xref: /openbsd/gnu/gcc/gcc/tree-ssa-uncprop.c (revision 404b540a)
1 /* Routines for discovering and unpropagating edge equivalences.
2    Copyright (C) 2005 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING.  If not, write to
18 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "timevar.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "domwalk.h"
39 #include "real.h"
40 #include "tree-pass.h"
41 #include "tree-ssa-propagate.h"
42 #include "langhooks.h"
43 
44 /* The basic structure describing an equivalency created by traversing
45    an edge.  Traversing the edge effectively means that we can assume
46    that we've seen an assignment LHS = RHS.  */
47 struct edge_equivalency
48 {
49   tree rhs;
50   tree lhs;
51 };
52 
53 /* This routine finds and records edge equivalences for every edge
54    in the CFG.
55 
56    When complete, each edge that creates an equivalency will have an
57    EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
58    The caller is responsible for freeing the AUX fields.  */
59 
60 static void
associate_equivalences_with_edges(void)61 associate_equivalences_with_edges (void)
62 {
63   basic_block bb;
64 
65   /* Walk over each block.  If the block ends with a control statement,
66      then it might create a useful equivalence.  */
67   FOR_EACH_BB (bb)
68     {
69       block_stmt_iterator bsi = bsi_last (bb);
70       tree stmt;
71 
72       /* If the block does not end with a COND_EXPR or SWITCH_EXPR
73 	 then there is nothing to do.  */
74       if (bsi_end_p (bsi))
75 	continue;
76 
77       stmt = bsi_stmt (bsi);
78 
79       if (!stmt)
80 	continue;
81 
82       /* A COND_EXPR may create an equivalency in a variety of different
83 	 ways.  */
84       if (TREE_CODE (stmt) == COND_EXPR)
85 	{
86 	  tree cond = COND_EXPR_COND (stmt);
87 	  edge true_edge;
88 	  edge false_edge;
89 	  struct edge_equivalency *equivalency;
90 
91 	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
92 
93 	  /* If the conditional is a single variable 'X', record 'X = 1'
94 	     for the true edge and 'X = 0' on the false edge.  */
95 	  if (TREE_CODE (cond) == SSA_NAME
96 	      && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
97 	    {
98 	      equivalency = XNEW (struct edge_equivalency);
99 	      equivalency->rhs = constant_boolean_node (1, TREE_TYPE (cond));
100 	      equivalency->lhs = cond;
101 	      true_edge->aux = equivalency;
102 
103 	      equivalency = XNEW (struct edge_equivalency);
104 	      equivalency->rhs = constant_boolean_node (0, TREE_TYPE (cond));
105 	      equivalency->lhs = cond;
106 	      false_edge->aux = equivalency;
107 	    }
108 	  /* Equality tests may create one or two equivalences.  */
109 	  else if (TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
110 	    {
111 	      tree op0 = TREE_OPERAND (cond, 0);
112 	      tree op1 = TREE_OPERAND (cond, 1);
113 
114 	      /* Special case comparing booleans against a constant as we
115 		 know the value of OP0 on both arms of the branch.  i.e., we
116 		 can record an equivalence for OP0 rather than COND.  */
117 	      if (TREE_CODE (op0) == SSA_NAME
118 		  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
119 		  && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
120 		  && is_gimple_min_invariant (op1))
121 		{
122 		  if (TREE_CODE (cond) == EQ_EXPR)
123 		    {
124 		      equivalency = XNEW (struct edge_equivalency);
125 		      equivalency->lhs = op0;
126 		      equivalency->rhs = (integer_zerop (op1)
127 					  ? boolean_false_node
128 					  : boolean_true_node);
129 		      true_edge->aux = equivalency;
130 
131 		      equivalency = XNEW (struct edge_equivalency);
132 		      equivalency->lhs = op0;
133 		      equivalency->rhs = (integer_zerop (op1)
134 					  ? boolean_true_node
135 					  : boolean_false_node);
136 		      false_edge->aux = equivalency;
137 		    }
138 		  else
139 		    {
140 		      equivalency = XNEW (struct edge_equivalency);
141 		      equivalency->lhs = op0;
142 		      equivalency->rhs = (integer_zerop (op1)
143 					  ? boolean_true_node
144 					  : boolean_false_node);
145 		      true_edge->aux = equivalency;
146 
147 		      equivalency = XNEW (struct edge_equivalency);
148 		      equivalency->lhs = op0;
149 		      equivalency->rhs = (integer_zerop (op1)
