xref: /openbsd/gnu/usr.bin/gcc/gcc/config/sparc/sparc.h (revision 06dc6460)
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2    Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3    2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4    Contributed by Michael Tiemann (tiemann@cygnus.com).
5    64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6    at Cygnus Support.
7 
8 This file is part of GNU CC.
9 
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14 
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 GNU General Public License for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING.  If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA.  */
24 
25 /* Note that some other tm.h files include this one and then override
26    whatever definitions are necessary.  */
27 
28 /* Specify this in a cover file to provide bi-architecture (32/64) support.  */
29 /* #define SPARC_BI_ARCH */
30 
31 /* Macro used later in this file to determine default architecture.  */
32 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
33 
34 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
35    architectures to compile for.  We allow targets to choose compile time or
36    runtime selection.  */
37 #ifdef IN_LIBGCC2
38 #if defined(__sparcv9) || defined(__arch64__)
39 #define TARGET_ARCH32 0
40 #else
41 #define TARGET_ARCH32 1
42 #endif /* sparc64 */
43 #else
44 #ifdef SPARC_BI_ARCH
45 #define TARGET_ARCH32 (! TARGET_64BIT)
46 #else
47 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
48 #endif /* SPARC_BI_ARCH */
49 #endif /* IN_LIBGCC2 */
50 #define TARGET_ARCH64 (! TARGET_ARCH32)
51 
52 /* Code model selection.
53    -mcmodel is used to select the v9 code model.
54    Different code models aren't supported for v7/8 code.
55 
56    TARGET_CM_32:     32 bit address space, top 32 bits = 0,
57 		     pointers are 32 bits.  Note that this isn't intended
58                      to imply a v7/8 abi.
59 
60    TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
61                      avoid generating %uhi and %ulo terms,
62 		     pointers are 64 bits.
63 
64    TARGET_CM_MEDMID: 64 bit address space.
65                      The executable must be in the low 16 TB of memory.
66                      This corresponds to the low 44 bits, and the %[hml]44
67                      relocs are used.  The text segment has a maximum size
68                      of 31 bits.
69 
70    TARGET_CM_MEDANY: 64 bit address space.
71                      The text and data segments have a maximum size of 31
72                      bits and may be located anywhere.  The maximum offset
73                      from any instruction to the label _GLOBAL_OFFSET_TABLE_
74                      is 31 bits.
75 
76    TARGET_CM_EMBMEDANY: 64 bit address space.
77                      The text and data segments have a maximum size of 31 bits
78                      and may be located anywhere.  Register %g4 contains
79                      the start address of the data segment.
80 */
81 
82 enum cmodel {
83   CM_32,
84   CM_MEDLOW,
85   CM_MEDMID,
86   CM_MEDANY,
87   CM_EMBMEDANY
88 };
89 
90 /* Value of -mcmodel specified by user.  */
91 extern const char *sparc_cmodel_string;
92 /* One of CM_FOO.  */
93 extern enum cmodel sparc_cmodel;
94 
95 /* V9 code model selection.  */
96 #define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
97 #define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
98 #define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
99 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
100 
101 #define SPARC_DEFAULT_CMODEL CM_32
102 
103 /* This is call-clobbered in the normal ABI, but is reserved in the
104    home grown (aka upward compatible) embedded ABI.  */
105 #define EMBMEDANY_BASE_REG "%g4"
106 
107 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
108    and specified by the user via --with-cpu=foo.
109    This specifies the cpu implementation, not the architecture size.  */
110 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
111    capable cpu's.  */
112 #define TARGET_CPU_sparc	0
113 #define TARGET_CPU_v7		0	/* alias for previous */
114 #define TARGET_CPU_sparclet	1
115 #define TARGET_CPU_sparclite	2
116 #define TARGET_CPU_v8		3	/* generic v8 implementation */
117 #define TARGET_CPU_supersparc	4
118 #define TARGET_CPU_hypersparc   5
119 #define TARGET_CPU_sparc86x	6
120 #define TARGET_CPU_sparclite86x	6
121 #define TARGET_CPU_v9		7	/* generic v9 implementation */
122 #define TARGET_CPU_sparcv9	7	/* alias */
123 #define TARGET_CPU_sparc64	7	/* alias */
124 #define TARGET_CPU_ultrasparc	8
125 #define TARGET_CPU_ultrasparc3	9
126 
127 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
128  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
129  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
130 
131 #define CPP_CPU32_DEFAULT_SPEC ""
132 #define ASM_CPU32_DEFAULT_SPEC ""
133 
134 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
135 /* ??? What does Sun's CC pass?  */
136 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
137 /* ??? It's not clear how other assemblers will handle this, so by default
138    use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
139    is handled in sol2.h.  */
140 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
141 #endif
142 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
143 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
144 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
145 #endif
146 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
147 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
148 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
149 #endif
150 
151 #else
152 
153 #define CPP_CPU64_DEFAULT_SPEC ""
154 #define ASM_CPU64_DEFAULT_SPEC ""
155 
156 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
157  || TARGET_CPU_DEFAULT == TARGET_CPU_v8
158 #define CPP_CPU32_DEFAULT_SPEC ""
159 #define ASM_CPU32_DEFAULT_SPEC ""
160 #endif
161 
162 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
163 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
164 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
165 #endif
166 
167 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
168 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
169 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
170 #endif
171 
172 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
173 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
174 #define ASM_CPU32_DEFAULT_SPEC ""
175 #endif
176 
177 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
178 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
179 #define ASM_CPU32_DEFAULT_SPEC ""
180 #endif
181 
182 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
183 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
184 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
185 #endif
186 
187 #endif
188 
189 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
190  #error Unrecognized value in TARGET_CPU_DEFAULT.
191 #endif
192 
193 #ifdef SPARC_BI_ARCH
194 
195 #define CPP_CPU_DEFAULT_SPEC \
196 (DEFAULT_ARCH32_P ? "\
197 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
198 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
199 " : "\
200 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
201 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
202 ")
203 #define ASM_CPU_DEFAULT_SPEC \
204 (DEFAULT_ARCH32_P ? "\
205 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
206 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
207 " : "\
208 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
209 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
210 ")
211 
212 #else /* !SPARC_BI_ARCH */
213 
214 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
215 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
216 
217 #endif /* !SPARC_BI_ARCH */
218 
219 /* Define macros to distinguish architectures.  */
220 
221 /* Common CPP definitions used by CPP_SPEC amongst the various targets
222    for handling -mcpu=xxx switches.  */
223 #define CPP_CPU_SPEC "\
224 %{msoft-float:-D_SOFT_FLOAT} \
225 %{mcypress:} \
226 %{msparclite:-D__sparclite__} \
227 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
228 %{mv8:-D__sparc_v8__} \
229 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
230 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
231 %{mcpu=sparclite:-D__sparclite__} \
232 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
233 %{mcpu=v8:-D__sparc_v8__} \
234 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
235 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
236 %{mcpu=sparclite86x:-D__sparclite86x__} \
237 %{mcpu=v9:-D__sparc_v9__} \
238 %{mcpu=ultrasparc:-D__sparc_v9__} \
239 %{mcpu=ultrasparc3:-D__sparc_v9__} \
240 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
241 "
242 
243 /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
244    the right varags.h file when bootstrapping.  */
245 /* ??? It's not clear what value we want to use for -Acpu/machine for
246    sparc64 in 32 bit environments, so for now we only use `sparc64' in
247    64 bit environments.  */
248 
249 #define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
250 #define CPP_ARCH64_SPEC "-D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
251 
252 #define CPP_ARCH_DEFAULT_SPEC \
253 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
254 
255 #define CPP_ARCH_SPEC "\
256 %{m32:%(cpp_arch32)} \
257 %{m64:%(cpp_arch64)} \
258 %{!m32:%{!m64:%(cpp_arch_default)}} \
259 "
260 
261 /* Macros to distinguish endianness.  */
262 #define CPP_ENDIAN_SPEC "\
263 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
264 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
265 
266 /* Macros to distinguish the particular subtarget.  */
267 #define CPP_SUBTARGET_SPEC ""
268 
269 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
270 
271 /* Prevent error on `-sun4' and `-target sun4' options.  */
272 /* This used to translate -dalign to -malign, but that is no good
273    because it can't turn off the usual meaning of making debugging dumps.  */
274 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
275    ??? Delete support for -m<cpu> for 2.9.  */
276 
277 #define CC1_SPEC "\
278 %{sun4:} %{target:} \
279 %{mcypress:-mcpu=cypress} \
280 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
281 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
282 "
283 
284 /* Override in target specific files.  */
285 #define ASM_CPU_SPEC "\
286 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
287 %{msparclite:-Asparclite} \
288 %{mf930:-Asparclite} %{mf934:-Asparclite} \
289 %{mcpu=sparclite:-Asparclite} \
290 %{mcpu=sparclite86x:-Asparclite} \
291 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
292 %{mv8plus:-Av8plus} \
293 %{mcpu=v9:-Av9} \
294 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
295 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
296 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
297 "
298 
299 /* Word size selection, among other things.
300    This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
301 
302 #define ASM_ARCH32_SPEC "-32"
303 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
304 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
305 #else
306 #define ASM_ARCH64_SPEC "-64"
307 #endif
308 #define ASM_ARCH_DEFAULT_SPEC \
309 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
310 
311 #define ASM_ARCH_SPEC "\
312 %{m32:%(asm_arch32)} \
313 %{m64:%(asm_arch64)} \
314 %{!m32:%{!m64:%(asm_arch_default)}} \
315 "
316 
317 #ifdef HAVE_AS_RELAX_OPTION
318 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
319 #else
320 #define ASM_RELAX_SPEC ""
321 #endif
322 
323 /* Special flags to the Sun-4 assembler when using pipe for input.  */
324 
325 #define ASM_SPEC "\
326 %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
327 %(asm_cpu) %(asm_relax)"
328 
329 /* This macro defines names of additional specifications to put in the specs
330    that can be used in various specifications like CC1_SPEC.  Its definition
331    is an initializer with a subgrouping for each command option.
332 
333    Each subgrouping contains a string constant, that defines the
334    specification name, and a string constant that used by the GNU CC driver
335    program.
336 
337    Do not define this macro if it does not need to do anything.  */
338 
339 #define EXTRA_SPECS \
340   { "cpp_cpu",		CPP_CPU_SPEC },		\
341   { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },	\
342   { "cpp_arch32",	CPP_ARCH32_SPEC },	\
343   { "cpp_arch64",	CPP_ARCH64_SPEC },	\
344   { "cpp_arch_default",	CPP_ARCH_DEFAULT_SPEC },\
345   { "cpp_arch",		CPP_ARCH_SPEC },	\
346   { "cpp_endian",	CPP_ENDIAN_SPEC },	\
347   { "cpp_subtarget",	CPP_SUBTARGET_SPEC },	\
348   { "asm_cpu",		ASM_CPU_SPEC },		\
349   { "asm_cpu_default",	ASM_CPU_DEFAULT_SPEC },	\
350   { "asm_arch32",	ASM_ARCH32_SPEC },	\
351   { "asm_arch64",	ASM_ARCH64_SPEC },	\
352   { "asm_relax",	ASM_RELAX_SPEC },	\
353   { "asm_arch_default",	ASM_ARCH_DEFAULT_SPEC },\
354   { "asm_arch",		ASM_ARCH_SPEC },	\
355   SUBTARGET_EXTRA_SPECS
356 
357 #define SUBTARGET_EXTRA_SPECS
358 
359 /* Because libgcc can generate references back to libc (via .umul etc.) we have
360    to list libc again after the second libgcc.  */
361 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
362 
363 
364 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
365 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
366 
367 /* ??? This should be 32 bits for v9 but what can we do?  */
368 #define WCHAR_TYPE "short unsigned int"
369 #define WCHAR_TYPE_SIZE 16
370 
371 /* Show we can debug even without a frame pointer.  */
372 #define CAN_DEBUG_WITHOUT_FP
373 
374 #define OVERRIDE_OPTIONS  sparc_override_options ()
375 
376 /* Generate DBX debugging information.  */
377 
378 #define DBX_DEBUGGING_INFO 1
379 
380 /* Run-time compilation parameters selecting different hardware subsets.  */
381 
382 extern int target_flags;
383 
384 /* Nonzero if we should generate code to use the fpu.  */
385 #define MASK_FPU 1
386 #define TARGET_FPU (target_flags & MASK_FPU)
387 
388 /* Nonzero if we should assume that double pointers might be unaligned.
389    This can happen when linking gcc compiled code with other compilers,
390    because the ABI only guarantees 4 byte alignment.  */
391 #define MASK_UNALIGNED_DOUBLES 4
392 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
393 
394 /* Nonzero means that we should generate code for a v8 sparc.  */
395 #define MASK_V8 0x8
396 #define TARGET_V8 (target_flags & MASK_V8)
397 
398 /* Nonzero means that we should generate code for a sparclite.
399    This enables the sparclite specific instructions, but does not affect
400    whether FPU instructions are emitted.  */
401 #define MASK_SPARCLITE 0x10
402 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
403 
404 /* Nonzero if we're compiling for the sparclet.  */
405 #define MASK_SPARCLET 0x20
406 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
407 
408 /* Nonzero if we're compiling for v9 sparc.
409    Note that v9's can run in 32 bit mode so this doesn't necessarily mean
410    the word size is 64.  */
411 #define MASK_V9 0x40
412 #define TARGET_V9 (target_flags & MASK_V9)
413 
414 /* Nonzero to generate code that uses the instructions deprecated in
415    the v9 architecture.  This option only applies to v9 systems.  */
416 /* ??? This isn't user selectable yet.  It's used to enable such insns
417    on 32 bit v9 systems and for the moment they're permanently disabled
418    on 64 bit v9 systems.  */
419 #define MASK_DEPRECATED_V8_INSNS 0x80
420 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
421 
422 /* Mask of all CPU selection flags.  */
423 #define MASK_ISA \
424 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
425 
426 /* Nonzero means don't pass `-assert pure-text' to the linker.  */
427 #define MASK_IMPURE_TEXT 0x100
428 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
429 
430 /* Nonzero means that we should generate code using a flat register window
431    model, i.e. no save/restore instructions are generated, which is
432    compatible with normal sparc code.
433    The frame pointer is %i7 instead of %fp.  */
434 #define MASK_FLAT 0x200
435 #define TARGET_FLAT (target_flags & MASK_FLAT)
436 
437 /* Nonzero means use the registers that the SPARC ABI reserves for
438    application software.  This must be the default to coincide with the
439    setting in FIXED_REGISTERS.  */
440 #define MASK_APP_REGS 0x400
441 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
442 
443 /* Option to select how quad word floating point is implemented.
444    When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
445    Otherwise, we use the SPARC ABI quad library functions.  */
446 #define MASK_HARD_QUAD 0x800
447 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
448 
449 /* Nonzero on little-endian machines.  */
450 /* ??? Little endian support currently only exists for sparclet-aout and
451    sparc64-elf configurations.  May eventually want to expand the support
452    to all targets, but for now it's kept local to only those two.  */
453 #define MASK_LITTLE_ENDIAN 0x1000
454 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
455 
456 /* 0x2000, 0x4000 are unused */
457 
458 /* Nonzero if pointers are 64 bits.  */
459 #define MASK_PTR64 0x8000
460 #define TARGET_PTR64 (target_flags & MASK_PTR64)
461 
462 /* Nonzero if generating code to run in a 64 bit environment.
