xref: /openbsd/gnu/gcc/gcc/resource.c (revision 404b540a)
1 /* Definitions for computing resource usage of specific insns.
2    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "function.h"
31 #include "regs.h"
32 #include "flags.h"
33 #include "output.h"
34 #include "resource.h"
35 #include "except.h"
36 #include "insn-attr.h"
37 #include "params.h"
38 
39 /* This structure is used to record liveness information at the targets or
40    fallthrough insns of branches.  We will most likely need the information
41    at targets again, so save them in a hash table rather than recomputing them
42    each time.  */
43 
44 struct target_info
45 {
46   int uid;			/* INSN_UID of target.  */
47   struct target_info *next;	/* Next info for same hash bucket.  */
48   HARD_REG_SET live_regs;	/* Registers live at target.  */
49   int block;			/* Basic block number containing target.  */
50   int bb_tick;			/* Generation count of basic block info.  */
51 };
52 
53 #define TARGET_HASH_PRIME 257
54 
55 /* Indicates what resources are required at the beginning of the epilogue.  */
56 static struct resources start_of_epilogue_needs;
57 
58 /* Indicates what resources are required at function end.  */
59 static struct resources end_of_function_needs;
60 
61 /* Define the hash table itself.  */
62 static struct target_info **target_hash_table = NULL;
63 
64 /* For each basic block, we maintain a generation number of its basic
65    block info, which is updated each time we move an insn from the
66    target of a jump.  This is the generation number indexed by block
67    number.  */
68 
69 static int *bb_ticks;
70 
71 /* Marks registers possibly live at the current place being scanned by
72    mark_target_live_regs.  Also used by update_live_status.  */
73 
74 static HARD_REG_SET current_live_regs;
75 
76 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
77    Also only used by the next two functions.  */
78 
79 static HARD_REG_SET pending_dead_regs;
80 
81 static void update_live_status (rtx, rtx, void *);
82 static int find_basic_block (rtx, int);
83 static rtx next_insn_no_annul (rtx);
84 static rtx find_dead_or_set_registers (rtx, struct resources*,
85 				       rtx*, int, struct resources,
86 				       struct resources);
87 
88 /* Utility function called from mark_target_live_regs via note_stores.
89    It deadens any CLOBBERed registers and livens any SET registers.  */
90 
91 static void
update_live_status(rtx dest,rtx x,void * data ATTRIBUTE_UNUSED)92 update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
93 {
94   int first_regno, last_regno;
95   int i;
96 
97   if (!REG_P (dest)
98       && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99     return;
100 
101   if (GET_CODE (dest) == SUBREG)
102     first_regno = subreg_regno (dest);
103   else
104     first_regno = REGNO (dest);
105 
106   last_regno = first_regno + hard_regno_nregs[first_regno][GET_MODE (dest)];
107 
108   if (GET_CODE (x) == CLOBBER)
109     for (i = first_regno; i < last_regno; i++)
110       CLEAR_HARD_REG_BIT (current_live_regs, i);
111   else
112     for (i = first_regno; i < last_regno; i++)
113       {
114 	SET_HARD_REG_BIT (current_live_regs, i);
115 	CLEAR_HARD_REG_BIT (pending_dead_regs, i);
116       }
117 }
118 
119 /* Find the number of the basic block with correct live register
120    information that starts closest to INSN.  Return -1 if we couldn't
121    find such a basic block or the beginning is more than
122    SEARCH_LIMIT instructions before INSN.  Use SEARCH_LIMIT = -1 for
123    an unlimited search.
124 
125    The delay slot filling code destroys the control-flow graph so,
126    instead of finding the basic block containing INSN, we search
127    backwards toward a BARRIER where the live register information is
128    correct.  */
129 
130 static int
find_basic_block(rtx insn,int search_limit)131 find_basic_block (rtx insn, int search_limit)
132 {
133   basic_block bb;
134 
135   /* Scan backwards to the previous BARRIER.  Then see if we can find a
136      label that starts a basic block.  Return the basic block number.  */
137   for (insn = prev_nonnote_insn (insn);
138        insn && !BARRIER_P (insn) && search_limit != 0;
139        insn = prev_nonnote_insn (insn), --search_limit)
140     ;
141 
142   /* The closest BARRIER is too far away.  */
143   if (search_limit == 0)
144     return -1;
145 
146   /* The start of the function.  */
147   else if (insn == 0)
148     return ENTRY_BLOCK_PTR->next_bb->index;
149 
150   /* See if any of the upcoming CODE_LABELs start a basic block.  If we reach
151      anything other than a CODE_LABEL or note, we can't find this code.  */
152   for (insn = next_nonnote_insn (insn);
153        insn && LABEL_P (insn);
154        insn = next_nonnote_insn (insn))
155     {
156       FOR_EACH_BB (bb)
157 	if (insn == BB_HEAD (bb))
158 	  return bb->index;
159     }
160 
161   return -1;
162 }
163 
164 /* Similar to next_insn, but ignores insns in the delay slots of
165    an annulled branch.  */
166 
167 static rtx
next_insn_no_annul(rtx insn)168 next_insn_no_annul (rtx insn)
169 {
170   if (insn)
171     {
172       /* If INSN is an annulled branch, skip any insns from the target
173 	 of the branch.  */
174       if (INSN_P (insn)
175 	  && INSN_ANNULLED_BRANCH_P (insn)
176 	  && NEXT_INSN (PREV_INSN (insn)) != insn)
177 	{
178 	  rtx next = NEXT_INSN (insn);
179 	  enum rtx_code code = GET_CODE (next);
180 
181 	  while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182 		 && INSN_FROM_TARGET_P (next))
183 	    {
184 	      insn = next;