150 					  ? boolean_false_node
151 					  : boolean_true_node);
152 		      false_edge->aux = equivalency;
153 		    }
154 		}
155 
156 	      if (TREE_CODE (op0) == SSA_NAME
157 		  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
158 		  && (is_gimple_min_invariant (op1)
159 		      || (TREE_CODE (op1) == SSA_NAME
160 			  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))))
161 		{
162 		  /* For IEEE, -0.0 == 0.0, so we don't necessarily know
163 		     the sign of a variable compared against zero.  If
164 		     we're honoring signed zeros, then we cannot record
165 		     this value unless we know that the value is nonzero.  */
166 		  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
167 		      && (TREE_CODE (op1) != REAL_CST
168 			  || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (op1))))
169 		    continue;
170 
171 		  equivalency = XNEW (struct edge_equivalency);
172 		  equivalency->lhs = op0;
173 		  equivalency->rhs = op1;
174 		  if (TREE_CODE (cond) == EQ_EXPR)
175 		    true_edge->aux = equivalency;
176 		  else
177 		    false_edge->aux = equivalency;
178 
179 		}
180 	    }
181 
182 	  /* ??? TRUTH_NOT_EXPR can create an equivalence too.  */
183 	}
184 
185       /* For a SWITCH_EXPR, a case label which represents a single
186 	 value and which is the only case label which reaches the
187 	 target block creates an equivalence.  */
188       if (TREE_CODE (stmt) == SWITCH_EXPR)
189 	{
190 	  tree cond = SWITCH_COND (stmt);
191 
192 	  if (TREE_CODE (cond) == SSA_NAME
193 	      && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
194 	    {
195 	      tree labels = SWITCH_LABELS (stmt);
196 	      int i, n_labels = TREE_VEC_LENGTH (labels);
197 	      tree *info = XCNEWVEC (tree, n_basic_blocks);
198 
199 	      /* Walk over the case label vector.  Record blocks
200 		 which are reached by a single case label which represents
201 		 a single value.  */
202 	      for (i = 0; i < n_labels; i++)
203 		{
204 		  tree label = TREE_VEC_ELT (labels, i);
205 		  basic_block bb = label_to_block (CASE_LABEL (label));
206 
207 
208 		  if (CASE_HIGH (label)
209 		      || !CASE_LOW (label)
210 		      || info[bb->index])
211 		    info[bb->index] = error_mark_node;
212 		  else
213 		    info[bb->index] = label;
214 		}
215 
216 	      /* Now walk over the blocks to determine which ones were
217 		 marked as being reached by a useful case label.  */
218 	      for (i = 0; i < n_basic_blocks; i++)
219 		{
220 		  tree node = info[i];
221 
222 		  if (node != NULL
223 		      && node != error_mark_node)
224 		    {
225 		      tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
226 		      struct edge_equivalency *equivalency;
227 
228 		      /* Record an equivalency on the edge from BB to basic
229 			 block I.  */
230 		      equivalency = XNEW (struct edge_equivalency);
231 		      equivalency->rhs = x;
232 		      equivalency->lhs = cond;
233 		      find_edge (bb, BASIC_BLOCK (i))->aux = equivalency;
234 		    }
235 		}
236 	      free (info);
237 	    }
238 	}
239 
240     }
241 }
242 
243 
244 /* Translating out of SSA sometimes requires inserting copies and
245    constant initializations on edges to eliminate PHI nodes.
246 
247    In some cases those copies and constant initializations are
248    redundant because the target already has the value on the
249    RHS of the assignment.
250 
251    We previously tried to catch these cases after translating
252    out of SSA form.  However, that code often missed cases.  Worse
253    yet, the cases it missed were also often missed by the RTL
254    optimizers.  Thus the resulting code had redundant instructions.
255 
256    This pass attempts to detect these situations before translating
257    out of SSA form.
258 
259    The key concept that this pass is built upon is that these
260    redundant copies and constant initializations often occur
261    due to constant/copy propagating equivalences resulting from
262    COND_EXPRs and SWITCH_EXPRs.
263 
264    We want to do those propagations as they can sometimes allow
265    the SSA optimizers to do a better job.  However, in the cases
266    where such propagations do not result in further optimization,
267    we would like to "undo" the propagation to avoid the redundant
268    copies and constant initializations.