463    This is intended to only be used by TARGET_ARCH{32,64} as they are the
464    mechanism used to control compile time or run time selection.  */
465 #define MASK_64BIT 0x10000
466 #define TARGET_64BIT (target_flags & MASK_64BIT)
467 
468 /* 0x20000,0x40000 unused */
469 
470 /* Nonzero means use a stack bias of 2047.  Stack offsets are obtained by
471    adding 2047 to %sp.  This option is for v9 only and is the default.  */
472 #define MASK_STACK_BIAS 0x80000
473 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
474 
475 /* 0x100000,0x200000 unused */
476 
477 /* Nonzero means -m{,no-}fpu was passed on the command line.  */
478 #define MASK_FPU_SET 0x400000
479 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
480 
481 /* Use the UltraSPARC Visual Instruction Set extensions.  */
482 #define MASK_VIS 0x1000000
483 #define TARGET_VIS (target_flags & MASK_VIS)
484 
485 /* Compile for Solaris V8+.  32 bit Solaris preserves the high bits of
486    the current out and global registers and Linux 2.2+ as well.  */
487 #define MASK_V8PLUS 0x2000000
488 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
489 
490 /* Force a the fastest alignment on structures to take advantage of
491    faster copies.  */
492 #define MASK_FASTER_STRUCTS 0x4000000
493 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
494 
495 /* Use IEEE quad long double.  */
496 #define MASK_LONG_DOUBLE_128 0x8000000
497 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
498 
499 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
500    TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
501    to get high 32 bits.  False in V8+ or V9 because multiply stores
502    a 64 bit result in a register.  */
503 
504 #define TARGET_HARD_MUL32				\
505   ((TARGET_V8 || TARGET_SPARCLITE			\
506     || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS)	\
507    && ! TARGET_V8PLUS && TARGET_ARCH32)
508 
509 #define TARGET_HARD_MUL					\
510   (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET	\
511    || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
512 
513 
514 /* Macro to define tables used to set the flags.
515    This is a list in braces of pairs in braces,
516    each pair being { "NAME", VALUE }
517    where VALUE is the bits to set or minus the bits to clear.
518    An empty string NAME is used to identify the default VALUE.  */
519 
520 #define TARGET_SWITCHES  \
521   { {"fpu", MASK_FPU | MASK_FPU_SET,					\
522      N_("Use hardware fp") },						\
523     {"no-fpu", -MASK_FPU,						\
524      N_("Do not use hardware fp") },					\
525     {"no-fpu", MASK_FPU_SET,				NULL, },	\
526     {"hard-float", MASK_FPU | MASK_FPU_SET,				\
527      N_("Use hardware fp") },						\
528     {"soft-float", -MASK_FPU,						\
529      N_("Do not use hardware fp") },					\
530     {"soft-float", MASK_FPU_SET,			NULL },		\
531     {"unaligned-doubles", MASK_UNALIGNED_DOUBLES,			\
532      N_("Assume possible double misalignment") },			\
533     {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES,			\
534      N_("Assume all doubles are aligned") },				\
535     {"impure-text", MASK_IMPURE_TEXT,					\
536      N_("Pass -assert pure-text to linker") }, 				\
537     {"no-impure-text", -MASK_IMPURE_TEXT,				\
538      N_("Do not pass -assert pure-text to linker") }, 			\
539     {"flat", MASK_FLAT,							\
540      N_("Use flat register window model") }, 				\
541     {"no-flat", -MASK_FLAT,						\
542      N_("Do not use flat register window model") }, 			\
543     {"app-regs", MASK_APP_REGS,						\
544      N_("Use ABI reserved registers") },				\
545     {"no-app-regs", -MASK_APP_REGS,					\
546      N_("Do not use ABI reserved registers") }, 			\
547     {"hard-quad-float", MASK_HARD_QUAD,					\
548      N_("Use hardware quad fp instructions") }, 			\
549     {"soft-quad-float", -MASK_HARD_QUAD,				\
550      N_("Do not use hardware quad fp instructions") }, 			\
551     {"v8plus", MASK_V8PLUS,						\
552      N_("Compile for v8plus ABI") },					\
553     {"no-v8plus", -MASK_V8PLUS,						\
554      N_("Do not compile for v8plus ABI") }, 				\
555     {"vis", MASK_VIS,							\
556      N_("Utilize Visual Instruction Set") }, 				\
557     {"no-vis", -MASK_VIS,						\
558      N_("Do not utilize Visual Instruction Set") }, 			\
559     /* ??? These are deprecated, coerced to -mcpu=.  Delete in 2.9.  */ \
560     {"cypress", 0,							\
561      N_("Optimize for Cypress processors") }, 				\
562     {"sparclite", 0,							\
563      N_("Optimize for SPARCLite processors") }, 			\
564     {"f930", 0,								\
565      N_("Optimize for F930 processors") }, 				\
566     {"f934", 0,								\
567      N_("Optimize for F934 processors") }, 				\
568     {"v8", 0,								\
569      N_("Use V8 SPARC ISA") }, 						\
570     {"supersparc", 0,							\
571      N_("Optimize for SuperSPARC processors") }, 			\
572     /* End of deprecated options.  */					\
573     {"ptr64", MASK_PTR64,						\
574      N_("Pointers are 64-bit") }, 					\
575     {"ptr32", -MASK_PTR64,						\
576      N_("Pointers are 32-bit") }, 					\
577     {"32", -MASK_64BIT,							\
578      N_("Use 32-bit ABI") }, 						\
579     {"64", MASK_64BIT,							\
580      N_("Use 64-bit ABI") }, 						\
581     {"stack-bias", MASK_STACK_BIAS,					\
582      N_("Use stack bias") }, 						\
583     {"no-stack-bias", -MASK_STACK_BIAS,					\
584      N_("Do not use stack bias") }, 					\
585     {"faster-structs", MASK_FASTER_STRUCTS,				\
586      N_("Use structs on stronger alignment for double-word copies") }, 	\
587     {"no-faster-structs", -MASK_FASTER_STRUCTS,				\
588      N_("Do not use structs on stronger alignment for double-word copies") }, \
589     {"relax", 0,							\
590      N_("Optimize tail call instructions in assembler and linker") },	\
591     {"no-relax", 0,							\
592      N_("Do not optimize tail call instructions in assembler or linker") }, \
593     SUBTARGET_SWITCHES			\
594     { "", TARGET_DEFAULT, ""}}
595 
596 /* MASK_APP_REGS must always be the default because that's what
597    FIXED_REGISTERS is set to and -ffixed- is processed before
598    CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs).  */
599 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
600 
601 /* This is meant to be redefined in target specific files.  */
602 #define SUBTARGET_SWITCHES
603 
604 /* Processor type.
605    These must match the values for the cpu attribute in sparc.md.  */
606 enum processor_type {
607   PROCESSOR_V7,
608   PROCESSOR_CYPRESS,
609   PROCESSOR_V8,
610   PROCESSOR_SUPERSPARC,
611   PROCESSOR_SPARCLITE,
612   PROCESSOR_F930,
613   PROCESSOR_F934,
614   PROCESSOR_HYPERSPARC,
615   PROCESSOR_SPARCLITE86X,
616   PROCESSOR_SPARCLET,
617   PROCESSOR_TSC701,
618   PROCESSOR_V9,
619   PROCESSOR_ULTRASPARC,
620   PROCESSOR_ULTRASPARC3
621 };
622 
623 /* This is set from -m{cpu,tune}=xxx.  */
624 extern enum processor_type sparc_cpu;
625 
626 /* Recast the cpu class to be the cpu attribute.
627    Every file includes us, but not every file includes insn-attr.h.  */
628 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
629 
630 #define TARGET_OPTIONS \
631 {								\
632   { "cpu=",  &sparc_select[1].string,				\
633     N_("Use features of and schedule code for given CPU") },	\
634   { "tune=", &sparc_select[2].string,				\
635     N_("Schedule code for given CPU") },			\
636   { "cmodel=", &sparc_cmodel_string,				\
637     N_("Use given SPARC code model") },				\
638   SUBTARGET_OPTIONS 						\
639 }
640 
641 /* This is meant to be redefined in target specific files.  */
642 #define SUBTARGET_OPTIONS
643 
644 /* sparc_select[0] is reserved for the default cpu.  */
645 struct sparc_cpu_select
646 {
647   const char *string;
648   const char *const name;
649   const int set_tune_p;
650   const int set_arch_p;
651 };
652 
653 extern struct sparc_cpu_select sparc_select[];
654 
655 /* target machine storage layout */
656 
657 /* Define this if most significant bit is lowest numbered
658    in instructions that operate on numbered bit-fields.  */
659 #define BITS_BIG_ENDIAN 1
660 
661 /* Define this if most significant byte of a word is the lowest numbered.  */
662 #define BYTES_BIG_ENDIAN 1
663 
664 /* Define this if most significant word of a multiword number is the lowest
665    numbered.  */
666 #define WORDS_BIG_ENDIAN 1
667 
668 /* Define this to set the endianness to use in libgcc2.c, which can
669    not depend on target_flags.  */
670 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
671 #define LIBGCC2_WORDS_BIG_ENDIAN 0
672 #else
673 #define LIBGCC2_WORDS_BIG_ENDIAN 1
674 #endif
675 
676 #define MAX_BITS_PER_WORD	64
677 
678 /* Width of a word, in units (bytes).  */
679 #define UNITS_PER_WORD		(TARGET_ARCH64 ? 8 : 4)
680 #ifdef IN_LIBGCC2
681 #define MIN_UNITS_PER_WORD	UNITS_PER_WORD
682 #else
683 #define MIN_UNITS_PER_WORD	4
684 #endif
685 
686 /* Now define the sizes of the C data types.  */
687 
688 #define SHORT_TYPE_SIZE		16
689 #define INT_TYPE_SIZE		32
690 #define LONG_TYPE_SIZE		(TARGET_ARCH64 ? 64 : 32)
691 #define LONG_LONG_TYPE_SIZE	64
692 #define FLOAT_TYPE_SIZE		32
693 #define DOUBLE_TYPE_SIZE	64
694 
695 #ifdef SPARC_BI_ARCH
696 #define MAX_LONG_TYPE_SIZE	64
697 #endif
698 
699 #if 0
700 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
701    Instead, it is enabled in sol2.h, because it does work under Solaris.  */
702 /* Define for support of TFmode long double.
703    SPARC ABI says that long double is 4 words.  */
704 #define LONG_DOUBLE_TYPE_SIZE 128
705 #endif
706 
707 /* Width in bits of a pointer.
708    See also the macro `Pmode' defined below.  */
709 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
710 
711 /* If we have to extend pointers (only when TARGET_ARCH64 and not
712    TARGET_PTR64), we want to do it unsigned.   This macro does nothing
713    if ptr_mode and Pmode are the same.  */
714 #define POINTERS_EXTEND_UNSIGNED 1
715 
716 /* A macro to update MODE and UNSIGNEDP when an object whose type
717    is TYPE and which has the specified mode and signedness is to be
718    stored in a register.  This macro is only called when TYPE is a
719    scalar type.  */
720 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
721 if (TARGET_ARCH64				\
722     && GET_MODE_CLASS (MODE) == MODE_INT	\
723     && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)	\
724   (MODE) = DImode;
725 
726 /* Define this macro if the promotion described by PROMOTE_MODE
727    should also be done for outgoing function arguments.  */
728 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
729    for TARGET_ARCH32 this is ok.  Otherwise we'd need to add a runtime test
730    for this value.  */
731 #define PROMOTE_FUNCTION_ARGS
732 
733 /* Define this macro if the promotion described by PROMOTE_MODE
734    should also be done for the return value of functions.
735    If this macro is defined, FUNCTION_VALUE must perform the same
736    promotions done by PROMOTE_MODE.  */
737 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
738    for TARGET_ARCH32 this is ok.  Otherwise we'd need to add a runtime test
739    for this value.  */
740 #define PROMOTE_FUNCTION_RETURN
741 
742 /* Define this macro if the promotion described by PROMOTE_MODE
743    should _only_ be performed for outgoing function arguments or
744    function return values, as specified by PROMOTE_FUNCTION_ARGS
745    and PROMOTE_FUNCTION_RETURN, respectively.  */
746 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
747    for TARGET_ARCH32 this is ok.  Otherwise we'd need to add a runtime test
748    for this value.  For TARGET_ARCH64 we need it, as we don't have instructions
749    for arithmetic operations which do zero/sign extension at the same time,
750    so without this we end up with a srl/sra after every assignment to an
751    user variable,  which means very very bad code.  */
752 #define PROMOTE_FOR_CALL_ONLY
753 
754 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
755 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
756 
757 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
758 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
759 
760 /* ALIGN FRAMES on double word boundaries */
761 
762 #define SPARC_STACK_ALIGN(LOC) \
763   (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
764 
765 /* Allocation boundary (in *bits*) for the code of a function.  */
766 #define FUNCTION_BOUNDARY 32
767 
768 /* Alignment of field after `int : 0' in a structure.  */
769 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
770 
771 /* Every structure's size must be a multiple of this.  */
772 #define STRUCTURE_SIZE_BOUNDARY 8
773 
774 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
775 #define PCC_BITFIELD_TYPE_MATTERS 1
776 
777 /* No data type wants to be aligned rounder than this.  */
778 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
779 
780 /* The best alignment to use in cases where we have a choice.  */
781 #define FASTEST_ALIGNMENT 64
782 
783 /* Define this macro as an expression for the alignment of a structure
784    (given by STRUCT as a tree node) if the alignment computed in the
785    usual way is COMPUTED and the alignment explicitly specified was
786    SPECIFIED.
787 
788    The default is to use SPECIFIED if it is larger; otherwise, use
789    the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
790 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)	\
791  (TARGET_FASTER_STRUCTS ?				\
792   ((TREE_CODE (STRUCT) == RECORD_TYPE			\
793     || TREE_CODE (STRUCT) == UNION_TYPE                 \
794     || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
795    && TYPE_FIELDS (STRUCT) != 0                         \
796      ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
797      : MAX ((COMPUTED), (SPECIFIED)))			\
798    :  MAX ((COMPUTED), (SPECIFIED)))
799 
800 /* Make strings word-aligned so strcpy from constants will be faster.  */
801 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
802   ((TREE_CODE (EXP) == STRING_CST	\
803     && (ALIGN) < FASTEST_ALIGNMENT)	\
804    ? FASTEST_ALIGNMENT : (ALIGN))
805 
806 /* Make arrays of chars word-aligned for the same reasons.  */
807 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
808   (TREE_CODE (TYPE) == ARRAY_TYPE		\
809    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
810    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
811 
812 /* Set this nonzero if move instructions will actually fail to work
813    when given unaligned data.  */
814 #define STRICT_ALIGNMENT 1
815 
816 /* Things that must be doubleword aligned cannot go in the text section,
817    because the linker fails to align the text section enough!
818    Put them in the data section.  This macro is only used in this file.  */
819 #define MAX_TEXT_ALIGN 32
820 
821 /* This forces all variables and constants to the data section when PIC.
