xref: /openbsd/gnu/llvm/lld/ELF/Arch/ARM.cpp (revision dfe94b16)
1 //===- ARM.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Symbols.h"
10 #include "SyntheticSections.h"
11 #include "Target.h"
12 #include "lld/Common/ErrorHandler.h"
13 #include "llvm/BinaryFormat/ELF.h"
14 #include "llvm/Support/Endian.h"
15 
16 using namespace llvm;
17 using namespace llvm::support::endian;
18 using namespace llvm::ELF;
19 using namespace lld;
20 using namespace lld::elf;
21 
22 namespace {
23 class ARM final : public TargetInfo {
24 public:
25   ARM();
26   uint32_t calcEFlags() const override;
27   RelExpr getRelExpr(RelType type, const Symbol &s,
28                      const uint8_t *loc) const override;
29   RelType getDynRel(RelType type) const override;
30   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
31   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
32   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
33   void writePltHeader(uint8_t *buf) const override;
34   void writePlt(uint8_t *buf, const Symbol &sym,
35                 uint64_t pltEntryAddr) const override;
36   void addPltSymbols(InputSection &isec, uint64_t off) const override;
37   void addPltHeaderSymbols(InputSection &isd) const override;
38   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
39                   uint64_t branchAddr, const Symbol &s,
40                   int64_t a) const override;
41   uint32_t getThunkSectionSpacing() const override;
42   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
43   void relocate(uint8_t *loc, const Relocation &rel,
44                 uint64_t val) const override;
45 };
46 } // namespace
47 
ARM()48 ARM::ARM() {
49   copyRel = R_ARM_COPY;
50   relativeRel = R_ARM_RELATIVE;
51   iRelativeRel = R_ARM_IRELATIVE;
52   gotRel = R_ARM_GLOB_DAT;
53   pltRel = R_ARM_JUMP_SLOT;
54   symbolicRel = R_ARM_ABS32;
55   tlsGotRel = R_ARM_TLS_TPOFF32;
56   tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
57   tlsOffsetRel = R_ARM_TLS_DTPOFF32;
58   pltHeaderSize = 32;
59   pltEntrySize = 16;
60   ipltEntrySize = 16;
61   trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
62   needsThunks = true;
63   defaultMaxPageSize = 65536;
64 }
65 
calcEFlags() const66 uint32_t ARM::calcEFlags() const {
67   // The ABIFloatType is used by loaders to detect the floating point calling
68   // convention.
69   uint32_t abiFloatType = 0;
70   if (config->armVFPArgs == ARMVFPArgKind::Base ||
71       config->armVFPArgs == ARMVFPArgKind::Default)
72     abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
73   else if (config->armVFPArgs == ARMVFPArgKind::VFP)
74     abiFloatType = EF_ARM_ABI_FLOAT_HARD;
75 
76   // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
77   // but we don't have any firm guarantees of conformance. Linux AArch64
78   // kernels (as of 2016) require an EABI version to be set.
79   return EF_ARM_EABI_VER5 | abiFloatType;
80 }
81 
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const82 RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
83                         const uint8_t *loc) const {
84   switch (type) {
85   case R_ARM_ABS32:
86   case R_ARM_MOVW_ABS_NC:
87   case R_ARM_MOVT_ABS:
88   case R_ARM_THM_MOVW_ABS_NC:
89   case R_ARM_THM_MOVT_ABS:
90     return R_ABS;
91   case R_ARM_THM_JUMP8:
92   case R_ARM_THM_JUMP11:
93     return R_PC;
94   case R_ARM_CALL:
95   case R_ARM_JUMP24:
96   case R_ARM_PC24:
97   case R_ARM_PLT32:
98   case R_ARM_PREL31:
99   case R_ARM_THM_JUMP19:
100   case R_ARM_THM_JUMP24:
101   case R_ARM_THM_CALL:
102     return R_PLT_PC;
103   case R_ARM_GOTOFF32:
104     // (S + A) - GOT_ORG
105     return R_GOTREL;
106   case R_ARM_GOT_BREL:
107     // GOT(S) + A - GOT_ORG
108     return R_GOT_OFF;
109   case R_ARM_GOT_PREL:
110   case R_ARM_TLS_IE32:
111     // GOT(S) + A - P
112     return R_GOT_PC;
113   case R_ARM_SBREL32:
114     return R_ARM_SBREL;
115   case R_ARM_TARGET1:
116     return config->target1Rel ? R_PC : R_ABS;
117   case R_ARM_TARGET2:
118     if (config->target2 == Target2Policy::Rel)
119       return R_PC;
120     if (config->target2 == Target2Policy::Abs)
121       return R_ABS;
122     return R_GOT_PC;
123   case R_ARM_TLS_GD32:
124     return R_TLSGD_PC;
125   case R_ARM_TLS_LDM32:
126     return R_TLSLD_PC;
127   case R_ARM_TLS_LDO32:
128     return R_DTPREL;
129   case R_ARM_BASE_PREL:
130     // B(S) + A - P
131     // FIXME: currently B(S) assumed to be .got, this may not hold for all
132     // platforms.