185 	      next = NEXT_INSN (insn);
186 	      code = GET_CODE (next);
187 	    }
188 	}
189 
190       insn = NEXT_INSN (insn);
191       if (insn && NONJUMP_INSN_P (insn)
192 	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
193 	insn = XVECEXP (PATTERN (insn), 0, 0);
194     }
195 
196   return insn;
197 }
198 
199 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
200    which resources are referenced by the insn.  If INCLUDE_DELAYED_EFFECTS
201    is TRUE, resources used by the called routine will be included for
202    CALL_INSNs.  */
203 
204 void
mark_referenced_resources(rtx x,struct resources * res,int include_delayed_effects)205 mark_referenced_resources (rtx x, struct resources *res,
206 			   int include_delayed_effects)
207 {
208   enum rtx_code code = GET_CODE (x);
209   int i, j;
210   unsigned int r;
211   const char *format_ptr;
212 
213   /* Handle leaf items for which we set resource flags.  Also, special-case
214      CALL, SET and CLOBBER operators.  */
215   switch (code)
216     {
217     case CONST:
218     case CONST_INT:
219     case CONST_DOUBLE:
220     case CONST_VECTOR:
221     case PC:
222     case SYMBOL_REF:
223     case LABEL_REF:
224       return;
225 
226     case SUBREG:
227       if (!REG_P (SUBREG_REG (x)))
228 	mark_referenced_resources (SUBREG_REG (x), res, 0);
229       else
230 	{
231 	  unsigned int regno = subreg_regno (x);
232 	  unsigned int last_regno
233 	    = regno + hard_regno_nregs[regno][GET_MODE (x)];
234 
235 	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
236 	  for (r = regno; r < last_regno; r++)
237 	    SET_HARD_REG_BIT (res->regs, r);
238 	}
239       return;
240 
241     case REG:
242 	{
243 	  unsigned int regno = REGNO (x);
244 	  unsigned int last_regno
245 	    = regno + hard_regno_nregs[regno][GET_MODE (x)];
246 
247 	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
248 	  for (r = regno; r < last_regno; r++)
249 	    SET_HARD_REG_BIT (res->regs, r);
250 	}
251       return;
252 
253     case MEM:
254       /* If this memory shouldn't change, it really isn't referencing
255 	 memory.  */
256       if (MEM_READONLY_P (x))
257 	res->unch_memory = 1;
258       else
259 	res->memory = 1;
260       res->volatil |= MEM_VOLATILE_P (x);
261 
262       /* Mark registers used to access memory.  */
263       mark_referenced_resources (XEXP (x, 0), res, 0);
264       return;
265 
266     case CC0:
267       res->cc = 1;
268       return;
269 
270     case UNSPEC_VOLATILE:
271     case ASM_INPUT:
272       /* Traditional asm's are always volatile.  */
273       res->volatil = 1;
274       return;
275 
276     case TRAP_IF:
277       res->volatil = 1;
278       break;
279 
280     case ASM_OPERANDS:
281       res->volatil |= MEM_VOLATILE_P (x);
282 
283       /* For all ASM_OPERANDS, we must traverse the vector of input operands.
284 	 We can not just fall through here since then we would be confused
285 	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
286 	 traditional asms unlike their normal usage.  */
287 
288       for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
289 	mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
290       return;
291 
292     case CALL:
293       /* The first operand will be a (MEM (xxx)) but doesn't really reference
294 	 memory.  The second operand may be referenced, though.  */
295       mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
296       mark_referenced_resources (XEXP (x, 1), res, 0);
297       return;
298 
299     case SET:
300       /* Usually, the first operand of SET is set, not referenced.  But
301 	 registers used to access memory are referenced.  SET_DEST is
302 	 also referenced if it is a ZERO_EXTRACT.  */
303 
304       mark_referenced_resources (SET_SRC (x), res, 0);
305 
306       x = SET_DEST (x);
307       if (GET_CODE (x) == ZERO_EXTRACT
308 	  || GET_CODE (x) == STRICT_LOW_PART)
309 	mark_referenced_resources (x, res, 0);
310       else if (GET_CODE (x) == SUBREG)
311 	x = SUBREG_REG (x);
312       if (MEM_P (x))
313 	mark_referenced_resources (XEXP (x, 0), res, 0);
314       return;
315 
316     case CLOBBER:
317       return;
318 
319     case CALL_INSN:
320       if (include_delayed_effects)
321 	{
322 	  /* A CALL references memory, the frame pointer if it exists, the
323 	     stack pointer, any global registers and any registers given in
324 	     USE insns immediately in front of the CALL.
325 
326 	     However, we may have moved some of the parameter loading insns
327 	     into the delay slot of this CALL.  If so, the USE's for them
328 	     don't count and should be skipped.  */
329 	  rtx insn = PREV_INSN (x);
330 	  rtx sequence = 0;
331 	  int seq_size = 0;
332 	  int i;
333 
334 	  /* If we are part of a delay slot sequence, point at the SEQUENCE.  */
335 	  if (NEXT_INSN (insn) != x)
336 	    {
337 	      sequence = PATTERN (NEXT_INSN (insn));
338 	      seq_size = XVECLEN (sequence, 0);
339 	      gcc_assert (GET_CODE (sequence) == SEQUENCE);
340 	    }
341 
342 	  res->memory = 1;
343 	  SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
344 	  if (frame_pointer_needed)
345 	    {
346 	      SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
347 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
348 	      SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
349 #endif
350 	    }
351 
352 	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
353 	    if (global_regs[i])
354 	      SET_HARD_REG_BIT (res->regs, i);
355 
356 	  /* Check for a REG_SETJMP.  If it exists, then we must
357 	     assume that this call can need any register.
