xref: /openbsd/gnu/usr.bin/binutils/gdb/h8300-tdep.c (revision 63addd46)
1 /* Target-machine dependent code for Renesas H8/300, for GDB.
2 
3    Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
4    1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 59 Temple Place - Suite 330,
21    Boston, MA 02111-1307, USA.  */
22 
23 /*
24    Contributed by Steve Chamberlain
25    sac@cygnus.com
26  */
27 
28 #include "defs.h"
29 #include "value.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "gdbcmd.h"
37 #include "gdb_assert.h"
38 #include "dis-asm.h"
39 
40 /* Extra info which is saved in each frame_info. */
41 struct frame_extra_info
42 {
43   CORE_ADDR from_pc;
44 };
45 
46 enum
47 {
48   h8300_reg_size = 2,
49   h8300h_reg_size = 4,
50   h8300_max_reg_size = 4,
51 };
52 
53 static int is_h8300hmode (struct gdbarch *gdbarch);
54 static int is_h8300smode (struct gdbarch *gdbarch);
55 static int is_h8300sxmode (struct gdbarch *gdbarch);
56 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
57 
58 #define BINWORD (is_h8300hmode (current_gdbarch) && \
59 		  !is_h8300_normal_mode (current_gdbarch) ? h8300h_reg_size : h8300_reg_size)
60 
61 enum gdb_regnum
62 {
63   E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
64 					   E_RET0_REGNUM = E_R0_REGNUM,
65   E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
66   E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
67   E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
68   E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
69   E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
70   E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
71   E_SP_REGNUM,
72   E_CCR_REGNUM,
73   E_PC_REGNUM,
74   E_CYCLES_REGNUM,
75   E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
76   E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
77   E_INSTS_REGNUM,
78   E_MACH_REGNUM,
79   E_MACL_REGNUM,
80   E_SBR_REGNUM,
81   E_VBR_REGNUM
82 };
83 
84 #define E_PSEUDO_CCR_REGNUM (NUM_REGS)
85 #define E_PSEUDO_EXR_REGNUM (NUM_REGS+1)
86 
87 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
88 
89 #define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
90 #define IS_PUSH_FP(x) (x == 0x6df6)
91 #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
92 #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
93 #define IS_SUB2_SP(x) (x==0x1b87)
94 #define IS_SUB4_SP(x) (x==0x1b97)
95 #define IS_SUBL_SP(x) (x==0x7a37)
96 #define IS_MOVK_R5(x) (x==0x7905)
97 #define IS_SUB_R5SP(x) (x==0x1957)
98 
99 /* If the instruction at PC is an argument register spill, return its
100    length.  Otherwise, return zero.
101 
102    An argument register spill is an instruction that moves an argument
103    from the register in which it was passed to the stack slot in which
104    it really lives.  It is a byte, word, or longword move from an
105    argument register to a negative offset from the frame pointer.
106 
107    CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
108    is used, it could be a byte, word or long move to registers r3-r5.  */
109 
110 static int
h8300_is_argument_spill(CORE_ADDR pc)111 h8300_is_argument_spill (CORE_ADDR pc)
112 {
113   int w = read_memory_unsigned_integer (pc, 2);
114 
115   if (((w & 0xff88) == 0x0c88                 /* mov.b Rsl, Rdl */
116        || (w & 0xff88) == 0x0d00              /* mov.w Rs, Rd */
117        || (w & 0xff88) == 0x0f80)             /* mov.l Rs, Rd */
118       && (w & 0x70) <= 0x20                   /* Rs is R0, R1 or R2 */
119       && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5)/* Rd is R3, R4 or R5 */
120     return 2;
121 
122   if ((w & 0xfff0) == 0x6ee0                  /* mov.b Rs,@(d:16,er6) */
123       && 8 <= (w & 0xf) && (w & 0xf) <= 10)   /* Rs is R0L, R1L, or R2L  */
124     {
125       int w2 = read_memory_integer (pc + 2, 2);
126 
127       /* ... and d:16 is negative.  */
128       if (w2 < 0)
129         return 4;
130     }
131   else if (w == 0x7860)
132     {
133       int w2 = read_memory_integer (pc + 2, 2);
134 
135       if ((w2 & 0xfff0) == 0x6aa0)              /* mov.b Rs, @(d:24,er6) */
136         {
137           LONGEST disp = read_memory_integer (pc + 4, 4);
138 
139           /* ... and d:24 is negative.  */
140           if (disp < 0 && disp > 0xffffff)
141             return 8;
142         }
143     }
144   else if ((w & 0xfff0) == 0x6fe0             /* mov.w Rs,@(d:16,er6) */
145            && (w & 0xf) <= 2)                 /* Rs is R0, R1, or R2 */
146     {
147       int w2 = read_memory_integer (pc + 2, 2);
148 
149       /* ... and d:16 is negative.  */
150       if (w2 < 0)
151         return 4;
152     }
153   else if (w == 0x78e0)
154     {
155       int w2 = read_memory_integer (pc + 2, 2);
156 
157       if ((w2 & 0xfff0) == 0x6ba0)              /* mov.b Rs, @(d:24,er6) */
158         {
159           LONGEST disp = read_memory_integer (pc + 4, 4);
160 