133     return R_GOTONLY_PC;
134   case R_ARM_MOVW_PREL_NC:
135   case R_ARM_MOVT_PREL:
136   case R_ARM_REL32:
137   case R_ARM_THM_MOVW_PREL_NC:
138   case R_ARM_THM_MOVT_PREL:
139     return R_PC;
140   case R_ARM_ALU_PC_G0:
141   case R_ARM_ALU_PC_G0_NC:
142   case R_ARM_ALU_PC_G1:
143   case R_ARM_ALU_PC_G1_NC:
144   case R_ARM_ALU_PC_G2:
145   case R_ARM_LDR_PC_G0:
146   case R_ARM_LDR_PC_G1:
147   case R_ARM_LDR_PC_G2:
148   case R_ARM_LDRS_PC_G0:
149   case R_ARM_LDRS_PC_G1:
150   case R_ARM_LDRS_PC_G2:
151   case R_ARM_THM_ALU_PREL_11_0:
152   case R_ARM_THM_PC8:
153   case R_ARM_THM_PC12:
154     return R_ARM_PCA;
155   case R_ARM_MOVW_BREL_NC:
156   case R_ARM_MOVW_BREL:
157   case R_ARM_MOVT_BREL:
158   case R_ARM_THM_MOVW_BREL_NC:
159   case R_ARM_THM_MOVW_BREL:
160   case R_ARM_THM_MOVT_BREL:
161     return R_ARM_SBREL;
162   case R_ARM_NONE:
163     return R_NONE;
164   case R_ARM_TLS_LE32:
165     return R_TPREL;
166   case R_ARM_V4BX:
167     // V4BX is just a marker to indicate there's a "bx rN" instruction at the
168     // given address. It can be used to implement a special linker mode which
169     // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
170     // not ARMv4 output, we can just ignore it.
171     return R_NONE;
172   default:
173     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
174           ") against symbol " + toString(s));
175     return R_NONE;
176   }
177 }
178 
getDynRel(RelType type) const179 RelType ARM::getDynRel(RelType type) const {
180   if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
181     return R_ARM_ABS32;
182   return R_ARM_NONE;
183 }
184 
writeGotPlt(uint8_t * buf,const Symbol &) const185 void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
186   write32le(buf, in.plt->getVA());
187 }
188 
writeIgotPlt(uint8_t * buf,const Symbol & s) const189 void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
190   // An ARM entry is the address of the ifunc resolver function.
191   write32le(buf, s.getVA());
192 }
193 
194 // Long form PLT Header that does not have any restrictions on the displacement
195 // of the .plt from the .got.plt.
writePltHeaderLong(uint8_t * buf)196 static void writePltHeaderLong(uint8_t *buf) {
197   const uint8_t pltData[] = {
198       0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
199       0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
200       0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
201       0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
202       0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
203       0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
204       0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
205       0xd4, 0xd4, 0xd4, 0xd4};
206   memcpy(buf, pltData, sizeof(pltData));
207   uint64_t gotPlt = in.gotPlt->getVA();
208   uint64_t l1 = in.plt->getVA() + 8;
209   write32le(buf + 16, gotPlt - l1 - 8);
210 }
211 
212 // The default PLT header requires the .got.plt to be within 128 Mb of the
213 // .plt in the positive direction.
writePltHeader(uint8_t * buf) const214 void ARM::writePltHeader(uint8_t *buf) const {
215   // Use a similar sequence to that in writePlt(), the difference is the calling
216   // conventions mean we use lr instead of ip. The PLT entry is responsible for
217   // saving lr on the stack, the dynamic loader is responsible for reloading
218   // it.
219   const uint32_t pltData[] = {
220       0xe52de004, // L1: str lr, [sp,#-4]!
221       0xe28fe600, //     add lr, pc,  #0x0NN00000 &(.got.plt - L1 - 4)
222       0xe28eea00, //     add lr, lr,  #0x000NN000 &(.got.plt - L1 - 4)
223       0xe5bef000, //     ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
224   };
225 
226   uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
227   if (!llvm::isUInt<27>(offset)) {
228     // We cannot encode the Offset, use the long form.
