1 //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Run a basic correctness check on the IR to ensure that Safepoints - if
10 // they've been inserted - were inserted correctly.  In particular, look for use
11 // of non-relocated values after a safepoint.  It's primary use is to check the
12 // correctness of safepoint insertion immediately after insertion, but it can
13 // also be used to verify that later transforms have not found a way to break
14 // safepoint semenatics.
15 //
16 // In its current form, this verify checks a property which is sufficient, but
17 // not neccessary for correctness.  There are some cases where an unrelocated
18 // pointer can be used after the safepoint.  Consider this example:
19 //
20 //    a = ...
21 //    b = ...
22 //    (a',b') = safepoint(a,b)
23 //    c = cmp eq a b
24 //    br c, ..., ....
25 //
26 // Because it is valid to reorder 'c' above the safepoint, this is legal.  In
27 // practice, this is a somewhat uncommon transform, but CodeGenPrep does create
28 // idioms like this.  The verifier knows about these cases and avoids reporting
29 // false positives.
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #include "llvm/IR/SafepointIRVerifier.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/SetOperations.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/Statepoint.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Support/Allocator.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 
51 #define DEBUG_TYPE "safepoint-ir-verifier"
52 
53 using namespace llvm;
54 
55 /// This option is used for writing test cases.  Instead of crashing the program
56 /// when verification fails, report a message to the console (for FileCheck
57 /// usage) and continue execution as if nothing happened.
58 static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
59                                cl::init(false));
60 
61 namespace {
62 
63 /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
64 /// of blocks unreachable from entry then propagates deadness using foldable
65 /// conditional branches without modifying CFG. So GVN does but it changes CFG
66 /// by splitting critical edges. In most cases passes rely on SimplifyCFG to
67 /// clean up dead blocks, but in some cases, like verification or loop passes
68 /// it's not possible.
69 class CFGDeadness {
70   const DominatorTree *DT = nullptr;
71   SetVector<const BasicBlock *> DeadBlocks;
72   SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.
73 
74 public:
75   /// Return the edge that coresponds to the predecessor.
getEdge(const_pred_iterator & PredIt)76   static const Use& getEdge(const_pred_iterator &PredIt) {
77     auto &PU = PredIt.getUse();
78     return PU.getUser()->getOperandUse(PU.getOperandNo());
79   }
80 
81   /// Return true if there is at least one live edge that corresponds to the
82   /// basic block InBB listed in the phi node.
hasLiveIncomingEdge(const PHINode * PN,const BasicBlock * InBB) const83   bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
84     assert(!isDeadBlock(InBB) && "block must be live");
85     const BasicBlock* BB = PN->getParent();
86     bool Listed = false;
87     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
88       if (InBB == *PredIt) {
89         if (!isDeadEdge(&getEdge(PredIt)))
90           return true;
91         Listed = true;
92       }
93     }
94     (void)Listed;
95     assert(Listed && "basic block is not found among incoming blocks");
96     return false;
97   }
98 
99 
isDeadBlock(const BasicBlock * BB) const100   bool isDeadBlock(const BasicBlock *BB) const {
101     return DeadBlocks.count(BB);
102   }
103 
isDeadEdge(const Use * U) const104   bool isDeadEdge(const Use *U) const {
105     assert(cast<Instruction>(U->getUser())->isTerminator() &&
106            "edge must be operand of terminator");
107     assert(cast_or_null<BasicBlock>(U->get()) &&
108            "edge must refer to basic block");
109     assert(!isDeadBlock(cast<Instruction>(U->getUser())->getParent()) &&
110            "isDeadEdge() must be applied to edge from live block");
111     return DeadEdges.count(U);
112   }
113 
hasLiveIncomingEdges(const BasicBlock * BB) const114   bool hasLiveIncomingEdges(const BasicBlock *BB) const {
115     // Check if all incoming edges are dead.
116     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
117       auto &PU = PredIt.getUse();
118       const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
119       if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
120         return true; // Found a live edge.
121     }
122     return false;
123   }
124 
processFunction(const Function & F,const DominatorTree & DT)125   void processFunction(const Function &F, const DominatorTree &DT) {
126     this->DT = &DT;
127 
128     // Start with all blocks unreachable from entry.