161           /* ... and d:24 is negative.  */
162           if (disp < 0 && disp > 0xffffff)
163             return 8;
164         }
165     }
166   else if (w == 0x0100)
167     {
168       int w2 = read_memory_integer (pc + 2, 2);
169 
170       if ((w2 & 0xfff0) == 0x6fe0             /* mov.l Rs,@(d:16,er6) */
171           && (w2 & 0xf) <= 2)                /* Rs is ER0, ER1, or ER2 */
172         {
173           int w3 = read_memory_integer (pc + 4, 2);
174 
175           /* ... and d:16 is negative.  */
176           if (w3 < 0)
177             return 6;
178         }
179       else if (w2 == 0x78e0)
180         {
181           int w3 = read_memory_integer (pc + 4, 2);
182 
183           if ((w3 & 0xfff0) == 0x6ba0)          /* mov.l Rs, @(d:24,er6) */
184             {
185               LONGEST disp = read_memory_integer (pc + 6, 4);
186 
187               /* ... and d:24 is negative.  */
188               if (disp < 0 && disp > 0xffffff)
189                 return 10;
190             }
191         }
192     }
193 
194   return 0;
195 }
196 
197 static CORE_ADDR
h8300_skip_prologue(CORE_ADDR start_pc)198 h8300_skip_prologue (CORE_ADDR start_pc)
199 {
200   short int w;
201   int adjust = 0;
202 
203   /* Skip past all push and stm insns.  */
204   while (1)
205     {
206       w = read_memory_unsigned_integer (start_pc, 2);
207       /* First look for push insns.  */
208       if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
209 	{
210 	  w = read_memory_unsigned_integer (start_pc + 2, 2);
211 	  adjust = 2;
212 	}
213 
214       if (IS_PUSH (w))
215 	{
216 	  start_pc += 2 + adjust;
217 	  w = read_memory_unsigned_integer (start_pc, 2);
218 	  continue;
219 	}
220       adjust = 0;
221       break;
222     }
223 
224   /* Skip past a move to FP, either word or long sized */
225   w = read_memory_unsigned_integer (start_pc, 2);
226   if (w == 0x0100)
227     {
228       w = read_memory_unsigned_integer (start_pc + 2, 2);
229       adjust += 2;
230     }
231 
232   if (IS_MOVE_FP (w))
233     {
234       start_pc += 2 + adjust;
235       w = read_memory_unsigned_integer (start_pc, 2);
236     }
237 
238   /* Check for loading either a word constant into r5;
239      long versions are handled by the SUBL_SP below.  */
240   if (IS_MOVK_R5 (w))
241     {
242       start_pc += 2;
243       w = read_memory_unsigned_integer (start_pc, 2);
244     }
245 
246   /* Now check for subtracting r5 from sp, word sized only.  */
247   if (IS_SUB_R5SP (w))
248     {
249       start_pc += 2 + adjust;
250       w = read_memory_unsigned_integer (start_pc, 2);
251     }
252 
253   /* Check for subs #2 and subs #4. */
254   while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
255     {
256       start_pc += 2 + adjust;
257       w = read_memory_unsigned_integer (start_pc, 2);
258     }
259 
260   /* Check for a 32bit subtract.  */
261   if (IS_SUBL_SP (w))
262     start_pc += 6 + adjust;
263 
264   /* Skip past another possible stm insn for registers R3 to R5 (possibly used
265      for register qualified arguments.  */
266   w = read_memory_unsigned_integer (start_pc, 2);
267   /* First look for push insns.  */
268   if (w == 0x0110 || w == 0x0120 || w == 0x0130)
269     {
270       w = read_memory_unsigned_integer (start_pc + 2, 2);
271       if (IS_PUSH (w) && (w & 0xf) >= 0x3 && (w & 0xf) <= 0x5)
272 	start_pc += 4;
273     }
274 
275   /* Check for spilling an argument register to the stack frame.
276      This could also be an initializing store from non-prologue code,
277      but I don't think there's any harm in skipping that.  */
278   for (;;)
279     {
280       int spill_size = h8300_is_argument_spill (start_pc);
281       if (spill_size == 0)
282         break;
283       start_pc += spill_size;
284     }
285 
286   return start_pc;
287 }
288 
289 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
290    is not the address of a valid instruction, the address of the next
291    instruction beyond ADDR otherwise.  *PWORD1 receives the first word
292    of the instruction. */
293 
294 static CORE_ADDR
h8300_next_prologue_insn(CORE_ADDR addr,CORE_ADDR lim,unsigned short * pword1)295 h8300_next_prologue_insn (CORE_ADDR addr,
296 			  CORE_ADDR lim,
297 			  unsigned short* pword1)
298 {
299   char buf[2];
300   if (addr < lim + 8)
301     {
302       read_memory (addr, buf, 2);
303       *pword1 = extract_signed_integer (buf, 2);
304 
305       return addr + 2;
306     }
307   return 0;
308 }
309 
310 /* Examine the prologue of a function.  `ip' points to the first instruction.
311    `limit' is the limit of the prologue (e.g. the addr of the first
312    linenumber, or perhaps the program counter if we're stepping through).
313    `frame_sp' is the stack pointer value in use in this frame.
314    `fsr' is a pointer to a frame_saved_regs structure into which we put
315    info about the registers saved by this frame.
