		{
7791 		  /* Yes it is.  We can possibly save some memory by
7792 		     writing the filenames in dirs[j] relative to
7793 		     dirs[i].  */
7794 		  savehere[j] = dirs[i].length;
7795 		  total += (savehere[j] - saved[j]) * dirs[j].count;
7796 		}
7797 	    }
7798 	}
7799 
7800       /* Check whether we can save enough to justify adding the dirs[i]
7801 	 directory.  */
7802       if (total > dirs[i].length + 1)
7803 	{
7804 	  /* It's worthwhile adding.  */
7805 	  for (j = i; j < ndirs; j++)
7806 	    if (savehere[j] > 0)
7807 	      {
7808 		/* Remember how much we saved for this directory so far.  */
7809 		saved[j] = savehere[j];
7810 
7811 		/* Remember the prefix directory.  */
7812 		dirs[j].dir_idx = i;
7813 	      }
7814 	}
7815     }
7816 
7817   /* Emit the directory name table.  */
7818   idx = 1;
7819   idx_offset = dirs[0].length > 0 ? 1 : 0;
7820   for (i = 1 - idx_offset; i < ndirs; i++)
7821     dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7822 			    "Directory Entry: 0x%x", i + idx_offset);
7823 
7824   dw2_asm_output_data (1, 0, "End directory table");
7825 
7826   /* We have to emit them in the order of emitted_number since that's
7827      used in the debug info generation.  To do this efficiently we
7828      generate a back-mapping of the indices first.  */
7829   backmap = alloca (numfiles * sizeof (int));
7830   for (i = 0; i < numfiles; i++)
7831     backmap[files[i].file_idx->emitted_number - 1] = i;
7832 
7833   /* Now write all the file names.  */
7834   for (i = 0; i < numfiles; i++)
7835     {
7836       int file_idx = backmap[i];
7837       int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7838 
7839       dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7840 			      "File Entry: 0x%x", (unsigned) i + 1);
7841 
7842       /* Include directory index.  */
7843       dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
7844 
7845       /* Modification time.  */
7846       dw2_asm_output_data_uleb128 (0, NULL);
7847 
7848       /* File length in bytes.  */
7849       dw2_asm_output_data_uleb128 (0, NULL);
7850     }
7851 
7852   dw2_asm_output_data (1, 0, "End file name table");
7853 }
7854 
7855 
7856 /* Output the source line number correspondence information.  This
7857    information goes into the .debug_line section.  */
7858 
7859 static void
output_line_info(void)7860 output_line_info (void)
7861 {
7862   char l1[20], l2[20], p1[20], p2[20];
7863   char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7864   char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7865   unsigned opc;
7866   unsigned n_op_args;
7867   unsigned long lt_index;
7868   unsigned long current_line;
7869   long line_offset;
7870   long line_delta;
7871   unsigned long current_file;
7872   unsigned long function;
7873 
7874   ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7875   ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7876   ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7877   ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7878 
7879   if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7880     dw2_asm_output_data (4, 0xffffffff,
7881       "Initial length escape value indicating 64-bit DWARF extension");
7882   dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7883 			"Length of Source Line Info");
7884   ASM_OUTPUT_LABEL (asm_out_file, l1);
7885 
7886   dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7887   dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7888   ASM_OUTPUT_LABEL (asm_out_file, p1);
7889 
7890   /* Define the architecture-dependent minimum instruction length (in
7891    bytes).  In this implementation of DWARF, this field is used for
7892    information purposes only.  Since GCC generates assembly language,
7893    we have no a priori knowledge of how many instruction bytes are
7894    generated for each source line, and therefore can use only the
7895    DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7896    commands.  Accordingly, we fix this as `1', which is "correct
7897    enough" for all architectures, and don't let the target override.  */
7898   dw2_asm_output_data (1, 1,
7899 		       "Minimum Instruction Length");
7900 
7901   dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7902 		       "Default is_stmt_start flag");
7903   dw2_asm_output_data (1, DWARF_LINE_BASE,
7904 		       "Line Base Value (Special Opcodes)");
7905   dw2_asm_output_data (1, DWARF_LINE_RANGE,
7906 		       "Line Range Value (Special Opcodes)");
7907   dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7908 		       "Special Opcode Base");
7909 
7910   for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7911     {
7912       switch (opc)
7913 	{
7914 	case DW_LNS_advance_pc:
7915 	case DW_LNS_advance_line:
7916 	case DW_LNS_set_file:
7917 	case DW_LNS_set_column:
7918 	case DW_LNS_fixed_advance_pc:
7919 	  n_op_args = 1;
7920 	  break;
7921 	default:
7922 	  n_op_args = 0;
7923 	  break;
7924 	}
7925 
7926       dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7927 			   opc, n_op_args);
7928     }
7929 
7930   /* Write out the information about the files we use.  */
7931   output_file_names ();
7932   ASM_OUTPUT_LABEL (asm_out_file, p2);
7933 
7934   /* We used to set the address register to the first location in the text
7935      section here, but that didn't accomplish anything since we already
7936      have a line note for the opening brace of the first function.  */
7937 
7938   /* Generate the line number to PC correspondence table, encoded as
7939      a series of state machine operations.  */
7940   current_file = 1;
7941   current_line = 1;
7942 
7943   if (cfun && in_cold_section_p)
7944     strcpy (prev_line_label, cfun->cold_section_label);
7945   else
7946     strcpy (prev_line_label, text_section_label);
7947   for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7948     {
7949       dw_line_info_ref line_info = &line_info_table[lt_index];
7950 
7951 #if 0
7952       /* Disable this optimization for now; GDB wants to see two line notes
7953 	 at the beginning of a function so it can find the end of the
7954 	 prologue.  */
7955 
7956       /* Don't emit anything for redundant notes.  Just updating the
7957 	 address doesn't accomplish anything, because we already assume
7958 	 that anything after the last address is this line.  */
7959       if (line_info->dw_line_num == current_line
7960 	  && line_info->dw_file_num == current_file)
7961 	continue;
7962 #endif
7963 
7964       /* Emit debug info for the address of the current line.
7965 
7966 	 Unfortunately, we have little choice here currently, and must always
7967 	 use the most general form.  GCC does not know the address delta
7968 	 itself, so we can't use DW_LNS_advance_pc.  Many ports do have length
7969 	 attributes which will give an upper bound on the address range.  We
7970 	 could perhaps use length attributes to determine when it is safe to
7971 	 use DW_LNS_fixed_advance_pc.  */
7972 
7973       ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7974       if (0)
7975 	{
7976 	  /* This can handle deltas up to 0xffff.  This takes 3 bytes.  */
7977 	  dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7978 			       "DW_LNS_fixed_advance_pc");
7979 	  dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7980 	}
7981       else
7982 	{
7983 	  /* This can handle any delta.  This takes
7984 	     4+DWARF2_ADDR_SIZE bytes.  */
7985 	  dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7986 	  dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7987 	  dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7988 	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7989 	}
7990 
7991       strcpy (prev_line_label, line_label);
7992 
7993       /* Emit debug info for the source file of the current line, if
7994 	 different from the previous line.  */
7995       if (line_info->dw_file_num != current_file)
7996 	{
7997 	  current_file = line_info->dw_file_num;
7998 	  dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7999 	  dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8000 	}
8001 
8002       /* Emit debug info for the current line number, choosing the encoding
8003 	 that uses the least amount of space.  */
8004       if (line_info->dw_line_num != current_line)
8005 	{
8006 	  line_offset = line_info->dw_line_num - current_line;
8007 	  line_delta = line_offset - DWARF_LINE_BASE;
8008 	  current_line = line_info->dw_line_num;
8009 	  if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8010 	    /* This can handle deltas from -10 to 234, using the current
8011 	       definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.  This
8012 	       takes 1 byte.  */
8013 	    dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8014 				 "line %lu", current_line);
8015 	  else
8016 	    {
8017 	      /* This can handle any delta.  This takes at least 4 bytes,
8018 		 depending on the value being encoded.  */
8019 	      dw2_asm_output_data (1, DW_LNS_advance_line,
8020 				   "advance to line %lu", current_line);
8021 	      dw2_asm_output_data_sleb128 (line_offset, NULL);
8022 	      dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8023 	    }
8024 	}
8025       else
8026 	/* We still need to start a new row, so output a copy insn.  */
8027 	dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8028     }
8029 
8030   /* Emit debug info for the address of the end of the function.  */
8031   if (0)
8032     {
8033       dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8034 			   "DW_LNS_fixed_advance_pc");
8035       dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8036     }
8037   else
8038     {
8039       dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8040       dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8041       dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8042       dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8043     }
8044 
8045   dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8046   dw2_asm_output_data_uleb128 (1, NULL);
8047   dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8048 
8049   function = 0;
8050   current_file = 1;
8051   current_line = 1;
8052   for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8053     {
8054       dw_separate_line_info_ref line_info
8055 	= &separate_line_info_table[lt_index];
8056 
8057 #if 0
8058       /* Don't emit anything for redundant notes.  */
8059       if (line_info->dw_line_num == current_line
8060 	  && line_info->dw_file_num == current_file
8061 	  && line_info->function == function)
8062 	goto cont;
8063 #endif
8064 
8065       /* Emit debug info for the address of the current line.  If this is
8066 	 a new function, or the first line of a function, then we need
8067 	 to handle it differently.  */
8068       ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8069 				   lt_index);
8070       if (function != line_info->function)
8071 	{
8072 	  function = line_info->function;
8073 
8074 	  /* Set the address register to the first line in the function.  */
8075 	  dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8076 	  dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8077 	  dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8078 	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8079 	}
8080       else
8081 	{
8082 	  /* ??? See the DW_LNS_advance_pc comment above.  */
8083 	  if (0)
8084 	    {
8085 	      dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8086 				   "DW_LNS_fixed_advance_pc");
8087 	      dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8088 	    }
8089 	  else
8090 	    {
8091 	      dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8092 	      dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8093 	      dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8094 	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8095 	    }
8096 	}
8097 
8098       strcpy (prev_line_label, line_label);
8099 
8100       /* Emit debug info for the source file of the current line, if
8101 	 different from the previous line.  */
8102       if (line_info->dw_file_num != current_file)
8103 	{
8104 	  current_file = line_info->dw_file_num;
8105 	  dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8106 	  dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8107 	}
8108 
8109       /* Emit debug info for the current line number, choosing the encoding
8110 	 that uses the least amount of space.  */
8111       if (line_info->dw_line_num != current_line)
8112 	{
8113 	  line_offset = line_info->dw_line_num - current_line;
8114 	  line_delta = line_offset - DWARF_LINE_BASE;
8115 	  current_line = line_info->dw_line_num;
8116 	  if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8117 	    dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8118 				 "line %lu", current_line);
8119 	  else
8120 	    {
8121 	      dw2_asm_output_data (1, DW_LNS_advance_line,
8122 				   "advance to line %lu", current_line);
8123 	      dw2_asm_output_data_sleb128 (line_offset, NULL);
8124 	      dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8125 	    }
8126 	}
8127       else
8128 	dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8129 
8130 #if 0
8131     cont:
8132 #endif
8133 
8134       lt_index++;
8135 
8136       /* If we're done with a function, end its sequence.  */
8137       if (lt_index == separate_line_info_table_in_use
8138 	  || separate_line_info_table[lt_index].function != function)
8139 	{
8140 	  current_file = 1;
8141 	  current_line = 1;
8142 
8143 	  /* Emit debug info for the address of the end of the function.  */
8144 	  ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8145 	  if (0)
8146 	    {
8147 	      dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8148 				   "DW_LNS_fixed_advance_pc");
8149 	      dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8150 	    }
8151 	  else
8152 	    {
8153 	      dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8154 	      dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8155 	      dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8156 	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8157 	    }
8158 
8159 	  /* Output the marker for the end of this sequence.  */
8160 	  dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8161 	  dw2_asm_output_data_uleb128 (1, NULL);
8162 	  dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8163 	}
8164     }
8165 
8166   /* Output the marker for the end of the line number info.  */
8167   ASM_OUTPUT_LABEL (asm_out_file, l2);
8168 }
8169 
8170 /* Given a pointer to a tree node for some base type, return a pointer to
8171    a DIE that describes the given type.
8172 
8173    This routine must only be called for GCC type nodes that correspond to
8174    Dwarf base (fundamental) types.  */
8175 
8176 static dw_die_ref
base_type_die(tree type)8177 base_type_die (tree type)
8178 {
8179   dw_die_ref base_type_result;
8180   enum dwarf_type encoding;
8181 
8182   if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8183     return 0;
8184 
8185   switch (TREE_CODE (type))
8186     {
8187     case INTEGER_TYPE:
8188       if (TYPE_STRING_FLAG (type))
8189 	{
8190 	  if (TYPE_UNSIGNED (type))
8191 	    encoding = DW_ATE_unsigned_char;
8192 	  else
8193 	    encoding = DW_ATE_signed_char;
8194 	}
8195       else if (TYPE_UNSIGNED (type))
8196 	encoding = DW_ATE_unsigned;
8197       else
8198 	encoding = DW_ATE_signed;
8199       break;
8200 
8201     case REAL_TYPE:
8202       if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8203 	encoding = DW_ATE_decimal_float;
8204       else
8205 	encoding = DW_ATE_float;
8206       break;
8207 
8208       /* Dwarf2 doesn't know anything about complex ints, so use
8209 	 a user defined type for it.  */
8210     case COMPLEX_TYPE:
8211       if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8212 	encoding = DW_ATE_complex_float;
8213       else
8214 	encoding = DW_ATE_lo_user;
8215       break;
8216 
8217     case BOOLEAN_TYPE:
8218       /* GNU FORTRAN/Ada/C++ BOOLEAN type.  */
8219       encoding = DW_ATE_boolean;
8220       break;
8221 
8222     default:
8223       /* No other TREE_CODEs are Dwarf fundamental types.  */
8224       gcc_unreachable ();
8225     }
8226 
8227   base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8228 
8229   /* This probably indicates a bug.  */
8230   if (! TYPE_NAME (type))
8231     add_name_attribute (base_type_result, "__unknown__");
8232 
8233   add_AT_unsigned (base_type_result, DW_AT_byte_size,
8234 		   int_size_in_bytes (type));
8235   add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8236 
8237   return base_type_result;
8238 }
8239 
8240 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8241    the Dwarf "root" type for the given input type.  The Dwarf "root" type of
8242    a given type is generally the same as the given type, except that if the
8243    given type is a pointer or reference type, then the root type of the given
8244    type is the root type of the "basis" type for the pointer or reference
8245    type.  (This definition of the "root" type is recursive.) Also, the root
8246    type of a `const' qualified type or a `volatile' qualified type is the
8247    root type of the given type without the qualifiers.  */
8248 
8249 static tree
root_type(tree type)8250 root_type (tree type)
8251 {
8252   if (TREE_CODE (type) == ERROR_MARK)
8253     return error_mark_node;
8254 
8255   switch (TREE_CODE (type))
8256     {
8257     case ERROR_MARK:
8258       return error_mark_node;
8259 
8260     case POINTER_TYPE:
8261     case REFERENCE_TYPE:
8262       return type_main_variant (root_type (TREE_TYPE (type)));
8263 
8264     default:
8265       return type_main_variant (type);
8266     }
8267 }
8268 
8269 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8270    given input type is a Dwarf "fundamental" type.  Otherwise return null.  */
8271 
8272 static inline int
is_base_type(tree type)8273 is_base_type (tree type)
8274 {
8275   switch (TREE_CODE (type))
8276     {
8277     case ERROR_MARK:
8278     case VOID_TYPE:
8279     case INTEGER_TYPE:
8280     case REAL_TYPE:
8281     case COMPLEX_TYPE:
8282     case BOOLEAN_TYPE:
8283       return 1;
8284 
8285     case ARRAY_TYPE:
8286     case RECORD_TYPE:
8287     case UNION_TYPE:
8288     case QUAL_UNION_TYPE:
8289     case ENUMERAL_TYPE:
8290     case FUNCTION_TYPE:
8291     case METHOD_TYPE:
8292     case POINTER_TYPE:
8293     case REFERENCE_TYPE:
8294     case OFFSET_TYPE:
8295     case LANG_TYPE:
8296     case VECTOR_TYPE:
8297       return 0;
8298 
8299     default:
8300       gcc_unreachable ();
8301     }
8302 
8303   return 0;
8304 }
8305 
8306 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8307    node, return the size in bits for the type if it is a constant, or else
8308    return the alignment for the type if the type's size is not constant, or
8309    else return BITS_PER_WORD if the type actually turns out to be an
8310    ERROR_MARK node.  */
8311 
8312 static inline unsigned HOST_WIDE_INT
simple_type_size_in_bits(tree type)8313 simple_type_size_in_bits (tree type)
8314 {
8315   if (TREE_CODE (type) == ERROR_MARK)
8316     return BITS_PER_WORD;
8317   else if (TYPE_SIZE (type) == NULL_TREE)
8318     return 0;
8319   else if (host_integerp (TYPE_SIZE (type), 1))
8320     return tree_low_cst (TYPE_SIZE (type), 1);
8321   else
8322     return TYPE_ALIGN (type);
8323 }
8324 
8325 /* Return true if the debug information for the given type should be
8326    emitted as a subrange type.  */
8327 
8328 static inline bool
is_subrange_type(tree type)8329 is_subrange_type (tree type)
8330 {
8331   tree subtype = TREE_TYPE (type);
8332 
8333   /* Subrange types are identified by the fact that they are integer
8334      types, and that they have a subtype which is either an integer type
8335      or an enumeral type.  */
8336 
8337   if (TREE_CODE (type) != INTEGER_TYPE
8338       || subtype == NULL_TREE)
8339     return false;
8340 
8341   if (TREE_CODE (subtype) != INTEGER_TYPE
8342       && TREE_CODE (subtype) != ENUMERAL_TYPE)
8343     return false;
8344 
8345   if (TREE_CODE (type) == TREE_CODE (subtype)
8346       && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8347       && TYPE_MIN_VALUE (type) != NULL
8348       && TYPE_MIN_VALUE (subtype) != NULL
8349       && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8350       && TYPE_MAX_VALUE (type) != NULL
8351       && TYPE_MAX_VALUE (subtype) != NULL
8352       && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8353     {
8354       /* The type and its subtype have the same representation.  If in
8355          addition the two types also have the same name, then the given
8356          type is not a subrange type, but rather a plain base type.  */
8357       /* FIXME: brobecker/2004-03-22:
8358          Sizetype INTEGER_CSTs nodes are canonicalized.  It should
8359          therefore be sufficient to check the TYPE_SIZE node pointers
8360          rather than checking the actual size.  Unfortunately, we have
8361          found some cases, such as in the Ada "integer" type, where
8362          this is not the case.  Until this problem is solved, we need to
8363          keep checking the actual size.  */
8364       tree type_name = TYPE_NAME (type);
8365       tree subtype_name = TYPE_NAME (subtype);
8366 
8367       if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8368         type_name = DECL_NAME (type_name);
8369 
8370       if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8371         subtype_name = DECL_NAME (subtype_name);
8372 
8373       if (type_name == subtype_name)
8374         return false;
8375     }
8376 
8377   return true;
8378 }
8379 
8380 /*  Given a pointer to a tree node for a subrange type, return a pointer
8381     to a DIE that describes the given type.  */
8382 
8383 static dw_die_ref
subrange_type_die(tree type,dw_die_ref context_die)8384 subrange_type_die (tree type, dw_die_ref context_die)
8385 {
8386   dw_die_ref subrange_die;
8387   const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8388 
8389   if (context_die == NULL)
8390     context_die = comp_unit_die;
8391 
8392   subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8393 
8394   if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8395     {
8396       /* The size of the subrange type and its base type do not match,
8397          so we need to generate a size attribute for the subrange type.  */
8398       add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8399     }
8400 
8401   if (TYPE_MIN_VALUE (type) != NULL)
8402     add_bound_info (subrange_die, DW_AT_lower_bound,
8403                     TYPE_MIN_VALUE (type));
8404   if (TYPE_MAX_VALUE (type) != NULL)
8405     add_bound_info (subrange_die, DW_AT_upper_bound,
8406                     TYPE_MAX_VALUE (type));
8407 
8408   return subrange_die;
8409 }
8410 
8411 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8412    entry that chains various modifiers in front of the given type.  */
8413 
8414 static dw_die_ref
modified_type_die(tree type,int is_const_type,int is_volatile_type,dw_die_ref context_die)8415 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8416 		   dw_die_ref context_die)
8417 {
8418   enum tree_code code = TREE_CODE (type);
8419   dw_die_ref mod_type_die;
8420   dw_die_ref sub_die = NULL;
8421   tree item_type = NULL;
8422   tree qualified_type;
8423   tree name;
8424 
8425   if (code == ERROR_MARK)
8426     return NULL;
8427 
8428   /* See if we already have the appropriately qualified variant of
8429      this type.  */
8430   qualified_type
8431     = get_qualified_type (type,
8432 			  ((is_const_type ? TYPE_QUAL_CONST : 0)
8433 			   | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8434 
8435   /* If we do, then we can just use its DIE, if it exists.  */
8436   if (qualified_type)
8437     {
8438       mod_type_die = lookup_type_die (qualified_type);
8439       if (mod_type_die)
8440 	return mod_type_die;
8441     }
8442 
8443   name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8444 
8445   /* Handle C typedef types.  */
8446   if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8447     {
8448       tree dtype = TREE_TYPE (name);
8449 
8450       if (qualified_type == dtype)
8451 	{
8452 	  /* For a named type, use the typedef.  */
8453 	  gen_type_die (qualified_type, context_die);
8454 	  return lookup_type_die (qualified_type);
8455 	}
8456       else if (is_const_type < TYPE_READONLY (dtype)
8457 	       || is_volatile_type < TYPE_VOLATILE (dtype)
8458 	       || (is_const_type <= TYPE_READONLY (dtype)
8459 		   && is_volatile_type <= TYPE_VOLATILE (dtype)
8460 		   && DECL_ORIGINAL_TYPE (name) != type))
8461 	/* cv-unqualified version of named type.  Just use the unnamed
8462 	   type to which it refers.  */
8463 	return modified_type_die (DECL_ORIGINAL_TYPE (name),
8464 				  is_const_type, is_volatile_type,
8465 				  context_die);
8466       /* Else cv-qualified version of named type; fall through.  */
8467     }
8468 
8469   if (is_const_type)
8470     {
8471       mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8472       sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8473     }
8474   else if (is_volatile_type)
8475     {
8476       mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8477       sub_die = modified_type_die (type, 0, 0, context_die);
8478     }
8479   else if (code == POINTER_TYPE)
8480     {
8481       mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8482       add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8483 		       simple_type_size_in_bits (type) / BITS_PER_UNIT);
8484       item_type = TREE_TYPE (type);
8485     }
8486   else if (code == REFERENCE_TYPE)
8487     {
8488       mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8489       add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8490 		       simple_type_size_in_bits (type) / BITS_PER_UNIT);
8491       item_type = TREE_TYPE (type);
8492     }
8493   else if (is_subrange_type (type))
8494     {
8495       mod_type_die = subrange_type_die (type, context_die);
8496       item_type = TREE_TYPE (type);
8497     }
8498   else if (is_base_type (type))
8499     mod_type_die = base_type_die (type);
8500   else
8501     {
8502       gen_type_die (type, context_die);
8503 
8504       /* We have to get the type_main_variant here (and pass that to the
8505 	 `lookup_type_die' routine) because the ..._TYPE node we have
8506 	 might simply be a *copy* of some original type node (where the
8507 	 copy was created to help us keep track of typedef names) and
8508 	 that copy might have a different TYPE_UID from the original
8509 	 ..._TYPE node.  */
8510       if (TREE_CODE (type) != VECTOR_TYPE)
8511 	return lookup_type_die (type_main_variant (type));
8512       else
8513 	/* Vectors have the debugging information in the type,
8514 	   not the main variant.  */
8515 	return lookup_type_die (type);
8516     }
8517 
8518   /* Builtin types don't have a DECL_ORIGINAL_TYPE.  For those,
8519      don't output a DW_TAG_typedef, since there isn't one in the
8520      user's program; just attach a DW_AT_name to the type.  */
8521   if (name
8522       && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8523     {
8524       if (TREE_CODE (name) == TYPE_DECL)
8525 	/* Could just call add_name_and_src_coords_attributes here,
8526 	   but since this is a builtin type it doesn't have any
8527 	   useful source coordinates anyway.  */
8528 	name = DECL_NAME (name);
8529       add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8530     }
8531 
8532   if (qualified_type)
8533     equate_type_number_to_die (qualified_type, mod_type_die);
8534 
8535   if (item_type)
8536     /* We must do this after the equate_type_number_to_die call, in case
8537        this is a recursive type.  This ensures that the modified_type_die
8538        recursion will terminate even if the type is recursive.  Recursive
8539        types are possible in Ada.  */
8540     sub_die = modified_type_die (item_type,
8541 				 TYPE_READONLY (item_type),
8542 				 TYPE_VOLATILE (item_type),
8543 				 context_die);
8544 
8545   if (sub_die != NULL)
8546     add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8547 
8548   return mod_type_die;
8549 }
8550 
8551 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8552    an enumerated type.  */
8553 
8554 static inline int
type_is_enum(tree type)8555 type_is_enum (tree type)
8556 {
8557   return TREE_CODE (type) == ENUMERAL_TYPE;
8558 }
8559 
8560 /* Return the DBX register number described by a given RTL node.  */
8561 
8562 static unsigned int
dbx_reg_number(rtx rtl)8563 dbx_reg_number (rtx rtl)
8564 {
8565   unsigned regno = REGNO (rtl);
8566 
8567   gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8568 
8569 #ifdef LEAF_REG_REMAP
8570   if (current_function_uses_only_leaf_regs)
8571     {
8572       int leaf_reg = LEAF_REG_REMAP (regno);
8573       if (leaf_reg != -1)
8574 	regno = (unsigned) leaf_reg;
8575     }
8576 #endif
8577 
8578   return DBX_REGISTER_NUMBER (regno);
8579 }
8580 
8581 /* Optionally add a DW_OP_piece term to a location description expression.
