1 //===- ARM.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Symbols.h"
10 #include "SyntheticSections.h"
11 #include "Target.h"
12 #include "lld/Common/ErrorHandler.h"
13 #include "llvm/BinaryFormat/ELF.h"
14 #include "llvm/Support/Endian.h"
15
16 using namespace llvm;
17 using namespace llvm::support::endian;
18 using namespace llvm::ELF;
19 using namespace lld;
20 using namespace lld::elf;
21
22 namespace {
23 class ARM final : public TargetInfo {
24 public:
25 ARM();
26 uint32_t calcEFlags() const override;
27 RelExpr getRelExpr(RelType type, const Symbol &s,
28 const uint8_t *loc) const override;
29 RelType getDynRel(RelType type) const override;
30 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
31 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
32 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
33 void writePltHeader(uint8_t *buf) const override;
34 void writePlt(uint8_t *buf, const Symbol &sym,
35 uint64_t pltEntryAddr) const override;
36 void addPltSymbols(InputSection &isec, uint64_t off) const override;
37 void addPltHeaderSymbols(InputSection &isd) const override;
38 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
39 uint64_t branchAddr, const Symbol &s,
40 int64_t a) const override;
41 uint32_t getThunkSectionSpacing() const override;
42 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
43 void relocate(uint8_t *loc, const Relocation &rel,
44 uint64_t val) const override;
45 };
46 } // namespace
47
ARM()48 ARM::ARM() {
49 copyRel = R_ARM_COPY;
50 relativeRel = R_ARM_RELATIVE;
51 iRelativeRel = R_ARM_IRELATIVE;
52 gotRel = R_ARM_GLOB_DAT;
53 pltRel = R_ARM_JUMP_SLOT;
54 symbolicRel = R_ARM_ABS32;
55 tlsGotRel = R_ARM_TLS_TPOFF32;
56 tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
57 tlsOffsetRel = R_ARM_TLS_DTPOFF32;
58 pltHeaderSize = 32;
59 pltEntrySize = 16;
60 ipltEntrySize = 16;
61 trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
62 needsThunks = true;
63 defaultMaxPageSize = 65536;
64 }
65
calcEFlags() const66 uint32_t ARM::calcEFlags() const {
67 // The ABIFloatType is used by loaders to detect the floating point calling
68 // convention.
69 uint32_t abiFloatType = 0;
70 if (config->armVFPArgs == ARMVFPArgKind::Base ||
71 config->armVFPArgs == ARMVFPArgKind::Default)
72 abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
73 else if (config->armVFPArgs == ARMVFPArgKind::VFP)
74 abiFloatType = EF_ARM_ABI_FLOAT_HARD;
75
76 // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
77 // but we don't have any firm guarantees of conformance. Linux AArch64
78 // kernels (as of 2016) require an EABI version to be set.
79 return EF_ARM_EABI_VER5 | abiFloatType;
80 }
81
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const82 RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
83 const uint8_t *loc) const {
84 switch (type) {
85 case R_ARM_ABS32:
86 case R_ARM_MOVW_ABS_NC:
87 case R_ARM_MOVT_ABS:
88 case R_ARM_THM_MOVW_ABS_NC:
89 case R_ARM_THM_MOVT_ABS:
90 return R_ABS;
91 case R_ARM_THM_JUMP8:
92 case R_ARM_THM_JUMP11:
93 return R_PC;
94 case R_ARM_CALL:
95 case R_ARM_JUMP24:
96 case R_ARM_PC24:
97 case R_ARM_PLT32:
98 case R_ARM_PREL31:
99 case R_ARM_THM_JUMP19:
100 case R_ARM_THM_JUMP24:
101 case R_ARM_THM_CALL:
102 return R_PLT_PC;
103 case R_ARM_GOTOFF32:
104 // (S + A) - GOT_ORG
105 return R_GOTREL;
106 case R_ARM_GOT_BREL:
107 // GOT(S) + A - GOT_ORG
108 return R_GOT_OFF;
109 case R_ARM_GOT_PREL:
110 case R_ARM_TLS_IE32:
111 // GOT(S) + A - P
112 return R_GOT_PC;
113 case R_ARM_SBREL32:
114 return R_ARM_SBREL;
115 case R_ARM_TARGET1:
116 return config->target1Rel ? R_PC : R_ABS;
117 case R_ARM_TARGET2:
118 if (config->target2 == Target2Policy::Rel)
119 return R_PC;
120 if (config->target2 == Target2Policy::Abs)
121 return R_ABS;
122 return R_GOT_PC;
123 case R_ARM_TLS_GD32:
124 return R_TLSGD_PC;
125 case R_ARM_TLS_LDM32:
126 return R_TLSLD_PC;
127 case R_ARM_TLS_LDO32:
128 return R_DTPREL;
129 case R_ARM_BASE_PREL:
130 // B(S) + A - P
131 // FIXME: currently B(S) assumed to be .got, this may not hold for all
132 // platforms.