316    `fi' is a struct frame_info pointer; we fill in various fields in it
317    to reflect the offsets of the arg pointer and the locals pointer.  */
318 
319 /* Any function with a frame looks like this
320    SECOND ARG
321    FIRST ARG
322    RET PC
323    SAVED R2
324    SAVED R3
325    SAVED FP   <-FP POINTS HERE
326    LOCALS0
327    LOCALS1    <-SP POINTS HERE
328  */
329 
330 static CORE_ADDR
h8300_examine_prologue(CORE_ADDR ip,CORE_ADDR limit,CORE_ADDR after_prolog_fp,CORE_ADDR * fsr,struct frame_info * fi)331 h8300_examine_prologue (CORE_ADDR ip, CORE_ADDR limit,
332 			CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
333 			struct frame_info *fi)
334 {
335   CORE_ADDR next_ip;
336   int r;
337   int have_fp = 0;
338   unsigned short insn_word;
339   /* Number of things pushed onto stack, starts at 2/4, 'cause the
340      PC is already there */
341   unsigned int reg_save_depth = BINWORD;
342 
343   unsigned int auto_depth = 0;	/* Number of bytes of autos */
344 
345   char in_frame[11];		/* One for each reg */
346 
347   int adjust = 0;
348 
349   memset (in_frame, 1, 11);
350   for (r = 0; r < 8; r++)
351     {
352       fsr[r] = 0;
353     }
354   if (after_prolog_fp == 0)
355     {
356       after_prolog_fp = read_register (E_SP_REGNUM);
357     }
358 
359   /* If the PC isn't valid, quit now.  */
360   if (ip == 0 || ip & (is_h8300hmode (current_gdbarch) &&
361 			 !is_h8300_normal_mode (current_gdbarch) ? ~0xffffff : ~0xffff))
362     return 0;
363 
364   next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
365 
366   if (insn_word == 0x0100)	/* mov.l */
367     {
368       insn_word = read_memory_unsigned_integer (ip + 2, 2);
369       adjust = 2;
370     }
371 
372   /* Skip over any fp push instructions */
373   fsr[E_FP_REGNUM] = after_prolog_fp;
374   while (next_ip && IS_PUSH_FP (insn_word))
375     {
376       ip = next_ip + adjust;
377 
378       in_frame[insn_word & 0x7] = reg_save_depth;
379       next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
380       reg_save_depth += 2 + adjust;
381     }
382 
383   /* Is this a move into the fp */
384   if (next_ip && IS_MOV_SP_FP (insn_word))
385     {
386       ip = next_ip;
387       next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
388       have_fp = 1;
389     }
390 
391   /* Skip over any stack adjustment, happens either with a number of
392      sub#2,sp or a mov #x,r5 sub r5,sp */
393 
394   if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
395     {
396       while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
397 	{
398 	  auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
399 	  ip = next_ip;
400 	  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
401 	}
402     }
403   else
404     {
405       if (next_ip && IS_MOVK_R5 (insn_word))
406 	{
407 	  ip = next_ip;
408 	  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
409 	  auto_depth += insn_word;
410 
411 	  next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word);
412 	  auto_depth += insn_word;
413 	}
414       if (next_ip && IS_SUBL_SP (insn_word))
415 	{
416 	  ip = next_ip;
417 	  auto_depth += read_memory_unsigned_integer (ip, 4);
418 	  ip += 4;
419 
420 	  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
421 	}
422     }
423 
424   /* Now examine the push insns to determine where everything lives
425      on the stack.  */
426   while (1)
427     {
428       adjust = 0;
429       if (!next_ip)
430 	break;
431 
432       if (insn_word == 0x0100)
433 	{
434 	  ip = next_ip;
435 	  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
436 	  adjust = 2;
437 	}
438 
439       if (IS_PUSH (insn_word))
440 	{
441 	  auto_depth += 2 + adjust;
442 	  fsr[insn_word & 0x7] = after_prolog_fp - auto_depth;
443 	  ip = next_ip;
444 	  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
445 	  continue;
446 	}
447 
448       /* Now check for push multiple insns.  */
449       if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
450 	{
451 	  int count = ((insn_word >> 4) & 0xf) + 1;
452 	  int start, i;
453 
454 	  ip = next_ip;
455 	  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
456 	  start = insn_word & 0x7;
457 
458 	  for (i = start; i < start + count; i++)
459 	    {
460 	      auto_depth += 4;
461 	      fsr[i] = after_prolog_fp - auto_depth;
462 	    }
463 	}
464       break;
465     }
466 
467   /* The PC is at a known place */
468   get_frame_extra_info (fi)->from_pc =
469     read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
470 
471   /* Rememeber any others too */
472   in_frame[E_PC_REGNUM] = 0;
473 
474   if (have_fp)
475     /* We keep the old FP in the SP spot */
476     fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM],
477 						     BINWORD);
478   else
479     fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;
480 
481   return (ip);
482 }
483 
484 static void
h8300_frame_init_saved_regs(struct frame_info * fi)485 h8300_frame_init_saved_regs (struct frame_info *fi)
486 {
487   CORE_ADDR func_addr, func_end;
488 
489   if (!deprecated_get_frame_saved_regs (fi))
490     {
491       frame_saved_regs_zalloc (fi);
492 
493       /* Find the beginning of this function, so we can analyze its
494 	 prologue. */
495       if (find_pc_partial_function (get_frame_pc (fi), NULL,
496 				    &func_addr, &func_end))
497         {
498 	  struct symtab_and_line sal = find_pc_line (func_addr, 0);
499 	  CORE_ADDR limit = (sal.end && sal.end < get_frame_pc (fi))
500 	    ? sal.end : get_frame_pc (fi);
501 	  /* This will fill in fields in fi. */
502 	  h8300_examine_prologue (func_addr, limit, get_frame_base (fi),
503 				  deprecated_get_frame_saved_regs (fi), fi);
504 	}
505       /* Else we're out of luck (can't debug completely stripped code).
506 	 FIXME. */
507     }
508 }
509 
510 /* Given a GDB frame, determine the address of the calling function's
511    frame.  This will be used to create a new GDB frame struct, and
512    then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
513    will be called for the new frame.
514 
515    For us, the frame address is its stack pointer value, so we look up
516    the function prologue to determine the caller's sp value, and
517    return it.  */
518 
519 static CORE_ADDR
h8300_frame_chain(struct frame_info * thisframe)520 h8300_frame_chain (struct frame_info *thisframe)
521 {
522   if (deprecated_pc_in_call_dummy (get_frame_pc (thisframe)))
523     {				/* initialize the from_pc now */
524       get_frame_extra_info (thisframe)->from_pc =
525 	deprecated_read_register_dummy (get_frame_pc (thisframe),
526 					get_frame_base (thisframe),
527 					E_PC_REGNUM);
528       return get_frame_base (thisframe);
529     }
530   return deprecated_get_frame_saved_regs (thisframe)[E_SP_REGNUM];
531 }
532 
533 /* Return the saved PC from this frame.
