1 // Map implementation -*- C++ -*- 2 3 // Copyright (C) 2001, 2002 Free Software Foundation, Inc. 4 // 5 // This file is part of the GNU ISO C++ Library. This library is free 6 // software; you can redistribute it and/or modify it under the 7 // terms of the GNU General Public License as published by the 8 // Free Software Foundation; either version 2, or (at your option) 9 // any later version. 10 11 // This library is distributed in the hope that it will be useful, 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 // GNU General Public License for more details. 15 16 // You should have received a copy of the GNU General Public License along 17 // with this library; see the file COPYING. If not, write to the Free 18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, 19 // USA. 20 21 // As a special exception, you may use this file as part of a free software 22 // library without restriction. Specifically, if other files instantiate 23 // templates or use macros or inline functions from this file, or you compile 24 // this file and link it with other files to produce an executable, this 25 // file does not by itself cause the resulting executable to be covered by 26 // the GNU General Public License. This exception does not however 27 // invalidate any other reasons why the executable file might be covered by 28 // the GNU General Public License. 29 30 /* 31 * 32 * Copyright (c) 1994 33 * Hewlett-Packard Company 34 * 35 * Permission to use, copy, modify, distribute and sell this software 36 * and its documentation for any purpose is hereby granted without fee, 37 * provided that the above copyright notice appear in all copies and 38 * that both that copyright notice and this permission notice appear 39 * in supporting documentation. Hewlett-Packard Company makes no 40 * representations about the suitability of this software for any 41 * purpose. It is provided "as is" without express or implied warranty. 42 * 43 * 44 * Copyright (c) 1996,1997 45 * Silicon Graphics Computer Systems, Inc. 46 * 47 * Permission to use, copy, modify, distribute and sell this software 48 * and its documentation for any purpose is hereby granted without fee, 49 * provided that the above copyright notice appear in all copies and 50 * that both that copyright notice and this permission notice appear 51 * in supporting documentation. Silicon Graphics makes no 52 * representations about the suitability of this software for any 53 * purpose. It is provided "as is" without express or implied warranty. 54 */ 55 56 /** @file stl_map.h 57 * This is an internal header file, included by other library headers. 58 * You should not attempt to use it directly. 59 */ 60 61 #ifndef __GLIBCPP_INTERNAL_MAP_H 62 #define __GLIBCPP_INTERNAL_MAP_H 63 64 #include <bits/concept_check.h> 65 66 namespace std 67 { 68 /** 69 * @brief A standard container made up of (key,value) pairs, which can be 70 * retrieved based on a key, in logarithmic time. 71 * 72 * @ingroup Containers 73 * @ingroup Assoc_containers 74 * 75 * Meets the requirements of a <a href="tables.html#65">container</a>, a 76 * <a href="tables.html#66">reversible container</a>, and an 77 * <a href="tables.html#69">associative container</a> (using unique keys). 78 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the 79 * value_type is std::pair<const Key,T>. 80 * 81 * Maps support bidirectional iterators. 82 * 83 * @if maint 84 * The private tree data is declared exactly the same way for map and 85 * multimap; the distinction is made entirely in how the tree functions are 86 * called (*_unique versus *_equal, same as the standard). 87 * @endif 88 */ 89 template <typename _Key, typename _Tp, typename _Compare = less<_Key>, 90 typename _Alloc = allocator<pair<const _Key, _Tp> > > 91 class map 92 { 93 // concept requirements 94 __glibcpp_class_requires(_Tp, _SGIAssignableConcept) 95 __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept) 96 97 public: 98 typedef _Key key_type; 99 typedef _Tp mapped_type; 100 typedef pair<const _Key, _Tp> value_type; 101 typedef _Compare key_compare; 102 103 class value_compare 104 : public binary_function<value_type, value_type, bool> 105 { 106 friend class map<_Key,_Tp,_Compare,_Alloc>; 107 protected: 108 _Compare