229     writePltHeaderLong(buf);
230     return;
231   }
232   write32le(buf + 0, pltData[0]);
233   write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
234   write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
235   write32le(buf + 12, pltData[3] | (offset & 0xfff));
236   memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
237   memcpy(buf + 20, trapInstr.data(), 4);
238   memcpy(buf + 24, trapInstr.data(), 4);
239   memcpy(buf + 28, trapInstr.data(), 4);
240 }
241 
addPltHeaderSymbols(InputSection & isec) const242 void ARM::addPltHeaderSymbols(InputSection &isec) const {
243   addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
244   addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
245 }
246 
247 // Long form PLT entries that do not have any restrictions on the displacement
248 // of the .plt from the .got.plt.
writePltLong(uint8_t * buf,uint64_t gotPltEntryAddr,uint64_t pltEntryAddr)249 static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
250                          uint64_t pltEntryAddr) {
251   const uint8_t pltData[] = {
252       0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
253       0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
254       0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
255       0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.got.plt) - L1 - 8
256   };
257   memcpy(buf, pltData, sizeof(pltData));
258   uint64_t l1 = pltEntryAddr + 4;
259   write32le(buf + 12, gotPltEntryAddr - l1 - 8);
260 }
261 
262 // The default PLT entries require the .got.plt to be within 128 Mb of the
263 // .plt in the positive direction.
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const264 void ARM::writePlt(uint8_t *buf, const Symbol &sym,
265                    uint64_t pltEntryAddr) const {
266   // The PLT entry is similar to the example given in Appendix A of ELF for
267   // the Arm Architecture. Instead of using the Group Relocations to find the
268   // optimal rotation for the 8-bit immediate used in the add instructions we
269   // hard code the most compact rotations for simplicity. This saves a load
270   // instruction over the long plt sequences.
271   const uint32_t pltData[] = {
272       0xe28fc600, // L1: add ip, pc,  #0x0NN00000  Offset(&(.got.plt) - L1 - 8
273       0xe28cca00, //     add ip, ip,  #0x000NN000  Offset(&(.got.plt) - L1 - 8
274       0xe5bcf000, //     ldr pc, [ip, #0x00000NNN] Offset(&(.got.plt) - L1 - 8
275   };
276 
277   uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
278   if (!llvm::isUInt<27>(offset)) {
279     // We cannot encode the Offset, use the long form.
280     writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
281     return;
282   }
283   write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
284   write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
285   write32le(buf + 8, pltData[2] | (offset & 0xfff));
286   memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
287 }
288 
addPltSymbols(InputSection & isec,uint64_t off) const289 void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
290   addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
291   addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
292 }
293 
needsThunk(RelExpr expr,RelType type,const InputFile * file,uint64_t branchAddr,const Symbol & s,int64_t a) const294 bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
295                      uint64_t branchAddr, const Symbol &s,
296                      int64_t a) const {
297   // If s is an undefined weak symbol and does not have a PLT entry then it will
298   // be resolved as a branch to the next instruction. If it is hidden, its
299   // binding has been converted to local, so we just check isUndefined() here. A
300   // undefined non-weak symbol will have been errored.
301   if (s.isUndefined() && !s.isInPlt())
302     return false;
303   // A state change from ARM to Thumb and vice versa must go through an
304   // interworking thunk if the relocation type is not R_ARM_CALL or
305   // R_ARM_THM_CALL.
306   switch (type) {
307   case R_ARM_PC24:
308   case R_ARM_PLT32:
309   case R_ARM_JUMP24:
310     // Source is ARM, all PLT entries are ARM so no interworking required.
311     // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
312     if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
313       return true;
314     [[fallthrough]];
315   case R_ARM_CALL: {
316     uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
317     return !inBranchRange(type, branchAddr, dst + a) ||
318         (!config->armHasBlx && (s.getVA() & 1));
319   }
320   case R_ARM_THM_JUMP19:
321   case R_ARM_THM_JUMP24:
322     // Source is Thumb, all PLT entries are ARM so interworking is required.
323     // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
324     if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
325       return true;
326     [[fallthrough]];
327   case R_ARM_THM_CALL: {
328     uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
329     return !inBranchRange(type, branchAddr, dst + a) ||
330         (!config->armHasBlx && (s.getVA() & 1) == 0);;
331   }
332   }
333   return false;
334 }
335 
getThunkSectionSpacing() const336 uint32_t ARM::getThunkSectionSpacing() const {
337   // The placing of pre-created ThunkSections is controlled by the value
338   // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
339   // place the ThunkSection such that all branches from the InputSections
340   // prior to the ThunkSection can reach a Thunk placed at the end of the
341   // ThunkSection. Graphically:
342   // | up to thunkSectionSpacing .text input sections |
343   // | ThunkSection                                   |
344   // | up to thunkSectionSpacing .text input sections |
345   // | ThunkSection                                   |
346 
347   // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
348   // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
349   // B.W:
350   // ARM B, BL, BLX range +/- 32MiB
351   // Thumb B.W, BL, BLX range +/- 16MiB
352   // Thumb B<cc>.W range +/- 1MiB
353   // If a branch cannot reach a pre-created ThunkSection a new one will be
354   // created so we can handle the rare cases of a Thumb 2 conditional branch.