8582    DW_OP_piece is only added if the location description expression already
8583    doesn't end with DW_OP_piece.  */
8584 
8585 static void
add_loc_descr_op_piece(dw_loc_descr_ref * list_head,int size)8586 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8587 {
8588   dw_loc_descr_ref loc;
8589 
8590   if (*list_head != NULL)
8591     {
8592       /* Find the end of the chain.  */
8593       for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8594 	;
8595 
8596       if (loc->dw_loc_opc != DW_OP_piece)
8597 	loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8598     }
8599 }
8600 
8601 /* Return a location descriptor that designates a machine register or
8602    zero if there is none.  */
8603 
8604 static dw_loc_descr_ref
reg_loc_descriptor(rtx rtl)8605 reg_loc_descriptor (rtx rtl)
8606 {
8607   rtx regs;
8608 
8609   if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8610     return 0;
8611 
8612   regs = targetm.dwarf_register_span (rtl);
8613 
8614   if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8615     return multiple_reg_loc_descriptor (rtl, regs);
8616   else
8617     return one_reg_loc_descriptor (dbx_reg_number (rtl));
8618 }
8619 
8620 /* Return a location descriptor that designates a machine register for
8621    a given hard register number.  */
8622 
8623 static dw_loc_descr_ref
one_reg_loc_descriptor(unsigned int regno)8624 one_reg_loc_descriptor (unsigned int regno)
8625 {
8626   if (regno <= 31)
8627     return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8628   else
8629     return new_loc_descr (DW_OP_regx, regno, 0);
8630 }
8631 
8632 /* Given an RTL of a register, return a location descriptor that
8633    designates a value that spans more than one register.  */
8634 
8635 static dw_loc_descr_ref
multiple_reg_loc_descriptor(rtx rtl,rtx regs)8636 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8637 {
8638   int nregs, size, i;
8639   unsigned reg;
8640   dw_loc_descr_ref loc_result = NULL;
8641 
8642   reg = REGNO (rtl);
8643 #ifdef LEAF_REG_REMAP
8644   if (current_function_uses_only_leaf_regs)
8645     {
8646       int leaf_reg = LEAF_REG_REMAP (reg);
8647       if (leaf_reg != -1)
8648 	reg = (unsigned) leaf_reg;
8649     }
8650 #endif
8651   gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8652   nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8653 
8654   /* Simple, contiguous registers.  */
8655   if (regs == NULL_RTX)
8656     {
8657       size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8658 
8659       loc_result = NULL;
8660       while (nregs--)
8661 	{
8662 	  dw_loc_descr_ref t;
8663 
8664 	  t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8665 	  add_loc_descr (&loc_result, t);
8666 	  add_loc_descr_op_piece (&loc_result, size);
8667 	  ++reg;
8668 	}
8669       return loc_result;
8670     }
8671 
8672   /* Now onto stupid register sets in non contiguous locations.  */
8673 
8674   gcc_assert (GET_CODE (regs) == PARALLEL);
8675 
8676   size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8677   loc_result = NULL;
8678 
8679   for (i = 0; i < XVECLEN (regs, 0); ++i)
8680     {
8681       dw_loc_descr_ref t;
8682 
8683       t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8684       add_loc_descr (&loc_result, t);
8685       size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8686       add_loc_descr_op_piece (&loc_result, size);
8687     }
8688   return loc_result;
8689 }
8690 
8691 /* Return a location descriptor that designates a constant.  */
8692 
8693 static dw_loc_descr_ref
int_loc_descriptor(HOST_WIDE_INT i)8694 int_loc_descriptor (HOST_WIDE_INT i)
8695 {
8696   enum dwarf_location_atom op;
8697 
8698   /* Pick the smallest representation of a constant, rather than just
8699      defaulting to the LEB encoding.  */
8700   if (i >= 0)
8701     {
8702       if (i <= 31)
8703 	op = DW_OP_lit0 + i;
8704       else if (i <= 0xff)
8705 	op = DW_OP_const1u;
8706       else if (i <= 0xffff)
8707 	op = DW_OP_const2u;
8708       else if (HOST_BITS_PER_WIDE_INT == 32
8709 	       || i <= 0xffffffff)
8710 	op = DW_OP_const4u;
8711       else
8712 	op = DW_OP_constu;
8713     }
8714   else
8715     {
8716       if (i >= -0x80)
8717 	op = DW_OP_const1s;
8718       else if (i >= -0x8000)
8719 	op = DW_OP_const2s;
8720       else if (HOST_BITS_PER_WIDE_INT == 32
8721 	       || i >= -0x80000000)
8722 	op = DW_OP_const4s;
8723       else
8724 	op = DW_OP_consts;
8725     }
8726 
8727   return new_loc_descr (op, i, 0);
8728 }
8729 
8730 /* Return a location descriptor that designates a base+offset location.  */
8731 
8732 static dw_loc_descr_ref
based_loc_descr(rtx reg,HOST_WIDE_INT offset)8733 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8734 {
8735   unsigned int regno;
8736 
8737   /* We only use "frame base" when we're sure we're talking about the
8738      post-prologue local stack frame.  We do this by *not* running
8739      register elimination until this point, and recognizing the special
8740      argument pointer and soft frame pointer rtx's.  */
8741   if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8742     {
8743       rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8744 
8745       if (elim != reg)
8746 	{
8747 	  if (GET_CODE (elim) == PLUS)
8748 	    {
8749 	      offset += INTVAL (XEXP (elim, 1));
8750 	      elim = XEXP (elim, 0);
8751 	    }
8752 	  gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8753 		      : stack_pointer_rtx));
8754           offset += frame_pointer_fb_offset;
8755 
8756           return new_loc_descr (DW_OP_fbreg, offset, 0);
8757 	}
8758     }
8759 
8760   regno = dbx_reg_number (reg);
8761   if (regno <= 31)
8762     return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8763   else
8764     return new_loc_descr (DW_OP_bregx, regno, offset);
8765 }
8766 
8767 /* Return true if this RTL expression describes a base+offset calculation.  */
8768 
8769 static inline int
is_based_loc(rtx rtl)8770 is_based_loc (rtx rtl)
8771 {
8772   return (GET_CODE (rtl) == PLUS
8773 	  && ((REG_P (XEXP (rtl, 0))
8774 	       && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8775 	       && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8776 }
8777 
8778 /* The following routine converts the RTL for a variable or parameter
8779    (resident in memory) into an equivalent Dwarf representation of a
8780    mechanism for getting the address of that same variable onto the top of a
8781    hypothetical "address evaluation" stack.
8782 
8783    When creating memory location descriptors, we are effectively transforming
8784    the RTL for a memory-resident object into its Dwarf postfix expression
8785    equivalent.  This routine recursively descends an RTL tree, turning
8786    it into Dwarf postfix code as it goes.
8787 
8788    MODE is the mode of the memory reference, needed to handle some
8789    autoincrement addressing modes.
8790 
8791    CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8792    location list for RTL.
8793 
8794    Return 0 if we can't represent the location.  */
8795 
8796 static dw_loc_descr_ref
mem_loc_descriptor(rtx rtl,enum machine_mode mode)8797 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8798 {
8799   dw_loc_descr_ref mem_loc_result = NULL;
8800   enum dwarf_location_atom op;
8801 
8802   /* Note that for a dynamically sized array, the location we will generate a
8803      description of here will be the lowest numbered location which is
8804      actually within the array.  That's *not* necessarily the same as the
8805      zeroth element of the array.  */
8806 
8807   rtl = targetm.delegitimize_address (rtl);
8808 
8809   switch (GET_CODE (rtl))
8810     {
8811     case POST_INC:
8812     case POST_DEC:
8813     case POST_MODIFY:
8814       /* POST_INC and POST_DEC can be handled just like a SUBREG.  So we
8815 	 just fall into the SUBREG code.  */
8816 
8817       /* ... fall through ...  */
8818 
8819     case SUBREG:
8820       /* The case of a subreg may arise when we have a local (register)
8821 	 variable or a formal (register) parameter which doesn't quite fill
8822 	 up an entire register.  For now, just assume that it is
8823 	 legitimate to make the Dwarf info refer to the whole register which
8824 	 contains the given subreg.  */
8825       rtl = XEXP (rtl, 0);
8826 
8827       /* ... fall through ...  */
8828 
8829     case REG:
8830       /* Whenever a register number forms a part of the description of the
8831 	 method for calculating the (dynamic) address of a memory resident
8832 	 object, DWARF rules require the register number be referred to as
8833 	 a "base register".  This distinction is not based in any way upon
8834 	 what category of register the hardware believes the given register
8835 	 belongs to.  This is strictly DWARF terminology we're dealing with
8836 	 here. Note that in cases where the location of a memory-resident
8837 	 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8838 	 OP_CONST (0)) the actual DWARF location descriptor that we generate
8839 	 may just be OP_BASEREG (basereg).  This may look deceptively like
8840 	 the object in question was allocated to a register (rather than in
8841 	 memory) so DWARF consumers need to be aware of the subtle
8842 	 distinction between OP_REG and OP_BASEREG.  */
8843       if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8844 	mem_loc_result = based_loc_descr (rtl, 0);
8845       break;
8846 
8847     case MEM:
8848       mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8849       if (mem_loc_result != 0)
8850 	add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8851       break;
8852 
8853     case LO_SUM:
8854 	 rtl = XEXP (rtl, 1);
8855 
8856       /* ... fall through ...  */
8857 
8858     case LABEL_REF:
8859       /* Some ports can transform a symbol ref into a label ref, because
8860 	 the symbol ref is too far away and has to be dumped into a constant
8861 	 pool.  */
8862     case CONST:
8863     case SYMBOL_REF:
8864       /* Alternatively, the symbol in the constant pool might be referenced
8865 	 by a different symbol.  */
8866       if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8867 	{
8868 	  bool marked;
8869 	  rtx tmp = get_pool_constant_mark (rtl, &marked);
8870 
8871 	  if (GET_CODE (tmp) == SYMBOL_REF)
8872 	    {
8873 	      rtl = tmp;
8874 	      if (CONSTANT_POOL_ADDRESS_P (tmp))
8875 		get_pool_constant_mark (tmp, &marked);
8876 	      else
8877 		marked = true;
8878 	    }
8879 
8880 	  /* If all references to this pool constant were optimized away,
8881 	     it was not output and thus we can't represent it.
8882 	     FIXME: might try to use DW_OP_const_value here, though
8883 	     DW_OP_piece complicates it.  */
8884 	  if (!marked)
8885 	    return 0;
8886 	}
8887 
8888       mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8889       mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8890       mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8891       VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8892       break;
8893 
8894     case PRE_MODIFY:
8895       /* Extract the PLUS expression nested inside and fall into
8896 	 PLUS code below.  */
8897       rtl = XEXP (rtl, 1);
8898       goto plus;
8899 
8900     case PRE_INC:
8901     case PRE_DEC:
8902       /* Turn these into a PLUS expression and fall into the PLUS code
8903 	 below.  */
8904       rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8905 			  GEN_INT (GET_CODE (rtl) == PRE_INC
8906 				   ? GET_MODE_UNIT_SIZE (mode)
8907 				   : -GET_MODE_UNIT_SIZE (mode)));
8908 
8909       /* ... fall through ...  */
8910 
8911     case PLUS:
8912     plus:
8913       if (is_based_loc (rtl))
8914 	mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8915 					  INTVAL (XEXP (rtl, 1)));
8916       else
8917 	{
8918 	  mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8919 	  if (mem_loc_result == 0)
8920 	    break;
8921 
8922 	  if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8923 	      && INTVAL (XEXP (rtl, 1)) >= 0)
8924 	    add_loc_descr (&mem_loc_result,
8925 			   new_loc_descr (DW_OP_plus_uconst,
8926 					  INTVAL (XEXP (rtl, 1)), 0));
8927 	  else
8928 	    {
8929 	      add_loc_descr (&mem_loc_result,
8930 			     mem_loc_descriptor (XEXP (rtl, 1), mode));
8931 	      add_loc_descr (&mem_loc_result,
8932 			     new_loc_descr (DW_OP_plus, 0, 0));
8933 	    }
8934 	}
8935       break;
8936 
8937     /* If a pseudo-reg is optimized away, it is possible for it to
8938        be replaced with a MEM containing a multiply or shift.  */
8939     case MULT:
8940       op = DW_OP_mul;
8941       goto do_binop;
8942 
8943     case ASHIFT:
8944       op = DW_OP_shl;
8945       goto do_binop;
8946 
8947     case ASHIFTRT:
8948       op = DW_OP_shra;
8949       goto do_binop;
8950 
8951     case LSHIFTRT:
8952       op = DW_OP_shr;
8953       goto do_binop;
8954 
8955     do_binop:
8956       {
8957 	dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8958 	dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8959 
8960 	if (op0 == 0 || op1 == 0)
8961 	  break;
8962 
8963 	mem_loc_result = op0;
8964 	add_loc_descr (&mem_loc_result, op1);
8965 	add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8966 	break;
8967       }
8968 
8969     case CONST_INT:
8970       mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8971       break;
8972 
8973     default:
8974       gcc_unreachable ();
8975     }
8976 
8977   return mem_loc_result;
8978 }
8979 
8980 /* Return a descriptor that describes the concatenation of two locations.
8981    This is typically a complex variable.  */
8982 
8983 static dw_loc_descr_ref
concat_loc_descriptor(rtx x0,rtx x1)8984 concat_loc_descriptor (rtx x0, rtx x1)
8985 {
8986   dw_loc_descr_ref cc_loc_result = NULL;
8987   dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8988   dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8989 
8990   if (x0_ref == 0 || x1_ref == 0)
8991     return 0;
8992 
8993   cc_loc_result = x0_ref;
8994   add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
8995 
8996   add_loc_descr (&cc_loc_result, x1_ref);
8997   add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
8998 
8999   return cc_loc_result;
9000 }
9001 
9002 /* Output a proper Dwarf location descriptor for a variable or parameter
9003    which is either allocated in a register or in a memory location.  For a
9004    register, we just generate an OP_REG and the register number.  For a
9005    memory location we provide a Dwarf postfix expression describing how to
9006    generate the (dynamic) address of the object onto the address stack.
9007 
9008    If we don't know how to describe it, return 0.  */
9009 
9010 static dw_loc_descr_ref
loc_descriptor(rtx rtl)9011 loc_descriptor (rtx rtl)
9012 {
9013   dw_loc_descr_ref loc_result = NULL;
9014 
9015   switch (GET_CODE (rtl))
9016     {
9017     case SUBREG:
9018       /* The case of a subreg may arise when we have a local (register)
9019 	 variable or a formal (register) parameter which doesn't quite fill
9020 	 up an entire register.  For now, just assume that it is
9021 	 legitimate to make the Dwarf info refer to the whole register which
9022 	 contains the given subreg.  */
9023       rtl = SUBREG_REG (rtl);
9024 
9025       /* ... fall through ...  */
9026 
9027     case REG:
9028       loc_result = reg_loc_descriptor (rtl);
9029       break;
9030 
9031     case MEM:
9032       loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
9033       break;
9034 
9035     case CONCAT:
9036       loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
9037       break;
9038 
9039     case VAR_LOCATION:
9040       /* Single part.  */
9041       if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9042 	{
9043 	  loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
9044 	  break;
9045 	}
9046 
9047       rtl = XEXP (rtl, 1);
9048       /* FALLTHRU */
9049 
9050     case PARALLEL:
9051       {
9052 	rtvec par_elems = XVEC (rtl, 0);
9053 	int num_elem = GET_NUM_ELEM (par_elems);
9054 	enum machine_mode mode;
9055 	int i;
9056 
9057 	/* Create the first one, so we have something to add to.  */
9058 	loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9059 	mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9060 	add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9061 	for (i = 1; i < num_elem; i++)
9062 	  {
9063 	    dw_loc_descr_ref temp;
9064 
9065 	    temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9066 	    add_loc_descr (&loc_result, temp);
9067 	    mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9068 	    add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9069 	  }
9070       }
9071       break;
9072 
9073     default:
9074       gcc_unreachable ();
9075     }
9076 
9077   return loc_result;
9078 }
9079 
9080 /* Similar, but generate the descriptor from trees instead of rtl.  This comes
9081    up particularly with variable length arrays.  WANT_ADDRESS is 2 if this is
9082    a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9083    top-level invocation, and we require the address of LOC; is 0 if we require
9084    the value of LOC.  */
9085 
9086 static dw_loc_descr_ref
loc_descriptor_from_tree_1(tree loc,int want_address)9087 loc_descriptor_from_tree_1 (tree loc, int want_address)
9088 {
9089   dw_loc_descr_ref ret, ret1;
9090   int have_address = 0;
9091   enum dwarf_location_atom op;
9092 
9093   /* ??? Most of the time we do not take proper care for sign/zero
9094      extending the values properly.  Hopefully this won't be a real
9095      problem...  */
9096 
9097   switch (TREE_CODE (loc))
9098     {
9099     case ERROR_MARK:
9100       return 0;
9101 
9102     case PLACEHOLDER_EXPR:
9103       /* This case involves extracting fields from an object to determine the
9104 	 position of other fields.  We don't try to encode this here.  The
9105 	 only user of this is Ada, which encodes the needed information using
9106 	 the names of types.  */
9107       return 0;
9108 
9109     case CALL_EXPR:
9110       return 0;
9111 
9112     case PREINCREMENT_EXPR:
9113     case PREDECREMENT_EXPR:
9114     case POSTINCREMENT_EXPR:
9115     case POSTDECREMENT_EXPR:
9116       /* There are no opcodes for these operations.  */
9117       return 0;
9118 
9119     case ADDR_EXPR:
9120       /* If we already want an address, there's nothing we can do.  */
9121       if (want_address)
9122 	return 0;
9123 
9124       /* Otherwise, process the argument and look for the address.  */
9125       return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9126 
9127     case VAR_DECL:
9128       if (DECL_THREAD_LOCAL_P (loc))
9129 	{
9130 	  rtx rtl;
9131 
9132 	  /* If this is not defined, we have no way to emit the data.  */
9133 	  if (!targetm.asm_out.output_dwarf_dtprel)
9134 	    return 0;
9135 
9136 	  /* The way DW_OP_GNU_push_tls_address is specified, we can only
9137 	     look up addresses of objects in the current module.  */
9138 	  if (DECL_EXTERNAL (loc))
9139 	    return 0;
9140 
9141 	  rtl = rtl_for_decl_location (loc);
9142 	  if (rtl == NULL_RTX)
9143 	    return 0;
9144 
9145 	  if (!MEM_P (rtl))
9146 	    return 0;
9147 	  rtl = XEXP (rtl, 0);
9148 	  if (! CONSTANT_P (rtl))
9149 	    return 0;
9150 
9151 	  ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9152 	  ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9153 	  ret->dw_loc_oprnd1.v.val_addr = rtl;
9154 
9155 	  ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9156 	  add_loc_descr (&ret, ret1);
9157 
9158 	  have_address = 1;
9159 	  break;
9160 	}
9161       /* FALLTHRU */
9162 
9163     case PARM_DECL:
9164       if (DECL_HAS_VALUE_EXPR_P (loc))
9165 	return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9166 					   want_address);
9167       /* FALLTHRU */
9168 
9169     case RESULT_DECL:
9170     case FUNCTION_DECL:
9171       {
9172 	rtx rtl = rtl_for_decl_location (loc);
9173 
9174 	if (rtl == NULL_RTX)
9175 	  return 0;
9176         else if (GET_CODE (rtl) == CONST_INT)
9177 	  {
9178 	    HOST_WIDE_INT val = INTVAL (rtl);
9179 	    if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9180 	      val &= GET_MODE_MASK (DECL_MODE (loc));
9181 	    ret = int_loc_descriptor (val);
9182 	  }
9183 	else if (GET_CODE (rtl) == CONST_STRING)
9184 	  return 0;
9185 	else if (CONSTANT_P (rtl))
9186 	  {
9187 	    ret = new_loc_descr (DW_OP_addr, 0, 0);
9188 	    ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9189 	    ret->dw_loc_oprnd1.v.val_addr = rtl;
9190 	  }
9191 	else
9192 	  {
9193 	    enum machine_mode mode;
9194 
9195 	    /* Certain constructs can only be represented at top-level.  */
9196 	    if (want_address == 2)
9197 	      return loc_descriptor (rtl);
9198 
9199 	    mode = GET_MODE (rtl);
9200 	    if (MEM_P (rtl))
9201 	      {
9202 		rtl = XEXP (rtl, 0);
9203 		have_address = 1;
9204 	      }
9205 	    ret = mem_loc_descriptor (rtl, mode);
9206 	  }
9207       }
9208       break;
9209 
9210     case INDIRECT_REF:
9211       ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9212       have_address = 1;
9213       break;
9214 
9215     case COMPOUND_EXPR:
9216       return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9217 
9218     case NOP_EXPR:
9219     case CONVERT_EXPR:
9220     case NON_LVALUE_EXPR:
9221     case VIEW_CONVERT_EXPR:
9222     case SAVE_EXPR:
9223     case MODIFY_EXPR:
9224       return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9225 
9226     case COMPONENT_REF:
9227     case BIT_FIELD_REF:
9228     case ARRAY_REF:
9229     case ARRAY_RANGE_REF:
9230       {
9231 	tree obj, offset;
9232 	HOST_WIDE_INT bitsize, bitpos, bytepos;
9233 	enum machine_mode mode;
9234 	int volatilep;
9235 	int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9236 
9237 	obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9238 				   &unsignedp, &volatilep, false);
9239 
9240 	if (obj == loc)
9241 	  return 0;
9242 
9243 	ret = loc_descriptor_from_tree_1 (obj, 1);
9244 	if (ret == 0
9245 	    || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9246 	  return 0;
9247 
9248 	if (offset != NULL_TREE)
9249 	  {
9250 	    /* Variable offset.  */
9251 	    add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9252 	    add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9253 	  }
9254 
9255 	bytepos = bitpos / BITS_PER_UNIT;
9256 	if (bytepos > 0)
9257 	  add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9258 	else if (bytepos < 0)
9259 	  {
9260 	    add_loc_descr (&ret, int_loc_descriptor (bytepos));
9261 	    add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9262 	  }
9263 
9264 	have_address = 1;
9265 	break;
9266       }
9267 
9268     case INTEGER_CST:
9269       if (host_integerp (loc, 0))
9270 	ret = int_loc_descriptor (tree_low_cst (loc, 0));
9271       else
9272 	return 0;
9273       break;
9274 
9275     case CONSTRUCTOR:
9276       {
9277 	/* Get an RTL for this, if something has been emitted.  */
9278 	rtx rtl = lookup_constant_def (loc);
9279 	enum machine_mode mode;
9280 
9281 	if (!rtl || !MEM_P (rtl))
9282 	  return 0;
9283 	mode = GET_MODE (rtl);
9284 	rtl = XEXP (rtl, 0);
9285 	ret = mem_loc_descriptor (rtl, mode);
9286 	have_address = 1;
9287 	break;
9288       }
9289 
9290     case TRUTH_AND_EXPR:
9291     case TRUTH_ANDIF_EXPR:
9292     case BIT_AND_EXPR:
9293       op = DW_OP_and;
9294       goto do_binop;
9295 
9296     case TRUTH_XOR_EXPR:
9297     case BIT_XOR_EXPR:
9298       op = DW_OP_xor;
9299       goto do_binop;
9300 
9301     case TRUTH_OR_EXPR:
9302     case TRUTH_ORIF_EXPR:
9303     case BIT_IOR_EXPR:
9304       op = DW_OP_or;
9305       goto do_binop;
9306 
9307     case FLOOR_DIV_EXPR:
9308     case CEIL_DIV_EXPR:
9309     case ROUND_DIV_EXPR:
9310     case TRUNC_DIV_EXPR:
9311       op = DW_OP_div;
9312       goto do_binop;
9313 
9314     case MINUS_EXPR:
9315       op = DW_OP_minus;
9316       goto do_binop;
9317 
9318     case FLOOR_MOD_EXPR:
9319     case CEIL_MOD_EXPR:
9320     case ROUND_MOD_EXPR:
9321     case TRUNC_MOD_EXPR:
9322       op = DW_OP_mod;
9323       goto do_binop;
9324 
9325     case MULT_EXPR:
9326       op = DW_OP_mul;
9327       goto do_binop;
9328 
9329     case LSHIFT_EXPR:
9330       op = DW_OP_shl;
9331       goto do_binop;
9332 
9333     case RSHIFT_EXPR:
9334       op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9335       goto do_binop;
9336 
9337     case PLUS_EXPR:
9338       if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9339 	  && host_integerp (TREE_OPERAND (loc, 1), 0))
9340 	{
9341 	  ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9342 	  if (ret == 0)
9343 	    return 0;
9344 
9345 	  add_loc_descr (&ret,
9346 			 new_loc_descr (DW_OP_plus_uconst,
9347 					tree_low_cst (TREE_OPERAND (loc, 1),
9348 						      0),
9349 					0));
9350 	  break;
9351 	}
9352 
9353       op = DW_OP_plus;
9354       goto do_binop;
9355 
9356     case LE_EXPR:
9357       if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9358 	return 0;
9359 
9360       op = DW_OP_le;
9361       goto do_binop;
9362 
9363     case GE_EXPR:
9364       if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9365 	return 0;
9366 
9367       op = DW_OP_ge;
9368       goto do_binop;
9369 
9370     case LT_EXPR:
9371       if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9372 	return 0;
9373 
9374       op = DW_OP_lt;
9375       goto do_binop;
9376 
9377     case GT_EXPR:
9378       if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9379 	return 0;
9380 
9381       op = DW_OP_gt;
9382       goto do_binop;
9383 
9384     case EQ_EXPR:
9385       op = DW_OP_eq;
9386       goto do_binop;
9387 
9388     case NE_EXPR:
9389       op = DW_OP_ne;
9390       goto do_binop;
9391 
9392     do_binop:
9393       ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9394       ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9395       if (ret == 0 || ret1 == 0)
9396 	return 0;
9397 
9398       add_loc_descr (&ret, ret1);
9399       add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9400       break;
9401 
9402     case TRUTH_NOT_EXPR:
9403     case BIT_NOT_EXPR:
9404       op = DW_OP_not;
9405       goto do_unop;
9406 
9407     case ABS_EXPR:
9408       op = DW_OP_abs;
9409       goto do_unop;
9410 
9411     case NEGATE_EXPR:
9412       op = DW_OP_neg;
9413       goto do_unop;
9414 
9415     do_unop:
9416       ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9417       if (ret == 0)
9418 	return 0;
9419 
9420       add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9421       break;
9422 
9423     case MIN_EXPR:
9424     case MAX_EXPR:
9425       {
9426         const enum tree_code code =
9427           TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9428 
9429         loc = build3 (COND_EXPR, TREE_TYPE (loc),
9430 		      build2 (code, integer_type_node,
9431 			      TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9432                       TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9433       }
9434 
9435       /* ... fall through ...  */
9436 
9437     case COND_EXPR:
9438       {
9439 	dw_loc_descr_ref lhs
9440 	  = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9441 	dw_loc_descr_ref rhs
9442 	  = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9443 	dw_loc_descr_ref bra_node, jump_node, tmp;
9444 
9445 	ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9446 	if (ret == 0 || lhs == 0 || rhs == 0)
9447 	  return 0;
9448 
9449 	bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9450 	add_loc_descr (&ret, bra_node);
9451 
9452 	add_loc_descr (&ret, rhs);
9453 	jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9454 	add_loc_descr (&ret, jump_node);
9455 
9456 	add_loc_descr (&ret, lhs);
9457 	bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9458 	bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9459 
9460 	/* ??? Need a node to point the skip at.  Use a nop.  */
9461 	tmp = new_loc_descr (DW_OP_nop, 0, 0);
9462 	add_loc_descr (&ret, tmp);
9463 	jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9464 	jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9465       }
9466       break;
9467 
9468     case FIX_TRUNC_EXPR:
9469     case FIX_CEIL_EXPR:
9470     case FIX_FLOOR_EXPR:
9471     case FIX_ROUND_EXPR:
9472       return 0;
9473 
9474     default:
9475       /* Leave front-end specific codes as simply unknown.  This comes
9476 	 up, for instance, with the C STMT_EXPR.  */
9477       if ((unsigned int) TREE_CODE (loc)
9478           >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9479 	return 0;
9480 
9481 #ifdef ENABLE_CHECKING
9482       /* Otherwise this is a generic code; we should just lists all of
9483 	 these explicitly.  We forgot one.  */
9484       gcc_unreachable ();
9485 #else
9486       /* In a release build, we want to degrade gracefully: better to
9487 	 generate incomplete debugging information than to crash.  */
9488       return NULL;
9489 #endif
9490     }
9491 
9492   /* Show if we can't fill the request for an address.  */
9493   if (want_address && !have_address)
9494     return 0;
9495 
9496   /* If we've got an address and don't want one, dereference.  */
9497   if (!want_address && have_address && ret)
9498     {
9499       HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9500 
9501       if (size > DWARF2_ADDR_SIZE || size == -1)
9502 	return 0;
9503       else if (size == DWARF2_ADDR_SIZE)
9504 	op = DW_OP_deref;
9505       else
9506 	op = DW_OP_deref_size;
9507 
9508       add_loc_descr (&ret, new_loc_descr (op, size, 0));
9509     }
9510 
9511   return ret;
9512 }
9513 
9514 static inline dw_loc_descr_ref
loc_descriptor_from_tree(tree loc)9515 loc_descriptor_from_tree (tree loc)
9516 {
9517   return loc_descriptor_from_tree_1 (loc, 2);
9518 }
9519 
9520 /* Given a value, round it up to the lowest multiple of `boundary'
9521    which is not less than the value itself.  */
9522 
9523 static inline HOST_WIDE_INT
ceiling(HOST_WIDE_INT value,unsigned int boundary)9524 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9525 {
9526   return (((value + boundary - 1) / boundary) * boundary);
9527 }
9528 
9529 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9530    pointer to the declared type for the relevant field variable, or return
9531    `integer_type_node' if the given node turns out to be an
9532    ERROR_MARK node.  */
9533 
9534 static inline tree
field_type(tree decl)9535 field_type (tree decl)
9536 {
9537   tree type;
9538 
9539   if (TREE_CODE (decl) == ERROR_MARK)
9540     return integer_type_node;
9541 
9542   type = DECL_BIT_FIELD_TYPE (decl);
9543   if (type == NULL_TREE)
9544     type = TREE_TYPE (decl);
9545 
9546   return type;
9547 }
9548 
9549 /* Given a pointer to a tree node, return the alignment in bits for
9550    it, or else return BITS_PER_WORD if the node actually turns out to
9551    be an ERROR_MARK node.  */
9552 
9553 static inline unsigned
simple_type_align_in_bits(tree type)9554 simple_type_align_in_bits (tree type)
9555 {
9556   return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9557 }
9558 
9559 static inline unsigned
simple_decl_align_in_bits(tree decl)9560 simple_decl_align_in_bits (tree decl)
9561 {
9562   return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9563 }
9564 
9565 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9566    lowest addressed byte of the "containing object" for the given FIELD_DECL,
9567    or return 0 if we are unable to determine what that offset is, either
9568    because the argument turns out to be a pointer to an ERROR_MARK node, or
9569    because the offset is actually variable.  (We can't handle the latter case
9570    just yet).  */
9571 
9572 static HOST_WIDE_INT
field_byte_offset(tree decl)9573 field_byte_offset (tree decl)
9574 {
9575   unsigned int type_align_in_bits;
9576   unsigned int decl_align_in_bits;
9577   unsigned HOST_WIDE_INT type_size_in_bits;
9578   HOST_WIDE_INT object_offset_in_bits;
9579   tree type;
9580   tree field_size_tree;
9581   HOST_WIDE_INT bitpos_int;
9582   HOST_WIDE_INT deepest_bitpos;
9583   unsigned HOST_WIDE_INT field_size_in_bits;
9584 
9585   if (TREE_CODE (decl) == ERROR_MARK)
9586     return 0;
9587 
9588   gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9589 
9590   type = field_type (decl);
9591   field_size_tree = DECL_SIZE (decl);
9592 
9593   /* The size could be unspecified if there was an error, or for
9594      a flexible array member.  */
9595   if (! field_size_tree)
9596     field_size_tree = bitsize_zero_node;
9597 
9598   /* We cannot yet cope with fields whose positions are variable, so
9599      for now, when we see such things, we simply return 0.  Someday, we may
9600      be able to handle such cases, but it will be damn difficult.  */
9601   if (! host_integerp (bit_position (decl), 0))
9602     return 0;
9603 
9604   bitpos_int = int_bit_position (decl);
9605 
9606   /* If we don't know the size of the field, pretend it's a full word.  */
9607   if (host_integerp (field_size_tree, 1))
9608     field_size_in_bits = tree_low_cst (field_size_tree, 1);
9609   else
9610     field_size_in_bits = BITS_PER_WORD;
9611 
9612   type_size_in_bits = simple_type_size_in_bits (type);
9613   type_align_in_bits = simple_type_align_in_bits (type);
9614   decl_align_in_bits = simple_decl_align_in_bits (decl);
9615 
9616   /* The GCC front-end doesn't make any attempt to keep track of the starting
9617      bit offset (relative to the start of the containing structure type) of the
9618      hypothetical "containing object" for a bit-field.  Thus, when computing
9619      the byte offset value for the start of the "containing object" of a
9620      bit-field, we must deduce this information on our own. This can be rather
9621      tricky to do in some cases.  For example, handling the following structure
9622      type definition when compiling for an i386/i486 target (which only aligns
9623      long long's to 32-bit boundaries) can be very tricky:
9624 
9625 	 struct S { int field1; long long field2:31; };
9626 
9627      Fortunately, there is a simple rule-of-thumb which can be used in such
9628      cases.  When compiling for an i386/i486, GCC will allocate 8 bytes for the
9629      structure shown above.  It decides to do this based upon one simple rule
9630      for bit-field allocation.  GCC allocates each "containing object" for each
9631      bit-field at the first (i.e. lowest addressed) legitimate alignment
9632      boundary (based upon the required minimum alignment for the declared type
9633      of the field) which it can possibly use, subject to the condition that
9634      there is still enough available space remaining in the containing object
9635      (when allocated at the selected point) to fully accommodate all of the
9636      bits of the bit-field itself.