269 
270    This pass works by first associating equivalences with edges in
271    the CFG.  For example, the edge leading from a SWITCH_EXPR to
272    its associated CASE_LABEL will have an equivalency between
273    SWITCH_COND and the value in the case label.
274 
275    Once we have found the edge equivalences, we proceed to walk
276    the CFG in dominator order.  As we traverse edges we record
277    equivalences associated with those edges we traverse.
278 
279    When we encounter a PHI node, we walk its arguments to see if we
280    have an equivalence for the PHI argument.  If so, then we replace
281    the argument.
282 
283    Equivalences are looked up based on their value (think of it as
284    the RHS of an assignment).   A value may be an SSA_NAME or an
285    invariant.  We may have several SSA_NAMEs with the same value,
286    so with each value we have a list of SSA_NAMEs that have the
287    same value.  */
288 
289 /* As we enter each block we record the value for any edge equivalency
290    leading to this block.  If no such edge equivalency exists, then we
291    record NULL.  These equivalences are live until we leave the dominator
292    subtree rooted at the block where we record the equivalency.  */
VEC(tree,heap)293 static VEC(tree,heap) *equiv_stack;
294 
295 /* Global hash table implementing a mapping from invariant values
296    to a list of SSA_NAMEs which have the same value.  We might be
297    able to reuse tree-vn for this code.  */
298 static htab_t equiv;
299 
300 /* Main structure for recording equivalences into our hash table.  */
301 struct equiv_hash_elt
302 {
303   /* The value/key of this entry.  */
304   tree value;
305 
306   /* List of SSA_NAMEs which have the same value/key.  */
307   VEC(tree,heap) *equivalences;
308 };
309 
310 static void uncprop_initialize_block (struct dom_walk_data *, basic_block);
311 static void uncprop_finalize_block (struct dom_walk_data *, basic_block);
312 static void uncprop_into_successor_phis (struct dom_walk_data *, basic_block);
313 
314 /* Hashing and equality routines for the hash table.  */
315 
316 static hashval_t
equiv_hash(const void * p)317 equiv_hash (const void *p)
318 {
319   tree value = ((struct equiv_hash_elt *)p)->value;
320   return iterative_hash_expr (value, 0);
321 }
322 
323 static int
equiv_eq(const void * p1,const void * p2)324 equiv_eq (const void *p1, const void *p2)
325 {
326   tree value1 = ((struct equiv_hash_elt *)p1)->value;
327   tree value2 = ((struct equiv_hash_elt *)p2)->value;
328 
329   return operand_equal_p (value1, value2, 0);
330 }
331 
332 /* Free an instance of equiv_hash_elt.  */
333 
334 static void
equiv_free(void * p)335 equiv_free (void *p)
336 {
337   struct equiv_hash_elt *elt = (struct equiv_hash_elt *) p;
338   VEC_free (tree, heap, elt->equivalences);
339   free (elt);
340 }
341 
342 /* Remove the most recently recorded equivalency for VALUE.  */
343 
344 static void
remove_equivalence(tree value)345 remove_equivalence (tree value)
346 {
347   struct equiv_hash_elt equiv_hash_elt, *equiv_hash_elt_p;
348   void **slot;
349 
350   equiv_hash_elt.value = value;
351   equiv_hash_elt.equivalences = NULL;
352 
353   slot = htab_find_slot (equiv, &equiv_hash_elt, NO_INSERT);
354 
355   equiv_hash_elt_p = (struct equiv_hash_elt *) *slot;
356   VEC_pop (tree, equiv_hash_elt_p->equivalences);
357 }
358 
359 /* Record EQUIVALENCE = VALUE into our hash table.  */
360 
361 static void
record_equiv(tree value,tree equivalence)362 record_equiv (tree value, tree equivalence)
363 {
364   struct equiv_hash_elt *equiv_hash_elt;
365   void **slot;
366 
367   equiv_hash_elt = XNEW (struct equiv_hash_elt);
368   equiv_hash_elt->value = value;
369   equiv_hash_elt->equivalences = NULL;
370 
371   slot = htab_find_slot (equiv, equiv_hash_elt, INSERT);
372 
373   if (*slot == NULL)
374     *slot = (void *) equiv_hash_elt;
375   else
376      free (equiv_hash_elt);
377 
378   equiv_hash_elt = (struct equiv_hash_elt *) *slot;
379 
380   VEC_safe_push (tree, heap, equiv_hash_elt->equivalences, equivalence);
381 }
382 
383 /* Main driver for un-cprop.  */
384 
385 static unsigned int
