xref: /openbsd/gnu/usr.bin/gcc/gcc/optabs.c (revision 06dc6460)
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA.  */
21 
22 
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
26 
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28    is properly defined.  */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "except.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "libfuncs.h"
39 #include "recog.h"
40 #include "reload.h"
41 #include "ggc.h"
42 #include "real.h"
43 #include "basic-block.h"
44 
45 /* Each optab contains info on how this target machine
46    can perform a particular operation
47    for all sizes and kinds of operands.
48 
49    The operation to be performed is often specified
50    by passing one of these optabs as an argument.
51 
52    See expr.h for documentation of these optabs.  */
53 
54 optab optab_table[OTI_MAX];
55 
56 rtx libfunc_table[LTI_MAX];
57 
58 /* Tables of patterns for extending one integer mode to another.  */
59 enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
60 
61 /* Tables of patterns for converting between fixed and floating point.  */
62 enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
63 enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
64 enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
65 
66 /* Contains the optab used for each rtx code.  */
67 optab code_to_optab[NUM_RTX_CODE + 1];
68 
69 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
70    gives the gen_function to make a branch to test that condition.  */
71 
72 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
73 
74 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
75    gives the insn code to make a store-condition insn
76    to test that condition.  */
77 
78 enum insn_code setcc_gen_code[NUM_RTX_CODE];
79 
80 #ifdef HAVE_conditional_move
81 /* Indexed by the machine mode, gives the insn code to make a conditional
82    move insn.  This is not indexed by the rtx-code like bcc_gen_fctn and
83    setcc_gen_code to cut down on the number of named patterns.  Consider a day
84    when a lot more rtx codes are conditional (eg: for the ARM).  */
85 
86 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
87 #endif
88 
89 /* The insn generating function can not take an rtx_code argument.
90    TRAP_RTX is used as an rtx argument.  Its code is replaced with
91    the code to be used in the trap insn and all other fields are ignored.  */
92 static GTY(()) rtx trap_rtx;
93 
94 static int add_equal_note	PARAMS ((rtx, rtx, enum rtx_code, rtx, rtx));
95 static rtx widen_operand	PARAMS ((rtx, enum machine_mode,
96 				       enum machine_mode, int, int));
97 static int expand_cmplxdiv_straight PARAMS ((rtx, rtx, rtx, rtx,
98 					   rtx, rtx, enum machine_mode,
99 					   int, enum optab_methods,
100 					   enum mode_class, optab));
101 static int expand_cmplxdiv_wide PARAMS ((rtx, rtx, rtx, rtx,
102 				       rtx, rtx, enum machine_mode,
103 				       int, enum optab_methods,
104 				       enum mode_class, optab));
105 static void prepare_cmp_insn PARAMS ((rtx *, rtx *, enum rtx_code *, rtx,
106 				      enum machine_mode *, int *,
107 				      enum can_compare_purpose));
108 static enum insn_code can_fix_p	PARAMS ((enum machine_mode, enum machine_mode,
109 				       int, int *));
110 static enum insn_code can_float_p PARAMS ((enum machine_mode,
111 					   enum machine_mode,
112 					   int));
113 static rtx ftruncify	PARAMS ((rtx));
114 static optab new_optab	PARAMS ((void));
115 static inline optab init_optab	PARAMS ((enum rtx_code));
116 static inline optab init_optabv	PARAMS ((enum rtx_code));
117 static void init_libfuncs PARAMS ((optab, int, int, const char *, int));
118 static void init_integral_libfuncs PARAMS ((optab, const char *, int));
119 static void init_floating_libfuncs PARAMS ((optab, const char *, int));
120 static void emit_cmp_and_jump_insn_1 PARAMS ((rtx, rtx, enum machine_mode,
121 					    enum rtx_code, int, rtx));
122 static void prepare_float_lib_cmp PARAMS ((rtx *, rtx *, enum rtx_code *,
123 					 enum machine_mode *, int *));
124 static rtx expand_vector_binop PARAMS ((enum machine_mode, optab,
125 					rtx, rtx, rtx, int,
126 					enum optab_methods));
127 static rtx expand_vector_unop PARAMS ((enum machine_mode, optab, rtx, rtx,
128 				       int));
129 
130 #ifndef HAVE_conditional_trap
131 #define HAVE_conditional_trap 0
132 #define gen_conditional_trap(a,b) (abort (), NULL_RTX)
133 #endif
134 
135 /* Add a REG_EQUAL note to the last insn in INSNS.  TARGET is being set to
136    the result of operation CODE applied to OP0 (and OP1 if it is a binary
137    operation).
138 
139    If the last insn does not set TARGET, don't do anything, but return 1.
140 
141    If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
142    don't add the REG_EQUAL note but return 0.  Our caller can then try
143    again, ensuring that TARGET is not one of the operands.  */
144 
145 static int
add_equal_note(insns,target,code,op0,op1)146 add_equal_note (insns, target, code, op0, op1)
147      rtx insns;
148      rtx target;
149      enum rtx_code code;
150      rtx op0, op1;
151 {
152   rtx last_insn, insn, set;
153   rtx note;
154 
155   if (! insns
156       || ! INSN_P (insns)
157       || NEXT_INSN (insns) == NULL_RTX)
158     abort ();
159 
160   if (GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
161       && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
162     return 1;
163 
164   if (GET_CODE (target) == ZERO_EXTRACT)
165     return 1;
166 
167   for (last_insn = insns;
168        NEXT_INSN (last_insn) != NULL_RTX;
169        last_insn = NEXT_INSN (last_insn))
170     ;
171 
172   set = single_set (last_insn);
173   if (set == NULL_RTX)
174     return 1;
175 
176   if (! rtx_equal_p (SET_DEST (set), target)
177       /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
178 	 SUBREG.  */
179       && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
180 	  || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
181 			    target)))
182     return 1;
183 
184   /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
185      besides the last insn.  */
186   if (reg_overlap_mentioned_p (target, op0)
187       || (op1 && reg_overlap_mentioned_p (target, op1)))
188     {
189       insn = PREV_INSN (last_insn);
190       while (insn != NULL_RTX)
191 	{
192 	  if (reg_set_p (target, insn))
193 	    return 0;
194 
195 	  insn = PREV_INSN (insn);
196 	}
197     }
198 
199   if (GET_RTX_CLASS (code) == '1')
200     note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
201   else
202     note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
203 
204   set_unique_reg_note (last_insn, REG_EQUAL, note);
205 
206   return 1;
207 }
208 
209 /* Widen OP to MODE and return the rtx for the widened operand.  UNSIGNEDP
210    says whether OP is signed or unsigned.  NO_EXTEND is nonzero if we need
211    not actually do a sign-extend or zero-extend, but can leave the
212    higher-order bits of the result rtx undefined, for example, in the case
213    of logical operations, but not right shifts.  */
214 
215 static rtx
widen_operand(op,mode,oldmode,unsignedp,no_extend)216 widen_operand (op, mode, oldmode, unsignedp, no_extend)
217      rtx op;
218      enum machine_mode mode, oldmode;
219      int unsignedp;
220      int no_extend;
221 {
222   rtx result;
223 
224   /* If we don't have to extend and this is a constant, return it.  */
225   if (no_extend && GET_MODE (op) == VOIDmode)
226     return op;
227 
228   /* If we must extend do so.  If OP is a SUBREG for a promoted object, also
229      extend since it will be more efficient to do so unless the signedness of
230      a promoted object differs from our extension.  */
231   if (! no_extend
232       || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
233 	  && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
234     return convert_modes (mode, oldmode, op, unsignedp);
235 
236   /* If MODE is no wider than a single word, we return a paradoxical
237      SUBREG.  */
238   if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
239     return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
240 
241   /* Otherwise, get an object of MODE, clobber it, and set the low-order
242      part to OP.  */
243 
244   result = gen_reg_rtx (mode);
245   emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
246   emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
247   return result;
248 }
249 
250 /* Generate code to perform a straightforward complex divide.  */
251 
252 static int
expand_cmplxdiv_straight(real0,real1,imag0,imag1,realr,imagr,submode,unsignedp,methods,class,binoptab)253 expand_cmplxdiv_straight (real0, real1, imag0, imag1, realr, imagr, submode,
254 			  unsignedp, methods, class, binoptab)
255      rtx real0, real1, imag0, imag1, realr, imagr;
256      enum machine_mode submode;
257      int unsignedp;
258      enum optab_methods methods;
259      enum mode_class class;
260      optab binoptab;
261 {
262   rtx divisor;
263   rtx real_t, imag_t;
264   rtx temp1, temp2;
265   rtx res;
266   optab this_add_optab = add_optab;
267   optab this_sub_optab = sub_optab;
268   optab this_neg_optab = neg_optab;
269   optab this_mul_optab = smul_optab;
270 
271   if (binoptab == sdivv_optab)
272     {
273       this_add_optab = addv_optab;
274       this_sub_optab = subv_optab;
275       this_neg_optab = negv_optab;
276       this_mul_optab = smulv_optab;
277     }
278 
279   /* Don't fetch these from memory more than once.  */
280   real0 = force_reg (submode, real0);
281   real1 = force_reg (submode, real1);
282 
283   if (imag0 != 0)
284     imag0 = force_reg (submode, imag0);
285 
286   imag1 = force_reg (submode, imag1);
287 
288   /* Divisor: c*c + d*d.  */
289   temp1 = expand_binop (submode, this_mul_optab, real1, real1,
290 			NULL_RTX, unsignedp, methods);
291 
292   temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
293 			NULL_RTX, unsignedp, methods);
294 
295   if (temp1 == 0 || temp2 == 0)
296     return 0;
297 
298   divisor = expand_binop (submode, this_add_optab, temp1, temp2,
299 			  NULL_RTX, unsignedp, methods);
300   if (divisor == 0)
301     return 0;
302 
303   if (imag0 == 0)
304     {
305       /* Mathematically, ((a)(c-id))/divisor.  */
306       /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)).  */
307 
308       /* Calculate the dividend.  */
309       real_t = expand_binop (submode, this_mul_optab, real0, real1,
310 			     NULL_RTX, unsignedp, methods);
311 
312       imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
313 			     NULL_RTX, unsignedp, methods);
314 
315       if (real_t == 0 || imag_t == 0)
316 	return 0;
317 
318       imag_t = expand_unop (submode, this_neg_optab, imag_t,
319 			    NULL_RTX, unsignedp);
320     }
321   else
322     {
323       /* Mathematically, ((a+ib)(c-id))/divider.  */
324       /* Calculate the dividend.  */
325       temp1 = expand_binop (submode, this_mul_optab, real0, real1,
326 			    NULL_RTX, unsignedp, methods);
327 
328       temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
329 			    NULL_RTX, unsignedp, methods);
330 
331       if (temp1 == 0 || temp2 == 0)
332 	return 0;
333 
334       real_t = expand_binop (submode, this_add_optab, temp1, temp2,
335 			     NULL_RTX, unsignedp, methods);
336 
337       temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
338 			    NULL_RTX, unsignedp, methods);
339 
340       temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
341 			    NULL_RTX, unsignedp, methods);
342 
343       if (temp1 == 0 || temp2 == 0)
344 	return 0;
345 
346       imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
347 			     NULL_RTX, unsignedp, methods);
348 
349       if (real_t == 0 || imag_t == 0)
350 	return 0;
351     }
352 
353   if (class == MODE_COMPLEX_FLOAT)
354     res = expand_binop (submode, binoptab, real_t, divisor,
355 			realr, unsignedp, methods);
356   else
357     res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
358 			 real_t, divisor, realr, unsignedp);
359 
360   if (res == 0)
361     return 0;
362 
363   if (res != realr)
364     emit_move_insn (realr, res);
365 
366   if (class == MODE_COMPLEX_FLOAT)
367     res = expand_binop (submode, binoptab, imag_t, divisor,
368 			imagr, unsignedp, methods);
369   else
370     res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
371 			 imag_t, divisor, imagr, unsignedp);
372 
373   if (res == 0)
374     return 0;
375 
376   if (res != imagr)
377     emit_move_insn (imagr, res);
378 
379   return 1;
380 }
381 
382 /* Generate code to perform a wide-input-range-acceptable complex divide.  */
383 
384 static int
expand_cmplxdiv_wide(real0,real1,imag0,imag1,realr,imagr,submode,unsignedp,methods,class,binoptab)385 expand_cmplxdiv_wide (real0, real1, imag0, imag1, realr, imagr, submode,
386 		      unsignedp, methods, class, binoptab)
387      rtx real0, real1, imag0, imag1, realr, imagr;
388      enum machine_mode submode;
389      int unsignedp;
390      enum optab_methods methods;
391      enum mode_class class;
392      optab binoptab;
393 {
394   rtx ratio, divisor;
395   rtx real_t, imag_t;
396   rtx temp1, temp2, lab1, lab2;
397   enum machine_mode mode;
398   rtx res;
399   optab this_add_optab = add_optab;
400   optab this_sub_optab = sub_optab;
401   optab this_neg_optab = neg_optab;
402   optab this_mul_optab = smul_optab;
403 
404   if (binoptab == sdivv_optab)
405     {
406       this_add_optab = addv_optab;
407       this_sub_optab = subv_optab;
408       this_neg_optab = negv_optab;
409       this_mul_optab = smulv_optab;
410     }
411 
412   /* Don't fetch these from memory more than once.  */
413   real0 = force_reg (submode, real0);
414   real1 = force_reg (submode, real1);
415 
416   if (imag0 != 0)
417     imag0 = force_reg (submode, imag0);
418 
419   imag1 = force_reg (submode, imag1);
420 
421   /* XXX What's an "unsigned" complex number?  */
422   if (unsignedp)
423     {
424       temp1 = real1;
425       temp2 = imag1;
426     }
427   else
428     {
429       temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
430       temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
431     }
432 
433   if (temp1 == 0 || temp2 == 0)
434     return 0;
435 
436   mode = GET_MODE (temp1);
437   lab1 = gen_label_rtx ();
438   emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
439 			   mode, unsignedp, lab1);
440 
441   /* |c| >= |d|; use ratio d/c to scale dividend and divisor.  */
442 
443   if (class == MODE_COMPLEX_FLOAT)
444     ratio = expand_binop (submode, binoptab, imag1, real1,
445 			  NULL_RTX, unsignedp, methods);
446   else
447     ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
448 			   imag1, real1, NULL_RTX, unsignedp);
449 
450   if (ratio == 0)
451     return 0;
452 
453   /* Calculate divisor.  */
454 
455   temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
456 			NULL_RTX, unsignedp, methods);
457 
458   if (temp1 == 0)
459     return 0;
460 
461   divisor = expand_binop (submode, this_add_optab, temp1, real1,
462 			  NULL_RTX, unsignedp, methods);
463 
464   if (divisor == 0)
465     return 0;
466 
467   /* Calculate dividend.  */
468 
469   if (imag0 == 0)
470     {
471       real_t = real0;
472 
473       /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)).  */
474 
475       imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
476 			     NULL_RTX, unsignedp, methods);
477 
478       if (imag_t == 0)
479 	return 0;
480 
481       imag_t = expand_unop (submode, this_neg_optab, imag_t,
482 			    NULL_RTX, unsignedp);
483 
484       if (real_t == 0 || imag_t == 0)
485 	return 0;
486     }
487   else
488     {
489       /* Compute (a+ib)/(c+id) as
490 	 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)).  */
491 
492       temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
493 			    NULL_RTX, unsignedp, methods);
494 
495       if (temp1 == 0)
496 	return 0;
497 
498       real_t = expand_binop (submode, this_add_optab, temp1, real0,
499 			     NULL_RTX, unsignedp, methods);
500 
501       temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
502 			    NULL_RTX, unsignedp, methods);
503 
504       if (temp1 == 0)
505 	return 0;
506 
507       imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
508 			     NULL_RTX, unsignedp, methods);
509 
510       if (real_t == 0 || imag_t == 0)
511 	return 0;
512     }
513 
514   if (class == MODE_COMPLEX_FLOAT)
515     res = expand_binop (submode, binoptab, real_t, divisor,
516 			realr, unsignedp, methods);
517   else
518     res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
519 			 real_t, divisor, realr, unsignedp);
520 
521   if (res == 0)
522     return 0;
523 
524   if (res != realr)
525     emit_move_insn (realr, res);
526 
527   if (class == MODE_COMPLEX_FLOAT)
528     res = expand_binop (submode, binoptab, imag_t, divisor,
529 			imagr, unsignedp, methods);
530   else
531     res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
532 			 imag_t, divisor, imagr, unsignedp);
533 
534   if (res == 0)
535     return 0;
536 
537   if (res != imagr)
538     emit_move_insn (imagr, res);
539 
540   lab2 = gen_label_rtx ();
541   emit_jump_insn (gen_jump (lab2));
542   emit_barrier ();
543 
544   emit_label (lab1);
545 
546   /* |d| > |c|; use ratio c/d to scale dividend and divisor.  */
547 
548   if (class == MODE_COMPLEX_FLOAT)
549     ratio = expand_binop (submode, binoptab, real1, imag1,
550 			  NULL_RTX, unsignedp, methods);
551   else
552     ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
553 			   real1, imag1, NULL_RTX, unsignedp);
554 
555   if (ratio == 0)
556     return 0;
557 
558   /* Calculate divisor.  */
559 
560   temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
561 			NULL_RTX, unsignedp, methods);
562 
563   if (temp1 == 0)
564     return 0;
565 
566   divisor = expand_binop (submode, this_add_optab, temp1, imag1,
567 			  NULL_RTX, unsignedp, methods);
568 
569   if (divisor == 0)
570     return 0;
571 
572   /* Calculate dividend.  */
573 
574   if (imag0 == 0)
575     {
576       /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d).  */
577 
578       real_t = expand_binop (submode, this_mul_optab, real0, ratio,
579 			     NULL_RTX, unsignedp, methods);
580 
581       imag_t = expand_unop (submode, this_neg_optab, real0,
582 			    NULL_RTX, unsignedp);
583 
584       if (real_t == 0 || imag_t == 0)
585 	return 0;
586     }
587   else
588     {
589       /* Compute (a+ib)/(c+id) as
590 	 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d).  */
591 
592       temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
593 			    NULL_RTX, unsignedp, methods);
594 
595       if (temp1 == 0)
596 	return 0;
597 
598       real_t = expand_binop (submode, this_add_optab, temp1, imag0,
599 			     NULL_RTX, unsignedp, methods);
600 
601       temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
602 			    NULL_RTX, unsignedp, methods);
603 
604       if (temp1 == 0)
605 	return 0;
606 
607       imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
608 			     NULL_RTX, unsignedp, methods);
609 
610       if (real_t == 0 || imag_t == 0)
611 	return 0;
612     }
613 
614   if (class == MODE_COMPLEX_FLOAT)
615     res = expand_binop (submode, binoptab, real_t, divisor,
616 			realr, unsignedp, methods);
617   else
618     res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
619 			 real_t, divisor, realr, unsignedp);
620 
621   if (res == 0)
622     return 0;
623 
624   if (res != realr)
625     emit_move_insn (realr, res);
626 
627   if (class == MODE_COMPLEX_FLOAT)
628     res = expand_binop (submode, binoptab, imag_t, divisor,
629 			imagr, unsignedp, methods);
630   else
631     res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
632 			 imag_t, divisor, imagr, unsignedp);
633 
634   if (res == 0)
635     return 0;
636 
637   if (res != imagr)
638     emit_move_insn (imagr, res);
639 
640   emit_label (lab2);
641 
642   return 1;
643 }
644 
645 /* Wrapper around expand_binop which takes an rtx code to specify
646    the operation to perform, not an optab pointer.  All other
647    arguments are the same.  */
648 rtx
expand_simple_binop(mode,code,op0,op1,target,unsignedp,methods)649 expand_simple_binop (mode, code, op0, op1, target, unsignedp, methods)
650      enum machine_mode mode;
651      enum rtx_code code;
652      rtx op0, op1;
653      rtx target;
654      int unsignedp;
655      enum optab_methods methods;
656 {
657   optab binop = code_to_optab[(int) code];
658   if (binop == 0)
659     abort ();
660 
661   return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
662 }
663 
664 /* Generate code to perform an operation specified by BINOPTAB
665    on operands OP0 and OP1, with result having machine-mode MODE.