9637 
9638      This simple rule makes it obvious why GCC allocates 8 bytes for each
9639      object of the structure type shown above.  When looking for a place to
9640      allocate the "containing object" for `field2', the compiler simply tries
9641      to allocate a 64-bit "containing object" at each successive 32-bit
9642      boundary (starting at zero) until it finds a place to allocate that 64-
9643      bit field such that at least 31 contiguous (and previously unallocated)
9644      bits remain within that selected 64 bit field.  (As it turns out, for the
9645      example above, the compiler finds it is OK to allocate the "containing
9646      object" 64-bit field at bit-offset zero within the structure type.)
9647 
9648      Here we attempt to work backwards from the limited set of facts we're
9649      given, and we try to deduce from those facts, where GCC must have believed
9650      that the containing object started (within the structure type). The value
9651      we deduce is then used (by the callers of this routine) to generate
9652      DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9653      and, in the case of DW_AT_location, regular fields as well).  */
9654 
9655   /* Figure out the bit-distance from the start of the structure to the
9656      "deepest" bit of the bit-field.  */
9657   deepest_bitpos = bitpos_int + field_size_in_bits;
9658 
9659   /* This is the tricky part.  Use some fancy footwork to deduce where the
9660      lowest addressed bit of the containing object must be.  */
9661   object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9662 
9663   /* Round up to type_align by default.  This works best for bitfields.  */
9664   object_offset_in_bits += type_align_in_bits - 1;
9665   object_offset_in_bits /= type_align_in_bits;
9666   object_offset_in_bits *= type_align_in_bits;
9667 
9668   if (object_offset_in_bits > bitpos_int)
9669     {
9670       /* Sigh, the decl must be packed.  */
9671       object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9672 
9673       /* Round up to decl_align instead.  */
9674       object_offset_in_bits += decl_align_in_bits - 1;
9675       object_offset_in_bits /= decl_align_in_bits;
9676       object_offset_in_bits *= decl_align_in_bits;
9677     }
9678 
9679   return object_offset_in_bits / BITS_PER_UNIT;
9680 }
9681 
9682 /* The following routines define various Dwarf attributes and any data
9683    associated with them.  */
9684 
9685 /* Add a location description attribute value to a DIE.
9686 
9687    This emits location attributes suitable for whole variables and
9688    whole parameters.  Note that the location attributes for struct fields are
9689    generated by the routine `data_member_location_attribute' below.  */
9690 
9691 static inline void
add_AT_location_description(dw_die_ref die,enum dwarf_attribute attr_kind,dw_loc_descr_ref descr)9692 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9693 			     dw_loc_descr_ref descr)
9694 {
9695   if (descr != 0)
9696     add_AT_loc (die, attr_kind, descr);
9697 }
9698 
9699 /* Attach the specialized form of location attribute used for data members of
9700    struct and union types.  In the special case of a FIELD_DECL node which
9701    represents a bit-field, the "offset" part of this special location
9702    descriptor must indicate the distance in bytes from the lowest-addressed
9703    byte of the containing struct or union type to the lowest-addressed byte of
9704    the "containing object" for the bit-field.  (See the `field_byte_offset'
9705    function above).
9706 
9707    For any given bit-field, the "containing object" is a hypothetical object
9708    (of some integral or enum type) within which the given bit-field lives.  The
9709    type of this hypothetical "containing object" is always the same as the
9710    declared type of the individual bit-field itself (for GCC anyway... the
9711    DWARF spec doesn't actually mandate this).  Note that it is the size (in
9712    bytes) of the hypothetical "containing object" which will be given in the
9713    DW_AT_byte_size attribute for this bit-field.  (See the
9714    `byte_size_attribute' function below.)  It is also used when calculating the
9715    value of the DW_AT_bit_offset attribute.  (See the `bit_offset_attribute'
9716    function below.)  */
9717 
9718 static void
add_data_member_location_attribute(dw_die_ref die,tree decl)9719 add_data_member_location_attribute (dw_die_ref die, tree decl)
9720 {
9721   HOST_WIDE_INT offset;
9722   dw_loc_descr_ref loc_descr = 0;
9723 
9724   if (TREE_CODE (decl) == TREE_BINFO)
9725     {
9726       /* We're working on the TAG_inheritance for a base class.  */
9727       if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9728 	{
9729 	  /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9730 	     aren't at a fixed offset from all (sub)objects of the same
9731 	     type.  We need to extract the appropriate offset from our
9732 	     vtable.  The following dwarf expression means
9733 
9734 	       BaseAddr = ObAddr + *((*ObAddr) - Offset)
9735 
9736 	     This is specific to the V3 ABI, of course.  */
9737 
9738 	  dw_loc_descr_ref tmp;
9739 
9740 	  /* Make a copy of the object address.  */
9741 	  tmp = new_loc_descr (DW_OP_dup, 0, 0);
9742 	  add_loc_descr (&loc_descr, tmp);
9743 
9744 	  /* Extract the vtable address.  */
9745 	  tmp = new_loc_descr (DW_OP_deref, 0, 0);
9746 	  add_loc_descr (&loc_descr, tmp);
9747 
9748 	  /* Calculate the address of the offset.  */
9749 	  offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9750 	  gcc_assert (offset < 0);
9751 
9752 	  tmp = int_loc_descriptor (-offset);
9753 	  add_loc_descr (&loc_descr, tmp);
9754 	  tmp = new_loc_descr (DW_OP_minus, 0, 0);
9755 	  add_loc_descr (&loc_descr, tmp);
9756 
9757 	  /* Extract the offset.  */
9758 	  tmp = new_loc_descr (DW_OP_deref, 0, 0);
9759 	  add_loc_descr (&loc_descr, tmp);
9760 
9761 	  /* Add it to the object address.  */
9762 	  tmp = new_loc_descr (DW_OP_plus, 0, 0);
9763 	  add_loc_descr (&loc_descr, tmp);
9764 	}
9765       else
9766 	offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9767     }
9768   else
9769     offset = field_byte_offset (decl);
9770 
9771   if (! loc_descr)
9772     {
9773       enum dwarf_location_atom op;
9774 
9775       /* The DWARF2 standard says that we should assume that the structure
9776 	 address is already on the stack, so we can specify a structure field
9777 	 address by using DW_OP_plus_uconst.  */
9778 
9779 #ifdef MIPS_DEBUGGING_INFO
9780       /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9781 	 operator correctly.  It works only if we leave the offset on the
9782 	 stack.  */
9783       op = DW_OP_constu;
9784 #else
9785       op = DW_OP_plus_uconst;
9786 #endif
9787 
9788       loc_descr = new_loc_descr (op, offset, 0);
9789     }
9790 
9791   add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9792 }
9793 
9794 /* Writes integer values to dw_vec_const array.  */
9795 
9796 static void
insert_int(HOST_WIDE_INT val,unsigned int size,unsigned char * dest)9797 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9798 {
9799   while (size != 0)
9800     {
9801       *dest++ = val & 0xff;
9802       val >>= 8;
9803       --size;
9804     }
9805 }
9806 
9807 /* Reads integers from dw_vec_const array.  Inverse of insert_int.  */
9808 
9809 static HOST_WIDE_INT
extract_int(const unsigned char * src,unsigned int size)9810 extract_int (const unsigned char *src, unsigned int size)
9811 {
9812   HOST_WIDE_INT val = 0;
9813 
9814   src += size;
9815   while (size != 0)
9816     {
9817       val <<= 8;
9818       val |= *--src & 0xff;
9819       --size;
9820     }
9821   return val;
9822 }
9823 
9824 /* Writes floating point values to dw_vec_const array.  */
9825 
9826 static void
insert_float(rtx rtl,unsigned char * array)9827 insert_float (rtx rtl, unsigned char *array)
9828 {
9829   REAL_VALUE_TYPE rv;
9830   long val[4];
9831   int i;
9832 
9833   REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9834   real_to_target (val, &rv, GET_MODE (rtl));
9835 
9836   /* real_to_target puts 32-bit pieces in each long.  Pack them.  */
9837   for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9838     {
9839       insert_int (val[i], 4, array);
9840       array += 4;
9841     }
9842 }
9843 
9844 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9845    does not have a "location" either in memory or in a register.  These
9846    things can arise in GNU C when a constant is passed as an actual parameter
9847    to an inlined function.  They can also arise in C++ where declared
9848    constants do not necessarily get memory "homes".  */
9849 
9850 static void
add_const_value_attribute(dw_die_ref die,rtx rtl)9851 add_const_value_attribute (dw_die_ref die, rtx rtl)
9852 {
9853   switch (GET_CODE (rtl))
9854     {
9855     case CONST_INT:
9856       {
9857 	HOST_WIDE_INT val = INTVAL (rtl);
9858 
9859 	if (val < 0)
9860 	  add_AT_int (die, DW_AT_const_value, val);
9861 	else
9862 	  add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9863       }
9864       break;
9865 
9866     case CONST_DOUBLE:
9867       /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9868 	 floating-point constant.  A CONST_DOUBLE is used whenever the
9869 	 constant requires more than one word in order to be adequately
9870 	 represented.  We output CONST_DOUBLEs as blocks.  */
9871       {
9872 	enum machine_mode mode = GET_MODE (rtl);
9873 
9874 	if (SCALAR_FLOAT_MODE_P (mode))
9875 	  {
9876 	    unsigned int length = GET_MODE_SIZE (mode);
9877 	    unsigned char *array = ggc_alloc (length);
9878 
9879 	    insert_float (rtl, array);
9880 	    add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9881 	  }
9882 	else
9883 	  {
9884 	    /* ??? We really should be using HOST_WIDE_INT throughout.  */
9885 	    gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9886 
9887 	    add_AT_long_long (die, DW_AT_const_value,
9888 			      CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9889 	  }
9890       }
9891       break;
9892 
9893     case CONST_VECTOR:
9894       {
9895 	enum machine_mode mode = GET_MODE (rtl);
9896 	unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9897 	unsigned int length = CONST_VECTOR_NUNITS (rtl);
9898 	unsigned char *array = ggc_alloc (length * elt_size);
9899 	unsigned int i;
9900 	unsigned char *p;
9901 
9902 	switch (GET_MODE_CLASS (mode))
9903 	  {
9904 	  case MODE_VECTOR_INT:
9905 	    for (i = 0, p = array; i < length; i++, p += elt_size)
9906 	      {
9907 		rtx elt = CONST_VECTOR_ELT (rtl, i);
9908 		HOST_WIDE_INT lo, hi;
9909 
9910 		switch (GET_CODE (elt))
9911 		  {
9912 		  case CONST_INT:
9913 		    lo = INTVAL (elt);
9914 		    hi = -(lo < 0);
9915 		    break;
9916 
9917 		  case CONST_DOUBLE:
9918 		    lo = CONST_DOUBLE_LOW (elt);
9919 		    hi = CONST_DOUBLE_HIGH (elt);
9920 		    break;
9921 
9922 		  default:
9923 		    gcc_unreachable ();
9924 		  }
9925 
9926 		if (elt_size <= sizeof (HOST_WIDE_INT))
9927 		  insert_int (lo, elt_size, p);
9928 		else
9929 		  {
9930 		    unsigned char *p0 = p;
9931 		    unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9932 
9933 		    gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9934 		    if (WORDS_BIG_ENDIAN)
9935 		      {
9936 			p0 = p1;
9937 			p1 = p;
9938 		      }
9939 		    insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9940 		    insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9941 		  }
9942 	      }
9943 	    break;
9944 
9945 	  case MODE_VECTOR_FLOAT:
9946 	    for (i = 0, p = array; i < length; i++, p += elt_size)
9947 	      {
9948 		rtx elt = CONST_VECTOR_ELT (rtl, i);
9949 		insert_float (elt, p);
9950 	      }
9951 	    break;
9952 
9953 	  default:
9954 	    gcc_unreachable ();
9955 	  }
9956 
9957 	add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9958       }
9959       break;
9960 
9961     case CONST_STRING:
9962       add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9963       break;
9964 
9965     case SYMBOL_REF:
9966     case LABEL_REF:
9967     case CONST:
9968       add_AT_addr (die, DW_AT_const_value, rtl);
9969       VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9970       break;
9971 
9972     case PLUS:
9973       /* In cases where an inlined instance of an inline function is passed
9974 	 the address of an `auto' variable (which is local to the caller) we
9975 	 can get a situation where the DECL_RTL of the artificial local
9976 	 variable (for the inlining) which acts as a stand-in for the
9977 	 corresponding formal parameter (of the inline function) will look
9978 	 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).  This is not
9979 	 exactly a compile-time constant expression, but it isn't the address
9980 	 of the (artificial) local variable either.  Rather, it represents the
9981 	 *value* which the artificial local variable always has during its
9982 	 lifetime.  We currently have no way to represent such quasi-constant
9983 	 values in Dwarf, so for now we just punt and generate nothing.  */
9984       break;
9985 
9986     default:
9987       /* No other kinds of rtx should be possible here.  */
9988       gcc_unreachable ();
9989     }
9990 
9991 }
9992 
9993 /* Determine whether the evaluation of EXPR references any variables
9994    or functions which aren't otherwise used (and therefore may not be
9995    output).  */
9996 static tree
reference_to_unused(tree * tp,int * walk_subtrees,void * data ATTRIBUTE_UNUSED)9997 reference_to_unused (tree * tp, int * walk_subtrees,
9998 		     void * data ATTRIBUTE_UNUSED)
9999 {
10000   if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10001     *walk_subtrees = 0;
10002 
10003   if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10004       && ! TREE_ASM_WRITTEN (*tp))
10005     return *tp;
10006   else if (!flag_unit_at_a_time)
10007     return NULL_TREE;
10008   else if (!cgraph_global_info_ready
10009 	   && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
10010     gcc_unreachable ();
10011   else if (DECL_P (*tp) && TREE_CODE (*tp) == VAR_DECL)
10012     {
10013       struct cgraph_varpool_node *node = cgraph_varpool_node (*tp);
10014       if (!node->needed)
10015 	return *tp;
10016     }
10017    else if (DECL_P (*tp) && TREE_CODE (*tp) == FUNCTION_DECL
10018 	    && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
10019     {
10020       struct cgraph_node *node = cgraph_node (*tp);
10021       if (!node->output)
10022         return *tp;
10023     }
10024 
10025   return NULL_TREE;
10026 }
10027 
10028 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10029    for use in a later add_const_value_attribute call.  */
10030 
10031 static rtx
rtl_for_decl_init(tree init,tree type)10032 rtl_for_decl_init (tree init, tree type)
10033 {
10034   rtx rtl = NULL_RTX;
10035 
10036   /* If a variable is initialized with a string constant without embedded
10037      zeros, build CONST_STRING.  */
10038   if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10039     {
10040       tree enttype = TREE_TYPE (type);
10041       tree domain = TYPE_DOMAIN (type);
10042       enum machine_mode mode = TYPE_MODE (enttype);
10043 
10044       if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10045 	  && domain
10046 	  && integer_zerop (TYPE_MIN_VALUE (domain))
10047 	  && compare_tree_int (TYPE_MAX_VALUE (domain),
10048 			       TREE_STRING_LENGTH (init) - 1) == 0
10049 	  && ((size_t) TREE_STRING_LENGTH (init)
10050 	      == strlen (TREE_STRING_POINTER (init)) + 1))
10051 	rtl = gen_rtx_CONST_STRING (VOIDmode,
10052 				    ggc_strdup (TREE_STRING_POINTER (init)));
10053     }
10054   /* Other aggregates, and complex values, could be represented using
10055      CONCAT: FIXME!  */
10056   else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10057     ;
10058   /* Vectors only work if their mode is supported by the target.
10059      FIXME: generic vectors ought to work too.  */
10060   else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10061     ;
10062   /* If the initializer is something that we know will expand into an
10063      immediate RTL constant, expand it now.  We must be careful not to
10064      reference variables which won't be output.  */
10065   else if (initializer_constant_valid_p (init, type)
10066 	   && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10067     {
10068       rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10069 
10070       /* If expand_expr returns a MEM, it wasn't immediate.  */
10071       gcc_assert (!rtl || !MEM_P (rtl));
10072     }
10073 
10074   return rtl;
10075 }
10076 
10077 /* Generate RTL for the variable DECL to represent its location.  */
10078 
10079 static rtx
rtl_for_decl_location(tree decl)10080 rtl_for_decl_location (tree decl)
10081 {
10082   rtx rtl;
10083 
10084   /* Here we have to decide where we are going to say the parameter "lives"
10085      (as far as the debugger is concerned).  We only have a couple of
10086      choices.  GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10087 
10088      DECL_RTL normally indicates where the parameter lives during most of the
10089      activation of the function.  If optimization is enabled however, this
10090      could be either NULL or else a pseudo-reg.  Both of those cases indicate
10091      that the parameter doesn't really live anywhere (as far as the code
10092      generation parts of GCC are concerned) during most of the function's
10093      activation.  That will happen (for example) if the parameter is never
10094      referenced within the function.
10095 
10096      We could just generate a location descriptor here for all non-NULL
10097      non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10098      a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10099      where DECL_RTL is NULL or is a pseudo-reg.
10100 
10101      Note however that we can only get away with using DECL_INCOMING_RTL as
10102      a backup substitute for DECL_RTL in certain limited cases.  In cases
10103      where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10104      we can be sure that the parameter was passed using the same type as it is
10105      declared to have within the function, and that its DECL_INCOMING_RTL
10106      points us to a place where a value of that type is passed.
10107 
10108      In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10109      we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10110      because in these cases DECL_INCOMING_RTL points us to a value of some
10111      type which is *different* from the type of the parameter itself.  Thus,
10112      if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10113      such cases, the debugger would end up (for example) trying to fetch a
10114      `float' from a place which actually contains the first part of a
10115      `double'.  That would lead to really incorrect and confusing
10116      output at debug-time.
10117 
10118      So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10119      in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl).  There
10120      are a couple of exceptions however.  On little-endian machines we can
10121      get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10122      not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10123      an integral type that is smaller than TREE_TYPE (decl). These cases arise
10124      when (on a little-endian machine) a non-prototyped function has a
10125      parameter declared to be of type `short' or `char'.  In such cases,
10126      TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10127      be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10128      passed `int' value.  If the debugger then uses that address to fetch
10129      a `short' or a `char' (on a little-endian machine) the result will be
10130      the correct data, so we allow for such exceptional cases below.
10131 
10132      Note that our goal here is to describe the place where the given formal
10133      parameter lives during most of the function's activation (i.e. between the
10134      end of the prologue and the start of the epilogue).  We'll do that as best
10135      as we can. Note however that if the given formal parameter is modified
10136      sometime during the execution of the function, then a stack backtrace (at
10137      debug-time) will show the function as having been called with the *new*
10138      value rather than the value which was originally passed in.  This happens
10139      rarely enough that it is not a major problem, but it *is* a problem, and
10140      I'd like to fix it.
10141 
10142      A future version of dwarf2out.c may generate two additional attributes for
10143      any given DW_TAG_formal_parameter DIE which will describe the "passed
10144      type" and the "passed location" for the given formal parameter in addition
10145      to the attributes we now generate to indicate the "declared type" and the
10146      "active location" for each parameter.  This additional set of attributes
10147      could be used by debuggers for stack backtraces. Separately, note that
10148      sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10149      This happens (for example) for inlined-instances of inline function formal
10150      parameters which are never referenced.  This really shouldn't be
10151      happening.  All PARM_DECL nodes should get valid non-NULL
10152      DECL_INCOMING_RTL values.  FIXME.  */
10153 
10154   /* Use DECL_RTL as the "location" unless we find something better.  */
10155   rtl = DECL_RTL_IF_SET (decl);
10156 
10157   /* When generating abstract instances, ignore everything except
10158      constants, symbols living in memory, and symbols living in
10159      fixed registers.  */
10160   if (! reload_completed)
10161     {
10162       if (rtl
10163 	  && (CONSTANT_P (rtl)
10164 	      || (MEM_P (rtl)
10165 	          && CONSTANT_P (XEXP (rtl, 0)))
10166 	      || (REG_P (rtl)
10167 	          && TREE_CODE (decl) == VAR_DECL
10168 		  && TREE_STATIC (decl))))
10169 	{
10170 	  rtl = targetm.delegitimize_address (rtl);
10171 	  return rtl;
10172 	}
10173       rtl = NULL_RTX;
10174     }
10175   else if (TREE_CODE (decl) == PARM_DECL)
10176     {
10177       if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10178 	{
10179 	  tree declared_type = TREE_TYPE (decl);
10180 	  tree passed_type = DECL_ARG_TYPE (decl);
10181 	  enum machine_mode dmode = TYPE_MODE (declared_type);
10182 	  enum machine_mode pmode = TYPE_MODE (passed_type);
10183 
10184 	  /* This decl represents a formal parameter which was optimized out.
10185 	     Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10186 	     all cases where (rtl == NULL_RTX) just below.  */
10187 	  if (dmode == pmode)
10188 	    rtl = DECL_INCOMING_RTL (decl);
10189 	  else if (SCALAR_INT_MODE_P (dmode)
10190 		   && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10191 		   && DECL_INCOMING_RTL (decl))
10192 	    {
10193 	      rtx inc = DECL_INCOMING_RTL (decl);
10194 	      if (REG_P (inc))
10195 		rtl = inc;
10196 	      else if (MEM_P (inc))
10197 		{
10198 		  if (BYTES_BIG_ENDIAN)
10199 		    rtl = adjust_address_nv (inc, dmode,
10200 					     GET_MODE_SIZE (pmode)
10201 					     - GET_MODE_SIZE (dmode));
10202 		  else
10203 		    rtl = inc;
10204 		}
10205 	    }
10206 	}
10207 
10208       /* If the parm was passed in registers, but lives on the stack, then
10209 	 make a big endian correction if the mode of the type of the
10210 	 parameter is not the same as the mode of the rtl.  */
10211       /* ??? This is the same series of checks that are made in dbxout.c before
10212 	 we reach the big endian correction code there.  It isn't clear if all
10213 	 of these checks are necessary here, but keeping them all is the safe
10214 	 thing to do.  */
10215       else if (MEM_P (rtl)
10216 	       && XEXP (rtl, 0) != const0_rtx
10217 	       && ! CONSTANT_P (XEXP (rtl, 0))
10218 	       /* Not passed in memory.  */
10219 	       && !MEM_P (DECL_INCOMING_RTL (decl))
10220 	       /* Not passed by invisible reference.  */
10221 	       && (!REG_P (XEXP (rtl, 0))
10222 		   || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10223 		   || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10224 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10225 		   || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10226 #endif
10227 		     )
10228 	       /* Big endian correction check.  */
10229 	       && BYTES_BIG_ENDIAN
10230 	       && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10231 	       && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10232 		   < UNITS_PER_WORD))
10233 	{
10234 	  int offset = (UNITS_PER_WORD
10235 			- GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10236 
10237 	  rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10238 			     plus_constant (XEXP (rtl, 0), offset));
10239 	}
10240     }
10241   else if (TREE_CODE (decl) == VAR_DECL
10242 	   && rtl
10243 	   && MEM_P (rtl)
10244 	   && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10245 	   && BYTES_BIG_ENDIAN)
10246     {
10247       int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10248       int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10249 
10250       /* If a variable is declared "register" yet is smaller than
10251 	 a register, then if we store the variable to memory, it
10252 	 looks like we're storing a register-sized value, when in
10253 	 fact we are not.  We need to adjust the offset of the
10254 	 storage location to reflect the actual value's bytes,
10255 	 else gdb will not be able to display it.  */
10256       if (rsize > dsize)
10257 	rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10258 			   plus_constant (XEXP (rtl, 0), rsize-dsize));
10259     }
10260 
10261   /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10262      and will have been substituted directly into all expressions that use it.
10263      C does not have such a concept, but C++ and other languages do.  */
10264   if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10265     rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10266 
10267   if (rtl)
10268     rtl = targetm.delegitimize_address (rtl);
10269 
10270   /* If we don't look past the constant pool, we risk emitting a
10271      reference to a constant pool entry that isn't referenced from
10272      code, and thus is not emitted.  */
10273   if (rtl)
10274     rtl = avoid_constant_pool_reference (rtl);
10275 
10276   return rtl;
10277 }
10278 
10279 /* We need to figure out what section we should use as the base for the
10280    address ranges where a given location is valid.
10281    1. If this particular DECL has a section associated with it, use that.
10282    2. If this function has a section associated with it, use that.
10283    3. Otherwise, use the text section.
10284    XXX: If you split a variable across multiple sections, we won't notice.  */
10285 
10286 static const char *
secname_for_decl(tree decl)10287 secname_for_decl (tree decl)
10288 {
10289   const char *secname;
10290 
10291   if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10292     {
10293       tree sectree = DECL_SECTION_NAME (decl);
10294       secname = TREE_STRING_POINTER (sectree);
10295     }
10296   else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10297     {
10298       tree sectree = DECL_SECTION_NAME (current_function_decl);
10299       secname = TREE_STRING_POINTER (sectree);
10300     }
10301   else if (cfun && in_cold_section_p)
10302     secname = cfun->cold_section_label;
10303   else
10304     secname = text_section_label;
10305 
10306   return secname;
10307 }
10308 
10309 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10310    data attribute for a variable or a parameter.  We generate the
10311    DW_AT_const_value attribute only in those cases where the given variable
10312    or parameter does not have a true "location" either in memory or in a
10313    register.  This can happen (for example) when a constant is passed as an
10314    actual argument in a call to an inline function.  (It's possible that
10315    these things can crop up in other ways also.)  Note that one type of
10316    constant value which can be passed into an inlined function is a constant
10317    pointer.  This can happen for example if an actual argument in an inlined
10318    function call evaluates to a compile-time constant address.  */
10319 
10320 static void
add_location_or_const_value_attribute(dw_die_ref die,tree decl,enum dwarf_attribute attr)10321 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10322 				       enum dwarf_attribute attr)
10323 {
10324   rtx rtl;
10325   dw_loc_descr_ref descr;
10326   var_loc_list *loc_list;
10327   struct var_loc_node *node;
10328   if (TREE_CODE (decl) == ERROR_MARK)
10329     return;
10330 
10331   gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10332 	      || TREE_CODE (decl) == RESULT_DECL);
10333 
10334   /* See if we possibly have multiple locations for this variable.  */
10335   loc_list = lookup_decl_loc (decl);
10336 
10337   /* If it truly has multiple locations, the first and last node will
10338      differ.  */
10339   if (loc_list && loc_list->first != loc_list->last)
10340     {
10341       const char *endname, *secname;
10342       dw_loc_list_ref list;
10343       rtx varloc;
10344 
10345       /* Now that we know what section we are using for a base,
10346          actually construct the list of locations.