358 
359 	     This is done to be more conservative about how we handle setjmp.
360 	     We assume that they both use and set all registers.  Using all
361 	     registers ensures that a register will not be considered dead
362 	     just because it crosses a setjmp call.  A register should be
363 	     considered dead only if the setjmp call returns nonzero.  */
364 	  if (find_reg_note (x, REG_SETJMP, NULL))
365 	    SET_HARD_REG_SET (res->regs);
366 
367 	  {
368 	    rtx link;
369 
370 	    for (link = CALL_INSN_FUNCTION_USAGE (x);
371 		 link;
372 		 link = XEXP (link, 1))
373 	      if (GET_CODE (XEXP (link, 0)) == USE)
374 		{
375 		  for (i = 1; i < seq_size; i++)
376 		    {
377 		      rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
378 		      if (GET_CODE (slot_pat) == SET
379 			  && rtx_equal_p (SET_DEST (slot_pat),
380 					  XEXP (XEXP (link, 0), 0)))
381 			break;
382 		    }
383 		  if (i >= seq_size)
384 		    mark_referenced_resources (XEXP (XEXP (link, 0), 0),
385 					       res, 0);
386 		}
387 	  }
388 	}
389 
390       /* ... fall through to other INSN processing ...  */
391 
392     case INSN:
393     case JUMP_INSN:
394 
395 #ifdef INSN_REFERENCES_ARE_DELAYED
396       if (! include_delayed_effects
397 	  && INSN_REFERENCES_ARE_DELAYED (x))
398 	return;
399 #endif
400 
401       /* No special processing, just speed up.  */
402       mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
403       return;
404 
405     default:
406       break;
407     }
408 
409   /* Process each sub-expression and flag what it needs.  */
410   format_ptr = GET_RTX_FORMAT (code);
411   for (i = 0; i < GET_RTX_LENGTH (code); i++)
412     switch (*format_ptr++)
413       {
414       case 'e':
415 	mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
416 	break;
417 
418       case 'E':
419 	for (j = 0; j < XVECLEN (x, i); j++)
420 	  mark_referenced_resources (XVECEXP (x, i, j), res,
421 				     include_delayed_effects);
422 	break;
423       }
424 }
425 
426 /* A subroutine of mark_target_live_regs.  Search forward from TARGET
427    looking for registers that are set before they are used.  These are dead.
428    Stop after passing a few conditional jumps, and/or a small
429    number of unconditional branches.  */
430 
431 static rtx
find_dead_or_set_registers(rtx target,struct resources * res,rtx * jump_target,int jump_count,struct resources set,struct resources needed)432 find_dead_or_set_registers (rtx target, struct resources *res,
433 			    rtx *jump_target, int jump_count,
434 			    struct resources set, struct resources needed)
435 {
436   HARD_REG_SET scratch;
437   rtx insn, next;
438   rtx jump_insn = 0;
439   int i;
440 
441   for (insn = target; insn; insn = next)
442     {
443       rtx this_jump_insn = insn;
444 
445       next = NEXT_INSN (insn);
446 
447       /* If this instruction can throw an exception, then we don't
448 	 know where we might end up next.  That means that we have to
449 	 assume that whatever we have already marked as live really is
450 	 live.  */
451       if (can_throw_internal (insn))
452 	break;
453 
454       switch (GET_CODE (insn))
455 	{
456 	case CODE_LABEL:
457 	  /* After a label, any pending dead registers that weren't yet
458 	     used can be made dead.  */
459 	  AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
460 	  AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
461 	  CLEAR_HARD_REG_SET (pending_dead_regs);
462 
463 	  continue;
464 
465 	case BARRIER:
466 	case NOTE:
467 	  continue;
468 
469 	case INSN:
470 	  if (GET_CODE (PATTERN (insn)) == USE)
471 	    {
472 	      /* If INSN is a USE made by update_block, we care about the
473 		 underlying insn.  Any registers set by the underlying insn
474 		 are live since the insn is being done somewhere else.  */
475 	      if (INSN_P (XEXP (PATTERN (insn), 0)))
476 		mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
477 				    MARK_SRC_DEST_CALL);
478 
479 	      /* All other USE insns are to be ignored.  */
480 	      continue;
481 	    }
482 	  else if (GET_CODE (PATTERN (insn)) == CLOBBER)
483 	    continue;
484 	  else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
485 	    {
486 	      /* An unconditional jump can be used to fill the delay slot
487 		 of a call, so search for a JUMP_INSN in any position.  */
488 	      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
489 		{
490 		  this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
491 		  if (JUMP_P (this_jump_insn))
492 		    break;
493 		}
494 	    }
495 