355   // We intentionally use a lower size for thunkSectionSpacing than the maximum
356   // branch range so the end of the ThunkSection is more likely to be within
357   // range of the branch instruction that is furthest away. The value we shorten
358   // thunkSectionSpacing by is set conservatively to allow us to create 16,384
359   // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
360   // one of the Thunks going out of range.
361 
362   // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
363   // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
364   // ARMv6T2) the range is +/- 4MiB.
365 
366   return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
367                                          : 0x400000 - 0x7500;
368 }
369 
inBranchRange(RelType type,uint64_t src,uint64_t dst) const370 bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
371   if ((dst & 0x1) == 0)
372     // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
373     // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
374     // destination will be 4 byte aligned.
375     src &= ~0x3;
376   else
377     // Bit 0 == 1 denotes Thumb state, it is not part of the range.
378     dst &= ~0x1;
379 
380   int64_t offset = dst - src;
381   switch (type) {
382   case R_ARM_PC24:
383   case R_ARM_PLT32:
384   case R_ARM_JUMP24:
385   case R_ARM_CALL:
386     return llvm::isInt<26>(offset);
387   case R_ARM_THM_JUMP19:
388     return llvm::isInt<21>(offset);
389   case R_ARM_THM_JUMP24:
390   case R_ARM_THM_CALL:
391     return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset)
392                                          : llvm::isInt<23>(offset);
393   default:
394     return true;
395   }
396 }
397 
398 // Helper to produce message text when LLD detects that a CALL relocation to
399 // a non STT_FUNC symbol that may result in incorrect interworking between ARM
400 // or Thumb.
stateChangeWarning(uint8_t * loc,RelType relt,const Symbol & s)401 static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
402   assert(!s.isFunc());
403   const ErrorPlace place = getErrorPlace(loc);
404   std::string hint;
405   if (!place.srcLoc.empty())
406     hint = "; " + place.srcLoc;
407   if (s.isSection()) {
408     // Section symbols must be defined and in a section. Users cannot change
409     // the type. Use the section name as getName() returns an empty string.
410     warn(place.loc + "branch and link relocation: " + toString(relt) +
411          " to STT_SECTION symbol " + cast<Defined>(s).section->name +
412          " ; interworking not performed" + hint);
413   } else {
414     // Warn with hint on how to alter the symbol type.
415     warn(getErrorLocation(loc) + "branch and link relocation: " +
416          toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
417          " interworking not performed; consider using directive '.type " +
418          s.getName() +
419          ", %function' to give symbol type STT_FUNC if interworking between "
420          "ARM and Thumb is required" +
421          hint);
422   }
423 }
424 
425 // Rotate a 32-bit unsigned value right by a specified amt of bits.
rotr32(uint32_t val,uint32_t amt)426 static uint32_t rotr32(uint32_t val, uint32_t amt) {
427   assert(amt < 32 && "Invalid rotate amount");
428   return (val >> amt) | (val << ((32 - amt) & 31));
429 }
430 
getRemAndLZForGroup(unsigned group,uint32_t val)431 static std::pair<uint32_t, uint32_t> getRemAndLZForGroup(unsigned group,
432                                                          uint32_t val) {
433   uint32_t rem, lz;
434   do {
435     lz = llvm::countLeadingZeros(val) & ~1;
436     rem = val;
437     if (lz == 32) // implies rem == 0
438       break;
439     val &= 0xffffff >> lz;
440   } while (group--);
441   return {rem, lz};
442 }
443 
encodeAluGroup(uint8_t * loc,const Relocation & rel,uint64_t val,int group,bool check)444 static void encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
445                            int group, bool check) {
446   // ADD/SUB (immediate) add = bit23, sub = bit22
447   // immediate field carries is a 12-bit modified immediate, made up of a 4-bit
448   // even rotate right and an 8-bit immediate.
449   uint32_t opcode = 0x00800000;
450   if (val >> 63) {
451     opcode = 0x00400000;
452     val = -val;
453   }
454   uint32_t imm, lz;
455   std::tie(imm, lz) = getRemAndLZForGroup(group, val);
456   uint32_t rot = 0;
457   if (lz < 24) {
458     imm = rotr32(imm, 24 - lz);
459     rot = (lz + 8) << 7;
460   }
461   if (check && imm > 0xff)
462     error(getErrorLocation(loc) + "unencodeable immediate " + Twine(val).str() +
463           " for relocation " + toString(rel.type));
464   write32le(loc, (read32le(loc) & 0xff3ff000) | opcode | rot | (imm & 0xff));
465 }
466 
encodeLdrGroup(uint8_t * loc,const Relocation & rel,uint64_t val,int group)467 static void encodeLdrGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
468                            int group) {
469   // R_ARM_LDR_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
470   // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
471   // bottom bit to recover S + A - P.