10347 	 The first location information is what is passed to the
10348 	 function that creates the location list, and the remaining
10349 	 locations just get added on to that list.
10350 	 Note that we only know the start address for a location
10351 	 (IE location changes), so to build the range, we use
10352 	 the range [current location start, next location start].
10353 	 This means we have to special case the last node, and generate
10354 	 a range of [last location start, end of function label].  */
10355 
10356       node = loc_list->first;
10357       varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10358       secname = secname_for_decl (decl);
10359 
10360       list = new_loc_list (loc_descriptor (varloc),
10361 			   node->label, node->next->label, secname, 1);
10362       node = node->next;
10363 
10364       for (; node->next; node = node->next)
10365 	if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10366 	  {
10367 	    /* The variable has a location between NODE->LABEL and
10368 	       NODE->NEXT->LABEL.  */
10369 	    varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10370 	    add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10371 				       node->label, node->next->label, secname);
10372 	  }
10373 
10374       /* If the variable has a location at the last label
10375 	 it keeps its location until the end of function.  */
10376       if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10377 	{
10378 	  char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10379 
10380 	  varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10381 	  if (!current_function_decl)
10382 	    endname = text_end_label;
10383 	  else
10384 	    {
10385 	      ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10386 					   current_function_funcdef_no);
10387 	      endname = ggc_strdup (label_id);
10388 	    }
10389 	  add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10390 				     node->label, endname, secname);
10391 	}
10392 
10393       /* Finally, add the location list to the DIE, and we are done.  */
10394       add_AT_loc_list (die, attr, list);
10395       return;
10396     }
10397 
10398   /* Try to get some constant RTL for this decl, and use that as the value of
10399      the location.  */
10400 
10401   rtl = rtl_for_decl_location (decl);
10402   if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10403     {
10404       add_const_value_attribute (die, rtl);
10405       return;
10406     }
10407 
10408   /* If we have tried to generate the location otherwise, and it
10409      didn't work out (we wouldn't be here if we did), and we have a one entry
10410      location list, try generating a location from that.  */
10411   if (loc_list && loc_list->first)
10412     {
10413       node = loc_list->first;
10414       descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10415       if (descr)
10416 	{
10417 	  add_AT_location_description (die, attr, descr);
10418 	  return;
10419 	}
10420     }
10421 
10422   /* We couldn't get any rtl, so try directly generating the location
10423      description from the tree.  */
10424   descr = loc_descriptor_from_tree (decl);
10425   if (descr)
10426     {
10427       add_AT_location_description (die, attr, descr);
10428       return;
10429     }
10430   /* None of that worked, so it must not really have a location;
10431      try adding a constant value attribute from the DECL_INITIAL.  */
10432   tree_add_const_value_attribute (die, decl);
10433 }
10434 
10435 /* If we don't have a copy of this variable in memory for some reason (such
10436    as a C++ member constant that doesn't have an out-of-line definition),
10437    we should tell the debugger about the constant value.  */
10438 
10439 static void
tree_add_const_value_attribute(dw_die_ref var_die,tree decl)10440 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10441 {
10442   tree init = DECL_INITIAL (decl);
10443   tree type = TREE_TYPE (decl);
10444   rtx rtl;
10445 
10446   if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10447     /* OK */;
10448   else
10449     return;
10450 
10451   rtl = rtl_for_decl_init (init, type);
10452   if (rtl)
10453     add_const_value_attribute (var_die, rtl);
10454 }
10455 
10456 /* Convert the CFI instructions for the current function into a
10457    location list.  This is used for DW_AT_frame_base when we targeting
10458    a dwarf2 consumer that does not support the dwarf3
10459    DW_OP_call_frame_cfa.  OFFSET is a constant to be added to all CFA
10460    expressions.  */
10461 
10462 static dw_loc_list_ref
convert_cfa_to_fb_loc_list(HOST_WIDE_INT offset)10463 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10464 {
10465   dw_fde_ref fde;
10466   dw_loc_list_ref list, *list_tail;
10467   dw_cfi_ref cfi;
10468   dw_cfa_location last_cfa, next_cfa;
10469   const char *start_label, *last_label, *section;
10470 
10471   fde = &fde_table[fde_table_in_use - 1];
10472 
10473   section = secname_for_decl (current_function_decl);
10474   list_tail = &list;
10475   list = NULL;
10476 
10477   next_cfa.reg = INVALID_REGNUM;
10478   next_cfa.offset = 0;
10479   next_cfa.indirect = 0;
10480   next_cfa.base_offset = 0;
10481 
10482   start_label = fde->dw_fde_begin;
10483 
10484   /* ??? Bald assumption that the CIE opcode list does not contain
10485      advance opcodes.  */
10486   for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10487     lookup_cfa_1 (cfi, &next_cfa);
10488 
10489   last_cfa = next_cfa;
10490   last_label = start_label;
10491 
10492   for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10493     switch (cfi->dw_cfi_opc)
10494       {
10495       case DW_CFA_set_loc:
10496       case DW_CFA_advance_loc1:
10497       case DW_CFA_advance_loc2:
10498       case DW_CFA_advance_loc4:
10499 	if (!cfa_equal_p (&last_cfa, &next_cfa))
10500 	  {
10501 	    *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10502 				       start_label, last_label, section,
10503 				       list == NULL);
10504 
10505 	    list_tail = &(*list_tail)->dw_loc_next;
10506 	    last_cfa = next_cfa;
10507 	    start_label = last_label;
10508 	  }
10509 	last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10510 	break;
10511 
10512       case DW_CFA_advance_loc:
10513 	/* The encoding is complex enough that we should never emit this.  */
10514       case DW_CFA_remember_state:
10515       case DW_CFA_restore_state:
10516 	/* We don't handle these two in this function.  It would be possible
10517 	   if it were to be required.  */
10518 	gcc_unreachable ();
10519 
10520       default:
10521 	lookup_cfa_1 (cfi, &next_cfa);
10522 	break;
10523       }
10524 
10525   if (!cfa_equal_p (&last_cfa, &next_cfa))
10526     {
10527       *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10528 				 start_label, last_label, section,
10529 				 list == NULL);
10530       list_tail = &(*list_tail)->dw_loc_next;
10531       start_label = last_label;
10532     }
10533   *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10534 			     start_label, fde->dw_fde_end, section,
10535 			     list == NULL);
10536 
10537   return list;
10538 }
10539 
10540 /* Compute a displacement from the "steady-state frame pointer" to the
10541    frame base (often the same as the CFA), and store it in
10542    frame_pointer_fb_offset.  OFFSET is added to the displacement
10543    before the latter is negated.  */
10544 
10545 static void
compute_frame_pointer_to_fb_displacement(HOST_WIDE_INT offset)10546 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10547 {
10548   rtx reg, elim;
10549 
10550 #ifdef FRAME_POINTER_CFA_OFFSET
10551   reg = frame_pointer_rtx;
10552   offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10553 #else
10554   reg = arg_pointer_rtx;
10555   offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10556 #endif
10557 
10558   elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10559   if (GET_CODE (elim) == PLUS)
10560     {
10561       offset += INTVAL (XEXP (elim, 1));
10562       elim = XEXP (elim, 0);
10563     }
10564   gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10565 		       : stack_pointer_rtx));
10566 
10567   frame_pointer_fb_offset = -offset;
10568 }
10569 
10570 /* Generate a DW_AT_name attribute given some string value to be included as
10571    the value of the attribute.  */
10572 
10573 static void
add_name_attribute(dw_die_ref die,const char * name_string)10574 add_name_attribute (dw_die_ref die, const char *name_string)
10575 {
10576   if (name_string != NULL && *name_string != 0)
10577     {
10578       if (demangle_name_func)
10579 	name_string = (*demangle_name_func) (name_string);
10580 
10581       add_AT_string (die, DW_AT_name, name_string);
10582     }
10583 }
10584 
10585 /* Generate a DW_AT_comp_dir attribute for DIE.  */
10586 
10587 static void
add_comp_dir_attribute(dw_die_ref die)10588 add_comp_dir_attribute (dw_die_ref die)
10589 {
10590   const char *wd = get_src_pwd ();
10591   if (wd != NULL)
10592     add_AT_string (die, DW_AT_comp_dir, wd);
10593 }
10594 
10595 /* Given a tree node describing an array bound (either lower or upper) output
10596    a representation for that bound.  */
10597 
10598 static void
add_bound_info(dw_die_ref subrange_die,enum dwarf_attribute bound_attr,tree bound)10599 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10600 {
10601   switch (TREE_CODE (bound))
10602     {
10603     case ERROR_MARK:
10604       return;
10605 
10606     /* All fixed-bounds are represented by INTEGER_CST nodes.  */
10607     case INTEGER_CST:
10608       if (! host_integerp (bound, 0)
10609 	  || (bound_attr == DW_AT_lower_bound
10610 	      && (((is_c_family () || is_java ()) &&  integer_zerop (bound))
10611 		  || (is_fortran () && integer_onep (bound)))))
10612 	/* Use the default.  */
10613 	;
10614       else
10615 	add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10616       break;
10617 
10618     case CONVERT_EXPR:
10619     case NOP_EXPR:
10620     case NON_LVALUE_EXPR:
10621     case VIEW_CONVERT_EXPR:
10622       add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10623       break;
10624 
10625     case SAVE_EXPR:
10626       break;
10627 
10628     case VAR_DECL:
10629     case PARM_DECL:
10630     case RESULT_DECL:
10631       {
10632 	dw_die_ref decl_die = lookup_decl_die (bound);
10633 
10634 	/* ??? Can this happen, or should the variable have been bound
10635 	   first?  Probably it can, since I imagine that we try to create
10636 	   the types of parameters in the order in which they exist in
10637 	   the list, and won't have created a forward reference to a
10638 	   later parameter.  */
10639 	if (decl_die != NULL)
10640 	  add_AT_die_ref (subrange_die, bound_attr, decl_die);
10641 	break;
10642       }
10643 
10644     default:
10645       {
10646 	/* Otherwise try to create a stack operation procedure to
10647 	   evaluate the value of the array bound.  */
10648 
10649 	dw_die_ref ctx, decl_die;
10650 	dw_loc_descr_ref loc;
10651 
10652 	loc = loc_descriptor_from_tree (bound);
10653 	if (loc == NULL)
10654 	  break;
10655 
10656 	if (current_function_decl == 0)
10657 	  ctx = comp_unit_die;
10658 	else
10659 	  ctx = lookup_decl_die (current_function_decl);
10660 
10661 	decl_die = new_die (DW_TAG_variable, ctx, bound);
10662 	add_AT_flag (decl_die, DW_AT_artificial, 1);
10663 	add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10664 	add_AT_loc (decl_die, DW_AT_location, loc);
10665 
10666 	add_AT_die_ref (subrange_die, bound_attr, decl_die);
10667 	break;
10668       }
10669     }
10670 }
10671 
10672 /* Note that the block of subscript information for an array type also
10673    includes information about the element type of type given array type.  */
10674 
10675 static void
add_subscript_info(dw_die_ref type_die,tree type)10676 add_subscript_info (dw_die_ref type_die, tree type)
10677 {
10678 #ifndef MIPS_DEBUGGING_INFO
10679   unsigned dimension_number;
10680 #endif
10681   tree lower, upper;
10682   dw_die_ref subrange_die;
10683 
10684   /* The GNU compilers represent multidimensional array types as sequences of
10685      one dimensional array types whose element types are themselves array
10686      types.  Here we squish that down, so that each multidimensional array
10687      type gets only one array_type DIE in the Dwarf debugging info. The draft
10688      Dwarf specification say that we are allowed to do this kind of
10689      compression in C (because there is no difference between an array or
10690      arrays and a multidimensional array in C) but for other source languages
10691      (e.g. Ada) we probably shouldn't do this.  */
10692 
10693   /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10694      const enum type.  E.g. const enum machine_mode insn_operand_mode[2][10].
10695      We work around this by disabling this feature.  See also
10696      gen_array_type_die.  */
10697 #ifndef MIPS_DEBUGGING_INFO
10698   for (dimension_number = 0;
10699        TREE_CODE (type) == ARRAY_TYPE;
10700        type = TREE_TYPE (type), dimension_number++)
10701 #endif
10702     {
10703       tree domain = TYPE_DOMAIN (type);
10704 
10705       /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10706 	 and (in GNU C only) variable bounds.  Handle all three forms
10707 	 here.  */
10708       subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10709       if (domain)
10710 	{
10711 	  /* We have an array type with specified bounds.  */
10712 	  lower = TYPE_MIN_VALUE (domain);
10713 	  upper = TYPE_MAX_VALUE (domain);
10714 
10715 	  /* Define the index type.  */
10716 	  if (TREE_TYPE (domain))
10717 	    {
10718 	      /* ??? This is probably an Ada unnamed subrange type.  Ignore the
10719 		 TREE_TYPE field.  We can't emit debug info for this
10720 		 because it is an unnamed integral type.  */
10721 	      if (TREE_CODE (domain) == INTEGER_TYPE
10722 		  && TYPE_NAME (domain) == NULL_TREE
10723 		  && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10724 		  && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10725 		;
10726 	      else
10727 		add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10728 				    type_die);
10729 	    }
10730 
10731 	  /* ??? If upper is NULL, the array has unspecified length,
10732 	     but it does have a lower bound.  This happens with Fortran
10733 	       dimension arr(N:*)
10734 	     Since the debugger is definitely going to need to know N
10735 	     to produce useful results, go ahead and output the lower
10736 	     bound solo, and hope the debugger can cope.  */
10737 
10738 	  add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10739 	  if (upper)
10740 	    add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10741 	}
10742 
10743       /* Otherwise we have an array type with an unspecified length.  The
10744 	 DWARF-2 spec does not say how to handle this; let's just leave out the
10745 	 bounds.  */
10746     }
10747 }
10748 
10749 static void
add_byte_size_attribute(dw_die_ref die,tree tree_node)10750 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10751 {
10752   unsigned size;
10753 
10754   switch (TREE_CODE (tree_node))
10755     {
10756     case ERROR_MARK:
10757       size = 0;
10758       break;
10759     case ENUMERAL_TYPE:
10760     case RECORD_TYPE:
10761     case UNION_TYPE:
10762     case QUAL_UNION_TYPE:
10763       size = int_size_in_bytes (tree_node);
10764       break;
10765     case FIELD_DECL:
10766       /* For a data member of a struct or union, the DW_AT_byte_size is
10767 	 generally given as the number of bytes normally allocated for an
10768 	 object of the *declared* type of the member itself.  This is true
10769 	 even for bit-fields.  */
10770       size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10771       break;
10772     default:
10773       gcc_unreachable ();
10774     }
10775 
10776   /* Note that `size' might be -1 when we get to this point.  If it is, that
10777      indicates that the byte size of the entity in question is variable.  We
10778      have no good way of expressing this fact in Dwarf at the present time,
10779      so just let the -1 pass on through.  */
10780   add_AT_unsigned (die, DW_AT_byte_size, size);
10781 }
10782 
10783 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10784    which specifies the distance in bits from the highest order bit of the
10785    "containing object" for the bit-field to the highest order bit of the
10786    bit-field itself.
10787 
10788    For any given bit-field, the "containing object" is a hypothetical object
10789    (of some integral or enum type) within which the given bit-field lives.  The
10790    type of this hypothetical "containing object" is always the same as the
10791    declared type of the individual bit-field itself.  The determination of the
10792    exact location of the "containing object" for a bit-field is rather
10793    complicated.  It's handled by the `field_byte_offset' function (above).
10794 
10795    Note that it is the size (in bytes) of the hypothetical "containing object"
10796    which will be given in the DW_AT_byte_size attribute for this bit-field.
10797    (See `byte_size_attribute' above).  */
10798 
10799 static inline void
add_bit_offset_attribute(dw_die_ref die,tree decl)10800 add_bit_offset_attribute (dw_die_ref die, tree decl)
10801 {
10802   HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10803   tree type = DECL_BIT_FIELD_TYPE (decl);
10804   HOST_WIDE_INT bitpos_int;
10805   HOST_WIDE_INT highest_order_object_bit_offset;
10806   HOST_WIDE_INT highest_order_field_bit_offset;
10807   HOST_WIDE_INT unsigned bit_offset;
10808 
10809   /* Must be a field and a bit field.  */
10810   gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10811 
10812   /* We can't yet handle bit-fields whose offsets are variable, so if we
10813      encounter such things, just return without generating any attribute
10814      whatsoever.  Likewise for variable or too large size.  */
10815   if (! host_integerp (bit_position (decl), 0)
10816       || ! host_integerp (DECL_SIZE (decl), 1))
10817     return;
10818 
10819   bitpos_int = int_bit_position (decl);
10820 
10821   /* Note that the bit offset is always the distance (in bits) from the
10822      highest-order bit of the "containing object" to the highest-order bit of
10823      the bit-field itself.  Since the "high-order end" of any object or field
10824      is different on big-endian and little-endian machines, the computation
10825      below must take account of these differences.  */
10826   highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10827   highest_order_field_bit_offset = bitpos_int;
10828 
10829   if (! BYTES_BIG_ENDIAN)
10830     {
10831       highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10832       highest_order_object_bit_offset += simple_type_size_in_bits (type);
10833     }
10834 
10835   bit_offset
10836     = (! BYTES_BIG_ENDIAN
10837        ? highest_order_object_bit_offset - highest_order_field_bit_offset
10838        : highest_order_field_bit_offset - highest_order_object_bit_offset);
10839 
10840   add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10841 }
10842 
10843 /* For a FIELD_DECL node which represents a bit field, output an attribute
10844    which specifies the length in bits of the given field.  */
10845 
10846 static inline void
add_bit_size_attribute(dw_die_ref die,tree decl)10847 add_bit_size_attribute (dw_die_ref die, tree decl)
10848 {
10849   /* Must be a field and a bit field.  */
10850   gcc_assert (TREE_CODE (decl) == FIELD_DECL
10851 	      && DECL_BIT_FIELD_TYPE (decl));
10852 
10853   if (host_integerp (DECL_SIZE (decl), 1))
10854     add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10855 }
10856 
10857 /* If the compiled language is ANSI C, then add a 'prototyped'
10858    attribute, if arg types are given for the parameters of a function.  */
10859 
10860 static inline void
add_prototyped_attribute(dw_die_ref die,tree func_type)10861 add_prototyped_attribute (dw_die_ref die, tree func_type)
10862 {
10863   if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10864       && TYPE_ARG_TYPES (func_type) != NULL)
10865     add_AT_flag (die, DW_AT_prototyped, 1);
10866 }
10867 
10868 /* Add an 'abstract_origin' attribute below a given DIE.  The DIE is found
10869    by looking in either the type declaration or object declaration
10870    equate table.  */
10871 
10872 static inline void
add_abstract_origin_attribute(dw_die_ref die,tree origin)10873 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10874 {
10875   dw_die_ref origin_die = NULL;
10876 
10877   if (TREE_CODE (origin) != FUNCTION_DECL)
10878     {
10879       /* We may have gotten separated from the block for the inlined
10880 	 function, if we're in an exception handler or some such; make
10881 	 sure that the abstract function has been written out.
10882 
10883 	 Doing this for nested functions is wrong, however; functions are
10884 	 distinct units, and our context might not even be inline.  */
10885       tree fn = origin;
10886 
10887       if (TYPE_P (fn))
10888 	fn = TYPE_STUB_DECL (fn);
10889 
10890       fn = decl_function_context (fn);
10891       if (fn)
10892 	dwarf2out_abstract_function (fn);
10893     }
10894 
10895   if (DECL_P (origin))
10896     origin_die = lookup_decl_die (origin);
10897   else if (TYPE_P (origin))
10898     origin_die = lookup_type_die (origin);
10899 
10900   /* XXX: Functions that are never lowered don't always have correct block
10901      trees (in the case of java, they simply have no block tree, in some other
10902      languages).  For these functions, there is nothing we can really do to
10903      output correct debug info for inlined functions in all cases.  Rather
10904      than die, we'll just produce deficient debug info now, in that we will
10905      have variables without a proper abstract origin.  In the future, when all
10906      functions are lowered, we should re-add a gcc_assert (origin_die)
10907      here.  */
10908 
10909   if (origin_die)
10910       add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10911 }
10912 
10913 /* We do not currently support the pure_virtual attribute.  */
10914 
10915 static inline void
add_pure_or_virtual_attribute(dw_die_ref die,tree func_decl)10916 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10917 {
10918   if (DECL_VINDEX (func_decl))
10919     {
10920       add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10921 
10922       if (host_integerp (DECL_VINDEX (func_decl), 0))
10923 	add_AT_loc (die, DW_AT_vtable_elem_location,
10924 		    new_loc_descr (DW_OP_constu,
10925 				   tree_low_cst (DECL_VINDEX (func_decl), 0),
10926 				   0));
10927 
10928       /* GNU extension: Record what type this method came from originally.  */
10929       if (debug_info_level > DINFO_LEVEL_TERSE)
10930 	add_AT_die_ref (die, DW_AT_containing_type,
10931 			lookup_type_die (DECL_CONTEXT (func_decl)));
10932     }
10933 }
10934 
10935 /* Add source coordinate attributes for the given decl.  */
10936 
10937 static void
add_src_coords_attributes(dw_die_ref die,tree decl)10938 add_src_coords_attributes (dw_die_ref die, tree decl)
10939 {
10940   expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10941 
10942   add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
10943   add_AT_unsigned (die, DW_AT_decl_line, s.line);
10944 }
10945 
10946 /* Add a DW_AT_name attribute and source coordinate attribute for the
10947    given decl, but only if it actually has a name.  */
10948 
10949 static void
add_name_and_src_coords_attributes(dw_die_ref die,tree decl)10950 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10951 {
10952   tree decl_name;
10953 
10954   decl_name = DECL_NAME (decl);
10955   if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10956     {
10957       add_name_attribute (die, dwarf2_name (decl, 0));
10958       if (! DECL_ARTIFICIAL (decl))
10959 	add_src_coords_attributes (die, decl);
10960 
10961       if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10962 	  && TREE_PUBLIC (decl)
10963 	  && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10964 	  && !DECL_ABSTRACT (decl)
10965 	  && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10966 	add_AT_string (die, DW_AT_MIPS_linkage_name,
10967 		       IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10968     }
10969 
10970 #ifdef VMS_DEBUGGING_INFO
10971   /* Get the function's name, as described by its RTL.  This may be different
10972      from the DECL_NAME name used in the source file.  */
10973   if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10974     {
10975       add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10976 		   XEXP (DECL_RTL (decl), 0));
10977       VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10978     }
10979 #endif
10980 }
10981 
10982 /* Push a new declaration scope.  */
10983 
10984 static void
push_decl_scope(tree scope)10985 push_decl_scope (tree scope)
10986 {
10987   VEC_safe_push (tree, gc, decl_scope_table, scope);
10988 }
10989 
10990 /* Pop a declaration scope.  */
10991 
10992 static inline void
pop_decl_scope(void)10993 pop_decl_scope (void)
10994 {
10995   VEC_pop (tree, decl_scope_table);
10996 }
10997 
10998 /* Return the DIE for the scope that immediately contains this type.
10999    Non-named types get global scope.  Named types nested in other
11000    types get their containing scope if it's open, or global scope
11001    otherwise.  All other types (i.e. function-local named types) get
11002    the current active scope.  */
11003 
11004 static dw_die_ref
scope_die_for(tree t,dw_die_ref context_die)11005 scope_die_for (tree t, dw_die_ref context_die)
11006 {
11007   dw_die_ref scope_die = NULL;
11008   tree containing_scope;
11009   int i;
11010 
11011   /* Non-types always go in the current scope.  */
11012   gcc_assert (TYPE_P (t));
11013 
11014   containing_scope = TYPE_CONTEXT (t);
11015 
11016   /* Use the containing namespace if it was passed in (for a declaration).  */
11017   if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11018     {
11019       if (context_die == lookup_decl_die (containing_scope))
11020 	/* OK */;
11021       else
11022 	containing_scope = NULL_TREE;
11023     }
11024 
11025   /* Ignore function type "scopes" from the C frontend.  They mean that
11026      a tagged type is local to a parmlist of a function declarator, but
11027      that isn't useful to DWARF.  */
11028   if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11029     containing_scope = NULL_TREE;
11030 
11031   if (containing_scope == NULL_TREE)
11032     scope_die = comp_unit_die;
11033   else if (TYPE_P (containing_scope))
11034     {
11035       /* For types, we can just look up the appropriate DIE.  But
11036 	 first we check to see if we're in the middle of emitting it
11037 	 so we know where the new DIE should go.  */
11038       for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11039 	if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11040 	  break;
11041 
11042       if (i < 0)
11043 	{
11044 	  gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11045 		      || TREE_ASM_WRITTEN (containing_scope));
11046 
11047 	  /* If none of the current dies are suitable, we get file scope.  */
11048 	  scope_die = comp_unit_die;
11049 	}
11050       else
11051 	scope_die = lookup_type_die (containing_scope);
11052     }
11053   else
11054     scope_die = context_die;
11055 
11056   return scope_die;
11057 }
11058 
11059 /* Returns nonzero if CONTEXT_DIE is internal to a function.  */
11060 
11061 static inline int
local_scope_p(dw_die_ref context_die)11062 local_scope_p (dw_die_ref context_die)
11063 {
11064   for (; context_die; context_die = context_die->die_parent)
11065     if (context_die->die_tag == DW_TAG_inlined_subroutine
11066 	|| context_die->die_tag == DW_TAG_subprogram)
11067       return 1;
11068 
11069   return 0;
11070 }
11071 
11072 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11073    whether or not to treat a DIE in this context as a declaration.  */
11074 
11075 static inline int
class_or_namespace_scope_p(dw_die_ref context_die)11076 class_or_namespace_scope_p (dw_die_ref context_die)
11077 {
11078   return (context_die
11079 	  && (context_die->die_tag == DW_TAG_structure_type
11080 	      || context_die->die_tag == DW_TAG_union_type
11081 	      || context_die->die_tag == DW_TAG_namespace));
11082 }
11083 
11084 /* Many forms of DIEs require a "type description" attribute.  This
11085    routine locates the proper "type descriptor" die for the type given
11086    by 'type', and adds a DW_AT_type attribute below the given die.  */
11087 
11088 static void
add_type_attribute(dw_die_ref object_die,tree type,int decl_const,int decl_volatile,dw_die_ref context_die)11089 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11090 		    int decl_volatile, dw_die_ref context_die)
11091 {
11092   enum tree_code code  = TREE_CODE (type);
11093   dw_die_ref type_die  = NULL;
11094 
11095   /* ??? If this type is an unnamed subrange type of an integral or
11096      floating-point type, use the inner type.  This is because we have no
11097      support for unnamed types in base_type_die.  This can happen if this is
11098      an Ada subrange type.  Correct solution is emit a subrange type die.  */
11099   if ((code == INTEGER_TYPE || code == REAL_TYPE)
11100       && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11101     type = TREE_TYPE (type), code = TREE_CODE (type);
11102 
11103   if (code == ERROR_MARK
11104       /* Handle a special case.  For functions whose return type is void, we
11105 	 generate *no* type attribute.  (Note that no object may have type
11106 	 `void', so this only applies to function return types).  */
11107       || code == VOID_TYPE)
11108     return;
11109 
11110   type_die = modified_type_die (type,
11111 				decl_const || TYPE_READONLY (type),
11112 				decl_volatile || TYPE_VOLATILE (type),
11113 				context_die);
11114 
11115   if (type_die != NULL)
11116     add_AT_die_ref (object_die, DW_AT_type, type_die);
11117 }
11118 
11119 /* Given an object die, add the calling convention attribute for the
11120    function call type.  */
11121 static void
add_calling_convention_attribute(dw_die_ref subr_die,tree type)11122 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11123 {
11124   enum dwarf_calling_convention value = DW_CC_normal;
11125 
11126   value = targetm.dwarf_calling_convention (type);
11127 
11128   /* Only add the attribute if the backend requests it, and
11129      is not DW_CC_normal.  */
11130   if (value && (value != DW_CC_normal))
11131     add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11132 }
11133 
11134 /* Given a tree pointer to a struct, class, union, or enum type node, return
11135    a pointer to the (string) tag name for the given type, or zero if the type
11136    was declared without a tag.  */
11137 
11138 static const char *
type_tag(tree type)11139 type_tag (tree type)
11140 {
11141   const char *name = 0;
11142 
11143   if (TYPE_NAME (type) != 0)
11144     {
11145       tree t = 0;
11146 
11147       /* Find the IDENTIFIER_NODE for the type name.  */
11148       if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11149 	t = TYPE_NAME (type);
11150 
11151       /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11152 	 a TYPE_DECL node, regardless of whether or not a `typedef' was
11153 	 involved.  */
11154       else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11155 	       && ! DECL_IGNORED_P (TYPE_NAME (type)))
11156 	t = DECL_NAME (TYPE_NAME (type));
11157 
11158       /* Now get the name as a string, or invent one.  */
11159       if (t != 0)
11160 	name = IDENTIFIER_POINTER (t);
11161     }
11162 
11163   return (name == 0 || *name == '\0') ? 0 : name;
11164 }
11165 
11166 /* Return the type associated with a data member, make a special check
11167    for bit field types.  */
11168 
11169 static inline tree
member_declared_type(tree member)11170 member_declared_type (tree member)
11171 {
11172   return (DECL_BIT_FIELD_TYPE (member)
11173 	  ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11174 }
11175 
11176 /* Get the decl's label, as described by its RTL. This may be different
11177    from the DECL_NAME name used in the source file.  */
11178 
11179 #if 0
11180 static const char *
11181 decl_start_label (tree decl)
11182 {
11183   rtx x;
11184   const char *fnname;
11185 
11186   x = DECL_RTL (decl);
11187   gcc_assert (MEM_P (x));
11188 
11189   x = XEXP (x, 0);
11190   gcc_assert (GET_CODE (x) == SYMBOL_REF);
11191 
11192   fnname = XSTR (x, 0);
11193   return fnname;
11194 }
11195 #endif
11196 
11197 /* These routines generate the internal representation of the DIE's for
11198    the compilation unit.  Debugging information is collected by walking
11199    the declaration trees passed in from dwarf2out_decl().  */
11200 
11201 static void
gen_array_type_die(tree type,dw_die_ref context_die)11202 gen_array_type_die (tree type, dw_die_ref context_die)
11203 {
11204   dw_die_ref scope_die = scope_die_for (type, context_die);
11205   dw_die_ref array_die;
11206   tree element_type;
11207 
11208   /* ??? The SGI dwarf reader fails for array of array of enum types unless
11209      the inner array type comes before the outer array type.  Thus we must
11210      call gen_type_die before we call new_die.  See below also.  */
11211 #ifdef MIPS_DEBUGGING_INFO
11212   gen_type_die (TREE_TYPE (type), context_die);
11213 #endif
11214 
11215   array_die = new_die (DW_TAG_array_type, scope_die, type);
11216   add_name_attribute (array_die, type_tag (type));
11217   equate_type_number_to_die (type, array_die);
11218 
11219   if (TREE_CODE (type) == VECTOR_TYPE)
11220     {
11221       /* The frontend feeds us a representation for the vector as a struct
11222 	 containing an array.  Pull out the array type.  */
11223       type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11224       add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11225     }
11226 
11227 #if 0
11228   /* We default the array ordering.  SDB will probably do
11229      the right things even if DW_AT_ordering is not present.  It's not even
11230      an issue until we start to get into multidimensional arrays anyway.  If
11231      SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11232      then we'll have to put the DW_AT_ordering attribute back in.  (But if
11233      and when we find out that we need to put these in, we will only do so
11234      for multidimensional arrays.  */
11235   add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11236 #endif
11237 
11238 #ifdef MIPS_DEBUGGING_INFO
11239   /* The SGI compilers handle arrays of unknown bound by setting
11240      AT_declaration and not emitting any subrange DIEs.  */
11241   if (! TYPE_DOMAIN (type))
11242     add_AT_flag (array_die, DW_AT_declaration, 1);
11243   else
11244 #endif
11245     add_subscript_info (array_die, type);
11246 
11247   /* Add representation of the type of the elements of this array type.  */
11248   element_type = TREE_TYPE (type);
11249 
11250   /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11251      const enum type.  E.g. const enum machine_mode insn_operand_mode[2][10].