129     for (const BasicBlock &BB : F)
130       if (!DT.isReachableFromEntry(&BB))
131         DeadBlocks.insert(&BB);
132 
133     // Top-down walk of the dominator tree
134     ReversePostOrderTraversal<const Function *> RPOT(&F);
135     for (const BasicBlock *BB : RPOT) {
136       const Instruction *TI = BB->getTerminator();
137       assert(TI && "blocks must be well formed");
138 
139       // For conditional branches, we can perform simple conditional propagation on
140       // the condition value itself.
141       const BranchInst *BI = dyn_cast<BranchInst>(TI);
142       if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
143         continue;
144 
145       // If a branch has two identical successors, we cannot declare either dead.
146       if (BI->getSuccessor(0) == BI->getSuccessor(1))
147         continue;
148 
149       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
150       if (!Cond)
151         continue;
152 
153       addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
154     }
155   }
156 
157 protected:
addDeadBlock(const BasicBlock * BB)158   void addDeadBlock(const BasicBlock *BB) {
159     SmallVector<const BasicBlock *, 4> NewDead;
160     SmallSetVector<const BasicBlock *, 4> DF;
161 
162     NewDead.push_back(BB);
163     while (!NewDead.empty()) {
164       const BasicBlock *D = NewDead.pop_back_val();
165       if (isDeadBlock(D))
166         continue;
167 
168       // All blocks dominated by D are dead.
169       SmallVector<BasicBlock *, 8> Dom;
170       DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
171       // Do not need to mark all in and out edges dead
172       // because BB is marked dead and this is enough
173       // to run further.
174       DeadBlocks.insert(Dom.begin(), Dom.end());
175 
176       // Figure out the dominance-frontier(D).
177       for (BasicBlock *B : Dom)
178         for (BasicBlock *S : successors(B))
179           if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
180             NewDead.push_back(S);
181     }
182   }
183 
addDeadEdge(const Use & DeadEdge)184   void addDeadEdge(const Use &DeadEdge) {
185     if (!DeadEdges.insert(&DeadEdge))
186       return;
187 
188     BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
189     if (hasLiveIncomingEdges(BB))
190       return;
191 
192     addDeadBlock(BB);
193   }
194 };
195 } // namespace
196 
197 static void Verify(const Function &F, const DominatorTree &DT,
198                    const CFGDeadness &CD);
199 
200 namespace llvm {
run(Function & F,FunctionAnalysisManager & AM)201 PreservedAnalyses SafepointIRVerifierPass::run(Function &F,
202                                                FunctionAnalysisManager &AM) {
203   const auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
204   CFGDeadness CD;
205   CD.processFunction(F, DT);
206   Verify(F, DT, CD);
207   return PreservedAnalyses::all();
208 }
209 } // namespace llvm
210 
211 namespace {
212 
213 struct SafepointIRVerifier : public FunctionPass {
214   static char ID; // Pass identification, replacement for typeid
SafepointIRVerifier__anon2aa895e70211::SafepointIRVerifier215   SafepointIRVerifier() : FunctionPass(ID) {
216     initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
217   }
218 
runOnFunction__anon2aa895e70211::SafepointIRVerifier219   bool runOnFunction(Function &F) override {
220     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
221     CFGDeadness CD;
222     CD.processFunction(F, DT);
223     Verify(F, DT, CD);
224     return false; // no modifications
225   }
226 
getAnalysisUsage__anon2aa895e70211::SafepointIRVerifier227   void getAnalysisUsage(AnalysisUsage &AU) const override {
228     AU.addRequiredID(DominatorTreeWrapperPass::ID);
229     AU.setPreservesAll();
230   }
231 
getPassName__anon2aa895e70211::SafepointIRVerifier232   StringRef getPassName() const override { return "safepoint verifier"; }
233 };
234 } // namespace
235 
verifySafepointIR(Function & F)236 void llvm::verifySafepointIR(Function &F) {
237   SafepointIRVerifier pass;
238   pass.runOnFunction(F);
239 }
240 
241 char SafepointIRVerifier::ID = 0;
242 
createSafepointIRVerifierPass()243 FunctionPass *llvm::createSafepointIRVerifierPass() {
244   return new SafepointIRVerifier();
245 }
246 
247 INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
248                       "Safepoint IR Verifier", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)249 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
250 INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
251                     "Safepoint IR Verifier", false, false)
252 
253 static bool isGCPointerType(Type *T) {
254   if (auto *PT = dyn_cast<PointerType>(T))
255     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
256     // GC managed heap.  We know that a pointer into this heap needs to be
257     // updated and that no other pointer does.