comp; value_compare(_Compare __c)109 value_compare(_Compare __c) : comp(__c) {} 110 public: operator()111 bool operator()(const value_type& __x, const value_type& __y) const 112 { return comp(__x.first, __y.first); } 113 }; 114 115 private: 116 /// @if maint This turns a red-black tree into a [multi]map. @endif 117 typedef _Rb_tree<key_type, value_type, 118 _Select1st<value_type>, key_compare, _Alloc> _Rep_type; 119 /// @if maint The actual tree structure. @endif 120 _Rep_type _M_t; 121 122 public: 123 // many of these are specified differently in ISO, but the following are 124 // "functionally equivalent" 125 typedef typename _Rep_type::allocator_type allocator_type; 126 typedef typename _Rep_type::reference reference; 127 typedef typename _Rep_type::const_reference const_reference; 128 typedef typename _Rep_type::iterator iterator; 129 typedef typename _Rep_type::const_iterator const_iterator; 130 typedef typename _Rep_type::size_type size_type; 131 typedef typename _Rep_type::difference_type difference_type; 132 typedef typename _Rep_type::pointer pointer; 133 typedef typename _Rep_type::const_pointer const_pointer; 134 typedef typename _Rep_type::reverse_iterator reverse_iterator; 135 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 136 137 138 // [23.3.1.1] construct/copy/destroy 139 // (get_allocator() is normally listed in this section, but seems to have 140 // been accidentally omitted in the printed standard) 141 /** 142 * @brief Default constructor creates no elements. 143 */ map()144 map() : _M_t(_Compare(), allocator_type()) { } 145 146 // for some reason this was made a separate function 147 /** 148 * @brief Default constructor creates no elements. 149 */ 150 explicit 151 map(const _Compare& __comp, const allocator_type& __a = allocator_type()) _M_t(__comp,__a)152 : _M_t(__comp, __a) { } 153 154 /** 155 * @brief Map copy constructor. 156 * @param x A %map of identical element and allocator types. 157 * 158 * The newly-created %map uses a copy of the allocation object used 159 * by @a x. 160 */ map(const map & __x)161 map(const map& __x) 162 : _M_t(__x._M_t) { } 163 164 /** 165 * @brief Builds a %map from a range. 166 * @param first An input iterator. 167 * @param last An input iterator. 168 * 169 * Create a %map consisting of copies of the elements from [first,last). 170 * This is linear in N if the range is already sorted, and NlogN 171 * otherwise (where N is distance(first,last)). 172 */ 173 template <typename _InputIterator> map(_InputIterator __first,_InputIterator __last)174 map(_InputIterator __first, _InputIterator __last) 175 : _M_t(_Compare(), allocator_type()) 176 { _M_t.insert_unique(__first, __last); } 177 178 /** 179 * @brief Builds a %map from a range. 180 * @param first An input iterator. 181 * @param last An input iterator. 182 * @param comp A comparison functor. 183 * @param a An allocator object. 184 * 185 * Create a %map consisting of copies of the elements from [first,last). 186 * This is linear in N if the range is already sorted, and NlogN 187 * otherwise (where N is distance(first,last)). 188 */ 189 template <typename _InputIterator> 190 map(_InputIterator __first, _InputIterator __last, 191 const _Compare& __comp, const allocator_type& __a = allocator_type()) _M_t(__comp,__a)192 : _M_t(__comp, __a) 193 { _M_t.insert_unique(__first, __last); } 194 195 // FIXME There is no dtor declared, but we should have something generated 196 // by Doxygen. I don't know what tags to add to this paragraph to make 197 // that happen: 198 /** 199 * The dtor only erases the elements, and note that if the elements 200 * themselves are pointers, the pointed-to memory is not touched in any 201 * way. Managing the pointer is the user's responsibilty. 202 */ 203 204 /** 205 * @brief Map assignment operator. 206 * @param x A %map of identical element and allocator types. 207 * 208 * All the elements of @a x are copied, but unlike the copy constructor, 209 * the allocator object is not copied. 210 */ 211 map& 212 operator=(const map& __x) 213 { 214 _M_t = __x._M_t; 215 return *this; 216 } 217 218 /// Get a copy of the memory allocation object. 