11252      We work around this by disabling this feature.  See also
11253      add_subscript_info.  */
11254 #ifndef MIPS_DEBUGGING_INFO
11255   while (TREE_CODE (element_type) == ARRAY_TYPE)
11256     element_type = TREE_TYPE (element_type);
11257 
11258   gen_type_die (element_type, context_die);
11259 #endif
11260 
11261   add_type_attribute (array_die, element_type, 0, 0, context_die);
11262 }
11263 
11264 #if 0
11265 static void
11266 gen_entry_point_die (tree decl, dw_die_ref context_die)
11267 {
11268   tree origin = decl_ultimate_origin (decl);
11269   dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11270 
11271   if (origin != NULL)
11272     add_abstract_origin_attribute (decl_die, origin);
11273   else
11274     {
11275       add_name_and_src_coords_attributes (decl_die, decl);
11276       add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11277 			  0, 0, context_die);
11278     }
11279 
11280   if (DECL_ABSTRACT (decl))
11281     equate_decl_number_to_die (decl, decl_die);
11282   else
11283     add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11284 }
11285 #endif
11286 
11287 /* Walk through the list of incomplete types again, trying once more to
11288    emit full debugging info for them.  */
11289 
11290 static void
retry_incomplete_types(void)11291 retry_incomplete_types (void)
11292 {
11293   int i;
11294 
11295   for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11296     gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11297 }
11298 
11299 /* Generate a DIE to represent an inlined instance of an enumeration type.  */
11300 
11301 static void
gen_inlined_enumeration_type_die(tree type,dw_die_ref context_die)11302 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11303 {
11304   dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11305 
11306   /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11307      be incomplete and such types are not marked.  */
11308   add_abstract_origin_attribute (type_die, type);
11309 }
11310 
11311 /* Generate a DIE to represent an inlined instance of a structure type.  */
11312 
11313 static void
gen_inlined_structure_type_die(tree type,dw_die_ref context_die)11314 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11315 {
11316   dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11317 
11318   /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11319      be incomplete and such types are not marked.  */
11320   add_abstract_origin_attribute (type_die, type);
11321 }
11322 
11323 /* Generate a DIE to represent an inlined instance of a union type.  */
11324 
11325 static void
gen_inlined_union_type_die(tree type,dw_die_ref context_die)11326 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11327 {
11328   dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11329 
11330   /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11331      be incomplete and such types are not marked.  */
11332   add_abstract_origin_attribute (type_die, type);
11333 }
11334 
11335 /* Generate a DIE to represent an enumeration type.  Note that these DIEs
11336    include all of the information about the enumeration values also. Each
11337    enumerated type name/value is listed as a child of the enumerated type
11338    DIE.  */
11339 
11340 static dw_die_ref
gen_enumeration_type_die(tree type,dw_die_ref context_die)11341 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11342 {
11343   dw_die_ref type_die = lookup_type_die (type);
11344 
11345   if (type_die == NULL)
11346     {
11347       type_die = new_die (DW_TAG_enumeration_type,
11348 			  scope_die_for (type, context_die), type);
11349       equate_type_number_to_die (type, type_die);
11350       add_name_attribute (type_die, type_tag (type));
11351     }
11352   else if (! TYPE_SIZE (type))
11353     return type_die;
11354   else
11355     remove_AT (type_die, DW_AT_declaration);
11356 
11357   /* Handle a GNU C/C++ extension, i.e. incomplete enum types.  If the
11358      given enum type is incomplete, do not generate the DW_AT_byte_size
11359      attribute or the DW_AT_element_list attribute.  */
11360   if (TYPE_SIZE (type))
11361     {
11362       tree link;
11363 
11364       TREE_ASM_WRITTEN (type) = 1;
11365       add_byte_size_attribute (type_die, type);
11366       if (TYPE_STUB_DECL (type) != NULL_TREE)
11367 	add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11368 
11369       /* If the first reference to this type was as the return type of an
11370 	 inline function, then it may not have a parent.  Fix this now.  */
11371       if (type_die->die_parent == NULL)
11372 	add_child_die (scope_die_for (type, context_die), type_die);
11373 
11374       for (link = TYPE_VALUES (type);
11375 	   link != NULL; link = TREE_CHAIN (link))
11376 	{
11377 	  dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11378 	  tree value = TREE_VALUE (link);
11379 
11380 	  add_name_attribute (enum_die,
11381 			      IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11382 
11383 	  if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11384 	    /* DWARF2 does not provide a way of indicating whether or
11385 	       not enumeration constants are signed or unsigned.  GDB
11386 	       always assumes the values are signed, so we output all
11387 	       values as if they were signed.  That means that
11388 	       enumeration constants with very large unsigned values
11389 	       will appear to have negative values in the debugger.  */
11390 	    add_AT_int (enum_die, DW_AT_const_value,
11391 			tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11392 	}
11393     }
11394   else
11395     add_AT_flag (type_die, DW_AT_declaration, 1);
11396 
11397   return type_die;
11398 }
11399 
11400 /* Generate a DIE to represent either a real live formal parameter decl or to
11401    represent just the type of some formal parameter position in some function
11402    type.
11403 
11404    Note that this routine is a bit unusual because its argument may be a
11405    ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11406    represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11407    node.  If it's the former then this function is being called to output a
11408    DIE to represent a formal parameter object (or some inlining thereof).  If
11409    it's the latter, then this function is only being called to output a
11410    DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11411    argument type of some subprogram type.  */
11412 
11413 static dw_die_ref
gen_formal_parameter_die(tree node,dw_die_ref context_die)11414 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11415 {
11416   dw_die_ref parm_die
11417     = new_die (DW_TAG_formal_parameter, context_die, node);
11418   tree origin;
11419 
11420   switch (TREE_CODE_CLASS (TREE_CODE (node)))
11421     {
11422     case tcc_declaration:
11423       origin = decl_ultimate_origin (node);
11424       if (origin != NULL)
11425 	add_abstract_origin_attribute (parm_die, origin);
11426       else
11427 	{
11428 	  add_name_and_src_coords_attributes (parm_die, node);
11429 	  add_type_attribute (parm_die, TREE_TYPE (node),
11430 			      TREE_READONLY (node),
11431 			      TREE_THIS_VOLATILE (node),
11432 			      context_die);
11433 	  if (DECL_ARTIFICIAL (node))
11434 	    add_AT_flag (parm_die, DW_AT_artificial, 1);
11435 	}
11436 
11437       equate_decl_number_to_die (node, parm_die);
11438       if (! DECL_ABSTRACT (node))
11439 	add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11440 
11441       break;
11442 
11443     case tcc_type:
11444       /* We were called with some kind of a ..._TYPE node.  */
11445       add_type_attribute (parm_die, node, 0, 0, context_die);
11446       break;
11447 
11448     default:
11449       gcc_unreachable ();
11450     }
11451 
11452   return parm_die;
11453 }
11454 
11455 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11456    at the end of an (ANSI prototyped) formal parameters list.  */
11457 
11458 static void
gen_unspecified_parameters_die(tree decl_or_type,dw_die_ref context_die)11459 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11460 {
11461   new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11462 }
11463 
11464 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11465    DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11466    parameters as specified in some function type specification (except for
11467    those which appear as part of a function *definition*).  */
11468 
11469 static void
gen_formal_types_die(tree function_or_method_type,dw_die_ref context_die)11470 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11471 {
11472   tree link;
11473   tree formal_type = NULL;
11474   tree first_parm_type;
11475   tree arg;
11476 
11477   if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11478     {
11479       arg = DECL_ARGUMENTS (function_or_method_type);
11480       function_or_method_type = TREE_TYPE (function_or_method_type);
11481     }
11482   else
11483     arg = NULL_TREE;
11484 
11485   first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11486 
11487   /* Make our first pass over the list of formal parameter types and output a
11488      DW_TAG_formal_parameter DIE for each one.  */
11489   for (link = first_parm_type; link; )
11490     {
11491       dw_die_ref parm_die;
11492 
11493       formal_type = TREE_VALUE (link);
11494       if (formal_type == void_type_node)
11495 	break;
11496 
11497       /* Output a (nameless) DIE to represent the formal parameter itself.  */
11498       parm_die = gen_formal_parameter_die (formal_type, context_die);
11499       if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11500 	   && link == first_parm_type)
11501 	  || (arg && DECL_ARTIFICIAL (arg)))
11502 	add_AT_flag (parm_die, DW_AT_artificial, 1);
11503 
11504       link = TREE_CHAIN (link);
11505       if (arg)
11506 	arg = TREE_CHAIN (arg);
11507     }
11508 
11509   /* If this function type has an ellipsis, add a
11510      DW_TAG_unspecified_parameters DIE to the end of the parameter list.  */
11511   if (formal_type != void_type_node)
11512     gen_unspecified_parameters_die (function_or_method_type, context_die);
11513 
11514   /* Make our second (and final) pass over the list of formal parameter types
11515      and output DIEs to represent those types (as necessary).  */
11516   for (link = TYPE_ARG_TYPES (function_or_method_type);
11517        link && TREE_VALUE (link);
11518        link = TREE_CHAIN (link))
11519     gen_type_die (TREE_VALUE (link), context_die);
11520 }
11521 
11522 /* We want to generate the DIE for TYPE so that we can generate the
11523    die for MEMBER, which has been defined; we will need to refer back
11524    to the member declaration nested within TYPE.  If we're trying to
11525    generate minimal debug info for TYPE, processing TYPE won't do the
11526    trick; we need to attach the member declaration by hand.  */
11527 
11528 static void
gen_type_die_for_member(tree type,tree member,dw_die_ref context_die)11529 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11530 {
11531   gen_type_die (type, context_die);
11532 
11533   /* If we're trying to avoid duplicate debug info, we may not have
11534      emitted the member decl for this function.  Emit it now.  */
11535   if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11536       && ! lookup_decl_die (member))
11537     {
11538       dw_die_ref type_die;
11539       gcc_assert (!decl_ultimate_origin (member));
11540 
11541       push_decl_scope (type);
11542       type_die = lookup_type_die (type);
11543       if (TREE_CODE (member) == FUNCTION_DECL)
11544 	gen_subprogram_die (member, type_die);
11545       else if (TREE_CODE (member) == FIELD_DECL)
11546 	{
11547 	  /* Ignore the nameless fields that are used to skip bits but handle
11548 	     C++ anonymous unions and structs.  */
11549 	  if (DECL_NAME (member) != NULL_TREE
11550 	      || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11551 	      || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11552 	    {
11553 	      gen_type_die (member_declared_type (member), type_die);
11554 	      gen_field_die (member, type_die);
11555 	    }
11556 	}
11557       else
11558 	gen_variable_die (member, type_die);
11559 
11560       pop_decl_scope ();
11561     }
11562 }
11563 
11564 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11565    may later generate inlined and/or out-of-line instances of.  */
11566 
11567 static void
dwarf2out_abstract_function(tree decl)11568 dwarf2out_abstract_function (tree decl)
11569 {
11570   dw_die_ref old_die;
11571   tree save_fn;
11572   struct function *save_cfun;
11573   tree context;
11574   int was_abstract = DECL_ABSTRACT (decl);
11575 
11576   /* Make sure we have the actual abstract inline, not a clone.  */
11577   decl = DECL_ORIGIN (decl);
11578 
11579   old_die = lookup_decl_die (decl);
11580   if (old_die && get_AT (old_die, DW_AT_inline))
11581     /* We've already generated the abstract instance.  */
11582     return;
11583 
11584   /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11585      we don't get confused by DECL_ABSTRACT.  */
11586   if (debug_info_level > DINFO_LEVEL_TERSE)
11587     {
11588       context = decl_class_context (decl);
11589       if (context)
11590 	gen_type_die_for_member
11591 	  (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11592     }
11593 
11594   /* Pretend we've just finished compiling this function.  */
11595   save_fn = current_function_decl;
11596   save_cfun = cfun;
11597   current_function_decl = decl;
11598   cfun = DECL_STRUCT_FUNCTION (decl);
11599 
11600   set_decl_abstract_flags (decl, 1);
11601   dwarf2out_decl (decl);
11602   if (! was_abstract)
11603     set_decl_abstract_flags (decl, 0);
11604 
11605   current_function_decl = save_fn;
11606   cfun = save_cfun;
11607 }
11608 
11609 /* Helper function of premark_used_types() which gets called through
11610    htab_traverse_resize().
11611 
11612    Marks the DIE of a given type in *SLOT as perennial, so it never gets
11613    marked as unused by prune_unused_types.  */
11614 static int
premark_used_types_helper(void ** slot,void * data ATTRIBUTE_UNUSED)11615 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11616 {
11617   tree type;
11618   dw_die_ref die;
11619 
11620   type = *slot;
11621   die = lookup_type_die (type);
11622   if (die != NULL)
11623     die->die_perennial_p = 1;
11624   return 1;
11625 }
11626 
11627 /* Mark all members of used_types_hash as perennial.  */
11628 static void
premark_used_types(void)11629 premark_used_types (void)
11630 {
11631   if (cfun && cfun->used_types_hash)
11632     htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11633 }
11634 
11635 /* Generate a DIE to represent a declared function (either file-scope or
11636    block-local).  */
11637 
11638 static void
gen_subprogram_die(tree decl,dw_die_ref context_die)11639 gen_subprogram_die (tree decl, dw_die_ref context_die)
11640 {
11641   char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11642   tree origin = decl_ultimate_origin (decl);
11643   dw_die_ref subr_die;
11644   tree fn_arg_types;
11645   tree outer_scope;
11646   dw_die_ref old_die = lookup_decl_die (decl);
11647   int declaration = (current_function_decl != decl
11648 		     || class_or_namespace_scope_p (context_die));
11649 
11650   premark_used_types ();
11651 
11652   /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11653      started to generate the abstract instance of an inline, decided to output
11654      its containing class, and proceeded to emit the declaration of the inline
11655      from the member list for the class.  If so, DECLARATION takes priority;
11656      we'll get back to the abstract instance when done with the class.  */
11657 
11658   /* The class-scope declaration DIE must be the primary DIE.  */
11659   if (origin && declaration && class_or_namespace_scope_p (context_die))
11660     {
11661       origin = NULL;
11662       gcc_assert (!old_die);
11663     }
11664 
11665   /* Now that the C++ front end lazily declares artificial member fns, we
11666      might need to retrofit the declaration into its class.  */
11667   if (!declaration && !origin && !old_die
11668       && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11669       && !class_or_namespace_scope_p (context_die)
11670       && debug_info_level > DINFO_LEVEL_TERSE)
11671     old_die = force_decl_die (decl);
11672 
11673   if (origin != NULL)
11674     {
11675       gcc_assert (!declaration || local_scope_p (context_die));
11676 
11677       /* Fixup die_parent for the abstract instance of a nested
11678 	 inline function.  */
11679       if (old_die && old_die->die_parent == NULL)
11680 	add_child_die (context_die, old_die);
11681 
11682       subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11683       add_abstract_origin_attribute (subr_die, origin);
11684     }
11685   else if (old_die)
11686     {
11687       expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11688       struct dwarf_file_data * file_index = lookup_filename (s.file);
11689 
11690       if (!get_AT_flag (old_die, DW_AT_declaration)
11691 	  /* We can have a normal definition following an inline one in the
11692 	     case of redefinition of GNU C extern inlines.
11693 	     It seems reasonable to use AT_specification in this case.  */
11694 	  && !get_AT (old_die, DW_AT_inline))
11695 	{
11696 	  /* Detect and ignore this case, where we are trying to output
11697 	     something we have already output.  */
11698 	  return;
11699 	}
11700 
11701       /* If the definition comes from the same place as the declaration,
11702 	 maybe use the old DIE.  We always want the DIE for this function
11703 	 that has the *_pc attributes to be under comp_unit_die so the
11704 	 debugger can find it.  We also need to do this for abstract
11705 	 instances of inlines, since the spec requires the out-of-line copy
11706 	 to have the same parent.  For local class methods, this doesn't
11707 	 apply; we just use the old DIE.  */
11708       if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11709 	  && (DECL_ARTIFICIAL (decl)
11710 	      || (get_AT_file (old_die, DW_AT_decl_file) == file_index
11711 		  && (get_AT_unsigned (old_die, DW_AT_decl_line)
11712 		      == (unsigned) s.line))))
11713 	{
11714 	  subr_die = old_die;
11715 
11716 	  /* Clear out the declaration attribute and the formal parameters.
11717 	     Do not remove all children, because it is possible that this
11718 	     declaration die was forced using force_decl_die(). In such
11719 	     cases die that forced declaration die (e.g. TAG_imported_module)
11720 	     is one of the children that we do not want to remove.  */
11721 	  remove_AT (subr_die, DW_AT_declaration);
11722 	  remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11723 	}
11724       else
11725 	{
11726 	  subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11727 	  add_AT_specification (subr_die, old_die);
11728 	  if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11729 	    add_AT_file (subr_die, DW_AT_decl_file, file_index);
11730 	  if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11731 	    add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
11732 	}
11733     }
11734   else
11735     {
11736       subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11737 
11738       if (TREE_PUBLIC (decl))
11739 	add_AT_flag (subr_die, DW_AT_external, 1);
11740 
11741       add_name_and_src_coords_attributes (subr_die, decl);
11742       if (debug_info_level > DINFO_LEVEL_TERSE)
11743 	{
11744 	  add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11745 	  add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11746 			      0, 0, context_die);
11747 	}
11748 
11749       add_pure_or_virtual_attribute (subr_die, decl);
11750       if (DECL_ARTIFICIAL (decl))
11751 	add_AT_flag (subr_die, DW_AT_artificial, 1);
11752 
11753       if (TREE_PROTECTED (decl))
11754 	add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11755       else if (TREE_PRIVATE (decl))
11756 	add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11757     }
11758 
11759   if (declaration)
11760     {
11761       if (!old_die || !get_AT (old_die, DW_AT_inline))
11762 	{
11763 	  add_AT_flag (subr_die, DW_AT_declaration, 1);
11764 
11765 	  /* The first time we see a member function, it is in the context of
11766 	     the class to which it belongs.  We make sure of this by emitting
11767 	     the class first.  The next time is the definition, which is
11768 	     handled above.  The two may come from the same source text.
11769 
11770 	     Note that force_decl_die() forces function declaration die. It is
11771 	     later reused to represent definition.  */
11772 	  equate_decl_number_to_die (decl, subr_die);
11773 	}
11774     }
11775   else if (DECL_ABSTRACT (decl))
11776     {
11777       if (DECL_DECLARED_INLINE_P (decl))
11778 	{
11779           if (cgraph_function_possibly_inlined_p (decl))
11780 	    add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11781 	  else
11782 	    add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11783 	}
11784       else
11785 	{
11786 	  if (cgraph_function_possibly_inlined_p (decl))
11787             add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11788 	  else
11789             add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11790 	}
11791 
11792       equate_decl_number_to_die (decl, subr_die);
11793     }
11794   else if (!DECL_EXTERNAL (decl))
11795     {
11796       HOST_WIDE_INT cfa_fb_offset;
11797 
11798       if (!old_die || !get_AT (old_die, DW_AT_inline))
11799 	equate_decl_number_to_die (decl, subr_die);
11800 
11801       if (!flag_reorder_blocks_and_partition)
11802 	{
11803 	  ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11804 				       current_function_funcdef_no);
11805 	  add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11806 	  ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11807 				       current_function_funcdef_no);
11808 	  add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11809 
11810 	  add_pubname (decl, subr_die);
11811 	  add_arange (decl, subr_die);
11812 	}
11813       else
11814 	{  /* Do nothing for now; maybe need to duplicate die, one for
11815 	      hot section and ond for cold section, then use the hot/cold
11816 	      section begin/end labels to generate the aranges...  */
11817 	  /*
11818 	    add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11819 	    add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11820 	    add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11821 	    add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11822 
11823 	    add_pubname (decl, subr_die);
11824 	    add_arange (decl, subr_die);
11825 	    add_arange (decl, subr_die);
11826 	   */
11827 	}
11828 
11829 #ifdef MIPS_DEBUGGING_INFO
11830       /* Add a reference to the FDE for this routine.  */
11831       add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11832 #endif
11833 
11834       cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11835 
11836       /* We define the "frame base" as the function's CFA.  This is more
11837 	 convenient for several reasons: (1) It's stable across the prologue
11838 	 and epilogue, which makes it better than just a frame pointer,
11839 	 (2) With dwarf3, there exists a one-byte encoding that allows us
11840 	 to reference the .debug_frame data by proxy, but failing that,
11841 	 (3) We can at least reuse the code inspection and interpretation
11842 	 code that determines the CFA position at various points in the
11843 	 function.  */
11844       /* ??? Use some command-line or configury switch to enable the use
11845 	 of dwarf3 DW_OP_call_frame_cfa.  At present there are no dwarf
11846 	 consumers that understand it; fall back to "pure" dwarf2 and
11847 	 convert the CFA data into a location list.  */
11848       {
11849 	dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11850 	if (list->dw_loc_next)
11851 	  add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11852 	else
11853 	  add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11854       }
11855 
11856       /* Compute a displacement from the "steady-state frame pointer" to
11857 	 the CFA.  The former is what all stack slots and argument slots
11858 	 will reference in the rtl; the later is what we've told the
11859 	 debugger about.  We'll need to adjust all frame_base references
11860 	 by this displacement.  */
11861       compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11862 
11863       if (cfun->static_chain_decl)
11864 	add_AT_location_description (subr_die, DW_AT_static_link,
11865 		 loc_descriptor_from_tree (cfun->static_chain_decl));
11866     }
11867 
11868   /* Now output descriptions of the arguments for this function. This gets
11869      (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11870      for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11871      `...' at the end of the formal parameter list.  In order to find out if
11872      there was a trailing ellipsis or not, we must instead look at the type
11873      associated with the FUNCTION_DECL.  This will be a node of type
11874      FUNCTION_TYPE. If the chain of type nodes hanging off of this
11875      FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11876      an ellipsis at the end.  */
11877 
11878   /* In the case where we are describing a mere function declaration, all we
11879      need to do here (and all we *can* do here) is to describe the *types* of
11880      its formal parameters.  */
11881   if (debug_info_level <= DINFO_LEVEL_TERSE)
11882     ;
11883   else if (declaration)
11884     gen_formal_types_die (decl, subr_die);
11885   else
11886     {
11887       /* Generate DIEs to represent all known formal parameters.  */
11888       tree arg_decls = DECL_ARGUMENTS (decl);
11889       tree parm;
11890 
11891       /* When generating DIEs, generate the unspecified_parameters DIE
11892 	 instead if we come across the arg "__builtin_va_alist" */
11893       for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11894 	if (TREE_CODE (parm) == PARM_DECL)
11895 	  {
11896 	    if (DECL_NAME (parm)
11897 		&& !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11898 			    "__builtin_va_alist"))
11899 	      gen_unspecified_parameters_die (parm, subr_die);
11900 	    else
11901 	      gen_decl_die (parm, subr_die);
11902 	  }
11903 
11904       /* Decide whether we need an unspecified_parameters DIE at the end.
11905 	 There are 2 more cases to do this for: 1) the ansi ... declaration -
11906 	 this is detectable when the end of the arg list is not a
11907 	 void_type_node 2) an unprototyped function declaration (not a
11908 	 definition).  This just means that we have no info about the
11909 	 parameters at all.  */
11910       fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11911       if (fn_arg_types != NULL)
11912 	{
11913 	  /* This is the prototyped case, check for....  */
11914 	  if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11915 	    gen_unspecified_parameters_die (decl, subr_die);
11916 	}
11917       else if (DECL_INITIAL (decl) == NULL_TREE)
11918 	gen_unspecified_parameters_die (decl, subr_die);
11919     }
11920 
11921   /* Output Dwarf info for all of the stuff within the body of the function
11922      (if it has one - it may be just a declaration).  */
11923   outer_scope = DECL_INITIAL (decl);
11924 
11925   /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11926      a function.  This BLOCK actually represents the outermost binding contour
11927      for the function, i.e. the contour in which the function's formal
11928      parameters and labels get declared. Curiously, it appears that the front
11929      end doesn't actually put the PARM_DECL nodes for the current function onto
11930      the BLOCK_VARS list for this outer scope, but are strung off of the
11931      DECL_ARGUMENTS list for the function instead.
11932 
11933      The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11934      the LABEL_DECL nodes for the function however, and we output DWARF info
11935      for those in decls_for_scope.  Just within the `outer_scope' there will be
11936      a BLOCK node representing the function's outermost pair of curly braces,
11937      and any blocks used for the base and member initializers of a C++
11938      constructor function.  */
11939   if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11940     {
11941       /* Emit a DW_TAG_variable DIE for a named return value.  */
11942       if (DECL_NAME (DECL_RESULT (decl)))
11943 	gen_decl_die (DECL_RESULT (decl), subr_die);
11944 
11945       current_function_has_inlines = 0;
11946       decls_for_scope (outer_scope, subr_die, 0);
11947 
11948 #if 0 && defined (MIPS_DEBUGGING_INFO)
11949       if (current_function_has_inlines)
11950 	{
11951 	  add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11952 	  if (! comp_unit_has_inlines)
11953 	    {
11954 	      add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11955 	      comp_unit_has_inlines = 1;
11956 	    }
11957 	}
11958 #endif
11959     }
11960   /* Add the calling convention attribute if requested.  */
11961   add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11962 
11963 #ifdef TARGET_SAVE_ARGS
11964   if (TARGET_SAVE_ARGS)
11965     add_AT_flag (subr_die, DW_AT_SUN_amd64_parmdump, 1);
11966 #endif
11967 }
11968 
11969 /* Generate a DIE to represent a declared data object.  */
11970 
11971 static void
gen_variable_die(tree decl,dw_die_ref context_die)11972 gen_variable_die (tree decl, dw_die_ref context_die)
11973 {
11974   tree origin = decl_ultimate_origin (decl);
11975   dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11976 
11977   dw_die_ref old_die = lookup_decl_die (decl);
11978   int declaration = (DECL_EXTERNAL (decl)
11979 		     /* If DECL is COMDAT and has not actually been
11980 			emitted, we cannot take its address; there
11981 			might end up being no definition anywhere in
11982 			the program.  For example, consider the C++
11983 			test case:
11984 
11985                           template <class T>
11986                           struct S { static const int i = 7; };
11987 
11988                           template <class T>
11989                           const int S<T>::i;
11990 
11991                           int f() { return S<int>::i; }
11992 
11993 			Here, S<int>::i is not DECL_EXTERNAL, but no
11994 			definition is required, so the compiler will
11995 			not emit a definition.  */
11996 		     || (TREE_CODE (decl) == VAR_DECL
11997 			 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
11998 		     || class_or_namespace_scope_p (context_die));
11999 
12000   if (origin != NULL)
12001     add_abstract_origin_attribute (var_die, origin);
12002 
12003   /* Loop unrolling can create multiple blocks that refer to the same
12004      static variable, so we must test for the DW_AT_declaration flag.