822    This is because the SunOS 4 shared library scheme thinks everything in
823    text is a function, and patches the address to point to a loader stub.  */
824 /* This is defined to zero for every system which doesn't use the a.out object
825    file format.  */
826 #ifndef SUNOS4_SHARED_LIBRARIES
827 #define SUNOS4_SHARED_LIBRARIES 0
828 #endif
829 
830 /* Standard register usage.  */
831 
832 /* Number of actual hardware registers.
833    The hardware registers are assigned numbers for the compiler
834    from 0 to just below FIRST_PSEUDO_REGISTER.
835    All registers that the compiler knows about must be given numbers,
836    even those that are not normally considered general registers.
837 
838    SPARC has 32 integer registers and 32 floating point registers.
839    64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
840    accessible.  We still account for them to simplify register computations
841    (eg: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
842    32+32+32+4 == 100.
843    Register 100 is used as the integer condition code register.
844    Register 101 is used as the soft frame pointer register.  */
845 
846 #define FIRST_PSEUDO_REGISTER 102
847 
848 #define SPARC_FIRST_FP_REG     32
849 /* Additional V9 fp regs.  */
850 #define SPARC_FIRST_V9_FP_REG  64
851 #define SPARC_LAST_V9_FP_REG   95
852 /* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
853 #define SPARC_FIRST_V9_FCC_REG 96
854 #define SPARC_LAST_V9_FCC_REG  99
855 /* V8 fcc reg.  */
856 #define SPARC_FCC_REG 96
857 /* Integer CC reg.  We don't distinguish %icc from %xcc.  */
858 #define SPARC_ICC_REG 100
859 
860 /* Nonzero if REGNO is an fp reg.  */
861 #define SPARC_FP_REG_P(REGNO) \
862 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
863 
864 /* Argument passing regs.  */
865 #define SPARC_OUTGOING_INT_ARG_FIRST 8
866 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
867 #define SPARC_FP_ARG_FIRST           32
868 
869 /* 1 for registers that have pervasive standard uses
870    and are not available for the register allocator.
871 
872    On non-v9 systems:
873    g1 is free to use as temporary.
874    g2-g4 are reserved for applications.  Gcc normally uses them as
875    temporaries, but this can be disabled via the -mno-app-regs option.
876    g5 through g7 are reserved for the operating system.
877 
878    On v9 systems:
879    g1,g5 are free to use as temporaries, and are free to use between calls
880    if the call is to an external function via the PLT.
881    g4 is free to use as a temporary in the non-embedded case.
882    g4 is reserved in the embedded case.
883    g2-g3 are reserved for applications.  Gcc normally uses them as
884    temporaries, but this can be disabled via the -mno-app-regs option.
885    g6-g7 are reserved for the operating system (or application in
886    embedded case).
887    ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
888    currently be a fixed register until this pattern is rewritten.
889    Register 1 is also used when restoring call-preserved registers in large
890    stack frames.
891 
892    Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
893    CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
894 */
895 
896 #define FIXED_REGISTERS  \
897  {1, 0, 2, 2, 2, 2, 1, 1,	\
898   0, 0, 0, 0, 0, 0, 1, 0,	\
899   0, 0, 0, 0, 0, 0, 0, 0,	\
900   0, 0, 0, 0, 0, 0, 1, 1,	\
901 				\
902   0, 0, 0, 0, 0, 0, 0, 0,	\
903   0, 0, 0, 0, 0, 0, 0, 0,	\
904   0, 0, 0, 0, 0, 0, 0, 0,	\
905   0, 0, 0, 0, 0, 0, 0, 0,	\
906 				\
907   0, 0, 0, 0, 0, 0, 0, 0,	\
908   0, 0, 0, 0, 0, 0, 0, 0,	\
909   0, 0, 0, 0, 0, 0, 0, 0,	\
910   0, 0, 0, 0, 0, 0, 0, 0,	\
911 				\
912   0, 0, 0, 0, 0, 1}
913 
914 /* 1 for registers not available across function calls.
915    These must include the FIXED_REGISTERS and also any
916    registers that can be used without being saved.
917    The latter must include the registers where values are returned
918    and the register where structure-value addresses are passed.
919    Aside from that, you can include as many other registers as you like.  */
920 
921 #define CALL_USED_REGISTERS  \
922  {1, 1, 1, 1, 1, 1, 1, 1,	\
923   1, 1, 1, 1, 1, 1, 1, 1,	\
924   0, 0, 0, 0, 0, 0, 0, 0,	\
925   0, 0, 0, 0, 0, 0, 1, 1,	\
926 				\
927   1, 1, 1, 1, 1, 1, 1, 1,	\
928   1, 1, 1, 1, 1, 1, 1, 1,	\
929   1, 1, 1, 1, 1, 1, 1, 1,	\
930   1, 1, 1, 1, 1, 1, 1, 1,	\
931 				\
932   1, 1, 1, 1, 1, 1, 1, 1,	\
933   1, 1, 1, 1, 1, 1, 1, 1,	\
934   1, 1, 1, 1, 1, 1, 1, 1,	\
935   1, 1, 1, 1, 1, 1, 1, 1,	\
936 				\
937   1, 1, 1, 1, 1, 1}
938 
939 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
940    they won't be allocated.  */
941 
942 #define CONDITIONAL_REGISTER_USAGE				\
943 do								\
944   {								\
945     if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)		\
946       {								\
947 	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
948 	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
949       }								\
950     /* If the user has passed -f{fixed,call-{used,saved}}-g5 */	\
951     /* then honor it.  */					\
952     if (TARGET_ARCH32 && fixed_regs[5])				\
953       fixed_regs[5] = 1;					\
954     else if (TARGET_ARCH64 && fixed_regs[5] == 2)		\
955       fixed_regs[5] = 0;					\
956     if (! TARGET_V9)						\
957       {								\
958 	int regno;						\
959 	for (regno = SPARC_FIRST_V9_FP_REG;			\
960 	     regno <= SPARC_LAST_V9_FP_REG;			\
961 	     regno++)						\
962 	  fixed_regs[regno] = 1;				\
963 	/* %fcc0 is used by v8 and v9.  */			\
964 	for (regno = SPARC_FIRST_V9_FCC_REG + 1;		\
965 	     regno <= SPARC_LAST_V9_FCC_REG;			\
966 	     regno++)						\
967 	  fixed_regs[regno] = 1;				\
968       }								\
969     if (! TARGET_FPU)						\
970       {								\
971 	int regno;						\
972 	for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
973 	  fixed_regs[regno] = 1;				\
974       }								\
975     /* If the user has passed -f{fixed,call-{used,saved}}-g2 */	\
976     /* then honor it.  Likewise with g3 and g4.  */		\
977     if (fixed_regs[2] == 2)					\
978       fixed_regs[2] = ! TARGET_APP_REGS;			\
979     if (fixed_regs[3] == 2)					\
980       fixed_regs[3] = ! TARGET_APP_REGS;			\
981     if (TARGET_ARCH32 && fixed_regs[4] == 2)			\
982       fixed_regs[4] = ! TARGET_APP_REGS;			\
983     else if (TARGET_CM_EMBMEDANY)				\
984       fixed_regs[4] = 1;					\
985     else if (fixed_regs[4] == 2)				\
986       fixed_regs[4] = 0;					\
987     if (TARGET_FLAT)						\
988       {								\
989 	int regno;						\
990 	/* Let the compiler believe the frame pointer is still	\
991 	   %fp, but output it as %i7.  */			\
992 	fixed_regs[31] = 1;					\
993 	reg_names[HARD_FRAME_POINTER_REGNUM] = "%i7";		\
994 	/* Disable leaf functions */				\
995 	memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER);	\
996 	/* Make LEAF_REG_REMAP a noop.  */			\
997 	for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)	\
998 	  leaf_reg_remap [regno] = regno;			\
999       }								\
1000   }								\
1001 while (0)
1002 
1003 /* Return number of consecutive hard regs needed starting at reg REGNO
1004    to hold something of mode MODE.
1005    This is ordinarily the length in words of a value of mode MODE
1006    but can be less for certain modes in special long registers.
1007 
1008    On SPARC, ordinary registers hold 32 bits worth;
1009    this means both integer and floating point registers.
1010    On v9, integer regs hold 64 bits worth; floating point regs hold
1011    32 bits worth (this includes the new fp regs as even the odd ones are
1012    included in the hard register count).  */
1013 
1014 #define HARD_REGNO_NREGS(REGNO, MODE) \
1015   (TARGET_ARCH64							\
1016    ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM			\
1017       ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD	\
1018       : (GET_MODE_SIZE (MODE) + 3) / 4)					\
1019    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1020 
1021 /* Due to the ARCH64 descrepancy above we must override this next
1022    macro too.  */
1023 #define REGMODE_NATURAL_SIZE(MODE) \
1024   ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1025 
1026 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1027    See sparc.c for how we initialize this.  */
1028 extern const int *hard_regno_mode_classes;
1029 extern int sparc_mode_class[];
1030 
1031 /* ??? Because of the funny way we pass parameters we should allow certain
1032    ??? types of float/complex values to be in integer registers during
1033    ??? RTL generation.  This only matters on arch32.  */
1034 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1035   ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1036 
1037 /* Value is 1 if it is a good idea to tie two pseudo registers
1038    when one has mode MODE1 and one has mode MODE2.
1039    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1040    for any hard reg, then this must be 0 for correct output.
1041 
1042    For V9: SFmode can't be combined with other float modes, because they can't
1043    be allocated to the %d registers.  Also, DFmode won't fit in odd %f
1044    registers, but SFmode will.  */
1045 #define MODES_TIEABLE_P(MODE1, MODE2) \
1046   ((MODE1) == (MODE2)						\
1047    || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)		\
1048        && (! TARGET_V9						\
1049 	   || (GET_MODE_CLASS (MODE1) != MODE_FLOAT		\
1050 	       || (MODE1 != SFmode && MODE2 != SFmode)))))
1051 
1052 /* Specify the registers used for certain standard purposes.
1053    The values of these macros are register numbers.  */
1054 
1055 /* SPARC pc isn't overloaded on a register that the compiler knows about.  */
1056 /* #define PC_REGNUM  */
1057 
1058 /* Register to use for pushing function arguments.  */
1059 #define STACK_POINTER_REGNUM 14
1060 
1061 /* The stack bias (amount by which the hardware register is offset by).  */
1062 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1063 
1064 /* Actual top-of-stack address is 92/176 greater than the contents of the
1065    stack pointer register for !v9/v9.  That is:
1066    - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1067      address, and 6*4 bytes for the 6 register parameters.
1068    - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1069      parameter regs.  */
1070 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
1071 
1072 /* Base register for access to local variables of the function.  */
1073 #define HARD_FRAME_POINTER_REGNUM 30
1074 
1075 /* The soft frame pointer does not have the stack bias applied.  */
1076 #define FRAME_POINTER_REGNUM 101
1077 
1078 /* Given the stack bias, the stack pointer isn't actually aligned.  */
1079 #define INIT_EXPANDERS							 \
1080   do {									 \
1081     if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS)	 \
1082       {									 \
1083 	REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT;	 \
1084 	REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
1085       }									 \
1086   } while (0)
1087 
1088 /* Value should be nonzero if functions must have frame pointers.
1089    Zero means the frame pointer need not be set up (and parms
1090    may be accessed via the stack pointer) in functions that seem suitable.
1091    This is computed in `reload', in reload1.c.
1092    Used in flow.c, global.c, and reload1.c.
1093 
1094    Being a non-leaf function does not mean a frame pointer is needed in the
1095    flat window model.  However, the debugger won't be able to backtrace through
1096    us with out it.  */
1097 #define FRAME_POINTER_REQUIRED				\
1098   (TARGET_FLAT						\
1099    ? (current_function_calls_alloca			\
1100       || !leaf_function_p ())				\
1101    : ! (leaf_function_p () && only_leaf_regs_used ()))
1102 
1103 /* Base register for access to arguments of the function.  */
1104 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1105 
1106 /* Register in which static-chain is passed to a function.  This must
1107    not be a register used by the prologue.  */
1108 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1109 
1110 /* Register which holds offset table for position-independent
1111    data references.  */
1112 
1113 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
1114 
1115 /* Pick a default value we can notice from override_options:
1116    !v9: Default is on.
1117    v9: Default is off.  */
1118 
1119 #define DEFAULT_PCC_STRUCT_RETURN -1
1120 
1121 /* SPARC ABI says that quad-precision floats and all structures are returned
1122    in memory.
1123    For v9: unions <= 32 bytes in size are returned in int regs,
1124    structures up to 32 bytes are returned in int and fp regs.  */
1125 
1126 #define RETURN_IN_MEMORY(TYPE)				\
1127 (TARGET_ARCH32						\
1128  ? (TYPE_MODE (TYPE) == BLKmode				\
1129     || TYPE_MODE (TYPE) == TFmode			\
1130     || TYPE_MODE (TYPE) == TCmode)			\
1131  : (TYPE_MODE (TYPE) == BLKmode				\
1132     && (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 32))
1133 
1134 /* Functions which return large structures get the address
1135    to place the wanted value at offset 64 from the frame.
1136    Must reserve 64 bytes for the in and local registers.
1137    v9: Functions which return large structures get the address to place the
1138    wanted value from an invisible first argument.  */
1139 /* Used only in other #defines in this file.  */
1140 #define STRUCT_VALUE_OFFSET 64
1141 
1142 #define STRUCT_VALUE \
1143   (TARGET_ARCH64					\
1144    ? 0							\
1145    : gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1146 					STRUCT_VALUE_OFFSET)))
1147 
1148 #define STRUCT_VALUE_INCOMING \
1149   (TARGET_ARCH64						\
1150    ? 0								\
1151    : gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx,	\
1152 					STRUCT_VALUE_OFFSET)))
1153 
1154 /* Define the classes of registers for register constraints in the
1155    machine description.  Also define ranges of constants.
1156 
1157    One of the classes must always be named ALL_REGS and include all hard regs.
1158    If there is more than one class, another class must be named NO_REGS
1159    and contain no registers.
1160 
1161    The name GENERAL_REGS must be the name of a class (or an alias for
1162    another name such as ALL_REGS).  This is the class of registers
1163    that is allowed by "g" or "r" in a register constraint.
1164    Also, registers outside this class are allocated only when
1165    instructions express preferences for them.
1166 
1167    The classes must be numbered in nondecreasing order; that is,
1168    a larger-numbered class must never be contained completely
1169    in a smaller-numbered class.
1170 
1171    For any two classes, it is very desirable that there be another
1172    class that represents their union.  */
1173 
1174 /* The SPARC has various kinds of registers: general, floating point,
1175    and condition codes [well, it has others as well, but none that we
1176    care directly about].
1177 
1178    For v9 we must distinguish between the upper and lower floating point
1179    registers because the upper ones can't hold SFmode values.
1180    HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1181    satisfying a group need for a class will also satisfy a single need for
1182    that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1183    regs.
1184 
1185    It is important that one class contains all the general and all the standard
1186    fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
1187    because reg_class_record() will bias the selection in favor of fp regs,
1188    because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1189    because FP_REGS > GENERAL_REGS.