133 return R_GOTONLY_PC;
134 case R_ARM_MOVW_PREL_NC:
135 case R_ARM_MOVT_PREL:
136 case R_ARM_REL32:
137 case R_ARM_THM_MOVW_PREL_NC:
138 case R_ARM_THM_MOVT_PREL:
139 return R_PC;
140 case R_ARM_ALU_PC_G0:
141 case R_ARM_ALU_PC_G0_NC:
142 case R_ARM_ALU_PC_G1:
143 case R_ARM_ALU_PC_G1_NC:
144 case R_ARM_ALU_PC_G2:
145 case R_ARM_LDR_PC_G0:
146 case R_ARM_LDR_PC_G1:
147 case R_ARM_LDR_PC_G2:
148 case R_ARM_LDRS_PC_G0:
149 case R_ARM_LDRS_PC_G1:
150 case R_ARM_LDRS_PC_G2:
151 case R_ARM_THM_ALU_PREL_11_0:
152 case R_ARM_THM_PC8:
153 case R_ARM_THM_PC12:
154 return R_ARM_PCA;
155 case R_ARM_MOVW_BREL_NC:
156 case R_ARM_MOVW_BREL:
157 case R_ARM_MOVT_BREL:
158 case R_ARM_THM_MOVW_BREL_NC:
159 case R_ARM_THM_MOVW_BREL:
160 case R_ARM_THM_MOVT_BREL:
161 return R_ARM_SBREL;
162 case R_ARM_NONE:
163 return R_NONE;
164 case R_ARM_TLS_LE32:
165 return R_TPREL;
166 case R_ARM_V4BX:
167 // V4BX is just a marker to indicate there's a "bx rN" instruction at the
168 // given address. It can be used to implement a special linker mode which
169 // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
170 // not ARMv4 output, we can just ignore it.
171 return R_NONE;
172 default:
173 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
174 ") against symbol " + toString(s));
175 return R_NONE;
176 }
177 }
178
getDynRel(RelType type) const179 RelType ARM::getDynRel(RelType type) const {
180 if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
181 return R_ARM_ABS32;
182 return R_ARM_NONE;
183 }
184
writeGotPlt(uint8_t * buf,const Symbol &) const185 void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
186 write32le(buf, in.plt->getVA());
187 }
188
writeIgotPlt(uint8_t * buf,const Symbol & s) const189 void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
190 // An ARM entry is the address of the ifunc resolver function.
191 write32le(buf, s.getVA());
192 }
193
194 // Long form PLT Header that does not have any restrictions on the displacement
195 // of the .plt from the .got.plt.
writePltHeaderLong(uint8_t * buf)196 static void writePltHeaderLong(uint8_t *buf) {
197 const uint8_t pltData[] = {
198 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]!
199 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2
200 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
201 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8]
202 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8
203 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
204 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
205 0xd4, 0xd4, 0xd4, 0xd4};
206 memcpy(buf, pltData, sizeof(pltData));
207 uint64_t gotPlt = in.gotPlt->getVA();
208 uint64_t l1 = in.plt->getVA() + 8;
209 write32le(buf + 16, gotPlt - l1 - 8);
210 }
211
212 // The default PLT header requires the .got.plt to be within 128 Mb of the
213 // .plt in the positive direction.
writePltHeader(uint8_t * buf) const214 void ARM::writePltHeader(uint8_t *buf) const {
215 // Use a similar sequence to that in writePlt(), the difference is the calling
216 // conventions mean we use lr instead of ip. The PLT entry is responsible for
217 // saving lr on the stack, the dynamic loader is responsible for reloading
218 // it.
219 const uint32_t pltData[] = {
220 0xe52de004, // L1: str lr, [sp,#-4]!
221 0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
222 0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
223 0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
224 };
225
226 uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
227 if (!llvm::isUInt<27>(offset)) {
228 // We cannot encode the Offset, use the long form.