534 
535    If the frame has a memory copy of SRP_REGNUM, use that.  If not,
536    just use the register SRP_REGNUM itself.  */
537 
538 static CORE_ADDR
h8300_frame_saved_pc(struct frame_info * frame)539 h8300_frame_saved_pc (struct frame_info *frame)
540 {
541   if (deprecated_pc_in_call_dummy (get_frame_pc (frame)))
542     return deprecated_read_register_dummy (get_frame_pc (frame),
543 					   get_frame_base (frame),
544 					   E_PC_REGNUM);
545   else
546     return get_frame_extra_info (frame)->from_pc;
547 }
548 
549 static void
h8300_init_extra_frame_info(int fromleaf,struct frame_info * fi)550 h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
551 {
552   if (!get_frame_extra_info (fi))
553     {
554       frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
555       get_frame_extra_info (fi)->from_pc = 0;
556 
557       if (!get_frame_pc (fi))
558         {
559 	  if (get_next_frame (fi))
560 	    deprecated_update_frame_pc_hack (fi, h8300_frame_saved_pc (get_next_frame (fi)));
561 	}
562       h8300_frame_init_saved_regs (fi);
563     }
564 }
565 
566 /* Function: push_dummy_call
567    Setup the function arguments for calling a function in the inferior.
568    In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
569    on the H8/300H.
570 
571    There are actually two ABI's here: -mquickcall (the default) and
572    -mno-quickcall.  With -mno-quickcall, all arguments are passed on
573    the stack after the return address, word-aligned.  With
574    -mquickcall, GCC tries to use r0 -- r2 to pass registers.  Since
575    GCC doesn't indicate in the object file which ABI was used to
576    compile it, GDB only supports the default --- -mquickcall.
577 
578    Here are the rules for -mquickcall, in detail:
579 
580    Each argument, whether scalar or aggregate, is padded to occupy a
581    whole number of words.  Arguments smaller than a word are padded at
582    the most significant end; those larger than a word are padded at
583    the least significant end.
584 
585    The initial arguments are passed in r0 -- r2.  Earlier arguments go in
586    lower-numbered registers.  Multi-word arguments are passed in
587    consecutive registers, with the most significant end in the
588    lower-numbered register.
589 
590    If an argument doesn't fit entirely in the remaining registers, it
591    is passed entirely on the stack.  Stack arguments begin just after
592    the return address.  Once an argument has overflowed onto the stack
593    this way, all subsequent arguments are passed on the stack.
594 
595    The above rule has odd consequences.  For example, on the h8/300s,
596    if a function takes two longs and an int as arguments:
597    - the first long will be passed in r0/r1,
598    - the second long will be passed entirely on the stack, since it
599      doesn't fit in r2,
600    - and the int will be passed on the stack, even though it could fit
601      in r2.
602 
603    A weird exception: if an argument is larger than a word, but not a
604    whole number of words in length (before padding), it is passed on
605    the stack following the rules for stack arguments above, even if
606    there are sufficient registers available to hold it.  Stranger
607    still, the argument registers are still `used up' --- even though
608    there's nothing in them.
609 
610    So, for example, on the h8/300s, if a function expects a three-byte
611    structure and an int, the structure will go on the stack, and the
612    int will go in r2, not r0.
613 
614    If the function returns an aggregate type (struct, union, or class)
615    by value, the caller must allocate space to hold the return value,
616    and pass the callee a pointer to this space as an invisible first
617    argument, in R0.
618 
619    For varargs functions, the last fixed argument and all the variable
620    arguments are always passed on the stack.  This means that calls to
621    varargs functions don't work properly unless there is a prototype
622    in scope.
623 
624    Basically, this ABI is not good, for the following reasons:
625    - You can't call vararg functions properly unless a prototype is in scope.
626    - Structure passing is inconsistent, to no purpose I can see.
627    - It often wastes argument registers, of which there are only three
628      to begin with.  */
629 
630 static CORE_ADDR
h8300_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)631 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
632 		       struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
633 		       struct value **args, CORE_ADDR sp, int struct_return,
634 		       CORE_ADDR struct_addr)
635 {
636   int stack_alloc = 0, stack_offset = 0;
637   int wordsize = BINWORD;
638   int reg = E_ARG0_REGNUM;
639   int argument;
640 
641   /* First, make sure the stack is properly aligned.  */
642   sp = align_down (sp, wordsize);
643 
644   /* Now make sure there's space on the stack for the arguments.  We
645      may over-allocate a little here, but that won't hurt anything.  */
646   for (argument = 0; argument < nargs; argument++)
647     stack_alloc += align_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
648                              wordsize);
649   sp -= stack_alloc;
650 
651   /* Now load as many arguments as possible into registers, and push
652      the rest onto the stack.
653      If we're returning a structure by value, then we must pass a
654      pointer to the buffer for the return value as an invisible first
655      argument.  */
656   if (struct_return)
657     regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
658 
659   for (argument = 0; argument < nargs; argument++)
660     {
661       struct type *type = VALUE_TYPE (args[argument]);
662       int len = TYPE_LENGTH (type);
663       char *contents = (char *) VALUE_CONTENTS (args[argument]);
664 
665       /* Pad the argument appropriately.  */
666       int padded_len = align_up (len, wordsize);
667       char *padded = alloca (padded_len);
668 
669       memset (padded, 0, padded_len);
670       memcpy (len < wordsize ? padded + padded_len - len : padded,
671               contents, len);
672 
673       /* Could the argument fit in the remaining registers?  */
674       if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
675         {
676           /* Are we going to pass it on the stack anyway, for no good
677              reason?  */
678           if (len > wordsize && len % wordsize)
679             {
680               /* I feel so unclean.  */
681               write_memory (sp + stack_offset, padded, padded_len);
682               stack_offset += padded_len;
683 
684               /* That's right --- even though we passed the argument
685                  on the stack, we consume the registers anyway!  Love
686                  me, love my dog.  */
687               reg += padded_len / wordsize;
688             }
689           else
690             {
691               /* Heavens to Betsy --- it's really going in registers!