666 
667    UNSIGNEDP is for the case where we have to widen the operands
668    to perform the operation.  It says to use zero-extension.
669 
670    If TARGET is nonzero, the value
671    is generated there, if it is convenient to do so.
672    In all cases an rtx is returned for the locus of the value;
673    this may or may not be TARGET.  */
674 
675 rtx
expand_binop(mode,binoptab,op0,op1,target,unsignedp,methods)676 expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
677      enum machine_mode mode;
678      optab binoptab;
679      rtx op0, op1;
680      rtx target;
681      int unsignedp;
682      enum optab_methods methods;
683 {
684   enum optab_methods next_methods
685     = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
686        ? OPTAB_WIDEN : methods);
687   enum mode_class class;
688   enum machine_mode wider_mode;
689   rtx temp;
690   int commutative_op = 0;
691   int shift_op = (binoptab->code == ASHIFT
692 		  || binoptab->code == ASHIFTRT
693 		  || binoptab->code == LSHIFTRT
694 		  || binoptab->code == ROTATE
695 		  || binoptab->code == ROTATERT);
696   rtx entry_last = get_last_insn ();
697   rtx last;
698 
699   class = GET_MODE_CLASS (mode);
700 
701   op0 = protect_from_queue (op0, 0);
702   op1 = protect_from_queue (op1, 0);
703   if (target)
704     target = protect_from_queue (target, 1);
705 
706   if (flag_propolice_protection
707       && binoptab->code == PLUS
708       && op0 == virtual_stack_vars_rtx
709       && GET_CODE(op1) == CONST_INT)
710     {
711       int icode = (int) binoptab->handlers[(int) mode].insn_code;
712       if (target)
713 	temp = target;
714       else
715 	temp = gen_reg_rtx (mode);
716 
717       if (! (*insn_data[icode].operand[0].predicate) (temp, mode)
718 	  || GET_CODE (temp) != REG)
719 	temp = gen_reg_rtx (mode);
720 
721       emit_insn (gen_rtx_SET (VOIDmode, temp,
722 			      gen_rtx_PLUS (GET_MODE (op0), op0, op1)));
723       return temp;
724     }
725 
726   if (flag_force_mem)
727     {
728       op0 = force_not_mem (op0);
729       op1 = force_not_mem (op1);
730     }
731 
732   /* If subtracting an integer constant, convert this into an addition of
733      the negated constant.  */
734 
735   if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
736     {
737       op1 = negate_rtx (mode, op1);
738       binoptab = add_optab;
739     }
740 
741   /* If we are inside an appropriately-short loop and one operand is an
742      expensive constant, force it into a register.  */
743   if (CONSTANT_P (op0) && preserve_subexpressions_p ()
744       && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
745     op0 = force_reg (mode, op0);
746 
747   if (CONSTANT_P (op1) && preserve_subexpressions_p ()
748       && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
749     op1 = force_reg (mode, op1);
750 
751   /* Record where to delete back to if we backtrack.  */
752   last = get_last_insn ();
753 
754   /* If operation is commutative,
755      try to make the first operand a register.
756      Even better, try to make it the same as the target.
757      Also try to make the last operand a constant.  */
758   if (GET_RTX_CLASS (binoptab->code) == 'c'
759       || binoptab == smul_widen_optab
760       || binoptab == umul_widen_optab
761       || binoptab == smul_highpart_optab
762       || binoptab == umul_highpart_optab)
763     {
764       commutative_op = 1;
765 
766       if (((target == 0 || GET_CODE (target) == REG)
767 	   ? ((GET_CODE (op1) == REG
768 	       && GET_CODE (op0) != REG)
769 	      || target == op1)
770 	   : rtx_equal_p (op1, target))
771 	  || GET_CODE (op0) == CONST_INT)
772 	{
773 	  temp = op1;
774 	  op1 = op0;
775 	  op0 = temp;
776 	}
777     }
778 
779   /* If we can do it with a three-operand insn, do so.  */
780 
781   if (methods != OPTAB_MUST_WIDEN
782       && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
783     {
784       int icode = (int) binoptab->handlers[(int) mode].insn_code;
785       enum machine_mode mode0 = insn_data[icode].operand[1].mode;
786       enum machine_mode mode1 = insn_data[icode].operand[2].mode;
787       rtx pat;
788       rtx xop0 = op0, xop1 = op1;
789 
790       if (target)
791 	temp = target;
792       else
793 	temp = gen_reg_rtx (mode);
794 
795       /* If it is a commutative operator and the modes would match
796 	 if we would swap the operands, we can save the conversions.  */
797       if (commutative_op)
798 	{
799 	  if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
800 	      && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
801 	    {
802 	      rtx tmp;
803 
804 	      tmp = op0; op0 = op1; op1 = tmp;
805 	      tmp = xop0; xop0 = xop1; xop1 = tmp;
806 	    }
807 	}
808 
809       /* In case the insn wants input operands in modes different from
810 	 those of the actual operands, convert the operands.  It would
811 	 seem that we don't need to convert CONST_INTs, but we do, so
812 	 that they're properly zero-extended, sign-extended or truncated
813 	 for their mode.  */
814 
815       if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
816 	xop0 = convert_modes (mode0,
817 			      GET_MODE (op0) != VOIDmode
818 			      ? GET_MODE (op0)
819 			      : mode,
820 			      xop0, unsignedp);
821 
822       if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
823 	xop1 = convert_modes (mode1,
824 			      GET_MODE (op1) != VOIDmode
825 			      ? GET_MODE (op1)
826 			      : mode,
827 			      xop1, unsignedp);
828 
829       /* Now, if insn's predicates don't allow our operands, put them into
830 	 pseudo regs.  */
831 
832       if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
833 	  && mode0 != VOIDmode)
834 	xop0 = copy_to_mode_reg (mode0, xop0);
835 
836       if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
837 	  && mode1 != VOIDmode)
838 	xop1 = copy_to_mode_reg (mode1, xop1);
839 
840       if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
841 	temp = gen_reg_rtx (mode);
842 
843       pat = GEN_FCN (icode) (temp, xop0, xop1);
844       if (pat)
845 	{
846 	  /* If PAT is composed of more than one insn, try to add an appropriate
847 	     REG_EQUAL note to it.  If we can't because TEMP conflicts with an
848 	     operand, call ourselves again, this time without a target.  */
849 	  if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
850 	      && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
851 	    {
852 	      delete_insns_since (last);
853 	      return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
854 				   unsignedp, methods);
855 	    }
856 
857 	  emit_insn (pat);
858 	  return temp;
859 	}
860       else
861 	delete_insns_since (last);
862     }
863 
864   /* If this is a multiply, see if we can do a widening operation that
865      takes operands of this mode and makes a wider mode.  */
866 
867   if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
868       && (((unsignedp ? umul_widen_optab : smul_widen_optab)
869 	   ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
870 	  != CODE_FOR_nothing))
871     {
872       temp = expand_binop (GET_MODE_WIDER_MODE (mode),
873 			   unsignedp ? umul_widen_optab : smul_widen_optab,
874 			   op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
875 
876       if (temp != 0)
877 	{
878 	  if (GET_MODE_CLASS (mode) == MODE_INT)
879 	    return gen_lowpart (mode, temp);
880 	  else
881 	    return convert_to_mode (mode, temp, unsignedp);
882 	}
883     }
884 
885   /* Look for a wider mode of the same class for which we think we
886      can open-code the operation.  Check for a widening multiply at the
887      wider mode as well.  */
888 
889   if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
890       && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
891     for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
892 	 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
893       {
894 	if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
895 	    || (binoptab == smul_optab
896 		&& GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
897 		&& (((unsignedp ? umul_widen_optab : smul_widen_optab)
898 		     ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
899 		    != CODE_FOR_nothing)))
900 	  {
901 	    rtx xop0 = op0, xop1 = op1;
902 	    int no_extend = 0;
903 
904 	    /* For certain integer operations, we need not actually extend
905 	       the narrow operands, as long as we will truncate
906 	       the results to the same narrowness.  */
907 
908 	    if ((binoptab == ior_optab || binoptab == and_optab
909 		 || binoptab == xor_optab
910 		 || binoptab == add_optab || binoptab == sub_optab
911 		 || binoptab == smul_optab || binoptab == ashl_optab)
912 		&& class == MODE_INT)
913 	      no_extend = 1;
914 
915 	    xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
916 
917 	    /* The second operand of a shift must always be extended.  */
918 	    xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
919 				  no_extend && binoptab != ashl_optab);
920 
921 	    temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
922 				 unsignedp, OPTAB_DIRECT);
923 	    if (temp)
924 	      {
925 		if (class != MODE_INT)
926 		  {
927 		    if (target == 0)
928 		      target = gen_reg_rtx (mode);
929 		    convert_move (target, temp, 0);
930 		    return target;
931 		  }
932 		else
933 		  return gen_lowpart (mode, temp);
934 	      }
935 	    else
936 	      delete_insns_since (last);
937 	  }
938       }
939 
940   /* These can be done a word at a time.  */
941   if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
942       && class == MODE_INT
943       && GET_MODE_SIZE (mode) > UNITS_PER_WORD
944       && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
945     {
946       int i;
947       rtx insns;
948       rtx equiv_value;
949 
950       /* If TARGET is the same as one of the operands, the REG_EQUAL note
951 	 won't be accurate, so use a new target.  */
952       if (target == 0 || target == op0 || target == op1)
953 	target = gen_reg_rtx (mode);
954 
955       start_sequence ();
956 
957       /* Do the actual arithmetic.  */
958       for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
959 	{
960 	  rtx target_piece = operand_subword (target, i, 1, mode);
961 	  rtx x = expand_binop (word_mode, binoptab,
962 				operand_subword_force (op0, i, mode),
963 				operand_subword_force (op1, i, mode),
964 				target_piece, unsignedp, next_methods);
965 
966 	  if (x == 0)
967 	    break;
968 
969 	  if (target_piece != x)
970 	    emit_move_insn (target_piece, x);
971 	}
972 
973       insns = get_insns ();
974       end_sequence ();
975 
976       if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
977 	{
978 	  if (binoptab->code != UNKNOWN)
979 	    equiv_value
980 	      = gen_rtx_fmt_ee (binoptab->code, mode,
981 				copy_rtx (op0), copy_rtx (op1));
982 	  else
983 	    equiv_value = 0;
984 
985 	  emit_no_conflict_block (insns, target, op0, op1, equiv_value);
986 	  return target;
987 	}
988     }
989 
990   /* Synthesize double word shifts from single word shifts.  */
991   if ((binoptab == lshr_optab || binoptab == ashl_optab
992        || binoptab == ashr_optab)
993       && class == MODE_INT
994       && GET_CODE (op1) == CONST_INT
995       && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
996       && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
997       && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
998       && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
999     {
1000       rtx insns, inter, equiv_value;
1001       rtx into_target, outof_target;
1002       rtx into_input, outof_input;
1003       int shift_count, left_shift, outof_word;
1004 
1005       /* If TARGET is the same as one of the operands, the REG_EQUAL note
1006 	 won't be accurate, so use a new target.  */
1007       if (target == 0 || target == op0 || target == op1)
1008 	target = gen_reg_rtx (mode);
1009 
1010       start_sequence ();
1011 
1012       shift_count = INTVAL (op1);
1013 
1014       /* OUTOF_* is the word we are shifting bits away from, and
1015 	 INTO_* is the word that we are shifting bits towards, thus
1016 	 they differ depending on the direction of the shift and
1017 	 WORDS_BIG_ENDIAN.  */
1018 
1019       left_shift = binoptab == ashl_optab;
1020       outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1021 
1022       outof_target = operand_subword (target, outof_word, 1, mode);
1023       into_target = operand_subword (target, 1 - outof_word, 1, mode);
1024 
1025       outof_input = operand_subword_force (op0, outof_word, mode);
1026       into_input = operand_subword_force (op0, 1 - outof_word, mode);
1027 
1028       if (shift_count >= BITS_PER_WORD)
1029 	{
1030 	  inter = expand_binop (word_mode, binoptab,
1031 			       outof_input,
1032 			       GEN_INT (shift_count - BITS_PER_WORD),
1033 			       into_target, unsignedp, next_methods);
1034 
1035 	  if (inter != 0 && inter != into_target)
1036 	    emit_move_insn (into_target, inter);
1037 
1038 	  /* For a signed right shift, we must fill the word we are shifting
1039 	     out of with copies of the sign bit.  Otherwise it is zeroed.  */
1040 	  if (inter != 0 && binoptab != ashr_optab)
1041 	    inter = CONST0_RTX (word_mode);
1042 	  else if (inter != 0)
1043 	    inter = expand_binop (word_mode, binoptab,
1044 				  outof_input,
1045 				  GEN_INT (BITS_PER_WORD - 1),
1046 				  outof_target, unsignedp, next_methods);
1047 
1048 	  if (inter != 0 && inter != outof_target)
1049 	    emit_move_insn (outof_target, inter);
1050 	}
1051       else
1052 	{
1053 	  rtx carries;
1054 	  optab reverse_unsigned_shift, unsigned_shift;
1055 
1056 	  /* For a shift of less then BITS_PER_WORD, to compute the carry,
1057 	     we must do a logical shift in the opposite direction of the
1058 	     desired shift.  */
1059 
1060 	  reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1061 
1062 	  /* For a shift of less than BITS_PER_WORD, to compute the word
1063 	     shifted towards, we need to unsigned shift the orig value of
1064 	     that word.  */
1065 
1066 	  unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1067 
1068 	  carries = expand_binop (word_mode, reverse_unsigned_shift,
1069 				  outof_input,
1070 				  GEN_INT (BITS_PER_WORD - shift_count),
1071 				  0, unsignedp, next_methods);
1072 
1073 	  if (carries == 0)
1074 	    inter = 0;
1075 	  else
1076 	    inter = expand_binop (word_mode, unsigned_shift, into_input,
1077 				  op1, 0, unsignedp, next_methods);
1078 
1079 	  if (inter != 0)
1080 	    inter = expand_binop (word_mode, ior_optab, carries, inter,
1081 				  into_target, unsignedp, next_methods);
1082 
1083 	  if (inter != 0 && inter != into_target)
1084 	    emit_move_insn (into_target, inter);
1085 
1086 	  if (inter != 0)
1087 	    inter = expand_binop (word_mode, binoptab, outof_input,
