1 // Map implementation -*- C++ -*-
2 
3 // Copyright (C) 2001, 2002 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING.  If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
20 
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction.  Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License.  This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29 
30 /*
31  *
32  * Copyright (c) 1994
33  * Hewlett-Packard Company
34  *
35  * Permission to use, copy, modify, distribute and sell this software
36  * and its documentation for any purpose is hereby granted without fee,
37  * provided that the above copyright notice appear in all copies and
38  * that both that copyright notice and this permission notice appear
39  * in supporting documentation.  Hewlett-Packard Company makes no
40  * representations about the suitability of this software for any
41  * purpose.  It is provided "as is" without express or implied warranty.
42  *
43  *
44  * Copyright (c) 1996,1997
45  * Silicon Graphics Computer Systems, Inc.
46  *
47  * Permission to use, copy, modify, distribute and sell this software
48  * and its documentation for any purpose is hereby granted without fee,
49  * provided that the above copyright notice appear in all copies and
50  * that both that copyright notice and this permission notice appear
51  * in supporting documentation.  Silicon Graphics makes no
52  * representations about the suitability of this software for any
53  * purpose.  It is provided "as is" without express or implied warranty.
54  */
55 
56 /** @file stl_map.h
57  *  This is an internal header file, included by other library headers.
58  *  You should not attempt to use it directly.
59  */
60 
61 #ifndef __GLIBCPP_INTERNAL_MAP_H
62 #define __GLIBCPP_INTERNAL_MAP_H
63 
64 #include <bits/concept_check.h>
65 
66 namespace std
67 {
68   /**
69    *  @brief A standard container made up of (key,value) pairs, which can be
70    *  retrieved based on a key, in logarithmic time.
71    *
72    *  @ingroup Containers
73    *  @ingroup Assoc_containers
74    *
75    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
76    *  <a href="tables.html#66">reversible container</a>, and an
77    *  <a href="tables.html#69">associative container</a> (using unique keys).
78    *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
79    *  value_type is std::pair<const Key,T>.
80    *
81    *  Maps support bidirectional iterators.
82    *
83    *  @if maint
84    *  The private tree data is declared exactly the same way for map and
85    *  multimap; the distinction is made entirely in how the tree functions are
86    *  called (*_unique versus *_equal, same as the standard).
87    *  @endif
88   */
89   template <typename _Key, typename _Tp, typename _Compare = less<_Key>,
90             typename _Alloc = allocator<pair<const _Key, _Tp> > >
91     class map
92   {
93     // concept requirements
94     __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
95     __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
96 
97   public:
98     typedef _Key                                          key_type;
99     typedef _Tp                                           mapped_type;
100     typedef pair<const _Key, _Tp>                         value_type;
101     typedef _Compare                                      key_compare;
102 
103     class value_compare
104       : public binary_function<value_type, value_type, bool>
105       {
106         friend class map<_Key,_Tp,_Compare,_Alloc>;
107       protected:
108         _Compare comp;
value_compare(_Compare __c)109         value_compare(_Compare __c) : comp(__c) {}
110       public:
operator()111         bool operator()(const value_type& __x, const value_type& __y) const
112         { return comp(__x.first, __y.first); }
113       };
114 
115   private:
116     /// @if maint  This turns a red-black tree into a [multi]map.  @endif
117     typedef _Rb_tree<key_type, value_type,
118                      _Select1st<value_type>, key_compare, _Alloc> _Rep_type;
119     /// @if maint  The actual tree structure.  @endif
120     _Rep_type _M_t;
121 
122   public:
123     // many of these are specified differently in ISO, but the following are
124     // "functionally equivalent"
125     typedef typename _Rep_type::allocator_type            allocator_type;
126     typedef typename _Rep_type::reference                 reference;
127     typedef typename _Rep_type::const_reference           const_reference;
128     typedef typename _Rep_type::iterator                  iterator;
129     typedef typename _Rep_type::const_iterator            const_iterator;
130     typedef typename _Rep_type::size_type                 size_type;
131     typedef typename _Rep_type::difference_type           difference_type;
132     typedef typename _Rep_type::pointer                   pointer;
133     typedef typename _Rep_type::const_pointer             const_pointer;
134     typedef typename _Rep_type::reverse_iterator          reverse_iterator;
135     typedef typename _Rep_type::const_reverse_iterator    const_reverse_iterator;
136 
137 
138     // [23.3.1.1] construct/copy/destroy
139     // (get_allocator() is normally listed in this section, but seems to have
140     // been accidentally omitted in the printed standard)
141     /**
142      *  @brief  Default constructor creates no elements.