692                  It would be nice if we could use write_register_bytes
693                  here, but on the h8/300s, there are gaps between
694                  the registers in the register file.  */
695               int offset;
696 
697               for (offset = 0; offset < padded_len; offset += wordsize)
698                 {
699                   ULONGEST word = extract_unsigned_integer (padded + offset,
700 							    wordsize);
701 		  regcache_cooked_write_unsigned (regcache, reg++, word);
702                 }
703             }
704         }
705       else
706         {
707           /* It doesn't fit in registers!  Onto the stack it goes.  */
708           write_memory (sp + stack_offset, padded, padded_len);
709           stack_offset += padded_len;
710 
711           /* Once one argument has spilled onto the stack, all
712              subsequent arguments go on the stack.  */
713           reg = E_ARGLAST_REGNUM + 1;
714         }
715     }
716 
717   /* Store return address.  */
718   sp -= wordsize;
719   write_memory_unsigned_integer (sp, wordsize, bp_addr);
720 
721   /* Update stack pointer.  */
722   regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
723 
724   return sp;
725 }
726 
727 /* Function: h8300_pop_frame
728    Restore the machine to the state it had before the current frame
729    was created.  Usually used either by the "RETURN" command, or by
730    call_function_by_hand after the dummy_frame is finished. */
731 
732 static void
h8300_pop_frame(void)733 h8300_pop_frame (void)
734 {
735   unsigned regno;
736   struct frame_info *frame = get_current_frame ();
737 
738   if (deprecated_pc_in_call_dummy (get_frame_pc (frame)))
739     {
740       deprecated_pop_dummy_frame ();
741     }
742   else
743     {
744       for (regno = 0; regno < 8; regno++)
745 	{
746 	  /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
747 	     actual value we want, not the address of the value we want.  */
748 	  if (deprecated_get_frame_saved_regs (frame)[regno] && regno != E_SP_REGNUM)
749 	    write_register (regno,
750 			    read_memory_integer
751 			    (deprecated_get_frame_saved_regs (frame)[regno], BINWORD));
752 	  else if (deprecated_get_frame_saved_regs (frame)[regno] && regno == E_SP_REGNUM)
753 	    write_register (regno, get_frame_base (frame) + 2 * BINWORD);
754 	}
755 
756       /* Don't forget to update the PC too!  */
757       write_register (E_PC_REGNUM, get_frame_extra_info (frame)->from_pc);
758     }
759   flush_cached_frames ();
760 }
761 
762 /* Function: extract_return_value
763    Figure out where in REGBUF the called function has left its return value.
764    Copy that into VALBUF.  Be sure to account for CPU type.   */
765 
766 static void
h8300_extract_return_value(struct type * type,struct regcache * regcache,void * valbuf)767 h8300_extract_return_value (struct type *type, struct regcache *regcache,
768 			    void *valbuf)
769 {
770   int len = TYPE_LENGTH (type);
771   ULONGEST c, addr;
772 
773   switch (len)
774     {
775       case 1:
776       case 2:
777 	regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
778 	store_unsigned_integer (valbuf, len, c);
779 	break;
780       case 4:	/* Needs two registers on plain H8/300 */
781 	regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
782 	store_unsigned_integer (valbuf, 2, c);
783 	regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
784 	store_unsigned_integer ((void*)((char *)valbuf + 2), 2, c);
785 	break;
786       case 8:	/* long long is now 8 bytes.  */
787 	if (TYPE_CODE (type) == TYPE_CODE_INT)
788 	  {
789 	    regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
790 	    c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
791 	    store_unsigned_integer (valbuf, len, c);
792 	  }
793 	else
794 	  {
795 	    error ("I don't know how this 8 byte value is returned.");
796 	  }
797 	break;
798     }
799 }
800 
801 static void
h8300h_extract_return_value(struct type * type,struct regcache * regcache,void * valbuf)802 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
803 			    void *valbuf)
804 {
805   int len = TYPE_LENGTH (type);
806   ULONGEST c, addr;
807 
808   switch (len)
809     {
810       case 1:
811       case 2:
812       case 4:
813 	regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
814 	store_unsigned_integer (valbuf, len, c);
815 	break;
816       case 8:	/* long long is now 8 bytes.  */
817 	if (TYPE_CODE (type) == TYPE_CODE_INT)
818 	  {
819 	    regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
820 	    c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
821 	    store_unsigned_integer (valbuf, len, c);
822 	  }
823 	else
824 	  {
825 	    error ("I don't know how this 8 byte value is returned.");
826 	  }
827 	break;