1088 				  op1, outof_target, unsignedp, next_methods);
1089 
1090 	  if (inter != 0 && inter != outof_target)
1091 	    emit_move_insn (outof_target, inter);
1092 	}
1093 
1094       insns = get_insns ();
1095       end_sequence ();
1096 
1097       if (inter != 0)
1098 	{
1099 	  if (binoptab->code != UNKNOWN)
1100 	    equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1101 	  else
1102 	    equiv_value = 0;
1103 
1104 	  emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1105 	  return target;
1106 	}
1107     }
1108 
1109   /* Synthesize double word rotates from single word shifts.  */
1110   if ((binoptab == rotl_optab || binoptab == rotr_optab)
1111       && class == MODE_INT
1112       && GET_CODE (op1) == CONST_INT
1113       && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1114       && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1115       && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1116     {
1117       rtx insns, equiv_value;
1118       rtx into_target, outof_target;
1119       rtx into_input, outof_input;
1120       rtx inter;
1121       int shift_count, left_shift, outof_word;
1122 
1123       /* If TARGET is the same as one of the operands, the REG_EQUAL note
1124 	 won't be accurate, so use a new target.  */
1125       if (target == 0 || target == op0 || target == op1)
1126 	target = gen_reg_rtx (mode);
1127 
1128       start_sequence ();
1129 
1130       shift_count = INTVAL (op1);
1131 
1132       /* OUTOF_* is the word we are shifting bits away from, and
1133 	 INTO_* is the word that we are shifting bits towards, thus
1134 	 they differ depending on the direction of the shift and
1135 	 WORDS_BIG_ENDIAN.  */
1136 
1137       left_shift = (binoptab == rotl_optab);
1138       outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1139 
1140       outof_target = operand_subword (target, outof_word, 1, mode);
1141       into_target = operand_subword (target, 1 - outof_word, 1, mode);
1142 
1143       outof_input = operand_subword_force (op0, outof_word, mode);
1144       into_input = operand_subword_force (op0, 1 - outof_word, mode);
1145 
1146       if (shift_count == BITS_PER_WORD)
1147 	{
1148 	  /* This is just a word swap.  */
1149 	  emit_move_insn (outof_target, into_input);
1150 	  emit_move_insn (into_target, outof_input);
1151 	  inter = const0_rtx;
1152 	}
1153       else
1154 	{
1155 	  rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1156 	  rtx first_shift_count, second_shift_count;
1157 	  optab reverse_unsigned_shift, unsigned_shift;
1158 
1159 	  reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1160 				    ? lshr_optab : ashl_optab);
1161 
1162 	  unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1163 			    ? ashl_optab : lshr_optab);
1164 
1165 	  if (shift_count > BITS_PER_WORD)
1166 	    {
1167 	      first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1168 	      second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1169 	    }
1170 	  else
1171 	    {
1172 	      first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1173 	      second_shift_count = GEN_INT (shift_count);
1174 	    }
1175 
1176 	  into_temp1 = expand_binop (word_mode, unsigned_shift,
1177 				     outof_input, first_shift_count,
1178 				     NULL_RTX, unsignedp, next_methods);
1179 	  into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1180 				     into_input, second_shift_count,
1181 				     NULL_RTX, unsignedp, next_methods);
1182 
1183 	  if (into_temp1 != 0 && into_temp2 != 0)
1184 	    inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1185 				  into_target, unsignedp, next_methods);
1186 	  else
1187 	    inter = 0;
1188 
1189 	  if (inter != 0 && inter != into_target)
1190 	    emit_move_insn (into_target, inter);
1191 
1192 	  outof_temp1 = expand_binop (word_mode, unsigned_shift,
1193 				      into_input, first_shift_count,
1194 				      NULL_RTX, unsignedp, next_methods);
1195 	  outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1196 				      outof_input, second_shift_count,
1197 				      NULL_RTX, unsignedp, next_methods);
1198 
1199 	  if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1200 	    inter = expand_binop (word_mode, ior_optab,
1201 				  outof_temp1, outof_temp2,
1202 				  outof_target, unsignedp, next_methods);
1203 
1204 	  if (inter != 0 && inter != outof_target)
1205 	    emit_move_insn (outof_target, inter);
1206 	}
1207 
1208       insns = get_insns ();
1209       end_sequence ();
1210 
1211       if (inter != 0)
1212 	{
1213 	  if (binoptab->code != UNKNOWN)
1214 	    equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1215 	  else
1216 	    equiv_value = 0;
1217 
1218 	  /* We can't make this a no conflict block if this is a word swap,
1219 	     because the word swap case fails if the input and output values
1220 	     are in the same register.  */
1221 	  if (shift_count != BITS_PER_WORD)
1222 	    emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1223 	  else
1224 	    emit_insn (insns);
1225 
1226 
1227 	  return target;
1228 	}
1229     }
1230 
1231   /* These can be done a word at a time by propagating carries.  */
1232   if ((binoptab == add_optab || binoptab == sub_optab)
1233       && class == MODE_INT
1234       && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1235       && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1236     {
1237       unsigned int i;
1238       optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1239       const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1240       rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1241       rtx xop0, xop1, xtarget;
1242 
1243       /* We can handle either a 1 or -1 value for the carry.  If STORE_FLAG
1244 	 value is one of those, use it.  Otherwise, use 1 since it is the
1245 	 one easiest to get.  */
1246 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1247       int normalizep = STORE_FLAG_VALUE;
1248 #else
1249       int normalizep = 1;
1250 #endif
1251 
1252       /* Prepare the operands.  */
1253       xop0 = force_reg (mode, op0);
1254       xop1 = force_reg (mode, op1);
1255 
1256       xtarget = gen_reg_rtx (mode);
1257 
1258       if (target == 0 || GET_CODE (target) != REG)
1259 	target = xtarget;
1260 
1261       /* Indicate for flow that the entire target reg is being set.  */
1262       if (GET_CODE (target) == REG)
1263 	emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
1264 
1265       /* Do the actual arithmetic.  */
1266       for (i = 0; i < nwords; i++)
1267 	{
1268 	  int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1269 	  rtx target_piece = operand_subword (xtarget, index, 1, mode);
1270 	  rtx op0_piece = operand_subword_force (xop0, index, mode);
1271 	  rtx op1_piece = operand_subword_force (xop1, index, mode);
1272 	  rtx x;
1273 
1274 	  /* Main add/subtract of the input operands.  */
1275 	  x = expand_binop (word_mode, binoptab,
1276 			    op0_piece, op1_piece,
1277 			    target_piece, unsignedp, next_methods);
1278 	  if (x == 0)
1279 	    break;
1280 
1281 	  if (i + 1 < nwords)
1282 	    {
1283 	      /* Store carry from main add/subtract.  */
1284 	      carry_out = gen_reg_rtx (word_mode);
1285 	      carry_out = emit_store_flag_force (carry_out,
1286 						 (binoptab == add_optab
1287 						  ? LT : GT),
1288 						 x, op0_piece,
1289 						 word_mode, 1, normalizep);
1290 	    }
1291 
1292 	  if (i > 0)
1293 	    {
1294 	      rtx newx;
1295 
1296 	      /* Add/subtract previous carry to main result.  */
1297 	      newx = expand_binop (word_mode,
1298 				   normalizep == 1 ? binoptab : otheroptab,
1299 				   x, carry_in,
1300 				   NULL_RTX, 1, next_methods);
1301 
1302 	      if (i + 1 < nwords)
1303 		{
1304 		  /* Get out carry from adding/subtracting carry in.  */
1305 		  rtx carry_tmp = gen_reg_rtx (word_mode);
1306 		  carry_tmp = emit_store_flag_force (carry_tmp,
1307 						     (binoptab == add_optab
1308 						      ? LT : GT),
1309 						     newx, x,
1310 						     word_mode, 1, normalizep);
1311 
1312 		  /* Logical-ior the two poss. carry together.  */
1313 		  carry_out = expand_binop (word_mode, ior_optab,
1314 					    carry_out, carry_tmp,
1315 					    carry_out, 0, next_methods);
1316 		  if (carry_out == 0)
1317 		    break;
1318 		}
1319 	      emit_move_insn (target_piece, newx);
1320 	    }
1321 
1322 	  carry_in = carry_out;
1323 	}
1324 
1325       if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1326 	{
1327 	  if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1328 	    {
1329 	      rtx temp = emit_move_insn (target, xtarget);
1330 
1331 	      set_unique_reg_note (temp,
1332 	      			   REG_EQUAL,
1333 				   gen_rtx_fmt_ee (binoptab->code, mode,
1334 						   copy_rtx (xop0),
1335 						   copy_rtx (xop1)));
1336 	    }
1337 	  else
1338 	    target = xtarget;
1339 
1340 	  return target;
1341 	}
1342 
1343       else
1344 	delete_insns_since (last);
1345     }
1346 
1347   /* If we want to multiply two two-word values and have normal and widening
1348      multiplies of single-word values, we can do this with three smaller
1349      multiplications.  Note that we do not make a REG_NO_CONFLICT block here
1350      because we are not operating on one word at a time.
1351 
1352      The multiplication proceeds as follows:
1353 			         _______________________
1354 			        [__op0_high_|__op0_low__]
1355 			         _______________________
1356         *			[__op1_high_|__op1_low__]
1357         _______________________________________________
1358 			         _______________________
1359     (1)				[__op0_low__*__op1_low__]
1360 		     _______________________
1361     (2a)	    [__op0_low__*__op1_high_]
1362 		     _______________________
1363     (2b)	    [__op0_high_*__op1_low__]
1364          _______________________
1365     (3) [__op0_high_*__op1_high_]
1366 
1367 
1368     This gives a 4-word result.  Since we are only interested in the
1369     lower 2 words, partial result (3) and the upper words of (2a) and
1370     (2b) don't need to be calculated.  Hence (2a) and (2b) can be
1371     calculated using non-widening multiplication.
1372 
1373     (1), however, needs to be calculated with an unsigned widening
1374     multiplication.  If this operation is not directly supported we
1375     try using a signed widening multiplication and adjust the result.
1376     This adjustment works as follows:
1377 
1378       If both operands are positive then no adjustment is needed.
1379 
1380       If the operands have different signs, for example op0_low < 0 and
1381       op1_low >= 0, the instruction treats the most significant bit of
1382       op0_low as a sign bit instead of a bit with significance
1383       2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1384       with 2**BITS_PER_WORD - op0_low, and two's complements the
1385       result.  Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1386       the result.
1387 
1388       Similarly, if both operands are negative, we need to add
1389       (op0_low + op1_low) * 2**BITS_PER_WORD.
1390 
1391       We use a trick to adjust quickly.  We logically shift op0_low right
1392       (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1393       op0_high (op1_high) before it is used to calculate 2b (2a).  If no
1394       logical shift exists, we do an arithmetic right shift and subtract
1395       the 0 or -1.  */
1396 
1397   if (binoptab == smul_optab
1398       && class == MODE_INT
1399       && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1400       && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1401       && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1402       && ((umul_widen_optab->handlers[(int) mode].insn_code
1403 	   != CODE_FOR_nothing)
1404 	  || (smul_widen_optab->handlers[(int) mode].insn_code
1405 	      != CODE_FOR_nothing)))
1406     {
1407       int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1408       int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1409       rtx op0_high = operand_subword_force (op0, high, mode);
1410       rtx op0_low = operand_subword_force (op0, low, mode);
1411       rtx op1_high = operand_subword_force (op1, high, mode);
1412       rtx op1_low = operand_subword_force (op1, low, mode);
1413       rtx product = 0;
1414       rtx op0_xhigh = NULL_RTX;
1415       rtx op1_xhigh = NULL_RTX;
1416 
1417       /* If the target is the same as one of the inputs, don't use it.  This
1418 	 prevents problems with the REG_EQUAL note.  */
1419       if (target == op0 || target == op1
1420 	  || (target != 0 && GET_CODE (target) != REG))
1421 	target = 0;
1422 
1423       /* Multiply the two lower words to get a double-word product.
1424 	 If unsigned widening multiplication is available, use that;
1425 	 otherwise use the signed form and compensate.  */
1426 
1427       if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1428 	{
1429 	  product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1430 				  target, 1, OPTAB_DIRECT);
1431 
1432 	  /* If we didn't succeed, delete everything we did so far.  */
1433 	  if (product == 0)
1434 	    delete_insns_since (last);
1435 	  else
1436 	    op0_xhigh = op0_high, op1_xhigh = op1_high;
1437 	}
1438 
1439       if (product == 0
1440 	  && smul_widen_optab->handlers[(int) mode].insn_code
1441 	       != CODE_FOR_nothing)
1442 	{
1443 	  rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1444 	  product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1445 				  target, 1, OPTAB_DIRECT);
1446 	  op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1447 				    NULL_RTX, 1, next_methods);
1448 	  if (op0_xhigh)
1449 	    op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1450 				      op0_xhigh, op0_xhigh, 0, next_methods);
1451 	  else
1452 	    {
1453 	      op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1454 					NULL_RTX, 0, next_methods);
1455 	      if (op0_xhigh)
1456 		op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1457 					  op0_xhigh, op0_xhigh, 0,
1458 					  next_methods);
1459 	    }
1460 
1461 	  op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1462 				    NULL_RTX, 1, next_methods);
1463 	  if (op1_xhigh)
1464 	    op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1465 				      op1_xhigh, op1_xhigh, 0, next_methods);
1466 	  else
1467 	    {
1468 	      op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1469 					NULL_RTX, 0, next_methods);
1470 	      if (op1_xhigh)
1471 		op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1472 					  op1_xhigh, op1_xhigh, 0,
1473 					  next_methods);
1474 	    }
1475 	}
1476 
1477       /* If we have been able to directly compute the product of the
1478 	 low-order words of the operands and perform any required adjustments
1479 	 of the operands, we proceed by trying two more multiplications
1480 	 and then computing the appropriate sum.