143     */
map()144     map() : _M_t(_Compare(), allocator_type()) { }
145 
146     // for some reason this was made a separate function
147     /**
148      *  @brief  Default constructor creates no elements.
149     */
150     explicit
151     map(const _Compare& __comp, const allocator_type& __a = allocator_type())
_M_t(__comp,__a)152       : _M_t(__comp, __a) { }
153 
154     /**
155      *  @brief  Map copy constructor.
156      *  @param  x  A %map of identical element and allocator types.
157      *
158      *  The newly-created %map uses a copy of the allocation object used
159      *  by @a x.
160     */
map(const map & __x)161     map(const map& __x)
162       : _M_t(__x._M_t) { }
163 
164     /**
165      *  @brief  Builds a %map from a range.
166      *  @param  first  An input iterator.
167      *  @param  last  An input iterator.
168      *
169      *  Create a %map consisting of copies of the elements from [first,last).
170      *  This is linear in N if the range is already sorted, and NlogN
171      *  otherwise (where N is distance(first,last)).
172     */
173     template <typename _InputIterator>
map(_InputIterator __first,_InputIterator __last)174       map(_InputIterator __first, _InputIterator __last)
175       : _M_t(_Compare(), allocator_type())
176       { _M_t.insert_unique(__first, __last); }
177 
178     /**
179      *  @brief  Builds a %map from a range.
180      *  @param  first  An input iterator.
181      *  @param  last  An input iterator.
182      *  @param  comp  A comparison functor.
183      *  @param  a  An allocator object.
184      *
185      *  Create a %map consisting of copies of the elements from [first,last).
186      *  This is linear in N if the range is already sorted, and NlogN
187      *  otherwise (where N is distance(first,last)).
188     */
189     template <typename _InputIterator>
190       map(_InputIterator __first, _InputIterator __last,
191           const _Compare& __comp, const allocator_type& __a = allocator_type())
_M_t(__comp,__a)192       : _M_t(__comp, __a)
193       { _M_t.insert_unique(__first, __last); }
194 
195     // FIXME There is no dtor declared, but we should have something generated
196     // by Doxygen.  I don't know what tags to add to this paragraph to make
197     // that happen:
198     /**
199      *  The dtor only erases the elements, and note that if the elements
200      *  themselves are pointers, the pointed-to memory is not touched in any
201      *  way.  Managing the pointer is the user's responsibilty.
202     */
203 
204     /**
205      *  @brief  Map assignment operator.
206      *  @param  x  A %map of identical element and allocator types.
207      *
208      *  All the elements of @a x are copied, but unlike the copy constructor,
209      *  the allocator object is not copied.
210     */
211     map&
212     operator=(const map& __x)
213     {
214       _M_t = __x._M_t;
215       return *this;
216     }
217 
218     /// Get a copy of the memory allocation object.
219     allocator_type
get_allocator()220     get_allocator() const { return _M_t.get_allocator(); }
221 
222     // iterators
223     /**
224      *  Returns a read/write iterator that points to the first pair in the %map.
225      *  Iteration is done in ascending order according to the keys.
226     */
227     iterator
begin()228     begin() { return _M_t.begin(); }
229 
230     /**
231      *  Returns a read-only (constant) iterator that points to the first pair
232      *  in the %map.  Iteration is done in ascending order according to the
233      *  keys.
