xref: /openbsd/gnu/usr.bin/cvs/lib/regex.c (revision 0971b67f)
1 /* Extended regular expression matching and search library, version
2    0.12.  (Implements POSIX draft P10003.2/D11.2, except for
3    internationalization features.)
4 
5    Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2, or (at your option)
10    any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20    USA.	 */
21 
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24   #pragma alloca
25 #endif
26 
27 #undef	_GNU_SOURCE
28 #define _GNU_SOURCE
29 
30 #ifdef emacs
31 /* Converts the pointer to the char to BEG-based offset from the start.	 */
32 #define PTR_TO_OFFSET(d)						\
33 	POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING			\
34 			  ? (d) - string1 : (d) - (string2 - size1))
35 #define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
36 #else
37 #define PTR_TO_OFFSET(d) 0
38 #endif
39 
40 #ifdef HAVE_CONFIG_H
41 #include <config.h>
42 #endif
43 
44 /* We need this for `regex.h', and perhaps for the Emacs include files.	 */
45 #include <sys/types.h>
46 
47 /* This is for other GNU distributions with internationalized messages.	 */
48 #if HAVE_LIBINTL_H || defined (_LIBC)
49 # include <libintl.h>
50 #else
51 # define gettext(msgid) (msgid)
52 #endif
53 
54 #ifndef gettext_noop
55 /* This define is so xgettext can find the internationalizable
56    strings.  */
57 #define gettext_noop(String) String
58 #endif
59 
60 /* The `emacs' switch turns on certain matching commands
61    that make sense only in Emacs. */
62 #ifdef emacs
63 
64 #include "lisp.h"
65 #include "buffer.h"
66 
67 /* Make syntax table lookup grant data in gl_state.  */
68 #define SYNTAX_ENTRY_VIA_PROPERTY
69 
70 #include "syntax.h"
71 #include "charset.h"
72 #include "category.h"
73 
74 #define malloc xmalloc
75 #define realloc xrealloc
76 #define free xfree
77 
78 #else  /* not emacs */
79 
80 /* If we are not linking with Emacs proper,
81    we can't use the relocating allocator
82    even if config.h says that we can.  */
83 #undef REL_ALLOC
84 
85 #if defined (STDC_HEADERS) || defined (_LIBC)
86 #include <stdlib.h>
87 #else
88 char *malloc ();
89 char *realloc ();
90 #endif
91 
92 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
93    If nothing else has been done, use the method below.	 */
94 #ifdef INHIBIT_STRING_HEADER
95 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
96 #if !defined (bzero) && !defined (bcopy)
97 #undef INHIBIT_STRING_HEADER
98 #endif
99 #endif
100 #endif
101 
102 /* This is the normal way of making sure we have a bcopy and a bzero.
103    This is used in most programs--a few other programs avoid this
104    by defining INHIBIT_STRING_HEADER.  */
105 #ifndef INHIBIT_STRING_HEADER
106 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
107 #include <string.h>
108 #ifndef bcmp
109 #define bcmp(s1, s2, n)	memcmp ((s1), (s2), (n))
110 #endif
111 #ifndef bcopy
112 #define bcopy(s, d, n)	memcpy ((d), (s), (n))
113 #endif
114 #ifndef bzero
115 #define bzero(s, n)	memset ((s), 0, (n))
116 #endif
117 #else
118 #include <strings.h>
119 #endif
120 #endif
121 
122 /* Define the syntax stuff for \<, \>, etc.  */
123 
124 /* This must be nonzero for the wordchar and notwordchar pattern
125    commands in re_match_2.  */
126 #ifndef Sword
127 #define Sword 1
128 #endif
129 
130 #ifdef SWITCH_ENUM_BUG
131 #define SWITCH_ENUM_CAST(x) ((int)(x))
132 #else
133 #define SWITCH_ENUM_CAST(x) (x)
134 #endif
135 
136 #ifdef SYNTAX_TABLE
137 
138 extern char *re_syntax_table;
139 
140 #else /* not SYNTAX_TABLE */
141 
142 /* How many characters in the character set.  */
143 #define CHAR_SET_SIZE 256
144 
145 static char re_syntax_table[CHAR_SET_SIZE];
146 
147 static void
init_syntax_once()148 init_syntax_once ()
149 {
150    register int c;
151    static int done = 0;
152 
153    if (done)
154      return;
155 
156    bzero (re_syntax_table, sizeof re_syntax_table);
157 
158    for (c = 'a'; c <= 'z'; c++)
159      re_syntax_table[c] = Sword;
160 
161    for (c = 'A'; c <= 'Z'; c++)
162      re_syntax_table[c] = Sword;
163 
164    for (c = '0'; c <= '9'; c++)
165      re_syntax_table[c] = Sword;
166 
167    re_syntax_table['_'] = Sword;
168 
169    done = 1;
170 }
171 
172 #endif /* not SYNTAX_TABLE */
173 
174 #define SYNTAX(c) re_syntax_table[c]
175 
176 /* Dummy macros for non-Emacs environments.  */
177 #define BASE_LEADING_CODE_P(c) (0)
178 #define WORD_BOUNDARY_P(c1, c2) (0)
179 #define CHAR_HEAD_P(p) (1)
180 #define SINGLE_BYTE_CHAR_P(c) (1)
181 #define SAME_CHARSET_P(c1, c2) (1)
182 #define MULTIBYTE_FORM_LENGTH(p, s) (1)
183 #define STRING_CHAR(p, s) (*(p))
184 #define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
185 #define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
186   (c = ((p) == (end1) ? *(str2) : *(p)))
187 #define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
188   (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
189 #endif /* not emacs */
190 
191 /* Get the interface, including the syntax bits.  */
192 #include "regex.h"
193 
194 /* isalpha etc. are used for the character classes.  */
195 #include <ctype.h>
196 
197 /* Jim Meyering writes:
198 
199    "... Some ctype macros are valid only for character codes that
200    isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
201    using /bin/cc or gcc but without giving an ansi option).  So, all
202    ctype uses should be through macros like ISPRINT...	If
203    STDC_HEADERS is defined, then autoconf has verified that the ctype
204    macros don't need to be guarded with references to isascii. ...
205    Defining isascii to 1 should let any compiler worth its salt
206    eliminate the && through constant folding."	*/
207 
208 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
209 #define ISASCII(c) 1
210 #else
211 #define ISASCII(c) isascii(c)
212 #endif
213 
214 #ifdef isblank
215 #define ISBLANK(c) (ISASCII (c) && isblank (c))
216 #else
217 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
218 #endif
219 #ifdef isgraph
220 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
221 #else
222 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
223 #endif
224 
225 #define ISPRINT(c) (ISASCII (c) && isprint (c))
226 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
227 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
228 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
229 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
230 #define ISLOWER(c) (ISASCII (c) && islower (c))
231 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
232 #define ISSPACE(c) (ISASCII (c) && isspace (c))
233 #define ISUPPER(c) (ISASCII (c) && isupper (c))
234 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
235 
236 #ifndef NULL
237 #define NULL (void *)0
238 #endif
239 
240 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
241    since ours (we hope) works properly with all combinations of
242    machines, compilers, `char' and `unsigned char' argument types.
243    (Per Bothner suggested the basic approach.)	*/
244 #undef SIGN_EXTEND_CHAR
245 #if __STDC__
246 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
247 #else  /* not __STDC__ */
248 /* As in Harbison and Steele.  */
249 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
250 #endif
251 
252 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
253    use `alloca' instead of `malloc'.  This is because using malloc in
254    re_search* or re_match* could cause memory leaks when C-g is used in
255    Emacs; also, malloc is slower and causes storage fragmentation.  On
256    the other hand, malloc is more portable, and easier to debug.
257 
258    Because we sometimes use alloca, some routines have to be macros,
259    not functions -- `alloca'-allocated space disappears at the end of the
260    function it is called in.  */
261 
262 #ifdef REGEX_MALLOC
263 
264 #define REGEX_ALLOCATE malloc
265 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
266 #define REGEX_FREE free
267 
268 #else /* not REGEX_MALLOC  */
269 
270 /* Emacs already defines alloca, sometimes.  */
271 #ifndef alloca
272 
273 /* Make alloca work the best possible way.  */
274 #ifdef __GNUC__
275 #define alloca __builtin_alloca
276 #else /* not __GNUC__ */
277 #if HAVE_ALLOCA_H
278 #include <alloca.h>
279 #else /* not __GNUC__ or HAVE_ALLOCA_H */
280 #if 0 /* It is a bad idea to declare alloca.  We always cast the result.  */
281 #ifndef _AIX /* Already did AIX, up at the top.	 */
282 char *alloca ();
283 #endif /* not _AIX */
284 #endif
285 #endif /* not HAVE_ALLOCA_H */
286 #endif /* not __GNUC__ */
287 
288 #endif /* not alloca */
289 
290 #define REGEX_ALLOCATE alloca
291 
292 /* Assumes a `char *destination' variable.  */
293 #define REGEX_REALLOCATE(source, osize, nsize)				\
294   (destination = (char *) alloca (nsize),				\
295    bcopy (source, destination, osize),					\
296    destination)
297 
298 /* No need to do anything to free, after alloca.  */
299 #define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
300 
301 #endif /* not REGEX_MALLOC */
302 
303 /* Define how to allocate the failure stack.  */
304 
305 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
306 
307 #define REGEX_ALLOCATE_STACK(size)				\
308   r_alloc (&failure_stack_ptr, (size))
309 #define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
310   r_re_alloc (&failure_stack_ptr, (nsize))
311 #define REGEX_FREE_STACK(ptr)					\
312   r_alloc_free (&failure_stack_ptr)
313 
314 #else /* not using relocating allocator */
315 
316 #ifdef REGEX_MALLOC
317 
318 #define REGEX_ALLOCATE_STACK malloc
319 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
320 #define REGEX_FREE_STACK free
321 
322 #else /* not REGEX_MALLOC */
323 
324 #define REGEX_ALLOCATE_STACK alloca
325 
326 #define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
327    REGEX_REALLOCATE (source, osize, nsize)
328 /* No need to explicitly free anything.	 */
329 #define REGEX_FREE_STACK(arg)
330 
331 #endif /* not REGEX_MALLOC */
332 #endif /* not using relocating allocator */
333 
334 
335 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
336    `string1' or just past its end.  This works if PTR is NULL, which is
337    a good thing.  */
338 #define FIRST_STRING_P(ptr)					\
339   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
340 
341 /* (Re)Allocate N items of type T using malloc, or fail.  */
342 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
343 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
344 #define RETALLOC_IF(addr, n, t) \
345   if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
346 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
347 
348 #define BYTEWIDTH 8 /* In bits.	 */
349 
350 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
351 
352 #undef MAX
353 #undef MIN
354 #define MAX(a, b) ((a) > (b) ? (a) : (b))
355 #define MIN(a, b) ((a) < (b) ? (a) : (b))
356 
357 typedef char boolean;
358 #define false 0
359 #define true 1
360 
361 static int re_match_2_internal ();
362 
363 /* These are the command codes that appear in compiled regular
364    expressions.	 Some opcodes are followed by argument bytes.  A
365    command code can specify any interpretation whatsoever for its
366    arguments.  Zero bytes may appear in the compiled regular expression.  */
367 
368 typedef enum
369 {
370   no_op = 0,
371 
372   /* Succeed right away--no more backtracking.	*/
373   succeed,
374 
375 	/* Followed by one byte giving n, then by n literal bytes.  */
376   exactn,
377 
378 	/* Matches any (more or less) character.  */
379   anychar,
380 
381 	/* Matches any one char belonging to specified set.  First
382 	   following byte is number of bitmap bytes.  Then come bytes
383 	   for a bitmap saying which chars are in.  Bits in each byte
384 	   are ordered low-bit-first.  A character is in the set if its
385 	   bit is 1.  A character too large to have a bit in the map is
386 	   automatically not in the set.  */
387   charset,
388 
389 	/* Same parameters as charset, but match any character that is
390 	   not one of those specified.	*/
391   charset_not,
392 
393 	/* Start remembering the text that is matched, for storing in a
394 	   register.  Followed by one byte with the register number, in
395 	   the range 0 to one less than the pattern buffer's re_nsub
396 	   field.  Then followed by one byte with the number of groups
397 	   inner to this one.  (This last has to be part of the
398 	   start_memory only because we need it in the on_failure_jump
399 	   of re_match_2.)  */
400   start_memory,
401 
402 	/* Stop remembering the text that is matched and store it in a
403 	   memory register.  Followed by one byte with the register
404 	   number, in the range 0 to one less than `re_nsub' in the
405 	   pattern buffer, and one byte with the number of inner groups,
406 	   just like `start_memory'.  (We need the number of inner
407 	   groups here because we don't have any easy way of finding the
408 	   corresponding start_memory when we're at a stop_memory.)  */
409   stop_memory,
410 
411 	/* Match a duplicate of something remembered. Followed by one
412 	   byte containing the register number.	 */
413   duplicate,
414 
415 	/* Fail unless at beginning of line.  */
416   begline,
417 
418 	/* Fail unless at end of line.	*/
419   endline,
420 
421 	/* Succeeds if at beginning of buffer (if emacs) or at beginning
422 	   of string to be matched (if not).  */
423   begbuf,
424 
425 	/* Analogously, for end of buffer/string.  */
426   endbuf,
427 
428 	/* Followed by two byte relative address to which to jump.  */
429   jump,
430 
431 	/* Same as jump, but marks the end of an alternative.  */
432   jump_past_alt,
433 
434 	/* Followed by two-byte relative address of place to resume at
435 	   in case of failure.	*/
436   on_failure_jump,
437 
438 	/* Like on_failure_jump, but pushes a placeholder instead of the
439 	   current string position when executed.  */
440   on_failure_keep_string_jump,
441 
442 	/* Throw away latest failure point and then jump to following
443 	   two-byte relative address.  */
444   pop_failure_jump,
445 
446 	/* Change to pop_failure_jump if know won't have to backtrack to
447 	   match; otherwise change to jump.  This is used to jump
448 	   back to the beginning of a repeat.  If what follows this jump
449 	   clearly won't match what the repeat does, such that we can be
450 	   sure that there is no use backtracking out of repetitions
451 	   already matched, then we change it to a pop_failure_jump.
452 	   Followed by two-byte address.  */
453   maybe_pop_jump,
454 
455 	/* Jump to following two-byte address, and push a dummy failure
456 	   point. This failure point will be thrown away if an attempt
457 	   is made to use it for a failure.  A `+' construct makes this
458 	   before the first repeat.  Also used as an intermediary kind
459 	   of jump when compiling an alternative.  */
460   dummy_failure_jump,
461 
462 	/* Push a dummy failure point and continue.  Used at the end of
463 	   alternatives.  */
464   push_dummy_failure,
465 
466 	/* Followed by two-byte relative address and two-byte number n.
467 	   After matching N times, jump to the address upon failure.  */
468   succeed_n,
469 
470 	/* Followed by two-byte relative address, and two-byte number n.
471 	   Jump to the address N times, then fail.  */
472   jump_n,
473 
474 	/* Set the following two-byte relative address to the
475 	   subsequent two-byte number.	The address *includes* the two
476 	   bytes of number.  */
477   set_number_at,
478 
479   wordchar,	/* Matches any word-constituent character.  */
480   notwordchar,	/* Matches any char that is not a word-constituent.  */
481 
482   wordbeg,	/* Succeeds if at word beginning.  */
483   wordend,	/* Succeeds if at word end.  */
484 
485   wordbound,	/* Succeeds if at a word boundary.  */
486   notwordbound	/* Succeeds if not at a word boundary.	*/
487 
488 #ifdef emacs
489   ,before_dot,	/* Succeeds if before point.  */
490   at_dot,	/* Succeeds if at point.  */
491   after_dot,	/* Succeeds if after point.  */
492 
493 	/* Matches any character whose syntax is specified.  Followed by
494 	   a byte which contains a syntax code, e.g., Sword.  */
495   syntaxspec,
496 
497 	/* Matches any character whose syntax is not that specified.  */
498   notsyntaxspec,
499 
500   /* Matches any character whose category-set contains the specified
501      category.	The operator is followed by a byte which contains a
502      category code (mnemonic ASCII character).	*/
503   categoryspec,
504 
505   /* Matches any character whose category-set does not contain the
506      specified category.  The operator is followed by a byte which
507      contains the category code (mnemonic ASCII character).  */
508   notcategoryspec
509 #endif /* emacs */
510 } re_opcode_t;
511 
512 /* Common operations on the compiled pattern.  */
513 
514 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
515 
516 #define STORE_NUMBER(destination, number)				\
517   do {									\
518     (destination)[0] = (number) & 0377;					\
519     (destination)[1] = (number) >> 8;					\
520   } while (0)
521 
522 /* Same as STORE_NUMBER, except increment DESTINATION to
523    the byte after where the number is stored.  Therefore, DESTINATION
524    must be an lvalue.  */
525 
526 #define STORE_NUMBER_AND_INCR(destination, number)			\
527   do {									\
528     STORE_NUMBER (destination, number);					\
529     (destination) += 2;							\
530   } while (0)
531 
532 /* Put into DESTINATION a number stored in two contiguous bytes starting
533    at SOURCE.  */
534 
535 #define EXTRACT_NUMBER(destination, source)				\
536   do {									\
537     (destination) = *(source) & 0377;					\
538     (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
539   } while (0)
540 
541 #ifdef DEBUG
542 static void
extract_number(dest,source)543 extract_number (dest, source)
544     int *dest;
545     unsigned char *source;
546 {
547   int temp = SIGN_EXTEND_CHAR (*(source + 1));
548   *dest = *source & 0377;
549   *dest += temp << 8;
550 }
551 
552 #ifndef EXTRACT_MACROS /* To debug the macros.	*/
553 #undef EXTRACT_NUMBER
554 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
555 #endif /* not EXTRACT_MACROS */
556 
557 #endif /* DEBUG */
558 
559 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
560    SOURCE must be an lvalue.  */
561 
562 #define EXTRACT_NUMBER_AND_INCR(destination, source)			\
563   do {									\
564     EXTRACT_NUMBER (destination, source);				\
565     (source) += 2;							\
566   } while (0)
567 
568 #ifdef DEBUG
569 static void
extract_number_and_incr(destination,source)570 extract_number_and_incr (destination, source)
571     int *destination;
572     unsigned char **source;
573 {
574   extract_number (destination, *source);
575   *source += 2;
576 }
577 
578 #ifndef EXTRACT_MACROS
579 #undef EXTRACT_NUMBER_AND_INCR
580 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
581   extract_number_and_incr (&dest, &src)
582 #endif /* not EXTRACT_MACROS */
583 
584 #endif /* DEBUG */
585 
586 /* Store a multibyte character in three contiguous bytes starting
587    DESTINATION, and increment DESTINATION to the byte after where the
588    character is stored.	 Therefore, DESTINATION must be an lvalue.  */
589 
590 #define STORE_CHARACTER_AND_INCR(destination, character)	\
591   do {								\
592     (destination)[0] = (character) & 0377;			\
593     (destination)[1] = ((character) >> 8) & 0377;		\
594     (destination)[2] = (character) >> 16;			\
595     (destination) += 3;						\
596   } while (0)
597 
598 /* Put into DESTINATION a character stored in three contiguous bytes
599    starting at SOURCE.	*/
600 
601 #define EXTRACT_CHARACTER(destination, source)	\
602   do {						\
603     (destination) = ((source)[0]		\
604 		     | ((source)[1] << 8)	\
605 		     | ((source)[2] << 16));	\
606   } while (0)
607 
608 
609 /* Macros for charset. */
610 
611 /* Size of bitmap of charset P in bytes.  P is a start of charset,
612    i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not.  */
613 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
614 
615 /* Nonzero if charset P has range table.  */
616 #define CHARSET_RANGE_TABLE_EXISTS_P(p)	 ((p)[1] & 0x80)
617 
618 /* Return the address of range table of charset P.  But not the start
619    of table itself, but the before where the number of ranges is
620    stored.  `2 +' means to skip re_opcode_t and size of bitmap.	 */
621 #define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
622 
623 /* Test if C is listed in the bitmap of charset P.  */
624 #define CHARSET_LOOKUP_BITMAP(p, c)				\
625   ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH			\
626    && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
627 
628 /* Return the address of end of RANGE_TABLE.  COUNT is number of
629    ranges (which is a pair of (start, end)) in the RANGE_TABLE.	 `* 2'
630    is start of range and end of range.	`* 3' is size of each start
631    and end.  */
632 #define CHARSET_RANGE_TABLE_END(range_table, count)	\
633   ((range_table) + (count) * 2 * 3)
634 
635 /* Test if C is in RANGE_TABLE.	 A flag NOT is negated if C is in.
636    COUNT is number of ranges in RANGE_TABLE.  */
637 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count)	\
638   do									\
639     {									\
640       int range_start, range_end;					\
641       unsigned char *p;							\
642       unsigned char *range_table_end					\
643 	= CHARSET_RANGE_TABLE_END ((range_table), (count));		\
644 									\
645       for (p = (range_table); p < range_table_end; p += 2 * 3)		\
646 	{								\
647 	  EXTRACT_CHARACTER (range_start, p);				\
648 	  EXTRACT_CHARACTER (range_end, p + 3);				\
649 									\
650 	  if (range_start <= (c) && (c) <= range_end)			\
651 	    {								\
652 	      (not) = !(not);						\
653 	      break;							\
654 	    }								\
655 	}								\
656     }									\
657   while (0)
658 
659 /* Test if C is in range table of CHARSET.  The flag NOT is negated if
660    C is listed in it.  */
661 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset)			\
662   do									\
663     {									\
664       /* Number of ranges in range table. */				\
665       int count;							\
666       unsigned char *range_table = CHARSET_RANGE_TABLE (charset);	\
667 									\
668       EXTRACT_NUMBER_AND_INCR (count, range_table);			\
669       CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count);	\
670     }									\
671   while (0)
672 
673 /* If DEBUG is defined, Regex prints many voluminous messages about what
674    it is doing (if the variable `debug' is nonzero).  If linked with the
675    main program in `iregex.c', you can enter patterns and strings
676    interactively.  And if linked with the main program in `main.c' and
677    the other test files, you can run the already-written tests.	 */
678 
679 #ifdef DEBUG
680 
681 /* We use standard I/O for debugging.  */
682 #include <stdio.h>
683 
684 /* It is useful to test things that ``must'' be true when debugging.  */
685 #include <assert.h>
686 
687 static int debug = 0;
688 
689 #define DEBUG_STATEMENT(e) e
690 #define DEBUG_PRINT1(x) if (debug) printf (x)
691 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
692 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
693 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
694 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)				\
695   if (debug) print_partial_compiled_pattern (s, e)
696 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
697   if (debug) print_double_string (w, s1, sz1, s2, sz2)
698 
699 
700 /* Print the fastmap in human-readable form.  */
701 
702 void
print_fastmap(fastmap)703 print_fastmap (fastmap)
704     char *fastmap;
705 {
706   unsigned was_a_range = 0;
707   unsigned i = 0;
708 
709   while (i < (1 << BYTEWIDTH))
710     {
711       if (fastmap[i++])
712 	{
713 	  was_a_range = 0;
714 	  putchar (i - 1);
715 	  while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
716 	    {
717 	      was_a_range = 1;
718 	      i++;
719 	    }
720 	  if (was_a_range)
721 	    {
722 	      printf ("-");
723 	      putchar (i - 1);
724 	    }
725 	}
726     }
727   putchar ('\n');
728 }
729 
730 
731 /* Print a compiled pattern string in human-readable form, starting at
732    the START pointer into it and ending just before the pointer END.  */
733 
734 void
print_partial_compiled_pattern(start,end)735 print_partial_compiled_pattern (start, end)
736     unsigned char *start;
737     unsigned char *end;
738 {
739   int mcnt, mcnt2;
740   unsigned char *p = start;
741   unsigned char *pend = end;
742 
743   if (start == NULL)
744     {
745       printf ("(null)\n");
746       return;
747     }
748 
749   /* Loop over pattern commands.  */
750   while (p < pend)
751     {
752       printf ("%d:\t", p - start);
753 
754       switch ((re_opcode_t) *p++)
755 	{
756 	case no_op:
757 	  printf ("/no_op");
758 	  break;
759 
760 	case exactn:
761 	  mcnt = *p++;
762 	  printf ("/exactn/%d", mcnt);
763 	  do
764 	    {
765 	      putchar ('/');
766 	      putchar (*p++);
767 	    }
768 	  while (--mcnt);
769 	  break;
770 
771 	case start_memory:
772 	  mcnt = *p++;
773 	  printf ("/start_memory/%d/%d", mcnt, *p++);
774 	  break;
775 
776 	case stop_memory:
777 	  mcnt = *p++;
778 	  printf ("/stop_memory/%d/%d", mcnt, *p++);
779 	  break;
780 
781 	case duplicate:
782 	  printf ("/duplicate/%d", *p++);
783 	  break;
784 
785 	case anychar:
786 	  printf ("/anychar");
787 	  break;
788 
789 	case charset:
790 	case charset_not:
791 	  {
792 	    register int c, last = -100;
793 	    register int in_range = 0;
794 
795 	    printf ("/charset [%s",
796 		    (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
797 
798 	    assert (p + *p < pend);
799 
800 	    for (c = 0; c < 256; c++)
801 	      if (c / 8 < *p
802 		  && (p[1 + (c/8)] & (1 << (c % 8))))
803 		{
804 		  /* Are we starting a range?  */
805 		  if (last + 1 == c && ! in_range)
806 		    {
807 		      putchar ('-');
808 		      in_range = 1;
809 		    }
810 		  /* Have we broken a range?  */
811 		  else if (last + 1 != c && in_range)
812 	      {
813 		      putchar (last);
814 		      in_range = 0;
815 		    }
816 
817 		  if (! in_range)
818 		    putchar (c);
819 
820 		  last = c;
821 	      }
822 
823 	    if (in_range)
824 	      putchar (last);
825 
826 	    putchar (']');
827 
828 	    p += 1 + *p;
829 	  }
830 	  break;
831 
832 	case begline:
833 	  printf ("/begline");
834 	  break;
835 
836 	case endline:
837 	  printf ("/endline");
838 	  break;
839 
840 	case on_failure_jump:
841 	  extract_number_and_incr (&mcnt, &p);
842 	  printf ("/on_failure_jump to %d", p + mcnt - start);
843 	  break;
844 
845 	case on_failure_keep_string_jump:
846 	  extract_number_and_incr (&mcnt, &p);
847 	  printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
848 	  break;
849 
850 	case dummy_failure_jump:
851 	  extract_number_and_incr (&mcnt, &p);
852 	  printf ("/dummy_failure_jump to %d", p + mcnt - start);
853 	  break;
854 
855 	case push_dummy_failure:
856 	  printf ("/push_dummy_failure");
857 	  break;
858 
859 	case maybe_pop_jump:
860 	  extract_number_and_incr (&mcnt, &p);
861 	  printf ("/maybe_pop_jump to %d", p + mcnt - start);
862 	  break;
863 
864 	case pop_failure_jump:
865 	  extract_number_and_incr (&mcnt, &p);
866 	  printf ("/pop_failure_jump to %d", p + mcnt - start);
867 	  break;
868 
869 	case jump_past_alt:
870 	  extract_number_and_incr (&mcnt, &p);
871 	  printf ("/jump_past_alt to %d", p + mcnt - start);
872 	  break;
873 
874 	case jump:
875 	  extract_number_and_incr (&mcnt, &p);
876 	  printf ("/jump to %d", p + mcnt - start);
877 	  break;
878 
879 	case succeed_n:
880 	  extract_number_and_incr (&mcnt, &p);
881 	  extract_number_and_incr (&mcnt2, &p);
882 	  printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
883 	  break;
884 
885 	case jump_n:
886 	  extract_number_and_incr (&mcnt, &p);
887 	  extract_number_and_incr (&mcnt2, &p);
888 	  printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
889 	  break;
890 
891 	case set_number_at:
892 	  extract_number_and_incr (&mcnt, &p);
893 	  extract_number_and_incr (&mcnt2, &p);
894 	  printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
895 	  break;
896 
897 	case wordbound:
898 	  printf ("/wordbound");
899 	  break;
900 
901 	case notwordbound:
902 	  printf ("/notwordbound");
903 	  break;
904 
905 	case wordbeg:
906 	  printf ("/wordbeg");
907 	  break;
908 
909 	case wordend:
910 	  printf ("/wordend");
911 
912 #ifdef emacs
913 	case before_dot:
914 	  printf ("/before_dot");
915 	  break;
916 
917 	case at_dot:
918 	  printf ("/at_dot");
919 	  break;
920 
921 	case after_dot:
922 	  printf ("/after_dot");
923 	  break;
924 
925 	case syntaxspec:
926 	  printf ("/syntaxspec");
927 	  mcnt = *p++;
928 	  printf ("/%d", mcnt);
929 	  break;
930 
931 	case notsyntaxspec:
932 	  printf ("/notsyntaxspec");
933 	  mcnt = *p++;
934 	  printf ("/%d", mcnt);
935 	  break;
936 #endif /* emacs */
937 
938 	case wordchar:
939 	  printf ("/wordchar");
940 	  break;
941 
942 	case notwordchar:
943 	  printf ("/notwordchar");
944 	  break;
945 
946 	case begbuf:
947 	  printf ("/begbuf");
948 	  break;
949 
950 	case endbuf:
951 	  printf ("/endbuf");
952 	  break;
953 
954 	default:
955 	  printf ("?%d", *(p-1));
956 	}
957 
958       putchar ('\n');
959     }
960 
961   printf ("%d:\tend of pattern.\n", p - start);
962 }
963 
964 
965 void
print_compiled_pattern(bufp)966 print_compiled_pattern (bufp)
967     struct re_pattern_buffer *bufp;
968 {
969   unsigned char *buffer = bufp->buffer;
970 
971   print_partial_compiled_pattern (buffer, buffer + bufp->used);
972   printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
973 
974   if (bufp->fastmap_accurate && bufp->fastmap)
975     {
976       printf ("fastmap: ");
977       print_fastmap (bufp->fastmap);
978     }
979 
980   printf ("re_nsub: %d\t", bufp->re_nsub);
981   printf ("regs_alloc: %d\t", bufp->regs_allocated);
982   printf ("can_be_null: %d\t", bufp->can_be_null);
983   printf ("newline_anchor: %d\n", bufp->newline_anchor);
984   printf ("no_sub: %d\t", bufp->no_sub);
985   printf ("not_bol: %d\t", bufp->not_bol);
986   printf ("not_eol: %d\t", bufp->not_eol);
987   printf ("syntax: %d\n", bufp->syntax);
988   /* Perhaps we should print the translate table?  */
989 }
990 
991 
992 void
print_double_string(where,string1,size1,string2,size2)993 print_double_string (where, string1, size1, string2, size2)
994     const char *where;
995     const char *string1;
996     const char *string2;
997     int size1;
998     int size2;
999 {
1000   unsigned this_char;
1001 
1002   if (where == NULL)
1003     printf ("(null)");
1004   else
1005     {
1006       if (FIRST_STRING_P (where))
1007 	{
1008 	  for (this_char = where - string1; this_char < size1; this_char++)
1009 	    putchar (string1[this_char]);
1010 
1011 	  where = string2;
1012 	}
1013 
1014       for (this_char = where - string2; this_char < size2; this_char++)
1015 	putchar (string2[this_char]);
1016     }
1017 }
1018 
1019 #else /* not DEBUG */
1020 
1021 #undef assert
1022 #define assert(e)
1023 
1024 #define DEBUG_STATEMENT(e)
1025 #define DEBUG_PRINT1(x)
1026 #define DEBUG_PRINT2(x1, x2)
1027 #define DEBUG_PRINT3(x1, x2, x3)
1028 #define DEBUG_PRINT4(x1, x2, x3, x4)
1029 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1030 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1031 
1032 #endif /* not DEBUG */
1033 
1034 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1035    also be assigned to arbitrarily: each pattern buffer stores its own
1036    syntax, so it can be changed between regex compilations.  */
1037 /* This has no initializer because initialized variables in Emacs
1038    become read-only after dumping.  */
1039 reg_syntax_t re_syntax_options;
1040 
1041 
1042 /* Specify the precise syntax of regexps for compilation.  This provides
1043    for compatibility for various utilities which historically have
1044    different, incompatible syntaxes.