258     return (1 == PT->getAddressSpace());
259   return false;
260 }
261 
containsGCPtrType(Type * Ty)262 static bool containsGCPtrType(Type *Ty) {
263   if (isGCPointerType(Ty))
264     return true;
265   if (VectorType *VT = dyn_cast<VectorType>(Ty))
266     return isGCPointerType(VT->getScalarType());
267   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
268     return containsGCPtrType(AT->getElementType());
269   if (StructType *ST = dyn_cast<StructType>(Ty))
270     return llvm::any_of(ST->elements(), containsGCPtrType);
271   return false;
272 }
273 
274 // Debugging aid -- prints a [Begin, End) range of values.
275 template<typename IteratorTy>
PrintValueSet(raw_ostream & OS,IteratorTy Begin,IteratorTy End)276 static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
277   OS << "[ ";
278   while (Begin != End) {
279     OS << **Begin << " ";
280     ++Begin;
281   }
282   OS << "]";
283 }
284 
285 /// The verifier algorithm is phrased in terms of availability.  The set of
286 /// values "available" at a given point in the control flow graph is the set of
287 /// correctly relocated value at that point, and is a subset of the set of
288 /// definitions dominating that point.
289 
290 using AvailableValueSet = DenseSet<const Value *>;
291 
292 /// State we compute and track per basic block.
293 struct BasicBlockState {
294   // Set of values available coming in, before the phi nodes
295   AvailableValueSet AvailableIn;
296 
297   // Set of values available going out
298   AvailableValueSet AvailableOut;
299 
300   // AvailableOut minus AvailableIn.
301   // All elements are Instructions
302   AvailableValueSet Contribution;
303 
304   // True if this block contains a safepoint and thus AvailableIn does not
305   // contribute to AvailableOut.
306   bool Cleared = false;
307 };
308 
309 /// A given derived pointer can have multiple base pointers through phi/selects.
310 /// This type indicates when the base pointer is exclusively constant
311 /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
312 /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
313 /// NonConstant.
314 enum BaseType {
315   NonConstant = 1, // Base pointers is not exclusively constant.
316   ExclusivelyNull,
317   ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
318                           // set of constants, but they are not exclusively
319                           // null.
320 };
321 
322 /// Return the baseType for Val which states whether Val is exclusively
323 /// derived from constant/null, or not exclusively derived from constant.
324 /// Val is exclusively derived off a constant base when all operands of phi and
325 /// selects are derived off a constant base.
getBaseType(const Value * Val)326 static enum BaseType getBaseType(const Value *Val) {
327 
328   SmallVector<const Value *, 32> Worklist;
329   DenseSet<const Value *> Visited;
330   bool isExclusivelyDerivedFromNull = true;
331   Worklist.push_back(Val);
332   // Strip through all the bitcasts and geps to get base pointer. Also check for
333   // the exclusive value when there can be multiple base pointers (through phis
334   // or selects).
335   while(!Worklist.empty()) {
336     const Value *V = Worklist.pop_back_val();
337     if (!Visited.insert(V).second)
338       continue;
339 
340     if (const auto *CI = dyn_cast<CastInst>(V)) {
341       Worklist.push_back(CI->stripPointerCasts());
342       continue;
343     }
344     if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
345       Worklist.push_back(GEP->getPointerOperand());
346       continue;
347     }
348     // Push all the incoming values of phi node into the worklist for
349     // processing.
350     if (const auto *PN = dyn_cast<PHINode>(V)) {
351       append_range(Worklist, PN->incoming_values());
352       continue;
353     }
354     if (const auto *SI = dyn_cast<SelectInst>(V)) {
355       // Push in the true and false values
356       Worklist.push_back(SI->getTrueValue());
357       Worklist.push_back(SI->getFalseValue());
358       continue;
359     }
360     if (const auto *GCRelocate = dyn_cast<GCRelocateInst>(V)) {
361       // GCRelocates do not change null-ness or constant-ness of the value.
362       // So we can continue with derived pointer this instruction relocates.
363       Worklist.push_back(GCRelocate->getDerivedPtr());
364       continue;
365     }
366     if (const auto *FI = dyn_cast<FreezeInst>(V)) {
367       // Freeze does not change null-ness or constant-ness of the value.