472   if (rel.sym->isFunc())
473     val &= ~0x1;
474   // LDR (literal) u = bit23
475   uint32_t opcode = 0x00800000;
476   if (val >> 63) {
477     opcode = 0x0;
478     val = -val;
479   }
480   uint32_t imm = getRemAndLZForGroup(group, val).first;
481   checkUInt(loc, imm, 12, rel);
482   write32le(loc, (read32le(loc) & 0xff7ff000) | opcode | imm);
483 }
484 
encodeLdrsGroup(uint8_t * loc,const Relocation & rel,uint64_t val,int group)485 static void encodeLdrsGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
486                             int group) {
487   // R_ARM_LDRS_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
488   // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
489   // bottom bit to recover S + A - P.
490   if (rel.sym->isFunc())
491     val &= ~0x1;
492   // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23
493   uint32_t opcode = 0x00800000;
494   if (val >> 63) {
495     opcode = 0x0;
496     val = -val;
497   }
498   uint32_t imm = getRemAndLZForGroup(group, val).first;
499   checkUInt(loc, imm, 8, rel);
500   write32le(loc, (read32le(loc) & 0xff7ff0f0) | opcode | ((imm & 0xf0) << 4) |
501                      (imm & 0xf));
502 }
503 
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const504 void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
505   switch (rel.type) {
506   case R_ARM_ABS32:
507   case R_ARM_BASE_PREL:
508   case R_ARM_GOTOFF32:
509   case R_ARM_GOT_BREL:
510   case R_ARM_GOT_PREL:
511   case R_ARM_REL32:
512   case R_ARM_RELATIVE:
513   case R_ARM_SBREL32:
514   case R_ARM_TARGET1:
515   case R_ARM_TARGET2:
516   case R_ARM_TLS_GD32:
517   case R_ARM_TLS_IE32:
518   case R_ARM_TLS_LDM32:
519   case R_ARM_TLS_LDO32:
520   case R_ARM_TLS_LE32:
521   case R_ARM_TLS_TPOFF32:
522   case R_ARM_TLS_DTPOFF32:
523     write32le(loc, val);
524     break;
525   case R_ARM_PREL31:
526     checkInt(loc, val, 31, rel);
527     write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
528     break;
529   case R_ARM_CALL: {
530     // R_ARM_CALL is used for BL and BLX instructions, for symbols of type
531     // STT_FUNC we choose whether to write a BL or BLX depending on the
532     // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
533     // not of type STT_FUNC then we must preserve the original instruction.
534     // PLT entries are always ARM state so we know we don't need to interwork.
535     assert(rel.sym); // R_ARM_CALL is always reached via relocate().
536     bool bit0Thumb = val & 1;
537     bool isBlx = (read32le(loc) & 0xfe000000) == 0xfa000000;
538     // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
539     // even when type not STT_FUNC.
540     if (!rel.sym->isFunc() && isBlx != bit0Thumb)
541       stateChangeWarning(loc, rel.type, *rel.sym);
542     if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
543       // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
544       checkInt(loc, val, 26, rel);
545       write32le(loc, 0xfa000000 |                    // opcode
546                          ((val & 2) << 23) |         // H
547                          ((val >> 2) & 0x00ffffff)); // imm24
548       break;
549     }
550     // BLX (always unconditional) instruction to an ARM Target, select an
551     // unconditional BL.
552     write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
553     // fall through as BL encoding is shared with B
554   }
555     [[fallthrough]];
556   case R_ARM_JUMP24:
557   case R_ARM_PC24:
558   case R_ARM_PLT32:
559     checkInt(loc, val, 26, rel);
560     write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
561     break;
562   case R_ARM_THM_JUMP8:
563     // We do a 9 bit check because val is right-shifted by 1 bit.
564     checkInt(loc, val, 9, rel);
565     write16le(loc, (read32le(loc) & 0xff00) | ((val >> 1) & 0x00ff));
566     break;
567   case R_ARM_THM_JUMP11:
568     // We do a 12 bit check because val is right-shifted by 1 bit.
569     checkInt(loc, val, 12, rel);
570     write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
571     break;
572   case R_ARM_THM_JUMP19:
573     // Encoding T3: Val = S:J2:J1:imm6:imm11:0
574     checkInt(loc, val, 21, rel);
575     write16le(loc,
576               (read16le(loc) & 0xfbc0) |   // opcode cond
577                   ((val >> 10) & 0x0400) | // S
578                   ((val >> 12) & 0x003f)); // imm6
579     write16le(loc + 2,
580               0x8000 |                    // opcode
581                   ((val >> 8) & 0x0800) | // J2
582                   ((val >> 5) & 0x2000) | // J1
583                   ((val >> 1) & 0x07ff)); // imm11
584     break;
585   case R_ARM_THM_CALL: {
586     // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
587     // STT_FUNC we choose whether to write a BL or BLX depending on the
588     // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
589     // not of type STT_FUNC then we must preserve the original instruction.