1045 
1046    The argument SYNTAX is a bit mask comprised of the various bits
1047    defined in regex.h.	We return the old syntax.  */
1048 
1049 reg_syntax_t
re_set_syntax(syntax)1050 re_set_syntax (syntax)
1051     reg_syntax_t syntax;
1052 {
1053   reg_syntax_t ret = re_syntax_options;
1054 
1055   re_syntax_options = syntax;
1056   return ret;
1057 }
1058 
1059 /* This table gives an error message for each of the error codes listed
1060    in regex.h.	Obviously the order here has to be same as there.
1061    POSIX doesn't require that we do anything for REG_NOERROR,
1062    but why not be nice?	 */
1063 
1064 static const char *re_error_msgid[] =
1065   {
1066     gettext_noop ("Success"),	/* REG_NOERROR */
1067     gettext_noop ("No match"),	/* REG_NOMATCH */
1068     gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1069     gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1070     gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1071     gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1072     gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1073     gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
1074     gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1075     gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1076     gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1077     gettext_noop ("Invalid range end"),	/* REG_ERANGE */
1078     gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1079     gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1080     gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1081     gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1082     gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1083   };
1084 
1085 /* Avoiding alloca during matching, to placate r_alloc.	 */
1086 
1087 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1088    searching and matching functions should not call alloca.  On some
1089    systems, alloca is implemented in terms of malloc, and if we're
1090    using the relocating allocator routines, then malloc could cause a
1091    relocation, which might (if the strings being searched are in the
1092    ralloc heap) shift the data out from underneath the regexp
1093    routines.
1094 
1095    Here's another reason to avoid allocation: Emacs
1096    processes input from X in a signal handler; processing X input may
1097    call malloc; if input arrives while a matching routine is calling
1098    malloc, then we're scrod.  But Emacs can't just block input while
1099    calling matching routines; then we don't notice interrupts when
1100    they come in.  So, Emacs blocks input around all regexp calls
1101    except the matching calls, which it leaves unprotected, in the
1102    faith that they will not malloc.  */
1103 
1104 /* Normally, this is fine.  */
1105 #define MATCH_MAY_ALLOCATE
1106 
1107 /* When using GNU C, we are not REALLY using the C alloca, no matter
1108    what config.h may say.  So don't take precautions for it.  */
1109 #ifdef __GNUC__
1110 #undef C_ALLOCA
1111 #endif
1112 
1113 /* The match routines may not allocate if (1) they would do it with malloc
1114    and (2) it's not safe for them to use malloc.
1115    Note that if REL_ALLOC is defined, matching would not use malloc for the
1116    failure stack, but we would still use it for the register vectors;
1117    so REL_ALLOC should not affect this.	 */
1118 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1119 #undef MATCH_MAY_ALLOCATE
1120 #endif
1121 
1122 
1123 /* Failure stack declarations and macros; both re_compile_fastmap and
1124    re_match_2 use a failure stack.  These have to be macros because of
1125    REGEX_ALLOCATE_STACK.  */
1126 
1127 
1128 /* Approximate number of failure points for which to initially allocate space
1129    when matching.  If this number is exceeded, we allocate more
1130    space, so it is not a hard limit.  */
1131 #ifndef INIT_FAILURE_ALLOC
1132 #define INIT_FAILURE_ALLOC 20
1133 #endif
1134 
1135 /* Roughly the maximum number of failure points on the stack.  Would be
1136    exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1137    This is a variable only so users of regex can assign to it; we never
1138    change it ourselves.	 */
1139 #if defined (MATCH_MAY_ALLOCATE)
1140 /* Note that 4400 is enough to cause a crash on Alpha OSF/1,
1141    whose default stack limit is 2mb.  In order for a larger
1142    value to work reliably, you have to try to make it accord
1143    with the process stack limit.  */
1144 int re_max_failures = 40000;
1145 #else
1146 int re_max_failures = 4000;
1147 #endif
1148 
1149 union fail_stack_elt
1150 {
1151   unsigned char *pointer;
1152   int integer;
1153 };
1154 
1155 typedef union fail_stack_elt fail_stack_elt_t;
1156 
1157 typedef struct
1158 {
1159   fail_stack_elt_t *stack;
1160   unsigned size;
1161   unsigned avail;			/* Offset of next open position.  */
1162 } fail_stack_type;
1163 
1164 #define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1165 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1166 #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1167 
1168 
1169 /* Define macros to initialize and free the failure stack.
1170    Do `return -2' if the alloc fails.  */
1171 
1172 #ifdef MATCH_MAY_ALLOCATE
1173 #define INIT_FAIL_STACK()						\
1174   do {									\
1175     fail_stack.stack = (fail_stack_elt_t *)				\
1176       REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE	\
1177 			    * sizeof (fail_stack_elt_t));		\
1178 									\
1179     if (fail_stack.stack == NULL)					\
1180       return -2;							\
1181 									\
1182     fail_stack.size = INIT_FAILURE_ALLOC;				\
1183     fail_stack.avail = 0;						\
1184   } while (0)
1185 
1186 #define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1187 #else
1188 #define INIT_FAIL_STACK()						\
1189   do {									\
1190     fail_stack.avail = 0;						\
1191   } while (0)
1192 
1193 #define RESET_FAIL_STACK()
1194 #endif
1195 
1196 
1197 /* Double the size of FAIL_STACK, up to a limit
1198    which allows approximately `re_max_failures' items.
1199 
1200    Return 1 if succeeds, and 0 if either ran out of memory
1201    allocating space for it or it was already too large.
1202 
1203    REGEX_REALLOCATE_STACK requires `destination' be declared.	*/
1204 
1205 /* Factor to increase the failure stack size by
1206    when we increase it.
1207    This used to be 2, but 2 was too wasteful
1208    because the old discarded stacks added up to as much space
1209    were as ultimate, maximum-size stack.  */
1210 #define FAIL_STACK_GROWTH_FACTOR 4
1211 
1212 #define GROW_FAIL_STACK(fail_stack)					\
1213   (((fail_stack).size * sizeof (fail_stack_elt_t)			\
1214     >= re_max_failures * TYPICAL_FAILURE_SIZE)				\
1215    ? 0									\
1216    : ((fail_stack).stack						\
1217       = (fail_stack_elt_t *)						\
1218 	REGEX_REALLOCATE_STACK ((fail_stack).stack,			\
1219 	  (fail_stack).size * sizeof (fail_stack_elt_t),		\
1220 	  MIN (re_max_failures * TYPICAL_FAILURE_SIZE,			\
1221 	       ((fail_stack).size * sizeof (fail_stack_elt_t)		\
1222 		* FAIL_STACK_GROWTH_FACTOR))),				\
1223 									\
1224       (fail_stack).stack == NULL					\
1225       ? 0								\
1226       : ((fail_stack).size						\
1227 	 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE,		\
1228 		 ((fail_stack).size * sizeof (fail_stack_elt_t)		\
1229 		  * FAIL_STACK_GROWTH_FACTOR))				\
1230 	    / sizeof (fail_stack_elt_t)),				\
1231 	 1)))
1232 
1233 
1234 /* Push pointer POINTER on FAIL_STACK.
1235    Return 1 if was able to do so and 0 if ran out of memory allocating
1236    space to do so.  */
1237 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1238   ((FAIL_STACK_FULL ()							\
1239     && !GROW_FAIL_STACK (FAIL_STACK))					\
1240    ? 0									\
1241    : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1242       1))
1243 
1244 /* Push a pointer value onto the failure stack.
1245    Assumes the variable `fail_stack'.  Probably should only
1246    be called from within `PUSH_FAILURE_POINT'.	*/
1247 #define PUSH_FAILURE_POINTER(item)					\
1248   fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1249 
1250 /* This pushes an integer-valued item onto the failure stack.
1251    Assumes the variable `fail_stack'.  Probably should only
1252    be called from within `PUSH_FAILURE_POINT'.	*/
1253 #define PUSH_FAILURE_INT(item)					\
1254   fail_stack.stack[fail_stack.avail++].integer = (item)
1255 
1256 /* Push a fail_stack_elt_t value onto the failure stack.
1257    Assumes the variable `fail_stack'.  Probably should only
1258    be called from within `PUSH_FAILURE_POINT'.	*/
1259 #define PUSH_FAILURE_ELT(item)					\
1260   fail_stack.stack[fail_stack.avail++] =  (item)
1261 
1262 /* These three POP... operations complement the three PUSH... operations.
1263    All assume that `fail_stack' is nonempty.  */
1264 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1265 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1266 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1267 
1268 /* Used to omit pushing failure point id's when we're not debugging.  */
1269 #ifdef DEBUG
1270 #define DEBUG_PUSH PUSH_FAILURE_INT
1271 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1272 #else
1273 #define DEBUG_PUSH(item)
1274 #define DEBUG_POP(item_addr)
1275 #endif
1276 
1277 
1278 /* Push the information about the state we will need
1279    if we ever fail back to it.
1280 
1281    Requires variables fail_stack, regstart, regend, reg_info, and
1282    num_regs be declared.  GROW_FAIL_STACK requires `destination' be
1283    declared.
1284 
1285    Does `return FAILURE_CODE' if runs out of memory.  */
1286 
1287 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1288   do {									\
1289     char *destination;							\
1290     /* Must be int, so when we don't save any registers, the arithmetic	\
1291        of 0 + -1 isn't done as unsigned.  */				\
1292     int this_reg;							\
1293 									\
1294     DEBUG_STATEMENT (failure_id++);					\
1295     DEBUG_STATEMENT (nfailure_points_pushed++);				\
1296     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1297     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1298     DEBUG_PRINT2 ("			size: %d\n", (fail_stack).size);\
1299 									\
1300     DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
1301     DEBUG_PRINT2 ("	available: %d\n", REMAINING_AVAIL_SLOTS);	\
1302 									\
1303     /* Ensure we have enough space allocated for what we will push.  */	\
1304     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1305       {									\
1306 	if (!GROW_FAIL_STACK (fail_stack))				\
1307 	  return failure_code;						\
1308 									\
1309 	DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1310 		       (fail_stack).size);				\
1311 	DEBUG_PRINT2 ("	 slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1312       }									\
1313 									\
1314     /* Push the info, starting with the registers.  */			\
1315     DEBUG_PRINT1 ("\n");						\
1316 									\
1317     if (1)								\
1318       for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1319 	   this_reg++)							\
1320 	{								\
1321 	  DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);		\
1322 	  DEBUG_STATEMENT (num_regs_pushed++);				\
1323 									\
1324 	  DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);	\
1325 	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1326 									\
1327 	  DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
1328 	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1329 									\
1330 	  DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
1331 	  DEBUG_PRINT2 (" match_null=%d",				\
1332 			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1333 	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1334 	  DEBUG_PRINT2 (" matched_something=%d",			\
1335 			MATCHED_SOMETHING (reg_info[this_reg]));	\
1336 	  DEBUG_PRINT2 (" ever_matched=%d",				\
1337 			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1338 	  DEBUG_PRINT1 ("\n");						\
1339 	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1340 	}								\
1341 									\
1342     DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
1343     PUSH_FAILURE_INT (lowest_active_reg);				\
1344 									\
1345     DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
1346     PUSH_FAILURE_INT (highest_active_reg);				\
1347 									\
1348     DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);		\
1349     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1350     PUSH_FAILURE_POINTER (pattern_place);				\
1351 									\
1352     DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
1353     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,	\
1354 				 size2);				\
1355     DEBUG_PRINT1 ("'\n");						\
1356     PUSH_FAILURE_POINTER (string_place);				\
1357 									\
1358     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1359     DEBUG_PUSH (failure_id);						\
1360   } while (0)
1361 
1362 /* This is the number of items that are pushed and popped on the stack
1363    for each register.  */
1364 #define NUM_REG_ITEMS  3
1365 
1366 /* Individual items aside from the registers.  */
1367 #ifdef DEBUG
1368 #define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1369 #else
1370 #define NUM_NONREG_ITEMS 4
1371 #endif
1372 
1373 /* Estimate the size of data pushed by a typical failure stack entry.
1374    An estimate is all we need, because all we use this for
1375    is to choose a limit for how big to make the failure stack.  */
1376 
1377 #define TYPICAL_FAILURE_SIZE 20
1378 
1379 /* This is how many items we actually use for a failure point.
1380    It depends on the regexp.  */
1381 #define NUM_FAILURE_ITEMS				\
1382   (((0							\
1383      ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1384     * NUM_REG_ITEMS)					\
1385    + NUM_NONREG_ITEMS)
1386 
1387 /* How many items can still be added to the stack without overflowing it.  */
1388 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1389 
1390 
1391 /* Pops what PUSH_FAIL_STACK pushes.
1392 
1393    We restore into the parameters, all of which should be lvalues:
1394      STR -- the saved data position.
1395      PAT -- the saved pattern position.
1396      LOW_REG, HIGH_REG -- the highest and lowest active registers.
1397      REGSTART, REGEND -- arrays of string positions.
1398      REG_INFO -- array of information about each subexpression.
1399 
1400    Also assumes the variables `fail_stack' and (if debugging), `bufp',
1401    `pend', `string1', `size1', `string2', and `size2'.	*/
1402 
1403 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1404 {									\
1405   DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
1406   int this_reg;								\
1407   const unsigned char *string_temp;					\
1408 									\
1409   assert (!FAIL_STACK_EMPTY ());					\
1410 									\
1411   /* Remove failure points and point to how many regs pushed.  */	\
1412   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1413   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1414   DEBUG_PRINT2 ("		     size: %d\n", fail_stack.size);	\
1415 									\
1416   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1417 									\
1418   DEBUG_POP (&failure_id);						\
1419   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1420 									\
1421   /* If the saved string location is NULL, it came from an		\
1422      on_failure_keep_string_jump opcode, and we want to throw away the	\
1423      saved NULL, thus retaining our current position in the string.  */	\
1424   string_temp = POP_FAILURE_POINTER ();					\
1425   if (string_temp != NULL)						\
1426     str = (const char *) string_temp;					\
1427 									\
1428   DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
1429   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1430   DEBUG_PRINT1 ("'\n");							\
1431 									\
1432   pat = (unsigned char *) POP_FAILURE_POINTER ();			\
1433   DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);			\
1434   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1435 									\
1436   /* Restore register info.  */						\
1437   high_reg = (unsigned) POP_FAILURE_INT ();				\
1438   DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
1439 									\
1440   low_reg = (unsigned) POP_FAILURE_INT ();				\
1441   DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
1442 									\
1443   if (1)								\
1444     for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1445       {									\
1446 	DEBUG_PRINT2 ("	   Popping reg: %d\n", this_reg);		\
1447 									\
1448 	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1449 	DEBUG_PRINT2 ("	     info: 0x%x\n", reg_info[this_reg]);	\
1450 									\
1451 	regend[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
1452 	DEBUG_PRINT2 ("	     end: 0x%x\n", regend[this_reg]);		\
1453 									\
1454 	regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
1455 	DEBUG_PRINT2 ("	     start: 0x%x\n", regstart[this_reg]);	\
1456       }									\
1457   else									\
1458     {									\
1459       for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1460 	{								\
1461 	  reg_info[this_reg].word.integer = 0;				\
1462 	  regend[this_reg] = 0;						\
1463 	  regstart[this_reg] = 0;					\
1464 	}								\
1465       highest_active_reg = high_reg;					\
1466     }									\
1467 									\
1468   set_regs_matched_done = 0;						\
1469   DEBUG_STATEMENT (nfailure_points_popped++);				\
1470 } /* POP_FAILURE_POINT */
1471 
1472 
1473 
1474 /* Structure for per-register (a.k.a. per-group) information.
1475    Other register information, such as the
1476    starting and ending positions (which are addresses), and the list of
1477    inner groups (which is a bits list) are maintained in separate
1478    variables.
1479 
1480    We are making a (strictly speaking) nonportable assumption here: that
1481    the compiler will pack our bit fields into something that fits into
1482    the type of `word', i.e., is something that fits into one item on the
1483    failure stack.  */
1484 
1485 typedef union
1486 {
1487   fail_stack_elt_t word;
1488   struct
1489   {
1490       /* This field is one if this group can match the empty string,
1491 	 zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1492 #define MATCH_NULL_UNSET_VALUE 3
1493     unsigned match_null_string_p : 2;
1494     unsigned is_active : 1;
1495     unsigned matched_something : 1;
1496     unsigned ever_matched_something : 1;
1497   } bits;
1498 } register_info_type;
1499 
1500 #define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1501 #define IS_ACTIVE(R)  ((R).bits.is_active)
1502 #define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1503 #define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1504 
1505 
1506 /* Call this when have matched a real character; it sets `matched' flags
1507    for the subexpressions which we are currently inside.  Also records
1508    that those subexprs have matched.  */
1509 #define SET_REGS_MATCHED()						\
1510   do									\
1511     {									\
1512       if (!set_regs_matched_done)					\
1513 	{								\
1514 	  unsigned r;							\
1515 	  set_regs_matched_done = 1;					\
1516 	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1517 	    {								\
1518 	      MATCHED_SOMETHING (reg_info[r])				\
1519 		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1520 		= 1;							\
1521 	    }								\
1522 	}								\
1523     }									\
1524   while (0)
1525 
1526 /* Registers are set to a sentinel when they haven't yet matched.  */
1527 static char reg_unset_dummy;
1528 #define REG_UNSET_VALUE (&reg_unset_dummy)
1529 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1530 
1531 /* Subroutine declarations and macros for regex_compile.  */
1532 
1533 static void store_op1 (), store_op2 ();
1534 static void insert_op1 (), insert_op2 ();
1535 static boolean at_begline_loc_p (), at_endline_loc_p ();
1536 static boolean group_in_compile_stack ();
1537 static reg_errcode_t compile_range ();
1538 
1539 /* Fetch the next character in the uncompiled pattern---translating it
1540    if necessary.  Also cast from a signed character in the constant
1541    string passed to us by the user to an unsigned char that we can use
1542    as an array index (in, e.g., `translate').  */
1543 #ifndef PATFETCH
1544 #define PATFETCH(c)							\
1545   do {if (p == pend) return REG_EEND;					\
1546     c = (unsigned char) *p++;						\
1547     if (RE_TRANSLATE_P (translate)) c = RE_TRANSLATE (translate, c);	\
1548   } while (0)
1549 #endif
1550 
1551 /* Fetch the next character in the uncompiled pattern, with no
1552    translation.	 */
1553 #define PATFETCH_RAW(c)							\
1554   do {if (p == pend) return REG_EEND;					\
1555     c = (unsigned char) *p++;						\
1556   } while (0)
1557 
1558 /* Go backwards one character in the pattern.  */
1559 #define PATUNFETCH p--
1560 
1561 
1562 /* If `translate' is non-null, return translate[D], else just D.  We
1563    cast the subscript to translate because some data is declared as
1564    `char *', to avoid warnings when a string constant is passed.  But
1565    when we use a character as a subscript we must make it unsigned.  */
1566 #ifndef TRANSLATE
1567 #define TRANSLATE(d) \
1568   (RE_TRANSLATE_P (translate) \
1569    ? (unsigned) RE_TRANSLATE (translate, (unsigned) (d)) : (d))
1570 #endif
1571 
1572 
1573 /* Macros for outputting the compiled pattern into `buffer'.  */
1574 
1575 /* If the buffer isn't allocated when it comes in, use this.  */
1576 #define INIT_BUF_SIZE  32
1577 
1578 /* Make sure we have at least N more bytes of space in buffer.	*/
1579 #define GET_BUFFER_SPACE(n)						\
1580     while (b - bufp->buffer + (n) > bufp->allocated)			\
1581       EXTEND_BUFFER ()
1582 
1583 /* Make sure we have one more byte of buffer space and then add C to it.  */
1584 #define BUF_PUSH(c)							\
1585   do {									\
1586     GET_BUFFER_SPACE (1);						\
1587     *b++ = (unsigned char) (c);						\
1588   } while (0)
1589 
1590 
1591 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1592 #define BUF_PUSH_2(c1, c2)						\
1593   do {									\
1594     GET_BUFFER_SPACE (2);						\
1595     *b++ = (unsigned char) (c1);					\
1596     *b++ = (unsigned char) (c2);					\
1597   } while (0)
1598 
1599 
1600 /* As with BUF_PUSH_2, except for three bytes.	*/
1601 #define BUF_PUSH_3(c1, c2, c3)						\
1602   do {									\
1603     GET_BUFFER_SPACE (3);						\
1604     *b++ = (unsigned char) (c1);					\
1605     *b++ = (unsigned char) (c2);					\
1606     *b++ = (unsigned char) (c3);					\
1607   } while (0)
1608 
1609 
1610 /* Store a jump with opcode OP at LOC to location TO.  We store a
1611    relative address offset by the three bytes the jump itself occupies.	 */
1612 #define STORE_JUMP(op, loc, to) \
1613   store_op1 (op, loc, (to) - (loc) - 3)
1614 
1615 /* Likewise, for a two-argument jump.  */
1616 #define STORE_JUMP2(op, loc, to, arg) \
1617   store_op2 (op, loc, (to) - (loc) - 3, arg)
1618 
1619 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.	 */
1620 #define INSERT_JUMP(op, loc, to) \
1621   insert_op1 (op, loc, (to) - (loc) - 3, b)
1622 
1623 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1624 #define INSERT_JUMP2(op, loc, to, arg) \
1625   insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1626 
1627 
1628 /* This is not an arbitrary limit: the arguments which represent offsets
1629    into the pattern are two bytes long.	 So if 2^16 bytes turns out to
1630    be too small, many things would have to change.  */
1631 #define MAX_BUF_SIZE (1L << 16)
1632 
1633 
1634 /* Extend the buffer by twice its current size via realloc and
1635    reset the pointers that pointed into the old block to point to the
1636    correct places in the new one.  If extending the buffer results in it
1637    being larger than MAX_BUF_SIZE, then flag memory exhausted.	*/
1638 #define EXTEND_BUFFER()							\
1639   do {									\
1640     unsigned char *old_buffer = bufp->buffer;				\
1641     if (bufp->allocated == MAX_BUF_SIZE)				\
1642       return REG_ESIZE;							\
1643     bufp->allocated <<= 1;						\
1644     if (bufp->allocated > MAX_BUF_SIZE)					\
1645       bufp->allocated = MAX_BUF_SIZE;					\
1646     bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1647     if (bufp->buffer == NULL)						\
1648       return REG_ESPACE;						\
1649     /* If the buffer moved, move all the pointers into it.  */		\
1650     if (old_buffer != bufp->buffer)					\
1651       {									\
1652 	b = (b - old_buffer) + bufp->buffer;				\
1653 	begalt = (begalt - old_buffer) + bufp->buffer;			\
1654 	if (fixup_alt_jump)						\
1655 	  fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1656 	if (laststart)							\
1657 	  laststart = (laststart - old_buffer) + bufp->buffer;		\
1658 	if (pending_exact)						\
1659 	  pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
1660       }									\
1661   } while (0)
1662 
1663 
1664 /* Since we have one byte reserved for the register number argument to
1665    {start,stop}_memory, the maximum number of groups we can report
1666    things about is what fits in that byte.  */
1667 #define MAX_REGNUM 255
1668 
1669 /* But patterns can have more than `MAX_REGNUM' registers.  We just
1670    ignore the excess.  */
1671 typedef unsigned regnum_t;
1672 
1673 
1674 /* Macros for the compile stack.  */
1675 
1676 /* Since offsets can go either forwards or backwards, this type needs to
1677    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.	 */
1678 typedef int pattern_offset_t;
1679 
1680 typedef struct
1681 {
1682   pattern_offset_t begalt_offset;
1683   pattern_offset_t fixup_alt_jump;
1684   pattern_offset_t inner_group_offset;
1685   pattern_offset_t laststart_offset;
1686   regnum_t regnum;
1687 } compile_stack_elt_t;
1688 
1689 
1690 typedef struct
1691 {
1692   compile_stack_elt_t *stack;
1693   unsigned size;
1694   unsigned avail;			/* Offset of next open position.  */
1695 } compile_stack_type;
1696 
1697 
1698 #define INIT_COMPILE_STACK_SIZE 32
1699 
1700 #define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
1701 #define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
1702 
1703 /* The next available element.	*/
1704 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1705 
1706 
1707 /* Structure to manage work area for range table.  */
1708 struct range_table_work_area
1709 {
1710   int *table;			/* actual work area.  */
1711   int allocated;		/* allocated size for work area in bytes.  */
1712   int used;			/* actually used size in words.	 */
1713 };
1714 
1715 /* Make sure that WORK_AREA can hold more N multibyte characters.  */
1716 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n)			  \
1717   do {									  \
1718     if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated)  \
1719       {									  \
1720 	(work_area).allocated += 16 * sizeof (int);			  \
1721 	if ((work_area).table)						  \
1722 	  (work_area).table						  \
1723 	    = (int *) realloc ((work_area).table, (work_area).allocated); \
1724 	else								  \
1725 	  (work_area).table						  \
1726 	    = (int *) malloc ((work_area).allocated);			  \
1727 	if ((work_area).table == 0)					  \
1728 	  FREE_STACK_RETURN (REG_ESPACE);				  \
1729       }									  \
1730   } while (0)
1731 
1732 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA.  */
1733 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end)	\
1734   do {									\
1735     EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2);			\
1736     (work_area).table[(work_area).used++] = (range_start);		\
1737     (work_area).table[(work_area).used++] = (range_end);		\
1738   } while (0)
1739 
1740 /* Free allocated memory for WORK_AREA.	 */
1741 #define FREE_RANGE_TABLE_WORK_AREA(work_area)	\
1742   do {						\
1743     if ((work_area).table)			\
1744       free ((work_area).table);			\
1745   } while (0)
1746 
1747 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
1748 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1749 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1750 
1751 
1752 /* Set the bit for character C in a list.  */
1753 #define SET_LIST_BIT(c)				      \
1754   (b[((unsigned char) (c)) / BYTEWIDTH]		      \
1755    |= 1 << (((unsigned char) c) % BYTEWIDTH))
1756 
1757 
1758 /* Get the next unsigned number in the uncompiled pattern.  */
1759 #define GET_UNSIGNED_NUMBER(num)					\
1760   { if (p != pend)							\
1761      {									\
1762        PATFETCH (c);							\
1763        while (ISDIGIT (c))						\
1764 	 {								\
1765 	   if (num < 0)							\
1766 	      num = 0;							\
1767 	   num = num * 10 + c - '0';					\
1768 	   if (p == pend)						\
1769 	      break;							\
1770 	   PATFETCH (c);						\
1771 	 }								\
1772        }								\
1773     }
1774 
1775 #define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
1776 
1777 #define IS_CHAR_CLASS(string)						\
1778    (STREQ (string, "alpha") || STREQ (string, "upper")			\
1779     || STREQ (string, "lower") || STREQ (string, "digit")		\
1780     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
1781     || STREQ (string, "space") || STREQ (string, "print")		\
1782     || STREQ (string, "punct") || STREQ (string, "graph")		\
1783     || STREQ (string, "cntrl") || STREQ (string, "blank"))
1784 
1785 #ifndef MATCH_MAY_ALLOCATE
1786 
1787 /* If we cannot allocate large objects within re_match_2_internal,
1788    we make the fail stack and register vectors global.