229 writePltHeaderLong(buf);
230 return;
231 }
232 write32le(buf + 0, pltData[0]);
233 write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
234 write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
235 write32le(buf + 12, pltData[3] | (offset & 0xfff));
236 memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
237 memcpy(buf + 20, trapInstr.data(), 4);
238 memcpy(buf + 24, trapInstr.data(), 4);
239 memcpy(buf + 28, trapInstr.data(), 4);
240 }
241
addPltHeaderSymbols(InputSection & isec) const242 void ARM::addPltHeaderSymbols(InputSection &isec) const {
243 addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
244 addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
245 }
246
247 // Long form PLT entries that do not have any restrictions on the displacement
248 // of the .plt from the .got.plt.
writePltLong(uint8_t * buf,uint64_t gotPltEntryAddr,uint64_t pltEntryAddr)249 static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
250 uint64_t pltEntryAddr) {
251 const uint8_t pltData[] = {
252 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2
253 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
254 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip]
255 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.got.plt) - L1 - 8
256 };
257 memcpy(buf, pltData, sizeof(pltData));
258 uint64_t l1 = pltEntryAddr + 4;
259 write32le(buf + 12, gotPltEntryAddr - l1 - 8);
260 }
261
262 // The default PLT entries require the .got.plt to be within 128 Mb of the
263 // .plt in the positive direction.
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const264 void ARM::writePlt(uint8_t *buf, const Symbol &sym,
265 uint64_t pltEntryAddr) const {
266 // The PLT entry is similar to the example given in Appendix A of ELF for
267 // the Arm Architecture. Instead of using the Group Relocations to find the
268 // optimal rotation for the 8-bit immediate used in the add instructions we
269 // hard code the most compact rotations for simplicity. This saves a load
270 // instruction over the long plt sequences.
271 const uint32_t pltData[] = {
272 0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.got.plt) - L1 - 8
273 0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.got.plt) - L1 - 8
274 0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.got.plt) - L1 - 8
275 };
276
277 uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
278 if (!llvm::isUInt<27>(offset)) {
279 // We cannot encode the Offset, use the long form.
280 writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
281 return;
282 }
283 write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
284 write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
285 write32le(buf + 8, pltData[2] | (offset & 0xfff));
286 memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
287 }
288
addPltSymbols(InputSection & isec,uint64_t off) const289 void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
290 addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
291 addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
292 }
293
needsThunk(RelExpr expr,RelType type,const InputFile * file,uint64_t branchAddr,const Symbol & s,int64_t a) const294 bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
295 uint64_t branchAddr, const Symbol &s,
296 int64_t a) const {
297 // If s is an undefined weak symbol and does not have a PLT entry then it will
298 // be resolved as a branch to the next instruction. If it is hidden, its
299 // binding has been converted to local, so we just check isUndefined() here. A
300 // undefined non-weak symbol will have been errored.
301 if (s.isUndefined() && !s.isInPlt())
302 return false;
303 // A state change from ARM to Thumb and vice versa must go through an
304 // interworking thunk if the relocation type is not R_ARM_CALL or
305 // R_ARM_THM_CALL.
306 switch (type) {
307 case R_ARM_PC24:
308 case R_ARM_PLT32:
309 case R_ARM_JUMP24:
310 // Source is ARM, all PLT entries are ARM so no interworking required.
311 // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
312 if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
313 return true;
314 [[fallthrough]];
315 case R_ARM_CALL: {
316 uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
317 return !inBranchRange(type, branchAddr, dst + a) ||
318 (!config->armHasBlx && (s.getVA() & 1));
319 }
320 case R_ARM_THM_JUMP19:
321 case R_ARM_THM_JUMP24:
322 // Source is Thumb, all PLT entries are ARM so interworking is required.
323 // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
324 if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
325 return true;
326 [[fallthrough]];
327 case R_ARM_THM_CALL: {
328 uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
329 return !inBranchRange(type, branchAddr, dst + a) ||
330 (!config->armHasBlx && (s.getVA() & 1) == 0);;
331 }
332 }
333 return false;
334 }
335
getThunkSectionSpacing() const336 uint32_t ARM::getThunkSectionSpacing() const {
337 // The placing of pre-created ThunkSections is controlled by the value
338 // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
339 // place the ThunkSection such that all branches from the InputSections
340 // prior to the ThunkSection can reach a Thunk placed at the end of the
341 // ThunkSection. Graphically:
342 // | up to thunkSectionSpacing .text input sections |
343 // | ThunkSection |
344 // | up to thunkSectionSpacing .text input sections |
345 // | ThunkSection |
346
347 // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
348 // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
349 // B.W:
350 // ARM B, BL, BLX range +/- 32MiB
351 // Thumb B.W, BL, BLX range +/- 16MiB
352 // Thumb B<cc>.W range +/- 1MiB
353 // If a branch cannot reach a pre-created ThunkSection a new one will be
354 // created so we can handle the rare cases of a Thumb 2 conditional branch.