tree_ssa_uncprop(void)386 tree_ssa_uncprop (void)
387 {
388   struct dom_walk_data walk_data;
389   basic_block bb;
390 
391   associate_equivalences_with_edges ();
392 
393   /* Create our global data structures.  */
394   equiv = htab_create (1024, equiv_hash, equiv_eq, equiv_free);
395   equiv_stack = VEC_alloc (tree, heap, 2);
396 
397   /* We're going to do a dominator walk, so ensure that we have
398      dominance information.  */
399   calculate_dominance_info (CDI_DOMINATORS);
400 
401   /* Setup callbacks for the generic dominator tree walker.  */
402   walk_data.walk_stmts_backward = false;
403   walk_data.dom_direction = CDI_DOMINATORS;
404   walk_data.initialize_block_local_data = NULL;
405   walk_data.before_dom_children_before_stmts = uncprop_initialize_block;
406   walk_data.before_dom_children_walk_stmts = NULL;
407   walk_data.before_dom_children_after_stmts = uncprop_into_successor_phis;
408   walk_data.after_dom_children_before_stmts = NULL;
409   walk_data.after_dom_children_walk_stmts = NULL;
410   walk_data.after_dom_children_after_stmts = uncprop_finalize_block;
411   walk_data.global_data = NULL;
412   walk_data.block_local_data_size = 0;
413   walk_data.interesting_blocks = NULL;
414 
415   /* Now initialize the dominator walker.  */
416   init_walk_dominator_tree (&walk_data);
417 
418   /* Recursively walk the dominator tree undoing unprofitable
419      constant/copy propagations.  */
420   walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
421 
422   /* Finalize and clean up.  */
423   fini_walk_dominator_tree (&walk_data);
424 
425   /* EQUIV_STACK should already be empty at this point, so we just
426      need to empty elements out of the hash table, free EQUIV_STACK,
427      and cleanup the AUX field on the edges.  */
428   htab_delete (equiv);
429   VEC_free (tree, heap, equiv_stack);
430   FOR_EACH_BB (bb)
431     {
432       edge e;
433       edge_iterator ei;
434 
435       FOR_EACH_EDGE (e, ei, bb->succs)
436 	{
437 	  if (e->aux)
438 	    {
439 	      free (e->aux);
440 	      e->aux = NULL;
441 	    }
442 	}
443     }
444   return 0;
445 }
446 
447 
448 /* We have finished processing the dominator children of BB, perform
449    any finalization actions in preparation for leaving this node in
450    the dominator tree.  */
451 
452 static void
uncprop_finalize_block(struct dom_walk_data * walk_data ATTRIBUTE_UNUSED,basic_block bb ATTRIBUTE_UNUSED)453 uncprop_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
454 			basic_block bb ATTRIBUTE_UNUSED)
455 {
456   /* Pop the topmost value off the equiv stack.  */
457   tree value = VEC_pop (tree, equiv_stack);
458 
459   /* If that value was non-null, then pop the topmost equivalency off
460      its equivalency stack.  */
461   if (value != NULL)
462     remove_equivalence (value);
463 }
464 
465 /* Unpropagate values from PHI nodes in successor blocks of BB.  */
466 
467 static void
uncprop_into_successor_phis(struct dom_walk_data * walk_data ATTRIBUTE_UNUSED,basic_block bb)468 uncprop_into_successor_phis (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
469 			     basic_block bb)
470 {
471   edge e;
472   edge_iterator ei;
473 
474   /* For each successor edge, first temporarily record any equivalence
475      on that edge.  Then unpropagate values in any PHI nodes at the
476      destination of the edge.  Then remove the temporary equivalence.  */
477   FOR_EACH_EDGE (e, ei, bb->succs)
478     {
479       tree phi = phi_nodes (e->dest);
480 
481       /* If there are no PHI nodes in this destination, then there is
482 	 no sense in recording any equivalences.  */
483       if (!phi)
484 	continue;
485 
486       /* Record any equivalency associated with E.  */
487       if (e->aux)
488 	{
489 	  struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
490 	  record_equiv (equiv->rhs, equiv->lhs);
491 	}
492 
493       /* Walk over the PHI nodes, unpropagating values.  */
494       for ( ; phi; phi = PHI_CHAIN (phi))
495 	{
496 	  /* Sigh.  We'll have more efficient access to this one day.  */
497 	  tree arg = PHI_ARG_DEF (phi, e->dest_idx);
498 	  struct equiv_hash_elt equiv_hash_elt;
499 	  void **slot;
500 