1789    The fail stack, we grow to the maximum size when a regexp
1790    is compiled.
1791    The register vectors, we adjust in size each time we
1792    compile a regexp, according to the number of registers it needs.  */
1793 
1794 static fail_stack_type fail_stack;
1795 
1796 /* Size with which the following vectors are currently allocated.
1797    That is so we can make them bigger as needed,
1798    but never make them smaller.	 */
1799 static int regs_allocated_size;
1800 
1801 static const char **	 regstart, **	  regend;
1802 static const char ** old_regstart, ** old_regend;
1803 static const char **best_regstart, **best_regend;
1804 static register_info_type *reg_info;
1805 static const char **reg_dummy;
1806 static register_info_type *reg_info_dummy;
1807 
1808 /* Make the register vectors big enough for NUM_REGS registers,
1809    but don't make them smaller.	 */
1810 
1811 static
regex_grow_registers(num_regs)1812 regex_grow_registers (num_regs)
1813      int num_regs;
1814 {
1815   if (num_regs > regs_allocated_size)
1816     {
1817       RETALLOC_IF (regstart,	 num_regs, const char *);
1818       RETALLOC_IF (regend,	 num_regs, const char *);
1819       RETALLOC_IF (old_regstart, num_regs, const char *);
1820       RETALLOC_IF (old_regend,	 num_regs, const char *);
1821       RETALLOC_IF (best_regstart, num_regs, const char *);
1822       RETALLOC_IF (best_regend,	 num_regs, const char *);
1823       RETALLOC_IF (reg_info,	 num_regs, register_info_type);
1824       RETALLOC_IF (reg_dummy,	 num_regs, const char *);
1825       RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1826 
1827       regs_allocated_size = num_regs;
1828     }
1829 }
1830 
1831 #endif /* not MATCH_MAY_ALLOCATE */
1832 
1833 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1834    Returns one of error codes defined in `regex.h', or zero for success.
1835 
1836    Assumes the `allocated' (and perhaps `buffer') and `translate'
1837    fields are set in BUFP on entry.
1838 
1839    If it succeeds, results are put in BUFP (if it returns an error, the
1840    contents of BUFP are undefined):
1841      `buffer' is the compiled pattern;
1842      `syntax' is set to SYNTAX;
1843      `used' is set to the length of the compiled pattern;
1844      `fastmap_accurate' is zero;
1845      `re_nsub' is the number of subexpressions in PATTERN;
1846      `not_bol' and `not_eol' are zero;
1847 
1848    The `fastmap' and `newline_anchor' fields are neither
1849    examined nor set.  */
1850 
1851 /* Return, freeing storage we allocated.  */
1852 #define FREE_STACK_RETURN(value)		\
1853   do {							\
1854     FREE_RANGE_TABLE_WORK_AREA (range_table_work);	\
1855     free (compile_stack.stack);				\
1856     return value;					\
1857   } while (0)
1858 
1859 static reg_errcode_t
regex_compile(pattern,size,syntax,bufp)1860 regex_compile (pattern, size, syntax, bufp)
1861      const char *pattern;
1862      int size;
1863      reg_syntax_t syntax;
1864      struct re_pattern_buffer *bufp;
1865 {
1866   /* We fetch characters from PATTERN here.  Even though PATTERN is
1867      `char *' (i.e., signed), we declare these variables as unsigned, so
1868      they can be reliably used as array indices.  */
1869   register unsigned int c, c1;
1870 
1871   /* A random temporary spot in PATTERN.  */
1872   const char *p1;
1873 
1874   /* Points to the end of the buffer, where we should append.  */
1875   register unsigned char *b;
1876 
1877   /* Keeps track of unclosed groups.  */
1878   compile_stack_type compile_stack;
1879 
1880   /* Points to the current (ending) position in the pattern.  */
1881 #ifdef AIX
1882   /* `const' makes AIX compiler fail.  */
1883   char *p = pattern;
1884 #else
1885   const char *p = pattern;
1886 #endif
1887   const char *pend = pattern + size;
1888 
1889   /* How to translate the characters in the pattern.  */
1890   RE_TRANSLATE_TYPE translate = bufp->translate;
1891 
1892   /* Address of the count-byte of the most recently inserted `exactn'
1893      command.  This makes it possible to tell if a new exact-match
1894      character can be added to that command or if the character requires
1895      a new `exactn' command.  */
1896   unsigned char *pending_exact = 0;
1897 
1898   /* Address of start of the most recently finished expression.
1899      This tells, e.g., postfix * where to find the start of its
1900      operand.  Reset at the beginning of groups and alternatives.  */
1901   unsigned char *laststart = 0;
1902 
1903   /* Address of beginning of regexp, or inside of last group.  */
1904   unsigned char *begalt;
1905 
1906   /* Place in the uncompiled pattern (i.e., the {) to
1907      which to go back if the interval is invalid.  */
1908   const char *beg_interval;
1909 
1910   /* Address of the place where a forward jump should go to the end of
1911      the containing expression.	 Each alternative of an `or' -- except the
1912      last -- ends with a forward jump of this sort.  */
1913   unsigned char *fixup_alt_jump = 0;
1914 
1915   /* Counts open-groups as they are encountered.  Remembered for the
1916      matching close-group on the compile stack, so the same register
1917      number is put in the stop_memory as the start_memory.  */
1918   regnum_t regnum = 0;
1919 
1920   /* Work area for range table of charset.  */
1921   struct range_table_work_area range_table_work;
1922 
1923 #ifdef DEBUG
1924   DEBUG_PRINT1 ("\nCompiling pattern: ");
1925   if (debug)
1926     {
1927       unsigned debug_count;
1928 
1929       for (debug_count = 0; debug_count < size; debug_count++)
1930 	putchar (pattern[debug_count]);
1931       putchar ('\n');
1932     }
1933 #endif /* DEBUG */
1934 
1935   /* Initialize the compile stack.  */
1936   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1937   if (compile_stack.stack == NULL)
1938     return REG_ESPACE;
1939 
1940   compile_stack.size = INIT_COMPILE_STACK_SIZE;
1941   compile_stack.avail = 0;
1942 
1943   range_table_work.table = 0;
1944   range_table_work.allocated = 0;
1945 
1946   /* Initialize the pattern buffer.  */
1947   bufp->syntax = syntax;
1948   bufp->fastmap_accurate = 0;
1949   bufp->not_bol = bufp->not_eol = 0;
1950 
1951   /* Set `used' to zero, so that if we return an error, the pattern
1952      printer (for debugging) will think there's no pattern.  We reset it
1953      at the end.  */
1954   bufp->used = 0;
1955 
1956   /* Always count groups, whether or not bufp->no_sub is set.  */
1957   bufp->re_nsub = 0;
1958 
1959 #ifdef emacs
1960   /* bufp->multibyte is set before regex_compile is called, so don't alter
1961      it. */
1962 #else  /* not emacs */
1963   /* Nothing is recognized as a multibyte character.  */
1964   bufp->multibyte = 0;
1965 #endif
1966 
1967 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1968   /* Initialize the syntax table.  */
1969    init_syntax_once ();
1970 #endif
1971 
1972   if (bufp->allocated == 0)
1973     {
1974       if (bufp->buffer)
1975 	{ /* If zero allocated, but buffer is non-null, try to realloc
1976 	     enough space.  This loses if buffer's address is bogus, but
1977 	     that is the user's responsibility.	 */
1978 	  RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1979 	}
1980       else
1981 	{ /* Caller did not allocate a buffer.	Do it for them.	 */
1982 	  bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1983 	}
1984       if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1985 
1986       bufp->allocated = INIT_BUF_SIZE;
1987     }
1988 
1989   begalt = b = bufp->buffer;
1990 
1991   /* Loop through the uncompiled pattern until we're at the end.  */
1992   while (p != pend)
1993     {
1994       PATFETCH (c);
1995 
1996       switch (c)
1997 	{
1998 	case '^':
1999 	  {
2000 	    if (   /* If at start of pattern, it's an operator.	 */
2001 		   p == pattern + 1
2002 		   /* If context independent, it's an operator.	 */
2003 		|| syntax & RE_CONTEXT_INDEP_ANCHORS
2004 		   /* Otherwise, depends on what's come before.	 */
2005 		|| at_begline_loc_p (pattern, p, syntax))
2006 	      BUF_PUSH (begline);
2007 	    else
2008 	      goto normal_char;
2009 	  }
2010 	  break;
2011 
2012 
2013 	case '$':
2014 	  {
2015 	    if (   /* If at end of pattern, it's an operator.  */
2016 		   p == pend
2017 		   /* If context independent, it's an operator.	 */
2018 		|| syntax & RE_CONTEXT_INDEP_ANCHORS
2019 		   /* Otherwise, depends on what's next.  */
2020 		|| at_endline_loc_p (p, pend, syntax))
2021 	       BUF_PUSH (endline);
2022 	     else
2023 	       goto normal_char;
2024 	   }
2025 	   break;
2026 
2027 
2028 	case '+':
2029 	case '?':
2030 	  if ((syntax & RE_BK_PLUS_QM)
2031 	      || (syntax & RE_LIMITED_OPS))
2032 	    goto normal_char;
2033 	handle_plus:
2034 	case '*':
2035 	  /* If there is no previous pattern... */
2036 	  if (!laststart)
2037 	    {
2038 	      if (syntax & RE_CONTEXT_INVALID_OPS)
2039 		FREE_STACK_RETURN (REG_BADRPT);
2040 	      else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2041 		goto normal_char;
2042 	    }
2043 
2044 	  {
2045 	    /* Are we optimizing this jump?  */
2046 	    boolean keep_string_p = false;
2047 
2048 	    /* 1 means zero (many) matches is allowed.	*/
2049 	    char zero_times_ok = 0, many_times_ok = 0;
2050 
2051 	    /* If there is a sequence of repetition chars, collapse it
2052 	       down to just one (the right one).  We can't combine
2053 	       interval operators with these because of, e.g., `a{2}*',
2054 	       which should only match an even number of `a's.	*/
2055 
2056 	    for (;;)
2057 	      {
2058 		zero_times_ok |= c != '+';
2059 		many_times_ok |= c != '?';
2060 
2061 		if (p == pend)
2062 		  break;
2063 
2064 		PATFETCH (c);
2065 
2066 		if (c == '*'
2067 		    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2068 		  ;
2069 
2070 		else if (syntax & RE_BK_PLUS_QM	 &&  c == '\\')
2071 		  {
2072 		    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2073 
2074 		    PATFETCH (c1);
2075 		    if (!(c1 == '+' || c1 == '?'))
2076 		      {
2077 			PATUNFETCH;
2078 			PATUNFETCH;
2079 			break;
2080 		      }
2081 
2082 		    c = c1;
2083 		  }
2084 		else
2085 		  {
2086 		    PATUNFETCH;
2087 		    break;
2088 		  }
2089 
2090 		/* If we get here, we found another repeat character.  */
2091 	       }
2092 
2093 	    /* Star, etc. applied to an empty pattern is equivalent
2094 	       to an empty pattern.  */
2095 	    if (!laststart)
2096 	      break;
2097 
2098 	    /* Now we know whether or not zero matches is allowed
2099 	       and also whether or not two or more matches is allowed.	*/
2100 	    if (many_times_ok)
2101 	      { /* More than one repetition is allowed, so put in at the
2102 		   end a backward relative jump from `b' to before the next
2103 		   jump we're going to put in below (which jumps from
2104 		   laststart to after this jump).
2105 
2106 		   But if we are at the `*' in the exact sequence `.*\n',
2107 		   insert an unconditional jump backwards to the .,
2108 		   instead of the beginning of the loop.  This way we only
2109 		   push a failure point once, instead of every time
2110 		   through the loop.  */
2111 		assert (p - 1 > pattern);
2112 
2113 		/* Allocate the space for the jump.  */
2114 		GET_BUFFER_SPACE (3);
2115 
2116 		/* We know we are not at the first character of the pattern,
2117 		   because laststart was nonzero.  And we've already
2118 		   incremented `p', by the way, to be the character after
2119 		   the `*'.  Do we have to do something analogous here
2120 		   for null bytes, because of RE_DOT_NOT_NULL?	*/
2121 		if (TRANSLATE ((unsigned char)*(p - 2)) == TRANSLATE ('.')
2122 		    && zero_times_ok
2123 		    && p < pend
2124 		    && TRANSLATE ((unsigned char)*p) == TRANSLATE ('\n')
2125 		    && !(syntax & RE_DOT_NEWLINE))
2126 		  { /* We have .*\n.  */
2127 		    STORE_JUMP (jump, b, laststart);
2128 		    keep_string_p = true;
2129 		  }
2130 		else
2131 		  /* Anything else.  */
2132 		  STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2133 
2134 		/* We've added more stuff to the buffer.  */
2135 		b += 3;
2136 	      }
2137 
2138 	    /* On failure, jump from laststart to b + 3, which will be the
2139 	       end of the buffer after this jump is inserted.  */
2140 	    GET_BUFFER_SPACE (3);
2141 	    INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2142 				       : on_failure_jump,
2143 			 laststart, b + 3);
2144 	    pending_exact = 0;
2145 	    b += 3;
2146 
2147 	    if (!zero_times_ok)
2148 	      {
2149 		/* At least one repetition is required, so insert a
2150 		   `dummy_failure_jump' before the initial
2151 		   `on_failure_jump' instruction of the loop. This
2152 		   effects a skip over that instruction the first time
2153 		   we hit that loop.  */
2154 		GET_BUFFER_SPACE (3);
2155 		INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2156 		b += 3;
2157 	      }
2158 	    }
2159 	  break;
2160 
2161 
2162 	case '.':
2163 	  laststart = b;
2164 	  BUF_PUSH (anychar);
2165 	  break;
2166 
2167 
2168 	case '[':
2169 	  {
2170 	    CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2171 
2172 	    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2173 
2174 	    /* Ensure that we have enough space to push a charset: the
2175 	       opcode, the length count, and the bitset; 34 bytes in all.  */
2176 	    GET_BUFFER_SPACE (34);
2177 
2178 	    laststart = b;
2179 
2180 	    /* We test `*p == '^' twice, instead of using an if
2181 	       statement, so we only need one BUF_PUSH.	 */
2182 	    BUF_PUSH (*p == '^' ? charset_not : charset);
2183 	    if (*p == '^')
2184 	      p++;
2185 
2186 	    /* Remember the first position in the bracket expression.  */
2187 	    p1 = p;
2188 
2189 	    /* Push the number of bytes in the bitmap.	*/
2190 	    BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2191 
2192 	    /* Clear the whole map.  */
2193 	    bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2194 
2195 	    /* charset_not matches newline according to a syntax bit.  */
2196 	    if ((re_opcode_t) b[-2] == charset_not
2197 		&& (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2198 	      SET_LIST_BIT ('\n');
2199 
2200 	    /* Read in characters and ranges, setting map bits.	 */
2201 	    for (;;)
2202 	      {
2203 		int len;
2204 		boolean escaped_char = false;
2205 
2206 		if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2207 
2208 		PATFETCH (c);
2209 
2210 		/* \ might escape characters inside [...] and [^...].  */
2211 		if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2212 		  {
2213 		    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2214 
2215 		    PATFETCH (c);
2216 		    escaped_char = true;
2217 		  }
2218 		else
2219 		  {
2220 		    /* Could be the end of the bracket expression.	If it's
2221 		       not (i.e., when the bracket expression is `[]' so
2222 		       far), the ']' character bit gets set way below.  */
2223 		    if (c == ']' && p != p1 + 1)
2224 		      break;
2225 		  }
2226 
2227 		/* If C indicates start of multibyte char, get the
2228 		   actual character code in C, and set the pattern
2229 		   pointer P to the next character boundary.  */
2230 		if (bufp->multibyte && BASE_LEADING_CODE_P (c))
2231 		  {
2232 		    PATUNFETCH;
2233 		    c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2234 		    p += len;
2235 		  }
2236 		/* What should we do for the character which is
2237 		   greater than 0x7F, but not BASE_LEADING_CODE_P?
2238 		   XXX */
2239 
2240 		/* See if we're at the beginning of a possible character
2241 		   class.  */
2242 
2243 		else if (!escaped_char &&
2244 			 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2245 		  {
2246 		    /* Leave room for the null.	 */
2247 		    char str[CHAR_CLASS_MAX_LENGTH + 1];
2248 
2249 		    PATFETCH (c);
2250 		    c1 = 0;
2251 
2252 		    /* If pattern is `[[:'.  */
2253 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2254 
2255 		    for (;;)
2256 		      {
2257 			PATFETCH (c);
2258 			if (c == ':' || c == ']' || p == pend
2259 			    || c1 == CHAR_CLASS_MAX_LENGTH)
2260 			  break;
2261 			str[c1++] = c;
2262 		      }
2263 		    str[c1] = '\0';
2264 
2265 		    /* If isn't a word bracketed by `[:' and `:]':
2266 		       undo the ending character, the letters, and
2267 		       leave the leading `:' and `[' (but set bits for
2268 		       them).  */
2269 		    if (c == ':' && *p == ']')
2270 		      {
2271 			int ch;
2272 			boolean is_alnum = STREQ (str, "alnum");
2273 			boolean is_alpha = STREQ (str, "alpha");
2274 			boolean is_blank = STREQ (str, "blank");
2275 			boolean is_cntrl = STREQ (str, "cntrl");
2276 			boolean is_digit = STREQ (str, "digit");
2277 			boolean is_graph = STREQ (str, "graph");
2278 			boolean is_lower = STREQ (str, "lower");
2279 			boolean is_print = STREQ (str, "print");
2280 			boolean is_punct = STREQ (str, "punct");
2281 			boolean is_space = STREQ (str, "space");
2282 			boolean is_upper = STREQ (str, "upper");
2283 			boolean is_xdigit = STREQ (str, "xdigit");
2284 
2285 			if (!IS_CHAR_CLASS (str))
2286 			  FREE_STACK_RETURN (REG_ECTYPE);
2287 
2288 			/* Throw away the ] at the end of the character
2289 			   class.  */
2290 			PATFETCH (c);
2291 
2292 			if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2293 
2294 			for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2295 			  {
2296 			    int translated = TRANSLATE (ch);
2297 			    /* This was split into 3 if's to
2298 			       avoid an arbitrary limit in some compiler.  */
2299 			    if (   (is_alnum  && ISALNUM (ch))
2300 				|| (is_alpha  && ISALPHA (ch))
2301 				|| (is_blank  && ISBLANK (ch))
2302 				|| (is_cntrl  && ISCNTRL (ch)))
2303 			      SET_LIST_BIT (translated);
2304 			    if (   (is_digit  && ISDIGIT (ch))
2305 				|| (is_graph  && ISGRAPH (ch))
2306 				|| (is_lower  && ISLOWER (ch))
2307 				|| (is_print  && ISPRINT (ch)))
2308 			      SET_LIST_BIT (translated);
2309 			    if (   (is_punct  && ISPUNCT (ch))
2310 				|| (is_space  && ISSPACE (ch))
2311 				|| (is_upper  && ISUPPER (ch))
2312 				|| (is_xdigit && ISXDIGIT (ch)))
2313 			      SET_LIST_BIT (translated);
2314 			  }
2315 
2316 			/* Repeat the loop. */
2317 			continue;
2318 		      }
2319 		    else
2320 		      {
2321 			c1++;
2322 			while (c1--)
2323 			  PATUNFETCH;
2324 			SET_LIST_BIT ('[');
2325 
2326 			/* Because the `:' may starts the range, we
2327 			   can't simply set bit and repeat the loop.
2328 			   Instead, just set it to C and handle below.	*/
2329 			c = ':';
2330 		      }
2331 		  }
2332 
2333 		if (p < pend && p[0] == '-' && p[1] != ']')
2334 		  {
2335 
2336 		    /* Discard the `-'. */
2337 		    PATFETCH (c1);
2338 
2339 		    /* Fetch the character which ends the range. */
2340 		    PATFETCH (c1);
2341 		    if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
2342 		      {
2343 			PATUNFETCH;
2344 			c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2345 			p += len;
2346 		      }
2347 
2348 		    if (SINGLE_BYTE_CHAR_P (c)
2349 			&& ! SINGLE_BYTE_CHAR_P (c1))
2350 		      {
2351 			/* Handle a range such as \177-\377 in multibyte mode.