355 // We intentionally use a lower size for thunkSectionSpacing than the maximum
356 // branch range so the end of the ThunkSection is more likely to be within
357 // range of the branch instruction that is furthest away. The value we shorten
358 // thunkSectionSpacing by is set conservatively to allow us to create 16,384
359 // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
360 // one of the Thunks going out of range.
361
362 // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
363 // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
364 // ARMv6T2) the range is +/- 4MiB.
365
366 return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
367 : 0x400000 - 0x7500;
368 }
369
inBranchRange(RelType type,uint64_t src,uint64_t dst) const370 bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
371 if ((dst & 0x1) == 0)
372 // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
373 // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
374 // destination will be 4 byte aligned.
375 src &= ~0x3;
376 else
377 // Bit 0 == 1 denotes Thumb state, it is not part of the range.
378 dst &= ~0x1;
379
380 int64_t offset = dst - src;
381 switch (type) {
382 case R_ARM_PC24:
383 case R_ARM_PLT32:
384 case R_ARM_JUMP24:
385 case R_ARM_CALL:
386 return llvm::isInt<26>(offset);
387 case R_ARM_THM_JUMP19:
388 return llvm::isInt<21>(offset);
389 case R_ARM_THM_JUMP24:
390 case R_ARM_THM_CALL:
391 return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset)
392 : llvm::isInt<23>(offset);
393 default:
394 return true;
395 }
396 }
397
398 // Helper to produce message text when LLD detects that a CALL relocation to
399 // a non STT_FUNC symbol that may result in incorrect interworking between ARM
400 // or Thumb.
stateChangeWarning(uint8_t * loc,RelType relt,const Symbol & s)401 static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
402 assert(!s.isFunc());
403 const ErrorPlace place = getErrorPlace(loc);
404 std::string hint;
405 if (!place.srcLoc.empty())
406 hint = "; " + place.srcLoc;
407 if (s.isSection()) {
408 // Section symbols must be defined and in a section. Users cannot change
409 // the type. Use the section name as getName() returns an empty string.
410 warn(place.loc + "branch and link relocation: " + toString(relt) +
411 " to STT_SECTION symbol " + cast<Defined>(s).section->name +
412 " ; interworking not performed" + hint);
413 } else {
414 // Warn with hint on how to alter the symbol type.
415 warn(getErrorLocation(loc) + "branch and link relocation: " +
416 toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
417 " interworking not performed; consider using directive '.type " +
418 s.getName() +
419 ", %function' to give symbol type STT_FUNC if interworking between "
420 "ARM and Thumb is required" +
421 hint);
422 }
423 }
424
425 // Rotate a 32-bit unsigned value right by a specified amt of bits.
rotr32(uint32_t val,uint32_t amt)426 static uint32_t rotr32(uint32_t val, uint32_t amt) {
427 assert(amt < 32 && "Invalid rotate amount");
428 return (val >> amt) | (val << ((32 - amt) & 31));
429 }
430
getRemAndLZForGroup(unsigned group,uint32_t val)431 static std::pair<uint32_t, uint32_t> getRemAndLZForGroup(unsigned group,
432 uint32_t val) {
433 uint32_t rem, lz;
434 do {
435 lz = llvm::countLeadingZeros(val) & ~1;
436 rem = val;
437 if (lz == 32) // implies rem == 0
438 break;
439 val &= 0xffffff >> lz;
440 } while (group--);
441 return {rem, lz};
442 }
443
encodeAluGroup(uint8_t * loc,const Relocation & rel,uint64_t val,int group,bool check)444 static void encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
445 int group, bool check) {
446 // ADD/SUB (immediate) add = bit23, sub = bit22
447 // immediate field carries is a 12-bit modified immediate, made up of a 4-bit
448 // even rotate right and an 8-bit immediate.
449 uint32_t opcode = 0x00800000;
450 if (val >> 63) {
451 opcode = 0x00400000;
452 val = -val;
453 }
454 uint32_t imm, lz;
455 std::tie(imm, lz) = getRemAndLZForGroup(group, val);
456 uint32_t rot = 0;
457 if (lz < 24) {
458 imm = rotr32(imm, 24 - lz);
459 rot = (lz + 8) << 7;
460 }
461 if (check && imm > 0xff)
462 error(getErrorLocation(loc) + "unencodeable immediate " + Twine(val).str() +
463 " for relocation " + toString(rel.type));
464 write32le(loc, (read32le(loc) & 0xff3ff000) | opcode | rot | (imm & 0xff));
465 }
466
encodeLdrGroup(uint8_t * loc,const Relocation & rel,uint64_t val,int group)467 static void encodeLdrGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
468 int group) {
469 // R_ARM_LDR_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
470 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
471 // bottom bit to recover S + A - P.