12005 
12006      ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12007      copy decls and set the DECL_ABSTRACT flag on them instead of
12008      sharing them.
12009 
12010      ??? Duplicated blocks have been rewritten to use .debug_ranges.
12011 
12012      ??? The declare_in_namespace support causes us to get two DIEs for one
12013      variable, both of which are declarations.  We want to avoid considering
12014      one to be a specification, so we must test that this DIE is not a
12015      declaration.  */
12016   else if (old_die && TREE_STATIC (decl) && ! declaration
12017 	   && get_AT_flag (old_die, DW_AT_declaration) == 1)
12018     {
12019       /* This is a definition of a C++ class level static.  */
12020       add_AT_specification (var_die, old_die);
12021       if (DECL_NAME (decl))
12022 	{
12023 	  expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12024 	  struct dwarf_file_data * file_index = lookup_filename (s.file);
12025 
12026 	  if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12027 	    add_AT_file (var_die, DW_AT_decl_file, file_index);
12028 
12029 	  if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12030 
12031 	    add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12032 	}
12033     }
12034   else
12035     {
12036       add_name_and_src_coords_attributes (var_die, decl);
12037       add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
12038 			  TREE_THIS_VOLATILE (decl), context_die);
12039 
12040       if (TREE_PUBLIC (decl))
12041 	add_AT_flag (var_die, DW_AT_external, 1);
12042 
12043       if (DECL_ARTIFICIAL (decl))
12044 	add_AT_flag (var_die, DW_AT_artificial, 1);
12045 
12046       if (TREE_PROTECTED (decl))
12047 	add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12048       else if (TREE_PRIVATE (decl))
12049 	add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12050     }
12051 
12052   if (declaration)
12053     add_AT_flag (var_die, DW_AT_declaration, 1);
12054 
12055   if (DECL_ABSTRACT (decl) || declaration)
12056     equate_decl_number_to_die (decl, var_die);
12057 
12058   if (! declaration && ! DECL_ABSTRACT (decl))
12059     {
12060       add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12061       add_pubname (decl, var_die);
12062     }
12063   else
12064     tree_add_const_value_attribute (var_die, decl);
12065 }
12066 
12067 /* Generate a DIE to represent a label identifier.  */
12068 
12069 static void
gen_label_die(tree decl,dw_die_ref context_die)12070 gen_label_die (tree decl, dw_die_ref context_die)
12071 {
12072   tree origin = decl_ultimate_origin (decl);
12073   dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12074   rtx insn;
12075   char label[MAX_ARTIFICIAL_LABEL_BYTES];
12076 
12077   if (origin != NULL)
12078     add_abstract_origin_attribute (lbl_die, origin);
12079   else
12080     add_name_and_src_coords_attributes (lbl_die, decl);
12081 
12082   if (DECL_ABSTRACT (decl))
12083     equate_decl_number_to_die (decl, lbl_die);
12084   else
12085     {
12086       insn = DECL_RTL_IF_SET (decl);
12087 
12088       /* Deleted labels are programmer specified labels which have been
12089 	 eliminated because of various optimizations.  We still emit them
12090 	 here so that it is possible to put breakpoints on them.  */
12091       if (insn
12092 	  && (LABEL_P (insn)
12093 	      || ((NOTE_P (insn)
12094 	           && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
12095 	{
12096 	  /* When optimization is enabled (via -O) some parts of the compiler
12097 	     (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12098 	     represent source-level labels which were explicitly declared by
12099 	     the user.  This really shouldn't be happening though, so catch
12100 	     it if it ever does happen.  */
12101 	  gcc_assert (!INSN_DELETED_P (insn));
12102 
12103 	  ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12104 	  add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12105 	}
12106     }
12107 }
12108 
12109 /* A helper function for gen_inlined_subroutine_die.  Add source coordinate
12110    attributes to the DIE for a block STMT, to describe where the inlined
12111    function was called from.  This is similar to add_src_coords_attributes.  */
12112 
12113 static inline void
add_call_src_coords_attributes(tree stmt,dw_die_ref die)12114 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12115 {
12116   expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12117 
12118   add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12119   add_AT_unsigned (die, DW_AT_call_line, s.line);
12120 }
12121 
12122 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12123    Add low_pc and high_pc attributes to the DIE for a block STMT.  */
12124 
12125 static inline void
add_high_low_attributes(tree stmt,dw_die_ref die)12126 add_high_low_attributes (tree stmt, dw_die_ref die)
12127 {
12128   char label[MAX_ARTIFICIAL_LABEL_BYTES];
12129 
12130   if (BLOCK_FRAGMENT_CHAIN (stmt))
12131     {
12132       tree chain;
12133 
12134       add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12135 
12136       chain = BLOCK_FRAGMENT_CHAIN (stmt);
12137       do
12138 	{
12139 	  add_ranges (chain);
12140 	  chain = BLOCK_FRAGMENT_CHAIN (chain);
12141 	}
12142       while (chain);
12143       add_ranges (NULL);
12144     }
12145   else
12146     {
12147       ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12148 				   BLOCK_NUMBER (stmt));
12149       add_AT_lbl_id (die, DW_AT_low_pc, label);
12150       ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12151 				   BLOCK_NUMBER (stmt));
12152       add_AT_lbl_id (die, DW_AT_high_pc, label);
12153     }
12154 }
12155 
12156 /* Generate a DIE for a lexical block.  */
12157 
12158 static void
gen_lexical_block_die(tree stmt,dw_die_ref context_die,int depth)12159 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12160 {
12161   dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12162 
12163   if (! BLOCK_ABSTRACT (stmt))
12164     add_high_low_attributes (stmt, stmt_die);
12165 
12166   decls_for_scope (stmt, stmt_die, depth);
12167 }
12168 
12169 /* Generate a DIE for an inlined subprogram.  */
12170 
12171 static void
gen_inlined_subroutine_die(tree stmt,dw_die_ref context_die,int depth)12172 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12173 {
12174   tree decl = block_ultimate_origin (stmt);
12175 
12176   /* Emit info for the abstract instance first, if we haven't yet.  We
12177      must emit this even if the block is abstract, otherwise when we
12178      emit the block below (or elsewhere), we may end up trying to emit
12179      a die whose origin die hasn't been emitted, and crashing.  */
12180   dwarf2out_abstract_function (decl);
12181 
12182   if (! BLOCK_ABSTRACT (stmt))
12183     {
12184       dw_die_ref subr_die
12185 	= new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12186 
12187       add_abstract_origin_attribute (subr_die, decl);
12188       add_high_low_attributes (stmt, subr_die);
12189       add_call_src_coords_attributes (stmt, subr_die);
12190 
12191       decls_for_scope (stmt, subr_die, depth);
12192       current_function_has_inlines = 1;
12193     }
12194   else
12195     /* We may get here if we're the outer block of function A that was
12196        inlined into function B that was inlined into function C.  When
12197        generating debugging info for C, dwarf2out_abstract_function(B)
12198        would mark all inlined blocks as abstract, including this one.
12199        So, we wouldn't (and shouldn't) expect labels to be generated
12200        for this one.  Instead, just emit debugging info for
12201        declarations within the block.  This is particularly important
12202        in the case of initializers of arguments passed from B to us:
12203        if they're statement expressions containing declarations, we
12204        wouldn't generate dies for their abstract variables, and then,
12205        when generating dies for the real variables, we'd die (pun
12206        intended :-)  */
12207     gen_lexical_block_die (stmt, context_die, depth);
12208 }
12209 
12210 /* Generate a DIE for a field in a record, or structure.  */
12211 
12212 static void
gen_field_die(tree decl,dw_die_ref context_die)12213 gen_field_die (tree decl, dw_die_ref context_die)
12214 {
12215   dw_die_ref decl_die;
12216 
12217   if (TREE_TYPE (decl) == error_mark_node)
12218     return;
12219 
12220   decl_die = new_die (DW_TAG_member, context_die, decl);
12221   add_name_and_src_coords_attributes (decl_die, decl);
12222   add_type_attribute (decl_die, member_declared_type (decl),
12223 		      TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12224 		      context_die);
12225 
12226   if (DECL_BIT_FIELD_TYPE (decl))
12227     {
12228       add_byte_size_attribute (decl_die, decl);
12229       add_bit_size_attribute (decl_die, decl);
12230       add_bit_offset_attribute (decl_die, decl);
12231     }
12232 
12233   if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12234     add_data_member_location_attribute (decl_die, decl);
12235 
12236   if (DECL_ARTIFICIAL (decl))
12237     add_AT_flag (decl_die, DW_AT_artificial, 1);
12238 
12239   if (TREE_PROTECTED (decl))
12240     add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12241   else if (TREE_PRIVATE (decl))
12242     add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12243 
12244   /* Equate decl number to die, so that we can look up this decl later on.  */
12245   equate_decl_number_to_die (decl, decl_die);
12246 }
12247 
12248 #if 0
12249 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12250    Use modified_type_die instead.
12251    We keep this code here just in case these types of DIEs may be needed to
12252    represent certain things in other languages (e.g. Pascal) someday.  */
12253 
12254 static void
12255 gen_pointer_type_die (tree type, dw_die_ref context_die)
12256 {
12257   dw_die_ref ptr_die
12258     = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12259 
12260   equate_type_number_to_die (type, ptr_die);
12261   add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12262   add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12263 }
12264 
12265 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12266    Use modified_type_die instead.
12267    We keep this code here just in case these types of DIEs may be needed to
12268    represent certain things in other languages (e.g. Pascal) someday.  */
12269 
12270 static void
12271 gen_reference_type_die (tree type, dw_die_ref context_die)
12272 {
12273   dw_die_ref ref_die
12274     = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12275 
12276   equate_type_number_to_die (type, ref_die);
12277   add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12278   add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12279 }
12280 #endif
12281 
12282 /* Generate a DIE for a pointer to a member type.  */
12283 
12284 static void
gen_ptr_to_mbr_type_die(tree type,dw_die_ref context_die)12285 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12286 {
12287   dw_die_ref ptr_die
12288     = new_die (DW_TAG_ptr_to_member_type,
12289 	       scope_die_for (type, context_die), type);
12290 
12291   equate_type_number_to_die (type, ptr_die);
12292   add_AT_die_ref (ptr_die, DW_AT_containing_type,
12293 		  lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12294   add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12295 }
12296 
12297 /* Generate the DIE for the compilation unit.  */
12298 
12299 static dw_die_ref
gen_compile_unit_die(const char * filename)12300 gen_compile_unit_die (const char *filename)
12301 {
12302   dw_die_ref die;
12303   char producer[250];
12304   const char *language_string = lang_hooks.name;
12305   int language;
12306 
12307   die = new_die (DW_TAG_compile_unit, NULL, NULL);
12308 
12309   if (filename)
12310     {
12311       add_name_attribute (die, filename);
12312       /* Don't add cwd for <built-in>.  */
12313       if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
12314 	add_comp_dir_attribute (die);
12315     }
12316 
12317   sprintf (producer, "%s %s", language_string, version_string);
12318 
12319 #ifdef MIPS_DEBUGGING_INFO
12320   /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12321      string.  The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12322      not appear in the producer string, the debugger reaches the conclusion
12323      that the object file is stripped and has no debugging information.
12324      To get the MIPS/SGI debugger to believe that there is debugging
12325      information in the object file, we add a -g to the producer string.  */
12326   if (debug_info_level > DINFO_LEVEL_TERSE)
12327     strcat (producer, " -g");
12328 #endif
12329 
12330   add_AT_string (die, DW_AT_producer, producer);
12331 
12332   if (strcmp (language_string, "GNU C++") == 0)
12333     language = DW_LANG_C_plus_plus;
12334   else if (strcmp (language_string, "GNU Ada") == 0)
12335     language = DW_LANG_Ada95;
12336   else if (strcmp (language_string, "GNU F77") == 0)
12337     language = DW_LANG_Fortran77;
12338   else if (strcmp (language_string, "GNU F95") == 0)
12339     language = DW_LANG_Fortran95;
12340   else if (strcmp (language_string, "GNU Pascal") == 0)
12341     language = DW_LANG_Pascal83;
12342   else if (strcmp (language_string, "GNU Java") == 0)
12343     language = DW_LANG_Java;
12344   else if (strcmp (language_string, "GNU Objective-C") == 0)
12345     language = DW_LANG_ObjC;
12346   else if (strcmp (language_string, "GNU Objective-C++") == 0)
12347     language = DW_LANG_ObjC_plus_plus;
12348   else
12349     language = DW_LANG_C89;
12350 
12351   add_AT_unsigned (die, DW_AT_language, language);
12352   return die;
12353 }
12354 
12355 /* Generate the DIE for a base class.  */
12356 
12357 static void
gen_inheritance_die(tree binfo,tree access,dw_die_ref context_die)12358 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12359 {
12360   dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12361 
12362   add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12363   add_data_member_location_attribute (die, binfo);
12364 
12365   if (BINFO_VIRTUAL_P (binfo))
12366     add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12367 
12368   if (access == access_public_node)
12369     add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12370   else if (access == access_protected_node)
12371     add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12372 }
12373 
12374 /* Generate a DIE for a class member.  */
12375 
12376 static void
gen_member_die(tree type,dw_die_ref context_die)12377 gen_member_die (tree type, dw_die_ref context_die)
12378 {
12379   tree member;
12380   tree binfo = TYPE_BINFO (type);
12381   dw_die_ref child;
12382 
12383   /* If this is not an incomplete type, output descriptions of each of its
12384      members. Note that as we output the DIEs necessary to represent the
12385      members of this record or union type, we will also be trying to output
12386      DIEs to represent the *types* of those members. However the `type'
12387      function (above) will specifically avoid generating type DIEs for member
12388      types *within* the list of member DIEs for this (containing) type except
12389      for those types (of members) which are explicitly marked as also being
12390      members of this (containing) type themselves.  The g++ front- end can
12391      force any given type to be treated as a member of some other (containing)
12392      type by setting the TYPE_CONTEXT of the given (member) type to point to
12393      the TREE node representing the appropriate (containing) type.  */
12394 
12395   /* First output info about the base classes.  */
12396   if (binfo)
12397     {
12398       VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12399       int i;
12400       tree base;
12401 
12402       for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12403 	gen_inheritance_die (base,
12404 			     (accesses ? VEC_index (tree, accesses, i)
12405 			      : access_public_node), context_die);
12406     }
12407 
12408   /* Now output info about the data members and type members.  */
12409   for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12410     {
12411       /* If we thought we were generating minimal debug info for TYPE
12412 	 and then changed our minds, some of the member declarations
12413 	 may have already been defined.  Don't define them again, but
12414 	 do put them in the right order.  */
12415 
12416       child = lookup_decl_die (member);
12417       if (child)
12418 	splice_child_die (context_die, child);
12419       else
12420 	gen_decl_die (member, context_die);
12421     }
12422 
12423   /* Now output info about the function members (if any).  */
12424   for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12425     {
12426       /* Don't include clones in the member list.  */
12427       if (DECL_ABSTRACT_ORIGIN (member))
12428 	continue;
12429 
12430       child = lookup_decl_die (member);
12431       if (child)
12432 	splice_child_die (context_die, child);
12433       else
12434 	gen_decl_die (member, context_die);
12435     }
12436 }
12437 
12438 /* Generate a DIE for a structure or union type.  If TYPE_DECL_SUPPRESS_DEBUG
12439    is set, we pretend that the type was never defined, so we only get the
12440    member DIEs needed by later specification DIEs.  */
12441 
12442 static void
gen_struct_or_union_type_die(tree type,dw_die_ref context_die)12443 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12444 {
12445   dw_die_ref type_die = lookup_type_die (type);
12446   dw_die_ref scope_die = 0;
12447   int nested = 0;
12448   int complete = (TYPE_SIZE (type)
12449 		  && (! TYPE_STUB_DECL (type)
12450 		      || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12451   int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12452 
12453   if (type_die && ! complete)
12454     return;
12455 
12456   if (TYPE_CONTEXT (type) != NULL_TREE
12457       && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12458 	  || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12459     nested = 1;
12460 
12461   scope_die = scope_die_for (type, context_die);
12462 
12463   if (! type_die || (nested && scope_die == comp_unit_die))
12464     /* First occurrence of type or toplevel definition of nested class.  */
12465     {
12466       dw_die_ref old_die = type_die;
12467 
12468       type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12469 			  ? DW_TAG_structure_type : DW_TAG_union_type,
12470 			  scope_die, type);
12471       equate_type_number_to_die (type, type_die);
12472       if (old_die)
12473 	add_AT_specification (type_die, old_die);
12474       else
12475 	add_name_attribute (type_die, type_tag (type));
12476     }
12477   else
12478     remove_AT (type_die, DW_AT_declaration);
12479 
12480   /* If this type has been completed, then give it a byte_size attribute and
12481      then give a list of members.  */
12482   if (complete && !ns_decl)
12483     {
12484       /* Prevent infinite recursion in cases where the type of some member of
12485 	 this type is expressed in terms of this type itself.  */
12486       TREE_ASM_WRITTEN (type) = 1;
12487       add_byte_size_attribute (type_die, type);
12488       if (TYPE_STUB_DECL (type) != NULL_TREE)
12489 	add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12490 
12491       /* If the first reference to this type was as the return type of an
12492 	 inline function, then it may not have a parent.  Fix this now.  */
12493       if (type_die->die_parent == NULL)
12494 	add_child_die (scope_die, type_die);
12495 
12496       push_decl_scope (type);
12497       gen_member_die (type, type_die);
12498       pop_decl_scope ();
12499 
12500       /* GNU extension: Record what type our vtable lives in.  */
12501       if (TYPE_VFIELD (type))
12502 	{
12503 	  tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12504 
12505 	  gen_type_die (vtype, context_die);
12506 	  add_AT_die_ref (type_die, DW_AT_containing_type,
12507 			  lookup_type_die (vtype));
12508 	}
12509     }
12510   else
12511     {
12512       add_AT_flag (type_die, DW_AT_declaration, 1);
12513 
12514       /* We don't need to do this for function-local types.  */
12515       if (TYPE_STUB_DECL (type)
12516 	  && ! decl_function_context (TYPE_STUB_DECL (type)))
12517 	VEC_safe_push (tree, gc, incomplete_types, type);
12518     }
12519 }
12520 
12521 /* Generate a DIE for a subroutine _type_.  */
12522 
12523 static void
gen_subroutine_type_die(tree type,dw_die_ref context_die)12524 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12525 {
12526   tree return_type = TREE_TYPE (type);
12527   dw_die_ref subr_die
12528     = new_die (DW_TAG_subroutine_type,
12529 	       scope_die_for (type, context_die), type);
12530 
12531   equate_type_number_to_die (type, subr_die);
12532   add_prototyped_attribute (subr_die, type);
12533   add_type_attribute (subr_die, return_type, 0, 0, context_die);
12534   gen_formal_types_die (type, subr_die);
12535 }
12536 
12537 /* Generate a DIE for a type definition.  */
12538 
12539 static void
gen_typedef_die(tree decl,dw_die_ref context_die)12540 gen_typedef_die (tree decl, dw_die_ref context_die)
12541 {
12542   dw_die_ref type_die;
12543   tree origin;
12544 
12545   if (TREE_ASM_WRITTEN (decl))
12546     return;
12547 
12548   TREE_ASM_WRITTEN (decl) = 1;
12549   type_die = new_die (DW_TAG_typedef, context_die, decl);
12550   origin = decl_ultimate_origin (decl);
12551   if (origin != NULL)
12552     add_abstract_origin_attribute (type_die, origin);
12553   else
12554     {
12555       tree type;
12556 
12557       add_name_and_src_coords_attributes (type_die, decl);
12558       if (DECL_ORIGINAL_TYPE (decl))
12559 	{
12560 	  type = DECL_ORIGINAL_TYPE (decl);
12561 
12562 	  gcc_assert (type != TREE_TYPE (decl));
12563 	  equate_type_number_to_die (TREE_TYPE (decl), type_die);
12564 	}
12565       else
12566 	type = TREE_TYPE (decl);
12567 
12568       add_type_attribute (type_die, type, TREE_READONLY (decl),
12569 			  TREE_THIS_VOLATILE (decl), context_die);
12570     }
12571 
12572   if (DECL_ABSTRACT (decl))
12573     equate_decl_number_to_die (decl, type_die);
12574 }
12575 
12576 /* Generate a type description DIE.  */
12577 
12578 static void
gen_type_die(tree type,dw_die_ref context_die)12579 gen_type_die (tree type, dw_die_ref context_die)
12580 {
12581   int need_pop;
12582 
12583   if (type == NULL_TREE || type == error_mark_node)
12584     return;
12585 
12586   if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12587       && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12588     {
12589       if (TREE_ASM_WRITTEN (type))
12590 	return;
12591 
12592       /* Prevent broken recursion; we can't hand off to the same type.  */
12593       gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12594 
12595       TREE_ASM_WRITTEN (type) = 1;
12596       gen_decl_die (TYPE_NAME (type), context_die);
12597       return;
12598     }
12599 
12600   /* We are going to output a DIE to represent the unqualified version
12601      of this type (i.e. without any const or volatile qualifiers) so
12602      get the main variant (i.e. the unqualified version) of this type
12603      now.  (Vectors are special because the debugging info is in the
12604      cloned type itself).  */
12605   if (TREE_CODE (type) != VECTOR_TYPE)
12606     type = type_main_variant (type);
12607 
12608   if (TREE_ASM_WRITTEN (type))
12609     return;
12610 
12611   switch (TREE_CODE (type))
12612     {
12613     case ERROR_MARK:
12614       break;
12615 
12616     case POINTER_TYPE:
12617     case REFERENCE_TYPE:
12618       /* We must set TREE_ASM_WRITTEN in case this is a recursive type.  This
12619 	 ensures that the gen_type_die recursion will terminate even if the
12620 	 type is recursive.  Recursive types are possible in Ada.  */
12621       /* ??? We could perhaps do this for all types before the switch
12622 	 statement.  */
12623       TREE_ASM_WRITTEN (type) = 1;
12624 
12625       /* For these types, all that is required is that we output a DIE (or a
12626 	 set of DIEs) to represent the "basis" type.  */
12627       gen_type_die (TREE_TYPE (type), context_die);
12628       break;
12629 
12630     case OFFSET_TYPE:
12631       /* This code is used for C++ pointer-to-data-member types.