2352 			   Split that into two ranges,,
2353 			   the low one ending at 0237, and the high one
2354 			   starting at ...040.  */
2355 			int c1_base = (c1 & ~0177) | 040;
2356 			SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2357 			c1 = 0237;
2358 		      }
2359 		    else if (!SAME_CHARSET_P (c, c1))
2360 		      FREE_STACK_RETURN (REG_ERANGE);
2361 		  }
2362 		else
2363 		  /* Range from C to C. */
2364 		  c1 = c;
2365 
2366 		/* Set the range ... */
2367 		if (SINGLE_BYTE_CHAR_P (c))
2368 		  /* ... into bitmap.  */
2369 		  {
2370 		    unsigned this_char;
2371 		    int range_start = c, range_end = c1;
2372 
2373 		    /* If the start is after the end, the range is empty.  */
2374 		    if (range_start > range_end)
2375 		      {
2376 			if (syntax & RE_NO_EMPTY_RANGES)
2377 			  FREE_STACK_RETURN (REG_ERANGE);
2378 			/* Else, repeat the loop.  */
2379 		      }
2380 		    else
2381 		      {
2382 			for (this_char = range_start; this_char <= range_end;
2383 			     this_char++)
2384 			  SET_LIST_BIT (TRANSLATE (this_char));
2385 		      }
2386 		  }
2387 		else
2388 		  /* ... into range table.  */
2389 		  SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2390 	      }
2391 
2392 	    /* Discard any (non)matching list bytes that are all 0 at the
2393 	       end of the map.	Decrease the map-length byte too.  */
2394 	    while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2395 	      b[-1]--;
2396 	    b += b[-1];
2397 
2398 	    /* Build real range table from work area. */
2399 	    if (RANGE_TABLE_WORK_USED (range_table_work))
2400 	      {
2401 		int i;
2402 		int used = RANGE_TABLE_WORK_USED (range_table_work);
2403 
2404 		/* Allocate space for COUNT + RANGE_TABLE.  Needs two
2405 		   bytes for COUNT and three bytes for each character.	*/
2406 		GET_BUFFER_SPACE (2 + used * 3);
2407 
2408 		/* Indicate the existence of range table.  */
2409 		laststart[1] |= 0x80;
2410 
2411 		STORE_NUMBER_AND_INCR (b, used / 2);
2412 		for (i = 0; i < used; i++)
2413 		  STORE_CHARACTER_AND_INCR
2414 		    (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2415 	      }
2416 	  }
2417 	  break;
2418 
2419 
2420 	case '(':
2421 	  if (syntax & RE_NO_BK_PARENS)
2422 	    goto handle_open;
2423 	  else
2424 	    goto normal_char;
2425 
2426 
2427 	case ')':
2428 	  if (syntax & RE_NO_BK_PARENS)
2429 	    goto handle_close;
2430 	  else
2431 	    goto normal_char;
2432 
2433 
2434 	case '\n':
2435 	  if (syntax & RE_NEWLINE_ALT)
2436 	    goto handle_alt;
2437 	  else
2438 	    goto normal_char;
2439 
2440 
2441 	case '|':
2442 	  if (syntax & RE_NO_BK_VBAR)
2443 	    goto handle_alt;
2444 	  else
2445 	    goto normal_char;
2446 
2447 
2448 	case '{':
2449 	   if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2450 	     goto handle_interval;
2451 	   else
2452 	     goto normal_char;
2453 
2454 
2455 	case '\\':
2456 	  if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2457 
2458 	  /* Do not translate the character after the \, so that we can
2459 	     distinguish, e.g., \B from \b, even if we normally would
2460 	     translate, e.g., B to b.  */
2461 	  PATFETCH_RAW (c);
2462 
2463 	  switch (c)
2464 	    {
2465 	    case '(':
2466 	      if (syntax & RE_NO_BK_PARENS)
2467 		goto normal_backslash;
2468 
2469 	    handle_open:
2470 	      bufp->re_nsub++;
2471 	      regnum++;
2472 
2473 	      if (COMPILE_STACK_FULL)
2474 		{
2475 		  RETALLOC (compile_stack.stack, compile_stack.size << 1,
2476 			    compile_stack_elt_t);
2477 		  if (compile_stack.stack == NULL) return REG_ESPACE;
2478 
2479 		  compile_stack.size <<= 1;
2480 		}
2481 
2482 	      /* These are the values to restore when we hit end of this
2483 		 group.	 They are all relative offsets, so that if the
2484 		 whole pattern moves because of realloc, they will still
2485 		 be valid.  */
2486 	      COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2487 	      COMPILE_STACK_TOP.fixup_alt_jump
2488 		= fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2489 	      COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2490 	      COMPILE_STACK_TOP.regnum = regnum;
2491 
2492 	      /* We will eventually replace the 0 with the number of
2493 		 groups inner to this one.  But do not push a
2494 		 start_memory for groups beyond the last one we can
2495 		 represent in the compiled pattern.  */
2496 	      if (regnum <= MAX_REGNUM)
2497 		{
2498 		  COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2499 		  BUF_PUSH_3 (start_memory, regnum, 0);
2500 		}
2501 
2502 	      compile_stack.avail++;
2503 
2504 	      fixup_alt_jump = 0;
2505 	      laststart = 0;
2506 	      begalt = b;
2507 	      /* If we've reached MAX_REGNUM groups, then this open
2508 		 won't actually generate any code, so we'll have to
2509 		 clear pending_exact explicitly.  */
2510 	      pending_exact = 0;
2511 	      break;
2512 
2513 
2514 	    case ')':
2515 	      if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2516 
2517 	      if (COMPILE_STACK_EMPTY) {
2518 		if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2519 		  goto normal_backslash;
2520 		else
2521 		  FREE_STACK_RETURN (REG_ERPAREN);
2522 	      }
2523 
2524 	    handle_close:
2525 	      if (fixup_alt_jump)
2526 		{ /* Push a dummy failure point at the end of the
2527 		     alternative for a possible future
2528 		     `pop_failure_jump' to pop.	 See comments at
2529 		     `push_dummy_failure' in `re_match_2'.  */
2530 		  BUF_PUSH (push_dummy_failure);
2531 
2532 		  /* We allocated space for this jump when we assigned
2533 		     to `fixup_alt_jump', in the `handle_alt' case below.  */
2534 		  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2535 		}
2536 
2537 	      /* See similar code for backslashed left paren above.  */
2538 	      if (COMPILE_STACK_EMPTY) {
2539 		if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2540 		  goto normal_char;
2541 		else
2542 		  FREE_STACK_RETURN (REG_ERPAREN);
2543 	      }
2544 
2545 	      /* Since we just checked for an empty stack above, this
2546 		 ``can't happen''.  */
2547 	      assert (compile_stack.avail != 0);
2548 	      {
2549 		/* We don't just want to restore into `regnum', because
2550 		   later groups should continue to be numbered higher,
2551 		   as in `(ab)c(de)' -- the second group is #2.	 */
2552 		regnum_t this_group_regnum;
2553 
2554 		compile_stack.avail--;
2555 		begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2556 		fixup_alt_jump
2557 		  = COMPILE_STACK_TOP.fixup_alt_jump
2558 		    ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2559 		    : 0;
2560 		laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2561 		this_group_regnum = COMPILE_STACK_TOP.regnum;
2562 		/* If we've reached MAX_REGNUM groups, then this open
2563 		   won't actually generate any code, so we'll have to
2564 		   clear pending_exact explicitly.  */
2565 		pending_exact = 0;
2566 
2567 		/* We're at the end of the group, so now we know how many
2568 		   groups were inside this one.	 */
2569 		if (this_group_regnum <= MAX_REGNUM)
2570 		  {
2571 		    unsigned char *inner_group_loc
2572 		      = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2573 
2574 		    *inner_group_loc = regnum - this_group_regnum;
2575 		    BUF_PUSH_3 (stop_memory, this_group_regnum,
2576 				regnum - this_group_regnum);
2577 		  }
2578 	      }
2579 	      break;
2580 
2581 
2582 	    case '|':					/* `\|'.  */
2583 	      if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2584 		goto normal_backslash;
2585 	    handle_alt:
2586 	      if (syntax & RE_LIMITED_OPS)
2587 		goto normal_char;
2588 
2589 	      /* Insert before the previous alternative a jump which
2590 		 jumps to this alternative if the former fails.	 */
2591 	      GET_BUFFER_SPACE (3);
2592 	      INSERT_JUMP (on_failure_jump, begalt, b + 6);
2593 	      pending_exact = 0;
2594 	      b += 3;
2595 
2596 	      /* The alternative before this one has a jump after it
2597 		 which gets executed if it gets matched.  Adjust that
2598 		 jump so it will jump to this alternative's analogous
2599 		 jump (put in below, which in turn will jump to the next
2600 		 (if any) alternative's such jump, etc.).  The last such
2601 		 jump jumps to the correct final destination.  A picture:
2602 			  _____ _____
2603 			  |   | |   |
2604 			  |   v |   v
2605 			 a | b	 | c
2606 
2607 		 If we are at `b', then fixup_alt_jump right now points to a
2608 		 three-byte space after `a'.  We'll put in the jump, set
2609 		 fixup_alt_jump to right after `b', and leave behind three
2610 		 bytes which we'll fill in when we get to after `c'.  */
2611 
2612 	      if (fixup_alt_jump)
2613 		STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2614 
2615 	      /* Mark and leave space for a jump after this alternative,
2616 		 to be filled in later either by next alternative or
2617 		 when know we're at the end of a series of alternatives.  */
2618 	      fixup_alt_jump = b;
2619 	      GET_BUFFER_SPACE (3);
2620 	      b += 3;
2621 
2622 	      laststart = 0;
2623 	      begalt = b;
2624 	      break;
2625 
2626 
2627 	    case '{':
2628 	      /* If \{ is a literal.  */
2629 	      if (!(syntax & RE_INTERVALS)
2630 		     /* If we're at `\{' and it's not the open-interval
2631 			operator.  */
2632 		  || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2633 		  || (p - 2 == pattern	&&  p == pend))
2634 		goto normal_backslash;
2635 
2636 	    handle_interval:
2637 	      {
2638 		/* If got here, then the syntax allows intervals.  */
2639 
2640 		/* At least (most) this many matches must be made.  */
2641 		int lower_bound = -1, upper_bound = -1;
2642 
2643 		beg_interval = p - 1;
2644 
2645 		if (p == pend)
2646 		  {
2647 		    if (syntax & RE_NO_BK_BRACES)
2648 		      goto unfetch_interval;
2649 		    else
2650 		      FREE_STACK_RETURN (REG_EBRACE);
2651 		  }
2652 
2653 		GET_UNSIGNED_NUMBER (lower_bound);
2654 
2655 		if (c == ',')
2656 		  {
2657 		    GET_UNSIGNED_NUMBER (upper_bound);
2658 		    if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2659 		  }
2660 		else
2661 		  /* Interval such as `{1}' => match exactly once. */
2662 		  upper_bound = lower_bound;
2663 
2664 		if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2665 		    || lower_bound > upper_bound)
2666 		  {
2667 		    if (syntax & RE_NO_BK_BRACES)
2668 		      goto unfetch_interval;
2669 		    else
2670 		      FREE_STACK_RETURN (REG_BADBR);
2671 		  }
2672 
2673 		if (!(syntax & RE_NO_BK_BRACES))
2674 		  {
2675 		    if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2676 
2677 		    PATFETCH (c);
2678 		  }
2679 
2680 		if (c != '}')
2681 		  {
2682 		    if (syntax & RE_NO_BK_BRACES)
2683 		      goto unfetch_interval;
2684 		    else
2685 		      FREE_STACK_RETURN (REG_BADBR);
2686 		  }
2687 
2688 		/* We just parsed a valid interval.  */
2689 
2690 		/* If it's invalid to have no preceding re.  */
2691 		if (!laststart)
2692 		  {
2693 		    if (syntax & RE_CONTEXT_INVALID_OPS)
2694 		      FREE_STACK_RETURN (REG_BADRPT);
2695 		    else if (syntax & RE_CONTEXT_INDEP_OPS)
2696 		      laststart = b;
2697 		    else
2698 		      goto unfetch_interval;
2699 		  }
2700 
2701 		/* If the upper bound is zero, don't want to succeed at
2702 		   all; jump from `laststart' to `b + 3', which will be
2703 		   the end of the buffer after we insert the jump.  */
2704 		 if (upper_bound == 0)
2705 		   {
2706 		     GET_BUFFER_SPACE (3);
2707 		     INSERT_JUMP (jump, laststart, b + 3);
2708 		     b += 3;
2709 		   }
2710 
2711 		 /* Otherwise, we have a nontrivial interval.  When
2712 		    we're all done, the pattern will look like:
2713 		      set_number_at <jump count> <upper bound>
2714 		      set_number_at <succeed_n count> <lower bound>
2715 		      succeed_n <after jump addr> <succeed_n count>
2716 		      <body of loop>
2717 		      jump_n <succeed_n addr> <jump count>
2718 		    (The upper bound and `jump_n' are omitted if
2719 		    `upper_bound' is 1, though.)  */
2720 		 else
2721 		   { /* If the upper bound is > 1, we need to insert
2722 			more at the end of the loop.  */
2723 		     unsigned nbytes = 10 + (upper_bound > 1) * 10;
2724 
2725 		     GET_BUFFER_SPACE (nbytes);
2726 
2727 		     /* Initialize lower bound of the `succeed_n', even
2728 			though it will be set during matching by its
2729 			attendant `set_number_at' (inserted next),
2730 			because `re_compile_fastmap' needs to know.
2731 			Jump to the `jump_n' we might insert below.  */
2732 		     INSERT_JUMP2 (succeed_n, laststart,
2733 				   b + 5 + (upper_bound > 1) * 5,
2734 				   lower_bound);
2735 		     b += 5;
2736 
2737 		     /* Code to initialize the lower bound.  Insert
2738 			before the `succeed_n'.	 The `5' is the last two
2739 			bytes of this `set_number_at', plus 3 bytes of
2740 			the following `succeed_n'.  */
2741 		     insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2742 		     b += 5;
2743 
2744 		     if (upper_bound > 1)
2745 		       { /* More than one repetition is allowed, so
2746 			    append a backward jump to the `succeed_n'
2747 			    that starts this interval.
2748 
2749 			    When we've reached this during matching,
2750 			    we'll have matched the interval once, so
2751 			    jump back only `upper_bound - 1' times.  */
2752 			 STORE_JUMP2 (jump_n, b, laststart + 5,
2753 				      upper_bound - 1);
2754 			 b += 5;
2755 
2756 			 /* The location we want to set is the second
2757 			    parameter of the `jump_n'; that is `b-2' as
2758 			    an absolute address.  `laststart' will be
2759 			    the `set_number_at' we're about to insert;
2760 			    `laststart+3' the number to set, the source
2761 			    for the relative address.  But we are
2762 			    inserting into the middle of the pattern --
2763 			    so everything is getting moved up by 5.
2764 			    Conclusion: (b - 2) - (laststart + 3) + 5,
2765 			    i.e., b - laststart.
2766 
2767 			    We insert this at the beginning of the loop
2768 			    so that if we fail during matching, we'll
2769 			    reinitialize the bounds.  */
2770 			 insert_op2 (set_number_at, laststart, b - laststart,
2771 				     upper_bound - 1, b);
2772 			 b += 5;
2773 		       }
2774 		   }
2775 		pending_exact = 0;
2776 		beg_interval = NULL;
2777 	      }
2778 	      break;
2779 
2780 	    unfetch_interval:
2781 	      /* If an invalid interval, match the characters as literals.  */
2782 	       assert (beg_interval);
2783 	       p = beg_interval;
2784 	       beg_interval = NULL;
2785 
2786 	       /* normal_char and normal_backslash need `c'.  */
2787 	       PATFETCH (c);
2788 
2789 	       if (!(syntax & RE_NO_BK_BRACES))
2790 		 {
2791 		   if (p > pattern  &&	p[-1] == '\\')
2792 		     goto normal_backslash;
2793 		 }
2794 	       goto normal_char;
2795 
2796 #ifdef emacs
2797 	    /* There is no way to specify the before_dot and after_dot
2798 	       operators.  rms says this is ok.	 --karl	 */
2799 	    case '=':
2800 	      BUF_PUSH (at_dot);
2801 	      break;
2802 
2803 	    case 's':
2804 	      laststart = b;
2805 	      PATFETCH (c);
2806 	      BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2807 	      break;
2808 
2809 	    case 'S':
2810 	      laststart = b;
2811 	      PATFETCH (c);
2812 	      BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2813 	      break;
2814 
2815 	    case 'c':
2816 	      laststart = b;
2817 	      PATFETCH_RAW (c);
2818 	      BUF_PUSH_2 (categoryspec, c);
2819 	      break;
2820 
2821 	    case 'C':
2822 	      laststart = b;
2823 	      PATFETCH_RAW (c);
2824 	      BUF_PUSH_2 (notcategoryspec, c);
2825 	      break;
2826 #endif /* emacs */
2827 
2828 
2829 	    case 'w':
2830 	      laststart = b;
2831 	      BUF_PUSH (wordchar);
2832 	      break;
2833 
2834 
2835 	    case 'W':
2836 	      laststart = b;
2837 	      BUF_PUSH (notwordchar);
2838 	      break;
2839 
2840 
2841 	    case '<':
2842 	      BUF_PUSH (wordbeg);
2843 	      break;
2844 
2845 	    case '>':
2846 	      BUF_PUSH (wordend);
2847 	      break;
2848 
2849 	    case 'b':
2850 	      BUF_PUSH (wordbound);
2851 	      break;
2852 
2853 	    case 'B':
2854 	      BUF_PUSH (notwordbound);
2855 	      break;
2856 
2857 	    case '`':
2858 	      BUF_PUSH (begbuf);
2859 	      break;
2860 
2861 	    case '\'':
2862 	      BUF_PUSH (endbuf);
2863 	      break;
2864 
2865 	    case '1': case '2': case '3': case '4': case '5':
2866 	    case '6': case '7': case '8': case '9':
2867 	      if (syntax & RE_NO_BK_REFS)
2868 		goto normal_char;
2869 
2870 	      c1 = c - '0';
2871 
2872 	      if (c1 > regnum)
2873 		FREE_STACK_RETURN (REG_ESUBREG);
2874 
2875 	      /* Can't back reference to a subexpression if inside of it.  */
2876 	      if (group_in_compile_stack (compile_stack, c1))
2877 		goto normal_char;
2878 
2879 	      laststart = b;
2880 	      BUF_PUSH_2 (duplicate, c1);
2881 	      break;
2882 
2883 
2884 	    case '+':
2885 	    case '?':
2886 	      if (syntax & RE_BK_PLUS_QM)
2887 		goto handle_plus;
2888 	      else
2889 		goto normal_backslash;
2890 
2891 	    default:
2892 	    normal_backslash:
2893 	      /* You might think it would be useful for \ to mean
2894 		 not to translate; but if we don't translate it
2895 		 it will never match anything.	*/
2896 	      c = TRANSLATE (c);
2897 	      goto normal_char;
2898 	    }
2899 	  break;
2900 
2901 
2902 	default:
2903 	/* Expects the character in `c'.  */
2904 	normal_char:
2905 	  p1 = p - 1;		/* P1 points the head of C.  */
2906 #ifdef emacs
2907 	  if (bufp->multibyte)
2908 	    {
2909 	      c = STRING_CHAR (p1, pend - p1);
2910 	      c = TRANSLATE (c);
2911 	      /* Set P to the next character boundary.  */
2912 	      p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
2913 	    }
2914 #endif
2915 	      /* If no exactn currently being built.  */
2916 	  if (!pending_exact
2917 
2918 	      /* If last exactn not at current position.  */
2919 	      || pending_exact + *pending_exact + 1 != b
2920 
2921 	      /* We have only one byte following the exactn for the count.  */
2922 	      || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
2923 
2924 	      /* If followed by a repetition operator.	*/
2925 	      || (p != pend && (*p == '*' || *p == '^'))
2926 	      || ((syntax & RE_BK_PLUS_QM)
2927 		  ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
2928 		  : p != pend && (*p == '+' || *p == '?'))
2929 	      || ((syntax & RE_INTERVALS)
2930 		  && ((syntax & RE_NO_BK_BRACES)
2931 		      ? p != pend && *p == '{'
2932 		      : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
2933 	    {
2934 	      /* Start building a new exactn.  */
2935 
2936 	      laststart = b;
2937 
2938 	      BUF_PUSH_2 (exactn, 0);
2939 	      pending_exact = b - 1;
2940 	    }
2941 
2942 #ifdef emacs
2943 	  if (! SINGLE_BYTE_CHAR_P (c))
2944 	    {
2945 	      unsigned char work[4], *str;
2946 	      int i = CHAR_STRING (c, work, str);
2947 	      int j;
2948 	      for (j = 0; j < i; j++)
2949 		{
2950 		  BUF_PUSH (str[j]);
2951 		  (*pending_exact)++;
2952 		}
2953 	    }
2954 	  else
2955 #endif
2956 	    {
2957 	      BUF_PUSH (c);
2958 	      (*pending_exact)++;
2959 	    }
2960 	  break;
2961 	} /* switch (c) */
2962     } /* while p != pend */
2963 
2964 
2965   /* Through the pattern now.  */
2966 
2967   if (fixup_alt_jump)
2968     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2969 
2970   if (!COMPILE_STACK_EMPTY)
2971     FREE_STACK_RETURN (REG_EPAREN);
2972 
2973   /* If we don't want backtracking, force success
2974      the first time we reach the end of the compiled pattern.  */
2975   if (syntax & RE_NO_POSIX_BACKTRACKING)
2976     BUF_PUSH (succeed);
2977 
2978   free (compile_stack.stack);
2979 
2980   /* We have succeeded; set the length of the buffer.  */
2981   bufp->used = b - bufp->buffer;
2982 
2983 #ifdef DEBUG
2984   if (debug)
2985     {
2986       DEBUG_PRINT1 ("\nCompiled pattern: \n");
2987       print_compiled_pattern (bufp);
2988     }
2989 #endif /* DEBUG */
2990 
2991 #ifndef MATCH_MAY_ALLOCATE
2992   /* Initialize the failure stack to the largest possible stack.  This
2993      isn't necessary unless we're trying to avoid calling alloca in
2994      the search and match routines.  */
2995   {
2996     int num_regs = bufp->re_nsub + 1;
2997 
2998     if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
2999       {
3000 	fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3001 
3002 #ifdef emacs
3003 	if (! fail_stack.stack)
3004 	  fail_stack.stack
3005 	    = (fail_stack_elt_t *) xmalloc (fail_stack.size
3006 					    * sizeof (fail_stack_elt_t));
3007 	else
3008 	  fail_stack.stack
3009 	    = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
3010 					     (fail_stack.size
3011 					      * sizeof (fail_stack_elt_t)));
3012 #else /* not emacs */
3013 	if (! fail_stack.stack)
3014 	  fail_stack.stack
3015 	    = (fail_stack_elt_t *) malloc (fail_stack.size
3016 					   * sizeof (fail_stack_elt_t));
3017 	else
3018 	  fail_stack.stack
3019 	    = (fail_stack_elt_t *) realloc (fail_stack.stack,
3020 					    (fail_stack.size
3021 					     * sizeof (fail_stack_elt_t)));
3022 #endif /* not emacs */
3023       }
3024 
3025     regex_grow_registers (num_regs);
3026   }
3027 #endif /* not MATCH_MAY_ALLOCATE */
3028 
3029   return REG_NOERROR;
3030 } /* regex_compile */
3031 
3032 /* Subroutines for `regex_compile'.  */
3033 
3034 /* Store OP at LOC followed by two-byte integer parameter ARG.	*/
3035 
3036 static void
store_op1(op,loc,arg)3037 store_op1 (op, loc, arg)
3038     re_opcode_t op;
3039     unsigned char *loc;
3040     int arg;
3041 {
3042   *loc = (unsigned char) op;
3043   STORE_NUMBER (loc + 1, arg);
3044 }
3045 
3046 
3047 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
3048 
3049 static void
store_op2(op,loc,arg1,arg2)3050 store_op2 (op, loc, arg1, arg2)
3051     re_opcode_t op;
3052     unsigned char *loc;
3053     int arg1, arg2;
3054 {
3055   *loc = (unsigned char) op;
3056   STORE_NUMBER (loc + 1, arg1);
3057   STORE_NUMBER (loc + 3, arg2);
3058 }
3059 
3060 
3061 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3062    for OP followed by two-byte integer parameter ARG.  */
3063 
3064 static void
insert_op1(op,loc,arg,end)3065 insert_op1 (op, loc, arg, end)
3066     re_opcode_t op;
3067     unsigned char *loc;
3068     int arg;
3069     unsigned char *end;
3070 {
3071   register unsigned char *pfrom = end;
3072   register unsigned char *pto = end + 3;
3073 
3074   while (pfrom != loc)
3075     *--pto = *--pfrom;
3076 
3077   store_op1 (op, loc, arg);
3078 }
3079 
3080 
3081 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
3082 
3083 static void
insert_op2(op,loc,arg1,arg2,end)3084 insert_op2 (op, loc, arg1, arg2, end)
3085     re_opcode_t op;
3086     unsigned char *loc;
3087     int arg1, arg2;
3088     unsigned char *end;
3089 {
3090   register unsigned char *pfrom = end;
3091   register unsigned char *pto = end + 5;
3092 
3093   while (pfrom != loc)
3094     *--pto = *--pfrom;
3095 
3096   store_op2 (op, loc, arg1, arg2);
3097 }
3098 
3099 
3100 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
3101    after an alternative or a begin-subexpression.  We assume there is at
3102    least one character before the ^.  */
3103 
3104 static boolean
at_begline_loc_p(pattern,p,syntax)3105 at_begline_loc_p (pattern, p, syntax)
3106     const char *pattern, *p;
3107     reg_syntax_t syntax;
3108 {
3109   const char *prev = p - 2;
3110   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3111 
3112   return
3113        /* After a subexpression?  */
3114        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3115        /* After an alternative?	 */
3116     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3117 }
3118 
3119 
3120 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
3121    at least one character after the $, i.e., `P < PEND'.  */
3122 
3123 static boolean
at_endline_loc_p(p,pend,syntax)3124 at_endline_loc_p (p, pend, syntax)
3125     const char *p, *pend;
3126     int syntax;
3127 {
3128   const char *next = p;
3129   boolean next_backslash = *next == '\\';
3130   const char *next_next = p + 1 < pend ? p + 1 : 0;
3131 
3132   return
3133        /* Before a subexpression?  */
3134        (syntax & RE_NO_BK_PARENS ? *next == ')'
3135 	: next_backslash && next_next && *next_next == ')')
3136        /* Before an alternative?  */
3137     || (syntax & RE_NO_BK_VBAR ? *next == '|'
3138 	: next_backslash && next_next && *next_next == '|');
3139 }
3140 
3141 
3142 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3143    false if it's not.  */
3144 
3145 static boolean
group_in_compile_stack(compile_stack,regnum)3146 group_in_compile_stack (compile_stack, regnum)
3147     compile_stack_type compile_stack;
3148     regnum_t regnum;
3149 {
3150   int this_element;
3151 
3152   for (this_element = compile_stack.avail - 1;
3153        this_element >= 0;
3154        this_element--)
3155     if (compile_stack.stack[this_element].regnum == regnum)
3156       return true;
3157 
3158   return false;
3159 }
3160 
3161 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3162    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
3163    characters can start a string that matches the pattern.  This fastmap
3164    is used by re_search to skip quickly over impossible starting points.
3165 
3166    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3167    area as BUFP->fastmap.
3168 
3169    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3170    the pattern buffer.