828     }
829 }
830 
831 
832 /* Function: store_return_value
833    Place the appropriate value in the appropriate registers.
834    Primarily used by the RETURN command.  */
835 
836 static void
h8300_store_return_value(struct type * type,struct regcache * regcache,const void * valbuf)837 h8300_store_return_value (struct type *type, struct regcache *regcache,
838 			  const void *valbuf)
839 {
840   int len = TYPE_LENGTH (type);
841   ULONGEST val;
842 
843   switch (len)
844     {
845       case 1:
846     case 2:	/* short... */
847 	val = extract_unsigned_integer (valbuf, len);
848 	regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
849 	break;
850       case 4:	/* long, float */
851 	val = extract_unsigned_integer (valbuf, len);
852 	regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
853 					(val >> 16) &0xffff);
854 	regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
855 	break;
856       case 8:	/* long long, double and long double are all defined
857 		   as 4 byte types so far so this shouldn't happen.  */
858 	error ("I don't know how to return an 8 byte value.");
859 	break;
860     }
861 }
862 
863 static void
h8300h_store_return_value(struct type * type,struct regcache * regcache,const void * valbuf)864 h8300h_store_return_value (struct type *type, struct regcache *regcache,
865 			   const void *valbuf)
866 {
867   int len = TYPE_LENGTH (type);
868   ULONGEST val;
869 
870   switch (len)
871     {
872       case 1:
873       case 2:
874       case 4:	/* long, float */
875 	val = extract_unsigned_integer (valbuf, len);
876 	regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
877 	break;
878       case 8:	/* long long, double and long double are all defined
879 		   as 4 byte types so far so this shouldn't happen.  */
880 	error ("I don't know how to return an 8 byte value.");
881 	break;
882     }
883 }
884 
885 static struct cmd_list_element *setmachinelist;
886 
887 static const char *
h8300_register_name(int regno)888 h8300_register_name (int regno)
889 {
890   /* The register names change depending on which h8300 processor
891      type is selected. */
892   static char *register_names[] = {
893     "r0", "r1", "r2", "r3", "r4", "r5", "r6",
894     "sp", "","pc","cycles", "tick", "inst",
895     "ccr", /* pseudo register */
896   };
897   if (regno < 0
898       || regno >= (sizeof (register_names) / sizeof (*register_names)))
899     internal_error (__FILE__, __LINE__,
900                     "h8300_register_name: illegal register number %d", regno);
901   else
902     return register_names[regno];
903 }
904 
905 static const char *
h8300s_register_name(int regno)906 h8300s_register_name (int regno)
907 {
908   static char *register_names[] = {
909     "er0", "er1", "er2", "er3", "er4", "er5", "er6",
910     "sp", "", "pc", "cycles", "", "tick", "inst",
911     "mach", "macl",
912     "ccr", "exr" /* pseudo registers */
913   };
914   if (regno < 0
915       || regno >= (sizeof (register_names) / sizeof (*register_names)))
916     internal_error (__FILE__, __LINE__,
917                     "h8300s_register_name: illegal register number %d", regno);
918   else
919     return register_names[regno];
920 }
921 
922 static const char *
h8300sx_register_name(int regno)923 h8300sx_register_name (int regno)
924 {
925   static char *register_names[] = {
926     "er0", "er1", "er2", "er3", "er4", "er5", "er6",
927     "sp", "", "pc", "cycles", "", "tick", "inst",
928     "mach", "macl", "sbr", "vbr",
929     "ccr", "exr" /* pseudo registers */
930   };
931   if (regno < 0
932       || regno >= (sizeof (register_names) / sizeof (*register_names)))
933     internal_error (__FILE__, __LINE__,
934 		    "h8300sx_register_name: illegal register number %d", regno);
935   else
936     return register_names[regno];
937 }
938 
939 static void
h8300_print_register(struct gdbarch * gdbarch,struct ui_file * file,struct frame_info * frame,int regno)940 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
941 		      struct frame_info *frame, int regno)
942 {
943   LONGEST rval;
944   const char *name = gdbarch_register_name (gdbarch, regno);
945 
946   if (!name || !*name)
947     return;
948 
949   rval = get_frame_register_signed (frame, regno);
950 
951   fprintf_filtered (file, "%-14s ", name);
952   if (regno == E_PSEUDO_CCR_REGNUM ||
953        (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch)))
954     {
955       fprintf_filtered (file, "0x%02x        ", (unsigned char)rval);
956       print_longest (file, 'u', 1, rval);
957     }
958   else
959     {
960       fprintf_filtered (file, "0x%s  ", phex ((ULONGEST)rval, BINWORD));
961       print_longest (file, 'd', 1, rval);
962     }
963   if (regno == E_PSEUDO_CCR_REGNUM)
964     {
965       /* CCR register */
966       int C, Z, N, V;
967       unsigned char l = rval & 0xff;
968       fprintf_filtered (file, "\t");
969       fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
970       fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
971       fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
972       fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
973       N = (l & 0x8) != 0;
974       Z = (l & 0x4) != 0;
975       V = (l & 0x2) != 0;
976       C = (l & 0x1) != 0;
977       fprintf_filtered (file, "N-%d ", N);
978       fprintf_filtered (file, "Z-%d ", Z);
979       fprintf_filtered (file, "V-%d ", V);
980       fprintf_filtered (file, "C-%d ", C);
981       if ((C | Z) == 0)
982 	fprintf_filtered (file, "u> ");
983       if ((C | Z) == 1)
984 	fprintf_filtered (file, "u<= ");
985       if ((C == 0))
986 	fprintf_filtered (file, "u>= ");
987       if (C == 1)
988 	fprintf_filtered (file, "u< ");
989       if (Z == 0)
990 	fprintf_filtered (file, "!= ");
991       if (Z == 1)
992 	fprintf_filtered (file, "== ");
993       if ((N ^ V) == 0)
994 	fprintf_filtered (file, ">= ");
995       if ((N ^ V) == 1)
996 	fprintf_filtered (file, "< ");
997       if ((Z | (N ^ V)) == 0)
998 	fprintf_filtered (file, "> ");
999       if ((Z | (N ^ V)) == 1)
1000 	fprintf_filtered (file, "<= ");
1001     }
1002   else if (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch))
1003     {
1004       /* EXR register */
1005       unsigned char l = rval & 0xff;
1006       fprintf_filtered (file, "\t");
1007       fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1008       fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1009       fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1010       fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1011     }
1012   fprintf_filtered (file, "\n");
1013 }
1014 
1015 static void
h8300_print_registers_info(struct gdbarch * gdbarch,struct ui_file * file,struct frame_info * frame,int regno,int cpregs)1016 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1017 			    struct frame_info *frame, int regno, int cpregs)
1018 {
1019   if (regno < 0)
1020     {
1021       for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1022 	h8300_print_register (gdbarch, file, frame, regno);
1023       h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1024       h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1025       if (is_h8300smode (current_gdbarch))
1026         {
1027 	  h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1028 	  if (is_h8300sxmode (current_gdbarch))