1190 
1191    It is also important that one class contain all the general and all the
1192    fp regs.  Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1193    but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1194    allocate_reload_reg() to bypass it causing an abort because the compiler
1195    thinks it doesn't have a spill reg when in fact it does.
1196 
1197    v9 also has 4 floating point condition code registers.  Since we don't
1198    have a class that is the union of FPCC_REGS with either of the others,
1199    it is important that it appear first.  Otherwise the compiler will die
1200    trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1201    constraints.
1202 
1203    It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
1204    may try to use it to hold an SImode value.  See register_operand.
1205    ??? Should %fcc[0123] be handled similarly?
1206 */
1207 
1208 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1209 		 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1210 		 ALL_REGS, LIM_REG_CLASSES };
1211 
1212 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1213 
1214 /* Give names of register classes as strings for dump file.  */
1215 
1216 #define REG_CLASS_NAMES \
1217   { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",	\
1218      "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS",	\
1219      "ALL_REGS" }
1220 
1221 /* Define which registers fit in which classes.
1222    This is an initializer for a vector of HARD_REG_SET
1223    of length N_REG_CLASSES.  */
1224 
1225 #define REG_CLASS_CONTENTS				\
1226   {{0, 0, 0, 0},	/* NO_REGS */			\
1227    {0, 0, 0, 0xf},	/* FPCC_REGS */			\
1228    {0xffff, 0, 0, 0},	/* I64_REGS */			\
1229    {-1, 0, 0, 0x20},	/* GENERAL_REGS */		\
1230    {0, -1, 0, 0},	/* FP_REGS */			\
1231    {0, -1, -1, 0},	/* EXTRA_FP_REGS */		\
1232    {-1, -1, 0, 0x20},	/* GENERAL_OR_FP_REGS */	\
1233    {-1, -1, -1, 0x20},	/* GENERAL_OR_EXTRA_FP_REGS */	\
1234    {-1, -1, -1, 0x3f}}	/* ALL_REGS */
1235 
1236 /* Defines invalid mode changes.  Borrowed from pa64-regs.h.
1237 
1238    SImode loads to floating-point registers are not zero-extended.
1239    The definition for LOAD_EXTEND_OP specifies that integer loads
1240    narrower than BITS_PER_WORD will be zero-extended.  As a result,
1241    we inhibit changes from SImode unless they are to a mode that is
1242    identical in size.  */
1243 
1244 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
1245   (TARGET_ARCH64						\
1246    && (FROM) == SImode						\
1247    && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)		\
1248    ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1249 
1250 /* The same information, inverted:
1251    Return the class number of the smallest class containing
1252    reg number REGNO.  This could be a conditional expression
1253    or could index an array.  */
1254 
1255 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1256 
1257 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1258 
1259 /* This is the order in which to allocate registers normally.
1260 
1261    We put %f0-%f7 last among the float registers, so as to make it more
1262    likely that a pseudo-register which dies in the float return register
1263    area will get allocated to the float return register, thus saving a move
1264    instruction at the end of the function.
1265 
1266    Similarly for integer return value registers.
1267 
1268    We know in this case that we will not end up with a leaf function.
1269 
1270    The register allocater is given the global and out registers first
1271    because these registers are call clobbered and thus less useful to
1272    global register allocation.
1273 
1274    Next we list the local and in registers.  They are not call clobbered
1275    and thus very useful for global register allocation.  We list the input
1276    registers before the locals so that it is more likely the incoming
1277    arguments received in those registers can just stay there and not be
1278    reloaded.  */
1279 
1280 #define REG_ALLOC_ORDER \
1281 { 1, 2, 3, 4, 5, 6, 7,			/* %g1-%g7 */	\
1282   13, 12, 11, 10, 9, 8, 		/* %o5-%o0 */	\
1283   15,					/* %o7 */	\
1284   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */ 	\
1285   29, 28, 27, 26, 25, 24, 31,		/* %i5-%i0,%i7 */\
1286   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */  \
1287   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */ \
1288   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */ \
1289   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */ \
1290   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */ \
1291   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */ \
1292   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */ \
1293   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */   \
1294   96, 97, 98, 99,			/* %fcc0-3 */   \
1295   100, 0, 14, 30, 101}			/* %icc, %g0, %o6, %i6, %sfp */
1296 
1297 /* This is the order in which to allocate registers for
1298    leaf functions.  If all registers can fit in the global and
1299    output registers, then we have the possibility of having a leaf
1300    function.
1301 
1302    The macro actually mentioned the input registers first,
1303    because they get renumbered into the output registers once
1304    we know really do have a leaf function.
1305 
1306    To be more precise, this register allocation order is used
1307    when %o7 is found to not be clobbered right before register
1308    allocation.  Normally, the reason %o7 would be clobbered is
1309    due to a call which could not be transformed into a sibling
1310    call.
1311 
1312    As a consequence, it is possible to use the leaf register
1313    allocation order and not end up with a leaf function.  We will
1314    not get suboptimal register allocation in that case because by
1315    definition of being potentially leaf, there were no function
1316    calls.  Therefore, allocation order within the local register
1317    window is not critical like it is when we do have function calls.  */
1318 
1319 #define REG_LEAF_ALLOC_ORDER \
1320 { 1, 2, 3, 4, 5, 6, 7, 			/* %g1-%g7 */	\
1321   29, 28, 27, 26, 25, 24,		/* %i5-%i0 */	\
1322   15,					/* %o7 */	\
1323   13, 12, 11, 10, 9, 8,			/* %o5-%o0 */	\
1324   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */	\
1325   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */	\
1326   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */	\
1327   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */	\
1328   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */	\
1329   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */	\
1330   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */	\
1331   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */	\
1332   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */	\
1333   96, 97, 98, 99,			/* %fcc0-3 */	\
1334   100, 0, 14, 30, 31, 101}		/* %icc, %g0, %o6, %i6, %i7, %sfp */
1335 
1336 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1337 
1338 extern char sparc_leaf_regs[];
1339 #define LEAF_REGISTERS sparc_leaf_regs
1340 
1341 extern char leaf_reg_remap[];
1342 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1343 
1344 /* The class value for index registers, and the one for base regs.  */
1345 #define INDEX_REG_CLASS GENERAL_REGS
1346 #define BASE_REG_CLASS GENERAL_REGS
1347 
1348 /* Local macro to handle the two v9 classes of FP regs.  */
1349 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1350 
1351 /* Get reg_class from a letter such as appears in the machine description.
1352    In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1353    .md file for v8 and v9.
1354    'd' and 'b' are used for single and double precision VIS operations,
1355    if TARGET_VIS.
1356    'h' is used for V8+ 64 bit global and out registers.  */
1357 
1358 #define REG_CLASS_FROM_LETTER(C)		\
1359 (TARGET_V9					\
1360  ? ((C) == 'f' ? FP_REGS			\
1361     : (C) == 'e' ? EXTRA_FP_REGS 		\
1362     : (C) == 'c' ? FPCC_REGS			\
1363     : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1364     : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1365     : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1366     : NO_REGS)					\
1367  : ((C) == 'f' ? FP_REGS			\
1368     : (C) == 'e' ? FP_REGS			\
1369     : (C) == 'c' ? FPCC_REGS			\
1370     : NO_REGS))
1371 
1372 /* The letters I, J, K, L and M in a register constraint string
1373    can be used to stand for particular ranges of immediate operands.
1374    This macro defines what the ranges are.
1375    C is the letter, and VALUE is a constant value.
1376    Return 1 if VALUE is in the range specified by C.
1377 
1378    `I' is used for the range of constants an insn can actually contain.
1379    `J' is used for the range which is just zero (since that is R0).
1380    `K' is used for constants which can be loaded with a single sethi insn.
1381    `L' is used for the range of constants supported by the movcc insns.
1382    `M' is used for the range of constants supported by the movrcc insns.
1383    `N' is like K, but for constants wider than 32 bits.
1384    `O' is used for the range which is just 4096.  */
1385 
1386 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1387 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1388 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1389 /* 10 and 11 bit immediates are only used for a few specific insns.
1390    SMALL_INT is used throughout the port so we continue to use it.  */
1391 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1392 /* 13 bit immediate, considering only the low 32 bits */
1393 #define SMALL_INT32(X) (SPARC_SIMM13_P (trunc_int_for_mode \
1394 					(INTVAL (X), SImode)))
1395 #define SPARC_SETHI_P(X) \
1396   (((unsigned HOST_WIDE_INT) (X) \
1397     & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1398 #define SPARC_SETHI32_P(X) \
1399   (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1400 
1401 #define CONST_OK_FOR_LETTER_P(VALUE, C)  \
1402   ((C) == 'I' ? SPARC_SIMM13_P (VALUE)			\
1403    : (C) == 'J' ? (VALUE) == 0				\
1404    : (C) == 'K' ? SPARC_SETHI32_P (VALUE)		\
1405    : (C) == 'L' ? SPARC_SIMM11_P (VALUE)		\
1406    : (C) == 'M' ? SPARC_SIMM10_P (VALUE)		\
1407    : (C) == 'N' ? SPARC_SETHI_P (VALUE)			\
1408    : (C) == 'O' ? (VALUE) == 4096			\
1409    : 0)
1410 
1411 /* Similar, but for floating constants, and defining letters G and H.
1412    Here VALUE is the CONST_DOUBLE rtx itself.  */
1413 
1414 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)	\
1415   ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE))	\
1416    : (C) == 'H' ? arith_double_operand (VALUE, DImode)		\
1417    : (C) == 'O' ? arith_double_4096_operand (VALUE, DImode)	\
1418    : 0)
1419 
1420 /* Given an rtx X being reloaded into a reg required to be
1421    in class CLASS, return the class of reg to actually use.
1422    In general this is just CLASS; but on some machines
1423    in some cases it is preferable to use a more restrictive class.  */
1424 /* - We can't load constants into FP registers.
1425    - We can't load FP constants into integer registers when soft-float,
1426      because there is no soft-float pattern with a r/F constraint.
1427    - We can't load FP constants into integer registers for TFmode unless
1428      it is 0.0L, because there is no movtf pattern with a r/F constraint.
1429    - Try and reload integer constants (symbolic or otherwise) back into
1430      registers directly, rather than having them dumped to memory.  */
1431 
1432 #define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1433   (CONSTANT_P (X)					\
1434    ? ((FP_REG_CLASS_P (CLASS)				\
1435        || (CLASS) == GENERAL_OR_FP_REGS			\
1436        || (CLASS) == GENERAL_OR_EXTRA_FP_REGS		\
1437        || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT	\
1438 	   && ! TARGET_FPU)				\
1439        || (GET_MODE (X) == TFmode			\
1440 	   && ! fp_zero_operand (X, TFmode)))		\
1441       ? NO_REGS						\
1442       : (!FP_REG_CLASS_P (CLASS)			\
1443          && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)	\
1444       ? GENERAL_REGS					\
1445       : (CLASS))					\
1446    : (CLASS))
1447 
1448 /* Return the register class of a scratch register needed to load IN into
1449    a register of class CLASS in MODE.
1450 
1451    We need a temporary when loading/storing a HImode/QImode value
1452    between memory and the FPU registers.  This can happen when combine puts
1453    a paradoxical subreg in a float/fix conversion insn.
1454 
1455    We need a temporary when loading/storing a DFmode value between
1456    unaligned memory and the upper FPU registers.  */
1457 
1458 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN)		\
1459   ((FP_REG_CLASS_P (CLASS)					\
1460     && ((MODE) == HImode || (MODE) == QImode)			\
1461     && (GET_CODE (IN) == MEM					\
1462         || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)	\
1463             && true_regnum (IN) == -1)))			\
1464    ? GENERAL_REGS						\
1465    : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode		\
1466       && GET_CODE (IN) == MEM && TARGET_ARCH32			\
1467       && ! mem_min_alignment ((IN), 8))				\
1468      ? FP_REGS							\
1469      : (((TARGET_CM_MEDANY					\
1470 	  && symbolic_operand ((IN), (MODE)))			\
1471 	 || (TARGET_CM_EMBMEDANY				\
1472 	     && text_segment_operand ((IN), (MODE))))		\
1473 	&& !flag_pic)						\
1474        ? GENERAL_REGS						\
1475        : NO_REGS)
1476 
1477 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN)		\
1478   ((FP_REG_CLASS_P (CLASS)					\
1479      && ((MODE) == HImode || (MODE) == QImode)			\
1480      && (GET_CODE (IN) == MEM					\
1481          || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)	\
1482              && true_regnum (IN) == -1)))			\
1483    ? GENERAL_REGS						\
1484    : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode		\
1485       && GET_CODE (IN) == MEM && TARGET_ARCH32			\
1486       && ! mem_min_alignment ((IN), 8))				\
1487      ? FP_REGS							\
1488      : (((TARGET_CM_MEDANY					\
1489 	  && symbolic_operand ((IN), (MODE)))			\
1490 	 || (TARGET_CM_EMBMEDANY				\
1491 	     && text_segment_operand ((IN), (MODE))))		\
1492 	&& !flag_pic)						\
1493        ? GENERAL_REGS						\
1494        : NO_REGS)
1495 
1496 /* On SPARC it is not possible to directly move data between
1497    GENERAL_REGS and FP_REGS.  */
1498 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1499   (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1500 
1501 /* Return the stack location to use for secondary memory needed reloads.
1502    We want to use the reserved location just below the frame pointer.
1503    However, we must ensure that there is a frame, so use assign_stack_local
1504    if the frame size is zero.  */
1505 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1506   (get_frame_size () == 0						\
1507    ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0)			\
1508    : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx,		\
1509 				       STARTING_FRAME_OFFSET)))
1510 
1511 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1512    because the movsi and movsf patterns don't handle r/f moves.
1513    For v8 we copy the default definition.  */
1514 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1515   (TARGET_ARCH64						\
1516    ? (GET_MODE_BITSIZE (MODE) < 32				\
1517       ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)		\
1518       : MODE)							\
1519    : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD			\
1520       ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0)	\
1521       : MODE))
1522 
1523 /* Return the maximum number of consecutive registers
1524    needed to represent mode MODE in a register of class CLASS.  */
1525 /* On SPARC, this is the size of MODE in words.  */
1526 #define CLASS_MAX_NREGS(CLASS, MODE)	\
1527   (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1528    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1529 
1530 /* Stack layout; function entry, exit and calling.  */
1531 
1532 /* Define the number of register that can hold parameters.
1533    This macro is only used in other macro definitions below and in sparc.c.
1534    MODE is the mode of the argument.
1535    !v9: All args are passed in %o0-%o5.
1536    v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1537    See the description in sparc.c.  */
1538 #define NPARM_REGS(MODE) \
1539 (TARGET_ARCH64 \
1540  ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1541  : 6)
1542 
1543 /* Define this if pushing a word on the stack
1544    makes the stack pointer a smaller address.  */
1545 #define STACK_GROWS_DOWNWARD
1546 
1547 /* Define this if the nominal address of the stack frame
1548    is at the high-address end of the local variables;
1549    that is, each additional local variable allocated
1550    goes at a more negative offset in the frame.  */
1551 #define FRAME_GROWS_DOWNWARD
1552 
1553 /* Offset within stack frame to start allocating local variables at.