3171 
3172    Returns 0 if we succeed, -2 if an internal error.   */
3173 
3174 int
re_compile_fastmap(bufp)3175 re_compile_fastmap (bufp)
3176      struct re_pattern_buffer *bufp;
3177 {
3178   int i, j, k;
3179 #ifdef MATCH_MAY_ALLOCATE
3180   fail_stack_type fail_stack;
3181 #endif
3182 #ifndef REGEX_MALLOC
3183   char *destination;
3184 #endif
3185   /* We don't push any register information onto the failure stack.  */
3186   unsigned num_regs = 0;
3187 
3188   register char *fastmap = bufp->fastmap;
3189   unsigned char *pattern = bufp->buffer;
3190   unsigned long size = bufp->used;
3191   unsigned char *p = pattern;
3192   register unsigned char *pend = pattern + size;
3193 
3194   /* This holds the pointer to the failure stack, when
3195      it is allocated relocatably.  */
3196   fail_stack_elt_t *failure_stack_ptr;
3197 
3198   /* Assume that each path through the pattern can be null until
3199      proven otherwise.	We set this false at the bottom of switch
3200      statement, to which we get only if a particular path doesn't
3201      match the empty string.  */
3202   boolean path_can_be_null = true;
3203 
3204   /* We aren't doing a `succeed_n' to begin with.  */
3205   boolean succeed_n_p = false;
3206 
3207   /* If all elements for base leading-codes in fastmap is set, this
3208      flag is set true.	*/
3209   boolean match_any_multibyte_characters = false;
3210 
3211   /* Maximum code of simple (single byte) character. */
3212   int simple_char_max;
3213 
3214   assert (fastmap != NULL && p != NULL);
3215 
3216   INIT_FAIL_STACK ();
3217   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.	*/
3218   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
3219   bufp->can_be_null = 0;
3220 
3221   while (1)
3222     {
3223       if (p == pend || *p == succeed)
3224 	{
3225 	  /* We have reached the (effective) end of pattern.  */
3226 	  if (!FAIL_STACK_EMPTY ())
3227 	    {
3228 	      bufp->can_be_null |= path_can_be_null;
3229 
3230 	      /* Reset for next path.  */
3231 	      path_can_be_null = true;
3232 
3233 	      p = fail_stack.stack[--fail_stack.avail].pointer;
3234 
3235 	      continue;
3236 	    }
3237 	  else
3238 	    break;
3239 	}
3240 
3241       /* We should never be about to go beyond the end of the pattern.	*/
3242       assert (p < pend);
3243 
3244       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3245 	{
3246 
3247 	/* I guess the idea here is to simply not bother with a fastmap
3248 	   if a backreference is used, since it's too hard to figure out
3249 	   the fastmap for the corresponding group.  Setting
3250 	   `can_be_null' stops `re_search_2' from using the fastmap, so
3251 	   that is all we do.  */
3252 	case duplicate:
3253 	  bufp->can_be_null = 1;
3254 	  goto done;
3255 
3256 
3257       /* Following are the cases which match a character.  These end
3258 	 with `break'.	*/
3259 
3260 	case exactn:
3261 	  fastmap[p[1]] = 1;
3262 	  break;
3263 
3264 
3265 #ifndef emacs
3266 	case charset:
3267 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3268 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3269 	      fastmap[j] = 1;
3270 	  break;
3271 
3272 
3273 	case charset_not:
3274 	  /* Chars beyond end of map must be allowed.  */
3275 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3276 	    fastmap[j] = 1;
3277 
3278 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3279 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3280 	      fastmap[j] = 1;
3281 	  break;
3282 
3283 
3284 	case wordchar:
3285 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3286 	    if (SYNTAX (j) == Sword)
3287 	      fastmap[j] = 1;
3288 	  break;
3289 
3290 
3291 	case notwordchar:
3292 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
3293 	    if (SYNTAX (j) != Sword)
3294 	      fastmap[j] = 1;
3295 	  break;
3296 #else  /* emacs */
3297 	case charset:
3298 	  for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3299 	       j >= 0; j--)
3300 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3301 	      fastmap[j] = 1;
3302 
3303 	  if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3304 	      && match_any_multibyte_characters == false)
3305 	    {
3306 	      /* Set fastmap[I] 1 where I is a base leading code of each
3307 		 multibyte character in the range table. */
3308 	      int c, count;
3309 
3310 	      /* Make P points the range table. */
3311 	      p += CHARSET_BITMAP_SIZE (&p[-2]);
3312 
3313 	      /* Extract the number of ranges in range table into
3314 		 COUNT.	 */
3315 	      EXTRACT_NUMBER_AND_INCR (count, p);
3316 	      for (; count > 0; count--, p += 2 * 3) /* XXX */
3317 		{
3318 		  /* Extract the start of each range.  */
3319 		  EXTRACT_CHARACTER (c, p);
3320 		  j = CHAR_CHARSET (c);
3321 		  fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3322 		}
3323 	    }
3324 	  break;
3325 
3326 
3327 	case charset_not:
3328 	  /* Chars beyond end of bitmap are possible matches.
3329 	     All the single-byte codes can occur in multibyte buffers.
3330 	     So any that are not listed in the charset
3331 	     are possible matches, even in multibyte buffers.  */
3332 	  simple_char_max = (1 << BYTEWIDTH);
3333 	  for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3334 	       j < simple_char_max; j++)
3335 	    fastmap[j] = 1;
3336 
3337 	  for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3338 	       j >= 0; j--)
3339 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3340 	      fastmap[j] = 1;
3341 
3342 	  if (bufp->multibyte)
3343 	    /* Any character set can possibly contain a character
3344 	       which doesn't match the specified set of characters.  */
3345 	    {
3346 	    set_fastmap_for_multibyte_characters:
3347 	      if (match_any_multibyte_characters == false)
3348 		{
3349 		  for (j = 0x80; j < 0xA0; j++)	/* XXX */
3350 		    if (BASE_LEADING_CODE_P (j))
3351 		      fastmap[j] = 1;
3352 		  match_any_multibyte_characters = true;
3353 		}
3354 	    }
3355 	  break;
3356 
3357 
3358 	case wordchar:
3359 	  /* All the single-byte codes can occur in multibyte buffers,
3360 	     and they may have word syntax.  So do consider them.  */
3361 	  simple_char_max = (1 << BYTEWIDTH);
3362 	  for (j = 0; j < simple_char_max; j++)
3363 	    if (SYNTAX (j) == Sword)
3364 	      fastmap[j] = 1;
3365 
3366 	  if (bufp->multibyte)
3367 	    /* Any character set can possibly contain a character
3368 	       whose syntax is `Sword'.	 */
3369 	    goto set_fastmap_for_multibyte_characters;
3370 	  break;
3371 
3372 
3373 	case notwordchar:
3374 	  /* All the single-byte codes can occur in multibyte buffers,
3375 	     and they may not have word syntax.  So do consider them.  */
3376 	  simple_char_max = (1 << BYTEWIDTH);
3377 	  for (j = 0; j < simple_char_max; j++)
3378 	    if (SYNTAX (j) != Sword)
3379 	      fastmap[j] = 1;
3380 
3381 	  if (bufp->multibyte)
3382 	    /* Any character set can possibly contain a character
3383 	       whose syntax is not `Sword'.  */
3384 	    goto set_fastmap_for_multibyte_characters;
3385 	  break;
3386 #endif
3387 
3388 	case anychar:
3389 	  {
3390 	    int fastmap_newline = fastmap['\n'];
3391 
3392 	    /* `.' matches anything, except perhaps newline.
3393 	       Even in a multibyte buffer, it should match any
3394 	       conceivable byte value for the fastmap.  */
3395 	    if (bufp->multibyte)
3396 	      match_any_multibyte_characters = true;
3397 
3398 	    simple_char_max = (1 << BYTEWIDTH);
3399 	    for (j = 0; j < simple_char_max; j++)
3400 	      fastmap[j] = 1;
3401 
3402 	    /* ... except perhaps newline.  */
3403 	    if (!(bufp->syntax & RE_DOT_NEWLINE))
3404 	      fastmap['\n'] = fastmap_newline;
3405 
3406 	    /* Return if we have already set `can_be_null'; if we have,
3407 	       then the fastmap is irrelevant.	Something's wrong here.	 */
3408 	    else if (bufp->can_be_null)
3409 	      goto done;
3410 
3411 	    /* Otherwise, have to check alternative paths.  */
3412 	    break;
3413 	  }
3414 
3415 #ifdef emacs
3416 	case wordbound:
3417 	case notwordbound:
3418 	case wordbeg:
3419 	case wordend:
3420 	case notsyntaxspec:
3421 	case syntaxspec:
3422 	  /* This match depends on text properties.  These end with
3423 	     aborting optimizations.  */
3424 	  bufp->can_be_null = 1;
3425 	  goto done;
3426 #if 0
3427 	  k = *p++;
3428 	  simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3429 	  for (j = 0; j < simple_char_max; j++)
3430 	    if (SYNTAX (j) == (enum syntaxcode) k)
3431 	      fastmap[j] = 1;
3432 
3433 	  if (bufp->multibyte)
3434 	    /* Any character set can possibly contain a character
3435 	       whose syntax is K.  */
3436 	    goto set_fastmap_for_multibyte_characters;
3437 	  break;
3438 
3439 	case notsyntaxspec:
3440 	  k = *p++;
3441 	  simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3442 	  for (j = 0; j < simple_char_max; j++)
3443 	    if (SYNTAX (j) != (enum syntaxcode) k)
3444 	      fastmap[j] = 1;
3445 
3446 	  if (bufp->multibyte)
3447 	    /* Any character set can possibly contain a character
3448 	       whose syntax is not K.  */
3449 	    goto set_fastmap_for_multibyte_characters;
3450 	  break;
3451 #endif
3452 
3453 
3454 	case categoryspec:
3455 	  k = *p++;
3456 	  simple_char_max = (1 << BYTEWIDTH);
3457 	  for (j = 0; j < simple_char_max; j++)
3458 	    if (CHAR_HAS_CATEGORY (j, k))
3459 	      fastmap[j] = 1;
3460 
3461 	  if (bufp->multibyte)
3462 	    /* Any character set can possibly contain a character
3463 	       whose category is K.  */
3464 	    goto set_fastmap_for_multibyte_characters;
3465 	  break;
3466 
3467 
3468 	case notcategoryspec:
3469 	  k = *p++;
3470 	  simple_char_max = (1 << BYTEWIDTH);
3471 	  for (j = 0; j < simple_char_max; j++)
3472 	    if (!CHAR_HAS_CATEGORY (j, k))
3473 	      fastmap[j] = 1;
3474 
3475 	  if (bufp->multibyte)
3476 	    /* Any character set can possibly contain a character
3477 	       whose category is not K.	 */
3478 	    goto set_fastmap_for_multibyte_characters;
3479 	  break;
3480 
3481       /* All cases after this match the empty string.  These end with
3482 	 `continue'.  */
3483 
3484 
3485 	case before_dot:
3486 	case at_dot:
3487 	case after_dot:
3488 	  continue;
3489 #endif /* emacs */
3490 
3491 
3492 	case no_op:
3493 	case begline:
3494 	case endline:
3495 	case begbuf:
3496 	case endbuf:
3497 #ifndef emacs
3498 	case wordbound:
3499 	case notwordbound:
3500 	case wordbeg:
3501 	case wordend:
3502 #endif
3503 	case push_dummy_failure:
3504 	  continue;
3505 
3506 
3507 	case jump_n:
3508 	case pop_failure_jump:
3509 	case maybe_pop_jump:
3510 	case jump:
3511 	case jump_past_alt:
3512 	case dummy_failure_jump:
3513 	  EXTRACT_NUMBER_AND_INCR (j, p);
3514 	  p += j;
3515 	  if (j > 0)
3516 	    continue;
3517 
3518 	  /* Jump backward implies we just went through the body of a
3519 	     loop and matched nothing.	Opcode jumped to should be
3520 	     `on_failure_jump' or `succeed_n'.	Just treat it like an
3521 	     ordinary jump.  For a * loop, it has pushed its failure
3522 	     point already; if so, discard that as redundant.  */
3523 	  if ((re_opcode_t) *p != on_failure_jump
3524 	      && (re_opcode_t) *p != succeed_n)
3525 	    continue;
3526 
3527 	  p++;
3528 	  EXTRACT_NUMBER_AND_INCR (j, p);
3529 	  p += j;
3530 
3531 	  /* If what's on the stack is where we are now, pop it.  */
3532 	  if (!FAIL_STACK_EMPTY ()
3533 	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3534 	    fail_stack.avail--;
3535 
3536 	  continue;
3537 
3538 
3539 	case on_failure_jump:
3540 	case on_failure_keep_string_jump:
3541 	handle_on_failure_jump:
3542 	  EXTRACT_NUMBER_AND_INCR (j, p);
3543 
3544 	  /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3545 	     end of the pattern.  We don't want to push such a point,
3546 	     since when we restore it above, entering the switch will
3547 	     increment `p' past the end of the pattern.	 We don't need
3548 	     to push such a point since we obviously won't find any more
3549 	     fastmap entries beyond `pend'.  Such a pattern can match
3550 	     the null string, though.  */
3551 	  if (p + j < pend)
3552 	    {
3553 	      if (!PUSH_PATTERN_OP (p + j, fail_stack))
3554 		{
3555 		  RESET_FAIL_STACK ();
3556 		  return -2;
3557 		}
3558 	    }
3559 	  else
3560 	    bufp->can_be_null = 1;
3561 
3562 	  if (succeed_n_p)
3563 	    {
3564 	      EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.	*/
3565 	      succeed_n_p = false;
3566 	    }
3567 
3568 	  continue;
3569 
3570 
3571 	case succeed_n:
3572 	  /* Get to the number of times to succeed.  */
3573 	  p += 2;
3574 
3575 	  /* Increment p past the n for when k != 0.  */
3576 	  EXTRACT_NUMBER_AND_INCR (k, p);
3577 	  if (k == 0)
3578 	    {
3579 	      p -= 4;
3580 	      succeed_n_p = true;  /* Spaghetti code alert.  */
3581 	      goto handle_on_failure_jump;
3582 	    }
3583 	  continue;
3584 
3585 
3586 	case set_number_at:
3587 	  p += 4;
3588 	  continue;
3589 
3590 
3591 	case start_memory:
3592 	case stop_memory:
3593 	  p += 2;
3594 	  continue;
3595 
3596 
3597 	default:
3598 	  abort (); /* We have listed all the cases.  */
3599 	} /* switch *p++ */
3600 
3601       /* Getting here means we have found the possible starting
3602 	 characters for one path of the pattern -- and that the empty
3603 	 string does not match.	 We need not follow this path further.
3604 	 Instead, look at the next alternative (remembered on the
3605 	 stack), or quit if no more.  The test at the top of the loop
3606 	 does these things.  */
3607       path_can_be_null = false;
3608       p = pend;
3609     } /* while p */
3610 
3611   /* Set `can_be_null' for the last path (also the first path, if the
3612      pattern is empty).	 */
3613   bufp->can_be_null |= path_can_be_null;
3614 
3615  done:
3616   RESET_FAIL_STACK ();
3617   return 0;
3618 } /* re_compile_fastmap */
3619 
3620 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3621    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
3622    this memory for recording register information.  STARTS and ENDS
3623    must be allocated using the malloc library routine, and must each
3624    be at least NUM_REGS * sizeof (regoff_t) bytes long.
3625 
3626    If NUM_REGS == 0, then subsequent matches should allocate their own
3627    register data.
3628 
3629    Unless this function is called, the first search or match using
3630    PATTERN_BUFFER will allocate its own register data, without
3631    freeing the old data.  */
3632 
3633 void
re_set_registers(bufp,regs,num_regs,starts,ends)3634 re_set_registers (bufp, regs, num_regs, starts, ends)
3635     struct re_pattern_buffer *bufp;
3636     struct re_registers *regs;
3637     unsigned num_regs;
3638     regoff_t *starts, *ends;
3639 {
3640   if (num_regs)
3641     {
3642       bufp->regs_allocated = REGS_REALLOCATE;
3643       regs->num_regs = num_regs;
3644       regs->start = starts;
3645       regs->end = ends;
3646     }
3647   else
3648     {
3649       bufp->regs_allocated = REGS_UNALLOCATED;
3650       regs->num_regs = 0;
3651       regs->start = regs->end = (regoff_t *) 0;
3652     }
3653 }
3654 
3655 /* Searching routines.	*/
3656 
3657 /* Like re_search_2, below, but only one string is specified, and
3658    doesn't let you say where to stop matching. */
3659 
3660 int
re_search(bufp,string,size,startpos,range,regs)3661 re_search (bufp, string, size, startpos, range, regs)
3662      struct re_pattern_buffer *bufp;
3663      const char *string;
3664      int size, startpos, range;
3665      struct re_registers *regs;
3666 {
3667   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3668 		      regs, size);
3669 }
3670 
3671 /* End address of virtual concatenation of string.  */
3672 #define STOP_ADDR_VSTRING(P)				\
3673   (((P) >= size1 ? string2 + size2 : string1 + size1))
3674 
3675 /* Address of POS in the concatenation of virtual string. */
3676 #define POS_ADDR_VSTRING(POS)					\
3677   (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3678 
3679 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3680    virtual concatenation of STRING1 and STRING2, starting first at index
3681    STARTPOS, then at STARTPOS + 1, and so on.
3682 
3683    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3684 
3685    RANGE is how far to scan while trying to match.  RANGE = 0 means try
3686    only at STARTPOS; in general, the last start tried is STARTPOS +
3687    RANGE.
3688 
3689    In REGS, return the indices of the virtual concatenation of STRING1
3690    and STRING2 that matched the entire BUFP->buffer and its contained
3691    subexpressions.
3692 
3693    Do not consider matching one past the index STOP in the virtual
3694    concatenation of STRING1 and STRING2.
3695 
3696    We return either the position in the strings at which the match was
3697    found, -1 if no match, or -2 if error (such as failure
3698    stack overflow).  */
3699 
3700 int
re_search_2(bufp,string1,size1,string2,size2,startpos,range,regs,stop)3701 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3702      struct re_pattern_buffer *bufp;
3703      const char *string1, *string2;
3704      int size1, size2;
3705      int startpos;
3706      int range;
3707      struct re_registers *regs;
3708      int stop;
3709 {
3710   int val;
3711   register char *fastmap = bufp->fastmap;
3712   register RE_TRANSLATE_TYPE translate = bufp->translate;
3713   int total_size = size1 + size2;
3714   int endpos = startpos + range;
3715   int anchored_start = 0;
3716 
3717   /* Nonzero if we have to concern multibyte character.	 */
3718   int multibyte = bufp->multibyte;
3719 
3720   /* Check for out-of-range STARTPOS.  */
3721   if (startpos < 0 || startpos > total_size)
3722     return -1;
3723 
3724   /* Fix up RANGE if it might eventually take us outside
3725      the virtual concatenation of STRING1 and STRING2.
3726      Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
3727   if (endpos < 0)
3728     range = 0 - startpos;
3729   else if (endpos > total_size)
3730     range = total_size - startpos;
3731 
3732   /* If the search isn't to be a backwards one, don't waste time in a
3733      search for a pattern anchored at beginning of buffer.  */
3734   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3735     {
3736       if (startpos > 0)
3737 	return -1;
3738       else
3739 	range = 0;
3740     }
3741 
3742 #ifdef emacs
3743   /* In a forward search for something that starts with \=.
3744      don't keep searching past point.  */
3745   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3746     {
3747       range = PT_BYTE - BEGV_BYTE - startpos;
3748       if (range < 0)
3749 	return -1;
3750     }
3751 #endif /* emacs */
3752 
3753   /* Update the fastmap now if not correct already.  */
3754   if (fastmap && !bufp->fastmap_accurate)
3755     if (re_compile_fastmap (bufp) == -2)
3756       return -2;
3757 
3758   /* See whether the pattern is anchored.  */
3759   if (bufp->buffer[0] == begline)
3760     anchored_start = 1;
3761 
3762 #ifdef emacs
3763   gl_state.object = re_match_object;
3764   {
3765     int adjpos = NILP (re_match_object) || BUFFERP (re_match_object);
3766     int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (startpos + adjpos);
3767 
3768     SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
3769   }
3770 #endif
3771 
3772   /* Loop through the string, looking for a place to start matching.  */
3773   for (;;)
3774     {
3775       /* If the pattern is anchored,
3776 	 skip quickly past places we cannot match.
3777 	 We don't bother to treat startpos == 0 specially
3778 	 because that case doesn't repeat.  */
3779       if (anchored_start && startpos > 0)
3780 	{
3781 	  if (! (bufp->newline_anchor
3782 		 && ((startpos <= size1 ? string1[startpos - 1]
3783 		      : string2[startpos - size1 - 1])
3784 		     == '\n')))
3785 	    goto advance;
3786 	}
3787 
3788       /* If a fastmap is supplied, skip quickly over characters that
3789 	 cannot be the start of a match.  If the pattern can match the
3790 	 null string, however, we don't need to skip characters; we want
3791 	 the first null string.	 */
3792       if (fastmap && startpos < total_size && !bufp->can_be_null)
3793 	{
3794 	  register const char *d;
3795 	  register unsigned int buf_ch;
3796 
3797 	  d = POS_ADDR_VSTRING (startpos);
3798 
3799 	  if (range > 0)	/* Searching forwards.	*/
3800 	    {
3801 	      register int lim = 0;
3802 	      int irange = range;
3803 
3804 	      if (startpos < size1 && startpos + range >= size1)
3805 		lim = range - (size1 - startpos);
3806 
3807 	      /* Written out as an if-else to avoid testing `translate'
3808 		 inside the loop.  */
3809 	      if (RE_TRANSLATE_P (translate))
3810 		{
3811 		  if (multibyte)
3812 		    while (range > lim)
3813 		      {
3814 			int buf_charlen;
3815 
3816 			buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
3817 							 buf_charlen);
3818 
3819 			buf_ch = RE_TRANSLATE (translate, buf_ch);
3820 			if (buf_ch >= 0400
3821 			    || fastmap[buf_ch])
3822 			  break;
3823 
3824 			range -= buf_charlen;
3825 			d += buf_charlen;
3826 		      }
3827 		  else
3828 		    while (range > lim
3829 			   && !fastmap[(unsigned char)
3830 				       RE_TRANSLATE (translate, (unsigned char) *d)])
3831 		      {
3832 			d++;
3833 			range--;
3834 		      }
3835 		}
3836 	      else
3837 		while (range > lim && !fastmap[(unsigned char) *d])
3838 		  {
3839 		    d++;
3840 		    range--;
3841 		  }
3842 
3843 	      startpos += irange - range;
3844 	    }
3845 	  else				/* Searching backwards.	 */
3846 	    {
3847 	      int room = (size1 == 0 || startpos >= size1
3848 			  ? size2 + size1 - startpos
3849 			  : size1 - startpos);
3850 
3851 	      buf_ch = STRING_CHAR (d, room);
3852 	      if (RE_TRANSLATE_P (translate))
3853 		buf_ch = RE_TRANSLATE (translate, buf_ch);
3854 
3855 	      if (! (buf_ch >= 0400
3856 		     || fastmap[buf_ch]))
3857 		goto advance;
3858 	    }
3859 	}
3860 
3861       /* If can't match the null string, and that's all we have left, fail.  */
3862       if (range >= 0 && startpos == total_size && fastmap
3863 	  && !bufp->can_be_null)
3864 	return -1;
3865 
3866       val = re_match_2_internal (bufp, string1, size1, string2, size2,
3867 				 startpos, regs, stop);
3868 #ifndef REGEX_MALLOC
3869 #ifdef C_ALLOCA
3870       alloca (0);
3871 #endif
3872 #endif
3873 
3874       if (val >= 0)
3875 	return startpos;
3876 
3877       if (val == -2)
3878 	return -2;
3879 
3880     advance:
3881       if (!range)
3882 	break;
3883       else if (range > 0)
3884 	{
3885 	  /* Update STARTPOS to the next character boundary.  */
3886 	  if (multibyte)
3887 	    {
3888 	      const unsigned char *p
3889 		= (const unsigned char *) POS_ADDR_VSTRING (startpos);
3890 	      const unsigned char *pend
3891 		= (const unsigned char *) STOP_ADDR_VSTRING (startpos);
3892 	      int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3893 
3894 	      range -= len;
3895 	      if (range < 0)
3896 		break;
3897 	      startpos += len;
3898 	    }
3899 	  else
3900 	    {
3901 	      range--;
3902 	      startpos++;
3903 	    }
3904 	}
3905       else
3906 	{
3907 	  range++;
3908 	  startpos--;
3909 
3910 	  /* Update STARTPOS to the previous character boundary.  */
3911 	  if (multibyte)
3912 	    {
3913 	      const unsigned char *p
3914 		= (const unsigned char *) POS_ADDR_VSTRING (startpos);
3915 	      int len = 0;
3916 
3917 	      /* Find the head of multibyte form.  */
3918 	      while (!CHAR_HEAD_P (*p))
3919 		p--, len++;
3920 
3921 	      /* Adjust it. */
3922 #if 0				/* XXX */
3923 	      if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3924 		;
3925 	      else
3926 #endif
3927 		{
3928 		  range += len;
3929 		  if (range > 0)
3930 		    break;
3931 
3932 		  startpos -= len;
3933 		}
3934 	    }
3935 	}
3936     }
3937   return -1;
3938 } /* re_search_2 */
3939 
3940 /* Declarations and macros for re_match_2.  */
3941 
3942 static int bcmp_translate ();
3943 static boolean alt_match_null_string_p (),
3944 	       common_op_match_null_string_p (),
3945 	       group_match_null_string_p ();
3946 
3947 /* This converts PTR, a pointer into one of the search strings `string1'
3948    and `string2' into an offset from the beginning of that string.  */
3949 #define POINTER_TO_OFFSET(ptr)			\
3950   (FIRST_STRING_P (ptr)				\
3951    ? ((regoff_t) ((ptr) - string1))		\
3952    : ((regoff_t) ((ptr) - string2 + size1)))
3953 
3954 /* Macros for dealing with the split strings in re_match_2.  */
3955 
3956 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
3957 
3958 /* Call before fetching a character with *d.  This switches over to
3959    string2 if necessary.  */
3960 #define PREFETCH()							\
3961   while (d == dend)							\
3962     {									\
3963       /* End of string2 => fail.  */					\
3964       if (dend == end_match_2)						\
3965 	goto fail;							\
3966       /* End of string1 => advance to string2.	*/			\
3967       d = string2;							\
3968       dend = end_match_2;						\
3969     }
3970 
3971 
3972 /* Test if at very beginning or at very end of the virtual concatenation
3973    of `string1' and `string2'.	If only one string, it's `string2'.  */
3974 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3975 #define AT_STRINGS_END(d) ((d) == end2)
3976 
3977 
3978 /* Test if D points to a character which is word-constituent.  We have
3979    two special cases to check for: if past the end of string1, look at
3980    the first character in string2; and if before the beginning of
3981    string2, look at the last character in string1.  */
3982 #define WORDCHAR_P(d)							\
3983   (SYNTAX ((d) == end1 ? *string2					\
3984 	   : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
3985    == Sword)
3986 
3987 /* Disabled due to a compiler bug -- see comment at case wordbound */
3988 
3989 /* The comment at case wordbound is following one, but we don't use
3990    AT_WORD_BOUNDARY anymore to support multibyte form.
3991 
3992    The DEC Alpha C compiler 3.x generates incorrect code for the
3993    test	 WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
3994    AT_WORD_BOUNDARY, so this code is disabled.	Expanding the
3995    macro and introducing temporary variables works around the bug.  */
3996 
3997 #if 0
3998 /* Test if the character before D and the one at D differ with respect
3999    to being word-constituent.  */
4000 #define AT_WORD_BOUNDARY(d)						\
4001   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
4002    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4003 #endif
4004 
4005 /* Free everything we malloc.  */
4006 #ifdef MATCH_MAY_ALLOCATE
4007 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4008 #define FREE_VARIABLES()						\
4009   do {									\
4010     REGEX_FREE_STACK (fail_stack.stack);				\
4011     FREE_VAR (regstart);						\
4012     FREE_VAR (regend);							\
4013     FREE_VAR (old_regstart);						\
4014     FREE_VAR (old_regend);						\
4015     FREE_VAR (best_regstart);						\
4016     FREE_VAR (best_regend);						\
4017     FREE_VAR (reg_info);						\
4018     FREE_VAR (reg_dummy);						\
4019     FREE_VAR (reg_info_dummy);						\
4020   } while (0)
4021 #else
4022 #define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning.  */
4023 #endif /* not MATCH_MAY_ALLOCATE */
4024 
4025 /* These values must meet several constraints.	They must not be valid
4026    register values; since we have a limit of 255 registers (because
4027    we use only one byte in the pattern for the register number), we can
4028    use numbers larger than 255.	 They must differ by 1, because of
4029    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
4030    be larger than the value for the highest register, so we do not try
4031    to actually save any registers when none are active.	 */
4032 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4033 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4034 
4035 /* Matching routines.  */
4036 
4037 #ifndef emacs	/* Emacs never uses this.  */
4038 /* re_match is like re_match_2 except it takes only a single string.  */
4039 
4040 int
re_match(bufp,string,size,pos,regs)4041 re_match (bufp, string, size, pos, regs)
4042      struct re_pattern_buffer *bufp;
4043      const char *string;
4044      int size, pos;
4045      struct re_registers *regs;
4046 {
4047   int result = re_match_2_internal (bufp, NULL, 0, string, size,
4048 				    pos, regs, size);
4049 #ifndef REGEX_MALLOC	/* CVS */
4050 #ifdef C_ALLOCA		/* CVS */
4051   alloca (0);
4052 #endif			/* CVS */
4053 #endif			/* CVS */
4054   return result;
4055 }
4056 #endif /* not emacs */
4057 
4058 #ifdef emacs
4059 /* In Emacs, this is the string or buffer in which we
4060    are matching.  It is used for looking up syntax properties.	*/
4061 Lisp_Object re_match_object;
4062 #endif
4063 
4064 /* re_match_2 matches the compiled pattern in BUFP against the
4065    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4066    and SIZE2, respectively).  We start matching at POS, and stop
4067    matching at STOP.