496 	default:
497 	  break;
498 	}
499 
500       if (JUMP_P (this_jump_insn))
501 	{
502 	  if (jump_count++ < 10)
503 	    {
504 	      if (any_uncondjump_p (this_jump_insn)
505 		  || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
506 		{
507 		  next = JUMP_LABEL (this_jump_insn);
508 		  if (jump_insn == 0)
509 		    {
510 		      jump_insn = insn;
511 		      if (jump_target)
512 			*jump_target = JUMP_LABEL (this_jump_insn);
513 		    }
514 		}
515 	      else if (any_condjump_p (this_jump_insn))
516 		{
517 		  struct resources target_set, target_res;
518 		  struct resources fallthrough_res;
519 
520 		  /* We can handle conditional branches here by following
521 		     both paths, and then IOR the results of the two paths
522 		     together, which will give us registers that are dead
523 		     on both paths.  Since this is expensive, we give it
524 		     a much higher cost than unconditional branches.  The
525 		     cost was chosen so that we will follow at most 1
526 		     conditional branch.  */
527 
528 		  jump_count += 4;
529 		  if (jump_count >= 10)
530 		    break;
531 
532 		  mark_referenced_resources (insn, &needed, 1);
533 
534 		  /* For an annulled branch, mark_set_resources ignores slots
535 		     filled by instructions from the target.  This is correct
536 		     if the branch is not taken.  Since we are following both
537 		     paths from the branch, we must also compute correct info
538 		     if the branch is taken.  We do this by inverting all of
539 		     the INSN_FROM_TARGET_P bits, calling mark_set_resources,
540 		     and then inverting the INSN_FROM_TARGET_P bits again.  */
541 
542 		  if (GET_CODE (PATTERN (insn)) == SEQUENCE
543 		      && INSN_ANNULLED_BRANCH_P (this_jump_insn))
544 		    {
545 		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
546 			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
547 			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
548 
549 		      target_set = set;
550 		      mark_set_resources (insn, &target_set, 0,
551 					  MARK_SRC_DEST_CALL);
552 
553 		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
554 			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
555 			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
556 
557 		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
558 		    }
559 		  else
560 		    {
561 		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
562 		      target_set = set;
563 		    }
564 
565 		  target_res = *res;
566 		  COPY_HARD_REG_SET (scratch, target_set.regs);
567 		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
568 		  AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
569 
570 		  fallthrough_res = *res;
571 		  COPY_HARD_REG_SET (scratch, set.regs);
572 		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
573 		  AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
574 
575 		  find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
576 					      &target_res, 0, jump_count,
577 					      target_set, needed);
578 		  find_dead_or_set_registers (next,
579 					      &fallthrough_res, 0, jump_count,
580 					      set, needed);
581 		  IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
582 		  AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
583 		  break;
584 		}
585 	      else
586 		break;
587 	    }
588 	  else
589 	    {
590 	      /* Don't try this optimization if we expired our jump count
591 		 above, since that would mean there may be an infinite loop
592 		 in the function being compiled.  */
593 	      jump_insn = 0;
594 	      break;
595 	    }
596 	}
597 
598       mark_referenced_resources (insn, &needed, 1);
599       mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
600 
601       COPY_HARD_REG_SET (scratch, set.regs);
602       AND_COMPL_HARD_REG_SET (scratch, needed.regs);
603       AND_COMPL_HARD_REG_SET (res->regs, scratch);
604     }
605 
606   return jump_insn;
607 }
608 
609 /* Given X, a part of an insn, and a pointer to a `struct resource',
610    RES, indicate which resources are modified by the insn. If
611    MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
612    set by the called routine.
613 
614    If IN_DEST is nonzero, it means we are inside a SET.  Otherwise,
615    objects are being referenced instead of set.
616 
617    We never mark the insn as modifying the condition code unless it explicitly
618    SETs CC0 even though this is not totally correct.  The reason for this is
619    that we require a SET of CC0 to immediately precede the reference to CC0.