1481 
1482 	 We have checked above that the required addition is provided.
1483 	 Full-word addition will normally always succeed, especially if
1484 	 it is provided at all, so we don't worry about its failure.  The
1485 	 multiplication may well fail, however, so we do handle that.  */
1486 
1487       if (product && op0_xhigh && op1_xhigh)
1488 	{
1489 	  rtx product_high = operand_subword (product, high, 1, mode);
1490 	  rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1491 				   NULL_RTX, 0, OPTAB_DIRECT);
1492 
1493 	  if (!REG_P (product_high))
1494 	    product_high = force_reg (word_mode, product_high);
1495 
1496 	  if (temp != 0)
1497 	    temp = expand_binop (word_mode, add_optab, temp, product_high,
1498 				 product_high, 0, next_methods);
1499 
1500 	  if (temp != 0 && temp != product_high)
1501 	    emit_move_insn (product_high, temp);
1502 
1503 	  if (temp != 0)
1504 	    temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1505 				 NULL_RTX, 0, OPTAB_DIRECT);
1506 
1507 	  if (temp != 0)
1508 	    temp = expand_binop (word_mode, add_optab, temp,
1509 				 product_high, product_high,
1510 				 0, next_methods);
1511 
1512 	  if (temp != 0 && temp != product_high)
1513 	    emit_move_insn (product_high, temp);
1514 
1515 	  emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1516 
1517 	  if (temp != 0)
1518 	    {
1519 	      if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1520 		{
1521 		  temp = emit_move_insn (product, product);
1522 		  set_unique_reg_note (temp,
1523 		  		       REG_EQUAL,
1524 				       gen_rtx_fmt_ee (MULT, mode,
1525 						       copy_rtx (op0),
1526 						       copy_rtx (op1)));
1527 		}
1528 
1529 	      return product;
1530 	    }
1531 	}
1532 
1533       /* If we get here, we couldn't do it for some reason even though we
1534 	 originally thought we could.  Delete anything we've emitted in
1535 	 trying to do it.  */
1536 
1537       delete_insns_since (last);
1538     }
1539 
1540   /* Open-code the vector operations if we have no hardware support
1541      for them.  */
1542   if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1543     return expand_vector_binop (mode, binoptab, op0, op1, target,
1544 				unsignedp, methods);
1545 
1546   /* We need to open-code the complex type operations: '+, -, * and /' */
1547 
1548   /* At this point we allow operations between two similar complex
1549      numbers, and also if one of the operands is not a complex number
1550      but rather of MODE_FLOAT or MODE_INT. However, the caller
1551      must make sure that the MODE of the non-complex operand matches
1552      the SUBMODE of the complex operand.  */
1553 
1554   if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1555     {
1556       rtx real0 = 0, imag0 = 0;
1557       rtx real1 = 0, imag1 = 0;
1558       rtx realr, imagr, res;
1559       rtx seq;
1560       rtx equiv_value;
1561       int ok = 0;
1562 
1563       /* Find the correct mode for the real and imaginary parts */
1564       enum machine_mode submode = GET_MODE_INNER(mode);
1565 
1566       if (submode == BLKmode)
1567 	abort ();
1568 
1569       if (! target)
1570 	target = gen_reg_rtx (mode);
1571 
1572       start_sequence ();
1573 
1574       realr = gen_realpart (submode, target);
1575       imagr = gen_imagpart (submode, target);
1576 
1577       if (GET_MODE (op0) == mode)
1578 	{
1579 	  real0 = gen_realpart (submode, op0);
1580 	  imag0 = gen_imagpart (submode, op0);
1581 	}
1582       else
1583 	real0 = op0;
1584 
1585       if (GET_MODE (op1) == mode)
1586 	{
1587 	  real1 = gen_realpart (submode, op1);
1588 	  imag1 = gen_imagpart (submode, op1);
1589 	}
1590       else
1591 	real1 = op1;
1592 
1593       if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
1594 	abort ();
1595 
1596       switch (binoptab->code)
1597 	{
1598 	case PLUS:
1599 	  /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1600 	case MINUS:
1601 	  /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1602 	  res = expand_binop (submode, binoptab, real0, real1,
1603 			      realr, unsignedp, methods);
1604 
1605 	  if (res == 0)
1606 	    break;
1607 	  else if (res != realr)
1608 	    emit_move_insn (realr, res);
1609 
1610 	  if (imag0 != 0 && imag1 != 0)
1611 	    res = expand_binop (submode, binoptab, imag0, imag1,
1612 				imagr, unsignedp, methods);
1613 	  else if (imag0 != 0)
1614 	    res = imag0;
1615 	  else if (binoptab->code == MINUS)
1616             res = expand_unop (submode,
1617                                 binoptab == subv_optab ? negv_optab : neg_optab,
1618                                 imag1, imagr, unsignedp);
1619 	  else
1620 	    res = imag1;
1621 
1622 	  if (res == 0)
1623 	    break;
1624 	  else if (res != imagr)
1625 	    emit_move_insn (imagr, res);
1626 
1627 	  ok = 1;
1628 	  break;
1629 
1630 	case MULT:
1631 	  /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1632 
1633 	  if (imag0 != 0 && imag1 != 0)
1634 	    {
1635 	      rtx temp1, temp2;
1636 
1637 	      /* Don't fetch these from memory more than once.  */
1638 	      real0 = force_reg (submode, real0);
1639 	      real1 = force_reg (submode, real1);
1640 	      imag0 = force_reg (submode, imag0);
1641 	      imag1 = force_reg (submode, imag1);
1642 
1643 	      temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1644 				    unsignedp, methods);
1645 
1646 	      temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1647 				    unsignedp, methods);
1648 
1649 	      if (temp1 == 0 || temp2 == 0)
1650 		break;
1651 
1652 	      res = (expand_binop
1653                      (submode,
1654                       binoptab == smulv_optab ? subv_optab : sub_optab,
1655                       temp1, temp2, realr, unsignedp, methods));
1656 
1657 	      if (res == 0)
1658 		break;
1659 	      else if (res != realr)
1660 		emit_move_insn (realr, res);
1661 
1662 	      temp1 = expand_binop (submode, binoptab, real0, imag1,
1663 				    NULL_RTX, unsignedp, methods);
1664 
1665 	      temp2 = expand_binop (submode, binoptab, real1, imag0,
1666 				    NULL_RTX, unsignedp, methods);
1667 
1668 	      if (temp1 == 0 || temp2 == 0)
1669 		break;
1670 
1671 	      res = (expand_binop
1672                      (submode,
1673                       binoptab == smulv_optab ? addv_optab : add_optab,
1674                       temp1, temp2, imagr, unsignedp, methods));
1675 
1676 	      if (res == 0)
1677 		break;
1678 	      else if (res != imagr)
1679 		emit_move_insn (imagr, res);
1680 
1681 	      ok = 1;
1682 	    }
1683 	  else
1684 	    {
1685 	      /* Don't fetch these from memory more than once.  */
1686 	      real0 = force_reg (submode, real0);
1687 	      real1 = force_reg (submode, real1);
1688 
1689 	      res = expand_binop (submode, binoptab, real0, real1,
1690 				  realr, unsignedp, methods);
1691 	      if (res == 0)
1692 		break;
1693 	      else if (res != realr)
1694 		emit_move_insn (realr, res);
1695 
1696 	      if (imag0 != 0)
1697 		res = expand_binop (submode, binoptab,
1698 				    real1, imag0, imagr, unsignedp, methods);
1699 	      else
1700 		res = expand_binop (submode, binoptab,
1701 				    real0, imag1, imagr, unsignedp, methods);
1702 
1703 	      if (res == 0)
1704 		break;
1705 	      else if (res != imagr)
1706 		emit_move_insn (imagr, res);
1707 
1708 	      ok = 1;
1709 	    }
1710 	  break;
1711 
1712 	case DIV:
1713 	  /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1714 
1715 	  if (imag1 == 0)
1716 	    {
1717 	      /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1718 
1719 	      /* Don't fetch these from memory more than once.  */
1720 	      real1 = force_reg (submode, real1);
1721 
1722 	      /* Simply divide the real and imaginary parts by `c' */
1723 	      if (class == MODE_COMPLEX_FLOAT)
1724 		res = expand_binop (submode, binoptab, real0, real1,
1725 				    realr, unsignedp, methods);
1726 	      else
1727 		res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1728 				     real0, real1, realr, unsignedp);
1729 
1730 	      if (res == 0)
1731 		break;
1732 	      else if (res != realr)
1733 		emit_move_insn (realr, res);
1734 
1735 	      if (class == MODE_COMPLEX_FLOAT)
1736 		res = expand_binop (submode, binoptab, imag0, real1,
1737 				    imagr, unsignedp, methods);
1738 	      else
1739 		res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1740 				     imag0, real1, imagr, unsignedp);
1741 
1742 	      if (res == 0)
1743 		break;
1744 	      else if (res != imagr)
1745 		emit_move_insn (imagr, res);
1746 
1747 	      ok = 1;
1748 	    }
1749 	  else
1750 	    {
1751 	      switch (flag_complex_divide_method)
1752 		{
1753 		case 0:
1754 		  ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1755 						 realr, imagr, submode,
1756 						 unsignedp, methods,
1757 						 class, binoptab);
1758 		  break;
1759 
1760 		case 1:
1761 		  ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1762 					     realr, imagr, submode,
1763 					     unsignedp, methods,
1764 					     class, binoptab);
1765 		  break;
1766 
1767 		default:
1768 		  abort ();
1769 		}
1770 	    }
1771 	  break;
1772 
1773 	default:
1774 	  abort ();
1775 	}
1776 
1777       seq = get_insns ();
1778       end_sequence ();
1779 
1780       if (ok)
1781 	{
1782 	  if (binoptab->code != UNKNOWN)
1783 	    equiv_value
1784 	      = gen_rtx_fmt_ee (binoptab->code, mode,
1785 				copy_rtx (op0), copy_rtx (op1));
1786 	  else
1787 	    equiv_value = 0;
1788 
1789 	  emit_no_conflict_block (seq, target, op0, op1, equiv_value);
1790 
1791 	  return target;
1792 	}
1793     }
1794 
1795   /* It can't be open-coded in this mode.
1796      Use a library call if one is available and caller says that's ok.  */
1797 
1798   if (binoptab->handlers[(int) mode].libfunc
1799       && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1800     {
1801       rtx insns;
1802       rtx op1x = op1;
1803       enum machine_mode op1_mode = mode;
1804       rtx value;
1805 
1806       start_sequence ();
1807 
1808       if (shift_op)
1809 	{
1810 	  op1_mode = word_mode;
1811 	  /* Specify unsigned here,
1812 	     since negative shift counts are meaningless.  */
1813 	  op1x = convert_to_mode (word_mode, op1, 1);
1814 	}
1815 
1816       if (GET_MODE (op0) != VOIDmode
1817 	  && GET_MODE (op0) != mode)
1818 	op0 = convert_to_mode (mode, op0, unsignedp);
1819 
1820       /* Pass 1 for NO_QUEUE so we don't lose any increments
1821 	 if the libcall is cse'd or moved.  */
1822       value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1823 				       NULL_RTX, LCT_CONST, mode, 2,
1824 				       op0, mode, op1x, op1_mode);
1825 
1826       insns = get_insns ();
1827       end_sequence ();
1828 
1829       target = gen_reg_rtx (mode);
1830       emit_libcall_block (insns, target, value,
1831 			  gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1832 
1833       return target;
1834     }
1835 
1836   delete_insns_since (last);
1837 
1838   /* It can't be done in this mode.  Can we do it in a wider mode?  */
1839 
1840   if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1841 	 || methods == OPTAB_MUST_WIDEN))
1842     {
1843       /* Caller says, don't even try.  */
1844       delete_insns_since (entry_last);
1845       return 0;
1846     }
1847 
1848   /* Compute the value of METHODS to pass to recursive calls.
1849      Don't allow widening to be tried recursively.  */
1850 
1851   methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1852 
1853   /* Look for a wider mode of the same class for which it appears we can do
1854      the operation.  */
1855 
1856   if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1857     {
1858       for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1859 	   wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1860 	{
1861 	  if ((binoptab->handlers[(int) wider_mode].insn_code
1862 	       != CODE_FOR_nothing)
1863 	      || (methods == OPTAB_LIB
1864 		  && binoptab->handlers[(int) wider_mode].libfunc))
1865 	    {
1866 	      rtx xop0 = op0, xop1 = op1;
1867 	      int no_extend = 0;
1868 
1869 	      /* For certain integer operations, we need not actually extend
1870 		 the narrow operands, as long as we will truncate
1871 		 the results to the same narrowness.  */
1872 
1873 	      if ((binoptab == ior_optab || binoptab == and_optab
1874 		   || binoptab == xor_optab
1875 		   || binoptab == add_optab || binoptab == sub_optab
1876 		   || binoptab == smul_optab || binoptab == ashl_optab)
1877 		  && class == MODE_INT)
1878 		no_extend = 1;
1879 
1880 	      xop0 = widen_operand (xop0, wider_mode, mode,
1881 				    unsignedp, no_extend);
1882 
1883 	      /* The second operand of a shift must always be extended.  */
1884 	      xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1885 				    no_extend && binoptab != ashl_optab);
1886 
1887 	      temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1888 				   unsignedp, methods);
1889 	      if (temp)
1890 		{
1891 		  if (class != MODE_INT)
1892 		    {
1893 		      if (target == 0)
1894 			target = gen_reg_rtx (mode);
1895 		      convert_move (target, temp, 0);
1896 		      return target;
1897 		    }
1898 		  else
1899 		    return gen_lowpart (mode, temp);
1900 		}
1901 	      else
1902 		delete_insns_since (last);
1903 	    }
1904 	}
1905     }
1906 
1907   delete_insns_since (entry_last);
1908   return 0;
1909 }
1910 
1911 /* Like expand_binop, but for open-coding vectors binops.  */
1912 
1913 static rtx
expand_vector_binop(mode,binoptab,op0,op1,target,unsignedp,methods)1914 expand_vector_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
1915      enum machine_mode mode;
1916      optab binoptab;
1917      rtx op0, op1;
1918      rtx target;
1919      int unsignedp;
1920      enum optab_methods methods;
1921 {
1922   enum machine_mode submode, tmode;
1923   int size, elts, subsize, subbitsize, i;
1924   rtx t, a, b, res, seq;
1925   enum mode_class class;
1926 
1927   class = GET_MODE_CLASS (mode);
1928 
1929   size = GET_MODE_SIZE (mode);
1930   submode = GET_MODE_INNER (mode);
1931 
1932   /* Search for the widest vector mode with the same inner mode that is
1933      still narrower than MODE and that allows to open-code this operator.
1934      Note, if we find such a mode and the handler later decides it can't
1935      do the expansion, we'll be called recursively with the narrower mode.  */
1936   for (tmode = GET_CLASS_NARROWEST_MODE (class);
1937        GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1938        tmode = GET_MODE_WIDER_MODE (tmode))
1939     {
1940       if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1941 	  && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1942 	submode = tmode;
1943     }
1944 
1945   switch (binoptab->code)
1946     {
1947     case AND:
1948     case IOR:
1949     case XOR:
1950       tmode = int_mode_for_mode (mode);
1951       if (tmode != BLKmode)
1952 	submode = tmode;
1953     case PLUS:
1954     case MINUS:
1955     case MULT:
1956     case DIV:
1957       subsize = GET_MODE_SIZE (submode);
1958       subbitsize = GET_MODE_BITSIZE (submode);
1959       elts = size / subsize;
1960 
1961       /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
1962 	 but that we operate on more than one element at a time.  */
1963       if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
1964 	return 0;
1965 
1966       start_sequence ();
1967 
1968       /* Errors can leave us with a const0_rtx as operand.  */
1969       if (GET_MODE (op0) != mode)
1970 	op0 = copy_to_mode_reg (mode, op0);
1971       if (GET_MODE (op1) != mode)
1972 	op1 = copy_to_mode_reg (mode, op1);
1973 
1974       if (!target)
1975 	target = gen_reg_rtx (mode);
1976 
1977       for (i = 0; i < elts; ++i)
1978 	{
1979 	  /* If this is part of a register, and not the first item in the
1980 	     word, we can't store using a SUBREG - that would clobber
1981 	     previous results.
1982 	     And storing with a SUBREG is only possible for the least
1983 	     significant part, hence we can't do it for big endian
1984 	     (unless we want to permute the evaluation order.  */
1985 	  if (GET_CODE (target) == REG
1986 	      && (BYTES_BIG_ENDIAN
1987 		  ? subsize < UNITS_PER_WORD
1988 		  : ((i * subsize) % UNITS_PER_WORD) != 0))
1989 	    t = NULL_RTX;
1990 	  else
1991 	    t = simplify_gen_subreg (submode, target, mode, i * subsize);
1992 	  if (CONSTANT_P (op0))
1993 	    a = simplify_gen_subreg (submode, op0, mode, i * subsize);
1994 	  else
1995 	    a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
1996 				   NULL_RTX, submode, submode, size);
1997 	  if (CONSTANT_P (op1))
1998 	    b = simplify_gen_subreg (submode, op1, mode, i * subsize);
1999 	  else
2000 	    b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
2001 				   NULL_RTX, submode, submode, size);
2002 
2003 	  if (binoptab->code == DIV)
2004 	    {
2005 	      if (class == MODE_VECTOR_FLOAT)
2006 		res = expand_binop (submode, binoptab, a, b, t,
2007 				    unsignedp, methods);
2008 	      else
2009 		res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
2010 				     a, b, t, unsignedp);
2011 	    }
2012 	  else
2013 	    res = expand_binop (submode, binoptab, a, b, t,
2014 				unsignedp, methods);
2015 
2016 	  if (res == 0)
2017 	    break;
2018 
2019 	  if (t)
2020 	    emit_move_insn (t, res);
2021 	  else
2022 	    store_bit_field (target, subbitsize, i * subbitsize, submode, res,
2023 			     size);
2024 	}
2025       break;
2026 
2027     default:
2028       abort ();
2029     }
2030 
2031   seq = get_insns ();
2032   end_sequence ();
2033   emit_insn (seq);
2034 
2035   return target;
2036 }
2037 
2038 /* Like expand_unop but for open-coding vector unops.  */
2039 
2040 static rtx
expand_vector_unop(mode,unoptab,op0,target,unsignedp)2041 expand_vector_unop (mode, unoptab, op0, target, unsignedp)
2042      enum machine_mode mode;
2043      optab unoptab;
2044      rtx op0;
2045      rtx target;
2046      int unsignedp;
2047 {
2048   enum machine_mode submode, tmode;
2049   int size, elts, subsize, subbitsize, i;
2050   rtx t, a, res, seq;
2051 
2052   size = GET_MODE_SIZE (mode);
2053   submode = GET_MODE_INNER (mode);
2054 
2055   /* Search for the widest vector mode with the same inner mode that is
2056      still narrower than MODE and that allows to open-code this operator.
2057      Note, if we find such a mode and the handler later decides it can't
2058      do the expansion, we'll be called recursively with the narrower mode.  */
2059   for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2060        GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2061        tmode = GET_MODE_WIDER_MODE (tmode))
2062     {
2063       if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2064 	  && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2065 	submode = tmode;
2066     }
2067   /* If there is no negate operation, try doing a subtract from zero.  */
2068   if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2069       /* Avoid infinite recursion when an
2070 	 error has left us with the wrong mode.  */
2071       && GET_MODE (op0) == mode)
2072     {
2073       rtx temp;
2074       temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2075                            target, unsignedp, OPTAB_DIRECT);
2076       if (temp)
2077 	return temp;
2078     }
2079 
2080   if (unoptab == one_cmpl_optab)
2081     {
2082       tmode = int_mode_for_mode (mode);
2083       if (tmode != BLKmode)
2084 	submode = tmode;
2085     }
2086 
2087   subsize = GET_MODE_SIZE (submode);
2088   subbitsize = GET_MODE_BITSIZE (submode);
2089   elts = size / subsize;
2090 
2091   /* Errors can leave us with a const0_rtx as operand.  */
2092   if (GET_MODE (op0) != mode)
2093     op0 = copy_to_mode_reg (mode, op0);
2094 
2095   if (!target)
2096     target = gen_reg_rtx (mode);
2097 
2098   start_sequence ();
2099 
2100   for (i = 0; i < elts; ++i)
2101     {
2102       /* If this is part of a register, and not the first item in the
2103 	 word, we can't store using a SUBREG - that would clobber
2104 	 previous results.
2105 	 And storing with a SUBREG is only possible for the least
2106 	 significant part, hence we can't do it for big endian
2107 	 (unless we want to permute the evaluation order.  */
2108       if (GET_CODE (target) == REG
2109 	  && (BYTES_BIG_ENDIAN
2110 	      ?  subsize < UNITS_PER_WORD
2111 	      : ((i * subsize) % UNITS_PER_WORD) != 0))
2112 	t = NULL_RTX;
2113       else
2114 	t = simplify_gen_subreg (submode, target, mode, i * subsize);
2115       if (CONSTANT_P (op0))
2116 	a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2117       else
2118 	a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2119 			       t, submode, submode, size);
2120 
2121       res = expand_unop (submode, unoptab, a, t, unsignedp);
2122 
2123       if (t)
2124 	emit_move_insn (t, res);
2125       else
2126 	store_bit_field (target, subbitsize, i * subbitsize, submode, res,
2127 			 size);
2128     }
2129 
2130   seq = get_insns ();
2131   end_sequence ();
2132   emit_insn (seq);
2133 
2134   return target;
2135 }
2136 
2137 /* Expand a binary operator which has both signed and unsigned forms.
2138    UOPTAB is the optab for unsigned operations, and SOPTAB is for
2139    signed operations.