368       Worklist.push_back(FI->getOperand(0));
369       continue;
370     }
371     if (isa<Constant>(V)) {
372       // We found at least one base pointer which is non-null, so this derived
373       // pointer is not exclusively derived from null.
374       if (V != Constant::getNullValue(V->getType()))
375         isExclusivelyDerivedFromNull = false;
376       // Continue processing the remaining values to make sure it's exclusively
377       // constant.
378       continue;
379     }
380     // At this point, we know that the base pointer is not exclusively
381     // constant.
382     return BaseType::NonConstant;
383   }
384   // Now, we know that the base pointer is exclusively constant, but we need to
385   // differentiate between exclusive null constant and non-null constant.
386   return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
387                                       : BaseType::ExclusivelySomeConstant;
388 }
389 
isNotExclusivelyConstantDerived(const Value * V)390 static bool isNotExclusivelyConstantDerived(const Value *V) {
391   return getBaseType(V) == BaseType::NonConstant;
392 }
393 
394 namespace {
395 class InstructionVerifier;
396 
397 /// Builds BasicBlockState for each BB of the function.
398 /// It can traverse function for verification and provides all required
399 /// information.
400 ///
401 /// GC pointer may be in one of three states: relocated, unrelocated and
402 /// poisoned.
403 /// Relocated pointer may be used without any restrictions.
404 /// Unrelocated pointer cannot be dereferenced, passed as argument to any call
405 /// or returned. Unrelocated pointer may be safely compared against another
406 /// unrelocated pointer or against a pointer exclusively derived from null.
407 /// Poisoned pointers are produced when we somehow derive pointer from relocated
408 /// and unrelocated pointers (e.g. phi, select). This pointers may be safely
409 /// used in a very limited number of situations. Currently the only way to use
410 /// it is comparison against constant exclusively derived from null. All
411 /// limitations arise due to their undefined state: this pointers should be
412 /// treated as relocated and unrelocated simultaneously.
413 /// Rules of deriving:
414 /// R + U = P - that's where the poisoned pointers come from
415 /// P + X = P
416 /// U + U = U
417 /// R + R = R
418 /// X + C = X
419 /// Where "+" - any operation that somehow derive pointer, U - unrelocated,
420 /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
421 /// nothing (in case when "+" is unary operation).
422 /// Deriving of pointers by itself is always safe.
423 /// NOTE: when we are making decision on the status of instruction's result:
424 /// a) for phi we need to check status of each input *at the end of
425 ///    corresponding predecessor BB*.
426 /// b) for other instructions we need to check status of each input *at the
427 ///    current point*.
428 ///
429 /// FIXME: This works fairly well except one case
430 ///     bb1:
431 ///     p = *some GC-ptr def*
432 ///     p1 = gep p, offset
433 ///         /     |
434 ///        /      |
435 ///    bb2:       |
436 ///    safepoint  |
437 ///        \      |
438 ///         \     |
439 ///      bb3:
440 ///      p2 = phi [p, bb2] [p1, bb1]
441 ///      p3 = phi [p, bb2] [p, bb1]
442 ///      here p and p1 is unrelocated
443 ///           p2 and p3 is poisoned (though they shouldn't be)
444 ///
445 /// This leads to some weird results:
446 ///      cmp eq p, p2 - illegal instruction (false-positive)
447 ///      cmp eq p1, p2 - illegal instruction (false-positive)
448 ///      cmp eq p, p3 - illegal instruction (false-positive)
449 ///      cmp eq p, p1 - ok
450 /// To fix this we need to introduce conception of generations and be able to
451 /// check if two values belong to one generation or not. This way p2 will be
452 /// considered to be unrelocated and no false alarm will happen.
453 class GCPtrTracker {
454   const Function &F;
455   const CFGDeadness &CD;
456   SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
457   DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
458   // This set contains defs of unrelocated pointers that are proved to be legal
459   // and don't need verification.
460   DenseSet<const Instruction *> ValidUnrelocatedDefs;
461   // This set contains poisoned defs. They can be safely ignored during
462   // verification too.