620    So if some other insn sets CC0 as a side-effect, we know it cannot affect
621    our computation and thus may be placed in a delay slot.  */
622 
623 void
mark_set_resources(rtx x,struct resources * res,int in_dest,enum mark_resource_type mark_type)624 mark_set_resources (rtx x, struct resources *res, int in_dest,
625 		    enum mark_resource_type mark_type)
626 {
627   enum rtx_code code;
628   int i, j;
629   unsigned int r;
630   const char *format_ptr;
631 
632  restart:
633 
634   code = GET_CODE (x);
635 
636   switch (code)
637     {
638     case NOTE:
639     case BARRIER:
640     case CODE_LABEL:
641     case USE:
642     case CONST_INT:
643     case CONST_DOUBLE:
644     case CONST_VECTOR:
645     case LABEL_REF:
646     case SYMBOL_REF:
647     case CONST:
648     case PC:
649       /* These don't set any resources.  */
650       return;
651 
652     case CC0:
653       if (in_dest)
654 	res->cc = 1;
655       return;
656 
657     case CALL_INSN:
658       /* Called routine modifies the condition code, memory, any registers
659 	 that aren't saved across calls, global registers and anything
660 	 explicitly CLOBBERed immediately after the CALL_INSN.  */
661 
662       if (mark_type == MARK_SRC_DEST_CALL)
663 	{
664 	  rtx link;
665 
666 	  res->cc = res->memory = 1;
667 	  for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
668 	    if (call_used_regs[r] || global_regs[r])
669 	      SET_HARD_REG_BIT (res->regs, r);
670 
671 	  for (link = CALL_INSN_FUNCTION_USAGE (x);
672 	       link; link = XEXP (link, 1))
673 	    if (GET_CODE (XEXP (link, 0)) == CLOBBER)
674 	      mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
675 				  MARK_SRC_DEST);
676 
677 	  /* Check for a REG_SETJMP.  If it exists, then we must
678 	     assume that this call can clobber any register.  */
679 	  if (find_reg_note (x, REG_SETJMP, NULL))
680 	    SET_HARD_REG_SET (res->regs);
681 	}
682 
683       /* ... and also what its RTL says it modifies, if anything.  */
684 
685     case JUMP_INSN:
686     case INSN:
687 
688 	/* An insn consisting of just a CLOBBER (or USE) is just for flow
689 	   and doesn't actually do anything, so we ignore it.  */
690 
691 #ifdef INSN_SETS_ARE_DELAYED
692       if (mark_type != MARK_SRC_DEST_CALL
693 	  && INSN_SETS_ARE_DELAYED (x))
694 	return;
695 #endif
696 
697       x = PATTERN (x);
698       if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
699 	goto restart;
700       return;
701 
702     case SET:
703       /* If the source of a SET is a CALL, this is actually done by
704 	 the called routine.  So only include it if we are to include the
705 	 effects of the calling routine.  */
706 
707       mark_set_resources (SET_DEST (x), res,
708 			  (mark_type == MARK_SRC_DEST_CALL
709 			   || GET_CODE (SET_SRC (x)) != CALL),
710 			  mark_type);
711 
712       mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
713       return;
714 
715     case CLOBBER:
716       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
717       return;
718 
719     case SEQUENCE:
720       for (i = 0; i < XVECLEN (x, 0); i++)
721 	if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
722 	       && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
723 	  mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
724       return;
725 
726     case POST_INC:
727     case PRE_INC:
728     case POST_DEC:
729     case PRE_DEC:
730       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
731       return;
732 
733     case PRE_MODIFY:
734     case POST_MODIFY:
735       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
736       mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
737       mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
738       return;
739 
740     case SIGN_EXTRACT:
741     case ZERO_EXTRACT:
742       mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
743       mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
744       mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
745       return;
746 
747     case MEM:
748       if (in_dest)
749 	{
750 	  res->memory = 1;
751 	  res->unch_memory |= MEM_READONLY_P (x);
752 	  res->volatil |= MEM_VOLATILE_P (x);
753 	}
754 
755       mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
756       return;
757 
758     case SUBREG:
759       if (in_dest)
760 	{
761 	  if (!REG_P (SUBREG_REG (x)))
762 	    mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
763 	  else
764 	    {
765 	      unsigned int regno = subreg_regno (x);
766 	      unsigned int last_regno
767 		= regno + hard_regno_nregs[regno][GET_MODE (x)];
768 
769 	      gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
770 	      for (r = regno; r < last_regno; r++)
771 		SET_HARD_REG_BIT (res->regs, r);
772 	    }
773 	}
774       return;
775 
776     case REG:
777       if (in_dest)
778 	{
779 	  unsigned int regno = REGNO (x);
780 	  unsigned int last_regno
781 	    = regno + hard_regno_nregs[regno][GET_MODE (x)];
782 
783 	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
784 	  for (r = regno; r < last_regno; r++)
785 	    SET_HARD_REG_BIT (res->regs, r);
786 	}
787       return;
788 
789     case UNSPEC_VOLATILE:
790     case ASM_INPUT:
791       /* Traditional asm's are always volatile.  */
792       res->volatil = 1;
793       return;
794 
795     case TRAP_IF:
796       res->volatil = 1;
797       break;
798 
799     case ASM_OPERANDS:
800       res->volatil |= MEM_VOLATILE_P (x);
801 
802       /* For all ASM_OPERANDS, we must traverse the vector of input operands.
803 	 We can not just fall through here since then we would be confused
804 	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
805 	 traditional asms unlike their normal usage.  */
806 
807       for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
808 	mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
809 			    MARK_SRC_DEST);
810       return;
811 
812     default:
813       break;
814     }
815 
816   /* Process each sub-expression and flag what it needs.  */
817   format_ptr = GET_RTX_FORMAT (code);
818   for (i = 0; i < GET_RTX_LENGTH (code); i++)
819     switch (*format_ptr++)
820       {
821       case 'e':
822 	mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
823 	break;
824 
825       case 'E':
826 	for (j = 0; j < XVECLEN (x, i); j++)
827 	  mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
828 	break;
829       }
830 }
831 
832 /* Return TRUE if INSN is a return, possibly with a filled delay slot.  */
833 
834 static bool
return_insn_p(rtx insn)835 return_insn_p (rtx insn)
836 {
837   if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
838     return true;
839 
840   if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
841     return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
842 
843   return false;
844 }
845 
846 /* Set the resources that are live at TARGET.
847 
848    If TARGET is zero, we refer to the end of the current function and can
849    return our precomputed value.
850 
851    Otherwise, we try to find out what is live by consulting the basic block
852    information.  This is tricky, because we must consider the actions of
853    reload and jump optimization, which occur after the basic block information
854    has been computed.