1554    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1555    first local allocated.  Otherwise, it is the offset to the BEGINNING
1556    of the first local allocated.  */
1557 /* This allows space for one TFmode floating point value.  */
1558 #define STARTING_FRAME_OFFSET \
1559   (TARGET_ARCH64 ? -16 \
1560    : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1561 
1562 /* If we generate an insn to push BYTES bytes,
1563    this says how many the stack pointer really advances by.
1564    On SPARC, don't define this because there are no push insns.  */
1565 /*  #define PUSH_ROUNDING(BYTES) */
1566 
1567 /* Offset of first parameter from the argument pointer register value.
1568    !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1569    even if this function isn't going to use it.
1570    v9: This is 128 for the ins and locals.  */
1571 #define FIRST_PARM_OFFSET(FNDECL) \
1572   (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1573 
1574 /* Offset from the argument pointer register value to the CFA.
1575    This is different from FIRST_PARM_OFFSET because the register window
1576    comes between the CFA and the arguments.  */
1577 #define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1578 
1579 /* When a parameter is passed in a register, stack space is still
1580    allocated for it.
1581    !v9: All 6 possible integer registers have backing store allocated.
1582    v9: Only space for the arguments passed is allocated.  */
1583 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1584    meaning to the backend.  Further, we need to be able to detect if a
1585    varargs/unprototyped function is called, as they may want to spill more
1586    registers than we've provided space.  Ugly, ugly.  So for now we retain
1587    all 6 slots even for v9.  */
1588 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1589 
1590 /* Definitions for register elimination.  */
1591 /* ??? In TARGET_FLAT mode we needn't have a hard frame pointer.  */
1592 
1593 #define ELIMINABLE_REGS \
1594   {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1595    { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1596 
1597 /* The way this is structured, we can't eliminate SFP in favor of SP
1598    if the frame pointer is required: we want to use the SFP->HFP elimination
1599    in that case.  But the test in update_eliminables doesn't know we are
1600    assuming below that we only do the former elimination.  */
1601 #define CAN_ELIMINATE(FROM, TO) \
1602   ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1603 
1604 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1605   do {								\
1606     (OFFSET) = 0;						\
1607     if ((TO) == STACK_POINTER_REGNUM)				\
1608       {								\
1609 	/* Note, we always pretend that this is a leaf function	\
1610 	   because if it's not, there's no point in trying to	\
1611 	   eliminate the frame pointer.  If it is a leaf	\
1612 	   function, we guessed right!  */			\
1613 	if (TARGET_FLAT)					\
1614 	  (OFFSET) =						\
1615 	    sparc_flat_compute_frame_size (get_frame_size ());	\
1616 	else							\
1617 	  (OFFSET) = compute_frame_size (get_frame_size (), 1);	\
1618       }								\
1619     (OFFSET) += SPARC_STACK_BIAS;				\
1620   } while (0)
1621 
1622 /* Keep the stack pointer constant throughout the function.
1623    This is both an optimization and a necessity: longjmp
1624    doesn't behave itself when the stack pointer moves within
1625    the function!  */
1626 #define ACCUMULATE_OUTGOING_ARGS 1
1627 
1628 /* Value is the number of bytes of arguments automatically
1629    popped when returning from a subroutine call.
1630    FUNDECL is the declaration node of the function (as a tree),
1631    FUNTYPE is the data type of the function (as a tree),
1632    or for a library call it is an identifier node for the subroutine name.
1633    SIZE is the number of bytes of arguments passed on the stack.  */
1634 
1635 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1636 
1637 /* Some subroutine macros specific to this machine.
1638    When !TARGET_FPU, put float return values in the general registers,
1639    since we don't have any fp registers.  */
1640 #define BASE_RETURN_VALUE_REG(MODE)					\
1641   (TARGET_ARCH64							\
1642    ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8)			\
1643    : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1644 
1645 #define BASE_OUTGOING_VALUE_REG(MODE)				\
1646   (TARGET_ARCH64						\
1647    ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32			\
1648       : TARGET_FLAT ? 8 : 24)					\
1649    : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32	\
1650       : (TARGET_FLAT ? 8 : 24)))
1651 
1652 #define BASE_PASSING_ARG_REG(MODE)				\
1653   (TARGET_ARCH64						\
1654    ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8)		\
1655    : 8)
1656 
1657 /* ??? FIXME -- seems wrong for v9 structure passing...  */
1658 #define BASE_INCOMING_ARG_REG(MODE)				\
1659   (TARGET_ARCH64						\
1660    ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32			\
1661       : TARGET_FLAT ? 8 : 24)					\
1662    : (TARGET_FLAT ? 8 : 24))
1663 
1664 /* Define this macro if the target machine has "register windows".  This
1665    C expression returns the register number as seen by the called function
1666    corresponding to register number OUT as seen by the calling function.
1667    Return OUT if register number OUT is not an outbound register.  */
1668 
1669 #define INCOMING_REGNO(OUT) \
1670  ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1671 
1672 /* Define this macro if the target machine has "register windows".  This
1673    C expression returns the register number as seen by the calling function
1674    corresponding to register number IN as seen by the called function.
1675    Return IN if register number IN is not an inbound register.  */
1676 
1677 #define OUTGOING_REGNO(IN) \
1678  ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1679 
1680 /* Define this macro if the target machine has register windows.  This
1681    C expression returns true if the register is call-saved but is in the
1682    register window.  */
1683 
1684 #define LOCAL_REGNO(REGNO) \
1685   (TARGET_FLAT ? 0 : (REGNO) >= 16 && (REGNO) <= 31)
1686 
1687 /* Define how to find the value returned by a function.
1688    VALTYPE is the data type of the value (as a tree).
1689    If the precise function being called is known, FUNC is its FUNCTION_DECL;
1690    otherwise, FUNC is 0.  */
1691 
1692 /* On SPARC the value is found in the first "output" register.  */
1693 
1694 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1695   function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1696 
1697 /* But the called function leaves it in the first "input" register.  */
1698 
1699 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1700   function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1701 
1702 /* Define how to find the value returned by a library function
1703    assuming the value has mode MODE.  */
1704 
1705 #define LIBCALL_VALUE(MODE) \
1706   function_value (NULL_TREE, (MODE), 1)
1707 
1708 /* 1 if N is a possible register number for a function value
1709    as seen by the caller.
1710    On SPARC, the first "output" reg is used for integer values,
1711    and the first floating point register is used for floating point values.  */
1712 
1713 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1714 
1715 /* Define the size of space to allocate for the return value of an
1716    untyped_call.  */
1717 
1718 #define APPLY_RESULT_SIZE 16
1719 
1720 /* 1 if N is a possible register number for function argument passing.
1721    On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1722 
1723 #define FUNCTION_ARG_REGNO_P(N) \
1724 (TARGET_ARCH64 \
1725  ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1726  : ((N) >= 8 && (N) <= 13))
1727 
1728 /* Define a data type for recording info about an argument list
1729    during the scan of that argument list.  This data type should
1730    hold all necessary information about the function itself
1731    and about the args processed so far, enough to enable macros
1732    such as FUNCTION_ARG to determine where the next arg should go.
1733 
1734    On SPARC (!v9), this is a single integer, which is a number of words
1735    of arguments scanned so far (including the invisible argument,
1736    if any, which holds the structure-value-address).
1737    Thus 7 or more means all following args should go on the stack.
1738 
1739    For v9, we also need to know whether a prototype is present.  */
1740 
1741 struct sparc_args {
1742   int words;       /* number of words passed so far */
1743   int prototype_p; /* nonzero if a prototype is present */
1744   int libcall_p;   /* nonzero if a library call */
1745 };
1746 #define CUMULATIVE_ARGS struct sparc_args
1747 
1748 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1749    for a call to a function whose data type is FNTYPE.
1750    For a library call, FNTYPE is 0.  */
1751 
1752 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1753 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT));
1754 
1755 /* Update the data in CUM to advance over an argument
1756    of mode MODE and data type TYPE.
1757    TYPE is null for libcalls where that information may not be available.  */
1758 
1759 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1760 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1761 
1762 /* Nonzero if we do not know how to pass TYPE solely in registers.  */
1763 
1764 #define MUST_PASS_IN_STACK(MODE,TYPE)			\
1765   ((TYPE) != 0						\
1766    && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST	\
1767        || TREE_ADDRESSABLE (TYPE)))
1768 
1769 /* Determine where to put an argument to a function.
1770    Value is zero to push the argument on the stack,
1771    or a hard register in which to store the argument.
1772 
1773    MODE is the argument's machine mode.
1774    TYPE is the data type of the argument (as a tree).
1775     This is null for libcalls where that information may
1776     not be available.
1777    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1778     the preceding args and about the function being called.
1779    NAMED is nonzero if this argument is a named parameter
1780     (otherwise it is an extra parameter matching an ellipsis).  */
1781 
1782 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1783 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1784 
1785 /* Define where a function finds its arguments.
1786    This is different from FUNCTION_ARG because of register windows.  */
1787 
1788 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1789 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1790 
1791 /* For an arg passed partly in registers and partly in memory,
1792    this is the number of registers used.
1793    For args passed entirely in registers or entirely in memory, zero.  */
1794 
1795 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1796 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1797 
1798 /* A C expression that indicates when an argument must be passed by reference.
1799    If nonzero for an argument, a copy of that argument is made in memory and a
1800    pointer to the argument is passed instead of the argument itself.
1801    The pointer is passed in whatever way is appropriate for passing a pointer
1802    to that type.  */
1803 
1804 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1805 function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1806 
1807 /* If defined, a C expression which determines whether, and in which direction,
1808    to pad out an argument with extra space.  The value should be of type
1809    `enum direction': either `upward' to pad above the argument,
1810    `downward' to pad below, or `none' to inhibit padding.  */
1811 
1812 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1813 function_arg_padding ((MODE), (TYPE))
1814 
1815 /* If defined, a C expression that gives the alignment boundary, in bits,
1816    of an argument with the specified mode and type.  If it is not defined,
1817    PARM_BOUNDARY is used for all arguments.
1818    For sparc64, objects requiring 16 byte alignment are passed that way.  */
1819 
1820 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1821 ((TARGET_ARCH64					\
1822   && (GET_MODE_ALIGNMENT (MODE) == 128		\
1823       || ((TYPE) && TYPE_ALIGN (TYPE) == 128)))	\
1824  ? 128 : PARM_BOUNDARY)
1825 
1826 /* Define the information needed to generate branch and scc insns.  This is
1827    stored from the compare operation.  Note that we can't use "rtx" here
1828    since it hasn't been defined!  */
1829 
1830 extern GTY(()) rtx sparc_compare_op0;
1831 extern GTY(()) rtx sparc_compare_op1;
1832 
1833 
1834 /* Generate the special assembly code needed to tell the assembler whatever
1835    it might need to know about the return value of a function.
1836 
1837    For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1838    information to the assembler relating to peephole optimization (done in
1839    the assembler).  */
1840 
1841 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1842   fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1843 
1844 /* Output the special assembly code needed to tell the assembler some
1845    register is used as global register variable.
1846 
1847    SPARC 64bit psABI declares registers %g2 and %g3 as application
1848    registers and %g6 and %g7 as OS registers.  Any object using them
1849    should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1850    and how they are used (scratch or some global variable).
1851    Linker will then refuse to link together objects which use those
1852    registers incompatibly.
1853 
1854    Unless the registers are used for scratch, two different global
1855    registers cannot be declared to the same name, so in the unlikely
1856    case of a global register variable occupying more than one register
1857    we prefix the second and following registers with .gnu.part1. etc.  */
1858 
1859 extern char sparc_hard_reg_printed[8];
1860 
1861 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1862 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)		\
1863 do {									\
1864   if (TARGET_ARCH64)							\
1865     {									\
1866       int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1867       int reg;								\
1868       for (reg = (REGNO); reg < 8 && reg < end; reg++)			\
1869 	if ((reg & ~1) == 2 || (reg & ~1) == 6)				\
1870 	  {								\
1871 	    if (reg == (REGNO))						\
1872 	      fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1873 	    else							\
1874 	      fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",	\
1875 		       reg, reg - (REGNO), (NAME));			\
1876 	    sparc_hard_reg_printed[reg] = 1;				\
1877 	  }								\
1878     }									\
1879 } while (0)
1880 #endif
1881 
1882 
1883 /* Emit rtl for profiling.  */
1884 #define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1885 
1886 /* All the work done in PROFILE_HOOK, but still required.  */
1887 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1888 
1889 /* Set the name of the mcount function for the system.  */
1890 #define MCOUNT_FUNCTION "*mcount"
1891 
1892 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1893    the stack pointer does not matter.  The value is tested only in
1894    functions that have frame pointers.
1895    No definition is equivalent to always zero.  */
1896 
1897 #define EXIT_IGNORE_STACK	\
1898  (get_frame_size () != 0	\
1899   || current_function_calls_alloca || current_function_outgoing_args_size)
1900 
1901 #define DELAY_SLOTS_FOR_EPILOGUE \
1902   (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
1903 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
1904   (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
1905    : eligible_for_epilogue_delay (trial, slots_filled))
1906 
1907 /* Define registers used by the epilogue and return instruction.  */
1908 #define EPILOGUE_USES(REGNO) \
1909   (!TARGET_FLAT && REGNO == 31)
1910 
1911 /* Length in units of the trampoline for entering a nested function.  */
1912 
1913 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1914 
1915 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1916 
1917 /* Emit RTL insns to initialize the variable parts of a trampoline.
1918    FNADDR is an RTX for the address of the function's pure code.
1919    CXT is an RTX for the static chain value for the function.  */
1920 
1921 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1922     if (TARGET_ARCH64)						\
1923       sparc64_initialize_trampoline (TRAMP, FNADDR, CXT);	\
1924     else							\
1925       sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1926 
1927 /* Generate necessary RTL for __builtin_saveregs().  */
1928 
1929 #define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
1930 
1931 /* Implement `va_start' for varargs and stdarg.  */
1932 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1933   sparc_va_start (valist, nextarg)
1934 
1935 /* Implement `va_arg'.  */
1936 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1937   sparc_va_arg (valist, type)
1938 
1939 /* Define this macro if the location where a function argument is passed
1940    depends on whether or not it is a named argument.
1941 
1942    This macro controls how the NAMED argument to FUNCTION_ARG
1943    is set for varargs and stdarg functions.  With this macro defined,
1944    the NAMED argument is always true for named arguments, and false for
1945    unnamed arguments.  If this is not defined, but SETUP_INCOMING_VARARGS
1946    is defined, then all arguments are treated as named.  Otherwise, all named
1947    arguments except the last are treated as named.
1948    For the v9 we want NAMED to mean what it says it means.  */
1949 
1950 #define STRICT_ARGUMENT_NAMING TARGET_V9
1951 
1952 /* We do not allow sibling calls if -mflat, nor
1953    we do not allow indirect calls to be optimized into sibling calls.
1954 
1955    Also, on sparc 32-bit we cannot emit a sibling call when the
1956    current function returns a structure.  This is because the "unimp
1957    after call" convention would cause the callee to return to the
1958    wrong place.  The generic code already disallows cases where the
1959    function being called returns a structure.