234     */
235     const_iterator
begin()236     begin() const { return _M_t.begin(); }
237 
238     /**
239      *  Returns a read/write iterator that points one past the last pair in the
240      *  %map.  Iteration is done in ascending order according to the keys.
241     */
242     iterator
end()243     end() { return _M_t.end(); }
244 
245     /**
246      *  Returns a read-only (constant) iterator that points one past the last
247      *  pair in the %map.  Iteration is done in ascending order according to the
248      *  keys.
249     */
250     const_iterator
end()251     end() const { return _M_t.end(); }
252 
253     /**
254      *  Returns a read/write reverse iterator that points to the last pair in
255      *  the %map.  Iteration is done in descending order according to the keys.
256     */
257     reverse_iterator
rbegin()258     rbegin() { return _M_t.rbegin(); }
259 
260     /**
261      *  Returns a read-only (constant) reverse iterator that points to the last
262      *  pair in the %map.  Iteration is done in descending order according to
263      *  the keys.
264     */
265     const_reverse_iterator
rbegin()266     rbegin() const { return _M_t.rbegin(); }
267 
268     /**
269      *  Returns a read/write reverse iterator that points to one before the
270      *  first pair in the %map.  Iteration is done in descending order according
271      *  to the keys.
272     */
273     reverse_iterator
rend()274     rend() { return _M_t.rend(); }
275 
276     /**
277      *  Returns a read-only (constant) reverse iterator that points to one
278      *  before the first pair in the %map.  Iteration is done in descending
279      *  order according to the keys.
280     */
281     const_reverse_iterator
rend()282     rend() const { return _M_t.rend(); }
283 
284     // capacity
285     /** Returns true if the %map is empty.  (Thus begin() would equal end().) */
286     bool
empty()287     empty() const { return _M_t.empty(); }
288 
289     /** Returns the size of the %map.  */
290     size_type
size()291     size() const { return _M_t.size(); }
292 
293     /** Returns the maximum size of the %map.  */
294     size_type
max_size()295     max_size() const { return _M_t.max_size(); }
296 
297     // [23.3.1.2] element access
298     /**
299      *  @brief  Subscript ( @c [] ) access to %map data.
300      *  @param  k  The key for which data should be retrieved.
301      *  @return  A reference to the data of the (key,data) %pair.
302      *
303      *  Allows for easy lookup with the subscript ( @c [] ) operator.  Returns
304      *  data associated with the key specified in subscript.  If the key does
305      *  not exist, a pair with that key is created using default values, which
306      *  is then returned.
307      *
308      *  Lookup requires logarithmic time.
309     */
310     mapped_type&
311     operator[](const key_type& __k)
312     {
313       // concept requirements
314       __glibcpp_function_requires(_DefaultConstructibleConcept<mapped_type>)
315 
316       iterator __i = lower_bound(__k);
317       // __i->first is greater than or equivalent to __k.
318       if (__i == end() || key_comp()(__k, (*__i).first))
319         __i = insert(__i, value_type(__k, mapped_type()));
320       return (*__i).second;
321     }
322 
323     // modifiers
324     /**
325      *  @brief Attempts to insert a std::pair into the %map.
326      *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
327      *             pairs).
328      *  @return  A pair, of which the first element is an iterator that points
329      *           to the possibly inserted pair, and the second is a bool that
330      *           is true if the pair was actually inserted.
331      *
332      *  This function attempts to insert a (key, value) %pair into the %map.
333      *  A %map relies on unique keys and thus a %pair is only inserted if its
334      *  first element (the key) is not already present in the %map.
335      *
336      *  Insertion requires logarithmic time.
337     */
338     pair<iterator,bool>
insert(const value_type & __x)339     insert(const value_type& __x)
340     { return _M_t.insert_unique(__x); }
341 
342     /**
343      *  @brief Attempts to insert a std::pair into the %map.
344      *  @param  position  An iterator that serves as a hint as to where the
345      *                    pair should be inserted.
346      *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
347      *             pairs).