219 allocator_type get_allocator()220 get_allocator() const { return _M_t.get_allocator(); } 221 222 // iterators 223 /** 224 * Returns a read/write iterator that points to the first pair in the %map. 225 * Iteration is done in ascending order according to the keys. 226 */ 227 iterator begin()228 begin() { return _M_t.begin(); } 229 230 /** 231 * Returns a read-only (constant) iterator that points to the first pair 232 * in the %map. Iteration is done in ascending order according to the 233 * keys. 234 */ 235 const_iterator begin()236 begin() const { return _M_t.begin(); } 237 238 /** 239 * Returns a read/write iterator that points one past the last pair in the 240 * %map. Iteration is done in ascending order according to the keys. 241 */ 242 iterator end()243 end() { return _M_t.end(); } 244 245 /** 246 * Returns a read-only (constant) iterator that points one past the last 247 * pair in the %map. Iteration is done in ascending order according to the 248 * keys. 249 */ 250 const_iterator end()251 end() const { return _M_t.end(); } 252 253 /** 254 * Returns a read/write reverse iterator that points to the last pair in 255 * the %map. Iteration is done in descending order according to the keys. 256 */ 257 reverse_iterator rbegin()258 rbegin() { return _M_t.rbegin(); } 259 260 /** 261 * Returns a read-only (constant) reverse iterator that points to the last 262 * pair in the %map. Iteration is done in descending order according to 263 * the keys. 264 */ 265 const_reverse_iterator rbegin()266 rbegin() const { return _M_t.rbegin(); } 267 268 /** 269 * Returns a read/write reverse iterator that points to one before the 270 * first pair in the %map. Iteration is done in descending order according 271 * to the keys. 272 */ 273 reverse_iterator rend()274 rend() { return _M_t.rend(); } 275 276 /** 277 * Returns a read-only (constant) reverse iterator that points to one 278 * before the first pair in the %map. Iteration is done in descending 279 * order according to the keys. 280 */ 281 const_reverse_iterator rend()282 rend() const { return _M_t.rend(); } 283 284 // capacity 285 /** Returns true if the %map is empty. (Thus begin() would equal end().) */ 286 bool empty()287 empty() const { return _M_t.empty(); } 288 289 /** Returns the size of the %map. */ 290 size_type size()291 size() const { return _M_t.size(); } 292 293 /** Returns the maximum size of the %map. */ 294 size_type max_size()295 max_size() const { return _M_t.max_size(); } 296 297 // [23.3.1.2] element access 298 /** 299 * @brief Subscript ( @c [] ) access to %map data. 300 * @param k The key for which data should be retrieved. 301 * @return A reference to the data of the (key,data) %pair. 302 * 303 * Allows for easy lookup with the subscript ( @c [] ) operator. Returns 304 * data associated with the key specified in subscript. If the key does 305 * not exist, a pair with that key is created using default values, which 306 * is then returned. 307 * 308 * Lookup requires logarithmic time. 309 */ 310 mapped_type& 311 operator[](const key_type& __k) 312 { 313 // concept requirements 314 __glibcpp_function_requires(_DefaultConstructibleConcept<mapped_type>) 315 316 iterator __i = lower_bound(__k); 317 // __i->first is greater than or equivalent to __k. 318 if (__i == end() || key_comp()(__k, (*__i).first)) 319 __i = insert(__i, value_type(__k, mapped_type())); 320 return (*__i).second; 321 } 322 323 // modifiers 324 /** 325 * @brief Attempts to insert a std::pair into the %map. 326 * @param x Pair to be inserted (see std::make_pair for easy creation of 327 * pairs). 328 * @return A pair, of which the first element is an iterator that points 329 * to the possibly inserted pair, and the second is a bool that 330 * is true if the pair was actually inserted. 331 * 332 * This function attempts to insert a (key, value) %pair into the %map. 333 * A %map relies on unique keys and thus a %pair is only inserted if its 334 * first element (the key) is not already present in the %map. 335 * 336 * Insertion requires logarithmic time. 337 */ 338 pair<iterator,bool> insert(const value_type & __x)339 insert(const value_type& __x) 340 { return _M_t.insert_unique(__x); } 341 342 /** 343 * @brief Attempts to insert a std::pair into the %map. 344 * @param position An iterator that serves as a hint as to where the 345 * pair should be inserted. 