1960 
1961    It may seem strange how this last case could occur.  Usually there
1962    is code after the call which jumps to epilogue code which dumps the
1963    return value into the struct return area.  That ought to invalidate
1964    the sibling call right?  Well, in the c++ case we can end up passing
1965    the pointer to the struct return area to a constructor (which returns
1966    void) and then nothing else happens.  Such a sibling call would look
1967    valid without the added check here.  */
1968 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1969 	(DECL \
1970 	 && ! TARGET_FLAT \
1971 	 && (TARGET_ARCH64 || ! current_function_returns_struct))
1972 
1973 /* Generate RTL to flush the register windows so as to make arbitrary frames
1974    available.  */
1975 #define SETUP_FRAME_ADDRESSES()		\
1976   emit_insn (gen_flush_register_windows ())
1977 
1978 /* Given an rtx for the address of a frame,
1979    return an rtx for the address of the word in the frame
1980    that holds the dynamic chain--the previous frame's address.
1981    ??? -mflat support? */
1982 #define DYNAMIC_CHAIN_ADDRESS(frame)	\
1983   plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1984 
1985 /* The return address isn't on the stack, it is in a register, so we can't
1986    access it from the current frame pointer.  We can access it from the
1987    previous frame pointer though by reading a value from the register window
1988    save area.  */
1989 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1990 
1991 /* This is the offset of the return address to the true next instruction to be
1992    executed for the current function.  */
1993 #define RETURN_ADDR_OFFSET \
1994   (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1995 
1996 /* The current return address is in %i7.  The return address of anything
1997    farther back is in the register window save area at [%fp+60].  */
1998 /* ??? This ignores the fact that the actual return address is +8 for normal
1999    returns, and +12 for structure returns.  */
2000 #define RETURN_ADDR_RTX(count, frame)		\
2001   ((count == -1)				\
2002    ? gen_rtx_REG (Pmode, 31)			\
2003    : gen_rtx_MEM (Pmode,			\
2004 		  memory_address (Pmode, plus_constant (frame, \
2005 							15 * UNITS_PER_WORD \
2006 							+ SPARC_STACK_BIAS))))
2007 
2008 /* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
2009    +12, but always using +8 is close enough for frame unwind purposes.
2010    Actually, just using %o7 is close enough for unwinding, but %o7+8
2011    is something you can return to.  */
2012 #define INCOMING_RETURN_ADDR_RTX \
2013   plus_constant (gen_rtx_REG (word_mode, 15), 8)
2014 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (15)
2015 
2016 /* The offset from the incoming value of %sp to the top of the stack frame
2017    for the current function.  On sparc64, we have to account for the stack
2018    bias if present.  */
2019 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
2020 
2021 /* Describe how we implement __builtin_eh_return.  */
2022 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
2023 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 1)	/* %g1 */
2024 #define EH_RETURN_HANDLER_RTX	gen_rtx_REG (Pmode, 31)	/* %i7 */
2025 
2026 /* Select a format to encode pointers in exception handling data.  CODE
2027    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2028    true if the symbol may be affected by dynamic relocations.
2029 
2030    If assembler and linker properly support .uaword %r_disp32(foo),
2031    then use PC relative 32-bit relocations instead of absolute relocs
2032    for shared libraries.  On sparc64, use pc relative 32-bit relocs even
2033    for binaries, to save memory.
2034 
2035    binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
2036    symbol %r_disp32() is against was not local, but .hidden.  In that
2037    case, we have to use DW_EH_PE_absptr for pic personality.  */
2038 #ifdef HAVE_AS_SPARC_UA_PCREL
2039 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
2040 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
2041   (flag_pic								\
2042    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2043    : ((TARGET_ARCH64 && ! GLOBAL)					\
2044       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
2045       : DW_EH_PE_absptr))
2046 #else
2047 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
2048   (flag_pic								\
2049    ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))	\
2050    : ((TARGET_ARCH64 && ! GLOBAL)					\
2051       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
2052       : DW_EH_PE_absptr))
2053 #endif
2054 
2055 /* Emit a PC-relative relocation.  */
2056 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
2057   do {							\
2058     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
2059     fprintf (FILE, "%%r_disp%d(", SIZE * 8);		\
2060     assemble_name (FILE, LABEL);			\
2061     fputc (')', FILE);					\
2062   } while (0)
2063 #endif
2064 
2065 /* Addressing modes, and classification of registers for them.  */
2066 
2067 /* #define HAVE_POST_INCREMENT 0 */
2068 /* #define HAVE_POST_DECREMENT 0 */
2069 
2070 /* #define HAVE_PRE_DECREMENT 0 */
2071 /* #define HAVE_PRE_INCREMENT 0 */
2072 
2073 /* Macros to check register numbers against specific register classes.  */
2074 
2075 /* These assume that REGNO is a hard or pseudo reg number.
2076    They give nonzero only if REGNO is a hard reg of the suitable class
2077    or a pseudo reg currently allocated to a suitable hard reg.
2078    Since they use reg_renumber, they are safe only once reg_renumber
2079    has been allocated, which happens in local-alloc.c.  */
2080 
2081 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2082 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32	\
2083  || (REGNO) == FRAME_POINTER_REGNUM				\
2084  || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
2085 
2086 #define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
2087 
2088 #define REGNO_OK_FOR_FP_P(REGNO) \
2089   (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2090    || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2091 #define REGNO_OK_FOR_CCFP_P(REGNO) \
2092  (TARGET_V9 \
2093   && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2094       || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2095 
2096 /* Now macros that check whether X is a register and also,
2097    strictly, whether it is in a specified class.
2098 
2099    These macros are specific to the SPARC, and may be used only
2100    in code for printing assembler insns and in conditions for
2101    define_optimization.  */
2102 
2103 /* 1 if X is an fp register.  */
2104 
2105 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2106 
2107 /* Is X, a REG, an in or global register?  i.e. is regno 0..7 or 24..31 */
2108 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2109 
2110 /* Maximum number of registers that can appear in a valid memory address.  */
2111 
2112 #define MAX_REGS_PER_ADDRESS 2
2113 
2114 /* Recognize any constant value that is a valid address.
2115    When PIC, we do not accept an address that would require a scratch reg
2116    to load into a register.  */
2117 
2118 #define CONSTANT_ADDRESS_P(X)   \
2119   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
2120    || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH			\
2121    || (GET_CODE (X) == CONST						\
2122        && ! (flag_pic && pic_address_needs_scratch (X))))
2123 
2124 /* Define this, so that when PIC, reload won't try to reload invalid
2125    addresses which require two reload registers.  */
2126 
2127 #define LEGITIMATE_PIC_OPERAND_P(X)  (! pic_address_needs_scratch (X))
2128 
2129 /* Nonzero if the constant value X is a legitimate general operand.
2130    Anything can be made to work except floating point constants.
2131    If TARGET_VIS, 0.0 can be made to work as well.  */
2132 
2133 #define LEGITIMATE_CONSTANT_P(X) 					\
2134   (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || 		\
2135    (TARGET_VIS &&							\
2136     (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode ||		\
2137      GET_MODE (X) == TFmode) &&						\
2138     fp_zero_operand (X, GET_MODE (X))))
2139 
2140 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2141    and check its validity for a certain class.
2142    We have two alternate definitions for each of them.
2143    The usual definition accepts all pseudo regs; the other rejects
2144    them unless they have been allocated suitable hard regs.
2145    The symbol REG_OK_STRICT causes the latter definition to be used.
2146 
2147    Most source files want to accept pseudo regs in the hope that
2148    they will get allocated to the class that the insn wants them to be in.
2149    Source files for reload pass need to be strict.
2150    After reload, it makes no difference, since pseudo regs have
2151    been eliminated by then.  */
2152 
2153 /* Optional extra constraints for this machine.
2154 
2155    'Q' handles floating point constants which can be moved into
2156        an integer register with a single sethi instruction.
2157 
2158    'R' handles floating point constants which can be moved into
2159        an integer register with a single mov instruction.
2160 
2161    'S' handles floating point constants which can be moved into
2162        an integer register using a high/lo_sum sequence.
2163 
2164    'T' handles memory addresses where the alignment is known to
2165        be at least 8 bytes.
2166 
2167    `U' handles all pseudo registers or a hard even numbered
2168        integer register, needed for ldd/std instructions.
2169 
2170    'W' handles the memory operand when moving operands in/out
2171        of 'e' constraint floating point registers.  */
2172 
2173 #ifndef REG_OK_STRICT
2174 
2175 /* Nonzero if X is a hard reg that can be used as an index
2176    or if it is a pseudo reg.  */
2177 #define REG_OK_FOR_INDEX_P(X) \
2178   (REGNO (X) < 32				\
2179    || REGNO (X) == FRAME_POINTER_REGNUM		\
2180    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2181 
2182 /* Nonzero if X is a hard reg that can be used as a base reg
2183    or if it is a pseudo reg.  */
2184 #define REG_OK_FOR_BASE_P(X)  REG_OK_FOR_INDEX_P (X)
2185 
2186 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
2187    'W' is like 'T' but is assumed true on arch64.
2188 
2189    Remember to accept pseudo-registers for memory constraints if reload is
2190    in progress.  */
2191 
2192 #define EXTRA_CONSTRAINT(OP, C) \
2193 	sparc_extra_constraint_check(OP, C, 0)
2194 
2195 #else
2196 
2197 /* Nonzero if X is a hard reg that can be used as an index.  */
2198 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2199 /* Nonzero if X is a hard reg that can be used as a base reg.  */
2200 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2201 
2202 #define EXTRA_CONSTRAINT(OP, C) \
2203 	sparc_extra_constraint_check(OP, C, 1)
2204 
2205 #endif
2206 
2207 /* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
2208 
2209 #ifdef HAVE_AS_OFFSETABLE_LO10
2210 #define USE_AS_OFFSETABLE_LO10 1
2211 #else
2212 #define USE_AS_OFFSETABLE_LO10 0
2213 #endif
2214 
2215 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2216    that is a valid memory address for an instruction.
2217    The MODE argument is the machine mode for the MEM expression
2218    that wants to use this address.
2219 
2220    On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2221    ordinarily.  This changes a bit when generating PIC.
2222 
2223    If you change this, execute "rm explow.o recog.o reload.o".  */
2224 
2225 #define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
2226 
2227 #define RTX_OK_FOR_BASE_P(X)						\
2228   ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
2229   || (GET_CODE (X) == SUBREG						\
2230       && GET_CODE (SUBREG_REG (X)) == REG				\
2231       && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2232 
2233 #define RTX_OK_FOR_INDEX_P(X)						\
2234   ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))			\
2235   || (GET_CODE (X) == SUBREG						\
2236       && GET_CODE (SUBREG_REG (X)) == REG				\
2237       && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2238 
2239 #define RTX_OK_FOR_OFFSET_P(X)						\
2240   (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2241 
2242 #define RTX_OK_FOR_OLO10_P(X)						\
2243   (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2244 
2245 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)		\
2246 { if (RTX_OK_FOR_BASE_P (X))				\
2247     goto ADDR;						\
2248   else if (GET_CODE (X) == PLUS)			\
2249     {							\
2250       register rtx op0 = XEXP (X, 0);			\
2251       register rtx op1 = XEXP (X, 1);			\
2252       if (flag_pic && op0 == pic_offset_table_rtx)	\
2253 	{						\
2254 	  if (RTX_OK_FOR_BASE_P (op1))			\
2255 	    goto ADDR;					\
2256 	  else if (flag_pic == 1			\
2257 		   && GET_CODE (op1) != REG		\
2258 		   && GET_CODE (op1) != LO_SUM		\
2259 		   && GET_CODE (op1) != MEM		\
2260 		   && (! SYMBOLIC_CONST (op1)		\
2261 		       || MODE == Pmode)		\
2262 		   && (GET_CODE (op1) != CONST_INT	\
2263 		       || SMALL_INT (op1)))		\
2264 	    goto ADDR;					\
2265 	}						\
2266       else if (RTX_OK_FOR_BASE_P (op0))			\
2267 	{						\
2268 	  if ((RTX_OK_FOR_INDEX_P (op1)			\
2269  	      /* We prohibit REG + REG for TFmode when	\
2270 		 there are no instructions which accept	\
2271 		 REG+REG instructions.  We do this	\
2272 		 because REG+REG is not an offsetable	\
2273 		 address.  If we get the situation	\
2274 		 in reload where source and destination	\
2275 		 of a movtf pattern are both MEMs with	\
2276 		 REG+REG address, then only one of them	\
2277 		 gets converted to an offsetable	\
2278 		 address.  */				\
2279  	       && (MODE != TFmode			\
2280 		   || (TARGET_FPU && TARGET_ARCH64	\
2281 		       && TARGET_V9			\
2282 		       && TARGET_HARD_QUAD))		\
2283 	      /* We prohibit REG + REG on ARCH32 if	\
2284 		 not optimizing for DFmode/DImode	\
2285 		 because then mem_min_alignment is	\
2286 		 likely to be zero after reload and the \
2287 		 forced split would lack a matching	\
2288 		 splitter pattern.  */			\
2289 	       && (TARGET_ARCH64 || optimize		\
2290 		   || (MODE != DFmode			\
2291 		       && MODE != DImode)))		\
2292 	      || RTX_OK_FOR_OFFSET_P (op1))		\
2293 	    goto ADDR;					\
2294 	}						\
2295       else if (RTX_OK_FOR_BASE_P (op1))			\
2296 	{						\
2297 	  if ((RTX_OK_FOR_INDEX_P (op0)			\
2298  	      /* See the previous comment.  */		\
2299  	       && (MODE != TFmode			\
2300 		  || (TARGET_FPU && TARGET_ARCH64	\
2301 		      && TARGET_V9			\
2302 		      && TARGET_HARD_QUAD))		\
2303 	       && (TARGET_ARCH64 || optimize		\
2304 		   || (MODE != DFmode			\
2305 		       && MODE != DImode)))		\
2306 	      || RTX_OK_FOR_OFFSET_P (op0))		\
2307 	    goto ADDR;					\
2308 	}						\
2309       else if (USE_AS_OFFSETABLE_LO10			\
2310 	       && GET_CODE (op0) == LO_SUM		\
2311 	       && TARGET_ARCH64				\
2312 	       && ! TARGET_CM_MEDMID			\
2313 	       && RTX_OK_FOR_OLO10_P (op1))		\
2314 	{						\
2315 	  register rtx op00 = XEXP (op0, 0);		\
2316 	  register rtx op01 = XEXP (op0, 1);		\
2317 	  if (RTX_OK_FOR_BASE_P (op00)			\
2318 	      && CONSTANT_P (op01))			\
2319 	    goto ADDR;					\
2320 	}						\
2321       else if (USE_AS_OFFSETABLE_LO10			\
2322 	       && GET_CODE (op1) == LO_SUM		\
2323 	       && TARGET_ARCH64				\
2324 	       && ! TARGET_CM_MEDMID			\
2325 	       && RTX_OK_FOR_OLO10_P (op0))		\
2326 	{						\
2327 	  register rtx op10 = XEXP (op1, 0);		\
2328 	  register rtx op11 = XEXP (op1, 1);		\
2329 	  if (RTX_OK_FOR_BASE_P (op10)			\
2330 	      && CONSTANT_P (op11))			\
2331 	    goto ADDR;					\
2332 	}						\
2333     }							\
2334   else if (GET_CODE (X) == LO_SUM)			\
2335     {							\
2336       register rtx op0 = XEXP (X, 0);			\
2337       register rtx op1 = XEXP (X, 1);			\
2338       if (RTX_OK_FOR_BASE_P (op0)			\
2339 	  && CONSTANT_P (op1)				\
2340 	  /* We can't allow TFmode, because an offset	\
2341 	     greater than or equal to the alignment (8)	\
2342 	     may cause the LO_SUM to overflow if !v9.  */\
2343 	  && (MODE != TFmode || TARGET_V9))		\
2344 	goto ADDR;					\
2345     }							\
2346   else if (GET_CODE (X) == CONST_INT && SMALL_INT (X))	\
2347     goto ADDR;						\
2348 }
2349 
2350 /* Go to LABEL if ADDR (a legitimate address expression)
2351    has an effect that depends on the machine mode it is used for.