12632 	 Output a description of the relevant class type.  */
12633       gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12634 
12635       /* Output a description of the type of the object pointed to.  */
12636       gen_type_die (TREE_TYPE (type), context_die);
12637 
12638       /* Now output a DIE to represent this pointer-to-data-member type
12639 	 itself.  */
12640       gen_ptr_to_mbr_type_die (type, context_die);
12641       break;
12642 
12643     case FUNCTION_TYPE:
12644       /* Force out return type (in case it wasn't forced out already).  */
12645       gen_type_die (TREE_TYPE (type), context_die);
12646       gen_subroutine_type_die (type, context_die);
12647       break;
12648 
12649     case METHOD_TYPE:
12650       /* Force out return type (in case it wasn't forced out already).  */
12651       gen_type_die (TREE_TYPE (type), context_die);
12652       gen_subroutine_type_die (type, context_die);
12653       break;
12654 
12655     case ARRAY_TYPE:
12656       gen_array_type_die (type, context_die);
12657       break;
12658 
12659     case VECTOR_TYPE:
12660       gen_array_type_die (type, context_die);
12661       break;
12662 
12663     case ENUMERAL_TYPE:
12664     case RECORD_TYPE:
12665     case UNION_TYPE:
12666     case QUAL_UNION_TYPE:
12667       /* If this is a nested type whose containing class hasn't been written
12668 	 out yet, writing it out will cover this one, too.  This does not apply
12669 	 to instantiations of member class templates; they need to be added to
12670 	 the containing class as they are generated.  FIXME: This hurts the
12671 	 idea of combining type decls from multiple TUs, since we can't predict
12672 	 what set of template instantiations we'll get.  */
12673       if (TYPE_CONTEXT (type)
12674 	  && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12675 	  && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12676 	{
12677 	  gen_type_die (TYPE_CONTEXT (type), context_die);
12678 
12679 	  if (TREE_ASM_WRITTEN (type))
12680 	    return;
12681 
12682 	  /* If that failed, attach ourselves to the stub.  */
12683 	  push_decl_scope (TYPE_CONTEXT (type));
12684 	  context_die = lookup_type_die (TYPE_CONTEXT (type));
12685 	  need_pop = 1;
12686 	}
12687       else
12688 	{
12689 	  declare_in_namespace (type, context_die);
12690 	  need_pop = 0;
12691 	}
12692 
12693       if (TREE_CODE (type) == ENUMERAL_TYPE)
12694 	{
12695 	  /* This might have been written out by the call to
12696 	     declare_in_namespace.  */
12697 	  if (!TREE_ASM_WRITTEN (type))
12698 	    gen_enumeration_type_die (type, context_die);
12699 	}
12700       else
12701 	gen_struct_or_union_type_die (type, context_die);
12702 
12703       if (need_pop)
12704 	pop_decl_scope ();
12705 
12706       /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12707 	 it up if it is ever completed.  gen_*_type_die will set it for us
12708 	 when appropriate.  */
12709       return;
12710 
12711     case VOID_TYPE:
12712     case INTEGER_TYPE:
12713     case REAL_TYPE:
12714     case COMPLEX_TYPE:
12715     case BOOLEAN_TYPE:
12716       /* No DIEs needed for fundamental types.  */
12717       break;
12718 
12719     case LANG_TYPE:
12720       /* No Dwarf representation currently defined.  */
12721       break;
12722 
12723     default:
12724       gcc_unreachable ();
12725     }
12726 
12727   TREE_ASM_WRITTEN (type) = 1;
12728 }
12729 
12730 /* Generate a DIE for a tagged type instantiation.  */
12731 
12732 static void
gen_tagged_type_instantiation_die(tree type,dw_die_ref context_die)12733 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12734 {
12735   if (type == NULL_TREE || type == error_mark_node)
12736     return;
12737 
12738   /* We are going to output a DIE to represent the unqualified version of
12739      this type (i.e. without any const or volatile qualifiers) so make sure
12740      that we have the main variant (i.e. the unqualified version) of this
12741      type now.  */
12742   gcc_assert (type == type_main_variant (type));
12743 
12744   /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12745      an instance of an unresolved type.  */
12746 
12747   switch (TREE_CODE (type))
12748     {
12749     case ERROR_MARK:
12750       break;
12751 
12752     case ENUMERAL_TYPE:
12753       gen_inlined_enumeration_type_die (type, context_die);
12754       break;
12755 
12756     case RECORD_TYPE:
12757       gen_inlined_structure_type_die (type, context_die);
12758       break;
12759 
12760     case UNION_TYPE:
12761     case QUAL_UNION_TYPE:
12762       gen_inlined_union_type_die (type, context_die);
12763       break;
12764 
12765     default:
12766       gcc_unreachable ();
12767     }
12768 }
12769 
12770 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12771    things which are local to the given block.  */
12772 
12773 static void
gen_block_die(tree stmt,dw_die_ref context_die,int depth)12774 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12775 {
12776   int must_output_die = 0;
12777   tree origin;
12778   tree decl;
12779   enum tree_code origin_code;
12780 
12781   /* Ignore blocks that are NULL.  */
12782   if (stmt == NULL_TREE)
12783     return;
12784 
12785   /* If the block is one fragment of a non-contiguous block, do not
12786      process the variables, since they will have been done by the
12787      origin block.  Do process subblocks.  */
12788   if (BLOCK_FRAGMENT_ORIGIN (stmt))
12789     {
12790       tree sub;
12791 
12792       for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12793 	gen_block_die (sub, context_die, depth + 1);
12794 
12795       return;
12796     }
12797 
12798   /* Determine the "ultimate origin" of this block.  This block may be an
12799      inlined instance of an inlined instance of inline function, so we have
12800      to trace all of the way back through the origin chain to find out what
12801      sort of node actually served as the original seed for the creation of
12802      the current block.  */
12803   origin = block_ultimate_origin (stmt);
12804   origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12805 
12806   /* Determine if we need to output any Dwarf DIEs at all to represent this
12807      block.  */
12808   if (origin_code == FUNCTION_DECL)
12809     /* The outer scopes for inlinings *must* always be represented.  We
12810        generate DW_TAG_inlined_subroutine DIEs for them.  (See below.) */
12811     must_output_die = 1;
12812   else
12813     {
12814       /* In the case where the current block represents an inlining of the
12815 	 "body block" of an inline function, we must *NOT* output any DIE for
12816 	 this block because we have already output a DIE to represent the whole
12817 	 inlined function scope and the "body block" of any function doesn't
12818 	 really represent a different scope according to ANSI C rules.  So we
12819 	 check here to make sure that this block does not represent a "body
12820 	 block inlining" before trying to set the MUST_OUTPUT_DIE flag.  */
12821       if (! is_body_block (origin ? origin : stmt))
12822 	{
12823 	  /* Determine if this block directly contains any "significant"
12824 	     local declarations which we will need to output DIEs for.  */
12825 	  if (debug_info_level > DINFO_LEVEL_TERSE)
12826 	    /* We are not in terse mode so *any* local declaration counts
12827 	       as being a "significant" one.  */
12828 	    must_output_die = (BLOCK_VARS (stmt) != NULL
12829 			       && (TREE_USED (stmt)
12830 				   || TREE_ASM_WRITTEN (stmt)
12831 				   || BLOCK_ABSTRACT (stmt)));
12832 	  else
12833 	    /* We are in terse mode, so only local (nested) function
12834 	       definitions count as "significant" local declarations.  */
12835 	    for (decl = BLOCK_VARS (stmt);
12836 		 decl != NULL; decl = TREE_CHAIN (decl))
12837 	      if (TREE_CODE (decl) == FUNCTION_DECL
12838 		  && DECL_INITIAL (decl))
12839 		{
12840 		  must_output_die = 1;
12841 		  break;
12842 		}
12843 	}
12844     }
12845 
12846   /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12847      DIE for any block which contains no significant local declarations at
12848      all.  Rather, in such cases we just call `decls_for_scope' so that any
12849      needed Dwarf info for any sub-blocks will get properly generated. Note
12850      that in terse mode, our definition of what constitutes a "significant"
12851      local declaration gets restricted to include only inlined function
12852      instances and local (nested) function definitions.  */
12853   if (must_output_die)
12854     {
12855       if (origin_code == FUNCTION_DECL)
12856 	gen_inlined_subroutine_die (stmt, context_die, depth);
12857       else
12858 	gen_lexical_block_die (stmt, context_die, depth);
12859     }
12860   else
12861     decls_for_scope (stmt, context_die, depth);
12862 }
12863 
12864 /* Generate all of the decls declared within a given scope and (recursively)
12865    all of its sub-blocks.  */
12866 
12867 static void
decls_for_scope(tree stmt,dw_die_ref context_die,int depth)12868 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12869 {
12870   tree decl;
12871   tree subblocks;
12872 
12873   /* Ignore NULL blocks.  */
12874   if (stmt == NULL_TREE)
12875     return;
12876 
12877   if (TREE_USED (stmt))
12878     {
12879       /* Output the DIEs to represent all of the data objects and typedefs
12880 	 declared directly within this block but not within any nested
12881 	 sub-blocks.  Also, nested function and tag DIEs have been
12882 	 generated with a parent of NULL; fix that up now.  */
12883       for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12884 	{
12885 	  dw_die_ref die;
12886 
12887 	  if (TREE_CODE (decl) == FUNCTION_DECL)
12888 	    die = lookup_decl_die (decl);
12889 	  else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12890 	    die = lookup_type_die (TREE_TYPE (decl));
12891 	  else
12892 	    die = NULL;
12893 
12894 	  if (die != NULL && die->die_parent == NULL)
12895 	    add_child_die (context_die, die);
12896 	  /* Do not produce debug information for static variables since
12897 	     these might be optimized out.  We are called for these later
12898 	     in cgraph_varpool_analyze_pending_decls. */
12899 	  if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12900 	    ;
12901 	  else
12902 	    gen_decl_die (decl, context_die);
12903 	}
12904     }
12905 
12906   /* If we're at -g1, we're not interested in subblocks.  */
12907   if (debug_info_level <= DINFO_LEVEL_TERSE)
12908     return;
12909 
12910   /* Output the DIEs to represent all sub-blocks (and the items declared
12911      therein) of this block.  */
12912   for (subblocks = BLOCK_SUBBLOCKS (stmt);
12913        subblocks != NULL;
12914        subblocks = BLOCK_CHAIN (subblocks))
12915     gen_block_die (subblocks, context_die, depth + 1);
12916 }
12917 
12918 /* Is this a typedef we can avoid emitting?  */
12919 
12920 static inline int
is_redundant_typedef(tree decl)12921 is_redundant_typedef (tree decl)
12922 {
12923   if (TYPE_DECL_IS_STUB (decl))
12924     return 1;
12925 
12926   if (DECL_ARTIFICIAL (decl)
12927       && DECL_CONTEXT (decl)
12928       && is_tagged_type (DECL_CONTEXT (decl))
12929       && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12930       && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12931     /* Also ignore the artificial member typedef for the class name.  */
12932     return 1;
12933 
12934   return 0;
12935 }
12936 
12937 /* Returns the DIE for decl.  A DIE will always be returned.  */
12938 
12939 static dw_die_ref
force_decl_die(tree decl)12940 force_decl_die (tree decl)
12941 {
12942   dw_die_ref decl_die;
12943   unsigned saved_external_flag;
12944   tree save_fn = NULL_TREE;
12945   decl_die = lookup_decl_die (decl);
12946   if (!decl_die)
12947     {
12948       dw_die_ref context_die;
12949       tree decl_context = DECL_CONTEXT (decl);
12950       if (decl_context)
12951 	{
12952 	  /* Find die that represents this context.  */
12953 	  if (TYPE_P (decl_context))
12954 	    context_die = force_type_die (decl_context);
12955 	  else
12956 	    context_die = force_decl_die (decl_context);
12957 	}
12958       else
12959 	context_die = comp_unit_die;
12960 
12961       decl_die = lookup_decl_die (decl);
12962       if (decl_die)
12963 	return decl_die;
12964 
12965       switch (TREE_CODE (decl))
12966 	{
12967 	case FUNCTION_DECL:
12968 	  /* Clear current_function_decl, so that gen_subprogram_die thinks
12969 	     that this is a declaration. At this point, we just want to force
12970 	     declaration die.  */
12971 	  save_fn = current_function_decl;
12972 	  current_function_decl = NULL_TREE;
12973 	  gen_subprogram_die (decl, context_die);
12974 	  current_function_decl = save_fn;
12975 	  break;
12976 
12977 	case VAR_DECL:
12978 	  /* Set external flag to force declaration die. Restore it after
12979 	   gen_decl_die() call.  */
12980 	  saved_external_flag = DECL_EXTERNAL (decl);
12981 	  DECL_EXTERNAL (decl) = 1;
12982 	  gen_decl_die (decl, context_die);
12983 	  DECL_EXTERNAL (decl) = saved_external_flag;
12984 	  break;
12985 
12986 	case NAMESPACE_DECL:
12987 	  dwarf2out_decl (decl);
12988 	  break;
12989 
12990 	default:
12991 	  gcc_unreachable ();
12992 	}
12993 
12994       /* We should be able to find the DIE now.  */
12995       if (!decl_die)
12996 	decl_die = lookup_decl_die (decl);
12997       gcc_assert (decl_die);
12998     }
12999 
13000   return decl_die;
13001 }
13002 
13003 /* Returns the DIE for TYPE, that must not be a base type.  A DIE is
13004    always returned.  */
13005 
13006 static dw_die_ref
force_type_die(tree type)13007 force_type_die (tree type)
13008 {
13009   dw_die_ref type_die;
13010 
13011   type_die = lookup_type_die (type);
13012   if (!type_die)
13013     {
13014       dw_die_ref context_die;
13015       if (TYPE_CONTEXT (type))
13016 	{
13017 	  if (TYPE_P (TYPE_CONTEXT (type)))
13018 	    context_die = force_type_die (TYPE_CONTEXT (type));
13019 	  else
13020 	    context_die = force_decl_die (TYPE_CONTEXT (type));
13021 	}
13022       else
13023 	context_die = comp_unit_die;
13024 
13025       type_die = lookup_type_die (type);
13026       if (type_die)
13027 	return type_die;
13028       gen_type_die (type, context_die);
13029       type_die = lookup_type_die (type);
13030       gcc_assert (type_die);
13031     }
13032   return type_die;
13033 }
13034 
13035 /* Force out any required namespaces to be able to output DECL,
13036    and return the new context_die for it, if it's changed.  */
13037 
13038 static dw_die_ref
setup_namespace_context(tree thing,dw_die_ref context_die)13039 setup_namespace_context (tree thing, dw_die_ref context_die)
13040 {
13041   tree context = (DECL_P (thing)
13042 		  ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13043   if (context && TREE_CODE (context) == NAMESPACE_DECL)
13044     /* Force out the namespace.  */
13045     context_die = force_decl_die (context);
13046 
13047   return context_die;
13048 }
13049 
13050 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13051    type) within its namespace, if appropriate.
13052 
13053    For compatibility with older debuggers, namespace DIEs only contain
13054    declarations; all definitions are emitted at CU scope.  */
13055 
13056 static void
declare_in_namespace(tree thing,dw_die_ref context_die)13057 declare_in_namespace (tree thing, dw_die_ref context_die)
13058 {
13059   dw_die_ref ns_context;
13060 
13061   if (debug_info_level <= DINFO_LEVEL_TERSE)
13062     return;
13063 
13064   /* If this decl is from an inlined function, then don't try to emit it in its
13065      namespace, as we will get confused.  It would have already been emitted
13066      when the abstract instance of the inline function was emitted anyways.  */
13067   if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13068     return;
13069 
13070   ns_context = setup_namespace_context (thing, context_die);
13071 
13072   if (ns_context != context_die)
13073     {
13074       if (DECL_P (thing))
13075 	gen_decl_die (thing, ns_context);
13076       else
13077 	gen_type_die (thing, ns_context);
13078     }
13079 }
13080 
13081 /* Generate a DIE for a namespace or namespace alias.  */
13082 
13083 static void
gen_namespace_die(tree decl)13084 gen_namespace_die (tree decl)
13085 {
13086   dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13087 
13088   /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13089      they are an alias of.  */
13090   if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13091     {
13092       /* Output a real namespace.  */
13093       dw_die_ref namespace_die
13094 	= new_die (DW_TAG_namespace, context_die, decl);
13095       add_name_and_src_coords_attributes (namespace_die, decl);
13096       equate_decl_number_to_die (decl, namespace_die);
13097     }
13098   else
13099     {
13100       /* Output a namespace alias.  */
13101 
13102       /* Force out the namespace we are an alias of, if necessary.  */
13103       dw_die_ref origin_die
13104 	= force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13105 
13106       /* Now create the namespace alias DIE.  */
13107       dw_die_ref namespace_die
13108 	= new_die (DW_TAG_imported_declaration, context_die, decl);
13109       add_name_and_src_coords_attributes (namespace_die, decl);
13110       add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13111       equate_decl_number_to_die (decl, namespace_die);
13112     }
13113 }
13114 
13115 /* Generate Dwarf debug information for a decl described by DECL.  */
13116 
13117 static void
gen_decl_die(tree decl,dw_die_ref context_die)13118 gen_decl_die (tree decl, dw_die_ref context_die)
13119 {
13120   tree origin;
13121 
13122   if (DECL_P (decl) && DECL_IGNORED_P (decl))
13123     return;
13124 
13125   switch (TREE_CODE (decl))
13126     {
13127     case ERROR_MARK:
13128       break;
13129 
13130     case CONST_DECL:
13131       /* The individual enumerators of an enum type get output when we output
13132 	 the Dwarf representation of the relevant enum type itself.  */
13133       break;
13134 
13135     case FUNCTION_DECL:
13136       /* Don't output any DIEs to represent mere function declarations,
13137 	 unless they are class members or explicit block externs.  */
13138       if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13139 	  && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13140 	break;
13141 
13142 #if 0
13143       /* FIXME */
13144       /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13145 	 on local redeclarations of global functions.  That seems broken.  */
13146       if (current_function_decl != decl)
13147 	/* This is only a declaration.  */;
13148 #endif
13149 
13150       /* If we're emitting a clone, emit info for the abstract instance.  */
13151       if (DECL_ORIGIN (decl) != decl)
13152 	dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13153 
13154       /* If we're emitting an out-of-line copy of an inline function,
13155 	 emit info for the abstract instance and set up to refer to it.  */
13156       else if (cgraph_function_possibly_inlined_p (decl)
13157 	       && ! DECL_ABSTRACT (decl)
13158 	       && ! class_or_namespace_scope_p (context_die)
13159 	       /* dwarf2out_abstract_function won't emit a die if this is just
13160 		  a declaration.  We must avoid setting DECL_ABSTRACT_ORIGIN in
13161 		  that case, because that works only if we have a die.  */
13162 	       && DECL_INITIAL (decl) != NULL_TREE)
13163 	{
13164 	  dwarf2out_abstract_function (decl);
13165 	  set_decl_origin_self (decl);
13166 	}
13167 
13168       /* Otherwise we're emitting the primary DIE for this decl.  */
13169       else if (debug_info_level > DINFO_LEVEL_TERSE)
13170 	{
13171 	  /* Before we describe the FUNCTION_DECL itself, make sure that we
13172 	     have described its return type.  */
13173 	  gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13174 
13175 	  /* And its virtual context.  */
13176 	  if (DECL_VINDEX (decl) != NULL_TREE)
13177 	    gen_type_die (DECL_CONTEXT (decl), context_die);
13178 
13179 	  /* And its containing type.  */
13180 	  origin = decl_class_context (decl);
13181 	  if (origin != NULL_TREE)
13182 	    gen_type_die_for_member (origin, decl, context_die);
13183 
13184 	  /* And its containing namespace.  */
13185 	  declare_in_namespace (decl, context_die);
13186 	}
13187 
13188       /* Now output a DIE to represent the function itself.  */
13189       gen_subprogram_die (decl, context_die);
13190       break;
13191 
13192     case TYPE_DECL:
13193       /* If we are in terse mode, don't generate any DIEs to represent any
13194 	 actual typedefs.  */
13195       if (debug_info_level <= DINFO_LEVEL_TERSE)
13196 	break;
13197 
13198       /* In the special case of a TYPE_DECL node representing the declaration
13199 	 of some type tag, if the given TYPE_DECL is marked as having been
13200 	 instantiated from some other (original) TYPE_DECL node (e.g. one which
13201 	 was generated within the original definition of an inline function) we
13202 	 have to generate a special (abbreviated) DW_TAG_structure_type,
13203 	 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here.  */
13204       if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13205 	{
13206 	  gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13207 	  break;
13208 	}
13209 
13210       if (is_redundant_typedef (decl))
13211 	gen_type_die (TREE_TYPE (decl), context_die);
13212       else
13213 	/* Output a DIE to represent the typedef itself.  */
13214 	gen_typedef_die (decl, context_die);
13215       break;
13216 
13217     case LABEL_DECL:
13218       if (debug_info_level >= DINFO_LEVEL_NORMAL)
13219 	gen_label_die (decl, context_die);
13220       break;
13221 
13222     case VAR_DECL:
13223     case RESULT_DECL:
13224       /* If we are in terse mode, don't generate any DIEs to represent any
13225 	 variable declarations or definitions.  */
13226       if (debug_info_level <= DINFO_LEVEL_TERSE)
13227 	break;
13228 
13229       /* Output any DIEs that are needed to specify the type of this data
13230 	 object.  */
13231       gen_type_die (TREE_TYPE (decl), context_die);
13232 
13233       /* And its containing type.  */
13234       origin = decl_class_context (decl);
13235       if (origin != NULL_TREE)
13236 	gen_type_die_for_member (origin, decl, context_die);
13237 
13238       /* And its containing namespace.  */
13239       declare_in_namespace (decl, context_die);
13240 
13241       /* Now output the DIE to represent the data object itself.  This gets
13242 	 complicated because of the possibility that the VAR_DECL really
13243 	 represents an inlined instance of a formal parameter for an inline
13244 	 function.  */
13245       origin = decl_ultimate_origin (decl);
13246       if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13247 	gen_formal_parameter_die (decl, context_die);
13248       else
13249 	gen_variable_die (decl, context_die);
13250       break;
13251 
13252     case FIELD_DECL:
13253       /* Ignore the nameless fields that are used to skip bits but handle C++
13254 	 anonymous unions and structs.  */
13255       if (DECL_NAME (decl) != NULL_TREE
13256 	  || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13257 	  || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13258 	{
13259 	  gen_type_die (member_declared_type (decl), context_die);
13260 	  gen_field_die (decl, context_die);
13261 	}
13262       break;
13263 
13264     case PARM_DECL:
13265       gen_type_die (TREE_TYPE (decl), context_die);
13266       gen_formal_parameter_die (decl, context_die);
13267       break;
13268 
13269     case NAMESPACE_DECL:
13270       gen_namespace_die (decl);
13271       break;
13272 
13273     default:
13274       /* Probably some frontend-internal decl.  Assume we don't care.  */
13275       gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13276       break;
13277     }
13278 }
13279 
13280 /* Output debug information for global decl DECL.  Called from toplev.c after
13281    compilation proper has finished.  */
13282 
13283 static void
dwarf2out_global_decl(tree decl)13284 dwarf2out_global_decl (tree decl)
13285 {
13286   /* Output DWARF2 information for file-scope tentative data object
13287      declarations, file-scope (extern) function declarations (which had no
13288      corresponding body) and file-scope tagged type declarations and
13289      definitions which have not yet been forced out.  */
13290   if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13291     dwarf2out_decl (decl);
13292 }
13293 
13294 /* Output debug information for type decl DECL.  Called from toplev.c
13295    and from language front ends (to record built-in types).  */
13296 static void
dwarf2out_type_decl(tree decl,int local)13297 dwarf2out_type_decl (tree decl, int local)
13298 {
13299   if (!local)
13300     dwarf2out_decl (decl);
13301 }
13302 
13303 /* Output debug information for imported module or decl.  */
13304 
13305 static void
dwarf2out_imported_module_or_decl(tree decl,tree context)13306 dwarf2out_imported_module_or_decl (tree decl, tree context)
13307 {
13308   dw_die_ref imported_die, at_import_die;
13309   dw_die_ref scope_die;
13310   expanded_location xloc;
13311 
13312   if (debug_info_level <= DINFO_LEVEL_TERSE)
13313     return;
13314 
13315   gcc_assert (decl);
13316 
13317   /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13318      We need decl DIE for reference and scope die. First, get DIE for the decl
13319      itself.  */
13320 
13321   /* Get the scope die for decl context. Use comp_unit_die for global module
13322      or decl. If die is not found for non globals, force new die.  */
13323   if (!context)
13324     scope_die = comp_unit_die;
13325   else if (TYPE_P (context))
13326     scope_die = force_type_die (context);
13327   else
13328     scope_die = force_decl_die (context);
13329 
13330   /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE.  */
13331   if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13332     {
13333       if (is_base_type (TREE_TYPE (decl)))
13334 	at_import_die = base_type_die (TREE_TYPE (decl));
13335       else
13336 	at_import_die = force_type_die (TREE_TYPE (decl));
13337     }
13338   else
13339     {
13340       at_import_die = lookup_decl_die (decl);
13341       if (!at_import_die)
13342 	{
13343 	  /* If we're trying to avoid duplicate debug info, we may not have
13344 	     emitted the member decl for this field.  Emit it now.  */
13345 	  if (TREE_CODE (decl) == FIELD_DECL)
13346 	    {
13347 	      tree type = DECL_CONTEXT (decl);
13348 	      dw_die_ref type_context_die;
13349 
13350 	      if (TYPE_CONTEXT (type))
13351 		if (TYPE_P (TYPE_CONTEXT (type)))
13352 		  type_context_die = force_type_die (TYPE_CONTEXT (type));
13353 	      else
13354 		type_context_die = force_decl_die (TYPE_CONTEXT (type));
13355 	      else
13356 		type_context_die = comp_unit_die;
13357 	      gen_type_die_for_member (type, decl, type_context_die);
13358 	    }
13359 	  at_import_die = force_decl_die (decl);
13360 	}
13361     }
13362 
13363   /* OK, now we have DIEs for decl as well as scope. Emit imported die.  */
13364   if (TREE_CODE (decl) == NAMESPACE_DECL)
13365     imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13366   else
13367     imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13368 
13369   xloc = expand_location (input_location);
13370   add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
13371   add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13372   add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13373 }
13374 
13375 /* Write the debugging output for DECL.  */
13376 
13377 void
dwarf2out_decl(tree decl)13378 dwarf2out_decl (tree decl)
13379 {
13380   dw_die_ref context_die = comp_unit_die;
13381 
13382   switch (TREE_CODE (decl))
13383     {
13384     case ERROR_MARK:
13385       return;
13386 
13387     case FUNCTION_DECL:
13388       /* What we would really like to do here is to filter out all mere
13389 	 file-scope declarations of file-scope functions which are never
13390 	 referenced later within this translation unit (and keep all of ones
13391 	 that *are* referenced later on) but we aren't clairvoyant, so we have
13392 	 no idea which functions will be referenced in the future (i.e. later
13393 	 on within the current translation unit). So here we just ignore all
13394 	 file-scope function declarations which are not also definitions.  If
13395 	 and when the debugger needs to know something about these functions,
13396 	 it will have to hunt around and find the DWARF information associated
13397 	 with the definition of the function.
13398 
13399 	 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13400 	 nodes represent definitions and which ones represent mere
13401 	 declarations.  We have to check DECL_INITIAL instead. That's because
13402 	 the C front-end supports some weird semantics for "extern inline"
13403 	 function definitions.  These can get inlined within the current
13404 	 translation unit (and thus, we need to generate Dwarf info for their
13405 	 abstract instances so that the Dwarf info for the concrete inlined
13406 	 instances can have something to refer to) but the compiler never
13407 	 generates any out-of-lines instances of such things (despite the fact
13408 	 that they *are* definitions).
13409 
13410 	 The important point is that the C front-end marks these "extern
13411 	 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13412 	 them anyway. Note that the C++ front-end also plays some similar games
13413 	 for inline function definitions appearing within include files which
13414 	 also contain `#pragma interface' pragmas.  */
13415       if (DECL_INITIAL (decl) == NULL_TREE)
13416 	return;
13417 
13418       /* If we're a nested function, initially use a parent of NULL; if we're
13419 	 a plain function, this will be fixed up in decls_for_scope.  If
13420 	 we're a method, it will be ignored, since we already have a DIE.  */
13421       if (decl_function_context (decl)
13422 	  /* But if we're in terse mode, we don't care about scope.  */
13423 	  && debug_info_level > DINFO_LEVEL_TERSE)
13424 	context_die = NULL;
13425       break;
13426 
13427     case VAR_DECL:
13428       /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13429 	 declaration and if the declaration was never even referenced from
13430 	 within this entire compilation unit.  We suppress these DIEs in
13431 	 order to save space in the .debug section (by eliminating entries
13432 	 which are probably useless).  Note that we must not suppress
13433 	 block-local extern declarations (whether used or not) because that
13434 	 would screw-up the debugger's name lookup mechanism and cause it to
13435 	 miss things which really ought to be in scope at a given point.  */
13436       if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13437 	return;
13438 
13439       /* For local statics lookup proper context die.  */
13440       if (TREE_STATIC (decl) && decl_function_context (decl))
13441 	context_die = lookup_decl_die (DECL_CONTEXT (decl));
13442 
13443       /* If we are in terse mode, don't generate any DIEs to represent any
13444 	 variable declarations or definitions.  */
13445       if (debug_info_level <= DINFO_LEVEL_TERSE)
13446 	return;
13447       break;
13448 
13449     case NAMESPACE_DECL:
13450       if (debug_info_level <= DINFO_LEVEL_TERSE)
13451 	return;
13452       if (lookup_decl_die (decl) != NULL)
13453         return;
13454       break;
13455 
13456     case TYPE_DECL:
13457       /* Don't emit stubs for types unless they are needed by other DIEs.  */
13458       if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13459 	return;
13460 
13461       /* Don't bother trying to generate any DIEs to represent any of the
13462 	 normal built-in types for the language we are compiling.  */
13463       if (DECL_IS_BUILTIN (decl))
13464 	{
13465 	  /* OK, we need to generate one for `bool' so GDB knows what type
13466 	     comparisons have.  */
13467 	  if (is_cxx ()
13468 	      && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13469 	      && ! DECL_IGNORED_P (decl))
13470 	    modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13471 
13472 	  return;
13473 	}
13474 
13475       /* If we are in terse mode, don't generate any DIEs for types.  */
13476       if (debug_info_level <= DINFO_LEVEL_TERSE)
13477 	return;
13478 
13479       /* If we're a function-scope tag, initially use a parent of NULL;
13480 	 this will be fixed up in decls_for_scope.  */
13481       if (decl_function_context (decl))
13482 	context_die = NULL;
13483 
13484       break;
13485 
13486     default:
13487       return;
13488     }
13489 
13490   gen_decl_die (decl, context_die);
13491 }
13492 
13493 /* Output a marker (i.e. a label) for the beginning of the generated code for
13494    a lexical block.  */
13495 
13496 static void
dwarf2out_begin_block(unsigned int line ATTRIBUTE_UNUSED,unsigned int blocknum)13497 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13498 		       unsigned int blocknum)
13499 {
13500   switch_to_section (current_function_section ());
13501   ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13502 }
13503 
13504 /* Output a marker (i.e. a label) for the end of the generated code for a
13505    lexical block.  */
13506 
13507 static void
dwarf2out_end_block(unsigned int line ATTRIBUTE_UNUSED,unsigned int blocknum)13508 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13509 {
13510   switch_to_section (current_function_section ());
13511   ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13512 }
13513 
13514 /* Returns nonzero if it is appropriate not to emit any debugging
13515    information for BLOCK, because it doesn't contain any instructions.