348      *  @return  An iterator that points to the element with key of @a x (may
349      *           or may not be the %pair passed in).
350      *
351      *  This function is not concerned about whether the insertion took place,
352      *  and thus does not return a boolean like the single-argument
353      *  insert() does.  Note that the first parameter is only a hint and can
354      *  potentially improve the performance of the insertion process.  A bad
355      *  hint would cause no gains in efficiency.
356      *
357      *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
358      *  for more on "hinting".
359      *
360      *  Insertion requires logarithmic time (if the hint is not taken).
361     */
362     iterator
insert(iterator position,const value_type & __x)363     insert(iterator position, const value_type& __x)
364     { return _M_t.insert_unique(position, __x); }
365 
366     /**
367      *  @brief A template function that attemps to insert a range of elements.
368      *  @param  first  Iterator pointing to the start of the range to be
369      *                 inserted.
370      *  @param  last  Iterator pointing to the end of the range.
371      *
372      *  Complexity similar to that of the range constructor.
373     */
374     template <typename _InputIterator>
375       void
insert(_InputIterator __first,_InputIterator __last)376       insert(_InputIterator __first, _InputIterator __last)
377       { _M_t.insert_unique(__first, __last); }
378 
379     /**
380      *  @brief Erases an element from a %map.
381      *  @param  position  An iterator pointing to the element to be erased.
382      *
383      *  This function erases an element, pointed to by the given iterator, from
384      *  a %map.  Note that this function only erases the element, and that if
385      *  the element is itself a pointer, the pointed-to memory is not touched
386      *  in any way.  Managing the pointer is the user's responsibilty.
387     */
388     void
erase(iterator __position)389     erase(iterator __position) { _M_t.erase(__position); }
390 
391     /**
392      *  @brief Erases elements according to the provided key.
393      *  @param  x  Key of element to be erased.
394      *  @return  The number of elements erased.
395      *
396      *  This function erases all the elements located by the given key from
397      *  a %map.
398      *  Note that this function only erases the element, and that if
399      *  the element is itself a pointer, the pointed-to memory is not touched
400      *  in any way.  Managing the pointer is the user's responsibilty.
401     */
402     size_type
erase(const key_type & __x)403     erase(const key_type& __x) { return _M_t.erase(__x); }
404 
405     /**
406      *  @brief Erases a [first,last) range of elements from a %map.
407      *  @param  first  Iterator pointing to the start of the range to be erased.
408      *  @param  last  Iterator pointing to the end of the range to be erased.
409      *
410      *  This function erases a sequence of elements from a %map.
411      *  Note that this function only erases the element, and that if
412      *  the element is itself a pointer, the pointed-to memory is not touched
413      *  in any way.  Managing the pointer is the user's responsibilty.
414     */
415     void
erase(iterator __first,iterator __last)416     erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); }
417 
418     /**
419      *  @brief  Swaps data with another %map.
420      *  @param  x  A %map of the same element and allocator types.
421      *
422      *  This exchanges the elements between two maps in constant time.
423      *  (It is only swapping a pointer, an integer, and an instance of
424      *  the @c Compare type (which itself is often stateless and empty), so it
425      *  should be quite fast.)
426      *  Note that the global std::swap() function is specialized such that
427      *  std::swap(m1,m2) will feed to this function.
428     */
429     void
swap(map & __x)430     swap(map& __x) { _M_t.swap(__x._M_t); }
431 
432     /**
433      *  Erases all elements in a %map.  Note that this function only erases
434      *  the elements, and that if the elements themselves are pointers, the
435      *  pointed-to memory is not touched in any way.  Managing the pointer is
436      *  the user's responsibilty.
437     */
438     void
clear()439     clear() { _M_t.clear(); }
440 
441     // observers
442     /**
443      *  Returns the key comparison object out of which the %map was constructed.
444     */
445     key_compare
key_comp()446     key_comp() const { return _M_t.key_comp(); }
447 
448     /**
449      *  Returns a value comparison object, built from the key comparison
450      *  object out of which the %map was constructed.