2352 
2353    In PIC mode,
2354 
2355       (mem:HI [%l7+a])
2356 
2357    is not equivalent to
2358 
2359       (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
2360 
2361    because [%l7+a+1] is interpreted as the address of (a+1).  */
2362 
2363 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
2364 {							\
2365   if (flag_pic == 1)					\
2366     {							\
2367       if (GET_CODE (ADDR) == PLUS)			\
2368 	{						\
2369 	  rtx op0 = XEXP (ADDR, 0);			\
2370 	  rtx op1 = XEXP (ADDR, 1);			\
2371 	  if (op0 == pic_offset_table_rtx		\
2372 	      && SYMBOLIC_CONST (op1))			\
2373 	    goto LABEL;					\
2374 	}						\
2375     }							\
2376 }
2377 
2378 /* Try machine-dependent ways of modifying an illegitimate address
2379    to be legitimate.  If we find one, return the new, valid address.
2380    This macro is used in only one place: `memory_address' in explow.c.
2381 
2382    OLDX is the address as it was before break_out_memory_refs was called.
2383    In some cases it is useful to look at this to decide what needs to be done.
2384 
2385    MODE and WIN are passed so that this macro can use
2386    GO_IF_LEGITIMATE_ADDRESS.
2387 
2388    It is always safe for this macro to do nothing.  It exists to recognize
2389    opportunities to optimize the output.  */
2390 
2391 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG.  */
2392 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)	\
2393 { rtx sparc_x = (X);						\
2394   if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT)	\
2395     (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1),			\
2396 			force_operand (XEXP (X, 0), NULL_RTX));	\
2397   if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT)	\
2398     (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0),			\
2399 			force_operand (XEXP (X, 1), NULL_RTX));	\
2400   if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS)	\
2401     (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
2402 			XEXP (X, 1));				\
2403   if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS)	\
2404     (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0),			\
2405 			force_operand (XEXP (X, 1), NULL_RTX));	\
2406   if (sparc_x != (X) && memory_address_p (MODE, X))		\
2407     goto WIN;							\
2408   if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0);	\
2409   else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1)))	\
2410     (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0),			\
2411 			copy_to_mode_reg (Pmode, XEXP (X, 1)));	\
2412   else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0)))	\
2413     (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1),			\
2414 			copy_to_mode_reg (Pmode, XEXP (X, 0)));	\
2415   else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST	\
2416 	   || GET_CODE (X) == LABEL_REF)			\
2417     (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); 		\
2418   if (memory_address_p (MODE, X))				\
2419     goto WIN; }
2420 
2421 /* Try a machine-dependent way of reloading an illegitimate address
2422    operand.  If we find one, push the reload and jump to WIN.  This
2423    macro is used in only one place: `find_reloads_address' in reload.c.
2424 
2425    For SPARC 32, we wish to handle addresses by splitting them into
2426    HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2427    This cuts the number of extra insns by one.
2428 
2429    Do nothing when generating PIC code and the address is a
2430    symbolic operand or requires a scratch register.  */
2431 
2432 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)     \
2433 do {                                                                    \
2434   /* Decompose SImode constants into hi+lo_sum.  We do have to 		\
2435      rerecognize what we produce, so be careful.  */			\
2436   if (CONSTANT_P (X)							\
2437       && (MODE != TFmode || TARGET_ARCH64)				\
2438       && GET_MODE (X) == SImode						\
2439       && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH			\
2440       && ! (flag_pic							\
2441 	    && (symbolic_operand (X, Pmode)				\
2442 		|| pic_address_needs_scratch (X)))			\
2443       && sparc_cmodel <= CM_MEDLOW)					\
2444     {									\
2445       X = gen_rtx_LO_SUM (GET_MODE (X),					\
2446 			  gen_rtx_HIGH (GET_MODE (X), X), X);		\
2447       push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL,		\
2448                    BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0,	\
2449                    OPNUM, TYPE);					\
2450       goto WIN;								\
2451     }									\
2452   /* ??? 64-bit reloads.  */						\
2453 } while (0)
2454 
2455 /* Specify the machine mode that this machine uses
2456    for the index in the tablejump instruction.  */
2457 /* If we ever implement any of the full models (such as CM_FULLANY),
2458    this has to be DImode in that case */
2459 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2460 #define CASE_VECTOR_MODE \
2461 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2462 #else
2463 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2464    we have to sign extend which slows things down.  */
2465 #define CASE_VECTOR_MODE \
2466 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2467 #endif
2468 
2469 /* Define as C expression which evaluates to nonzero if the tablejump
2470    instruction expects the table to contain offsets from the address of the
2471    table.
2472    Do not define this if the table should contain absolute addresses.  */
2473 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2474 
2475 /* Define this as 1 if `char' should by default be signed; else as 0.  */
2476 #define DEFAULT_SIGNED_CHAR 1
2477 
2478 /* Max number of bytes we can move from memory to memory
2479    in one reasonably fast instruction.  */
2480 #define MOVE_MAX 8
2481 
2482 #if 0 /* Sun 4 has matherr, so this is no good.  */
2483 /* This is the value of the error code EDOM for this machine,
2484    used by the sqrt instruction.  */
2485 #define TARGET_EDOM 33
2486 
2487 /* This is how to refer to the variable errno.  */
2488 #define GEN_ERRNO_RTX \
2489   gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2490 #endif /* 0 */
2491 
2492 /* Define if operations between registers always perform the operation
2493    on the full register even if a narrower mode is specified.  */
2494 #define WORD_REGISTER_OPERATIONS
2495 
2496 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2497    will either zero-extend or sign-extend.  The value of this macro should
2498    be the code that says which one of the two operations is implicitly
2499    done, NIL if none.  */
2500 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2501 
2502 /* Nonzero if access to memory by bytes is slow and undesirable.
2503    For RISC chips, it means that access to memory by bytes is no
2504    better than access by words when possible, so grab a whole word
2505    and maybe make use of that.  */
2506 #define SLOW_BYTE_ACCESS 1
2507 
2508 /* We assume that the store-condition-codes instructions store 0 for false
2509    and some other value for true.  This is the value stored for true.  */
2510 
2511 #define STORE_FLAG_VALUE 1
2512 
2513 /* When a prototype says `char' or `short', really pass an `int'.  */
2514 #define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2515 
2516 /* Define this to be nonzero if shift instructions ignore all but the low-order
2517    few bits.  */
2518 #define SHIFT_COUNT_TRUNCATED 1
2519 
2520 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2521    is done just by pretending it is already truncated.  */
2522 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2523 
2524 /* Specify the machine mode that pointers have.
2525    After generation of rtl, the compiler makes no further distinction
2526    between pointers and any other objects of this machine mode.  */
2527 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2528 
2529 /* Generate calls to memcpy, memcmp and memset.  */
2530 #define TARGET_MEM_FUNCTIONS
2531 
2532 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2533    return the mode to be used for the comparison.  For floating-point,
2534    CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand
2535    is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
2536    processing is needed.  */
2537 #define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
2538 
2539 /* Return nonzero if MODE implies a floating point inequality can be
2540    reversed.  For SPARC this is always true because we have a full
2541    compliment of ordered and unordered comparisons, but until generic
2542    code knows how to reverse it correctly we keep the old definition.  */
2543 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2544 
2545 /* A function address in a call instruction for indexing purposes.  */
2546 #define FUNCTION_MODE Pmode
2547 
2548 /* Define this if addresses of constant functions
2549    shouldn't be put through pseudo regs where they can be cse'd.
2550    Desirable on machines where ordinary constants are expensive
2551    but a CALL with constant address is cheap.  */
2552 #define NO_FUNCTION_CSE
2553 
2554 /* alloca should avoid clobbering the old register save area.  */
2555 #define SETJMP_VIA_SAVE_AREA
2556 
2557 /* Define subroutines to call to handle multiply and divide.
2558    Use the subroutines that Sun's library provides.
2559    The `*' prevents an underscore from being prepended by the compiler.  */
2560 
2561 #define DIVSI3_LIBCALL "*.div"
2562 #define UDIVSI3_LIBCALL "*.udiv"
2563 #define MODSI3_LIBCALL "*.rem"
2564 #define UMODSI3_LIBCALL "*.urem"
2565 /* .umul is a little faster than .mul.  */
2566 #define MULSI3_LIBCALL "*.umul"
2567 
2568 /* Define library calls for quad FP operations.  These are all part of the
2569    SPARC 32bit ABI.  */
2570 #define ADDTF3_LIBCALL "_Q_add"
2571 #define SUBTF3_LIBCALL "_Q_sub"
2572 #define NEGTF2_LIBCALL "_Q_neg"
2573 #define MULTF3_LIBCALL "_Q_mul"
2574 #define DIVTF3_LIBCALL "_Q_div"
2575 #define FLOATSITF2_LIBCALL "_Q_itoq"
2576 #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2577 #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2578 #define EXTENDSFTF2_LIBCALL "_Q_stoq"
2579 #define TRUNCTFSF2_LIBCALL "_Q_qtos"
2580 #define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2581 #define TRUNCTFDF2_LIBCALL "_Q_qtod"
2582 #define EQTF2_LIBCALL "_Q_feq"
2583 #define NETF2_LIBCALL "_Q_fne"
2584 #define GTTF2_LIBCALL "_Q_fgt"
2585 #define GETF2_LIBCALL "_Q_fge"
2586 #define LTTF2_LIBCALL "_Q_flt"
2587 #define LETF2_LIBCALL "_Q_fle"
2588 
2589 /* These functions were added in SCD 2.3, so not necessarily all targets
2590    support them.  */
2591 #define FLOATDITF2_LIBCALL "_Q_lltoq"
2592 #define FIX_TRUNCTFDI2_LIBCALL "_Q_qtoll"
2593 #define FIXUNS_TRUNCTFDI2_LIBCALL "_Q_qtoull"
2594 
2595 #define DITF_CONVERSION_LIBFUNCS	0
2596 
2597 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2598    that the inputs are fully consumed before the output memory is clobbered.  */
2599 
2600 #define TARGET_BUGGY_QP_LIB		0
2601 
2602 /* We can define the TFmode sqrt optab only if TARGET_FPU.  This is because
2603    with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2604    and the compiler will notice and try to use the TFmode sqrt instruction
2605    for calls to the builtin function sqrt, but this fails.  */
2606 #define INIT_TARGET_OPTABS						\
2607   do {									\
2608     if (TARGET_ARCH32)							\
2609       {									\
2610 	add_optab->handlers[(int) TFmode].libfunc			\
2611 	  = init_one_libfunc (ADDTF3_LIBCALL);				\
2612 	sub_optab->handlers[(int) TFmode].libfunc			\
2613 	  = init_one_libfunc (SUBTF3_LIBCALL);				\
2614 	neg_optab->handlers[(int) TFmode].libfunc			\
2615 	  = init_one_libfunc (NEGTF2_LIBCALL);				\
2616 	smul_optab->handlers[(int) TFmode].libfunc			\
2617 	  = init_one_libfunc (MULTF3_LIBCALL);				\
2618 	sdiv_optab->handlers[(int) TFmode].libfunc			\
2619 	  = init_one_libfunc (DIVTF3_LIBCALL);				\
2620 	eqtf2_libfunc = init_one_libfunc (EQTF2_LIBCALL);		\
2621 	netf2_libfunc = init_one_libfunc (NETF2_LIBCALL);		\
2622 	gttf2_libfunc = init_one_libfunc (GTTF2_LIBCALL);		\
2623 	getf2_libfunc = init_one_libfunc (GETF2_LIBCALL);		\
2624 	lttf2_libfunc = init_one_libfunc (LTTF2_LIBCALL);		\
2625 	letf2_libfunc = init_one_libfunc (LETF2_LIBCALL);		\
2626 	trunctfsf2_libfunc = init_one_libfunc (TRUNCTFSF2_LIBCALL);	\
2627 	trunctfdf2_libfunc = init_one_libfunc (TRUNCTFDF2_LIBCALL);	\
2628 	extendsftf2_libfunc = init_one_libfunc (EXTENDSFTF2_LIBCALL);	\
2629 	extenddftf2_libfunc = init_one_libfunc (EXTENDDFTF2_LIBCALL);	\
2630 	floatsitf_libfunc = init_one_libfunc (FLOATSITF2_LIBCALL);	\
2631 	fixtfsi_libfunc = init_one_libfunc (FIX_TRUNCTFSI2_LIBCALL);	\
2632 	fixunstfsi_libfunc						\
2633 	  = init_one_libfunc (FIXUNS_TRUNCTFSI2_LIBCALL);		\
2634 	if (DITF_CONVERSION_LIBFUNCS)					\
2635 	  {								\
2636 	    floatditf_libfunc = init_one_libfunc (FLOATDITF2_LIBCALL);	\
2637 	    fixtfdi_libfunc = init_one_libfunc (FIX_TRUNCTFDI2_LIBCALL);\
2638 	    fixunstfdi_libfunc						\
2639 	      = init_one_libfunc (FIXUNS_TRUNCTFDI2_LIBCALL);		\
2640 	  }								\
2641 	if (TARGET_FPU)							\
2642 	  sqrt_optab->handlers[(int) TFmode].libfunc			\
2643 	    = init_one_libfunc ("_Q_sqrt");				\
2644       }									\
2645     if (TARGET_ARCH64)							\
2646       {									\
2647         /* In the SPARC 64bit ABI, these libfuncs do not exist in the	\
2648            library.  Make sure the compiler does not emit calls to them	\
2649 	   by accident.  */						\
2650 	sdiv_optab->handlers[(int) SImode].libfunc = NULL;		\
2651 	udiv_optab->handlers[(int) SImode].libfunc = NULL;		\
2652 	smod_optab->handlers[(int) SImode].libfunc = NULL;		\
2653 	umod_optab->handlers[(int) SImode].libfunc = NULL;		\
2654         smul_optab->handlers[(int) SImode].libfunc = NULL;		\
2655       }									\
2656     INIT_SUBTARGET_OPTABS;						\
2657   } while (0)
2658 
2659 /* This is meant to be redefined in the host dependent files */
2660 #define INIT_SUBTARGET_OPTABS
2661 
2662 /* Nonzero if a floating point comparison library call for
2663    mode MODE that will return a boolean value.  Zero if one
2664    of the libgcc2 functions is used.  */
2665 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2666 
2667 /* Compute extra cost of moving data between one register class
2668    and another.  */
2669 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2670 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)		\
2671   (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2672     || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2673     || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS)		\
2674    ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2675        || sparc_cpu == PROCESSOR_ULTRASPARC3) ? 12 : 6) : 2)
2676 
2677 /* Provide the cost of a branch.  For pre-v9 processors we use
2678    a value of 3 to take into account the potential annulling of
2679    the delay slot (which ends up being a bubble in the pipeline slot)
2680    plus a cycle to take into consideration the instruction cache
2681    effects.