472 if (rel.sym->isFunc())
473 val &= ~0x1;
474 // LDR (literal) u = bit23
475 uint32_t opcode = 0x00800000;
476 if (val >> 63) {
477 opcode = 0x0;
478 val = -val;
479 }
480 uint32_t imm = getRemAndLZForGroup(group, val).first;
481 checkUInt(loc, imm, 12, rel);
482 write32le(loc, (read32le(loc) & 0xff7ff000) | opcode | imm);
483 }
484
encodeLdrsGroup(uint8_t * loc,const Relocation & rel,uint64_t val,int group)485 static void encodeLdrsGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
486 int group) {
487 // R_ARM_LDRS_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
488 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
489 // bottom bit to recover S + A - P.
490 if (rel.sym->isFunc())
491 val &= ~0x1;
492 // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23
493 uint32_t opcode = 0x00800000;
494 if (val >> 63) {
495 opcode = 0x0;
496 val = -val;
497 }
498 uint32_t imm = getRemAndLZForGroup(group, val).first;
499 checkUInt(loc, imm, 8, rel);
500 write32le(loc, (read32le(loc) & 0xff7ff0f0) | opcode | ((imm & 0xf0) << 4) |
501 (imm & 0xf));
502 }
503
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const504 void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
505 switch (rel.type) {
506 case R_ARM_ABS32:
507 case R_ARM_BASE_PREL:
508 case R_ARM_GOTOFF32:
509 case R_ARM_GOT_BREL:
510 case R_ARM_GOT_PREL:
511 case R_ARM_REL32:
512 case R_ARM_RELATIVE:
513 case R_ARM_SBREL32:
514 case R_ARM_TARGET1:
515 case R_ARM_TARGET2:
516 case R_ARM_TLS_GD32:
517 case R_ARM_TLS_IE32:
518 case R_ARM_TLS_LDM32:
519 case R_ARM_TLS_LDO32:
520 case R_ARM_TLS_LE32:
521 case R_ARM_TLS_TPOFF32:
522 case R_ARM_TLS_DTPOFF32:
523 write32le(loc, val);
524 break;
525 case R_ARM_PREL31:
526 checkInt(loc, val, 31, rel);
527 write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
528 break;
529 case R_ARM_CALL: {
530 // R_ARM_CALL is used for BL and BLX instructions, for symbols of type
531 // STT_FUNC we choose whether to write a BL or BLX depending on the
532 // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
533 // not of type STT_FUNC then we must preserve the original instruction.
534 // PLT entries are always ARM state so we know we don't need to interwork.
535 assert(rel.sym); // R_ARM_CALL is always reached via relocate().
536 bool bit0Thumb = val & 1;
537 bool isBlx = (read32le(loc) & 0xfe000000) == 0xfa000000;
538 // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
539 // even when type not STT_FUNC.
540 if (!rel.sym->isFunc() && isBlx != bit0Thumb)
541 stateChangeWarning(loc, rel.type, *rel.sym);
542 if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
543 // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
544 checkInt(loc, val, 26, rel);
545 write32le(loc, 0xfa000000 | // opcode
546 ((val & 2) << 23) | // H
547 ((val >> 2) & 0x00ffffff)); // imm24
548 break;
549 }
550 // BLX (always unconditional) instruction to an ARM Target, select an
551 // unconditional BL.
552 write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
553 // fall through as BL encoding is shared with B
554 }
555 [[fallthrough]];
556 case R_ARM_JUMP24:
557 case R_ARM_PC24:
558 case R_ARM_PLT32:
559 checkInt(loc, val, 26, rel);
560 write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
561 break;
562 case R_ARM_THM_JUMP8:
563 // We do a 9 bit check because val is right-shifted by 1 bit.
564 checkInt(loc, val, 9, rel);
565 write16le(loc, (read32le(loc) & 0xff00) | ((val >> 1) & 0x00ff));
566 break;
567 case R_ARM_THM_JUMP11:
568 // We do a 12 bit check because val is right-shifted by 1 bit.
569 checkInt(loc, val, 12, rel);
570 write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
571 break;
572 case R_ARM_THM_JUMP19:
573 // Encoding T3: Val = S:J2:J1:imm6:imm11:0
574 checkInt(loc, val, 21, rel);
575 write16le(loc,
576 (read16le(loc) & 0xfbc0) | // opcode cond
577 ((val >> 10) & 0x0400) | // S
578 ((val >> 12) & 0x003f)); // imm6
579 write16le(loc + 2,
580 0x8000 | // opcode
581 ((val >> 8) & 0x0800) | // J2
582 ((val >> 5) & 0x2000) | // J1
583 ((val >> 1) & 0x07ff)); // imm11
584 break;
585 case R_ARM_THM_CALL: {
586 // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
587 // STT_FUNC we choose whether to write a BL or BLX depending on the
588 // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
589 // not of type STT_FUNC then we must preserve the original instruction.