451     */
452     value_compare
value_comp()453     value_comp() const { return value_compare(_M_t.key_comp()); }
454 
455     // [23.3.1.3] map operations
456     /**
457      *  @brief Tries to locate an element in a %map.
458      *  @param  x  Key of (key, value) %pair to be located.
459      *  @return  Iterator pointing to sought-after element, or end() if not
460      *           found.
461      *
462      *  This function takes a key and tries to locate the element with which
463      *  the key matches.  If successful the function returns an iterator
464      *  pointing to the sought after %pair.  If unsuccessful it returns the
465      *  past-the-end ( @c end() ) iterator.
466     */
467     iterator
find(const key_type & __x)468     find(const key_type& __x) { return _M_t.find(__x); }
469 
470     /**
471      *  @brief Tries to locate an element in a %map.
472      *  @param  x  Key of (key, value) %pair to be located.
473      *  @return  Read-only (constant) iterator pointing to sought-after
474      *           element, or end() if not found.
475      *
476      *  This function takes a key and tries to locate the element with which
477      *  the key matches.  If successful the function returns a constant iterator
478      *  pointing to the sought after %pair. If unsuccessful it returns the
479      *  past-the-end ( @c end() ) iterator.
480     */
481     const_iterator
find(const key_type & __x)482     find(const key_type& __x) const { return _M_t.find(__x); }
483 
484     /**
485      *  @brief  Finds the number of elements with given key.
486      *  @param  x  Key of (key, value) pairs to be located.
487      *  @return  Number of elements with specified key.
488      *
489      *  This function only makes sense for multimaps; for map the result will
490      *  either be 0 (not present) or 1 (present).
491     */
492     size_type
count(const key_type & __x)493     count(const key_type& __x) const
494     { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
495 
496     /**
497      *  @brief Finds the beginning of a subsequence matching given key.
498      *  @param  x  Key of (key, value) pair to be located.
499      *  @return  Iterator pointing to first element matching given key, or
500      *           end() if not found.
501      *
502      *  This function is useful only with multimaps.  It returns the first
503      *  element of a subsequence of elements that matches the given key.  If
504      *  unsuccessful it returns an iterator pointing to the first element that
505      *  has a greater value than given key or end() if no such element exists.
506     */
507     iterator
lower_bound(const key_type & __x)508     lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); }
509 
510     /**
511      *  @brief Finds the beginning of a subsequence matching given key.
512      *  @param  x  Key of (key, value) pair to be located.
513      *  @return  Read-only (constant) iterator pointing to first element
514      *           matching given key, or end() if not found.
515      *
516      *  This function is useful only with multimaps.  It returns the first
517      *  element of a subsequence of elements that matches the given key.  If
518      *  unsuccessful the iterator will point to the next greatest element or,
519      *  if no such greater element exists, to end().
520     */
521     const_iterator
lower_bound(const key_type & __x)522     lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); }
523 
524     /**
525      *  @brief Finds the end of a subsequence matching given key.
526      *  @param  x  Key of (key, value) pair to be located.
527      *  @return Iterator pointing to last element matching given key.
528      *
529      *  This function only makes sense with multimaps.
530     */
531     iterator
upper_bound(const key_type & __x)532     upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); }
533 
534     /**
535      *  @brief Finds the end of a subsequence matching given key.
536      *  @param  x  Key of (key, value) pair to be located.
537      *  @return  Read-only (constant) iterator pointing to last element matching
538      *           given key.
539      *
540      *  This function only makes sense with multimaps.
541     */
542     const_iterator
upper_bound(const key_type & __x)543     upper_bound(const key_type& __x) const
544     { return _M_t.upper_bound(__x); }
545 
546     /**
547      *  @brief Finds a subsequence matching given key.
548      *  @param  x  Key of (key, value) pairs to be located.
549      *  @return  Pair of iterators that possibly points to the subsequence
550      *           matching given key.