4068 
4069    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4070    store offsets for the substring each group matched in REGS.	See the
4071    documentation for exactly how many groups we fill.
4072 
4073    We return -1 if no match, -2 if an internal error (such as the
4074    failure stack overflowing).	Otherwise, we return the length of the
4075    matched substring.  */
4076 
4077 int
re_match_2(bufp,string1,size1,string2,size2,pos,regs,stop)4078 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4079      struct re_pattern_buffer *bufp;
4080      const char *string1, *string2;
4081      int size1, size2;
4082      int pos;
4083      struct re_registers *regs;
4084      int stop;
4085 {
4086   int result;
4087 
4088 #ifdef emacs
4089   int charpos;
4090   int adjpos = NILP (re_match_object) || BUFFERP (re_match_object);
4091   gl_state.object = re_match_object;
4092   charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos + adjpos);
4093   SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4094 #endif
4095 
4096   result = re_match_2_internal (bufp, string1, size1, string2, size2,
4097 				pos, regs, stop);
4098 #ifndef REGEX_MALLOC	/* CVS */
4099 #ifdef C_ALLOCA		/* CVS */
4100   alloca (0);
4101 #endif			/* CVS */
4102 #endif			/* CVS */
4103   return result;
4104 }
4105 
4106 /* This is a separate function so that we can force an alloca cleanup
4107    afterwards.	*/
4108 static int
re_match_2_internal(bufp,string1,size1,string2,size2,pos,regs,stop)4109 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4110      struct re_pattern_buffer *bufp;
4111      const char *string1, *string2;
4112      int size1, size2;
4113      int pos;
4114      struct re_registers *regs;
4115      int stop;
4116 {
4117   /* General temporaries.  */
4118   int mcnt;
4119   unsigned char *p1;
4120 
4121   /* Just past the end of the corresponding string.  */
4122   const char *end1, *end2;
4123 
4124   /* Pointers into string1 and string2, just past the last characters in
4125      each to consider matching.	 */
4126   const char *end_match_1, *end_match_2;
4127 
4128   /* Where we are in the data, and the end of the current string.  */
4129   const char *d, *dend;
4130 
4131   /* Where we are in the pattern, and the end of the pattern.  */
4132   unsigned char *p = bufp->buffer;
4133   register unsigned char *pend = p + bufp->used;
4134 
4135   /* Mark the opcode just after a start_memory, so we can test for an
4136      empty subpattern when we get to the stop_memory.  */
4137   unsigned char *just_past_start_mem = 0;
4138 
4139   /* We use this to map every character in the string.	*/
4140   RE_TRANSLATE_TYPE translate = bufp->translate;
4141 
4142   /* Nonzero if we have to concern multibyte character.	 */
4143   int multibyte = bufp->multibyte;
4144 
4145   /* Failure point stack.  Each place that can handle a failure further
4146      down the line pushes a failure point on this stack.  It consists of
4147      restart, regend, and reg_info for all registers corresponding to
4148      the subexpressions we're currently inside, plus the number of such
4149      registers, and, finally, two char *'s.  The first char * is where
4150      to resume scanning the pattern; the second one is where to resume
4151      scanning the strings.  If the latter is zero, the failure point is
4152      a ``dummy''; if a failure happens and the failure point is a dummy,
4153      it gets discarded and the next next one is tried.	*/
4154 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.	 */
4155   fail_stack_type fail_stack;
4156 #endif
4157 #ifdef DEBUG
4158   static unsigned failure_id = 0;
4159   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4160 #endif
4161 
4162   /* This holds the pointer to the failure stack, when
4163      it is allocated relocatably.  */
4164   fail_stack_elt_t *failure_stack_ptr;
4165 
4166   /* We fill all the registers internally, independent of what we
4167      return, for use in backreferences.	 The number here includes
4168      an element for register zero.  */
4169   unsigned num_regs = bufp->re_nsub + 1;
4170 
4171   /* The currently active registers.  */
4172   unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4173   unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4174 
4175   /* Information on the contents of registers. These are pointers into
4176      the input strings; they record just what was matched (on this
4177      attempt) by a subexpression part of the pattern, that is, the
4178      regnum-th regstart pointer points to where in the pattern we began
4179      matching and the regnum-th regend points to right after where we
4180      stopped matching the regnum-th subexpression.  (The zeroth register
4181      keeps track of what the whole pattern matches.)  */
4182 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
4183   const char **regstart, **regend;
4184 #endif
4185 
4186   /* If a group that's operated upon by a repetition operator fails to
4187      match anything, then the register for its start will need to be
4188      restored because it will have been set to wherever in the string we
4189      are when we last see its open-group operator.  Similarly for a
4190      register's end.  */
4191 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
4192   const char **old_regstart, **old_regend;
4193 #endif
4194 
4195   /* The is_active field of reg_info helps us keep track of which (possibly
4196      nested) subexpressions we are currently in. The matched_something
4197      field of reg_info[reg_num] helps us tell whether or not we have
4198      matched any of the pattern so far this time through the reg_num-th
4199      subexpression.  These two fields get reset each time through any
4200      loop their register is in.	 */
4201 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.	 */
4202   register_info_type *reg_info;
4203 #endif
4204 
4205   /* The following record the register info as found in the above
4206      variables when we find a match better than any we've seen before.
4207      This happens as we backtrack through the failure points, which in
4208      turn happens only if we have not yet matched the entire string. */
4209   unsigned best_regs_set = false;
4210 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
4211   const char **best_regstart, **best_regend;
4212 #endif
4213 
4214   /* Logically, this is `best_regend[0]'.  But we don't want to have to
4215      allocate space for that if we're not allocating space for anything
4216      else (see below).	Also, we never need info about register 0 for
4217      any of the other register vectors, and it seems rather a kludge to
4218      treat `best_regend' differently than the rest.  So we keep track of
4219      the end of the best match so far in a separate variable.  We
4220      initialize this to NULL so that when we backtrack the first time
4221      and need to test it, it's not garbage.  */
4222   const char *match_end = NULL;
4223 
4224   /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
4225   int set_regs_matched_done = 0;
4226 
4227   /* Used when we pop values we don't care about.  */
4228 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
4229   const char **reg_dummy;
4230   register_info_type *reg_info_dummy;
4231 #endif
4232 
4233 #ifdef DEBUG
4234   /* Counts the total number of registers pushed.  */
4235   unsigned num_regs_pushed = 0;
4236 #endif
4237 
4238   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4239 
4240   INIT_FAIL_STACK ();
4241 
4242 #ifdef MATCH_MAY_ALLOCATE
4243   /* Do not bother to initialize all the register variables if there are
4244      no groups in the pattern, as it takes a fair amount of time.  If
4245      there are groups, we include space for register 0 (the whole
4246      pattern), even though we never use it, since it simplifies the
4247      array indexing.  We should fix this.  */
4248   if (bufp->re_nsub)
4249     {
4250       regstart = REGEX_TALLOC (num_regs, const char *);
4251       regend = REGEX_TALLOC (num_regs, const char *);
4252       old_regstart = REGEX_TALLOC (num_regs, const char *);
4253       old_regend = REGEX_TALLOC (num_regs, const char *);
4254       best_regstart = REGEX_TALLOC (num_regs, const char *);
4255       best_regend = REGEX_TALLOC (num_regs, const char *);
4256       reg_info = REGEX_TALLOC (num_regs, register_info_type);
4257       reg_dummy = REGEX_TALLOC (num_regs, const char *);
4258       reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4259 
4260       if (!(regstart && regend && old_regstart && old_regend && reg_info
4261 	    && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4262 	{
4263 	  FREE_VARIABLES ();
4264 	  return -2;
4265 	}
4266     }
4267   else
4268     {
4269       /* We must initialize all our variables to NULL, so that
4270 	 `FREE_VARIABLES' doesn't try to free them.  */
4271       regstart = regend = old_regstart = old_regend = best_regstart
4272 	= best_regend = reg_dummy = NULL;
4273       reg_info = reg_info_dummy = (register_info_type *) NULL;
4274     }
4275 #endif /* MATCH_MAY_ALLOCATE */
4276 
4277   /* The starting position is bogus.  */
4278   if (pos < 0 || pos > size1 + size2)
4279     {
4280       FREE_VARIABLES ();
4281       return -1;
4282     }
4283 
4284   /* Initialize subexpression text positions to -1 to mark ones that no
4285      start_memory/stop_memory has been seen for. Also initialize the
4286      register information struct.  */
4287   for (mcnt = 1; mcnt < num_regs; mcnt++)
4288     {
4289       regstart[mcnt] = regend[mcnt]
4290 	= old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
4291 
4292       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4293       IS_ACTIVE (reg_info[mcnt]) = 0;
4294       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4295       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4296     }
4297 
4298   /* We move `string1' into `string2' if the latter's empty -- but not if
4299      `string1' is null.	 */
4300   if (size2 == 0 && string1 != NULL)
4301     {
4302       string2 = string1;
4303       size2 = size1;
4304       string1 = 0;
4305       size1 = 0;
4306     }
4307   end1 = string1 + size1;
4308   end2 = string2 + size2;
4309 
4310   /* Compute where to stop matching, within the two strings.  */
4311   if (stop <= size1)
4312     {
4313       end_match_1 = string1 + stop;
4314       end_match_2 = string2;
4315     }
4316   else
4317     {
4318       end_match_1 = end1;
4319       end_match_2 = string2 + stop - size1;
4320     }
4321 
4322   /* `p' scans through the pattern as `d' scans through the data.
4323      `dend' is the end of the input string that `d' points within.  `d'
4324      is advanced into the following input string whenever necessary, but
4325      this happens before fetching; therefore, at the beginning of the
4326      loop, `d' can be pointing at the end of a string, but it cannot
4327      equal `string2'.  */
4328   if (size1 > 0 && pos <= size1)
4329     {
4330       d = string1 + pos;
4331       dend = end_match_1;
4332     }
4333   else
4334     {
4335       d = string2 + pos - size1;
4336       dend = end_match_2;
4337     }
4338 
4339   DEBUG_PRINT1 ("The compiled pattern is: ");
4340   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4341   DEBUG_PRINT1 ("The string to match is: `");
4342   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4343   DEBUG_PRINT1 ("'\n");
4344 
4345   /* This loops over pattern commands.	It exits by returning from the
4346      function if the match is complete, or it drops through if the match
4347      fails at this starting point in the input data.  */
4348   for (;;)
4349     {
4350       DEBUG_PRINT2 ("\n0x%x: ", p);
4351 
4352       if (p == pend)
4353 	{ /* End of pattern means we might have succeeded.  */
4354 	  DEBUG_PRINT1 ("end of pattern ... ");
4355 
4356 	  /* If we haven't matched the entire string, and we want the
4357 	     longest match, try backtracking.  */
4358 	  if (d != end_match_2)
4359 	    {
4360 	      /* 1 if this match ends in the same string (string1 or string2)
4361 		 as the best previous match.  */
4362 	      boolean same_str_p = (FIRST_STRING_P (match_end)
4363 				    == MATCHING_IN_FIRST_STRING);
4364 	      /* 1 if this match is the best seen so far.  */
4365 	      boolean best_match_p;
4366 
4367 	      /* AIX compiler got confused when this was combined
4368 		 with the previous declaration.	 */
4369 	      if (same_str_p)
4370 		best_match_p = d > match_end;
4371 	      else
4372 		best_match_p = !MATCHING_IN_FIRST_STRING;
4373 
4374 	      DEBUG_PRINT1 ("backtracking.\n");
4375 
4376 	      if (!FAIL_STACK_EMPTY ())
4377 		{ /* More failure points to try.  */
4378 
4379 		  /* If exceeds best match so far, save it.  */
4380 		  if (!best_regs_set || best_match_p)
4381 		    {
4382 		      best_regs_set = true;
4383 		      match_end = d;
4384 
4385 		      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4386 
4387 		      for (mcnt = 1; mcnt < num_regs; mcnt++)
4388 			{
4389 			  best_regstart[mcnt] = regstart[mcnt];
4390 			  best_regend[mcnt] = regend[mcnt];
4391 			}
4392 		    }
4393 		  goto fail;
4394 		}
4395 
4396 	      /* If no failure points, don't restore garbage.  And if
4397 		 last match is real best match, don't restore second
4398 		 best one. */
4399 	      else if (best_regs_set && !best_match_p)
4400 		{
4401 		restore_best_regs:
4402 		  /* Restore best match.  It may happen that `dend ==
4403 		     end_match_1' while the restored d is in string2.
4404 		     For example, the pattern `x.*y.*z' against the
4405 		     strings `x-' and `y-z-', if the two strings are
4406 		     not consecutive in memory.	 */
4407 		  DEBUG_PRINT1 ("Restoring best registers.\n");
4408 
4409 		  d = match_end;
4410 		  dend = ((d >= string1 && d <= end1)
4411 			   ? end_match_1 : end_match_2);
4412 
4413 		  for (mcnt = 1; mcnt < num_regs; mcnt++)
4414 		    {
4415 		      regstart[mcnt] = best_regstart[mcnt];
4416 		      regend[mcnt] = best_regend[mcnt];
4417 		    }
4418 		}
4419 	    } /* d != end_match_2 */
4420 
4421 	succeed_label:
4422 	  DEBUG_PRINT1 ("Accepting match.\n");
4423 
4424 	  /* If caller wants register contents data back, do it.  */
4425 	  if (regs && !bufp->no_sub)
4426 	    {
4427 	      /* Have the register data arrays been allocated?	*/
4428 	      if (bufp->regs_allocated == REGS_UNALLOCATED)
4429 		{ /* No.  So allocate them with malloc.	 We need one
4430 		     extra element beyond `num_regs' for the `-1' marker
4431 		     GNU code uses.  */
4432 		  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4433 		  regs->start = TALLOC (regs->num_regs, regoff_t);
4434 		  regs->end = TALLOC (regs->num_regs, regoff_t);
4435 		  if (regs->start == NULL || regs->end == NULL)
4436 		    {
4437 		      FREE_VARIABLES ();
4438 		      return -2;
4439 		    }
4440 		  bufp->regs_allocated = REGS_REALLOCATE;
4441 		}
4442 	      else if (bufp->regs_allocated == REGS_REALLOCATE)
4443 		{ /* Yes.  If we need more elements than were already
4444 		     allocated, reallocate them.  If we need fewer, just
4445 		     leave it alone.  */
4446 		  if (regs->num_regs < num_regs + 1)
4447 		    {
4448 		      regs->num_regs = num_regs + 1;
4449 		      RETALLOC (regs->start, regs->num_regs, regoff_t);
4450 		      RETALLOC (regs->end, regs->num_regs, regoff_t);
4451 		      if (regs->start == NULL || regs->end == NULL)
4452 			{
4453 			  FREE_VARIABLES ();
4454 			  return -2;
4455 			}
4456 		    }
4457 		}
4458 	      else
4459 		{
4460 		  /* These braces fend off a "empty body in an else-statement"
4461 		     warning under GCC when assert expands to nothing.	*/
4462 		  assert (bufp->regs_allocated == REGS_FIXED);
4463 		}
4464 
4465 	      /* Convert the pointer data in `regstart' and `regend' to
4466 		 indices.  Register zero has to be set differently,
4467 		 since we haven't kept track of any info for it.  */
4468 	      if (regs->num_regs > 0)
4469 		{
4470 		  regs->start[0] = pos;
4471 		  regs->end[0] = (MATCHING_IN_FIRST_STRING
4472 				  ? ((regoff_t) (d - string1))
4473 				  : ((regoff_t) (d - string2 + size1)));
4474 		}
4475 
4476 	      /* Go through the first `min (num_regs, regs->num_regs)'
4477 		 registers, since that is all we initialized.  */
4478 	      for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4479 		{
4480 		  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4481 		    regs->start[mcnt] = regs->end[mcnt] = -1;
4482 		  else
4483 		    {
4484 		      regs->start[mcnt]
4485 			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4486 		      regs->end[mcnt]
4487 			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4488 		    }
4489 		}
4490 
4491 	      /* If the regs structure we return has more elements than
4492 		 were in the pattern, set the extra elements to -1.  If
4493 		 we (re)allocated the registers, this is the case,
4494 		 because we always allocate enough to have at least one
4495 		 -1 at the end.	 */
4496 	      for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4497 		regs->start[mcnt] = regs->end[mcnt] = -1;
4498 	    } /* regs && !bufp->no_sub */
4499 
4500 	  DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4501 			nfailure_points_pushed, nfailure_points_popped,
4502 			nfailure_points_pushed - nfailure_points_popped);
4503 	  DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4504 
4505 	  mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4506 			    ? string1
4507 			    : string2 - size1);
4508 
4509 	  DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4510 
4511 	  FREE_VARIABLES ();
4512 	  return mcnt;
4513 	}
4514 
4515       /* Otherwise match next pattern command.	*/
4516       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4517 	{
4518 	/* Ignore these.  Used to ignore the n of succeed_n's which
4519 	   currently have n == 0.  */
4520 	case no_op:
4521 	  DEBUG_PRINT1 ("EXECUTING no_op.\n");
4522 	  break;
4523 
4524 	case succeed:
4525 	  DEBUG_PRINT1 ("EXECUTING succeed.\n");
4526 	  goto succeed_label;
4527 
4528 	/* Match the next n pattern characters exactly.	 The following
4529 	   byte in the pattern defines n, and the n bytes after that
4530 	   are the characters to match.	 */
4531 	case exactn:
4532 	  mcnt = *p++;
4533 	  DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4534 
4535 	  /* This is written out as an if-else so we don't waste time
4536 	     testing `translate' inside the loop.  */
4537 	  if (RE_TRANSLATE_P (translate))
4538 	    {
4539 #ifdef emacs
4540 	      if (multibyte)
4541 		do
4542 		  {
4543 		    int pat_charlen, buf_charlen;
4544 		    unsigned int pat_ch, buf_ch;
4545 
4546 		    PREFETCH ();
4547 		    pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4548 		    buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4549 
4550 		    if (RE_TRANSLATE (translate, buf_ch)
4551 			!= pat_ch)
4552 		      goto fail;
4553 
4554 		    p += pat_charlen;
4555 		    d += buf_charlen;
4556 		    mcnt -= pat_charlen;
4557 		  }
4558 		while (mcnt > 0);
4559 	      else
4560 #endif /* not emacs */
4561 		do
4562 		  {
4563 		    PREFETCH ();
4564 		    if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d)
4565 			!= (unsigned char) *p++)
4566 		      goto fail;
4567 		    d++;
4568 		  }
4569 		while (--mcnt);
4570 	    }
4571 	  else
4572 	    {
4573 	      do
4574 		{
4575 		  PREFETCH ();
4576 		  if (*d++ != (char) *p++) goto fail;
4577 		}
4578 	      while (--mcnt);
4579 	    }
4580 	  SET_REGS_MATCHED ();
4581 	  break;
4582 
4583 
4584 	/* Match any character except possibly a newline or a null.  */
4585 	case anychar:
4586 	  {
4587 	    int buf_charlen;
4588 	    unsigned int buf_ch;
4589 
4590 	    DEBUG_PRINT1 ("EXECUTING anychar.\n");
4591 
4592 	    PREFETCH ();
4593 
4594 #ifdef emacs
4595 	    if (multibyte)
4596 	      buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4597 	    else
4598 #endif /* not emacs */
4599 	      {
4600 		buf_ch = (unsigned char) *d;
4601 		buf_charlen = 1;
4602 	      }
4603 
4604 	    buf_ch = TRANSLATE (buf_ch);
4605 
4606 	    if ((!(bufp->syntax & RE_DOT_NEWLINE)
4607 		 && buf_ch == '\n')
4608 		|| ((bufp->syntax & RE_DOT_NOT_NULL)
4609 		    && buf_ch == '\000'))
4610 	      goto fail;
4611 
4612 	    SET_REGS_MATCHED ();
4613 	    DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
4614 	    d += buf_charlen;
4615 	  }
4616 	  break;
4617 
4618 
4619 	case charset:
4620 	case charset_not:
4621 	  {
4622 	    register unsigned int c;
4623 	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
4624 	    int len;
4625 
4626 	    /* Start of actual range_table, or end of bitmap if there is no
4627 	       range table.  */
4628 	    unsigned char *range_table;
4629 
4630 	    /* Nonzero if there is range table.	 */
4631 	    int range_table_exists;
4632 
4633 	    /* Number of ranges of range table.	 Not in bytes.	*/
4634 	    int count;
4635 
4636 	    DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4637 
4638 	    PREFETCH ();
4639 	    c = (unsigned char) *d;
4640 
4641 	    range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap.  */
4642 	    range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4643 	    if (range_table_exists)
4644 	      EXTRACT_NUMBER_AND_INCR (count, range_table);
4645 	    else
4646 	      count = 0;
4647 
4648 	    if (multibyte && BASE_LEADING_CODE_P (c))
4649 	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
4650 
4651 	    if (SINGLE_BYTE_CHAR_P (c))
4652 	      {			/* Lookup bitmap.  */
4653 		c = TRANSLATE (c); /* The character to match.  */
4654 		len = 1;
4655 
4656 		/* Cast to `unsigned' instead of `unsigned char' in
4657 		   case the bit list is a full 32 bytes long.  */
4658 		if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
4659 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4660 	      not = !not;
4661 	      }
4662 	    else if (range_table_exists)
4663 	      CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
4664 
4665 	    p = CHARSET_RANGE_TABLE_END (range_table, count);
4666 
4667 	    if (!not) goto fail;
4668 
4669 	    SET_REGS_MATCHED ();
4670 	    d += len;
4671 	    break;
4672 	  }
4673 
4674 
4675 	/* The beginning of a group is represented by start_memory.
4676 	   The arguments are the register number in the next byte, and the
4677 	   number of groups inner to this one in the next.  The text
4678 	   matched within the group is recorded (in the internal
4679 	   registers data structure) under the register number.	 */
4680 	case start_memory:
4681 	  DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4682 
4683 	  /* Find out if this group can match the empty string.	 */
4684 	  p1 = p;		/* To send to group_match_null_string_p.  */
4685 
4686 	  if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4687 	    REG_MATCH_NULL_STRING_P (reg_info[*p])
4688 	      = group_match_null_string_p (&p1, pend, reg_info);
4689 
4690 	  /* Save the position in the string where we were the last time
4691 	     we were at this open-group operator in case the group is
4692 	     operated upon by a repetition operator, e.g., with `(a*)*b'
4693 	     against `ab'; then we want to ignore where we are now in
4694 	     the string in case this attempt to match fails.  */
4695 	  old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4696 			     ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4697 			     : regstart[*p];
4698 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
4699 			 POINTER_TO_OFFSET (old_regstart[*p]));
4700 
4701 	  regstart[*p] = d;
4702 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4703 
4704 	  IS_ACTIVE (reg_info[*p]) = 1;
4705 	  MATCHED_SOMETHING (reg_info[*p]) = 0;
4706 
4707 	  /* Clear this whenever we change the register activity status.  */
4708 	  set_regs_matched_done = 0;
4709 
4710 	  /* This is the new highest active register.  */
4711 	  highest_active_reg = *p;
4712 
4713 	  /* If nothing was active before, this is the new lowest active
4714 	     register.	*/
4715 	  if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4716 	    lowest_active_reg = *p;
4717 
4718 	  /* Move past the register number and inner group count.  */
4719 	  p += 2;
4720 	  just_past_start_mem = p;
4721 
4722 	  break;
4723 
4724 
4725 	/* The stop_memory opcode represents the end of a group.  Its
4726 	   arguments are the same as start_memory's: the register
4727 	   number, and the number of inner groups.  */
4728 	case stop_memory:
4729 	  DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4730 
4731 	  /* We need to save the string position the last time we were at
4732 	     this close-group operator in case the group is operated
4733 	     upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4734 	     against `aba'; then we want to ignore where we are now in
4735 	     the string in case this attempt to match fails.  */
4736 	  old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4737 			   ? REG_UNSET (regend[*p]) ? d : regend[*p]
4738 			   : regend[*p];
4739 	  DEBUG_PRINT2 ("      old_regend: %d\n",
4740 			 POINTER_TO_OFFSET (old_regend[*p]));
4741 
4742 	  regend[*p] = d;
4743 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4744 
4745 	  /* This register isn't active anymore.  */
4746 	  IS_ACTIVE (reg_info[*p]) = 0;
4747 
4748 	  /* Clear this whenever we change the register activity status.  */
4749 	  set_regs_matched_done = 0;
4750 
4751 	  /* If this was the only register active, nothing is active
4752 	     anymore.  */
4753 	  if (lowest_active_reg == highest_active_reg)
4754 	    {
4755 	      lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4756 	      highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4757 	    }
4758 	  else
4759 	    { /* We must scan for the new highest active register, since
4760 		 it isn't necessarily one less than now: consider
4761 		 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
4762 		 new highest active register is 1.  */
4763 	      unsigned char r = *p - 1;
4764 	      while (r > 0 && !IS_ACTIVE (reg_info[r]))
4765 		r--;
4766 
4767 	      /* If we end up at register zero, that means that we saved
4768 		 the registers as the result of an `on_failure_jump', not
4769 		 a `start_memory', and we jumped to past the innermost
4770 		 `stop_memory'.	 For example, in ((.)*) we save
4771 		 registers 1 and 2 as a result of the *, but when we pop
4772 		 back to the second ), we are at the stop_memory 1.