2140 
2141    If we widen unsigned operands, we may use a signed wider operation instead
2142    of an unsigned wider operation, since the result would be the same.  */
2143 
2144 rtx
sign_expand_binop(mode,uoptab,soptab,op0,op1,target,unsignedp,methods)2145 sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
2146      enum machine_mode mode;
2147      optab uoptab, soptab;
2148      rtx op0, op1, target;
2149      int unsignedp;
2150      enum optab_methods methods;
2151 {
2152   rtx temp;
2153   optab direct_optab = unsignedp ? uoptab : soptab;
2154   struct optab wide_soptab;
2155 
2156   /* Do it without widening, if possible.  */
2157   temp = expand_binop (mode, direct_optab, op0, op1, target,
2158 		       unsignedp, OPTAB_DIRECT);
2159   if (temp || methods == OPTAB_DIRECT)
2160     return temp;
2161 
2162   /* Try widening to a signed int.  Make a fake signed optab that
2163      hides any signed insn for direct use.  */
2164   wide_soptab = *soptab;
2165   wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2166   wide_soptab.handlers[(int) mode].libfunc = 0;
2167 
2168   temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2169 		       unsignedp, OPTAB_WIDEN);
2170 
2171   /* For unsigned operands, try widening to an unsigned int.  */
2172   if (temp == 0 && unsignedp)
2173     temp = expand_binop (mode, uoptab, op0, op1, target,
2174 			 unsignedp, OPTAB_WIDEN);
2175   if (temp || methods == OPTAB_WIDEN)
2176     return temp;
2177 
2178   /* Use the right width lib call if that exists.  */
2179   temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2180   if (temp || methods == OPTAB_LIB)
2181     return temp;
2182 
2183   /* Must widen and use a lib call, use either signed or unsigned.  */
2184   temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2185 		       unsignedp, methods);
2186   if (temp != 0)
2187     return temp;
2188   if (unsignedp)
2189     return expand_binop (mode, uoptab, op0, op1, target,
2190 			 unsignedp, methods);
2191   return 0;
2192 }
2193 
2194 /* Generate code to perform an operation specified by BINOPTAB
2195    on operands OP0 and OP1, with two results to TARG1 and TARG2.
2196    We assume that the order of the operands for the instruction
2197    is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2198    [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2199 
2200    Either TARG0 or TARG1 may be zero, but what that means is that
2201    the result is not actually wanted.  We will generate it into
2202    a dummy pseudo-reg and discard it.  They may not both be zero.
2203 
2204    Returns 1 if this operation can be performed; 0 if not.  */
2205 
2206 int
expand_twoval_binop(binoptab,op0,op1,targ0,targ1,unsignedp)2207 expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
2208      optab binoptab;
2209      rtx op0, op1;
2210      rtx targ0, targ1;
2211      int unsignedp;
2212 {
2213   enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2214   enum mode_class class;
2215   enum machine_mode wider_mode;
2216   rtx entry_last = get_last_insn ();
2217   rtx last;
2218 
2219   class = GET_MODE_CLASS (mode);
2220 
2221   op0 = protect_from_queue (op0, 0);
2222   op1 = protect_from_queue (op1, 0);
2223 
2224   if (flag_force_mem)
2225     {
2226       op0 = force_not_mem (op0);
2227       op1 = force_not_mem (op1);
2228     }
2229 
2230   /* If we are inside an appropriately-short loop and one operand is an
2231      expensive constant, force it into a register.  */
2232   if (CONSTANT_P (op0) && preserve_subexpressions_p ()
2233       && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
2234     op0 = force_reg (mode, op0);
2235 
2236   if (CONSTANT_P (op1) && preserve_subexpressions_p ()
2237       && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
2238     op1 = force_reg (mode, op1);
2239 
2240   if (targ0)
2241     targ0 = protect_from_queue (targ0, 1);
2242   else
2243     targ0 = gen_reg_rtx (mode);
2244   if (targ1)
2245     targ1 = protect_from_queue (targ1, 1);
2246   else
2247     targ1 = gen_reg_rtx (mode);
2248 
2249   /* Record where to go back to if we fail.  */
2250   last = get_last_insn ();
2251 
2252   if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2253     {
2254       int icode = (int) binoptab->handlers[(int) mode].insn_code;
2255       enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2256       enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2257       rtx pat;
2258       rtx xop0 = op0, xop1 = op1;
2259 
2260       /* In case the insn wants input operands in modes different from
2261 	 those of the actual operands, convert the operands.  It would
2262 	 seem that we don't need to convert CONST_INTs, but we do, so
2263 	 that they're properly zero-extended, sign-extended or truncated
2264 	 for their mode.  */
2265 
2266       if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2267 	xop0 = convert_modes (mode0,
2268 			      GET_MODE (op0) != VOIDmode
2269 			      ? GET_MODE (op0)
2270 			      : mode,
2271 			      xop0, unsignedp);
2272 
2273       if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2274 	xop1 = convert_modes (mode1,
2275 			      GET_MODE (op1) != VOIDmode
2276 			      ? GET_MODE (op1)
2277 			      : mode,
2278 			      xop1, unsignedp);
2279 
2280       /* Now, if insn doesn't accept these operands, put them into pseudos.  */
2281       if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2282 	xop0 = copy_to_mode_reg (mode0, xop0);
2283 
2284       if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
2285 	xop1 = copy_to_mode_reg (mode1, xop1);
2286 
2287       /* We could handle this, but we should always be called with a pseudo
2288 	 for our targets and all insns should take them as outputs.  */
2289       if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2290 	  || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
2291 	abort ();
2292 
2293       pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2294       if (pat)
2295 	{
2296 	  emit_insn (pat);
2297 	  return 1;
2298 	}
2299       else
2300 	delete_insns_since (last);
2301     }
2302 
2303   /* It can't be done in this mode.  Can we do it in a wider mode?  */
2304 
2305   if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2306     {
2307       for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2308 	   wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2309 	{
2310 	  if (binoptab->handlers[(int) wider_mode].insn_code
2311 	      != CODE_FOR_nothing)
2312 	    {
2313 	      rtx t0 = gen_reg_rtx (wider_mode);
2314 	      rtx t1 = gen_reg_rtx (wider_mode);
2315 	      rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2316 	      rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2317 
2318 	      if (expand_twoval_binop (binoptab, cop0, cop1,
2319 				       t0, t1, unsignedp))
2320 		{
2321 		  convert_move (targ0, t0, unsignedp);
2322 		  convert_move (targ1, t1, unsignedp);
2323 		  return 1;
2324 		}
2325 	      else
2326 		delete_insns_since (last);
2327 	    }
2328 	}
2329     }
2330 
2331   delete_insns_since (entry_last);
2332   return 0;
2333 }
2334 
2335 /* Wrapper around expand_unop which takes an rtx code to specify
2336    the operation to perform, not an optab pointer.  All other
2337    arguments are the same.  */
2338 rtx
expand_simple_unop(mode,code,op0,target,unsignedp)2339 expand_simple_unop (mode, code, op0, target, unsignedp)
2340      enum machine_mode mode;
2341      enum rtx_code code;
2342      rtx op0;
2343      rtx target;
2344      int unsignedp;
2345 {
2346   optab unop = code_to_optab[(int) code];
2347   if (unop == 0)
2348     abort ();
2349 
2350   return expand_unop (mode, unop, op0, target, unsignedp);
2351 }
2352 
2353 /* Generate code to perform an operation specified by UNOPTAB
2354    on operand OP0, with result having machine-mode MODE.
2355 
2356    UNSIGNEDP is for the case where we have to widen the operands
2357    to perform the operation.  It says to use zero-extension.
2358 
2359    If TARGET is nonzero, the value
2360    is generated there, if it is convenient to do so.
2361    In all cases an rtx is returned for the locus of the value;
2362    this may or may not be TARGET.  */
2363 
2364 rtx
expand_unop(mode,unoptab,op0,target,unsignedp)2365 expand_unop (mode, unoptab, op0, target, unsignedp)
2366      enum machine_mode mode;
2367      optab unoptab;
2368      rtx op0;
2369      rtx target;
2370      int unsignedp;
2371 {
2372   enum mode_class class;
2373   enum machine_mode wider_mode;
2374   rtx temp;
2375   rtx last = get_last_insn ();
2376   rtx pat;
2377 
2378   class = GET_MODE_CLASS (mode);
2379 
2380   op0 = protect_from_queue (op0, 0);
2381 
2382   if (flag_force_mem)
2383     {
2384       op0 = force_not_mem (op0);
2385     }
2386 
2387   if (target)
2388     target = protect_from_queue (target, 1);
2389 
2390   if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2391     {
2392       int icode = (int) unoptab->handlers[(int) mode].insn_code;
2393       enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2394       rtx xop0 = op0;
2395 
2396       if (target)
2397 	temp = target;
2398       else
2399 	temp = gen_reg_rtx (mode);
2400 
2401       if (GET_MODE (xop0) != VOIDmode
2402 	  && GET_MODE (xop0) != mode0)
2403 	xop0 = convert_to_mode (mode0, xop0, unsignedp);
2404 
2405       /* Now, if insn doesn't accept our operand, put it into a pseudo.  */
2406 
2407       if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2408 	xop0 = copy_to_mode_reg (mode0, xop0);
2409 
2410       if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2411 	temp = gen_reg_rtx (mode);
2412 
2413       pat = GEN_FCN (icode) (temp, xop0);
2414       if (pat)
2415 	{
2416 	  if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2417 	      && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2418 	    {
2419 	      delete_insns_since (last);
2420 	      return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2421 	    }
2422 
2423 	  emit_insn (pat);
2424 
2425 	  return temp;
2426 	}
2427       else
2428 	delete_insns_since (last);
2429     }
2430 
2431   /* It can't be done in this mode.  Can we open-code it in a wider mode?  */
2432 
2433   if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2434     for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2435 	 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2436       {
2437 	if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2438 	  {
2439 	    rtx xop0 = op0;
2440 
2441 	    /* For certain operations, we need not actually extend
2442 	       the narrow operand, as long as we will truncate the
2443 	       results to the same narrowness.  */
2444 
2445 	    xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2446 				  (unoptab == neg_optab
2447 				   || unoptab == one_cmpl_optab)
2448 				  && class == MODE_INT);
2449 
2450 	    temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2451 				unsignedp);
2452 
2453 	    if (temp)
2454 	      {
2455 		if (class != MODE_INT)
2456 		  {
2457 		    if (target == 0)
2458 		      target = gen_reg_rtx (mode);
2459 		    convert_move (target, temp, 0);
2460 		    return target;
2461 		  }
2462 		else
2463 		  return gen_lowpart (mode, temp);
2464 	      }
2465 	    else
2466 	      delete_insns_since (last);
2467 	  }
2468       }
2469 
2470   /* These can be done a word at a time.  */
2471   if (unoptab == one_cmpl_optab
2472       && class == MODE_INT
2473       && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2474       && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2475     {
2476       int i;
2477       rtx insns;
2478 
2479       if (target == 0 || target == op0)
2480 	target = gen_reg_rtx (mode);
2481 
2482       start_sequence ();
2483 
2484       /* Do the actual arithmetic.  */
2485       for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2486 	{
2487 	  rtx target_piece = operand_subword (target, i, 1, mode);
2488 	  rtx x = expand_unop (word_mode, unoptab,
2489 			       operand_subword_force (op0, i, mode),
2490 			       target_piece, unsignedp);
2491 
2492 	  if (target_piece != x)
2493 	    emit_move_insn (target_piece, x);
2494 	}
2495 
2496       insns = get_insns ();
2497       end_sequence ();
2498 
2499       emit_no_conflict_block (insns, target, op0, NULL_RTX,
2500 			      gen_rtx_fmt_e (unoptab->code, mode,
2501 					     copy_rtx (op0)));
2502       return target;
2503     }
2504 
2505   /* Open-code the complex negation operation.  */
2506   else if (unoptab->code == NEG
2507 	   && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2508     {
2509       rtx target_piece;
2510       rtx x;
2511       rtx seq;
2512 
2513       /* Find the correct mode for the real and imaginary parts */
2514       enum machine_mode submode = GET_MODE_INNER (mode);
2515 
2516       if (submode == BLKmode)
2517 	abort ();
2518 
2519       if (target == 0)
2520 	target = gen_reg_rtx (mode);
2521 
2522       start_sequence ();
2523 
2524       target_piece = gen_imagpart (submode, target);
2525       x = expand_unop (submode, unoptab,
2526 		       gen_imagpart (submode, op0),
2527 		       target_piece, unsignedp);
2528       if (target_piece != x)
2529 	emit_move_insn (target_piece, x);
2530 
2531       target_piece = gen_realpart (submode, target);
2532       x = expand_unop (submode, unoptab,
2533 		       gen_realpart (submode, op0),
2534 		       target_piece, unsignedp);
2535       if (target_piece != x)
2536 	emit_move_insn (target_piece, x);
2537 
2538       seq = get_insns ();
2539       end_sequence ();
2540 
2541       emit_no_conflict_block (seq, target, op0, 0,
2542 			      gen_rtx_fmt_e (unoptab->code, mode,
2543 					     copy_rtx (op0)));
2544       return target;
2545     }
2546 
2547   /* Now try a library call in this mode.  */
2548   if (unoptab->handlers[(int) mode].libfunc)
2549     {
2550       rtx insns;
2551       rtx value;
2552 
2553       start_sequence ();
2554 
2555       /* Pass 1 for NO_QUEUE so we don't lose any increments
2556 	 if the libcall is cse'd or moved.  */
2557       value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2558 				       NULL_RTX, LCT_CONST, mode, 1, op0, mode);
2559       insns = get_insns ();
2560       end_sequence ();
2561 
2562       target = gen_reg_rtx (mode);
2563       emit_libcall_block (insns, target, value,
2564 			  gen_rtx_fmt_e (unoptab->code, mode, op0));
2565 
2566       return target;
2567     }
2568 
2569   if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2570     return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2571 
2572   /* It can't be done in this mode.  Can we do it in a wider mode?  */
2573 
2574   if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2575     {
2576       for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2577 	   wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2578 	{
2579 	  if ((unoptab->handlers[(int) wider_mode].insn_code
2580 	       != CODE_FOR_nothing)
2581 	      || unoptab->handlers[(int) wider_mode].libfunc)
2582 	    {
2583 	      rtx xop0 = op0;
2584 
2585 	      /* For certain operations, we need not actually extend
2586 		 the narrow operand, as long as we will truncate the
2587 		 results to the same narrowness.  */
2588 
2589 	      xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2590 				    (unoptab == neg_optab
2591 				     || unoptab == one_cmpl_optab)
2592 				    && class == MODE_INT);
2593 
2594 	      temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2595 				  unsignedp);
2596 
2597 	      if (temp)
2598 		{
2599 		  if (class != MODE_INT)
2600 		    {
2601 		      if (target == 0)
2602 			target = gen_reg_rtx (mode);
2603 		      convert_move (target, temp, 0);
2604 		      return target;
2605 		    }
2606 		  else
2607 		    return gen_lowpart (mode, temp);
2608 		}
2609 	      else
2610 		delete_insns_since (last);
2611 	    }
2612 	}
2613     }
2614 
2615   /* If there is no negate operation, try doing a subtract from zero.
2616      The US Software GOFAST library needs this.  */
2617   if (unoptab->code == NEG)
2618     {
2619       rtx temp;
2620       temp = expand_binop (mode,
2621                            unoptab == negv_optab ? subv_optab : sub_optab,
2622                            CONST0_RTX (mode), op0,
2623                            target, unsignedp, OPTAB_LIB_WIDEN);
2624       if (temp)
2625 	return temp;
2626     }
2627 
2628   return 0;
2629 }
2630 
2631 /* Emit code to compute the absolute value of OP0, with result to
2632    TARGET if convenient.  (TARGET may be 0.)  The return value says
2633    where the result actually is to be found.
2634 
2635    MODE is the mode of the operand; the mode of the result is
2636    different but can be deduced from MODE.
2637 
2638  */
2639 
2640 rtx
expand_abs(mode,op0,target,result_unsignedp,safe)2641 expand_abs (mode, op0, target, result_unsignedp, safe)
2642      enum machine_mode mode;
2643      rtx op0;
2644      rtx target;
2645      int result_unsignedp;
2646      int safe;
2647 {
2648   rtx temp, op1;
2649 
2650   if (! flag_trapv)
2651     result_unsignedp = 1;
2652 
2653   /* First try to do it with a special abs instruction.  */
2654   temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2655                       op0, target, 0);
2656   if (temp != 0)
2657     return temp;
2658 
2659   /* If we have a MAX insn, we can do this as MAX (x, -x).  */
2660   if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2661     {
2662       rtx last = get_last_insn ();
2663 
2664       temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2665       if (temp != 0)
2666 	temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2667 			     OPTAB_WIDEN);
2668 
2669       if (temp != 0)
2670 	return temp;
2671 
2672       delete_insns_since (last);
2673     }
2674 
2675   /* If this machine has expensive jumps, we can do integer absolute
2676      value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2677      where W is the width of MODE.  */
2678 
2679   if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2680     {
2681       rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2682 				   size_int (GET_MODE_BITSIZE (mode) - 1),
2683 				   NULL_RTX, 0);
2684 
2685       temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2686 			   OPTAB_LIB_WIDEN);
2687       if (temp != 0)
2688 	temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2689                              temp, extended, target, 0, OPTAB_LIB_WIDEN);
2690 
2691       if (temp != 0)
2692 	return temp;
2693     }
2694 
2695   /* If that does not win, use conditional jump and negate.  */
2696 
2697   /* It is safe to use the target if it is the same
2698      as the source if this is also a pseudo register */
2699   if (op0 == target && GET_CODE (op0) == REG
2700       && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2701     safe = 1;
2702 
2703   op1 = gen_label_rtx ();
2704   if (target == 0 || ! safe
2705       || GET_MODE (target) != mode
2706       || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2707       || (GET_CODE (target) == REG
2708 	  && REGNO (target) < FIRST_PSEUDO_REGISTER))
2709     target = gen_reg_rtx (mode);
2710 
2711   emit_move_insn (target, op0);
2712   NO_DEFER_POP;
2713 
2714   /* If this mode is an integer too wide to compare properly,
2715      compare word by word.  Rely on CSE to optimize constant cases.  */
2716   if (GET_MODE_CLASS (mode) == MODE_INT
2717       && ! can_compare_p (GE, mode, ccp_jump))
2718     do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2719 				  NULL_RTX, op1);
2720   else
2721     do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
2722 			     NULL_RTX, NULL_RTX, op1);
2723 
2724   op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2725                      target, target, 0);
2726   if (op0 != target)
2727     emit_move_insn (target, op0);
2728   emit_label (op1);
2729   OK_DEFER_POP;
2730   return target;
2731 }
2732 
2733 /* Emit code to compute the absolute value of OP0, with result to
2734    TARGET if convenient.  (TARGET may be 0.)  The return value says
2735    where the result actually is to be found.