855 
856    Accordingly, we proceed as follows::
857 
858    We find the previous BARRIER and look at all immediately following labels
859    (with no intervening active insns) to see if any of them start a basic
860    block.  If we hit the start of the function first, we use block 0.
861 
862    Once we have found a basic block and a corresponding first insns, we can
863    accurately compute the live status from basic_block_live_regs and
864    reg_renumber.  (By starting at a label following a BARRIER, we are immune
865    to actions taken by reload and jump.)  Then we scan all insns between
866    that point and our target.  For each CLOBBER (or for call-clobbered regs
867    when we pass a CALL_INSN), mark the appropriate registers are dead.  For
868    a SET, mark them as live.
869 
870    We have to be careful when using REG_DEAD notes because they are not
871    updated by such things as find_equiv_reg.  So keep track of registers
872    marked as dead that haven't been assigned to, and mark them dead at the
873    next CODE_LABEL since reload and jump won't propagate values across labels.
874 
875    If we cannot find the start of a basic block (should be a very rare
876    case, if it can happen at all), mark everything as potentially live.
877 
878    Next, scan forward from TARGET looking for things set or clobbered
879    before they are used.  These are not live.
880 
881    Because we can be called many times on the same target, save our results
882    in a hash table indexed by INSN_UID.  This is only done if the function
883    init_resource_info () was invoked before we are called.  */
884 
885 void
mark_target_live_regs(rtx insns,rtx target,struct resources * res)886 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
887 {
888   int b = -1;
889   unsigned int i;
890   struct target_info *tinfo = NULL;
891   rtx insn;
892   rtx jump_insn = 0;
893   rtx jump_target;
894   HARD_REG_SET scratch;
895   struct resources set, needed;
896 
897   /* Handle end of function.  */
898   if (target == 0)
899     {
900       *res = end_of_function_needs;
901       return;
902     }
903 
904   /* Handle return insn.  */
905   else if (return_insn_p (target))
906     {
907       *res = end_of_function_needs;
908       mark_referenced_resources (target, res, 0);
909       return;
910     }
911 
912   /* We have to assume memory is needed, but the CC isn't.  */
913   res->memory = 1;
914   res->volatil = res->unch_memory = 0;
915   res->cc = 0;
916 
917   /* See if we have computed this value already.  */
918   if (target_hash_table != NULL)
919     {
920       for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
921 	   tinfo; tinfo = tinfo->next)
922 	if (tinfo->uid == INSN_UID (target))
923 	  break;
924 
925       /* Start by getting the basic block number.  If we have saved
926 	 information, we can get it from there unless the insn at the
927 	 start of the basic block has been deleted.  */
928       if (tinfo && tinfo->block != -1
929 	  && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
930 	b = tinfo->block;
931     }
932 
933   if (b == -1)
934     b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
935 
936   if (target_hash_table != NULL)
937     {
938       if (tinfo)
939 	{
940 	  /* If the information is up-to-date, use it.  Otherwise, we will
941 	     update it below.  */
942 	  if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
943 	    {
944 	      COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
945 	      return;
946 	    }
947 	}
948       else
949 	{
950 	  /* Allocate a place to put our results and chain it into the
951 	     hash table.  */
952 	  tinfo = XNEW (struct target_info);
953 	  tinfo->uid = INSN_UID (target);
954 	  tinfo->block = b;
955 	  tinfo->next
956 	    = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
957 	  target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
958 	}
959     }
960 
961   CLEAR_HARD_REG_SET (pending_dead_regs);
962 
963   /* If we found a basic block, get the live registers from it and update
964      them with anything set or killed between its start and the insn before
965      TARGET.  Otherwise, we must assume everything is live.  */
966   if (b != -1)
967     {
968       regset regs_live = BASIC_BLOCK (b)->il.rtl->global_live_at_start;
969       unsigned int j;
970       unsigned int regno;
971       rtx start_insn, stop_insn;
972       reg_set_iterator rsi;
973 
974       /* Compute hard regs live at start of block -- this is the real hard regs
975 	 marked live, plus live pseudo regs that have been renumbered to
976 	 hard regs.  */
977 
978       REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
979 
980       EXECUTE_IF_SET_IN_REG_SET (regs_live, FIRST_PSEUDO_REGISTER, i, rsi)
981 	{
982 	  if (reg_renumber[i] >= 0)
983 	    {
984 	      regno = reg_renumber[i];
985 	      for (j = regno;
986 		   j < regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)];
987 		   j++)
988 		SET_HARD_REG_BIT (current_live_regs, j);
989 	    }
990 	}
991 
992       /* Get starting and ending insn, handling the case where each might
993 	 be a SEQUENCE.  */
994       start_insn = (b == 0 ? insns : BB_HEAD (BASIC_BLOCK (b)));
995       stop_insn = target;
996 
997       if (NONJUMP_INSN_P (start_insn)
998 	  && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
999 	start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
1000 
1001       if (NONJUMP_INSN_P (stop_insn)
1002 	  && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
1003 	stop_insn = next_insn (PREV_INSN (stop_insn));
1004 
1005       for (insn = start_insn; insn != stop_insn;
1006 	   insn = next_insn_no_annul (insn))
1007 	{
1008 	  rtx link;