4773 		 Thus, nothing is active.  */
4774 	      if (r == 0)
4775 		{
4776 		  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4777 		  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4778 		}
4779 	      else
4780 		highest_active_reg = r;
4781 	    }
4782 
4783 	  /* If just failed to match something this time around with a
4784 	     group that's operated on by a repetition operator, try to
4785 	     force exit from the ``loop'', and restore the register
4786 	     information for this group that we had before trying this
4787 	     last match.  */
4788 	  if ((!MATCHED_SOMETHING (reg_info[*p])
4789 	       || just_past_start_mem == p - 1)
4790 	      && (p + 2) < pend)
4791 	    {
4792 	      boolean is_a_jump_n = false;
4793 
4794 	      p1 = p + 2;
4795 	      mcnt = 0;
4796 	      switch ((re_opcode_t) *p1++)
4797 		{
4798 		  case jump_n:
4799 		    is_a_jump_n = true;
4800 		  case pop_failure_jump:
4801 		  case maybe_pop_jump:
4802 		  case jump:
4803 		  case dummy_failure_jump:
4804 		    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4805 		    if (is_a_jump_n)
4806 		      p1 += 2;
4807 		    break;
4808 
4809 		  default:
4810 		    /* do nothing */ ;
4811 		}
4812 	      p1 += mcnt;
4813 
4814 	      /* If the next operation is a jump backwards in the pattern
4815 		 to an on_failure_jump right before the start_memory
4816 		 corresponding to this stop_memory, exit from the loop
4817 		 by forcing a failure after pushing on the stack the
4818 		 on_failure_jump's jump in the pattern, and d.	*/
4819 	      if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4820 		  && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4821 		{
4822 		  /* If this group ever matched anything, then restore
4823 		     what its registers were before trying this last
4824 		     failed match, e.g., with `(a*)*b' against `ab' for
4825 		     regstart[1], and, e.g., with `((a*)*(b*)*)*'
4826 		     against `aba' for regend[3].
4827 
4828 		     Also restore the registers for inner groups for,
4829 		     e.g., `((a*)(b*))*' against `aba' (register 3 would
4830 		     otherwise get trashed).  */
4831 
4832 		  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4833 		    {
4834 		      unsigned r;
4835 
4836 		      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4837 
4838 		      /* Restore this and inner groups' (if any) registers.  */
4839 		      for (r = *p; r < *p + *(p + 1); r++)
4840 			{
4841 			  regstart[r] = old_regstart[r];
4842 
4843 			  /* xx why this test?	*/
4844 			  if (old_regend[r] >= regstart[r])
4845 			    regend[r] = old_regend[r];
4846 			}
4847 		    }
4848 		  p1++;
4849 		  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4850 		  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4851 
4852 		  goto fail;
4853 		}
4854 	    }
4855 
4856 	  /* Move past the register number and the inner group count.  */
4857 	  p += 2;
4858 	  break;
4859 
4860 
4861 	/* \<digit> has been turned into a `duplicate' command which is
4862 	   followed by the numeric value of <digit> as the register number.  */
4863 	case duplicate:
4864 	  {
4865 	    register const char *d2, *dend2;
4866 	    int regno = *p++;	/* Get which register to match against.	 */
4867 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4868 
4869 	    /* Can't back reference a group which we've never matched.	*/
4870 	    if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4871 	      goto fail;
4872 
4873 	    /* Where in input to try to start matching.	 */
4874 	    d2 = regstart[regno];
4875 
4876 	    /* Where to stop matching; if both the place to start and
4877 	       the place to stop matching are in the same string, then
4878 	       set to the place to stop, otherwise, for now have to use
4879 	       the end of the first string.  */
4880 
4881 	    dend2 = ((FIRST_STRING_P (regstart[regno])
4882 		      == FIRST_STRING_P (regend[regno]))
4883 		     ? regend[regno] : end_match_1);
4884 	    for (;;)
4885 	      {
4886 		/* If necessary, advance to next segment in register
4887 		   contents.  */
4888 		while (d2 == dend2)
4889 		  {
4890 		    if (dend2 == end_match_2) break;
4891 		    if (dend2 == regend[regno]) break;
4892 
4893 		    /* End of string1 => advance to string2. */
4894 		    d2 = string2;
4895 		    dend2 = regend[regno];
4896 		  }
4897 		/* At end of register contents => success */
4898 		if (d2 == dend2) break;
4899 
4900 		/* If necessary, advance to next segment in data.  */
4901 		PREFETCH ();
4902 
4903 		/* How many characters left in this segment to match.  */
4904 		mcnt = dend - d;
4905 
4906 		/* Want how many consecutive characters we can match in
4907 		   one shot, so, if necessary, adjust the count.  */
4908 		if (mcnt > dend2 - d2)
4909 		  mcnt = dend2 - d2;
4910 
4911 		/* Compare that many; failure if mismatch, else move
4912 		   past them.  */
4913 		if (RE_TRANSLATE_P (translate)
4914 		    ? bcmp_translate (d, d2, mcnt, translate)
4915 		    : bcmp (d, d2, mcnt))
4916 		  goto fail;
4917 		d += mcnt, d2 += mcnt;
4918 
4919 		/* Do this because we've match some characters.	 */
4920 		SET_REGS_MATCHED ();
4921 	      }
4922 	  }
4923 	  break;
4924 
4925 
4926 	/* begline matches the empty string at the beginning of the string
4927 	   (unless `not_bol' is set in `bufp'), and, if
4928 	   `newline_anchor' is set, after newlines.  */
4929 	case begline:
4930 	  DEBUG_PRINT1 ("EXECUTING begline.\n");
4931 
4932 	  if (AT_STRINGS_BEG (d))
4933 	    {
4934 	      if (!bufp->not_bol) break;
4935 	    }
4936 	  else if (d[-1] == '\n' && bufp->newline_anchor)
4937 	    {
4938 	      break;
4939 	    }
4940 	  /* In all other cases, we fail.  */
4941 	  goto fail;
4942 
4943 
4944 	/* endline is the dual of begline.  */
4945 	case endline:
4946 	  DEBUG_PRINT1 ("EXECUTING endline.\n");
4947 
4948 	  if (AT_STRINGS_END (d))
4949 	    {
4950 	      if (!bufp->not_eol) break;
4951 	    }
4952 
4953 	  /* We have to ``prefetch'' the next character.  */
4954 	  else if ((d == end1 ? *string2 : *d) == '\n'
4955 		   && bufp->newline_anchor)
4956 	    {
4957 	      break;
4958 	    }
4959 	  goto fail;
4960 
4961 
4962 	/* Match at the very beginning of the data.  */
4963 	case begbuf:
4964 	  DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4965 	  if (AT_STRINGS_BEG (d))
4966 	    break;
4967 	  goto fail;
4968 
4969 
4970 	/* Match at the very end of the data.  */
4971 	case endbuf:
4972 	  DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4973 	  if (AT_STRINGS_END (d))
4974 	    break;
4975 	  goto fail;
4976 
4977 
4978 	/* on_failure_keep_string_jump is used to optimize `.*\n'.  It
4979 	   pushes NULL as the value for the string on the stack.  Then
4980 	   `pop_failure_point' will keep the current value for the
4981 	   string, instead of restoring it.  To see why, consider
4982 	   matching `foo\nbar' against `.*\n'.	The .* matches the foo;
4983 	   then the . fails against the \n.  But the next thing we want
4984 	   to do is match the \n against the \n; if we restored the
4985 	   string value, we would be back at the foo.
4986 
4987 	   Because this is used only in specific cases, we don't need to
4988 	   check all the things that `on_failure_jump' does, to make
4989 	   sure the right things get saved on the stack.  Hence we don't
4990 	   share its code.  The only reason to push anything on the
4991 	   stack at all is that otherwise we would have to change
4992 	   `anychar's code to do something besides goto fail in this
4993 	   case; that seems worse than this.  */
4994 	case on_failure_keep_string_jump:
4995 	  DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4996 
4997 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
4998 	  DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4999 
5000 	  PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
5001 	  break;
5002 
5003 
5004 	/* Uses of on_failure_jump:
5005 
5006 	   Each alternative starts with an on_failure_jump that points
5007 	   to the beginning of the next alternative.  Each alternative
5008 	   except the last ends with a jump that in effect jumps past
5009 	   the rest of the alternatives.  (They really jump to the
5010 	   ending jump of the following alternative, because tensioning
5011 	   these jumps is a hassle.)
5012 
5013 	   Repeats start with an on_failure_jump that points past both
5014 	   the repetition text and either the following jump or
5015 	   pop_failure_jump back to this on_failure_jump.  */
5016 	case on_failure_jump:
5017 	on_failure:
5018 	  DEBUG_PRINT1 ("EXECUTING on_failure_jump");
5019 
5020 #if defined (WINDOWSNT) && defined (emacs)
5021 	  QUIT;
5022 #endif
5023 
5024 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
5025 	  DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
5026 
5027 	  /* If this on_failure_jump comes right before a group (i.e.,
5028 	     the original * applied to a group), save the information
5029 	     for that group and all inner ones, so that if we fail back
5030 	     to this point, the group's information will be correct.
5031 	     For example, in \(a*\)*\1, we need the preceding group,
5032 	     and in \(zz\(a*\)b*\)\2, we need the inner group.	*/
5033 
5034 	  /* We can't use `p' to check ahead because we push
5035 	     a failure point to `p + mcnt' after we do this.  */
5036 	  p1 = p;
5037 
5038 	  /* We need to skip no_op's before we look for the
5039 	     start_memory in case this on_failure_jump is happening as
5040 	     the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
5041 	     against aba.  */
5042 	  while (p1 < pend && (re_opcode_t) *p1 == no_op)
5043 	    p1++;
5044 
5045 	  if (p1 < pend && (re_opcode_t) *p1 == start_memory)
5046 	    {
5047 	      /* We have a new highest active register now.  This will
5048 		 get reset at the start_memory we are about to get to,
5049 		 but we will have saved all the registers relevant to
5050 		 this repetition op, as described above.  */
5051 	      highest_active_reg = *(p1 + 1) + *(p1 + 2);
5052 	      if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
5053 		lowest_active_reg = *(p1 + 1);
5054 	    }
5055 
5056 	  DEBUG_PRINT1 (":\n");
5057 	  PUSH_FAILURE_POINT (p + mcnt, d, -2);
5058 	  break;
5059 
5060 
5061 	/* A smart repeat ends with `maybe_pop_jump'.
5062 	   We change it to either `pop_failure_jump' or `jump'.	 */
5063 	case maybe_pop_jump:
5064 #if defined (WINDOWSNT) && defined (emacs)
5065 	  QUIT;
5066 #endif
5067 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
5068 	  DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
5069 	  {
5070 	    register unsigned char *p2 = p;
5071 
5072 	    /* Compare the beginning of the repeat with what in the
5073 	       pattern follows its end. If we can establish that there
5074 	       is nothing that they would both match, i.e., that we
5075 	       would have to backtrack because of (as in, e.g., `a*a')
5076 	       then we can change to pop_failure_jump, because we'll
5077 	       never have to backtrack.
5078 
5079 	       This is not true in the case of alternatives: in
5080 	       `(a|ab)*' we do need to backtrack to the `ab' alternative
5081 	       (e.g., if the string was `ab').	But instead of trying to
5082 	       detect that here, the alternative has put on a dummy
5083 	       failure point which is what we will end up popping.  */
5084 
5085 	    /* Skip over open/close-group commands.
5086 	       If what follows this loop is a ...+ construct,
5087 	       look at what begins its body, since we will have to
5088 	       match at least one of that.  */
5089 	    while (1)
5090 	      {
5091 		if (p2 + 2 < pend
5092 		    && ((re_opcode_t) *p2 == stop_memory
5093 			|| (re_opcode_t) *p2 == start_memory))
5094 		  p2 += 3;
5095 		else if (p2 + 6 < pend
5096 			 && (re_opcode_t) *p2 == dummy_failure_jump)
5097 		  p2 += 6;
5098 		else
5099 		  break;
5100 	      }
5101 
5102 	    p1 = p + mcnt;
5103 	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5104 	       to the `maybe_finalize_jump' of this case.  Examine what
5105 	       follows.	 */
5106 
5107 	    /* If we're at the end of the pattern, we can change.  */
5108 	    if (p2 == pend)
5109 	      {
5110 		/* Consider what happens when matching ":\(.*\)"
5111 		   against ":/".  I don't really understand this code
5112 		   yet.	 */
5113 		p[-3] = (unsigned char) pop_failure_jump;
5114 		DEBUG_PRINT1
5115 		  ("  End of pattern: change to `pop_failure_jump'.\n");
5116 	      }
5117 
5118 	    else if ((re_opcode_t) *p2 == exactn
5119 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5120 	      {
5121 		register unsigned int c
5122 		  = *p2 == (unsigned char) endline ? '\n' : p2[2];
5123 
5124 		if ((re_opcode_t) p1[3] == exactn)
5125 		  {
5126 		    if (!(multibyte /* && (c != '\n') */
5127 			  && BASE_LEADING_CODE_P (c))
5128 			? c != p1[5]
5129 			: (STRING_CHAR (&p2[2], pend - &p2[2])
5130 			   != STRING_CHAR (&p1[5], pend - &p1[5])))
5131 		  {
5132 		    p[-3] = (unsigned char) pop_failure_jump;
5133 		    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
5134 				  c, p1[5]);
5135 		  }
5136 		  }
5137 
5138 		else if ((re_opcode_t) p1[3] == charset
5139 			 || (re_opcode_t) p1[3] == charset_not)
5140 		  {
5141 		    int not = (re_opcode_t) p1[3] == charset_not;
5142 
5143 		    if (multibyte /* && (c != '\n') */
5144 			&& BASE_LEADING_CODE_P (c))
5145 		      c = STRING_CHAR (&p2[2], pend - &p2[2]);
5146 
5147 		    /* Test if C is listed in charset (or charset_not)
5148 		       at `&p1[3]'.  */
5149 		    if (SINGLE_BYTE_CHAR_P (c))
5150 		      {
5151 			if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
5152 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5153 		      not = !not;
5154 		      }
5155 		    else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
5156 		      CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
5157 
5158 		    /* `not' is equal to 1 if c would match, which means
5159 			that we can't change to pop_failure_jump.  */
5160 		    if (!not)
5161 		      {
5162 			p[-3] = (unsigned char) pop_failure_jump;
5163 			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
5164 		      }
5165 		  }
5166 	      }
5167 	    else if ((re_opcode_t) *p2 == charset)
5168 	      {
5169 		if ((re_opcode_t) p1[3] == exactn)
5170 		  {
5171 		    register unsigned int c = p1[5];
5172 		    int not = 0;
5173 
5174 		    if (multibyte && BASE_LEADING_CODE_P (c))
5175 		      c = STRING_CHAR (&p1[5], pend - &p1[5]);
5176 
5177 		    /* Test if C is listed in charset at `p2'.	*/
5178 		    if (SINGLE_BYTE_CHAR_P (c))
5179 		      {
5180 			if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
5181 			    && (p2[2 + c / BYTEWIDTH]
5182 				& (1 << (c % BYTEWIDTH))))
5183 			  not = !not;
5184 		      }
5185 		    else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
5186 		      CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
5187 
5188 		    if (!not)
5189 		  {
5190 		    p[-3] = (unsigned char) pop_failure_jump;
5191 			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
5192 		      }
5193 		  }
5194 
5195 		/* It is hard to list up all the character in charset
5196 		   P2 if it includes multibyte character.  Give up in
5197 		   such case.  */
5198 		else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
5199 		  {
5200 		    /* Now, we are sure that P2 has no range table.
5201 		       So, for the size of bitmap in P2, `p2[1]' is
5202 		       enough.	But P1 may have range table, so the
5203 		       size of bitmap table of P1 is extracted by
5204 		       using macro `CHARSET_BITMAP_SIZE'.
5205 
5206 		       Since we know that all the character listed in
5207 		       P2 is ASCII, it is enough to test only bitmap
5208 		       table of P1.  */
5209 
5210 		    if ((re_opcode_t) p1[3] == charset_not)
5211 		  {
5212 		    int idx;
5213 			/* We win if the charset_not inside the loop lists
5214 			   every character listed in the charset after.	 */
5215 		    for (idx = 0; idx < (int) p2[1]; idx++)
5216 		      if (! (p2[2 + idx] == 0
5217 				 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
5218 				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5219 			break;
5220 
5221 		    if (idx == p2[1])
5222 		      {
5223 			p[-3] = (unsigned char) pop_failure_jump;
5224 			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
5225 		      }
5226 		  }
5227 		else if ((re_opcode_t) p1[3] == charset)
5228 		  {
5229 		    int idx;
5230 		    /* We win if the charset inside the loop
5231 		       has no overlap with the one after the loop.  */
5232 		    for (idx = 0;
5233 			     (idx < (int) p2[1]
5234 			      && idx < CHARSET_BITMAP_SIZE (&p1[3]));
5235 			 idx++)
5236 		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
5237 			break;
5238 
5239 			if (idx == p2[1]
5240 			    || idx == CHARSET_BITMAP_SIZE (&p1[3]))
5241 		      {
5242 			p[-3] = (unsigned char) pop_failure_jump;
5243 			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
5244 		      }
5245 		  }
5246 	      }
5247 	  }
5248 	  }
5249 	  p -= 2;		/* Point at relative address again.  */
5250 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
5251 	    {
5252 	      p[-1] = (unsigned char) jump;
5253 	      DEBUG_PRINT1 ("  Match => jump.\n");
5254 	      goto unconditional_jump;
5255 	    }
5256 	/* Note fall through.  */
5257 
5258 
5259 	/* The end of a simple repeat has a pop_failure_jump back to
5260 	   its matching on_failure_jump, where the latter will push a
5261 	   failure point.  The pop_failure_jump takes off failure
5262 	   points put on by this pop_failure_jump's matching
5263 	   on_failure_jump; we got through the pattern to here from the
5264 	   matching on_failure_jump, so didn't fail.  */
5265 	case pop_failure_jump:
5266 	  {
5267 	    /* We need to pass separate storage for the lowest and
5268 	       highest registers, even though we don't care about the
5269 	       actual values.  Otherwise, we will restore only one
5270 	       register from the stack, since lowest will == highest in
5271 	       `pop_failure_point'.  */
5272 	    unsigned dummy_low_reg, dummy_high_reg;
5273 	    unsigned char *pdummy;
5274 	    const char *sdummy;
5275 
5276 	    DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5277 	    POP_FAILURE_POINT (sdummy, pdummy,
5278 			       dummy_low_reg, dummy_high_reg,
5279 			       reg_dummy, reg_dummy, reg_info_dummy);
5280 	  }
5281 	  /* Note fall through.	 */
5282 
5283 
5284 	/* Unconditionally jump (without popping any failure points).  */
5285 	case jump:
5286 	unconditional_jump:
5287 #if defined (WINDOWSNT) && defined (emacs)
5288 	  QUIT;
5289 #endif
5290 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
5291 	  DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5292 	  p += mcnt;				/* Do the jump.	 */
5293 	  DEBUG_PRINT2 ("(to 0x%x).\n", p);
5294 	  break;
5295 
5296 
5297 	/* We need this opcode so we can detect where alternatives end
5298 	   in `group_match_null_string_p' et al.  */
5299 	case jump_past_alt:
5300 	  DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5301 	  goto unconditional_jump;
5302 
5303 
5304 	/* Normally, the on_failure_jump pushes a failure point, which
5305 	   then gets popped at pop_failure_jump.  We will end up at
5306 	   pop_failure_jump, also, and with a pattern of, say, `a+', we
5307 	   are skipping over the on_failure_jump, so we have to push
5308 	   something meaningless for pop_failure_jump to pop.  */
5309 	case dummy_failure_jump:
5310 	  DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5311 	  /* It doesn't matter what we push for the string here.  What
5312 	     the code at `fail' tests is the value for the pattern.  */
5313 	  PUSH_FAILURE_POINT (0, 0, -2);
5314 	  goto unconditional_jump;
5315 
5316 
5317 	/* At the end of an alternative, we need to push a dummy failure
5318 	   point in case we are followed by a `pop_failure_jump', because
5319 	   we don't want the failure point for the alternative to be
5320 	   popped.  For example, matching `(a|ab)*' against `aab'
5321 	   requires that we match the `ab' alternative.	 */
5322 	case push_dummy_failure:
5323 	  DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5324 	  /* See comments just above at `dummy_failure_jump' about the
5325 	     two zeroes.  */
5326 	  PUSH_FAILURE_POINT (0, 0, -2);
5327 	  break;
5328 
5329 	/* Have to succeed matching what follows at least n times.