2736 
2737    MODE is the mode of the operand; the mode of the result is
2738    different but can be deduced from MODE.
2739 
2740    UNSIGNEDP is relevant for complex integer modes.  */
2741 
2742 rtx
expand_complex_abs(mode,op0,target,unsignedp)2743 expand_complex_abs (mode, op0, target, unsignedp)
2744      enum machine_mode mode;
2745      rtx op0;
2746      rtx target;
2747      int unsignedp;
2748 {
2749   enum mode_class class = GET_MODE_CLASS (mode);
2750   enum machine_mode wider_mode;
2751   rtx temp;
2752   rtx entry_last = get_last_insn ();
2753   rtx last;
2754   rtx pat;
2755   optab this_abs_optab;
2756 
2757   /* Find the correct mode for the real and imaginary parts.  */
2758   enum machine_mode submode = GET_MODE_INNER (mode);
2759 
2760   if (submode == BLKmode)
2761     abort ();
2762 
2763   op0 = protect_from_queue (op0, 0);
2764 
2765   if (flag_force_mem)
2766     {
2767       op0 = force_not_mem (op0);
2768     }
2769 
2770   last = get_last_insn ();
2771 
2772   if (target)
2773     target = protect_from_queue (target, 1);
2774 
2775   this_abs_optab = ! unsignedp && flag_trapv
2776                    && (GET_MODE_CLASS(mode) == MODE_INT)
2777                    ? absv_optab : abs_optab;
2778 
2779   if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2780     {
2781       int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
2782       enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2783       rtx xop0 = op0;
2784 
2785       if (target)
2786 	temp = target;
2787       else
2788 	temp = gen_reg_rtx (submode);
2789 
2790       if (GET_MODE (xop0) != VOIDmode
2791 	  && GET_MODE (xop0) != mode0)
2792 	xop0 = convert_to_mode (mode0, xop0, unsignedp);
2793 
2794       /* Now, if insn doesn't accept our operand, put it into a pseudo.  */
2795 
2796       if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2797 	xop0 = copy_to_mode_reg (mode0, xop0);
2798 
2799       if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
2800 	temp = gen_reg_rtx (submode);
2801 
2802       pat = GEN_FCN (icode) (temp, xop0);
2803       if (pat)
2804 	{
2805 	  if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2806 	      && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
2807 				   NULL_RTX))
2808 	    {
2809 	      delete_insns_since (last);
2810 	      return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
2811 				  unsignedp);
2812 	    }
2813 
2814 	  emit_insn (pat);
2815 
2816 	  return temp;
2817 	}
2818       else
2819 	delete_insns_since (last);
2820     }
2821 
2822   /* It can't be done in this mode.  Can we open-code it in a wider mode?  */
2823 
2824   for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2825        wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2826     {
2827       if (this_abs_optab->handlers[(int) wider_mode].insn_code
2828 	  != CODE_FOR_nothing)
2829 	{
2830 	  rtx xop0 = op0;
2831 
2832 	  xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2833 	  temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2834 
2835 	  if (temp)
2836 	    {
2837 	      if (class != MODE_COMPLEX_INT)
2838 		{
2839 		  if (target == 0)
2840 		    target = gen_reg_rtx (submode);
2841 		  convert_move (target, temp, 0);
2842 		  return target;
2843 		}
2844 	      else
2845 		return gen_lowpart (submode, temp);
2846 	    }
2847 	  else
2848 	    delete_insns_since (last);
2849 	}
2850     }
2851 
2852   /* Open-code the complex absolute-value operation
2853      if we can open-code sqrt.  Otherwise it's not worth while.  */
2854   if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
2855       && ! flag_trapv)
2856     {
2857       rtx real, imag, total;
2858 
2859       real = gen_realpart (submode, op0);
2860       imag = gen_imagpart (submode, op0);
2861 
2862       /* Square both parts.  */
2863       real = expand_mult (submode, real, real, NULL_RTX, 0);
2864       imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
2865 
2866       /* Sum the parts.  */
2867       total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
2868 			    0, OPTAB_LIB_WIDEN);
2869 
2870       /* Get sqrt in TARGET.  Set TARGET to where the result is.  */
2871       target = expand_unop (submode, sqrt_optab, total, target, 0);
2872       if (target == 0)
2873 	delete_insns_since (last);
2874       else
2875 	return target;
2876     }
2877 
2878   /* Now try a library call in this mode.  */
2879   if (this_abs_optab->handlers[(int) mode].libfunc)
2880     {
2881       rtx insns;
2882       rtx value;
2883 
2884       start_sequence ();
2885 
2886       /* Pass 1 for NO_QUEUE so we don't lose any increments
2887 	 if the libcall is cse'd or moved.  */
2888       value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
2889 				       NULL_RTX, LCT_CONST, submode, 1, op0, mode);
2890       insns = get_insns ();
2891       end_sequence ();
2892 
2893       target = gen_reg_rtx (submode);
2894       emit_libcall_block (insns, target, value,
2895 			  gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
2896 
2897       return target;
2898     }
2899 
2900   /* It can't be done in this mode.  Can we do it in a wider mode?  */
2901 
2902   for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2903        wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2904     {
2905       if ((this_abs_optab->handlers[(int) wider_mode].insn_code
2906 	   != CODE_FOR_nothing)
2907 	  || this_abs_optab->handlers[(int) wider_mode].libfunc)
2908 	{
2909 	  rtx xop0 = op0;
2910 
2911 	  xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2912 
2913 	  temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2914 
2915 	  if (temp)
2916 	    {
2917 	      if (class != MODE_COMPLEX_INT)
2918 		{
2919 		  if (target == 0)
2920 		    target = gen_reg_rtx (submode);
2921 		  convert_move (target, temp, 0);
2922 		  return target;
2923 		}
2924 	      else
2925 		return gen_lowpart (submode, temp);
2926 	    }
2927 	  else
2928 	    delete_insns_since (last);
2929 	}
2930     }
2931 
2932   delete_insns_since (entry_last);
2933   return 0;
2934 }
2935 
2936 /* Generate an instruction whose insn-code is INSN_CODE,
2937    with two operands: an output TARGET and an input OP0.
2938    TARGET *must* be nonzero, and the output is always stored there.
2939    CODE is an rtx code such that (CODE OP0) is an rtx that describes
2940    the value that is stored into TARGET.  */
2941 
2942 void
emit_unop_insn(icode,target,op0,code)2943 emit_unop_insn (icode, target, op0, code)
2944      int icode;
2945      rtx target;
2946      rtx op0;
2947      enum rtx_code code;
2948 {
2949   rtx temp;
2950   enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2951   rtx pat;
2952 
2953   temp = target = protect_from_queue (target, 1);
2954 
2955   op0 = protect_from_queue (op0, 0);
2956 
2957   /* Sign and zero extension from memory is often done specially on
2958      RISC machines, so forcing into a register here can pessimize
2959      code.  */
2960   if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
2961     op0 = force_not_mem (op0);
2962 
2963   /* Now, if insn does not accept our operands, put them into pseudos.  */
2964 
2965   if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
2966     op0 = copy_to_mode_reg (mode0, op0);
2967 
2968   if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
2969       || (flag_force_mem && GET_CODE (temp) == MEM))
2970     temp = gen_reg_rtx (GET_MODE (temp));
2971 
2972   pat = GEN_FCN (icode) (temp, op0);
2973 
2974   if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
2975     add_equal_note (pat, temp, code, op0, NULL_RTX);
2976 
2977   emit_insn (pat);
2978 
2979   if (temp != target)
2980     emit_move_insn (target, temp);
2981 }
2982 
2983 /* Emit code to perform a series of operations on a multi-word quantity, one
2984    word at a time.
2985 
2986    Such a block is preceded by a CLOBBER of the output, consists of multiple
2987    insns, each setting one word of the output, and followed by a SET copying
2988    the output to itself.
2989 
2990    Each of the insns setting words of the output receives a REG_NO_CONFLICT
2991    note indicating that it doesn't conflict with the (also multi-word)
2992    inputs.  The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2993    notes.
2994 
2995    INSNS is a block of code generated to perform the operation, not including
2996    the CLOBBER and final copy.  All insns that compute intermediate values
2997    are first emitted, followed by the block as described above.
2998 
2999    TARGET, OP0, and OP1 are the output and inputs of the operations,
3000    respectively.  OP1 may be zero for a unary operation.
3001 
3002    EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
3003    on the last insn.
3004 
3005    If TARGET is not a register, INSNS is simply emitted with no special
3006    processing.  Likewise if anything in INSNS is not an INSN or if
3007    there is a libcall block inside INSNS.
3008 
3009    The final insn emitted is returned.  */
3010 
3011 rtx
emit_no_conflict_block(insns,target,op0,op1,equiv)3012 emit_no_conflict_block (insns, target, op0, op1, equiv)
3013      rtx insns;
3014      rtx target;
3015      rtx op0, op1;
3016      rtx equiv;
3017 {
3018   rtx prev, next, first, last, insn;
3019 
3020   if (GET_CODE (target) != REG || reload_in_progress)
3021     return emit_insn (insns);
3022   else
3023     for (insn = insns; insn; insn = NEXT_INSN (insn))
3024       if (GET_CODE (insn) != INSN
3025 	  || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
3026 	return emit_insn (insns);
3027 
3028   /* First emit all insns that do not store into words of the output and remove
3029      these from the list.  */
3030   for (insn = insns; insn; insn = next)
3031     {
3032       rtx set = 0, note;
3033       int i;
3034 
3035       next = NEXT_INSN (insn);
3036 
3037       /* Some ports (cris) create an libcall regions at their own.  We must
3038 	 avoid any potential nesting of LIBCALLs.  */
3039       if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3040 	remove_note (insn, note);
3041       if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3042 	remove_note (insn, note);
3043 
3044       if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3045 	  || GET_CODE (PATTERN (insn)) == CLOBBER)
3046 	set = PATTERN (insn);
3047       else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3048 	{
3049 	  for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3050 	    if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3051 	      {
3052 		set = XVECEXP (PATTERN (insn), 0, i);
3053 		break;
3054 	      }
3055 	}
3056 
3057       if (set == 0)
3058 	abort ();
3059 
3060       if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3061 	{
3062 	  if (PREV_INSN (insn))
3063 	    NEXT_INSN (PREV_INSN (insn)) = next;
3064 	  else
3065 	    insns = next;
3066 
3067 	  if (next)
3068 	    PREV_INSN (next) = PREV_INSN (insn);
3069 
3070 	  add_insn (insn);
3071 	}
3072     }
3073 
3074   prev = get_last_insn ();
3075 
3076   /* Now write the CLOBBER of the output, followed by the setting of each
3077      of the words, followed by the final copy.  */
3078   if (target != op0 && target != op1)
3079     emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
3080 
3081   for (insn = insns; insn; insn = next)
3082     {
3083       next = NEXT_INSN (insn);
3084       add_insn (insn);
3085 
3086       if (op1 && GET_CODE (op1) == REG)
3087 	REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3088 					      REG_NOTES (insn));
3089 
3090       if (op0 && GET_CODE (op0) == REG)
3091 	REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3092 					      REG_NOTES (insn));
3093     }
3094 
3095   if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3096       != CODE_FOR_nothing)
3097     {
3098       last = emit_move_insn (target, target);
3099       if (equiv)
3100 	set_unique_reg_note (last, REG_EQUAL, equiv);
3101     }
3102   else
3103     {
3104       last = get_last_insn ();
3105 
3106       /* Remove any existing REG_EQUAL note from "last", or else it will
3107 	 be mistaken for a note referring to the full contents of the
3108 	 alleged libcall value when found together with the REG_RETVAL
3109 	 note added below.  An existing note can come from an insn
3110 	 expansion at "last".  */
3111       remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3112     }
3113 
3114   if (prev == 0)
3115     first = get_insns ();
3116   else
3117     first = NEXT_INSN (prev);
3118 
3119   /* Encapsulate the block so it gets manipulated as a unit.  */
3120   REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3121 					 REG_NOTES (first));
3122   REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
3123 
3124   return last;
3125 }
3126 
3127 /* Emit code to make a call to a constant function or a library call.
3128 
3129    INSNS is a list containing all insns emitted in the call.
3130    These insns leave the result in RESULT.  Our block is to copy RESULT
3131    to TARGET, which is logically equivalent to EQUIV.
3132 
3133    We first emit any insns that set a pseudo on the assumption that these are
3134    loading constants into registers; doing so allows them to be safely cse'ed
3135    between blocks.  Then we emit all the other insns in the block, followed by
3136    an insn to move RESULT to TARGET.  This last insn will have a REQ_EQUAL
3137    note with an operand of EQUIV.
3138 
3139    Moving assignments to pseudos outside of the block is done to improve
3140    the generated code, but is not required to generate correct code,
3141    hence being unable to move an assignment is not grounds for not making
3142    a libcall block.  There are two reasons why it is safe to leave these
3143    insns inside the block: First, we know that these pseudos cannot be
3144    used in generated RTL outside the block since they are created for
3145    temporary purposes within the block.  Second, CSE will not record the
3146    values of anything set inside a libcall block, so we know they must
3147    be dead at the end of the block.
3148 
3149    Except for the first group of insns (the ones setting pseudos), the
3150    block is delimited by REG_RETVAL and REG_LIBCALL notes.  */
3151 
3152 void
emit_libcall_block(insns,target,result,equiv)3153 emit_libcall_block (insns, target, result, equiv)
3154      rtx insns;
3155      rtx target;
3156      rtx result;
3157      rtx equiv;
3158 {
3159   rtx final_dest = target;
3160   rtx prev, next, first, last, insn;
3161 
3162   /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3163      into a MEM later.  Protect the libcall block from this change.  */
3164   if (! REG_P (target) || REG_USERVAR_P (target))
3165     target = gen_reg_rtx (GET_MODE (target));
3166 
3167   /* If we're using non-call exceptions, a libcall corresponding to an
3168      operation that may trap may also trap.  */
3169   if (flag_non_call_exceptions && may_trap_p (equiv))
3170     {
3171       for (insn = insns; insn; insn = NEXT_INSN (insn))
3172 	if (GET_CODE (insn) == CALL_INSN)
3173 	  {
3174 	    rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3175 
3176 	    if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3177 	      remove_note (insn, note);
3178 	  }
3179     }
3180   else
3181   /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3182      reg note to indicate that this call cannot throw or execute a nonlocal
3183      goto (unless there is already a REG_EH_REGION note, in which case
3184      we update it).  */
3185     for (insn = insns; insn; insn = NEXT_INSN (insn))
3186       if (GET_CODE (insn) == CALL_INSN)
3187 	{
3188 	  rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3189 
3190 	  if (note != 0)
3191 	    XEXP (note, 0) = GEN_INT (-1);
3192 	  else
3193 	    REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1),
3194 						  REG_NOTES (insn));
3195 	}
3196 
3197   /* First emit all insns that set pseudos.  Remove them from the list as
3198      we go.  Avoid insns that set pseudos which were referenced in previous
3199      insns.  These can be generated by move_by_pieces, for example,
3200      to update an address.  Similarly, avoid insns that reference things
3201      set in previous insns.  */
3202 
3203   for (insn = insns; insn; insn = next)
3204     {
3205       rtx set = single_set (insn);
3206       rtx note;
3207 
3208       /* Some ports (cris) create an libcall regions at their own.  We must
3209 	 avoid any potential nesting of LIBCALLs.  */
3210       if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3211 	remove_note (insn, note);
3212       if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3213 	remove_note (insn, note);
3214 
3215       next = NEXT_INSN (insn);
3216 
3217       if (set != 0 && GET_CODE (SET_DEST (set)) == REG
3218 	  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
3219 	  && (insn == insns
3220 	      || ((! INSN_P(insns)
3221 		   || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
3222 		  && ! reg_used_between_p (SET_DEST (set), insns, insn)
3223 		  && ! modified_in_p (SET_SRC (set), insns)
3224 		  && ! modified_between_p (SET_SRC (set), insns, insn))))
3225 	{
3226 	  if (PREV_INSN (insn))
3227 	    NEXT_INSN (PREV_INSN (insn)) = next;
3228 	  else
3229 	    insns = next;
3230 
3231 	  if (next)
3232 	    PREV_INSN (next) = PREV_INSN (insn);
3233 
3234 	  add_insn (insn);
3235 	}
3236     }
3237 
3238   prev = get_last_insn ();
3239 
3240   /* Write the remaining insns followed by the final copy.  */
3241 
3242   for (insn = insns; insn; insn = next)
3243     {
3244       next = NEXT_INSN (insn);
3245 
3246       add_insn (insn);
3247     }
3248 
3249   last = emit_move_insn (target, result);
3250   if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3251       != CODE_FOR_nothing)
3252     set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3253   else
3254     {
3255       /* Remove any existing REG_EQUAL note from "last", or else it will
3256 	 be mistaken for a note referring to the full contents of the
3257 	 libcall value when found together with the REG_RETVAL note added
3258 	 below.  An existing note can come from an insn expansion at
3259 	 "last".  */
3260       remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3261     }
3262 
3263   if (final_dest != target)
3264     emit_move_insn (final_dest, target);
3265 
3266   if (prev == 0)
3267     first = get_insns ();
3268   else
3269     first = NEXT_INSN (prev);
3270 
3271   /* Encapsulate the block so it gets manipulated as a unit.  */
3272   if (!flag_non_call_exceptions || !may_trap_p (equiv))
3273     {
3274       /* We can't attach the REG_LIBCALL and REG_RETVAL notes
3275 	 when the encapsulated region would not be in one basic block,
3276 	 i.e. when there is a control_flow_insn_p insn between FIRST and LAST.