463   DenseSet<const Value *> PoisonedDefs;
464 
465 public:
466   GCPtrTracker(const Function &F, const DominatorTree &DT,
467                const CFGDeadness &CD);
468 
hasLiveIncomingEdge(const PHINode * PN,const BasicBlock * InBB) const469   bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
470     return CD.hasLiveIncomingEdge(PN, InBB);
471   }
472 
473   BasicBlockState *getBasicBlockState(const BasicBlock *BB);
474   const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;
475 
isValuePoisoned(const Value * V) const476   bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }
477 
478   /// Traverse each BB of the function and call
479   /// InstructionVerifier::verifyInstruction for each possibly invalid
480   /// instruction.
481   /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
482   /// in order to prohibit further usages of GCPtrTracker as it'll be in
483   /// inconsistent state.
484   static void verifyFunction(GCPtrTracker &&Tracker,
485                              InstructionVerifier &Verifier);
486 
487   /// Returns true for reachable and live blocks.
isMapped(const BasicBlock * BB) const488   bool isMapped(const BasicBlock *BB) const {
489     return BlockMap.find(BB) != BlockMap.end();
490   }
491 
492 private:
493   /// Returns true if the instruction may be safely skipped during verification.
494   bool instructionMayBeSkipped(const Instruction *I) const;
495 
496   /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
497   /// each of them until it converges.
498   void recalculateBBsStates();
499 
500   /// Remove from Contribution all defs that legally produce unrelocated
501   /// pointers and saves them to ValidUnrelocatedDefs.
502   /// Though Contribution should belong to BBS it is passed separately with
503   /// different const-modifier in order to emphasize (and guarantee) that only
504   /// Contribution will be changed.
505   /// Returns true if Contribution was changed otherwise false.
506   bool removeValidUnrelocatedDefs(const BasicBlock *BB,
507                                   const BasicBlockState *BBS,
508                                   AvailableValueSet &Contribution);
509 
510   /// Gather all the definitions dominating the start of BB into Result. This is
511   /// simply the defs introduced by every dominating basic block and the
512   /// function arguments.
513   void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
514                             const DominatorTree &DT);
515 
516   /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
517   /// which is the BasicBlockState for BB.
518   /// ContributionChanged is set when the verifier runs for the first time
519   /// (in this case Contribution was changed from 'empty' to its initial state)
520   /// or when Contribution of this BB was changed since last computation.
521   static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
522                             bool ContributionChanged);
523 
524   /// Model the effect of an instruction on the set of available values.
525   static void transferInstruction(const Instruction &I, bool &Cleared,
526                                   AvailableValueSet &Available);
527 };
528 
529 /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
530 /// instruction (which uses heap reference) is legal or not, given our safepoint
531 /// semantics.
532 class InstructionVerifier {
533   bool AnyInvalidUses = false;
534 
535 public:
536   void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
537                          const AvailableValueSet &AvailableSet);
538 
hasAnyInvalidUses() const539   bool hasAnyInvalidUses() const { return AnyInvalidUses; }
540 
541 private:
542   void reportInvalidUse(const Value &V, const Instruction &I);
543 };
544 } // end anonymous namespace
545 
GCPtrTracker(const Function & F,const DominatorTree & DT,const CFGDeadness & CD)546 GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
547                            const CFGDeadness &CD) : F(F), CD(CD) {
548   // Calculate Contribution of each live BB.
549   // Allocate BB states for live blocks.
550   for (const BasicBlock &BB : F)
551     if (!CD.isDeadBlock(&BB)) {
552       BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
553       for (const auto &I : BB)
554         transferInstruction(I, BBS->Cleared, BBS->Contribution);
555       BlockMap[&BB] = BBS;
556     }
557 
558   // Initialize AvailableIn/Out sets of each BB using only information about
559   // dominating BBs.
560   for (auto &BBI : BlockMap) {
561     gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
562     transferBlock(BBI.first, *BBI.second, true);
563   }
564 
565   // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
566   // sets of each BB until it converges. If any def is proved to be an
567   // unrelocated pointer, it will be removed from all BBSs.
568   recalculateBBsStates();
569 }
570 
getBasicBlockState(const BasicBlock * BB)571 BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
572   return BlockMap.lookup(BB);
573 }
574 
getBasicBlockState(const BasicBlock * BB) const575 const BasicBlockState *GCPtrTracker::getBasicBlockState(
576     const BasicBlock *BB) const {
577   return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
578 }
579 
instructionMayBeSkipped(const Instruction * I) const580 bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
581   // Poisoned defs are skipped since they are always safe by itself by
582   // definition (for details see comment to this class).