590     // PLT entries are always ARM state so we know we need to interwork.
591     assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
592     bool bit0Thumb = val & 1;
593     bool isBlx = (read16le(loc + 2) & 0x1000) == 0;
594     // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
595     // even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
596     if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
597       stateChangeWarning(loc, rel.type, *rel.sym);
598     if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
599       // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
600       // the BLX instruction may only be two byte aligned. This must be done
601       // before overflow check.
602       val = alignTo(val, 4);
603       write16le(loc + 2, read16le(loc + 2) & ~0x1000);
604     } else {
605       write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | 1 << 12);
606     }
607     if (!config->armJ1J2BranchEncoding) {
608       // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
609       // different encoding rules and range due to J1 and J2 always being 1.
610       checkInt(loc, val, 23, rel);
611       write16le(loc,
612                 0xf000 |                     // opcode
613                     ((val >> 12) & 0x07ff)); // imm11
614       write16le(loc + 2,
615                 (read16le(loc + 2) & 0xd000) | // opcode
616                     0x2800 |                   // J1 == J2 == 1
617                     ((val >> 1) & 0x07ff));    // imm11
618       break;
619     }
620   }
621     // Fall through as rest of encoding is the same as B.W
622     [[fallthrough]];
623   case R_ARM_THM_JUMP24:
624     // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
625     checkInt(loc, val, 25, rel);
626     write16le(loc,
627               0xf000 |                     // opcode
628                   ((val >> 14) & 0x0400) | // S
629                   ((val >> 12) & 0x03ff)); // imm10
630     write16le(loc + 2,
631               (read16le(loc + 2) & 0xd000) |                  // opcode
632                   (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
633                   (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
634                   ((val >> 1) & 0x07ff));                     // imm11
635     break;
636   case R_ARM_MOVW_ABS_NC:
637   case R_ARM_MOVW_PREL_NC:
638   case R_ARM_MOVW_BREL_NC:
639     write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
640                        (val & 0x0fff));
641     break;
642   case R_ARM_MOVT_ABS:
643   case R_ARM_MOVT_PREL:
644   case R_ARM_MOVT_BREL:
645     write32le(loc, (read32le(loc) & ~0x000f0fff) |
646                        (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
647     break;
648   case R_ARM_THM_MOVT_ABS:
649   case R_ARM_THM_MOVT_PREL:
650   case R_ARM_THM_MOVT_BREL:
651     // Encoding T1: A = imm4:i:imm3:imm8
652     write16le(loc,
653               0xf2c0 |                     // opcode
654                   ((val >> 17) & 0x0400) | // i
655                   ((val >> 28) & 0x000f)); // imm4
656     write16le(loc + 2,
657               (read16le(loc + 2) & 0x8f00) | // opcode
658                   ((val >> 12) & 0x7000) |   // imm3
659                   ((val >> 16) & 0x00ff));   // imm8
660     break;
661   case R_ARM_THM_MOVW_ABS_NC:
662   case R_ARM_THM_MOVW_PREL_NC:
663   case R_ARM_THM_MOVW_BREL_NC:
664     // Encoding T3: A = imm4:i:imm3:imm8
665     write16le(loc,
666               0xf240 |                     // opcode
667                   ((val >> 1) & 0x0400) |  // i
668                   ((val >> 12) & 0x000f)); // imm4
669     write16le(loc + 2,
670               (read16le(loc + 2) & 0x8f00) | // opcode
671                   ((val << 4) & 0x7000) |    // imm3
672                   (val & 0x00ff));           // imm8
673     break;
674   case R_ARM_ALU_PC_G0:
675     encodeAluGroup(loc, rel, val, 0, true);
676     break;
677   case R_ARM_ALU_PC_G0_NC:
678     encodeAluGroup(loc, rel, val, 0, false);
679     break;
680   case R_ARM_ALU_PC_G1:
681     encodeAluGroup(loc, rel, val, 1, true);
682     break;
683   case R_ARM_ALU_PC_G1_NC:
684     encodeAluGroup(loc, rel, val, 1, false);
685     break;
686   case R_ARM_ALU_PC_G2:
687     encodeAluGroup(loc, rel, val, 2, true);
688     break;
689   case R_ARM_LDR_PC_G0:
690     encodeLdrGroup(loc, rel, val, 0);
691     break;
692   case R_ARM_LDR_PC_G1:
693     encodeLdrGroup(loc, rel, val, 1);
694     break;
695   case R_ARM_LDR_PC_G2:
696     encodeLdrGroup(loc, rel, val, 2);
697     break;
698   case R_ARM_LDRS_PC_G0:
699     encodeLdrsGroup(loc, rel, val, 0);
700     break;
701   case R_ARM_LDRS_PC_G1:
702     encodeLdrsGroup(loc, rel, val, 1);
703     break;
704   case R_ARM_LDRS_PC_G2:
705     encodeLdrsGroup(loc, rel, val, 2);
706     break;
707   case R_ARM_THM_ALU_PREL_11_0: {
708     // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
709     int64_t imm = val;
710     uint16_t sub = 0;
711     if (imm < 0) {
712       imm = -imm;
713       sub = 0x00a0;
714     }
715     checkUInt(loc, imm, 12, rel);
716     write16le(loc, (read16le(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
717     write16le(loc + 2,
718               (read16le(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
719     break;
720   }
721   case R_ARM_THM_PC8:
722     // ADR and LDR literal encoding T1 positive offset only imm8:00
723     // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
724     // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
725     // bottom bit to recover S + A - Pa.