346 * @param x Pair to be inserted (see std::make_pair for easy creation of 347 * pairs). 348 * @return An iterator that points to the element with key of @a x (may 349 * or may not be the %pair passed in). 350 * 351 * This function is not concerned about whether the insertion took place, 352 * and thus does not return a boolean like the single-argument 353 * insert() does. Note that the first parameter is only a hint and can 354 * potentially improve the performance of the insertion process. A bad 355 * hint would cause no gains in efficiency. 356 * 357 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4 358 * for more on "hinting". 359 * 360 * Insertion requires logarithmic time (if the hint is not taken). 361 */ 362 iterator insert(iterator position,const value_type & __x)363 insert(iterator position, const value_type& __x) 364 { return _M_t.insert_unique(position, __x); } 365 366 /** 367 * @brief A template function that attemps to insert a range of elements. 368 * @param first Iterator pointing to the start of the range to be 369 * inserted. 370 * @param last Iterator pointing to the end of the range. 371 * 372 * Complexity similar to that of the range constructor. 373 */ 374 template <typename _InputIterator> 375 void insert(_InputIterator __first,_InputIterator __last)376 insert(_InputIterator __first, _InputIterator __last) 377 { _M_t.insert_unique(__first, __last); } 378 379 /** 380 * @brief Erases an element from a %map. 381 * @param position An iterator pointing to the element to be erased. 382 * 383 * This function erases an element, pointed to by the given iterator, from 384 * a %map. Note that this function only erases the element, and that if 385 * the element is itself a pointer, the pointed-to memory is not touched 386 * in any way. Managing the pointer is the user's responsibilty. 387 */ 388 void erase(iterator __position)389 erase(iterator __position) { _M_t.erase(__position); } 390 391 /** 392 * @brief Erases elements according to the provided key. 393 * @param x Key of element to be erased. 394 * @return The number of elements erased. 395 * 396 * This function erases all the elements located by the given key from 397 * a %map. 398 * Note that this function only erases the element, and that if 399 * the element is itself a pointer, the pointed-to memory is not touched 400 * in any way. Managing the pointer is the user's responsibilty. 401 */ 402 size_type erase(const key_type & __x)403 erase(const key_type& __x) { return _M_t.erase(__x); } 404 405 /** 406 * @brief Erases a [first,last) range of elements from a %map. 407 * @param first Iterator pointing to the start of the range to be erased. 408 * @param last Iterator pointing to the end of the range to be erased. 409 * 410 * This function erases a sequence of elements from a %map. 411 * Note that this function only erases the element, and that if 412 * the element is itself a pointer, the pointed-to memory is not touched 413 * in any way. Managing the pointer is the user's responsibilty. 414 */ 415 void erase(iterator __first,iterator __last)416 erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); } 417 418 /** 419 * @brief Swaps data with another %map. 420 * @param x A %map of the same element and allocator types. 421 * 422 * This exchanges the elements between two maps in constant time. 423 * (It is only swapping a pointer, an integer, and an instance of 424 * the @c Compare type (which itself is often stateless and empty), so it 425 * should be quite fast.) 426 * Note that the global std::swap() function is specialized such that 427 * std::swap(m1,m2) will feed to this function. 428 */ 429 void swap(map & __x)430 swap(map& __x) { _M_t.swap(__x._M_t); } 431 432 /** 433 * Erases all elements in a %map. Note that this function only erases 434 * the elements, and that if the elements themselves are pointers, the 435 * pointed-to memory is not touched in any way. Managing the pointer is 436 * the user's responsibilty. 437 */ 438 void clear()439 clear() { _M_t.clear(); } 440 441 // observers 442 /** 443 * Returns the key comparison object out of which the %map was constructed. 444 */ 445 key_compare key_comp()446 key_comp() const { return _M_t.key_comp(); } 447 448 /** 449 * Returns a value comparison object, built from the key comparison 450 * object out of which the %map was constructed. 