1009 	  rtx real_insn = insn;
1010 	  enum rtx_code code = GET_CODE (insn);
1011 
1012 	  /* If this insn is from the target of a branch, it isn't going to
1013 	     be used in the sequel.  If it is used in both cases, this
1014 	     test will not be true.  */
1015 	  if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1016 	      && INSN_FROM_TARGET_P (insn))
1017 	    continue;
1018 
1019 	  /* If this insn is a USE made by update_block, we care about the
1020 	     underlying insn.  */
1021 	  if (code == INSN && GET_CODE (PATTERN (insn)) == USE
1022 	      && INSN_P (XEXP (PATTERN (insn), 0)))
1023 	      real_insn = XEXP (PATTERN (insn), 0);
1024 
1025 	  if (CALL_P (real_insn))
1026 	    {
1027 	      /* CALL clobbers all call-used regs that aren't fixed except
1028 		 sp, ap, and fp.  Do this before setting the result of the
1029 		 call live.  */
1030 	      AND_COMPL_HARD_REG_SET (current_live_regs,
1031 				      regs_invalidated_by_call);
1032 
1033 	      /* A CALL_INSN sets any global register live, since it may
1034 		 have been modified by the call.  */
1035 	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1036 		if (global_regs[i])
1037 		  SET_HARD_REG_BIT (current_live_regs, i);
1038 	    }
1039 
1040 	  /* Mark anything killed in an insn to be deadened at the next
1041 	     label.  Ignore USE insns; the only REG_DEAD notes will be for
1042 	     parameters.  But they might be early.  A CALL_INSN will usually
1043 	     clobber registers used for parameters.  It isn't worth bothering
1044 	     with the unlikely case when it won't.  */
1045 	  if ((NONJUMP_INSN_P (real_insn)
1046 	       && GET_CODE (PATTERN (real_insn)) != USE
1047 	       && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1048 	      || JUMP_P (real_insn)
1049 	      || CALL_P (real_insn))
1050 	    {
1051 	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1052 		if (REG_NOTE_KIND (link) == REG_DEAD
1053 		    && REG_P (XEXP (link, 0))
1054 		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1055 		  {
1056 		    unsigned int first_regno = REGNO (XEXP (link, 0));
1057 		    unsigned int last_regno
1058 		      = (first_regno
1059 			 + hard_regno_nregs[first_regno]
1060 					   [GET_MODE (XEXP (link, 0))]);
1061 
1062 		    for (i = first_regno; i < last_regno; i++)
1063 		      SET_HARD_REG_BIT (pending_dead_regs, i);
1064 		  }
1065 
1066 	      note_stores (PATTERN (real_insn), update_live_status, NULL);
1067 
1068 	      /* If any registers were unused after this insn, kill them.
1069 		 These notes will always be accurate.  */
1070 	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1071 		if (REG_NOTE_KIND (link) == REG_UNUSED
1072 		    && REG_P (XEXP (link, 0))
1073 		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1074 		  {
1075 		    unsigned int first_regno = REGNO (XEXP (link, 0));
1076 		    unsigned int last_regno
1077 		      = (first_regno
1078 			 + hard_regno_nregs[first_regno]
1079 					   [GET_MODE (XEXP (link, 0))]);
1080 
1081 		    for (i = first_regno; i < last_regno; i++)
1082 		      CLEAR_HARD_REG_BIT (current_live_regs, i);
1083 		  }
1084 	    }
1085 
1086 	  else if (LABEL_P (real_insn))
1087 	    {
1088 	      /* A label clobbers the pending dead registers since neither
1089 		 reload nor jump will propagate a value across a label.  */
1090 	      AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1091 	      CLEAR_HARD_REG_SET (pending_dead_regs);
1092 	    }
1093 
1094 	  /* The beginning of the epilogue corresponds to the end of the
1095 	     RTL chain when there are no epilogue insns.  Certain resources
1096 	     are implicitly required at that point.  */
1097 	  else if (NOTE_P (real_insn)
1098 		   && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1099 	    IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1100 	}
1101 
1102       COPY_HARD_REG_SET (res->regs, current_live_regs);
1103       if (tinfo != NULL)
1104 	{
1105 	  tinfo->block = b;
1106 	  tinfo->bb_tick = bb_ticks[b];
1107 	}
1108     }
1109   else
1110     /* We didn't find the start of a basic block.  Assume everything
1111        in use.  This should happen only extremely rarely.  */
1112     SET_HARD_REG_SET (res->regs);
1113 
1114   CLEAR_RESOURCE (&set);
1115   CLEAR_RESOURCE (&needed);
1116 
1117   jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1118 					  set, needed);
1119 
1120   /* If we hit an unconditional branch, we have another way of finding out
1121      what is live: we can see what is live at the branch target and include
1122      anything used but not set before the branch.  We add the live
1123      resources found using the test below to those found until now.  */
1124 
1125   if (jump_insn)
1126     {
1127       struct resources new_resources;
1128       rtx stop_insn = next_active_insn (jump_insn);
1129 
1130       mark_target_live_regs (insns, next_active_insn (jump_target),
1131 			     &new_resources);
1132       CLEAR_RESOURCE (&set);
1133       CLEAR_RESOURCE (&needed);
1134 
1135       /* Include JUMP_INSN in the needed registers.  */
1136       for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1137 	{
1138 	  mark_referenced_resources (insn, &needed, 1);
1139 
1140 	  COPY_HARD_REG_SET (scratch, needed.regs);
1141 	  AND_COMPL_HARD_REG_SET (scratch, set.regs);
1142 	  IOR_HARD_REG_SET (new_resources.regs, scratch);
1143 
1144 	  mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1145 	}
1146 
1147       IOR_HARD_REG_SET (res->regs, new_resources.regs);
1148     }
1149 
1150   if (tinfo != NULL)
1151     {
1152       COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1153     }
1154 }
1155 
1156 /* Initialize the resources required by mark_target_live_regs ().