3277        */
3278       bool attach_libcall_retval_notes = true;
3279       next = NEXT_INSN (last);
3280       for (insn = first; insn != next; insn = NEXT_INSN (insn))
3281 	if (control_flow_insn_p (insn))
3282 	  {
3283 	    attach_libcall_retval_notes = false;
3284 	    break;
3285 	  }
3286 
3287       if (attach_libcall_retval_notes)
3288 	{
3289 	  REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3290 						 REG_NOTES (first));
3291 	  REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3292 						REG_NOTES (last));
3293 	}
3294     }
3295 }
3296 
3297 /* Generate code to store zero in X.  */
3298 
3299 void
emit_clr_insn(x)3300 emit_clr_insn (x)
3301      rtx x;
3302 {
3303   emit_move_insn (x, const0_rtx);
3304 }
3305 
3306 /* Generate code to store 1 in X
3307    assuming it contains zero beforehand.  */
3308 
3309 void
emit_0_to_1_insn(x)3310 emit_0_to_1_insn (x)
3311      rtx x;
3312 {
3313   emit_move_insn (x, const1_rtx);
3314 }
3315 
3316 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3317    PURPOSE describes how this comparison will be used.  CODE is the rtx
3318    comparison code we will be using.
3319 
3320    ??? Actually, CODE is slightly weaker than that.  A target is still
3321    required to implement all of the normal bcc operations, but not
3322    required to implement all (or any) of the unordered bcc operations.  */
3323 
3324 int
can_compare_p(code,mode,purpose)3325 can_compare_p (code, mode, purpose)
3326      enum rtx_code code;
3327      enum machine_mode mode;
3328      enum can_compare_purpose purpose;
3329 {
3330   do
3331     {
3332       if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3333 	{
3334 	  if (purpose == ccp_jump)
3335 	    return bcc_gen_fctn[(int) code] != NULL;
3336 	  else if (purpose == ccp_store_flag)
3337 	    return setcc_gen_code[(int) code] != CODE_FOR_nothing;
3338 	  else
3339 	    /* There's only one cmov entry point, and it's allowed to fail.  */
3340 	    return 1;
3341 	}
3342       if (purpose == ccp_jump
3343 	  && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3344 	return 1;
3345       if (purpose == ccp_cmov
3346 	  && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3347 	return 1;
3348       if (purpose == ccp_store_flag
3349 	  && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3350 	return 1;
3351 
3352       mode = GET_MODE_WIDER_MODE (mode);
3353     }
3354   while (mode != VOIDmode);
3355 
3356   return 0;
3357 }
3358 
3359 /* This function is called when we are going to emit a compare instruction that
3360    compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3361 
3362    *PMODE is the mode of the inputs (in case they are const_int).
3363    *PUNSIGNEDP nonzero says that the operands are unsigned;
3364    this matters if they need to be widened.
3365 
3366    If they have mode BLKmode, then SIZE specifies the size of both operands.
3367 
3368    This function performs all the setup necessary so that the caller only has
3369    to emit a single comparison insn.  This setup can involve doing a BLKmode
3370    comparison or emitting a library call to perform the comparison if no insn
3371    is available to handle it.
3372    The values which are passed in through pointers can be modified; the caller
3373    should perform the comparison on the modified values.  */
3374 
3375 static void
prepare_cmp_insn(px,py,pcomparison,size,pmode,punsignedp,purpose)3376 prepare_cmp_insn (px, py, pcomparison, size, pmode, punsignedp, purpose)
3377      rtx *px, *py;
3378      enum rtx_code *pcomparison;
3379      rtx size;
3380      enum machine_mode *pmode;
3381      int *punsignedp;
3382      enum can_compare_purpose purpose;
3383 {
3384   enum machine_mode mode = *pmode;
3385   rtx x = *px, y = *py;
3386   int unsignedp = *punsignedp;
3387   enum mode_class class;
3388 
3389   class = GET_MODE_CLASS (mode);
3390 
3391   /* They could both be VOIDmode if both args are immediate constants,
3392      but we should fold that at an earlier stage.
3393      With no special code here, this will call abort,
3394      reminding the programmer to implement such folding.  */
3395 
3396   if (mode != BLKmode && flag_force_mem)
3397     {
3398       x = force_not_mem (x);
3399       y = force_not_mem (y);
3400     }
3401 
3402   /* If we are inside an appropriately-short loop and one operand is an
3403      expensive constant, force it into a register.  */
3404   if (CONSTANT_P (x) && preserve_subexpressions_p ()
3405       && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3406     x = force_reg (mode, x);
3407 
3408   if (CONSTANT_P (y) && preserve_subexpressions_p ()
3409       && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3410     y = force_reg (mode, y);
3411 
3412 #ifdef HAVE_cc0
3413   /* Abort if we have a non-canonical comparison.  The RTL documentation
3414      states that canonical comparisons are required only for targets which
3415      have cc0.  */
3416   if (CONSTANT_P (x) && ! CONSTANT_P (y))
3417     abort ();
3418 #endif
3419 
3420   /* Don't let both operands fail to indicate the mode.  */
3421   if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3422     x = force_reg (mode, x);
3423 
3424   /* Handle all BLKmode compares.  */
3425 
3426   if (mode == BLKmode)
3427     {
3428       rtx result;
3429       enum machine_mode result_mode;
3430       rtx opalign ATTRIBUTE_UNUSED
3431 	= GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3432 
3433       emit_queue ();
3434       x = protect_from_queue (x, 0);
3435       y = protect_from_queue (y, 0);
3436 
3437       if (size == 0)
3438 	abort ();
3439 #ifdef HAVE_cmpmemqi
3440       if (HAVE_cmpmemqi
3441 	  && GET_CODE (size) == CONST_INT
3442 	  && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3443 	{
3444 	  result_mode = insn_data[(int) CODE_FOR_cmpmemqi].operand[0].mode;
3445 	  result = gen_reg_rtx (result_mode);
3446 	  emit_insn (gen_cmpmemqi (result, x, y, size, opalign));
3447 	}
3448       else
3449 #endif
3450 #ifdef HAVE_cmpmemhi
3451       if (HAVE_cmpmemhi
3452 	  && GET_CODE (size) == CONST_INT
3453 	  && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3454 	{
3455 	  result_mode = insn_data[(int) CODE_FOR_cmpmemhi].operand[0].mode;
3456 	  result = gen_reg_rtx (result_mode);
3457 	  emit_insn (gen_cmpmemhi (result, x, y, size, opalign));
3458 	}
3459       else
3460 #endif
3461 #ifdef HAVE_cmpmemsi
3462       if (HAVE_cmpmemsi)
3463 	{
3464 	  result_mode = insn_data[(int) CODE_FOR_cmpmemsi].operand[0].mode;
3465 	  result = gen_reg_rtx (result_mode);
3466 	  size = protect_from_queue (size, 0);
3467 	  emit_insn (gen_cmpmemsi (result, x, y,
3468 				   convert_to_mode (SImode, size, 1),
3469 				   opalign));
3470 	}
3471       else
3472 #endif
3473 #ifdef HAVE_cmpstrqi
3474       if (HAVE_cmpstrqi
3475 	  && GET_CODE (size) == CONST_INT
3476 	  && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3477 	{
3478 	  result_mode = insn_data[(int) CODE_FOR_cmpstrqi].operand[0].mode;
3479 	  result = gen_reg_rtx (result_mode);
3480 	  emit_insn (gen_cmpstrqi (result, x, y, size, opalign));
3481 	}
3482       else
3483 #endif
3484 #ifdef HAVE_cmpstrhi
3485       if (HAVE_cmpstrhi
3486 	  && GET_CODE (size) == CONST_INT
3487 	  && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3488 	{
3489 	  result_mode = insn_data[(int) CODE_FOR_cmpstrhi].operand[0].mode;
3490 	  result = gen_reg_rtx (result_mode);
3491 	  emit_insn (gen_cmpstrhi (result, x, y, size, opalign));
3492 	}
3493       else
3494 #endif
3495 #ifdef HAVE_cmpstrsi
3496       if (HAVE_cmpstrsi)
3497 	{
3498 	  result_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
3499 	  result = gen_reg_rtx (result_mode);
3500 	  size = protect_from_queue (size, 0);
3501 	  emit_insn (gen_cmpstrsi (result, x, y,
3502 				   convert_to_mode (SImode, size, 1),
3503 				   opalign));
3504 	}
3505       else
3506 #endif
3507 	{
3508 #ifdef TARGET_MEM_FUNCTIONS
3509 	  result = emit_library_call_value (memcmp_libfunc, NULL_RTX, LCT_PURE_MAKE_BLOCK,
3510 					    TYPE_MODE (integer_type_node), 3,
3511 					    XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3512 					    convert_to_mode (TYPE_MODE (sizetype), size,
3513 							     TREE_UNSIGNED (sizetype)),
3514 					    TYPE_MODE (sizetype));
3515 #else
3516 	  result = emit_library_call_value (bcmp_libfunc, NULL_RTX, LCT_PURE_MAKE_BLOCK,
3517 					    TYPE_MODE (integer_type_node), 3,
3518 					    XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3519 					    convert_to_mode (TYPE_MODE (integer_type_node),
3520 							     size,
3521 							     TREE_UNSIGNED (integer_type_node)),
3522 					    TYPE_MODE (integer_type_node));
3523 #endif
3524 
3525 	  result_mode = TYPE_MODE (integer_type_node);
3526 	}
3527       *px = result;
3528       *py = const0_rtx;
3529       *pmode = result_mode;
3530       return;
3531     }
3532 
3533   /* Don't allow operands to the compare to trap, as that can put the
3534      compare and branch in different basic blocks.  */
3535   if (flag_non_call_exceptions)
3536     {
3537       if (may_trap_p (x))
3538 	x = force_reg (mode, x);
3539       if (may_trap_p (y))
3540 	y = force_reg (mode, y);
3541     }
3542 
3543   *px = x;
3544   *py = y;
3545   if (can_compare_p (*pcomparison, mode, purpose))
3546     return;
3547 
3548   /* Handle a lib call just for the mode we are using.  */
3549 
3550   if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3551     {
3552       rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3553       rtx result;
3554 
3555       /* If we want unsigned, and this mode has a distinct unsigned
3556 	 comparison routine, use that.  */
3557       if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3558 	libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3559 
3560       result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3561 					word_mode, 2, x, mode, y, mode);
3562 
3563       /* Integer comparison returns a result that must be compared against 1,
3564 	 so that even if we do an unsigned compare afterward,
3565 	 there is still a value that can represent the result "less than".  */
3566       *px = result;
3567       *py = const1_rtx;
3568       *pmode = word_mode;
3569       return;
3570     }
3571 
3572   if (class == MODE_FLOAT)
3573     prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3574 
3575   else
3576     abort ();
3577 }
3578 
3579 /* Before emitting an insn with code ICODE, make sure that X, which is going
3580    to be used for operand OPNUM of the insn, is converted from mode MODE to
3581    WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3582    that it is accepted by the operand predicate.  Return the new value.  */
3583 
3584 rtx
prepare_operand(icode,x,opnum,mode,wider_mode,unsignedp)3585 prepare_operand (icode, x, opnum, mode, wider_mode, unsignedp)
3586      int icode;
3587      rtx x;
3588      int opnum;
3589      enum machine_mode mode, wider_mode;
3590      int unsignedp;
3591 {
3592   x = protect_from_queue (x, 0);
3593 
3594   if (mode != wider_mode)
3595     x = convert_modes (wider_mode, mode, x, unsignedp);
3596 
3597   if (! (*insn_data[icode].operand[opnum].predicate)
3598       (x, insn_data[icode].operand[opnum].mode))
3599     {
3600       if (no_new_pseudos)
3601 	return NULL_RTX;
3602       x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3603     }
3604 
3605   return x;
3606 }
3607 
3608 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3609    we can do the comparison.
3610    The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3611    be NULL_RTX which indicates that only a comparison is to be generated.  */
3612 
3613 static void
emit_cmp_and_jump_insn_1(x,y,mode,comparison,unsignedp,label)3614 emit_cmp_and_jump_insn_1 (x, y, mode, comparison, unsignedp, label)
3615      rtx x, y;
3616      enum machine_mode mode;
3617      enum rtx_code comparison;
3618      int unsignedp;
3619      rtx label;
3620 {
3621   rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3622   enum mode_class class = GET_MODE_CLASS (mode);
3623   enum machine_mode wider_mode = mode;
3624 
3625   /* Try combined insns first.  */
3626   do
3627     {
3628       enum insn_code icode;
3629       PUT_MODE (test, wider_mode);
3630 
3631       if (label)
3632 	{
3633 	  icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
3634 
3635 	  if (icode != CODE_FOR_nothing
3636 	      && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3637 	    {
3638 	      x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3639 	      y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3640 	      emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3641 	      return;
3642 	    }
3643 	}
3644 
3645       /* Handle some compares against zero.  */
3646       icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3647       if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3648 	{
3649 	  x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3650 	  emit_insn (GEN_FCN (icode) (x));
3651 	  if (label)
3652 	    emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3653 	  return;
3654 	}
3655 
3656       /* Handle compares for which there is a directly suitable insn.  */
3657 
3658       icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3659       if (icode != CODE_FOR_nothing)
3660 	{
3661 	  x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3662 	  y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3663 	  emit_insn (GEN_FCN (icode) (x, y));
3664 	  if (label)
3665 	    emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3666 	  return;
3667 	}
3668 
3669       if (class != MODE_INT && class != MODE_FLOAT
3670 	  && class != MODE_COMPLEX_FLOAT)
3671 	break;
3672 
3673       wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3674     }
3675   while (wider_mode != VOIDmode);
3676 
3677   abort ();
3678 }
3679 
3680 /* Generate code to compare X with Y so that the condition codes are
3681    set and to jump to LABEL if the condition is true.  If X is a
3682    constant and Y is not a constant, then the comparison is swapped to
3683    ensure that the comparison RTL has the canonical form.
3684 
3685    UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3686    need to be widened by emit_cmp_insn.  UNSIGNEDP is also used to select
3687    the proper branch condition code.
3688 
3689    If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
3690 
3691    MODE is the mode of the inputs (in case they are const_int).
3692 
3693    COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).  It will
3694    be passed unchanged to emit_cmp_insn, then potentially converted into an
3695    unsigned variant based on UNSIGNEDP to select a proper jump instruction.  */
3696 
3697 void
emit_cmp_and_jump_insns(x,y,comparison,size,mode,unsignedp,label)3698 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, label)
3699      rtx x, y;
3700      enum rtx_code comparison;
3701      rtx size;
3702      enum machine_mode mode;
3703      int unsignedp;
3704      rtx label;
3705 {
3706   rtx op0 = x, op1 = y;
3707 
3708   /* Swap operands and condition to ensure canonical RTL.  */
3709   if (swap_commutative_operands_p (x, y))
3710     {
3711       /* If we're not emitting a branch, this means some caller
3712          is out of sync.  */
3713       if (! label)
3714 	abort ();
3715 
3716       op0 = y, op1 = x;
3717       comparison = swap_condition (comparison);
3718     }
3719 
3720 #ifdef HAVE_cc0
3721   /* If OP0 is still a constant, then both X and Y must be constants.  Force
3722      X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3723      RTL.  */
3724   if (CONSTANT_P (op0))
3725     op0 = force_reg (mode, op0);
3726 #endif
3727 
3728   emit_queue ();
3729   if (unsignedp)
3730     comparison = unsigned_condition (comparison);
3731 
3732   prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
3733 		    ccp_jump);
3734   emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3735 }
3736 
3737 /* Like emit_cmp_and_jump_insns, but generate only the comparison.  */
3738 
3739 void
emit_cmp_insn(x,y,comparison,size,mode,unsignedp)3740 emit_cmp_insn (x, y, comparison, size, mode, unsignedp)
3741      rtx x, y;
3742      enum rtx_code comparison;
3743      rtx size;
3744      enum machine_mode mode;
3745      int unsignedp;
3746 {
3747   emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
3748 }
3749 
3750 /* Emit a library call comparison between floating point X and Y.