451 */ 452 value_compare value_comp()453 value_comp() const { return value_compare(_M_t.key_comp()); } 454 455 // [23.3.1.3] map operations 456 /** 457 * @brief Tries to locate an element in a %map. 458 * @param x Key of (key, value) %pair to be located. 459 * @return Iterator pointing to sought-after element, or end() if not 460 * found. 461 * 462 * This function takes a key and tries to locate the element with which 463 * the key matches. If successful the function returns an iterator 464 * pointing to the sought after %pair. If unsuccessful it returns the 465 * past-the-end ( @c end() ) iterator. 466 */ 467 iterator find(const key_type & __x)468 find(const key_type& __x) { return _M_t.find(__x); } 469 470 /** 471 * @brief Tries to locate an element in a %map. 472 * @param x Key of (key, value) %pair to be located. 473 * @return Read-only (constant) iterator pointing to sought-after 474 * element, or end() if not found. 475 * 476 * This function takes a key and tries to locate the element with which 477 * the key matches. If successful the function returns a constant iterator 478 * pointing to the sought after %pair. If unsuccessful it returns the 479 * past-the-end ( @c end() ) iterator. 480 */ 481 const_iterator find(const key_type & __x)482 find(const key_type& __x) const { return _M_t.find(__x); } 483 484 /** 485 * @brief Finds the number of elements with given key. 486 * @param x Key of (key, value) pairs to be located. 487 * @return Number of elements with specified key. 488 * 489 * This function only makes sense for multimaps; for map the result will 490 * either be 0 (not present) or 1 (present). 491 */ 492 size_type count(const key_type & __x)493 count(const key_type& __x) const 494 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 495 496 /** 497 * @brief Finds the beginning of a subsequence matching given key. 498 * @param x Key of (key, value) pair to be located. 499 * @return Iterator pointing to first element matching given key, or 500 * end() if not found. 501 * 502 * This function is useful only with multimaps. It returns the first 503 * element of a subsequence of elements that matches the given key. If 504 * unsuccessful it returns an iterator pointing to the first element that 505 * has a greater value than given key or end() if no such element exists. 506 */ 507 iterator lower_bound(const key_type & __x)508 lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); } 509 510 /** 511 * @brief Finds the beginning of a subsequence matching given key. 512 * @param x Key of (key, value) pair to be located. 513 * @return Read-only (constant) iterator pointing to first element 514 * matching given key, or end() if not found. 515 * 516 * This function is useful only with multimaps. It returns the first 517 * element of a subsequence of elements that matches the given key. If 518 * unsuccessful the iterator will point to the next greatest element or, 519 * if no such greater element exists, to end(). 520 */ 521 const_iterator lower_bound(const key_type & __x)522 lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); } 523 524 /** 525 * @brief Finds the end of a subsequence matching given key. 526 * @param x Key of (key, value) pair to be located. 527 * @return Iterator pointing to last element matching given key. 528 * 529 * This function only makes sense with multimaps. 530 */ 531 iterator upper_bound(const key_type & __x)532 upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); } 533 534 /** 535 * @brief Finds the end of a subsequence matching given key. 536 * @param x Key of (key, value) pair to be located. 537 * @return Read-only (constant) iterator pointing to last element matching 538 * given key. 539 * 540 * This function only makes sense with multimaps. 541 */ 542 const_iterator upper_bound(const key_type & __x)543 upper_bound(const key_type& __x) const 544 { return _M_t.upper_bound(__x); } 545 546 /** 547 * @brief Finds a subsequence matching given key. 548 * @param x Key of (key, value) pairs to be located. 