2682 
2683    On v9 and later, which have branch prediction facilities, we set
2684    it to the depth of the pipeline as that is the cost of a
2685    mispredicted branch.  */
2686 
2687 #define BRANCH_COST \
2688 	((sparc_cpu == PROCESSOR_V9 \
2689 	  || sparc_cpu == PROCESSOR_ULTRASPARC) \
2690 	 ? 7 \
2691          : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2692             ? 9 : 3))
2693 
2694 /* The cases that RTX_COSTS handles.  */
2695 
2696 #define RTX_COSTS_CASES	\
2697 case PLUS: case MINUS: case ABS: case NEG: \
2698 case FLOAT: case UNSIGNED_FLOAT: \
2699 case FIX: case UNSIGNED_FIX: \
2700 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
2701 case SQRT: \
2702 case COMPARE: case IF_THEN_ELSE: \
2703 case MEM: \
2704 case MULT: case DIV: case UDIV: case MOD: case UMOD: \
2705 case CONST_INT: case HIGH: case CONST: \
2706 case LABEL_REF: case SYMBOL_REF: case CONST_DOUBLE:
2707 
2708 /* Provide the costs of a rtl expression.  This is in the body of a
2709    switch on CODE.  */
2710 
2711 #define RTX_COSTS(X,CODE,OUTER_CODE)			\
2712   RTX_COSTS_CASES					\
2713     return sparc_rtx_costs(X,CODE,OUTER_CODE);
2714 
2715 #define ADDRESS_COST(RTX)  1
2716 
2717 #define PREFETCH_BLOCK \
2718 	((sparc_cpu == PROCESSOR_ULTRASPARC \
2719           || sparc_cpu == PROCESSOR_ULTRASPARC3) \
2720          ? 64 : 32)
2721 
2722 #define SIMULTANEOUS_PREFETCHES \
2723 	((sparc_cpu == PROCESSOR_ULTRASPARC) \
2724          ? 2 \
2725          : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2726             ? 8 : 3))
2727 
2728 /* Control the assembler format that we output.  */
2729 
2730 /* Output at beginning of assembler file.  */
2731 
2732 #define ASM_FILE_START(file)
2733 
2734 /* A C string constant describing how to begin a comment in the target
2735    assembler language.  The compiler assumes that the comment will end at
2736    the end of the line.  */
2737 
2738 #define ASM_COMMENT_START "!"
2739 
2740 /* Output to assembler file text saying following lines
2741    may contain character constants, extra white space, comments, etc.  */
2742 
2743 #define ASM_APP_ON ""
2744 
2745 /* Output to assembler file text saying following lines
2746    no longer contain unusual constructs.  */
2747 
2748 #define ASM_APP_OFF ""
2749 
2750 /* ??? Try to make the style consistent here (_OP?).  */
2751 
2752 #define ASM_FLOAT	".single"
2753 #define ASM_DOUBLE	".double"
2754 #define ASM_LONGDOUBLE	".xxx"		/* ??? Not known (or used yet).  */
2755 
2756 /* How to refer to registers in assembler output.
2757    This sequence is indexed by compiler's hard-register-number (see above).  */
2758 
2759 #define REGISTER_NAMES \
2760 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",		\
2761  "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",		\
2762  "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",		\
2763  "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",		\
2764  "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",		\
2765  "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",		\
2766  "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",	\
2767  "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",	\
2768  "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",	\
2769  "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",	\
2770  "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",	\
2771  "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",	\
2772  "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2773 
2774 /* Define additional names for use in asm clobbers and asm declarations.  */
2775 
2776 #define ADDITIONAL_REGISTER_NAMES \
2777 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2778 
2779 /* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
2780    can run past this up to a continuation point.  Once we used 1500, but
2781    a single entry in C++ can run more than 500 bytes, due to the length of
2782    mangled symbol names.  dbxout.c should really be fixed to do
2783    continuations when they are actually needed instead of trying to
2784    guess...  */
2785 #define DBX_CONTIN_LENGTH 1000
2786 
2787 /* This is how to output a command to make the user-level label named NAME
2788    defined for reference from other files.  */
2789 
2790 /* Globalizing directive for a label.  */
2791 #define GLOBAL_ASM_OP "\t.global "
2792 
2793 /* The prefix to add to user-visible assembler symbols.  */
2794 
2795 #define USER_LABEL_PREFIX "_"
2796 
2797 /* This is how to output a definition of an internal numbered label where
2798    PREFIX is the class of label and NUM is the number within the class.  */
2799 
2800 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)	\
2801   fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2802 
2803 /* This is how to store into the string LABEL
2804    the symbol_ref name of an internal numbered label where
2805    PREFIX is the class of label and NUM is the number within the class.
2806    This is suitable for output with `assemble_name'.  */
2807 
2808 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
2809   sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2810 
2811 /* This is how we hook in and defer the case-vector until the end of
2812    the function.  */
2813 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2814   sparc_defer_case_vector ((LAB),(VEC), 0)
2815 
2816 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2817   sparc_defer_case_vector ((LAB),(VEC), 1)
2818 
2819 /* This is how to output an element of a case-vector that is absolute.  */
2820 
2821 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2822 do {									\
2823   char label[30];							\
2824   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);			\
2825   if (CASE_VECTOR_MODE == SImode)					\
2826     fprintf (FILE, "\t.word\t");					\
2827   else									\
2828     fprintf (FILE, "\t.xword\t");					\
2829   assemble_name (FILE, label);						\
2830   fputc ('\n', FILE);							\
2831 } while (0)
2832 
2833 /* This is how to output an element of a case-vector that is relative.
2834    (SPARC uses such vectors only when generating PIC.)  */
2835 
2836 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
2837 do {									\
2838   char label[30];							\
2839   ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));			\
2840   if (CASE_VECTOR_MODE == SImode)					\
2841     fprintf (FILE, "\t.word\t");					\
2842   else									\
2843     fprintf (FILE, "\t.xword\t");					\
2844   assemble_name (FILE, label);						\
2845   ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));			\
2846   fputc ('-', FILE);							\
2847   assemble_name (FILE, label);						\
2848   fputc ('\n', FILE);							\
2849 } while (0)
2850 
2851 /* This is what to output before and after case-vector (both
2852    relative and absolute).  If .subsection -1 works, we put case-vectors
2853    at the beginning of the current section.  */
2854 
2855 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2856 
2857 #define ASM_OUTPUT_ADDR_VEC_START(FILE)					\
2858   fprintf(FILE, "\t.subsection\t-1\n")
2859 
2860 #define ASM_OUTPUT_ADDR_VEC_END(FILE)					\
2861   fprintf(FILE, "\t.previous\n")
2862 
2863 #endif
2864 
2865 /* This is how to output an assembler line
2866    that says to advance the location counter
2867    to a multiple of 2**LOG bytes.  */
2868 
2869 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2870   if ((LOG) != 0)			\
2871     fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2872 
2873 /* This is how to output an assembler line that says to advance
2874    the location counter to a multiple of 2**LOG bytes using the
2875    "nop" instruction as padding.  */
2876 #define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG)   \
2877   if ((LOG) != 0)                             \
2878     fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2879 
2880 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
2881   fprintf (FILE, "\t.skip %u\n", (SIZE))
2882 
2883 /* This says how to output an assembler line
2884    to define a global common symbol.  */
2885 
2886 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
2887 ( fputs ("\t.common ", (FILE)),		\
2888   assemble_name ((FILE), (NAME)),		\
2889   fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
2890 
2891 /* This says how to output an assembler line to define a local common
2892    symbol.  */
2893 
2894 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
2895 ( fputs ("\t.reserve ", (FILE)),					\
2896   assemble_name ((FILE), (NAME)),					\
2897   fprintf ((FILE), ",%u,\"bss\",%u\n",					\
2898 	   (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2899 
2900 /* A C statement (sans semicolon) to output to the stdio stream
2901    FILE the assembler definition of uninitialized global DECL named
2902    NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2903    Try to use asm_output_aligned_bss to implement this macro.  */
2904 
2905 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)	\
2906   do {								\
2907     fputs (".globl ", (FILE));					\
2908     assemble_name ((FILE), (NAME));				\
2909     fputs ("\n", (FILE));					\
2910     ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);		\
2911   } while (0)
2912 
2913 /* Store in OUTPUT a string (made with alloca) containing
2914    an assembler-name for a local static variable named NAME.
2915    LABELNO is an integer which is different for each call.  */
2916 
2917 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
2918 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
2919   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2920 
2921 #define IDENT_ASM_OP "\t.ident\t"
2922 
2923 /* Output #ident as a .ident.  */
2924 
2925 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2926   fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2927 
2928 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2929   ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
2930 
2931 /* Print operand X (an rtx) in assembler syntax to file FILE.
2932    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2933    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2934 
2935 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2936 
2937 /* Print a memory address as an operand to reference that memory location.  */
2938 
2939 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2940 { register rtx base, index = 0;					\
2941   int offset = 0;						\
2942   register rtx addr = ADDR;					\
2943   if (GET_CODE (addr) == REG)					\
2944     fputs (reg_names[REGNO (addr)], FILE);			\
2945   else if (GET_CODE (addr) == PLUS)				\
2946     {								\
2947       if (GET_CODE (XEXP (addr, 0)) == CONST_INT)		\
2948 	offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2949       else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)		\
2950 	offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2951       else							\
2952 	base = XEXP (addr, 0), index = XEXP (addr, 1);		\
2953       if (GET_CODE (base) == LO_SUM)				\
2954 	{							\
2955 	  if (! USE_AS_OFFSETABLE_LO10				\
2956 	      || TARGET_ARCH32					\
2957 	      || TARGET_CM_MEDMID)				\
2958 	    abort ();						\
2959 	  output_operand (XEXP (base, 0), 0);			\
2960 	  fputs ("+%lo(", FILE);				\
2961 	  output_address (XEXP (base, 1));			\
2962 	  fprintf (FILE, ")+%d", offset);			\
2963 	}							\
2964       else							\
2965 	{							\
2966 	  fputs (reg_names[REGNO (base)], FILE);		\
2967 	  if (index == 0)					\
2968 	    fprintf (FILE, "%+d", offset);			\
2969 	  else if (GET_CODE (index) == REG)			\
2970 	    fprintf (FILE, "+%s", reg_names[REGNO (index)]);	\
2971 	  else if (GET_CODE (index) == SYMBOL_REF		\
2972 		   || GET_CODE (index) == CONST)		\
2973 	    fputc ('+', FILE), output_addr_const (FILE, index);	\
2974 	  else abort ();					\
2975 	}							\
2976     }								\
2977   else if (GET_CODE (addr) == MINUS				\
2978 	   && GET_CODE (XEXP (addr, 1)) == LABEL_REF)		\
2979     {								\
2980       output_addr_const (FILE, XEXP (addr, 0));			\
2981       fputs ("-(", FILE);					\
2982       output_addr_const (FILE, XEXP (addr, 1));			\
2983       fputs ("-.)", FILE);					\
2984     }								\
2985   else if (GET_CODE (addr) == LO_SUM)				\
2986     {								\
2987       output_operand (XEXP (addr, 0), 0);			\
2988       if (TARGET_CM_MEDMID)					\
2989         fputs ("+%l44(", FILE);					\
2990       else							\
2991         fputs ("+%lo(", FILE);					\
2992       output_address (XEXP (addr, 1));				\
2993       fputc (')', FILE);					\
2994     }								\
2995   else if (flag_pic && GET_CODE (addr) == CONST			\
2996 	   && GET_CODE (XEXP (addr, 0)) == MINUS		\
2997 	   && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST	\
2998 	   && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS	\
2999 	   && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx)	\
3000     {								\
3001       addr = XEXP (addr, 0);					\
3002       output_addr_const (FILE, XEXP (addr, 0));			\
3003       /* Group the args of the second CONST in parenthesis.  */	\
3004       fputs ("-(", FILE);					\
3005       /* Skip past the second CONST--it does nothing for us.  */\
3006       output_addr_const (FILE, XEXP (XEXP (addr, 1), 0));	\
3007       /* Close the parenthesis.  */				\
3008       fputc (')', FILE);					\
3009     }								\
3010   else								\
3011     {								\
3012       output_addr_const (FILE, addr);				\
3013     }								\
3014 }
3015 
3016 /* Define the codes that are matched by predicates in sparc.c.  */
3017 
3018 #define PREDICATE_CODES							\
3019 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		\
3020 {"const1_operand", {CONST_INT}},					\
3021 {"fp_zero_operand", {CONST_DOUBLE}},					\
3022 {"fp_register_operand", {SUBREG, REG}},					\
3023 {"intreg_operand", {SUBREG, REG}},					\
3024 {"fcc_reg_operand", {REG}},						\
3025 {"fcc0_reg_operand", {REG}},						\
3026 {"icc_or_fcc_reg_operand", {REG}},					\
3027 {"restore_operand", {REG}},						\
3028 {"call_operand", {MEM}},						\
3029 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE,	\
3030 	ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}},		\
3031 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
3032 {"symbolic_memory_operand", {SUBREG, MEM}},				\
3033 {"label_ref_operand", {LABEL_REF}},					\
3034 {"sp64_medium_pic_operand", {CONST}},					\
3035 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}},			\
3036 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}},		\
3037 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}},			\
3038 {"splittable_symbolic_memory_operand", {MEM}},				\
3039 {"splittable_immediate_memory_operand", {MEM}},				\
3040 {"eq_or_neq", {EQ, NE}},						\
3041 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}},			\
3042 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}},	\
3043 {"noov_compare64_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}},	\
3044 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}},				\
3045 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}},				\
3046 {"cc_arithop", {AND, IOR, XOR}},					\
3047 {"cc_arithopn", {AND, IOR}},						\
3048 {"arith_operand", {SUBREG, REG, CONST_INT}},				\
3049 {"arith_add_operand", {SUBREG, REG, CONST_INT}},			\
3050 {"arith11_operand", {SUBREG, REG, CONST_INT}},				\
3051 {"arith10_operand", {SUBREG, REG, CONST_INT}},				\
3052 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},	\
3053 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},	\
3054 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},	\
3055 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},	\
3056 {"small_int", {CONST_INT}},						\
3057 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}},			\
3058 {"uns_small_int", {CONST_INT}},						\
3059 {"uns_arith_operand", {SUBREG, REG, CONST_INT}},			\
3060 {"clobbered_register", {REG}},						\
3061 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}},		\
3062 {"compare_operand", {SUBREG, REG, ZERO_EXTRACT}},			\
3063 {"const64_operand", {CONST_INT, CONST_DOUBLE}},				\
3064 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
3065 
3066 /* The number of Pmode words for the setjmp buffer.  */
3067 #define JMP_BUF_SIZE 12
3068 
3069 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)
3070