726     if (rel.sym->isFunc())
727       val &= ~0x1;
728     checkUInt(loc, val, 10, rel);
729     checkAlignment(loc, val, 4, rel);
730     write16le(loc, (read16le(loc) & 0xff00) | (val & 0x3fc) >> 2);
731     break;
732   case R_ARM_THM_PC12: {
733     // LDR (literal) encoding T2, add = (U == '1') imm12
734     // imm12 is unsigned
735     // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
736     // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
737     // bottom bit to recover S + A - Pa.
738     if (rel.sym->isFunc())
739       val &= ~0x1;
740     int64_t imm12 = val;
741     uint16_t u = 0x0080;
742     if (imm12 < 0) {
743       imm12 = -imm12;
744       u = 0;
745     }
746     checkUInt(loc, imm12, 12, rel);
747     write16le(loc, read16le(loc) | u);
748     write16le(loc + 2, (read16le(loc + 2) & 0xf000) | imm12);
749     break;
750   }
751   default:
752     llvm_unreachable("unknown relocation");
753   }
754 }
755 
getImplicitAddend(const uint8_t * buf,RelType type) const756 int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
757   switch (type) {
758   default:
759     internalLinkerError(getErrorLocation(buf),
760                         "cannot read addend for relocation " + toString(type));
761     return 0;
762   case R_ARM_ABS32:
763   case R_ARM_BASE_PREL:
764   case R_ARM_GLOB_DAT:
765   case R_ARM_GOTOFF32:
766   case R_ARM_GOT_BREL:
767   case R_ARM_GOT_PREL:
768   case R_ARM_IRELATIVE:
769   case R_ARM_REL32:
770   case R_ARM_RELATIVE:
771   case R_ARM_SBREL32:
772   case R_ARM_TARGET1:
773   case R_ARM_TARGET2:
774   case R_ARM_TLS_DTPMOD32:
775   case R_ARM_TLS_DTPOFF32:
776   case R_ARM_TLS_GD32:
777   case R_ARM_TLS_IE32:
778   case R_ARM_TLS_LDM32:
779   case R_ARM_TLS_LE32:
780   case R_ARM_TLS_LDO32:
781   case R_ARM_TLS_TPOFF32:
782     return SignExtend64<32>(read32le(buf));
783   case R_ARM_PREL31:
784     return SignExtend64<31>(read32le(buf));
785   case R_ARM_CALL:
786   case R_ARM_JUMP24:
787   case R_ARM_PC24:
788   case R_ARM_PLT32:
789     return SignExtend64<26>(read32le(buf) << 2);
790   case R_ARM_THM_JUMP8:
791     return SignExtend64<9>(read16le(buf) << 1);
792   case R_ARM_THM_JUMP11:
793     return SignExtend64<12>(read16le(buf) << 1);
794   case R_ARM_THM_JUMP19: {
795     // Encoding T3: A = S:J2:J1:imm10:imm6:0
796     uint16_t hi = read16le(buf);
797     uint16_t lo = read16le(buf + 2);
798     return SignExtend64<20>(((hi & 0x0400) << 10) | // S
799                             ((lo & 0x0800) << 8) |  // J2
800                             ((lo & 0x2000) << 5) |  // J1
801                             ((hi & 0x003f) << 12) | // imm6
802                             ((lo & 0x07ff) << 1));  // imm11:0
803   }
804   case R_ARM_THM_CALL:
805     if (!config->armJ1J2BranchEncoding) {
806       // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
807       // different encoding rules and range due to J1 and J2 always being 1.