583   return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
584 }
585 
verifyFunction(GCPtrTracker && Tracker,InstructionVerifier & Verifier)586 void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
587                                   InstructionVerifier &Verifier) {
588   // We need RPO here to a) report always the first error b) report errors in
589   // same order from run to run.
590   ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
591   for (const BasicBlock *BB : RPOT) {
592     BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
593     if (!BBS)
594       continue;
595 
596     // We destructively modify AvailableIn as we traverse the block instruction
597     // by instruction.
598     AvailableValueSet &AvailableSet = BBS->AvailableIn;
599     for (const Instruction &I : *BB) {
600       if (Tracker.instructionMayBeSkipped(&I))
601         continue; // This instruction shouldn't be added to AvailableSet.
602 
603       Verifier.verifyInstruction(&Tracker, I, AvailableSet);
604 
605       // Model the effect of current instruction on AvailableSet to keep the set
606       // relevant at each point of BB.
607       bool Cleared = false;
608       transferInstruction(I, Cleared, AvailableSet);
609       (void)Cleared;
610     }
611   }
612 }
613 
recalculateBBsStates()614 void GCPtrTracker::recalculateBBsStates() {
615   SetVector<const BasicBlock *> Worklist;
616   // TODO: This order is suboptimal, it's better to replace it with priority
617   // queue where priority is RPO number of BB.
618   for (auto &BBI : BlockMap)
619     Worklist.insert(BBI.first);
620 
621   // This loop iterates the AvailableIn/Out sets until it converges.
622   // The AvailableIn and AvailableOut sets decrease as we iterate.
623   while (!Worklist.empty()) {
624     const BasicBlock *BB = Worklist.pop_back_val();
625     BasicBlockState *BBS = getBasicBlockState(BB);
626     if (!BBS)
627       continue; // Ignore dead successors.
628 
629     size_t OldInCount = BBS->AvailableIn.size();
630     for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
631       const BasicBlock *PBB = *PredIt;
632       BasicBlockState *PBBS = getBasicBlockState(PBB);
633       if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
634         set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
635     }
636 
637     assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
638 
639     bool InputsChanged = OldInCount != BBS->AvailableIn.size();
640     bool ContributionChanged =
641         removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
642     if (!InputsChanged && !ContributionChanged)
643       continue;
644 
645     size_t OldOutCount = BBS->AvailableOut.size();
646     transferBlock(BB, *BBS, ContributionChanged);
647     if (OldOutCount != BBS->AvailableOut.size()) {
648       assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
649       Worklist.insert(succ_begin(BB), succ_end(BB));
650     }
651   }
652 }
653 
removeValidUnrelocatedDefs(const BasicBlock * BB,const BasicBlockState * BBS,AvailableValueSet & Contribution)654 bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
655                                               const BasicBlockState *BBS,
656                                               AvailableValueSet &Contribution) {
657   assert(&BBS->Contribution == &Contribution &&
658          "Passed Contribution should be from the passed BasicBlockState!");
659   AvailableValueSet AvailableSet = BBS->AvailableIn;
660   bool ContributionChanged = false;
661   // For explanation why instructions are processed this way see
662   // "Rules of deriving" in the comment to this class.
663   for (const Instruction &I : *BB) {
664     bool ValidUnrelocatedPointerDef = false;
665     bool PoisonedPointerDef = false;
666     // TODO: `select` instructions should be handled here too.
667     if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
668       if (containsGCPtrType(PN->getType())) {
669         // If both is true, output is poisoned.
670         bool HasRelocatedInputs = false;
671         bool HasUnrelocatedInputs = false;
672         for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
673           const BasicBlock *InBB = PN->getIncomingBlock(i);
674           if (!isMapped(InBB) ||
675               !CD.hasLiveIncomingEdge(PN, InBB))
676             continue; // Skip dead block or dead edge.
677 
678           const Value *InValue = PN->getIncomingValue(i);
679 
680           if (isNotExclusivelyConstantDerived(InValue)) {
681             if (isValuePoisoned(InValue)) {
682               // If any of inputs is poisoned, output is always poisoned too.