551      *
552      *  This function returns a pair of which the first
553      *  element possibly points to the first element matching the given key
554      *  and the second element possibly points to the last element matching the
555      *  given key.  If unsuccessful the first element of the returned pair will
556      *  contain an iterator pointing to the next greatest element or, if no such
557      *  greater element exists, to end().
558      *
559      *  This function only makes sense for multimaps.
560     */
561     pair<iterator,iterator>
equal_range(const key_type & __x)562     equal_range(const key_type& __x)
563     { return _M_t.equal_range(__x); }
564 
565     /**
566      *  @brief Finds a subsequence matching given key.
567      *  @param  x  Key of (key, value) pairs to be located.
568      *  @return  Pair of read-only (constant) iterators that possibly points to
569      *           the subsequence matching given key.
570      *
571      *  This function returns a pair of which the first
572      *  element possibly points to the first element matching the given key
573      *  and the second element possibly points to the last element matching the
574      *  given key.  If unsuccessful the first element of the returned pair will
575      *  contain an iterator pointing to the next greatest element or, if no such
576      *  a greater element exists, to end().
577      *
578      *  This function only makes sense for multimaps.
579     */
580     pair<const_iterator,const_iterator>
equal_range(const key_type & __x)581     equal_range(const key_type& __x) const
582     { return _M_t.equal_range(__x); }
583 
584     template <typename _K1, typename _T1, typename _C1, typename _A1>
585     friend bool operator== (const map<_K1,_T1,_C1,_A1>&,
586                             const map<_K1,_T1,_C1,_A1>&);
587     template <typename _K1, typename _T1, typename _C1, typename _A1>
588     friend bool operator< (const map<_K1,_T1,_C1,_A1>&,
589                            const map<_K1,_T1,_C1,_A1>&);
590   };
591 
592 
593   /**
594    *  @brief  Map equality comparison.
595    *  @param  x  A %map.
596    *  @param  y  A %map of the same type as @a x.
597    *  @return  True iff the size and elements of the maps are equal.
598    *
599    *  This is an equivalence relation.  It is linear in the size of the
600    *  maps.  Maps are considered equivalent if their sizes are equal,
601    *  and if corresponding elements compare equal.
602   */
603   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
604     inline bool
605     operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
606                const map<_Key,_Tp,_Compare,_Alloc>& __y)
607     { return __x._M_t == __y._M_t; }
608 
609   /**
610    *  @brief  Map ordering relation.
611    *  @param  x  A %map.
612    *  @param  y  A %map of the same type as @a x.
613    *  @return  True iff @a x is lexographically less than @a y.
614    *
615    *  This is a total ordering relation.  It is linear in the size of the
616    *  maps.  The elements must be comparable with @c <.
617    *
618    *  See std::lexographical_compare() for how the determination is made.
619   */
620   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
621     inline bool
622     operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
623               const map<_Key,_Tp,_Compare,_Alloc>& __y)
624     { return __x._M_t < __y._M_t; }
625 
626   /// Based on operator==
627   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
628     inline bool
629     operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
630                const map<_Key,_Tp,_Compare,_Alloc>& __y)
631     { return !(__x == __y); }
632 
633   /// Based on operator<
634   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
635     inline bool
636     operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,
637               const map<_Key,_Tp,_Compare,_Alloc>& __y)
638     { return __y < __x; }
639 
640   /// Based on operator<
641   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
642     inline bool
643     operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
644                const map<_Key,_Tp,_Compare,_Alloc>& __y)
645     { return !(__y < __x); }
646 
647   /// Based on operator<
648   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
649     inline bool
650     operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
651                const map<_Key,_Tp,_Compare,_Alloc>& __y)
652     { return !(__x < __y); }
653 
654   /// See std::map::swap().
655   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
656     inline void
swap(map<_Key,_Tp,_Compare,_Alloc> & __x,map<_Key,_Tp,_Compare,_Alloc> & __y)657     swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y)
658     { __x.swap(__y); }
659 } // namespace std
660 
661 #endif /* __GLIBCPP_INTERNAL_MAP_H */
662