501 	  /* If the argument is not an invariant, or refers to the same
502 	     underlying variable as the PHI result, then there's no
503 	     point in un-propagating the argument.  */
504 	  if (!is_gimple_min_invariant (arg)
505 	      && SSA_NAME_VAR (arg) != SSA_NAME_VAR (PHI_RESULT (phi)))
506 	    continue;
507 
508 	  /* Lookup this argument's value in the hash table.  */
509 	  equiv_hash_elt.value = arg;
510 	  equiv_hash_elt.equivalences = NULL;
511 	  slot = htab_find_slot (equiv, &equiv_hash_elt, NO_INSERT);
512 
513 	  if (slot)
514 	    {
515 	      struct equiv_hash_elt *elt = (struct equiv_hash_elt *) *slot;
516 	      int j;
517 
518 	      /* Walk every equivalence with the same value.  If we find
519 		 one with the same underlying variable as the PHI result,
520 		 then replace the value in the argument with its equivalent
521 		 SSA_NAME.  Use the most recent equivalence as hopefully
522 		 that results in shortest lifetimes.  */
523 	      for (j = VEC_length (tree, elt->equivalences) - 1; j >= 0; j--)
524 		{
525 		  tree equiv = VEC_index (tree, elt->equivalences, j);
526 
527 		  if (SSA_NAME_VAR (equiv) == SSA_NAME_VAR (PHI_RESULT (phi)))
528 		    {
529 		      SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
530 		      break;
531 		    }
532 		}
533 	    }
534 	}
535 
536       /* If we had an equivalence associated with this edge, remove it.  */
537       if (e->aux)
538 	{
539 	  struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
540 	  remove_equivalence (equiv->rhs);
541 	}
542     }
543 }
544 
545 /* Ignoring loop backedges, if BB has precisely one incoming edge then
546    return that edge.  Otherwise return NULL.  */
547 static edge
single_incoming_edge_ignoring_loop_edges(basic_block bb)548 single_incoming_edge_ignoring_loop_edges (basic_block bb)
549 {
550   edge retval = NULL;
551   edge e;
552   edge_iterator ei;
553 
554   FOR_EACH_EDGE (e, ei, bb->preds)
555     {
556       /* A loop back edge can be identified by the destination of
557 	 the edge dominating the source of the edge.  */
558       if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
559 	continue;
560 
561       /* If we have already seen a non-loop edge, then we must have
562 	 multiple incoming non-loop edges and thus we return NULL.  */
563       if (retval)
564 	return NULL;
565 
566       /* This is the first non-loop incoming edge we have found.  Record
567 	 it.  */
568       retval = e;
569     }
570 
571   return retval;
572 }
573 
574 static void
uncprop_initialize_block(struct dom_walk_data * walk_data ATTRIBUTE_UNUSED,basic_block bb)575 uncprop_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
576 			  basic_block bb)
577 {
578   basic_block parent;
579   edge e;
580   bool recorded = false;
581 
582   /* If this block is dominated by a single incoming edge and that edge
583      has an equivalency, then record the equivalency and push the
584      VALUE onto EQUIV_STACK.  Else push a NULL entry on EQUIV_STACK.  */
585   parent = get_immediate_dominator (CDI_DOMINATORS, bb);
586   if (parent)
587     {
588       e = single_incoming_edge_ignoring_loop_edges (bb);
589 
590       if (e && e->src == parent && e->aux)
591 	{
592 	  struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
593 
594 	  record_equiv (equiv->rhs, equiv->lhs);
595 	  VEC_safe_push (tree, heap, equiv_stack, equiv->rhs);
596 	  recorded = true;
597 	}
598     }
599 
600   if (!recorded)
601     VEC_safe_push (tree, heap, equiv_stack, NULL_TREE);
602 }
603 
604 static bool
gate_uncprop(void)605 gate_uncprop (void)
606 {
607   return flag_tree_dom != 0;
608 }
609 
610 struct tree_opt_pass pass_uncprop =
611 {
612   "uncprop",				/* name */
613   gate_uncprop,				/* gate */
614   tree_ssa_uncprop,			/* execute */
615   NULL,					/* sub */
616   NULL,					/* next */
617   0,					/* static_pass_number */
618   TV_TREE_SSA_UNCPROP,			/* tv_id */
619   PROP_cfg | PROP_ssa,			/* properties_required */
620   0,					/* properties_provided */
621   0,					/* properties_destroyed */
622   0,					/* todo_flags_start */
623   TODO_dump_func | TODO_verify_ssa,	/* todo_flags_finish */
624   0					/* letter */
625 };
626