549 * @return Pair of iterators that possibly points to the subsequence 550 * matching given key. 551 * 552 * This function returns a pair of which the first 553 * element possibly points to the first element matching the given key 554 * and the second element possibly points to the last element matching the 555 * given key. If unsuccessful the first element of the returned pair will 556 * contain an iterator pointing to the next greatest element or, if no such 557 * greater element exists, to end(). 558 * 559 * This function only makes sense for multimaps. 560 */ 561 pair<iterator,iterator> equal_range(const key_type & __x)562 equal_range(const key_type& __x) 563 { return _M_t.equal_range(__x); } 564 565 /** 566 * @brief Finds a subsequence matching given key. 567 * @param x Key of (key, value) pairs to be located. 568 * @return Pair of read-only (constant) iterators that possibly points to 569 * the subsequence matching given key. 570 * 571 * This function returns a pair of which the first 572 * element possibly points to the first element matching the given key 573 * and the second element possibly points to the last element matching the 574 * given key. If unsuccessful the first element of the returned pair will 575 * contain an iterator pointing to the next greatest element or, if no such 576 * a greater element exists, to end(). 577 * 578 * This function only makes sense for multimaps. 579 */ 580 pair<const_iterator,const_iterator> equal_range(const key_type & __x)581 equal_range(const key_type& __x) const 582 { return _M_t.equal_range(__x); } 583 584 template <typename _K1, typename _T1, typename _C1, typename _A1> 585 friend bool operator== (const map<_K1,_T1,_C1,_A1>&, 586 const map<_K1,_T1,_C1,_A1>&); 587 template <typename _K1, typename _T1, typename _C1, typename _A1> 588 friend bool operator< (const map<_K1,_T1,_C1,_A1>&, 589 const map<_K1,_T1,_C1,_A1>&); 590 }; 591 592 593 /** 594 * @brief Map equality comparison. 595 * @param x A %map. 596 * @param y A %map of the same type as @a x. 597 * @return True iff the size and elements of the maps are equal. 598 * 599 * This is an equivalence relation. It is linear in the size of the 600 * maps. Maps are considered equivalent if their sizes are equal, 601 * and if corresponding elements compare equal. 602 */ 603 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 604 inline bool 605 operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x, 606 const map<_Key,_Tp,_Compare,_Alloc>& __y) 607 { return __x._M_t == __y._M_t; } 608 609 /** 610 * @brief Map ordering relation. 611 * @param x A %map. 612 * @param y A %map of the same type as @a x. 613 * @return True iff @a x is lexographically less than @a y. 614 * 615 * This is a total ordering relation. It is linear in the size of the 616 * maps. The elements must be comparable with @c <. 617 * 618 * See std::lexographical_compare() for how the determination is made. 619 */ 620 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 621 inline bool 622 operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x, 623 const map<_Key,_Tp,_Compare,_Alloc>& __y) 624 { return __x._M_t < __y._M_t; } 625 626 /// Based on operator== 627 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 628 inline bool 629 operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x, 630 const map<_Key,_Tp,_Compare,_Alloc>& __y) 631 { return !(__x == __y); } 632 633 /// Based on operator< 634 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 635 inline bool 636 operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x, 637 const map<_Key,_Tp,_Compare,_Alloc>& __y) 638 { return __y < __x; } 639 640 /// Based on operator< 641 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 642 inline bool 643 operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x, 644 const map<_Key,_Tp,_Compare,_Alloc>& __y) 645 { return !(__y < __x); } 646 647 /// Based on operator< 648 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 649 inline bool 650 operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x, 651 const map<_Key,_Tp,_Compare,_Alloc>& __y) 652 { return !(__x < __y); } 653 654 /// See std::map::swap(). 655 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc> 656 inline void swap(map<_Key,_Tp,_Compare,_Alloc> & __x,map<_Key,_Tp,_Compare,_Alloc> & __y)657 swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y) 658 { __x.swap(__y); } 659 } // namespace std 660 661 #endif /* __GLIBCPP_INTERNAL_MAP_H */ 662