1029 	    {
1030 	      h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1031 	      h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1032 	    }
1033 	  h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1034 	  h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1035 	  h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1036 	  h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1037 	  h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1038 	}
1039       else
1040         {
1041 	  h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1042 	  h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1043 	  h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1044 	}
1045     }
1046   else
1047     {
1048       if (regno == E_CCR_REGNUM)
1049         h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1050       else if (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch))
1051 	h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1052       else
1053 	h8300_print_register (gdbarch, file, frame, regno);
1054     }
1055 }
1056 
1057 static CORE_ADDR
h8300_saved_pc_after_call(struct frame_info * ignore)1058 h8300_saved_pc_after_call (struct frame_info *ignore)
1059 {
1060   return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
1061 }
1062 
1063 static struct type *
h8300_register_type(struct gdbarch * gdbarch,int regno)1064 h8300_register_type (struct gdbarch *gdbarch, int regno)
1065 {
1066   if (regno < 0 || regno >= NUM_REGS + NUM_PSEUDO_REGS)
1067     internal_error (__FILE__, __LINE__,
1068 		    "h8300_register_type: illegal register number %d",
1069 		    regno);
1070   else
1071     {
1072       switch (regno)
1073         {
1074 	  case E_PC_REGNUM:
1075 	    return builtin_type_void_func_ptr;
1076 	  case E_SP_REGNUM:
1077 	  case E_FP_REGNUM:
1078 	    return builtin_type_void_data_ptr;
1079 	  default:
1080 	    if (regno == E_PSEUDO_CCR_REGNUM)
1081 	      return builtin_type_uint8;
1082 	    else if (regno == E_PSEUDO_EXR_REGNUM)
1083 	      return builtin_type_uint8;
1084 	    else if (is_h8300hmode (current_gdbarch))
1085 	      return builtin_type_int32;
1086 	    else
1087 	      return builtin_type_int16;
1088         }
1089     }
1090 }
1091 
1092 static void
h8300_pseudo_register_read(struct gdbarch * gdbarch,struct regcache * regcache,int regno,void * buf)1093 h8300_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1094 			    int regno, void *buf)
1095 {
1096   if (regno == E_PSEUDO_CCR_REGNUM)
1097     regcache_raw_read (regcache, E_CCR_REGNUM, buf);
1098   else if (regno == E_PSEUDO_EXR_REGNUM)
1099     regcache_raw_read (regcache, E_EXR_REGNUM, buf);
1100   else
1101     regcache_raw_read (regcache, regno, buf);
1102 }
1103 
1104 static void
h8300_pseudo_register_write(struct gdbarch * gdbarch,struct regcache * regcache,int regno,const void * buf)1105 h8300_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1106 			     int regno, const void *buf)
1107 {
1108   if (regno == E_PSEUDO_CCR_REGNUM)
1109     regcache_raw_write (regcache, E_CCR_REGNUM, buf);
1110   else if (regno == E_PSEUDO_EXR_REGNUM)
1111     regcache_raw_write (regcache, E_EXR_REGNUM, buf);
1112   else
1113     regcache_raw_write (regcache, regno, buf);
1114 }
1115 
1116 static int
h8300_dbg_reg_to_regnum(int regno)1117 h8300_dbg_reg_to_regnum (int regno)
1118 {
1119   if (regno == E_CCR_REGNUM)
1120     return E_PSEUDO_CCR_REGNUM;
1121   return regno;
1122 }
1123 
1124 static int
h8300s_dbg_reg_to_regnum(int regno)1125 h8300s_dbg_reg_to_regnum (int regno)
1126 {
1127   if (regno == E_CCR_REGNUM)
1128     return E_PSEUDO_CCR_REGNUM;
1129   if (regno == E_EXR_REGNUM)
1130     return E_PSEUDO_EXR_REGNUM;
1131   return regno;
1132 }
1133 
1134 static CORE_ADDR
h8300_extract_struct_value_address(struct regcache * regcache)1135 h8300_extract_struct_value_address (struct regcache *regcache)
1136 {
1137   ULONGEST addr;
1138   regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
1139   return addr;
1140 }
1141 
1142 const static unsigned char *
h8300_breakpoint_from_pc(CORE_ADDR * pcptr,int * lenptr)1143 h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1144 {
1145   /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/	/* ??? */
1146   static unsigned char breakpoint[] = { 0x01, 0x80 };		/* Sleep */
1147 
1148   *lenptr = sizeof (breakpoint);
1149   return breakpoint;
1150 }
1151 
1152 static CORE_ADDR
h8300_push_dummy_code(struct gdbarch * gdbarch,CORE_ADDR sp,CORE_ADDR funaddr,int using_gcc,struct value ** args,int nargs,struct type * value_type,CORE_ADDR * real_pc,CORE_ADDR * bp_addr)1153 h8300_push_dummy_code (struct gdbarch *gdbarch,
1154 		       CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
1155 		       struct value **args, int nargs,
1156 		       struct type *value_type,
1157 		       CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
1158 {
1159   /* Allocate space sufficient for a breakpoint.  */
1160   sp = (sp - 2) & ~1;
1161   /* Store the address of that breakpoint */
1162   *bp_addr = sp;
1163   /* h8300 always starts the call at the callee's entry point.  */
1164   *real_pc = funaddr;
1165   return sp;
1166 }
1167 
1168 static void
h8300_print_float_info(struct gdbarch * gdbarch,struct ui_file * file,struct frame_info * frame,const char * args)1169 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1170 			struct frame_info *frame, const char *args)
1171 {
1172   fprintf_filtered (file, "\
1173 No floating-point info available for this processor.\n");
1174 }
1175 
1176 static struct gdbarch *
h8300_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)1177 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1178 {
1179   struct gdbarch_tdep *tdep = NULL;
1180   struct gdbarch *gdbarch;
1181 
1182   arches = gdbarch_list_lookup_by_info (arches, &info);
1183   if (arches != NULL)
1184     return arches->gdbarch;
1185 
1186 #if 0
1187   tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1188 #endif
1189 
1190   if (info.bfd_arch_info->arch != bfd_arch_h8300)
1191     return NULL;
1192 
1193   gdbarch = gdbarch_alloc (&info, 0);
1194 
1195   switch (info.bfd_arch_info->mach)
1196     {
1197     case bfd_mach_h8300:
1198       set_gdbarch_num_regs (gdbarch, 13);
1199       set_gdbarch_num_pseudo_regs (gdbarch, 1);
1200       set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1201       set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1202       set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1203       set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1204       set_gdbarch_register_name (gdbarch, h8300_register_name);
1205       set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1206       set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1207       set_gdbarch_extract_return_value (gdbarch, h8300_extract_return_value);
1208       set_gdbarch_store_return_value (gdbarch, h8300_store_return_value);
1209       set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1210       break;
1211     case bfd_mach_h8300h:
1212     case bfd_mach_h8300hn:
1213       set_gdbarch_num_regs (gdbarch, 13);
1214       set_gdbarch_num_pseudo_regs (gdbarch, 1);