1157    This should be invoked before the first call to mark_target_live_regs.  */
1158 
1159 void
init_resource_info(rtx epilogue_insn)1160 init_resource_info (rtx epilogue_insn)
1161 {
1162   int i;
1163 
1164   /* Indicate what resources are required to be valid at the end of the current
1165      function.  The condition code never is and memory always is.  If the
1166      frame pointer is needed, it is and so is the stack pointer unless
1167      EXIT_IGNORE_STACK is nonzero.  If the frame pointer is not needed, the
1168      stack pointer is.  Registers used to return the function value are
1169      needed.  Registers holding global variables are needed.  */
1170 
1171   end_of_function_needs.cc = 0;
1172   end_of_function_needs.memory = 1;
1173   end_of_function_needs.unch_memory = 0;
1174   CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1175 
1176   if (frame_pointer_needed)
1177     {
1178       SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1179 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1180       SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1181 #endif
1182       if (! EXIT_IGNORE_STACK
1183 	  || current_function_sp_is_unchanging)
1184 	SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1185     }
1186   else
1187     SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1188 
1189   if (current_function_return_rtx != 0)
1190     mark_referenced_resources (current_function_return_rtx,
1191 			       &end_of_function_needs, 1);
1192 
1193   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1194     if (global_regs[i]
1195 #ifdef EPILOGUE_USES
1196 	|| EPILOGUE_USES (i)
1197 #endif
1198 	)
1199       SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1200 
1201   /* The registers required to be live at the end of the function are
1202      represented in the flow information as being dead just prior to
1203      reaching the end of the function.  For example, the return of a value
1204      might be represented by a USE of the return register immediately
1205      followed by an unconditional jump to the return label where the
1206      return label is the end of the RTL chain.  The end of the RTL chain
1207      is then taken to mean that the return register is live.
1208 
1209      This sequence is no longer maintained when epilogue instructions are
1210      added to the RTL chain.  To reconstruct the original meaning, the
1211      start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1212      point where these registers become live (start_of_epilogue_needs).
1213      If epilogue instructions are present, the registers set by those
1214      instructions won't have been processed by flow.  Thus, those
1215      registers are additionally required at the end of the RTL chain
1216      (end_of_function_needs).  */
1217 
1218   start_of_epilogue_needs = end_of_function_needs;
1219 
1220   while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1221     {
1222       mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1223 			  MARK_SRC_DEST_CALL);
1224       if (return_insn_p (epilogue_insn))
1225 	break;
1226     }
1227 
1228   /* Allocate and initialize the tables used by mark_target_live_regs.  */
1229   target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1230   bb_ticks = XCNEWVEC (int, last_basic_block);
1231 }
1232 
1233 /* Free up the resources allocated to mark_target_live_regs ().  This
1234    should be invoked after the last call to mark_target_live_regs ().  */
1235 
1236 void
free_resource_info(void)1237 free_resource_info (void)
1238 {
1239   if (target_hash_table != NULL)
1240     {
1241       int i;
1242 
1243       for (i = 0; i < TARGET_HASH_PRIME; ++i)
1244 	{
1245 	  struct target_info *ti = target_hash_table[i];
1246 
1247 	  while (ti)
1248 	    {
1249 	      struct target_info *next = ti->next;
1250 	      free (ti);
1251 	      ti = next;
1252 	    }
1253 	}
1254 
1255       free (target_hash_table);
1256       target_hash_table = NULL;
1257     }
1258 
1259   if (bb_ticks != NULL)
1260     {
1261       free (bb_ticks);
1262       bb_ticks = NULL;
1263     }
1264 }
1265 
1266 /* Clear any hashed information that we have stored for INSN.  */
1267 
1268 void
clear_hashed_info_for_insn(rtx insn)1269 clear_hashed_info_for_insn (rtx insn)
1270 {
1271   struct target_info *tinfo;
1272 
1273   if (target_hash_table != NULL)
1274     {
1275       for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1276 	   tinfo; tinfo = tinfo->next)
1277 	if (tinfo->uid == INSN_UID (insn))
1278 	  break;
1279 
1280       if (tinfo)
1281 	tinfo->block = -1;
1282     }
1283 }
1284 
1285 /* Increment the tick count for the basic block that contains INSN.  */
1286 
1287 void
incr_ticks_for_insn(rtx insn)1288 incr_ticks_for_insn (rtx insn)
1289 {
1290   int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1291 
1292   if (b != -1)
1293     bb_ticks[b]++;
1294 }
1295 
1296 /* Add TRIAL to the set of resources used at the end of the current
1297    function.  */
1298 void
mark_end_of_function_resources(rtx trial,int include_delayed_effects)1299 mark_end_of_function_resources (rtx trial, int include_delayed_effects)
1300 {
1301   mark_referenced_resources (trial, &end_of_function_needs,
1302 			     include_delayed_effects);
1303 }
1304