590 // PLT entries are always ARM state so we know we need to interwork.
591 assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
592 bool bit0Thumb = val & 1;
593 bool isBlx = (read16le(loc + 2) & 0x1000) == 0;
594 // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
595 // even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
596 if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
597 stateChangeWarning(loc, rel.type, *rel.sym);
598 if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
599 // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
600 // the BLX instruction may only be two byte aligned. This must be done
601 // before overflow check.
602 val = alignTo(val, 4);
603 write16le(loc + 2, read16le(loc + 2) & ~0x1000);
604 } else {
605 write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | 1 << 12);
606 }
607 if (!config->armJ1J2BranchEncoding) {
608 // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
609 // different encoding rules and range due to J1 and J2 always being 1.
610 checkInt(loc, val, 23, rel);
611 write16le(loc,
612 0xf000 | // opcode
613 ((val >> 12) & 0x07ff)); // imm11
614 write16le(loc + 2,
615 (read16le(loc + 2) & 0xd000) | // opcode
616 0x2800 | // J1 == J2 == 1
617 ((val >> 1) & 0x07ff)); // imm11
618 break;
619 }
620 }
621 // Fall through as rest of encoding is the same as B.W
622 [[fallthrough]];
623 case R_ARM_THM_JUMP24:
624 // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
625 checkInt(loc, val, 25, rel);
626 write16le(loc,
627 0xf000 | // opcode
628 ((val >> 14) & 0x0400) | // S
629 ((val >> 12) & 0x03ff)); // imm10
630 write16le(loc + 2,
631 (read16le(loc + 2) & 0xd000) | // opcode
632 (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
633 (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
634 ((val >> 1) & 0x07ff)); // imm11
635 break;
636 case R_ARM_MOVW_ABS_NC:
637 case R_ARM_MOVW_PREL_NC:
638 case R_ARM_MOVW_BREL_NC:
639 write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
640 (val & 0x0fff));
641 break;
642 case R_ARM_MOVT_ABS:
643 case R_ARM_MOVT_PREL:
644 case R_ARM_MOVT_BREL:
645 write32le(loc, (read32le(loc) & ~0x000f0fff) |
646 (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
647 break;
648 case R_ARM_THM_MOVT_ABS:
649 case R_ARM_THM_MOVT_PREL:
650 case R_ARM_THM_MOVT_BREL:
651 // Encoding T1: A = imm4:i:imm3:imm8
652 write16le(loc,
653 0xf2c0 | // opcode
654 ((val >> 17) & 0x0400) | // i
655 ((val >> 28) & 0x000f)); // imm4
656 write16le(loc + 2,
657 (read16le(loc + 2) & 0x8f00) | // opcode
658 ((val >> 12) & 0x7000) | // imm3
659 ((val >> 16) & 0x00ff)); // imm8
660 break;
661 case R_ARM_THM_MOVW_ABS_NC:
662 case R_ARM_THM_MOVW_PREL_NC:
663 case R_ARM_THM_MOVW_BREL_NC:
664 // Encoding T3: A = imm4:i:imm3:imm8
665 write16le(loc,
666 0xf240 | // opcode
667 ((val >> 1) & 0x0400) | // i
668 ((val >> 12) & 0x000f)); // imm4
669 write16le(loc + 2,
670 (read16le(loc + 2) & 0x8f00) | // opcode
671 ((val << 4) & 0x7000) | // imm3
672 (val & 0x00ff)); // imm8
673 break;
674 case R_ARM_ALU_PC_G0:
675 encodeAluGroup(loc, rel, val, 0, true);
676 break;
677 case R_ARM_ALU_PC_G0_NC:
678 encodeAluGroup(loc, rel, val, 0, false);
679 break;
680 case R_ARM_ALU_PC_G1:
681 encodeAluGroup(loc, rel, val, 1, true);
682 break;
683 case R_ARM_ALU_PC_G1_NC:
684 encodeAluGroup(loc, rel, val, 1, false);
685 break;
686 case R_ARM_ALU_PC_G2:
687 encodeAluGroup(loc, rel, val, 2, true);
688 break;
689 case R_ARM_LDR_PC_G0:
690 encodeLdrGroup(loc, rel, val, 0);
691 break;
692 case R_ARM_LDR_PC_G1:
693 encodeLdrGroup(loc, rel, val, 1);
694 break;
695 case R_ARM_LDR_PC_G2:
696 encodeLdrGroup(loc, rel, val, 2);
697 break;
698 case R_ARM_LDRS_PC_G0:
699 encodeLdrsGroup(loc, rel, val, 0);
700 break;
701 case R_ARM_LDRS_PC_G1:
702 encodeLdrsGroup(loc, rel, val, 1);
703 break;
704 case R_ARM_LDRS_PC_G2:
705 encodeLdrsGroup(loc, rel, val, 2);
706 break;
707 case R_ARM_THM_ALU_PREL_11_0: {
708 // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
709 int64_t imm = val;
710 uint16_t sub = 0;
711 if (imm < 0) {
712 imm = -imm;
713 sub = 0x00a0;
714 }
715 checkUInt(loc, imm, 12, rel);
716 write16le(loc, (read16le(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
717 write16le(loc + 2,
718 (read16le(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
719 break;
720 }
721 case R_ARM_THM_PC8:
722 // ADR and LDR literal encoding T1 positive offset only imm8:00
723 // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
724 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
725 // bottom bit to recover S + A - Pa.