1215       set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1216       set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1217       set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1218       set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1219       set_gdbarch_register_name (gdbarch, h8300_register_name);
1220       if(info.bfd_arch_info->mach != bfd_mach_h8300hn)
1221         {
1222           set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1223           set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1224         }
1225       else
1226         {
1227           set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1228           set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1229         }
1230       set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1231       set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
1232       set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1233       break;
1234     case bfd_mach_h8300s:
1235     case bfd_mach_h8300sn:
1236       set_gdbarch_num_regs (gdbarch, 16);
1237       set_gdbarch_num_pseudo_regs (gdbarch, 2);
1238       set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1239       set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1240       set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1241       set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1242       set_gdbarch_register_name (gdbarch, h8300s_register_name);
1243       if(info.bfd_arch_info->mach != bfd_mach_h8300sn)
1244         {
1245           set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1246           set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1247         }
1248       else
1249         {
1250           set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1251           set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1252         }
1253       set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1254       set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
1255       set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1256       break;
1257     case bfd_mach_h8300sx:
1258     case bfd_mach_h8300sxn:
1259       set_gdbarch_num_regs (gdbarch, 18);
1260       set_gdbarch_num_pseudo_regs (gdbarch, 2);
1261       set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1262       set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1263       set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1264       set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1265       set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1266       if(info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1267         {
1268           set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1269           set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1270         }
1271       else
1272         {
1273           set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1274           set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1275         }
1276       set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1277       set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
1278       set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1279       break;
1280     }
1281 
1282   set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1283   set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1284 
1285   /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1286      ready to unwind the PC first (see frame.c:get_prev_frame()).  */
1287   set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
1288 
1289   /*
1290    * Basic register fields and methods.
1291    */
1292 
1293   set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1294   set_gdbarch_deprecated_fp_regnum (gdbarch, E_FP_REGNUM);
1295   set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1296   set_gdbarch_register_type (gdbarch, h8300_register_type);
1297   set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1298   set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1299 
1300   /*
1301    * Frame Info
1302    */
1303   set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1304 
1305   set_gdbarch_deprecated_frame_init_saved_regs (gdbarch,
1306 						h8300_frame_init_saved_regs);
1307   set_gdbarch_deprecated_init_extra_frame_info (gdbarch,
1308 						h8300_init_extra_frame_info);
1309   set_gdbarch_deprecated_frame_chain (gdbarch, h8300_frame_chain);
1310   set_gdbarch_deprecated_saved_pc_after_call (gdbarch,
1311 					      h8300_saved_pc_after_call);
1312   set_gdbarch_deprecated_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
1313   set_gdbarch_deprecated_pop_frame (gdbarch, h8300_pop_frame);
1314 
1315   /*
1316    * Miscelany
1317    */
1318   /* Stack grows up. */
1319   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1320 
1321   set_gdbarch_deprecated_extract_struct_value_address (gdbarch, h8300_extract_struct_value_address);
1322   set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
1323   set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1324   set_gdbarch_push_dummy_code (gdbarch, h8300_push_dummy_code);
1325   set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1326 
1327   set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1328   set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1329   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1330   set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1331   set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1332 
1333   set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1334 
1335   /* Char is unsigned.  */
1336   set_gdbarch_char_signed (gdbarch, 0);
1337 
1338   return gdbarch;
1339 }
1340 
1341 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1342 
1343 void
_initialize_h8300_tdep(void)1344 _initialize_h8300_tdep (void)
1345 {
1346   register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1347 }
1348 
1349 static int
is_h8300hmode(struct gdbarch * gdbarch)1350 is_h8300hmode (struct gdbarch *gdbarch)
1351 {
1352   return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1353 	 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1354 	 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1355 	 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1356 	 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1357 	 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1358 }
1359 
1360 static int
is_h8300smode(struct gdbarch * gdbarch)1361 is_h8300smode (struct gdbarch *gdbarch)
1362 {
1363   return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1364 	 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1365 	 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1366 	 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1367 }
1368 
1369 static int
is_h8300sxmode(struct gdbarch * gdbarch)1370 is_h8300sxmode (struct gdbarch *gdbarch)
1371 {
1372   return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1373 	 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1374 }
1375 
1376 static int
is_h8300_normal_mode(struct gdbarch * gdbarch)1377 is_h8300_normal_mode (struct gdbarch *gdbarch)
1378 {
1379   return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1380 	 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1381 	 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1382 }
1383 
1384