683               HasRelocatedInputs = true;
684               HasUnrelocatedInputs = true;
685               break;
686             }
687             if (BlockMap[InBB]->AvailableOut.count(InValue))
688               HasRelocatedInputs = true;
689             else
690               HasUnrelocatedInputs = true;
691           }
692         }
693         if (HasUnrelocatedInputs) {
694           if (HasRelocatedInputs)
695             PoisonedPointerDef = true;
696           else
697             ValidUnrelocatedPointerDef = true;
698         }
699       }
700     } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
701                containsGCPtrType(I.getType())) {
702       // GEP/bitcast of unrelocated pointer is legal by itself but this def
703       // shouldn't appear in any AvailableSet.
704       for (const Value *V : I.operands())
705         if (containsGCPtrType(V->getType()) &&
706             isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
707           if (isValuePoisoned(V))
708             PoisonedPointerDef = true;
709           else
710             ValidUnrelocatedPointerDef = true;
711           break;
712         }
713     }
714     assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
715            "Value cannot be both unrelocated and poisoned!");
716     if (ValidUnrelocatedPointerDef) {
717       // Remove def of unrelocated pointer from Contribution of this BB and
718       // trigger update of all its successors.
719       Contribution.erase(&I);
720       PoisonedDefs.erase(&I);
721       ValidUnrelocatedDefs.insert(&I);
722       LLVM_DEBUG(dbgs() << "Removing urelocated " << I
723                         << " from Contribution of " << BB->getName() << "\n");
724       ContributionChanged = true;
725     } else if (PoisonedPointerDef) {
726       // Mark pointer as poisoned, remove its def from Contribution and trigger
727       // update of all successors.
728       Contribution.erase(&I);
729       PoisonedDefs.insert(&I);
730       LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
731                         << BB->getName() << "\n");
732       ContributionChanged = true;
733     } else {
734       bool Cleared = false;
735       transferInstruction(I, Cleared, AvailableSet);
736       (void)Cleared;
737     }
738   }
739   return ContributionChanged;
740 }
741 
gatherDominatingDefs(const BasicBlock * BB,AvailableValueSet & Result,const DominatorTree & DT)742 void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
743                                         AvailableValueSet &Result,
744                                         const DominatorTree &DT) {
745   DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
746 
747   assert(DTN && "Unreachable blocks are ignored");
748   while (DTN->getIDom()) {
749     DTN = DTN->getIDom();
750     auto BBS = getBasicBlockState(DTN->getBlock());
751     assert(BBS && "immediate dominator cannot be dead for a live block");
752     const auto &Defs = BBS->Contribution;
753     Result.insert(Defs.begin(), Defs.end());
754     // If this block is 'Cleared', then nothing LiveIn to this block can be
755     // available after this block completes.  Note: This turns out to be
756     // really important for reducing memory consuption of the initial available
757     // sets and thus peak memory usage by this verifier.
758     if (BBS->Cleared)
759       return;
760   }
761 
762   for (const Argument &A : BB->getParent()->args())
763     if (containsGCPtrType(A.getType()))
764       Result.insert(&A);
765 }
766 
transferBlock(const BasicBlock * BB,BasicBlockState & BBS,bool ContributionChanged)767 void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
768                                  bool ContributionChanged) {
769   const AvailableValueSet &AvailableIn = BBS.AvailableIn;
770   AvailableValueSet &AvailableOut = BBS.AvailableOut;
771 
772   if (BBS.Cleared) {
773     // AvailableOut will change only when Contribution changed.
774     if (ContributionChanged)
775       AvailableOut = BBS.Contribution;
776   } else {
777     // Otherwise, we need to reduce the AvailableOut set by things which are no
778     // longer in our AvailableIn
779     AvailableValueSet Temp = BBS.Contribution;
780     set_union(Temp, AvailableIn);
781     AvailableOut = std::move(Temp);
782   }
783 
784   LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
785              PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
786              dbgs() << " to ";
787              PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
788              dbgs() << "\n";);
789 }
790 
transferInstruction(const Instruction & I,bool & Cleared,AvailableValueSet & Available)791 void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
792                                        AvailableValueSet &Available) {
793   if (isa<GCStatepointInst>(I)) {
794     Cleared = true;
795     Available.clear();
796   } else if (containsGCPtrType(I.getType()))
797     Available.insert(&I);
798 }
799 
verifyInstruction(const GCPtrTracker * Tracker,const Instruction & I,const AvailableValueSet & AvailableSet)800 void InstructionVerifier::verifyInstruction(
801     const GCPtrTracker *Tracker, const Instruction &I,
802     const AvailableValueSet &AvailableSet) {
803   if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
804     if (containsGCPtrType(PN->getType()))
805       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
806         const BasicBlock *InBB = PN->getIncomingBlock(i);
807         const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
808         if (!InBBS ||
809             !Tracker->hasLiveIncomingEdge(PN, InBB))
810           continue; // Skip dead block or dead edge.