808       uint16_t hi = read16le(buf);
809       uint16_t lo = read16le(buf + 2);
810       return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
811                               ((lo & 0x7ff) << 1));  // imm11:0
812       break;
813     }
814     [[fallthrough]];
815   case R_ARM_THM_JUMP24: {
816     // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
817     // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
818     uint16_t hi = read16le(buf);
819     uint16_t lo = read16le(buf + 2);
820     return SignExtend64<24>(((hi & 0x0400) << 14) |                    // S
821                             (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
822                             (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
823                             ((hi & 0x003ff) << 12) |                   // imm0
824                             ((lo & 0x007ff) << 1)); // imm11:0
825   }
826   // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
827   // MOVT is in the range -32768 <= A < 32768
828   case R_ARM_MOVW_ABS_NC:
829   case R_ARM_MOVT_ABS:
830   case R_ARM_MOVW_PREL_NC:
831   case R_ARM_MOVT_PREL:
832   case R_ARM_MOVW_BREL_NC:
833   case R_ARM_MOVT_BREL: {
834     uint64_t val = read32le(buf) & 0x000f0fff;
835     return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
836   }
837   case R_ARM_THM_MOVW_ABS_NC:
838   case R_ARM_THM_MOVT_ABS:
839   case R_ARM_THM_MOVW_PREL_NC:
840   case R_ARM_THM_MOVT_PREL:
841   case R_ARM_THM_MOVW_BREL_NC:
842   case R_ARM_THM_MOVT_BREL: {
843     // Encoding T3: A = imm4:i:imm3:imm8
844     uint16_t hi = read16le(buf);
845     uint16_t lo = read16le(buf + 2);
846     return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
847                             ((hi & 0x0400) << 1) |  // i
848                             ((lo & 0x7000) >> 4) |  // imm3
849                             (lo & 0x00ff));         // imm8
850   }
851   case R_ARM_ALU_PC_G0:
852   case R_ARM_ALU_PC_G0_NC:
853   case R_ARM_ALU_PC_G1:
854   case R_ARM_ALU_PC_G1_NC:
855   case R_ARM_ALU_PC_G2: {
856     // 12-bit immediate is a modified immediate made up of a 4-bit even
857     // right rotation and 8-bit constant. After the rotation the value
858     // is zero-extended. When bit 23 is set the instruction is an add, when
859     // bit 22 is set it is a sub.
860     uint32_t instr = read32le(buf);
861     uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
862     return (instr & 0x00400000) ? -val : val;
863   }
864   case R_ARM_LDR_PC_G0:
865   case R_ARM_LDR_PC_G1:
866   case R_ARM_LDR_PC_G2: {
867     // ADR (literal) add = bit23, sub = bit22
868     // LDR (literal) u = bit23 unsigned imm12
869     bool u = read32le(buf) & 0x00800000;
870     uint32_t imm12 = read32le(buf) & 0xfff;
871     return u ? imm12 : -imm12;
872   }
873   case R_ARM_LDRS_PC_G0:
874   case R_ARM_LDRS_PC_G1:
875   case R_ARM_LDRS_PC_G2: {
876     // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 unsigned imm8
877     uint32_t opcode = read32le(buf);
878     bool u = opcode & 0x00800000;
879     uint32_t imm4l = opcode & 0xf;
880     uint32_t imm4h = (opcode & 0xf00) >> 4;
881     return u ? (imm4h | imm4l) : -(imm4h | imm4l);
882   }
883   case R_ARM_THM_ALU_PREL_11_0: {
884     // Thumb2 ADR, which is an alias for a sub or add instruction with an
885     // unsigned immediate.
886     // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
887     uint16_t hi = read16le(buf);
888     uint16_t lo = read16le(buf + 2);
889     uint64_t imm = (hi & 0x0400) << 1 | // i
890                    (lo & 0x7000) >> 4 | // imm3
891                    (lo & 0x00ff);       // imm8
892     // For sub, addend is negative, add is positive.
893     return (hi & 0x00f0) ? -imm : imm;
894   }
895   case R_ARM_THM_PC8:
896     // ADR and LDR (literal) encoding T1
897     // From ELF for the ARM Architecture the initial signed addend is formed
898     // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4)
899     // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
900     return ((((read16le(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
901   case R_ARM_THM_PC12: {
902     // LDR (literal) encoding T2, add = (U == '1') imm12
903     bool u = read16le(buf) & 0x0080;
904     uint64_t imm12 = read16le(buf + 2) & 0x0fff;
905     return u ? imm12 : -imm12;
906   }
907   case R_ARM_NONE:
908   case R_ARM_V4BX:
909   case R_ARM_JUMP_SLOT:
910     // These relocations are defined as not having an implicit addend.
911     return 0;
912   }
913 }
914 
getARMTargetInfo()915 TargetInfo *elf::getARMTargetInfo() {
916   static ARM target;
917   return &target;
918 }
919