5330 	   After that, handle like `on_failure_jump'.  */
5331 	case succeed_n:
5332 	  EXTRACT_NUMBER (mcnt, p + 2);
5333 	  DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5334 
5335 	  assert (mcnt >= 0);
5336 	  /* Originally, this is how many times we HAVE to succeed.  */
5337 	  if (mcnt > 0)
5338 	    {
5339 	       mcnt--;
5340 	       p += 2;
5341 	       STORE_NUMBER_AND_INCR (p, mcnt);
5342 	       DEBUG_PRINT3 ("	Setting 0x%x to %d.\n", p, mcnt);
5343 	    }
5344 	  else if (mcnt == 0)
5345 	    {
5346 	      DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
5347 	      p[2] = (unsigned char) no_op;
5348 	      p[3] = (unsigned char) no_op;
5349 	      goto on_failure;
5350 	    }
5351 	  break;
5352 
5353 	case jump_n:
5354 	  EXTRACT_NUMBER (mcnt, p + 2);
5355 	  DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5356 
5357 	  /* Originally, this is how many times we CAN jump.  */
5358 	  if (mcnt)
5359 	    {
5360 	       mcnt--;
5361 	       STORE_NUMBER (p + 2, mcnt);
5362 	       goto unconditional_jump;
5363 	    }
5364 	  /* If don't have to jump any more, skip over the rest of command.  */
5365 	  else
5366 	    p += 4;
5367 	  break;
5368 
5369 	case set_number_at:
5370 	  {
5371 	    DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5372 
5373 	    EXTRACT_NUMBER_AND_INCR (mcnt, p);
5374 	    p1 = p + mcnt;
5375 	    EXTRACT_NUMBER_AND_INCR (mcnt, p);
5376 	    DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
5377 	    STORE_NUMBER (p1, mcnt);
5378 	    break;
5379 	  }
5380 
5381 	case wordbound:
5382 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5383 
5384 	  /* We SUCCEED in one of the following cases: */
5385 
5386 	  /* Case 1: D is at the beginning or the end of string.  */
5387 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5388 	    break;
5389 	  else
5390 	    {
5391 	      /* C1 is the character before D, S1 is the syntax of C1, C2
5392 		 is the character at D, and S2 is the syntax of C2.  */
5393 	      int c1, c2, s1, s2;
5394 	      int pos1 = PTR_TO_OFFSET (d - 1);
5395 	      int charpos;
5396 
5397 	      GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5398 	      GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5399 #ifdef emacs
5400 	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5401 	      UPDATE_SYNTAX_TABLE (charpos);
5402 #endif
5403 	      s1 = SYNTAX (c1);
5404 #ifdef emacs
5405 	      UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5406 #endif
5407 	      s2 = SYNTAX (c2);
5408 
5409 	      if (/* Case 2: Only one of S1 and S2 is Sword.  */
5410 		  ((s1 == Sword) != (s2 == Sword))
5411 		  /* Case 3: Both of S1 and S2 are Sword, and macro
5412 		     WORD_BOUNDARY_P (C1, C2) returns nonzero.	*/
5413 		  || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5414 	    break;
5415 	}
5416 	  goto fail;
5417 
5418       case notwordbound:
5419 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5420 
5421 	  /* We FAIL in one of the following cases: */
5422 
5423 	  /* Case 1: D is at the beginning or the end of string.  */
5424 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5425 	    goto fail;
5426 	  else
5427 	    {
5428 	      /* C1 is the character before D, S1 is the syntax of C1, C2
5429 		 is the character at D, and S2 is the syntax of C2.  */
5430 	      int c1, c2, s1, s2;
5431 	      int pos1 = PTR_TO_OFFSET (d - 1);
5432 	      int charpos;
5433 
5434 	      GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5435 	      GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5436 #ifdef emacs
5437 	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5438 	      UPDATE_SYNTAX_TABLE (charpos);
5439 #endif
5440 	      s1 = SYNTAX (c1);
5441 #ifdef emacs
5442 	      UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5443 #endif
5444 	      s2 = SYNTAX (c2);
5445 
5446 	      if (/* Case 2: Only one of S1 and S2 is Sword.  */
5447 		  ((s1 == Sword) != (s2 == Sword))
5448 		  /* Case 3: Both of S1 and S2 are Sword, and macro
5449 		     WORD_BOUNDARY_P (C1, C2) returns nonzero.	*/
5450 		  || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5451 	    goto fail;
5452 	}
5453 	  break;
5454 
5455 	case wordbeg:
5456 	  DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5457 
5458 	  /* We FAIL in one of the following cases: */
5459 
5460 	  /* Case 1: D is at the end of string.	 */
5461 	  if (AT_STRINGS_END (d))
5462 	  goto fail;
5463 	  else
5464 	    {
5465 	      /* C1 is the character before D, S1 is the syntax of C1, C2
5466 		 is the character at D, and S2 is the syntax of C2.  */
5467 	      int c1, c2, s1, s2;
5468 	      int pos1 = PTR_TO_OFFSET (d);
5469 	      int charpos;
5470 
5471 	      GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5472 #ifdef emacs
5473 	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5474 	      UPDATE_SYNTAX_TABLE (charpos);
5475 #endif
5476 	      s2 = SYNTAX (c2);
5477 
5478 	      /* Case 2: S2 is not Sword. */
5479 	      if (s2 != Sword)
5480 		goto fail;
5481 
5482 	      /* Case 3: D is not at the beginning of string ... */
5483 	      if (!AT_STRINGS_BEG (d))
5484 		{
5485 		  GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5486 #ifdef emacs
5487 		  UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5488 #endif
5489 		  s1 = SYNTAX (c1);
5490 
5491 		  /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5492 		     returns 0.	 */
5493 		  if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5494 		    goto fail;
5495 		}
5496 	    }
5497 	  break;
5498 
5499 	case wordend:
5500 	  DEBUG_PRINT1 ("EXECUTING wordend.\n");
5501 
5502 	  /* We FAIL in one of the following cases: */
5503 
5504 	  /* Case 1: D is at the beginning of string.  */
5505 	  if (AT_STRINGS_BEG (d))
5506 	    goto fail;
5507 	  else
5508 	    {
5509 	      /* C1 is the character before D, S1 is the syntax of C1, C2
5510 		 is the character at D, and S2 is the syntax of C2.  */
5511 	      int c1, c2, s1, s2;
5512 	      int pos1 = PTR_TO_OFFSET (d);
5513 	      int charpos;
5514 
5515 	      GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5516 #ifdef emacs
5517 	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1 - 1);
5518 	      UPDATE_SYNTAX_TABLE (charpos);
5519 #endif
5520 	      s1 = SYNTAX (c1);
5521 
5522 	      /* Case 2: S1 is not Sword.  */
5523 	      if (s1 != Sword)
5524 		goto fail;
5525 
5526 	      /* Case 3: D is not at the end of string ... */
5527 	      if (!AT_STRINGS_END (d))
5528 		{
5529 		  GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5530 #ifdef emacs
5531 		  UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5532 #endif
5533 		  s2 = SYNTAX (c2);
5534 
5535 		  /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5536 		     returns 0.	 */
5537 		  if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5538 	  goto fail;
5539 		}
5540 	    }
5541 	  break;
5542 
5543 #ifdef emacs
5544 	case before_dot:
5545 	  DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5546 	  if (PTR_BYTE_POS ((unsigned char *) d) >= PT_BYTE)
5547 	    goto fail;
5548 	  break;
5549 
5550 	case at_dot:
5551 	  DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5552 	  if (PTR_BYTE_POS ((unsigned char *) d) != PT_BYTE)
5553 	    goto fail;
5554 	  break;
5555 
5556 	case after_dot:
5557 	  DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5558 	  if (PTR_BYTE_POS ((unsigned char *) d) <= PT_BYTE)
5559 	    goto fail;
5560 	  break;
5561 
5562 	case syntaxspec:
5563 	  DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5564 	  mcnt = *p++;
5565 	  goto matchsyntax;
5566 
5567 	case wordchar:
5568 	  DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5569 	  mcnt = (int) Sword;
5570 	matchsyntax:
5571 	  PREFETCH ();
5572 #ifdef emacs
5573 	  {
5574 	    int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
5575 	    UPDATE_SYNTAX_TABLE (pos1);
5576 	  }
5577 #endif
5578 	  {
5579 	    int c, len;
5580 
5581 	    if (multibyte)
5582 	      /* we must concern about multibyte form, ... */
5583 	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5584 	    else
5585 	      /* everything should be handled as ASCII, even though it
5586 		 looks like multibyte form.  */
5587 	      c = *d, len = 1;
5588 
5589 	    if (SYNTAX (c) != (enum syntaxcode) mcnt)
5590 	    goto fail;
5591 	    d += len;
5592 	  }
5593 	  SET_REGS_MATCHED ();
5594 	  break;
5595 
5596 	case notsyntaxspec:
5597 	  DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5598 	  mcnt = *p++;
5599 	  goto matchnotsyntax;
5600 
5601 	case notwordchar:
5602 	  DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5603 	  mcnt = (int) Sword;
5604 	matchnotsyntax:
5605 	  PREFETCH ();
5606 #ifdef emacs
5607 	  {
5608 	    int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
5609 	    UPDATE_SYNTAX_TABLE (pos1);
5610 	  }
5611 #endif
5612 	  {
5613 	    int c, len;
5614 
5615 	    if (multibyte)
5616 	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5617 	    else
5618 	      c = *d, len = 1;
5619 
5620 	    if (SYNTAX (c) == (enum syntaxcode) mcnt)
5621 	    goto fail;
5622 	    d += len;
5623 	  }
5624 	  SET_REGS_MATCHED ();
5625 	  break;
5626 
5627 	case categoryspec:
5628 	  DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
5629 	  mcnt = *p++;
5630 	  PREFETCH ();
5631 	  {
5632 	    int c, len;
5633 
5634 	    if (multibyte)
5635 	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5636 	    else
5637 	      c = *d, len = 1;
5638 
5639 	    if (!CHAR_HAS_CATEGORY (c, mcnt))
5640 	      goto fail;
5641 	    d += len;
5642 	  }
5643 	  SET_REGS_MATCHED ();
5644 	  break;
5645 
5646 	case notcategoryspec:
5647 	  DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
5648 	  mcnt = *p++;
5649 	  PREFETCH ();
5650 	  {
5651 	    int c, len;
5652 
5653 	    if (multibyte)
5654 	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5655 	    else
5656 	      c = *d, len = 1;
5657 
5658 	    if (CHAR_HAS_CATEGORY (c, mcnt))
5659 	      goto fail;
5660 	    d += len;
5661 	  }
5662 	  SET_REGS_MATCHED ();
5663           break;
5664 
5665 #else /* not emacs */
5666 	case wordchar:
5667           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5668 	  PREFETCH ();
5669           if (!WORDCHAR_P (d))
5670             goto fail;
5671 	  SET_REGS_MATCHED ();
5672           d++;
5673 	  break;
5674 
5675 	case notwordchar:
5676           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5677 	  PREFETCH ();
5678 	  if (WORDCHAR_P (d))
5679             goto fail;
5680           SET_REGS_MATCHED ();
5681           d++;
5682 	  break;
5683 #endif /* not emacs */
5684 
5685         default:
5686           abort ();
5687 	}
5688       continue;  /* Successfully executed one pattern command; keep going.  */
5689 
5690 
5691     /* We goto here if a matching operation fails. */
5692     fail:
5693 #if defined (WINDOWSNT) && defined (emacs)
5694       QUIT;
5695 #endif
5696       if (!FAIL_STACK_EMPTY ())
5697 	{ /* A restart point is known.  Restore to that state.  */
5698           DEBUG_PRINT1 ("\nFAIL:\n");
5699           POP_FAILURE_POINT (d, p,
5700                              lowest_active_reg, highest_active_reg,
5701                              regstart, regend, reg_info);
5702 
5703           /* If this failure point is a dummy, try the next one.  */
5704           if (!p)
5705 	    goto fail;
5706 
5707           /* If we failed to the end of the pattern, don't examine *p.  */
5708 	  assert (p <= pend);
5709           if (p < pend)
5710             {
5711               boolean is_a_jump_n = false;
5712 
5713               /* If failed to a backwards jump that's part of a repetition
5714                  loop, need to pop this failure point and use the next one.  */
5715               switch ((re_opcode_t) *p)
5716                 {
5717                 case jump_n:
5718                   is_a_jump_n = true;
5719                 case maybe_pop_jump:
5720                 case pop_failure_jump:
5721                 case jump:
5722                   p1 = p + 1;
5723                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5724                   p1 += mcnt;
5725 
5726                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5727                       || (!is_a_jump_n
5728                           && (re_opcode_t) *p1 == on_failure_jump))
5729                     goto fail;
5730                   break;
5731                 default:
5732                   /* do nothing */ ;
5733                 }
5734             }
5735 
5736           if (d >= string1 && d <= end1)
5737 	    dend = end_match_1;
5738         }
5739       else
5740         break;   /* Matching at this starting point really fails.  */
5741     } /* for (;;) */
5742 
5743   if (best_regs_set)
5744     goto restore_best_regs;
5745 
5746   FREE_VARIABLES ();
5747 
5748   return -1;         			/* Failure to match.  */
5749 } /* re_match_2 */
5750 
5751 /* Subroutine definitions for re_match_2.  */
5752 
5753 
5754 /* We are passed P pointing to a register number after a start_memory.
5755 
5756    Return true if the pattern up to the corresponding stop_memory can
5757    match the empty string, and false otherwise.
5758 
5759    If we find the matching stop_memory, sets P to point to one past its number.
5760    Otherwise, sets P to an undefined byte less than or equal to END.
5761 
5762    We don't handle duplicates properly (yet).  */
5763 
5764 static boolean
group_match_null_string_p(p,end,reg_info)5765 group_match_null_string_p (p, end, reg_info)
5766     unsigned char **p, *end;
5767     register_info_type *reg_info;
5768 {
5769   int mcnt;
5770   /* Point to after the args to the start_memory.  */
5771   unsigned char *p1 = *p + 2;
5772 
5773   while (p1 < end)
5774     {
5775       /* Skip over opcodes that can match nothing, and return true or
5776 	 false, as appropriate, when we get to one that can't, or to the
5777          matching stop_memory.  */
5778 
5779       switch ((re_opcode_t) *p1)
5780         {
5781         /* Could be either a loop or a series of alternatives.  */
5782         case on_failure_jump:
5783           p1++;
5784           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5785 
5786           /* If the next operation is not a jump backwards in the
5787 	     pattern.  */
5788 
5789 	  if (mcnt >= 0)
5790 	    {
5791               /* Go through the on_failure_jumps of the alternatives,
5792                  seeing if any of the alternatives cannot match nothing.
5793                  The last alternative starts with only a jump,
5794                  whereas the rest start with on_failure_jump and end
5795                  with a jump, e.g., here is the pattern for `a|b|c':
5796 
5797                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5798                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5799                  /exactn/1/c
5800 
5801                  So, we have to first go through the first (n-1)
5802                  alternatives and then deal with the last one separately.  */
5803 
5804 
5805               /* Deal with the first (n-1) alternatives, which start
5806                  with an on_failure_jump (see above) that jumps to right
5807                  past a jump_past_alt.  */
5808 
5809               while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5810                 {
5811                   /* `mcnt' holds how many bytes long the alternative
5812                      is, including the ending `jump_past_alt' and
5813                      its number.  */
5814 
5815                   if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5816 				                      reg_info))
5817                     return false;
5818 
5819                   /* Move to right after this alternative, including the
5820 		     jump_past_alt.  */
5821                   p1 += mcnt;
5822 
5823                   /* Break if it's the beginning of an n-th alternative
5824                      that doesn't begin with an on_failure_jump.  */
5825                   if ((re_opcode_t) *p1 != on_failure_jump)
5826                     break;
5827 
5828 		  /* Still have to check that it's not an n-th
5829 		     alternative that starts with an on_failure_jump.  */
5830 		  p1++;
5831                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5832                   if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5833                     {
5834 		      /* Get to the beginning of the n-th alternative.  */
5835                       p1 -= 3;
5836                       break;
5837                     }
5838                 }
5839 
5840               /* Deal with the last alternative: go back and get number
5841                  of the `jump_past_alt' just before it.  `mcnt' contains
5842                  the length of the alternative.  */
5843               EXTRACT_NUMBER (mcnt, p1 - 2);
5844 
5845               if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5846                 return false;
5847 
5848               p1 += mcnt;	/* Get past the n-th alternative.  */
5849             } /* if mcnt > 0 */
5850           break;
5851 
5852 
5853         case stop_memory:
5854 	  assert (p1[1] == **p);
5855           *p = p1 + 2;
5856           return true;
5857 
5858 
5859         default:
5860           if (!common_op_match_null_string_p (&p1, end, reg_info))
5861             return false;
5862         }
5863     } /* while p1 < end */
5864 
5865   return false;
5866 } /* group_match_null_string_p */
5867 
5868 
5869 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5870    It expects P to be the first byte of a single alternative and END one
5871    byte past the last. The alternative can contain groups.  */
5872 
5873 static boolean
alt_match_null_string_p(p,end,reg_info)5874 alt_match_null_string_p (p, end, reg_info)
5875     unsigned char *p, *end;
5876     register_info_type *reg_info;
5877 {
5878   int mcnt;
5879   unsigned char *p1 = p;
5880 
5881   while (p1 < end)
5882     {
5883       /* Skip over opcodes that can match nothing, and break when we get
5884          to one that can't.  */
5885 
5886       switch ((re_opcode_t) *p1)
5887         {
5888 	/* It's a loop.  */
5889         case on_failure_jump:
5890           p1++;
5891           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5892           p1 += mcnt;
5893           break;
5894 
5895 	default:
5896           if (!common_op_match_null_string_p (&p1, end, reg_info))
5897             return false;
5898         }
5899     }  /* while p1 < end */
5900 
5901   return true;
5902 } /* alt_match_null_string_p */
5903 
5904 
5905 /* Deals with the ops common to group_match_null_string_p and
5906    alt_match_null_string_p.
5907 
5908    Sets P to one after the op and its arguments, if any.  */
5909 
5910 static boolean
common_op_match_null_string_p(p,end,reg_info)5911 common_op_match_null_string_p (p, end, reg_info)
5912     unsigned char **p, *end;
5913     register_info_type *reg_info;
5914 {
5915   int mcnt;
5916   boolean ret;
5917   int reg_no;
5918   unsigned char *p1 = *p;
5919 
5920   switch ((re_opcode_t) *p1++)
5921     {
5922     case no_op:
5923     case begline:
5924     case endline:
5925     case begbuf:
5926     case endbuf:
5927     case wordbeg:
5928     case wordend:
5929     case wordbound:
5930     case notwordbound:
5931 #ifdef emacs
5932     case before_dot:
5933     case at_dot:
5934     case after_dot:
5935 #endif
5936       break;
5937 
5938     case start_memory:
5939       reg_no = *p1;
5940       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5941       ret = group_match_null_string_p (&p1, end, reg_info);
5942 
5943       /* Have to set this here in case we're checking a group which
5944          contains a group and a back reference to it.  */
5945 
5946       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5947         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5948 
5949       if (!ret)
5950         return false;
5951       break;
5952 
5953     /* If this is an optimized succeed_n for zero times, make the jump.  */
5954     case jump:
5955       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5956       if (mcnt >= 0)
5957         p1 += mcnt;
5958       else
5959         return false;
5960       break;
5961 
5962     case succeed_n:
5963       /* Get to the number of times to succeed.  */
5964       p1 += 2;
5965       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5966 
5967       if (mcnt == 0)
5968         {
5969           p1 -= 4;
5970           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5971           p1 += mcnt;
5972         }
5973       else
5974         return false;
5975       break;
5976 
5977     case duplicate:
5978       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5979         return false;
5980       break;
5981 
5982     case set_number_at:
5983       p1 += 4;
5984 
5985     default:
5986       /* All other opcodes mean we cannot match the empty string.  */
5987       return false;
5988   }
5989 
5990   *p = p1;
5991   return true;
5992 } /* common_op_match_null_string_p */
5993 
5994 
5995 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5996    bytes; nonzero otherwise.  */
5997 
5998 static int
bcmp_translate(s1,s2,len,translate)5999 bcmp_translate (s1, s2, len, translate)
6000      unsigned char *s1, *s2;
6001      register int len;
6002      RE_TRANSLATE_TYPE translate;
6003 {
6004   register unsigned char *p1 = s1, *p2 = s2;
6005   unsigned char *p1_end = s1 + len;
6006   unsigned char *p2_end = s2 + len;
6007 
6008   while (p1 != p1_end && p2 != p2_end)
6009     {
6010       int p1_charlen, p2_charlen;
6011       int p1_ch, p2_ch;
6012 
6013       p1_ch = STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6014       p2_ch = STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6015 
6016       if (RE_TRANSLATE (translate, p1_ch)
6017 	  != RE_TRANSLATE (translate, p2_ch))
6018 	return 1;
6019 
6020       p1 += p1_charlen, p2 += p2_charlen;
6021     }
6022 
6023   if (p1 != p1_end || p2 != p2_end)
6024     return 1;
6025 
6026   return 0;
6027 }
6028 
6029 /* Entry points for GNU code.  */
6030 
6031 /* re_compile_pattern is the GNU regular expression compiler: it
6032    compiles PATTERN (of length SIZE) and puts the result in BUFP.
6033    Returns 0 if the pattern was valid, otherwise an error string.
6034 
6035    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6036    are set in BUFP on entry.
6037 
6038    We call regex_compile to do the actual compilation.  */
6039 
6040 const char *
re_compile_pattern(pattern,length,bufp)6041 re_compile_pattern (pattern, length, bufp)
6042      const char *pattern;
6043      int length;
6044      struct re_pattern_buffer *bufp;
6045 {
6046   reg_errcode_t ret;
6047 
6048   /* GNU code is written to assume at least RE_NREGS registers will be set
6049      (and at least one extra will be -1).  */
6050   bufp->regs_allocated = REGS_UNALLOCATED;
6051 
6052   /* And GNU code determines whether or not to get register information
6053      by passing null for the REGS argument to re_match, etc., not by
6054      setting no_sub.  */
6055   bufp->no_sub = 0;
6056 
6057   /* Match anchors at newline.  */
6058   bufp->newline_anchor = 1;
6059 
6060   ret = regex_compile (pattern, length, re_syntax_options, bufp);
6061 
6062   if (!ret)
6063     return NULL;
6064   return gettext (re_error_msgid[(int) ret]);
6065 }
6066 
6067 /* Entry points compatible with 4.2 BSD regex library.  We don't define
6068    them unless specifically requested.  */
6069 
6070 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
6071 
6072 /* BSD has one and only one pattern buffer.  */
6073 static struct re_pattern_buffer re_comp_buf;
6074 
6075 char *
6076 #ifdef _LIBC
6077 /* Make these definitions weak in libc, so POSIX programs can redefine
6078    these names if they don't use our functions, and still use
6079    regcomp/regexec below without link errors.  */
6080 weak_function
6081 #endif
re_comp(s)6082 re_comp (s)
6083     const char *s;
6084 {
6085   reg_errcode_t ret;
6086 
6087   if (!s)
6088     {
6089       if (!re_comp_buf.buffer)
6090 	return gettext ("No previous regular expression");
6091       return 0;
6092     }
6093 
6094   if (!re_comp_buf.buffer)
6095     {
6096       re_comp_buf.buffer = (unsigned char *) malloc (200);
6097       if (re_comp_buf.buffer == NULL)
6098         /* CVS: Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
6099         return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6100       re_comp_buf.allocated = 200;
6101 
6102       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6103       if (re_comp_buf.fastmap == NULL)
6104 	/* CVS: Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
6105 	return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6106     }
6107 
6108   /* Since `re_exec' always passes NULL for the `regs' argument, we
6109      don't need to initialize the pattern buffer fields which affect it.  */
6110 
6111   /* Match anchors at newlines.  */
6112   re_comp_buf.newline_anchor = 1;
6113 
6114   ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6115 
6116   if (!ret)
6117     return NULL;
6118 
6119   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
6120   return (char *) gettext (re_error_msgid[(int) ret]);
6121 }
6122 
6123 
6124 int
6125 #ifdef _LIBC
6126 weak_function
6127 #endif
re_exec(s)6128 re_exec (s)
6129     const char *s;
6130 {
6131   const int len = strlen (s);
6132   return
6133     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6134 }
6135 #endif /* _REGEX_RE_COMP */
6136 
6137 /* POSIX.2 functions.  Don't define these for Emacs.  */
6138 
6139 #ifndef emacs
6140 
6141 /* regcomp takes a regular expression as a string and compiles it.
6142 
6143    PREG is a regex_t *.  We do not expect any fields to be initialized,
6144    since POSIX says we shouldn't.  Thus, we set
6145 
6146      `buffer' to the compiled pattern;
6147      `used' to the length of the compiled pattern;
6148      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6149        REG_EXTENDED bit in CFLAGS is set; otherwise, to
6150        RE_SYNTAX_POSIX_BASIC;
6151      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
6152      `fastmap' and `fastmap_accurate' to zero;
6153      `re_nsub' to the number of subexpressions in PATTERN.
6154 
6155    PATTERN is the address of the pattern string.
6156 
6157    CFLAGS is a series of bits which affect compilation.
6158 
6159      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6160      use POSIX basic syntax.
6161 
6162      If REG_NEWLINE is set, then . and [^...] don't match newline.
6163      Also, regexec will try a match beginning after every newline.
6164 
6165      If REG_ICASE is set, then we considers upper- and lowercase
6166      versions of letters to be equivalent when matching.
6167 
6168      If REG_NOSUB is set, then when PREG is passed to regexec, that
6169      routine will report only success or failure, and nothing about the
6170      registers.
6171 
6172    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
6173    the return codes and their meanings.)  */
6174 
6175 int
regcomp(preg,pattern,cflags)6176 regcomp (preg, pattern, cflags)
6177     regex_t *preg;
6178     const char *pattern;
6179     int cflags;
6180 {
6181   reg_errcode_t ret;
6182   unsigned syntax
6183     = (cflags & REG_EXTENDED) ?
6184       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6185 
6186   /* regex_compile will allocate the space for the compiled pattern.  */
6187   preg->buffer = 0;
6188   preg->allocated = 0;
6189   preg->used = 0;
6190 
6191   /* Don't bother to use a fastmap when searching.  This simplifies the
6192      REG_NEWLINE case: if we used a fastmap, we'd have to put all the
6193      characters after newlines into the fastmap.  This way, we just try
6194      every character.  */
6195   preg->fastmap = 0;
6196 
6197   if (cflags & REG_ICASE)
6198     {
6199       unsigned i;
6200 
6201       preg->translate
6202 	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6203 				      * sizeof (*(RE_TRANSLATE_TYPE)0));
6204       if (preg->translate == NULL)
6205         return (int) REG_ESPACE;
6206 
6207       /* Map uppercase characters to corresponding lowercase ones.  */
6208       for (i = 0; i < CHAR_SET_SIZE; i++)
6209         preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
6210     }
6211   else
6212     preg->translate = NULL;
6213 
6214   /* If REG_NEWLINE is set, newlines are treated differently.  */
6215   if (cflags & REG_NEWLINE)
6216     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
6217       syntax &= ~RE_DOT_NEWLINE;
6218       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6219       /* It also changes the matching behavior.  */
6220       preg->newline_anchor = 1;
6221     }
6222   else
6223     preg->newline_anchor = 0;
6224 
6225   preg->no_sub = !!(cflags & REG_NOSUB);
6226 
6227   /* POSIX says a null character in the pattern terminates it, so we
6228      can use strlen here in compiling the pattern.  */
6229   ret = regex_compile (pattern, strlen (pattern), syntax, preg);
6230 
6231   /* POSIX doesn't distinguish between an unmatched open-group and an
6232      unmatched close-group: both are REG_EPAREN.  */
6233   if (ret == REG_ERPAREN) ret = REG_EPAREN;
6234 
6235   return (int) ret;
6236 }
6237 
6238 
6239 /* regexec searches for a given pattern, specified by PREG, in the
6240    string STRING.
6241 
6242    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6243    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
6244    least NMATCH elements, and we set them to the offsets of the
6245    corresponding matched substrings.
6246 
6247    EFLAGS specifies `execution flags' which affect matching: if
6248    REG_NOTBOL is set, then ^ does not match at the beginning of the
6249    string; if REG_NOTEOL is set, then $ does not match at the end.
6250 
6251    We return 0 if we find a match and REG_NOMATCH if not.  */
6252 
6253 int
regexec(preg,string,nmatch,pmatch,eflags)6254 regexec (preg, string, nmatch, pmatch, eflags)
6255     const regex_t *preg;
6256     const char *string;
6257     size_t nmatch;
6258     regmatch_t pmatch[];
6259     int eflags;
6260 {
6261   int ret;
6262   struct re_registers regs;
6263   regex_t private_preg;
6264   int len = strlen (string);
6265   boolean want_reg_info = !preg->no_sub && nmatch > 0;
6266 
6267   private_preg = *preg;
6268 
6269   private_preg.not_bol = !!(eflags & REG_NOTBOL);
6270   private_preg.not_eol = !!(eflags & REG_NOTEOL);
6271 
6272   /* The user has told us exactly how many registers to return
6273      information about, via `nmatch'.  We have to pass that on to the
6274      matching routines.  */
6275   private_preg.regs_allocated = REGS_FIXED;
6276 
6277   if (want_reg_info)
6278     {
6279       regs.num_regs = nmatch;
6280       regs.start = TALLOC (nmatch, regoff_t);
6281       regs.end = TALLOC (nmatch, regoff_t);
6282       if (regs.start == NULL || regs.end == NULL)
6283         return (int) REG_NOMATCH;
6284     }
6285 
6286   /* Perform the searching operation.  */
6287   ret = re_search (&private_preg, string, len,
6288                    /* start: */ 0, /* range: */ len,
6289                    want_reg_info ? &regs : (struct re_registers *) 0);
6290 
6291   /* Copy the register information to the POSIX structure.  */
6292   if (want_reg_info)
6293     {
6294       if (ret >= 0)
6295         {
6296           unsigned r;
6297 
6298           for (r = 0; r < nmatch; r++)
6299             {
6300               pmatch[r].rm_so = regs.start[r];
6301               pmatch[r].rm_eo = regs.end[r];
6302             }
6303         }
6304 
6305       /* If we needed the temporary register info, free the space now.  */
6306       free (regs.start);
6307       free (regs.end);
6308     }
6309 
6310   /* We want zero return to mean success, unlike `re_search'.  */
6311   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6312 }
6313 
6314 
6315 /* Returns a message corresponding to an error code, ERRCODE, returned
6316    from either regcomp or regexec.   We don't use PREG here.  */
6317 
6318 size_t
regerror(errcode,preg,errbuf,errbuf_size)6319 regerror (errcode, preg, errbuf, errbuf_size)
6320     int errcode;
6321     const regex_t *preg;
6322     char *errbuf;
6323     size_t errbuf_size;
6324 {
6325   const char *msg;
6326   size_t msg_size;
6327 
6328   if (errcode < 0
6329       || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6330     /* Only error codes returned by the rest of the code should be passed
6331        to this routine.  If we are given anything else, or if other regex
6332        code generates an invalid error code, then the program has a bug.
6333        Dump core so we can fix it.  */
6334     abort ();
6335 
6336   msg = gettext (re_error_msgid[errcode]);
6337 
6338   msg_size = strlen (msg) + 1; /* Includes the null.  */
6339 
6340   if (errbuf_size != 0)
6341     {
6342       if (msg_size > errbuf_size)
6343         {
6344           strncpy (errbuf, msg, errbuf_size - 1);
6345           errbuf[errbuf_size - 1] = 0;
6346         }
6347       else
6348         strcpy (errbuf, msg);
6349     }
6350 
6351   return msg_size;
6352 }
6353 
6354 
6355 /* Free dynamically allocated space used by PREG.  */
6356 
6357 void
regfree(preg)6358 regfree (preg)
6359     regex_t *preg;
6360 {
6361   if (preg->buffer != NULL)
6362     free (preg->buffer);
6363   preg->buffer = NULL;
6364 
6365   preg->allocated = 0;
6366   preg->used = 0;
6367 
6368   if (preg->fastmap != NULL)
6369     free (preg->fastmap);
6370   preg->fastmap = NULL;
6371   preg->fastmap_accurate = 0;
6372 
6373   if (preg->translate != NULL)
6374     free (preg->translate);
6375   preg->translate = NULL;
6376 }
6377 
6378 #endif /* not emacs  */
6379