811 
812         const Value *InValue = PN->getIncomingValue(i);
813 
814         if (isNotExclusivelyConstantDerived(InValue) &&
815             !InBBS->AvailableOut.count(InValue))
816           reportInvalidUse(*InValue, *PN);
817       }
818   } else if (isa<CmpInst>(I) &&
819              containsGCPtrType(I.getOperand(0)->getType())) {
820     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
821     enum BaseType baseTyLHS = getBaseType(LHS),
822                   baseTyRHS = getBaseType(RHS);
823 
824     // Returns true if LHS and RHS are unrelocated pointers and they are
825     // valid unrelocated uses.
826     auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
827                                    &LHS, &RHS] () {
828         // A cmp instruction has valid unrelocated pointer operands only if
829         // both operands are unrelocated pointers.
830         // In the comparison between two pointers, if one is an unrelocated
831         // use, the other *should be* an unrelocated use, for this
832         // instruction to contain valid unrelocated uses. This unrelocated
833         // use can be a null constant as well, or another unrelocated
834         // pointer.
835         if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
836           return false;
837         // Constant pointers (that are not exclusively null) may have
838         // meaning in different VMs, so we cannot reorder the compare
839         // against constant pointers before the safepoint. In other words,
840         // comparison of an unrelocated use against a non-null constant
841         // maybe invalid.
842         if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
843              baseTyRHS == BaseType::NonConstant) ||
844             (baseTyLHS == BaseType::NonConstant &&
845              baseTyRHS == BaseType::ExclusivelySomeConstant))
846           return false;
847 
848         // If one of pointers is poisoned and other is not exclusively derived
849         // from null it is an invalid expression: it produces poisoned result
850         // and unless we want to track all defs (not only gc pointers) the only
851         // option is to prohibit such instructions.
852         if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
853             (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
854             return false;
855 
856         // All other cases are valid cases enumerated below:
857         // 1. Comparison between an exclusively derived null pointer and a
858         // constant base pointer.
859         // 2. Comparison between an exclusively derived null pointer and a
860         // non-constant unrelocated base pointer.
861         // 3. Comparison between 2 unrelocated pointers.
862         // 4. Comparison between a pointer exclusively derived from null and a
863         // non-constant poisoned pointer.
864         return true;
865     };
866     if (!hasValidUnrelocatedUse()) {
867       // Print out all non-constant derived pointers that are unrelocated
868       // uses, which are invalid.
869       if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
870         reportInvalidUse(*LHS, I);
871       if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
872         reportInvalidUse(*RHS, I);
873     }
874   } else {
875     for (const Value *V : I.operands())
876       if (containsGCPtrType(V->getType()) &&
877           isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
878         reportInvalidUse(*V, I);
879   }
880 }
881 
reportInvalidUse(const Value & V,const Instruction & I)882 void InstructionVerifier::reportInvalidUse(const Value &V,
883                                            const Instruction &I) {
884   errs() << "Illegal use of unrelocated value found!\n";
885   errs() << "Def: " << V << "\n";
886   errs() << "Use: " << I << "\n";
887   if (!PrintOnly)
888     abort();
889   AnyInvalidUses = true;
890 }
891 
Verify(const Function & F,const DominatorTree & DT,const CFGDeadness & CD)892 static void Verify(const Function &F, const DominatorTree &DT,
893                    const CFGDeadness &CD) {
894   LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
895                     << "\n");
896   if (PrintOnly)
897     dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
898 
899   GCPtrTracker Tracker(F, DT, CD);
900 
901   // We now have all the information we need to decide if the use of a heap
902   // reference is legal or not, given our safepoint semantics.
903 
904   InstructionVerifier Verifier;
905   GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);
906 
907   if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
908     dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
909            << "\n";
910   }
911 }
912