726 if (rel.sym->isFunc())
727 val &= ~0x1;
728 checkUInt(loc, val, 10, rel);
729 checkAlignment(loc, val, 4, rel);
730 write16le(loc, (read16le(loc) & 0xff00) | (val & 0x3fc) >> 2);
731 break;
732 case R_ARM_THM_PC12: {
733 // LDR (literal) encoding T2, add = (U == '1') imm12
734 // imm12 is unsigned
735 // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
736 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
737 // bottom bit to recover S + A - Pa.
738 if (rel.sym->isFunc())
739 val &= ~0x1;
740 int64_t imm12 = val;
741 uint16_t u = 0x0080;
742 if (imm12 < 0) {
743 imm12 = -imm12;
744 u = 0;
745 }
746 checkUInt(loc, imm12, 12, rel);
747 write16le(loc, read16le(loc) | u);
748 write16le(loc + 2, (read16le(loc + 2) & 0xf000) | imm12);
749 break;
750 }
751 default:
752 llvm_unreachable("unknown relocation");
753 }
754 }
755
getImplicitAddend(const uint8_t * buf,RelType type) const756 int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
757 switch (type) {
758 default:
759 internalLinkerError(getErrorLocation(buf),
760 "cannot read addend for relocation " + toString(type));
761 return 0;
762 case R_ARM_ABS32:
763 case R_ARM_BASE_PREL:
764 case R_ARM_GLOB_DAT:
765 case R_ARM_GOTOFF32:
766 case R_ARM_GOT_BREL:
767 case R_ARM_GOT_PREL:
768 case R_ARM_IRELATIVE:
769 case R_ARM_REL32:
770 case R_ARM_RELATIVE:
771 case R_ARM_SBREL32:
772 case R_ARM_TARGET1:
773 case R_ARM_TARGET2:
774 case R_ARM_TLS_DTPMOD32:
775 case R_ARM_TLS_DTPOFF32:
776 case R_ARM_TLS_GD32:
777 case R_ARM_TLS_IE32:
778 case R_ARM_TLS_LDM32:
779 case R_ARM_TLS_LE32:
780 case R_ARM_TLS_LDO32:
781 case R_ARM_TLS_TPOFF32:
782 return SignExtend64<32>(read32le(buf));
783 case R_ARM_PREL31:
784 return SignExtend64<31>(read32le(buf));
785 case R_ARM_CALL:
786 case R_ARM_JUMP24:
787 case R_ARM_PC24:
788 case R_ARM_PLT32:
789 return SignExtend64<26>(read32le(buf) << 2);
790 case R_ARM_THM_JUMP8:
791 return SignExtend64<9>(read16le(buf) << 1);
792 case R_ARM_THM_JUMP11:
793 return SignExtend64<12>(read16le(buf) << 1);
794 case R_ARM_THM_JUMP19: {
795 // Encoding T3: A = S:J2:J1:imm10:imm6:0
796 uint16_t hi = read16le(buf);
797 uint16_t lo = read16le(buf + 2);
798 return SignExtend64<20>(((hi & 0x0400) << 10) | // S
799 ((lo & 0x0800) << 8) | // J2
800 ((lo & 0x2000) << 5) | // J1
801 ((hi & 0x003f) << 12) | // imm6
802 ((lo & 0x07ff) << 1)); // imm11:0
803 }
804 case R_ARM_THM_CALL:
805 if (!config->armJ1J2BranchEncoding) {
806 // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
807 // different encoding rules and range due to J1 and J2 always being 1.