13516 
13517    Don't allow this for blocks with nested functions or local classes
13518    as we would end up with orphans, and in the presence of scheduling
13519    we may end up calling them anyway.  */
13520 
13521 static bool
dwarf2out_ignore_block(tree block)13522 dwarf2out_ignore_block (tree block)
13523 {
13524   tree decl;
13525 
13526   for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13527     if (TREE_CODE (decl) == FUNCTION_DECL
13528 	|| (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13529       return 0;
13530 
13531   return 1;
13532 }
13533 
13534 /* Hash table routines for file_hash.  */
13535 
13536 static int
file_table_eq(const void * p1_p,const void * p2_p)13537 file_table_eq (const void *p1_p, const void *p2_p)
13538 {
13539   const struct dwarf_file_data * p1 = p1_p;
13540   const char * p2 = p2_p;
13541   return strcmp (p1->filename, p2) == 0;
13542 }
13543 
13544 static hashval_t
file_table_hash(const void * p_p)13545 file_table_hash (const void *p_p)
13546 {
13547   const struct dwarf_file_data * p = p_p;
13548   return htab_hash_string (p->filename);
13549 }
13550 
13551 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13552    dwarf2out.c) and return its "index".  The index of each (known) filename is
13553    just a unique number which is associated with only that one filename.  We
13554    need such numbers for the sake of generating labels (in the .debug_sfnames
13555    section) and references to those files numbers (in the .debug_srcinfo
13556    and.debug_macinfo sections).  If the filename given as an argument is not
13557    found in our current list, add it to the list and assign it the next
13558    available unique index number.  In order to speed up searches, we remember
13559    the index of the filename was looked up last.  This handles the majority of
13560    all searches.  */
13561 
13562 static struct dwarf_file_data *
lookup_filename(const char * file_name)13563 lookup_filename (const char *file_name)
13564 {
13565   void ** slot;
13566   struct dwarf_file_data * created;
13567 
13568   /* Check to see if the file name that was searched on the previous
13569      call matches this file name.  If so, return the index.  */
13570   if (file_table_last_lookup
13571       && (file_name == file_table_last_lookup->filename
13572 	  || strcmp (file_table_last_lookup->filename, file_name) == 0))
13573     return file_table_last_lookup;
13574 
13575   /* Didn't match the previous lookup, search the table.  */
13576   slot = htab_find_slot_with_hash (file_table, file_name,
13577 				   htab_hash_string (file_name), INSERT);
13578   if (*slot)
13579     return *slot;
13580 
13581   created = ggc_alloc (sizeof (struct dwarf_file_data));
13582   created->filename = file_name;
13583   created->emitted_number = 0;
13584   *slot = created;
13585   return created;
13586 }
13587 
13588 /* If the assembler will construct the file table, then translate the compiler
13589    internal file table number into the assembler file table number, and emit
13590    a .file directive if we haven't already emitted one yet.  The file table
13591    numbers are different because we prune debug info for unused variables and
13592    types, which may include filenames.  */
13593 
13594 static int
maybe_emit_file(struct dwarf_file_data * fd)13595 maybe_emit_file (struct dwarf_file_data * fd)
13596 {
13597   if (! fd->emitted_number)
13598     {
13599       if (last_emitted_file)
13600 	fd->emitted_number = last_emitted_file->emitted_number + 1;
13601       else
13602 	fd->emitted_number = 1;
13603       last_emitted_file = fd;
13604 
13605       if (DWARF2_ASM_LINE_DEBUG_INFO)
13606 	{
13607 	  fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13608 	  output_quoted_string (asm_out_file, fd->filename);
13609 	  fputc ('\n', asm_out_file);
13610 	}
13611     }
13612 
13613   return fd->emitted_number;
13614 }
13615 
13616 /* Called by the final INSN scan whenever we see a var location.  We
13617    use it to drop labels in the right places, and throw the location in
13618    our lookup table.  */
13619 
13620 static void
dwarf2out_var_location(rtx loc_note)13621 dwarf2out_var_location (rtx loc_note)
13622 {
13623   char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13624   struct var_loc_node *newloc;
13625   rtx prev_insn;
13626   static rtx last_insn;
13627   static const char *last_label;
13628   tree decl;
13629 
13630   if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13631     return;
13632   prev_insn = PREV_INSN (loc_note);
13633 
13634   newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13635   /* If the insn we processed last time is the previous insn
13636      and it is also a var location note, use the label we emitted
13637      last time.  */
13638   if (last_insn != NULL_RTX
13639       && last_insn == prev_insn
13640       && NOTE_P (prev_insn)
13641       && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13642     {
13643       newloc->label = last_label;
13644     }
13645   else
13646     {
13647       ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13648       ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13649       loclabel_num++;
13650       newloc->label = ggc_strdup (loclabel);
13651     }
13652   newloc->var_loc_note = loc_note;
13653   newloc->next = NULL;
13654 
13655   if (cfun && in_cold_section_p)
13656     newloc->section_label = cfun->cold_section_label;
13657   else
13658     newloc->section_label = text_section_label;
13659 
13660   last_insn = loc_note;
13661   last_label = newloc->label;
13662   decl = NOTE_VAR_LOCATION_DECL (loc_note);
13663   add_var_loc_to_decl (decl, newloc);
13664 }
13665 
13666 /* We need to reset the locations at the beginning of each
13667    function. We can't do this in the end_function hook, because the
13668    declarations that use the locations won't have been output when
13669    that hook is called.  Also compute have_multiple_function_sections here.  */
13670 
13671 static void
dwarf2out_begin_function(tree fun)13672 dwarf2out_begin_function (tree fun)
13673 {
13674   htab_empty (decl_loc_table);
13675 
13676   if (function_section (fun) != text_section)
13677     have_multiple_function_sections = true;
13678 }
13679 
13680 /* Output a label to mark the beginning of a source code line entry
13681    and record information relating to this source line, in
13682    'line_info_table' for later output of the .debug_line section.  */
13683 
13684 static void
dwarf2out_source_line(unsigned int line,const char * filename)13685 dwarf2out_source_line (unsigned int line, const char *filename)
13686 {
13687   if (debug_info_level >= DINFO_LEVEL_NORMAL
13688       && line != 0)
13689     {
13690       int file_num = maybe_emit_file (lookup_filename (filename));
13691 
13692       switch_to_section (current_function_section ());
13693 
13694       /* If requested, emit something human-readable.  */
13695       if (flag_debug_asm)
13696 	fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13697 		 filename, line);
13698 
13699       if (DWARF2_ASM_LINE_DEBUG_INFO)
13700 	{
13701 	  /* Emit the .loc directive understood by GNU as.  */
13702 	  fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13703 
13704 	  /* Indicate that line number info exists.  */
13705 	  line_info_table_in_use++;
13706 	}
13707       else if (function_section (current_function_decl) != text_section)
13708 	{
13709 	  dw_separate_line_info_ref line_info;
13710 	  targetm.asm_out.internal_label (asm_out_file,
13711 					  SEPARATE_LINE_CODE_LABEL,
13712 					  separate_line_info_table_in_use);
13713 
13714 	  /* Expand the line info table if necessary.  */
13715 	  if (separate_line_info_table_in_use
13716 	      == separate_line_info_table_allocated)
13717 	    {
13718 	      separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13719 	      separate_line_info_table
13720 		= ggc_realloc (separate_line_info_table,
13721 			       separate_line_info_table_allocated
13722 			       * sizeof (dw_separate_line_info_entry));
13723 	      memset (separate_line_info_table
13724 		       + separate_line_info_table_in_use,
13725 		      0,
13726 		      (LINE_INFO_TABLE_INCREMENT
13727 		       * sizeof (dw_separate_line_info_entry)));
13728 	    }
13729 
13730 	  /* Add the new entry at the end of the line_info_table.  */
13731 	  line_info
13732 	    = &separate_line_info_table[separate_line_info_table_in_use++];
13733 	  line_info->dw_file_num = file_num;
13734 	  line_info->dw_line_num = line;
13735 	  line_info->function = current_function_funcdef_no;
13736 	}
13737       else
13738 	{
13739 	  dw_line_info_ref line_info;
13740 
13741 	  targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13742 				     line_info_table_in_use);
13743 
13744 	  /* Expand the line info table if necessary.  */
13745 	  if (line_info_table_in_use == line_info_table_allocated)
13746 	    {
13747 	      line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13748 	      line_info_table
13749 		= ggc_realloc (line_info_table,
13750 			       (line_info_table_allocated
13751 				* sizeof (dw_line_info_entry)));
13752 	      memset (line_info_table + line_info_table_in_use, 0,
13753 		      LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13754 	    }
13755 
13756 	  /* Add the new entry at the end of the line_info_table.  */
13757 	  line_info = &line_info_table[line_info_table_in_use++];
13758 	  line_info->dw_file_num = file_num;
13759 	  line_info->dw_line_num = line;
13760 	}
13761     }
13762 }
13763 
13764 /* Record the beginning of a new source file.  */
13765 
13766 static void
dwarf2out_start_source_file(unsigned int lineno,const char * filename)13767 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13768 {
13769   if (flag_eliminate_dwarf2_dups)
13770     {
13771       /* Record the beginning of the file for break_out_includes.  */
13772       dw_die_ref bincl_die;
13773 
13774       bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13775       add_AT_string (bincl_die, DW_AT_name, filename);
13776     }
13777 
13778   if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13779     {
13780       int file_num = maybe_emit_file (lookup_filename (filename));
13781 
13782       switch_to_section (debug_macinfo_section);
13783       dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13784       dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13785 				   lineno);
13786 
13787       dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
13788     }
13789 }
13790 
13791 /* Record the end of a source file.  */
13792 
13793 static void
dwarf2out_end_source_file(unsigned int lineno ATTRIBUTE_UNUSED)13794 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13795 {
13796   if (flag_eliminate_dwarf2_dups)
13797     /* Record the end of the file for break_out_includes.  */
13798     new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13799 
13800   if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13801     {
13802       switch_to_section (debug_macinfo_section);
13803       dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13804     }
13805 }
13806 
13807 /* Called from debug_define in toplev.c.  The `buffer' parameter contains
13808    the tail part of the directive line, i.e. the part which is past the
13809    initial whitespace, #, whitespace, directive-name, whitespace part.  */
13810 
13811 static void
dwarf2out_define(unsigned int lineno ATTRIBUTE_UNUSED,const char * buffer ATTRIBUTE_UNUSED)13812 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13813 		  const char *buffer ATTRIBUTE_UNUSED)
13814 {
13815   if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13816     {
13817       switch_to_section (debug_macinfo_section);
13818       dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13819       dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13820       dw2_asm_output_nstring (buffer, -1, "The macro");
13821     }
13822 }
13823 
13824 /* Called from debug_undef in toplev.c.  The `buffer' parameter contains
13825    the tail part of the directive line, i.e. the part which is past the
13826    initial whitespace, #, whitespace, directive-name, whitespace part.  */
13827 
13828 static void
dwarf2out_undef(unsigned int lineno ATTRIBUTE_UNUSED,const char * buffer ATTRIBUTE_UNUSED)13829 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13830 		 const char *buffer ATTRIBUTE_UNUSED)
13831 {
13832   if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13833     {
13834       switch_to_section (debug_macinfo_section);
13835       dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13836       dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13837       dw2_asm_output_nstring (buffer, -1, "The macro");
13838     }
13839 }
13840 
13841 /* Set up for Dwarf output at the start of compilation.  */
13842 
13843 static void
dwarf2out_init(const char * filename ATTRIBUTE_UNUSED)13844 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13845 {
13846   /* Allocate the file_table.  */
13847   file_table = htab_create_ggc (50, file_table_hash,
13848 				file_table_eq, NULL);
13849 
13850   /* Allocate the decl_die_table.  */
13851   decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13852 				    decl_die_table_eq, NULL);
13853 
13854   /* Allocate the decl_loc_table.  */
13855   decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13856 				    decl_loc_table_eq, NULL);
13857 
13858   /* Allocate the initial hunk of the decl_scope_table.  */
13859   decl_scope_table = VEC_alloc (tree, gc, 256);
13860 
13861   /* Allocate the initial hunk of the abbrev_die_table.  */
13862   abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13863 					* sizeof (dw_die_ref));
13864   abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13865   /* Zero-th entry is allocated, but unused.  */
13866   abbrev_die_table_in_use = 1;
13867 
13868   /* Allocate the initial hunk of the line_info_table.  */
13869   line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13870 				       * sizeof (dw_line_info_entry));
13871   line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13872 
13873   /* Zero-th entry is allocated, but unused.  */
13874   line_info_table_in_use = 1;
13875 
13876   /* Generate the initial DIE for the .debug section.  Note that the (string)
13877      value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13878      will (typically) be a relative pathname and that this pathname should be
13879      taken as being relative to the directory from which the compiler was
13880      invoked when the given (base) source file was compiled.  We will fill
13881      in this value in dwarf2out_finish.  */
13882   comp_unit_die = gen_compile_unit_die (NULL);
13883 
13884   incomplete_types = VEC_alloc (tree, gc, 64);
13885 
13886   used_rtx_array = VEC_alloc (rtx, gc, 32);
13887 
13888   debug_info_section = get_section (DEBUG_INFO_SECTION,
13889 				    SECTION_DEBUG, NULL);
13890   debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13891 				      SECTION_DEBUG, NULL);
13892   debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13893 				       SECTION_DEBUG, NULL);
13894   debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13895 				       SECTION_DEBUG, NULL);
13896   debug_line_section = get_section (DEBUG_LINE_SECTION,
13897 				    SECTION_DEBUG, NULL);
13898   debug_loc_section = get_section (DEBUG_LOC_SECTION,
13899 				   SECTION_DEBUG, NULL);
13900   debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13901 					SECTION_DEBUG, NULL);
13902   debug_str_section = get_section (DEBUG_STR_SECTION,
13903 				   DEBUG_STR_SECTION_FLAGS, NULL);
13904   debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13905 				      SECTION_DEBUG, NULL);
13906   debug_frame_section = get_section (DEBUG_FRAME_SECTION,
13907 				     SECTION_DEBUG, NULL);
13908 
13909   ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13910   ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13911 			       DEBUG_ABBREV_SECTION_LABEL, 0);
13912   ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13913   ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13914 			       COLD_TEXT_SECTION_LABEL, 0);
13915   ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13916 
13917   ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13918 			       DEBUG_INFO_SECTION_LABEL, 0);
13919   ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13920 			       DEBUG_LINE_SECTION_LABEL, 0);
13921   ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13922 			       DEBUG_RANGES_SECTION_LABEL, 0);
13923   switch_to_section (debug_abbrev_section);
13924   ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13925   switch_to_section (debug_info_section);
13926   ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13927   switch_to_section (debug_line_section);
13928   ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13929 
13930   if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13931     {
13932       switch_to_section (debug_macinfo_section);
13933       ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13934 				   DEBUG_MACINFO_SECTION_LABEL, 0);
13935       ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13936     }
13937 
13938   switch_to_section (text_section);
13939   ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13940   if (flag_reorder_blocks_and_partition)
13941     {
13942       switch_to_section (unlikely_text_section ());
13943       ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13944     }
13945 }
13946 
13947 /* A helper function for dwarf2out_finish called through
13948    ht_forall.  Emit one queued .debug_str string.  */
13949 
13950 static int
output_indirect_string(void ** h,void * v ATTRIBUTE_UNUSED)13951 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13952 {
13953   struct indirect_string_node *node = (struct indirect_string_node *) *h;
13954 
13955   if (node->form == DW_FORM_strp)
13956     {
13957       switch_to_section (debug_str_section);
13958       ASM_OUTPUT_LABEL (asm_out_file, node->label);
13959       assemble_string (node->str, strlen (node->str) + 1);
13960     }
13961 
13962   return 1;
13963 }
13964 
13965 #if ENABLE_ASSERT_CHECKING
13966 /* Verify that all marks are clear.  */
13967 
13968 static void
verify_marks_clear(dw_die_ref die)13969 verify_marks_clear (dw_die_ref die)
13970 {
13971   dw_die_ref c;
13972 
13973   gcc_assert (! die->die_mark);
13974   FOR_EACH_CHILD (die, c, verify_marks_clear (c));
13975 }
13976 #endif /* ENABLE_ASSERT_CHECKING */
13977 
13978 /* Clear the marks for a die and its children.
13979    Be cool if the mark isn't set.  */
13980 
13981 static void
prune_unmark_dies(dw_die_ref die)13982 prune_unmark_dies (dw_die_ref die)
13983 {
13984   dw_die_ref c;
13985 
13986   if (die->die_mark)
13987     die->die_mark = 0;
13988   FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
13989 }
13990 
13991 /* Given DIE that we're marking as used, find any other dies
13992    it references as attributes and mark them as used.  */
13993 
13994 static void
prune_unused_types_walk_attribs(dw_die_ref die)13995 prune_unused_types_walk_attribs (dw_die_ref die)
13996 {
13997   dw_attr_ref a;
13998   unsigned ix;
13999 
14000   for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14001     {
14002       if (a->dw_attr_val.val_class == dw_val_class_die_ref)
14003 	{
14004 	  /* A reference to another DIE.
14005 	     Make sure that it will get emitted.  */
14006 	  prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
14007 	}
14008       /* Set the string's refcount to 0 so that prune_unused_types_mark
14009 	 accounts properly for it.  */
14010       if (AT_class (a) == dw_val_class_str)
14011 	a->dw_attr_val.v.val_str->refcount = 0;
14012     }
14013 }
14014 
14015 
14016 /* Mark DIE as being used.  If DOKIDS is true, then walk down
14017    to DIE's children.  */
14018 
14019 static void
prune_unused_types_mark(dw_die_ref die,int dokids)14020 prune_unused_types_mark (dw_die_ref die, int dokids)
14021 {
14022   dw_die_ref c;
14023 
14024   if (die->die_mark == 0)
14025     {
14026       /* We haven't done this node yet.  Mark it as used.  */
14027       die->die_mark = 1;
14028 
14029       /* We also have to mark its parents as used.
14030 	 (But we don't want to mark our parents' kids due to this.)  */
14031       if (die->die_parent)
14032 	prune_unused_types_mark (die->die_parent, 0);
14033 
14034       /* Mark any referenced nodes.  */
14035       prune_unused_types_walk_attribs (die);
14036 
14037       /* If this node is a specification,
14038          also mark the definition, if it exists.  */
14039       if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14040         prune_unused_types_mark (die->die_definition, 1);
14041     }
14042 
14043   if (dokids && die->die_mark != 2)
14044     {
14045       /* We need to walk the children, but haven't done so yet.
14046 	 Remember that we've walked the kids.  */
14047       die->die_mark = 2;
14048 
14049       /* If this is an array type, we need to make sure our
14050 	 kids get marked, even if they're types.  */
14051       if (die->die_tag == DW_TAG_array_type)
14052 	FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14053       else
14054 	FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14055     }
14056 }
14057 
14058 
14059 /* Walk the tree DIE and mark types that we actually use.  */
14060 
14061 static void
prune_unused_types_walk(dw_die_ref die)14062 prune_unused_types_walk (dw_die_ref die)
14063 {
14064   dw_die_ref c;
14065 
14066   /* Don't do anything if this node is already marked.  */
14067   if (die->die_mark)
14068     return;
14069 
14070   switch (die->die_tag) {
14071   case DW_TAG_const_type:
14072   case DW_TAG_packed_type:
14073   case DW_TAG_pointer_type:
14074   case DW_TAG_reference_type:
14075   case DW_TAG_volatile_type:
14076   case DW_TAG_typedef:
14077   case DW_TAG_array_type:
14078   case DW_TAG_structure_type:
14079   case DW_TAG_union_type:
14080   case DW_TAG_class_type:
14081   case DW_TAG_friend:
14082   case DW_TAG_variant_part:
14083   case DW_TAG_enumeration_type:
14084   case DW_TAG_subroutine_type:
14085   case DW_TAG_string_type:
14086   case DW_TAG_set_type:
14087   case DW_TAG_subrange_type:
14088   case DW_TAG_ptr_to_member_type:
14089   case DW_TAG_file_type:
14090     if (die->die_perennial_p)
14091       break;
14092 
14093     /* It's a type node --- don't mark it.  */
14094     return;
14095 
14096   default:
14097     /* Mark everything else.  */
14098     break;
14099   }
14100 
14101   die->die_mark = 1;
14102 
14103   /* Now, mark any dies referenced from here.  */
14104   prune_unused_types_walk_attribs (die);
14105 
14106   /* Mark children.  */
14107   FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14108 }
14109 
14110 /* Increment the string counts on strings referred to from DIE's
14111    attributes.  */
14112 
14113 static void
prune_unused_types_update_strings(dw_die_ref die)14114 prune_unused_types_update_strings (dw_die_ref die)
14115 {
14116   dw_attr_ref a;
14117   unsigned ix;
14118 
14119   for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14120     if (AT_class (a) == dw_val_class_str)
14121       {
14122 	struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14123 	s->refcount++;
14124 	/* Avoid unnecessarily putting strings that are used less than
14125 	   twice in the hash table.  */
14126 	if (s->refcount
14127 	    == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14128 	  {
14129 	    void ** slot;
14130 	    slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14131 					     htab_hash_string (s->str),
14132 					     INSERT);
14133 	    gcc_assert (*slot == NULL);
14134 	    *slot = s;
14135 	  }
14136       }
14137 }
14138 
14139 /* Remove from the tree DIE any dies that aren't marked.  */
14140 
14141 static void
prune_unused_types_prune(dw_die_ref die)14142 prune_unused_types_prune (dw_die_ref die)
14143 {
14144   dw_die_ref c;
14145 
14146   gcc_assert (die->die_mark);
14147   prune_unused_types_update_strings (die);
14148 
14149   if (! die->die_child)
14150     return;
14151 
14152   c = die->die_child;
14153   do {
14154     dw_die_ref prev = c;
14155     for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14156       if (c == die->die_child)
14157 	{
14158 	  /* No marked children between 'prev' and the end of the list.  */
14159 	  if (prev == c)
14160 	    /* No marked children at all.  */
14161 	    die->die_child = NULL;
14162 	  else
14163 	    {
14164 	      prev->die_sib = c->die_sib;
14165 	      die->die_child = prev;
14166 	    }
14167 	  return;
14168 	}
14169 
14170     if (c != prev->die_sib)
14171       prev->die_sib = c;
14172     prune_unused_types_prune (c);
14173   } while (c != die->die_child);
14174 }
14175 
14176 
14177 /* Remove dies representing declarations that we never use.  */
14178 
14179 static void
prune_unused_types(void)14180 prune_unused_types (void)
14181 {
14182   unsigned int i;
14183   limbo_die_node *node;
14184 
14185 #if ENABLE_ASSERT_CHECKING
14186   /* All the marks should already be clear.  */
14187   verify_marks_clear (comp_unit_die);
14188   for (node = limbo_die_list; node; node = node->next)
14189     verify_marks_clear (node->die);
14190 #endif /* ENABLE_ASSERT_CHECKING */
14191 
14192   /* Set the mark on nodes that are actually used.  */
14193   prune_unused_types_walk (comp_unit_die);
14194   for (node = limbo_die_list; node; node = node->next)
14195     prune_unused_types_walk (node->die);
14196 
14197   /* Also set the mark on nodes referenced from the
14198      pubname_table or arange_table.  */
14199   for (i = 0; i < pubname_table_in_use; i++)
14200     prune_unused_types_mark (pubname_table[i].die, 1);
14201   for (i = 0; i < arange_table_in_use; i++)
14202     prune_unused_types_mark (arange_table[i], 1);
14203 
14204   /* Get rid of nodes that aren't marked; and update the string counts.  */
14205   if (debug_str_hash)
14206     htab_empty (debug_str_hash);
14207   prune_unused_types_prune (comp_unit_die);
14208   for (node = limbo_die_list; node; node = node->next)
14209     prune_unused_types_prune (node->die);
14210 
14211   /* Leave the marks clear.  */
14212   prune_unmark_dies (comp_unit_die);
14213   for (node = limbo_die_list; node; node = node->next)
14214     prune_unmark_dies (node->die);
14215 }
14216 
14217 /* Set the parameter to true if there are any relative pathnames in
14218    the file table.  */
14219 static int
file_table_relative_p(void ** slot,void * param)14220 file_table_relative_p (void ** slot, void *param)
14221 {
14222   bool *p = param;
14223   struct dwarf_file_data *d = *slot;
14224   if (d->emitted_number && d->filename[0] != DIR_SEPARATOR)
14225     {
14226       *p = true;
14227       return 0;
14228     }
14229   return 1;
14230 }
14231 
14232 /* Output stuff that dwarf requires at the end of every file,
14233    and generate the DWARF-2 debugging info.  */
14234 
14235 static void
dwarf2out_finish(const char * filename)14236 dwarf2out_finish (const char *filename)
14237 {
14238   limbo_die_node *node, *next_node;
14239   dw_die_ref die = 0;
14240 
14241   /* Add the name for the main input file now.  We delayed this from
14242      dwarf2out_init to avoid complications with PCH.  */
14243   add_name_attribute (comp_unit_die, filename);
14244   if (filename[0] != DIR_SEPARATOR)
14245     add_comp_dir_attribute (comp_unit_die);
14246   else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14247     {
14248       bool p = false;
14249       htab_traverse (file_table, file_table_relative_p, &p);
14250       if (p)
14251 	add_comp_dir_attribute (comp_unit_die);
14252     }
14253 
14254   /* Traverse the limbo die list, and add parent/child links.  The only
14255      dies without parents that should be here are concrete instances of
14256      inline functions, and the comp_unit_die.  We can ignore the comp_unit_die.
14257      For concrete instances, we can get the parent die from the abstract
14258      instance.  */
14259   for (node = limbo_die_list; node; node = next_node)
14260     {
14261       next_node = node->next;
14262       die = node->die;
14263 
14264       if (die->die_parent == NULL)
14265 	{
14266 	  dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14267 
14268 	  if (origin)
14269 	    add_child_die (origin->die_parent, die);
14270 	  else if (die == comp_unit_die)
14271 	    ;
14272 	  else if (errorcount > 0 || sorrycount > 0)
14273 	    /* It's OK to be confused by errors in the input.  */
14274 	    add_child_die (comp_unit_die, die);
14275 	  else
14276 	    {
14277 	      /* In certain situations, the lexical block containing a
14278 		 nested function can be optimized away, which results
14279 		 in the nested function die being orphaned.  Likewise
14280 		 with the return type of that nested function.  Force
14281 		 this to be a child of the containing function.
14282 
14283 		 It may happen that even the containing function got fully
14284 		 inlined and optimized out.  In that case we are lost and
14285 		 assign the empty child.  This should not be big issue as
14286 		 the function is likely unreachable too.  */
14287 	      tree context = NULL_TREE;
14288 
14289 	      gcc_assert (node->created_for);
14290 
14291 	      if (DECL_P (node->created_for))
14292 		context = DECL_CONTEXT (node->created_for);
14293 	      else if (TYPE_P (node->created_for))
14294 		context = TYPE_CONTEXT (node->created_for);
14295 
14296 	      gcc_assert (context
14297 			  && (TREE_CODE (context) == FUNCTION_DECL
14298 			      || TREE_CODE (context) == NAMESPACE_DECL));
14299 
14300 	      origin = lookup_decl_die (context);
14301 	      if (origin)
14302 	        add_child_die (origin, die);
14303 	      else
14304 	        add_child_die (comp_unit_die, die);
14305 	    }
14306 	}
14307     }
14308 
14309   limbo_die_list = NULL;
14310 
14311   /* Walk through the list of incomplete types again, trying once more to
14312      emit full debugging info for them.  */
14313   retry_incomplete_types ();
14314 
14315   if (flag_eliminate_unused_debug_types)
14316     prune_unused_types ();
14317 
14318   /* Generate separate CUs for each of the include files we've seen.
14319      They will go into limbo_die_list.  */
14320   if (flag_eliminate_dwarf2_dups)
14321     break_out_includes (comp_unit_die);
14322 
14323   /* Traverse the DIE's and add add sibling attributes to those DIE's
14324      that have children.  */
14325   add_sibling_attributes (comp_unit_die);
14326   for (node = limbo_die_list; node; node = node->next)
14327     add_sibling_attributes (node->die);
14328 
14329   /* Output a terminator label for the .text section.  */
14330   switch_to_section (text_section);
14331   targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14332   if (flag_reorder_blocks_and_partition)
14333     {
14334       switch_to_section (unlikely_text_section ());
14335       targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14336     }
14337 
14338   /* We can only use the low/high_pc attributes if all of the code was
14339      in .text.  */
14340   if (!have_multiple_function_sections)
14341     {
14342       add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14343       add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14344     }
14345 
14346   /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14347      "base address".  Use zero so that these addresses become absolute.  */
14348   else if (have_location_lists || ranges_table_in_use)
14349     add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14350 
14351   /* Output location list section if necessary.  */
14352   if (have_location_lists)
14353     {
14354       /* Output the location lists info.  */
14355       switch_to_section (debug_loc_section);
14356       ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14357 				   DEBUG_LOC_SECTION_LABEL, 0);
14358       ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14359       output_location_lists (die);
14360     }
14361 
14362   if (debug_info_level >= DINFO_LEVEL_NORMAL)
14363     add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14364 		    debug_line_section_label);
14365 
14366   if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14367     add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14368 
14369   /* Output all of the compilation units.  We put the main one last so that
14370      the offsets are available to output_pubnames.  */
14371   for (node = limbo_die_list; node; node = node->next)
14372     output_comp_unit (node->die, 0);
14373 
14374   output_comp_unit (comp_unit_die, 0);
14375 
14376   /* Output the abbreviation table.  */
14377   switch_to_section (debug_abbrev_section);
14378   output_abbrev_section ();
14379 
14380   /* Output public names table if necessary.  */
14381   if (pubname_table_in_use)
14382     {
14383       switch_to_section (debug_pubnames_section);
14384       output_pubnames ();
14385     }
14386 
14387   /* Output the address range information.  We only put functions in the arange
14388      table, so don't write it out if we don't have any.  */
14389   if (fde_table_in_use)
14390     {
14391       switch_to_section (debug_aranges_section);
14392       output_aranges ();
14393     }
14394 
14395   /* Output ranges section if necessary.  */
14396   if (ranges_table_in_use)
14397     {
14398       switch_to_section (debug_ranges_section);
14399       ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14400       output_ranges ();
14401     }
14402 
14403   /* Output the source line correspondence table.  We must do this
14404      even if there is no line information.  Otherwise, on an empty
14405      translation unit, we will generate a present, but empty,
14406      .debug_info section.  IRIX 6.5 `nm' will then complain when
14407      examining the file.  This is done late so that any filenames
14408      used by the debug_info section are marked as 'used'.  */
14409   if (! DWARF2_ASM_LINE_DEBUG_INFO)
14410     {
14411       switch_to_section (debug_line_section);
14412       output_line_info ();
14413     }
14414 
14415   /* Have to end the macro section.  */
14416   if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14417     {
14418       switch_to_section (debug_macinfo_section);
14419       dw2_asm_output_data (1, 0, "End compilation unit");
14420     }
14421 
14422   /* If we emitted any DW_FORM_strp form attribute, output the string
14423      table too.  */
14424   if (debug_str_hash)
14425     htab_traverse (debug_str_hash, output_indirect_string, NULL);
14426 }
14427 #else
14428 
14429 /* This should never be used, but its address is needed for comparisons.  */
14430 const struct gcc_debug_hooks dwarf2_debug_hooks;
14431 
14432 #endif /* DWARF2_DEBUGGING_INFO */
14433 
14434 #include "gt-dwarf2out.h"
14435