808 uint16_t hi = read16le(buf);
809 uint16_t lo = read16le(buf + 2);
810 return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
811 ((lo & 0x7ff) << 1)); // imm11:0
812 break;
813 }
814 [[fallthrough]];
815 case R_ARM_THM_JUMP24: {
816 // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
817 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
818 uint16_t hi = read16le(buf);
819 uint16_t lo = read16le(buf + 2);
820 return SignExtend64<24>(((hi & 0x0400) << 14) | // S
821 (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
822 (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
823 ((hi & 0x003ff) << 12) | // imm0
824 ((lo & 0x007ff) << 1)); // imm11:0
825 }
826 // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
827 // MOVT is in the range -32768 <= A < 32768
828 case R_ARM_MOVW_ABS_NC:
829 case R_ARM_MOVT_ABS:
830 case R_ARM_MOVW_PREL_NC:
831 case R_ARM_MOVT_PREL:
832 case R_ARM_MOVW_BREL_NC:
833 case R_ARM_MOVT_BREL: {
834 uint64_t val = read32le(buf) & 0x000f0fff;
835 return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
836 }
837 case R_ARM_THM_MOVW_ABS_NC:
838 case R_ARM_THM_MOVT_ABS:
839 case R_ARM_THM_MOVW_PREL_NC:
840 case R_ARM_THM_MOVT_PREL:
841 case R_ARM_THM_MOVW_BREL_NC:
842 case R_ARM_THM_MOVT_BREL: {
843 // Encoding T3: A = imm4:i:imm3:imm8
844 uint16_t hi = read16le(buf);
845 uint16_t lo = read16le(buf + 2);
846 return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
847 ((hi & 0x0400) << 1) | // i
848 ((lo & 0x7000) >> 4) | // imm3
849 (lo & 0x00ff)); // imm8
850 }
851 case R_ARM_ALU_PC_G0:
852 case R_ARM_ALU_PC_G0_NC:
853 case R_ARM_ALU_PC_G1:
854 case R_ARM_ALU_PC_G1_NC:
855 case R_ARM_ALU_PC_G2: {
856 // 12-bit immediate is a modified immediate made up of a 4-bit even
857 // right rotation and 8-bit constant. After the rotation the value
858 // is zero-extended. When bit 23 is set the instruction is an add, when
859 // bit 22 is set it is a sub.
860 uint32_t instr = read32le(buf);
861 uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
862 return (instr & 0x00400000) ? -val : val;
863 }
864 case R_ARM_LDR_PC_G0:
865 case R_ARM_LDR_PC_G1:
866 case R_ARM_LDR_PC_G2: {
867 // ADR (literal) add = bit23, sub = bit22
868 // LDR (literal) u = bit23 unsigned imm12
869 bool u = read32le(buf) & 0x00800000;
870 uint32_t imm12 = read32le(buf) & 0xfff;
871 return u ? imm12 : -imm12;
872 }
873 case R_ARM_LDRS_PC_G0:
874 case R_ARM_LDRS_PC_G1:
875 case R_ARM_LDRS_PC_G2: {
876 // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 unsigned imm8
877 uint32_t opcode = read32le(buf);
878 bool u = opcode & 0x00800000;
879 uint32_t imm4l = opcode & 0xf;
880 uint32_t imm4h = (opcode & 0xf00) >> 4;
881 return u ? (imm4h | imm4l) : -(imm4h | imm4l);
882 }
883 case R_ARM_THM_ALU_PREL_11_0: {
884 // Thumb2 ADR, which is an alias for a sub or add instruction with an
885 // unsigned immediate.
886 // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
887 uint16_t hi = read16le(buf);
888 uint16_t lo = read16le(buf + 2);
889 uint64_t imm = (hi & 0x0400) << 1 | // i
890 (lo & 0x7000) >> 4 | // imm3
891 (lo & 0x00ff); // imm8
892 // For sub, addend is negative, add is positive.
893 return (hi & 0x00f0) ? -imm : imm;
894 }
895 case R_ARM_THM_PC8:
896 // ADR and LDR (literal) encoding T1
897 // From ELF for the ARM Architecture the initial signed addend is formed
898 // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4)
899 // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
900 return ((((read16le(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
901 case R_ARM_THM_PC12: {
902 // LDR (literal) encoding T2, add = (U == '1') imm12
903 bool u = read16le(buf) & 0x0080;
904 uint64_t imm12 = read16le(buf + 2) & 0x0fff;
905 return u ? imm12 : -imm12;
906 }
907 case R_ARM_NONE:
908 case R_ARM_V4BX:
909 case R_ARM_JUMP_SLOT:
910 // These relocations are defined as not having an implicit addend.
911 return 0;
912 }
913 }
914
getARMTargetInfo()915 TargetInfo *elf::getARMTargetInfo() {
916 static ARM target;
917 return ⌖
918 }
919