3751    COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).  */
3752 
3753 static void
prepare_float_lib_cmp(px,py,pcomparison,pmode,punsignedp)3754 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp)
3755      rtx *px, *py;
3756      enum rtx_code *pcomparison;
3757      enum machine_mode *pmode;
3758      int *punsignedp;
3759 {
3760   enum rtx_code comparison = *pcomparison;
3761   rtx tmp;
3762   rtx x = *px = protect_from_queue (*px, 0);
3763   rtx y = *py = protect_from_queue (*py, 0);
3764   enum machine_mode mode = GET_MODE (x);
3765   rtx libfunc = 0;
3766   rtx result;
3767 
3768   if (mode == HFmode)
3769     switch (comparison)
3770       {
3771       case EQ:
3772 	libfunc = eqhf2_libfunc;
3773 	break;
3774 
3775       case NE:
3776 	libfunc = nehf2_libfunc;
3777 	break;
3778 
3779       case GT:
3780 	libfunc = gthf2_libfunc;
3781 	if (libfunc == NULL_RTX)
3782 	  {
3783 	    tmp = x; x = y; y = tmp;
3784 	    *pcomparison = LT;
3785 	    libfunc = lthf2_libfunc;
3786 	  }
3787 	break;
3788 
3789       case GE:
3790 	libfunc = gehf2_libfunc;
3791 	if (libfunc == NULL_RTX)
3792 	  {
3793 	    tmp = x; x = y; y = tmp;
3794 	    *pcomparison = LE;
3795 	    libfunc = lehf2_libfunc;
3796 	  }
3797 	break;
3798 
3799       case LT:
3800 	libfunc = lthf2_libfunc;
3801 	if (libfunc == NULL_RTX)
3802 	  {
3803 	    tmp = x; x = y; y = tmp;
3804 	    *pcomparison = GT;
3805 	    libfunc = gthf2_libfunc;
3806 	  }
3807 	break;
3808 
3809       case LE:
3810 	libfunc = lehf2_libfunc;
3811 	if (libfunc == NULL_RTX)
3812 	  {
3813 	    tmp = x; x = y; y = tmp;
3814 	    *pcomparison = GE;
3815 	    libfunc = gehf2_libfunc;
3816 	  }
3817 	break;
3818 
3819       case UNORDERED:
3820 	libfunc = unordhf2_libfunc;
3821 	break;
3822 
3823       default:
3824 	break;
3825       }
3826   else if (mode == SFmode)
3827     switch (comparison)
3828       {
3829       case EQ:
3830 	libfunc = eqsf2_libfunc;
3831 	break;
3832 
3833       case NE:
3834 	libfunc = nesf2_libfunc;
3835 	break;
3836 
3837       case GT:
3838 	libfunc = gtsf2_libfunc;
3839 	if (libfunc == NULL_RTX)
3840 	  {
3841 	    tmp = x; x = y; y = tmp;
3842 	    *pcomparison = LT;
3843 	    libfunc = ltsf2_libfunc;
3844 	  }
3845 	break;
3846 
3847       case GE:
3848 	libfunc = gesf2_libfunc;
3849 	if (libfunc == NULL_RTX)
3850 	  {
3851 	    tmp = x; x = y; y = tmp;
3852 	    *pcomparison = LE;
3853 	    libfunc = lesf2_libfunc;
3854 	  }
3855 	break;
3856 
3857       case LT:
3858 	libfunc = ltsf2_libfunc;
3859 	if (libfunc == NULL_RTX)
3860 	  {
3861 	    tmp = x; x = y; y = tmp;
3862 	    *pcomparison = GT;
3863 	    libfunc = gtsf2_libfunc;
3864 	  }
3865 	break;
3866 
3867       case LE:
3868 	libfunc = lesf2_libfunc;
3869 	if (libfunc == NULL_RTX)
3870 	  {
3871 	    tmp = x; x = y; y = tmp;
3872 	    *pcomparison = GE;
3873 	    libfunc = gesf2_libfunc;
3874 	  }
3875 	break;
3876 
3877       case UNORDERED:
3878 	libfunc = unordsf2_libfunc;
3879 	break;
3880 
3881       default:
3882 	break;
3883       }
3884   else if (mode == DFmode)
3885     switch (comparison)
3886       {
3887       case EQ:
3888 	libfunc = eqdf2_libfunc;
3889 	break;
3890 
3891       case NE:
3892 	libfunc = nedf2_libfunc;
3893 	break;
3894 
3895       case GT:
3896 	libfunc = gtdf2_libfunc;
3897 	if (libfunc == NULL_RTX)
3898 	  {
3899 	    tmp = x; x = y; y = tmp;
3900 	    *pcomparison = LT;
3901 	    libfunc = ltdf2_libfunc;
3902 	  }
3903 	break;
3904 
3905       case GE:
3906 	libfunc = gedf2_libfunc;
3907 	if (libfunc == NULL_RTX)
3908 	  {
3909 	    tmp = x; x = y; y = tmp;
3910 	    *pcomparison = LE;
3911 	    libfunc = ledf2_libfunc;
3912 	  }
3913 	break;
3914 
3915       case LT:
3916 	libfunc = ltdf2_libfunc;
3917 	if (libfunc == NULL_RTX)
3918 	  {
3919 	    tmp = x; x = y; y = tmp;
3920 	    *pcomparison = GT;
3921 	    libfunc = gtdf2_libfunc;
3922 	  }
3923 	break;
3924 
3925       case LE:
3926 	libfunc = ledf2_libfunc;
3927 	if (libfunc == NULL_RTX)
3928 	  {
3929 	    tmp = x; x = y; y = tmp;
3930 	    *pcomparison = GE;
3931 	    libfunc = gedf2_libfunc;
3932 	  }
3933 	break;
3934 
3935       case UNORDERED:
3936 	libfunc = unorddf2_libfunc;
3937 	break;
3938 
3939       default:
3940 	break;
3941       }
3942   else if (mode == XFmode)
3943     switch (comparison)
3944       {
3945       case EQ:
3946 	libfunc = eqxf2_libfunc;
3947 	break;
3948 
3949       case NE:
3950 	libfunc = nexf2_libfunc;
3951 	break;
3952 
3953       case GT:
3954 	libfunc = gtxf2_libfunc;
3955 	if (libfunc == NULL_RTX)
3956 	  {
3957 	    tmp = x; x = y; y = tmp;
3958 	    *pcomparison = LT;
3959 	    libfunc = ltxf2_libfunc;
3960 	  }
3961 	break;
3962 
3963       case GE:
3964 	libfunc = gexf2_libfunc;
3965 	if (libfunc == NULL_RTX)
3966 	  {
3967 	    tmp = x; x = y; y = tmp;
3968 	    *pcomparison = LE;
3969 	    libfunc = lexf2_libfunc;
3970 	  }
3971 	break;
3972 
3973       case LT:
3974 	libfunc = ltxf2_libfunc;
3975 	if (libfunc == NULL_RTX)
3976 	  {
3977 	    tmp = x; x = y; y = tmp;
3978 	    *pcomparison = GT;
3979 	    libfunc = gtxf2_libfunc;
3980 	  }
3981 	break;
3982 
3983       case LE:
3984 	libfunc = lexf2_libfunc;
3985 	if (libfunc == NULL_RTX)
3986 	  {
3987 	    tmp = x; x = y; y = tmp;
3988 	    *pcomparison = GE;
3989 	    libfunc = gexf2_libfunc;
3990 	  }
3991 	break;
3992 
3993       case UNORDERED:
3994 	libfunc = unordxf2_libfunc;
3995 	break;
3996 
3997       default:
3998 	break;
3999       }
4000   else if (mode == TFmode)
4001     switch (comparison)
4002       {
4003       case EQ:
4004 	libfunc = eqtf2_libfunc;
4005 	break;
4006 
4007       case NE:
4008 	libfunc = netf2_libfunc;
4009 	break;
4010 
4011       case GT:
4012 	libfunc = gttf2_libfunc;
4013 	if (libfunc == NULL_RTX)
4014 	  {
4015 	    tmp = x; x = y; y = tmp;
4016 	    *pcomparison = LT;
4017 	    libfunc = lttf2_libfunc;
4018 	  }
4019 	break;
4020 
4021       case GE:
4022 	libfunc = getf2_libfunc;
4023 	if (libfunc == NULL_RTX)
4024 	  {
4025 	    tmp = x; x = y; y = tmp;
4026 	    *pcomparison = LE;
4027 	    libfunc = letf2_libfunc;
4028 	  }
4029 	break;
4030 
4031       case LT:
4032 	libfunc = lttf2_libfunc;
4033 	if (libfunc == NULL_RTX)
4034 	  {
4035 	    tmp = x; x = y; y = tmp;
4036 	    *pcomparison = GT;
4037 	    libfunc = gttf2_libfunc;
4038 	  }
4039 	break;
4040 
4041       case LE:
4042 	libfunc = letf2_libfunc;
4043 	if (libfunc == NULL_RTX)
4044 	  {
4045 	    tmp = x; x = y; y = tmp;
4046 	    *pcomparison = GE;
4047 	    libfunc = getf2_libfunc;
4048 	  }
4049 	break;
4050 
4051       case UNORDERED:
4052 	libfunc = unordtf2_libfunc;
4053 	break;
4054 
4055       default:
4056 	break;
4057       }
4058   else
4059     {
4060       enum machine_mode wider_mode;
4061 
4062       for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
4063 	   wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4064 	{
4065 	  if ((cmp_optab->handlers[(int) wider_mode].insn_code
4066 	       != CODE_FOR_nothing)
4067 	      || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
4068 	    {
4069 	      x = protect_from_queue (x, 0);
4070 	      y = protect_from_queue (y, 0);
4071 	      *px = convert_to_mode (wider_mode, x, 0);
4072 	      *py = convert_to_mode (wider_mode, y, 0);
4073 	      prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
4074 	      return;
4075 	    }
4076 	}
4077       abort ();
4078     }
4079 
4080   if (libfunc == 0)
4081     abort ();
4082 
4083   result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
4084 				    word_mode, 2, x, mode, y, mode);
4085   *px = result;
4086   *py = const0_rtx;
4087   *pmode = word_mode;
4088   if (comparison == UNORDERED)
4089     *pcomparison = NE;
4090 #ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
4091   else if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4092     *pcomparison = NE;
4093 #endif
4094   *punsignedp = 0;
4095 }
4096 
4097 /* Generate code to indirectly jump to a location given in the rtx LOC.  */
4098 
4099 void
emit_indirect_jump(loc)4100 emit_indirect_jump (loc)
4101      rtx loc;
4102 {
4103   if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate)
4104 	 (loc, Pmode)))
4105     loc = copy_to_mode_reg (Pmode, loc);
4106 
4107   emit_jump_insn (gen_indirect_jump (loc));
4108   emit_barrier ();
4109 }
4110 
4111 #ifdef HAVE_conditional_move
4112 
4113 /* Emit a conditional move instruction if the machine supports one for that
4114    condition and machine mode.
4115 
4116    OP0 and OP1 are the operands that should be compared using CODE.  CMODE is
4117    the mode to use should they be constants.  If it is VOIDmode, they cannot
4118    both be constants.
4119 
4120    OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4121    should be stored there.  MODE is the mode to use should they be constants.
4122    If it is VOIDmode, they cannot both be constants.
4123 
4124    The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4125    is not supported.  */
4126 
4127 rtx
emit_conditional_move(target,code,op0,op1,cmode,op2,op3,mode,unsignedp)4128 emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
4129 		       unsignedp)
4130      rtx target;
4131      enum rtx_code code;
4132      rtx op0, op1;
4133      enum machine_mode cmode;
4134      rtx op2, op3;
4135      enum machine_mode mode;
4136      int unsignedp;
4137 {
4138   rtx tem, subtarget, comparison, insn;
4139   enum insn_code icode;
4140   enum rtx_code reversed;
4141 
4142   /* If one operand is constant, make it the second one.  Only do this
4143      if the other operand is not constant as well.  */
4144 
4145   if (swap_commutative_operands_p (op0, op1))
4146     {
4147       tem = op0;
4148       op0 = op1;
4149       op1 = tem;
4150       code = swap_condition (code);
4151     }
4152 
4153   /* get_condition will prefer to generate LT and GT even if the old
4154      comparison was against zero, so undo that canonicalization here since
4155      comparisons against zero are cheaper.  */
4156   if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
4157     code = LE, op1 = const0_rtx;
4158   else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
4159     code = GE, op1 = const0_rtx;
4160 
4161   if (cmode == VOIDmode)
4162     cmode = GET_MODE (op0);
4163 
4164   if (swap_commutative_operands_p (op2, op3)
4165       && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4166           != UNKNOWN))
4167     {
4168       tem = op2;
4169       op2 = op3;
4170       op3 = tem;
4171       code = reversed;
4172     }
4173 
4174   if (mode == VOIDmode)
4175     mode = GET_MODE (op2);
4176 
4177   icode = movcc_gen_code[mode];
4178 
4179   if (icode == CODE_FOR_nothing)
4180     return 0;
4181 
4182   if (flag_force_mem)
4183     {
4184       op2 = force_not_mem (op2);
4185       op3 = force_not_mem (op3);
4186     }
4187 
4188   if (target)
4189     target = protect_from_queue (target, 1);
4190   else
4191     target = gen_reg_rtx (mode);
4192 
4193   subtarget = target;
4194 
4195   emit_queue ();
4196 
4197   op2 = protect_from_queue (op2, 0);
4198   op3 = protect_from_queue (op3, 0);
4199 
4200   /* If the insn doesn't accept these operands, put them in pseudos.  */
4201 
4202   if (! (*insn_data[icode].operand[0].predicate)
4203       (subtarget, insn_data[icode].operand[0].mode))
4204     subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4205 
4206   if (! (*insn_data[icode].operand[2].predicate)
4207       (op2, insn_data[icode].operand[2].mode))
4208     op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4209 
4210   if (! (*insn_data[icode].operand[3].predicate)
4211       (op3, insn_data[icode].operand[3].mode))
4212     op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4213 
4214   /* Everything should now be in the suitable form, so emit the compare insn
4215      and then the conditional move.  */
4216 
4217   comparison
4218     = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4219 
4220   /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)?  */
4221   /* We can get const0_rtx or const_true_rtx in some circumstances.  Just
4222      return NULL and let the caller figure out how best to deal with this
4223      situation.  */
4224   if (GET_CODE (comparison) != code)
4225     return NULL_RTX;
4226 
4227   insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4228 
4229   /* If that failed, then give up.  */
4230   if (insn == 0)
4231     return 0;
4232 
4233   emit_insn (insn);
4234 
4235   if (subtarget != target)
4236     convert_move (target, subtarget, 0);
4237 
4238   return target;
4239 }
4240 
4241 /* Return nonzero if a conditional move of mode MODE is supported.
4242 
4243    This function is for combine so it can tell whether an insn that looks
4244    like a conditional move is actually supported by the hardware.  If we
4245    guess wrong we lose a bit on optimization, but that's it.  */
4246 /* ??? sparc64 supports conditionally moving integers values based on fp
4247    comparisons, and vice versa.  How do we handle them?  */
4248 
4249 int
can_conditionally_move_p(mode)4250 can_conditionally_move_p (mode)
4251      enum machine_mode mode;
4252 {
4253   if (movcc_gen_code[mode] != CODE_FOR_nothing)
4254     return 1;
4255 
4256   return 0;
4257 }
4258 
4259 #endif /* HAVE_conditional_move */
4260 
4261 /* These functions generate an insn body and return it
4262    rather than emitting the insn.
4263 
4264    They do not protect from queued increments,
4265    because they may be used 1) in protect_from_queue itself
4266    and 2) in other passes where there is no queue.  */
4267 
4268 /* Generate and return an insn body to add Y to X.  */
4269 
4270 rtx
gen_add2_insn(x,y)4271 gen_add2_insn (x, y)
4272      rtx x, y;
4273 {
4274   int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4275 
4276   if (! ((*insn_data[icode].operand[0].predicate)
4277 	 (x, insn_data[icode].operand[0].mode))
4278       || ! ((*insn_data[icode].operand[1].predicate)
4279 	    (x, insn_data[icode].operand[1].mode))
4280       || ! ((*insn_data[icode].operand[2].predicate)
4281 	    (y, insn_data[icode].operand[2].mode)))
4282     abort ();
4283 
4284   return (GEN_FCN (icode) (x, x, y));
4285 }
4286 
4287 /* Generate and return an insn body to add r1 and c,
4288    storing the result in r0.  */
4289 rtx
gen_add3_insn(r0,r1,c)4290 gen_add3_insn (r0, r1, c)
4291      rtx r0, r1, c;
4292 {
4293   int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4294 
4295   if (icode == CODE_FOR_nothing
4296       || ! ((*insn_data[icode].operand[0].predicate)
4297 	    (r0, insn_data[icode].operand[0].mode))
4298       || ! ((*insn_data[icode].operand[1].predicate)
4299 	    (r1, insn_data[icode].operand[1].mode))
4300       || ! ((*insn_data[icode].operand[2].predicate)
4301 	    (c, insn_data[icode].operand[2].mode)))
4302     return NULL_RTX;
4303 
4304   return (GEN_FCN (icode) (r0, r1, c));
4305 }
4306 
4307 int
have_add2_insn(x,y)4308 have_add2_insn (x, y)
4309      rtx x, y;
4310 {
4311   int icode;
4312 
4313   if (GET_MODE (x) == VOIDmode)
4314     abort ();
4315 
4316   icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4317 
4318   if (icode == CODE_FOR_nothing)
4319     return 0;
4320 
4321   if (! ((*insn_data[icode].operand[0].predicate)
4322 	 (x, insn_data[icode].operand[0].mode))
4323       || ! ((*insn_data[icode].operand[1].predicate)
4324 	    (x, insn_data[icode].operand[1].mode))
4325       || ! ((*insn_data[icode].operand[2].predicate)
4326 	    (y, insn_data[icode].operand[2].mode)))
4327     return 0;
4328 
4329   return 1;
4330 }
4331 
4332 /* Generate and return an insn body to subtract Y from X.  */
4333 
4334 rtx
gen_sub2_insn(x,y)4335 gen_sub2_insn (x, y)
4336      rtx x, y;
4337 {
4338   int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4339 
4340   if (! ((*insn_data[icode].operand[0].predicate)
4341 	 (x, insn_data[icode].operand[0].mode))
4342       || ! ((*insn_data[icode].operand[1].predicate)
4343 	    (x, insn_data[icode].operand[1].mode))
4344       || ! ((*insn_data[icode].operand[2].predicate)
4345 	    (y, insn_data[icode].operand[2].mode)))
4346     abort ();
4347 
4348   return (GEN_FCN (icode) (x, x, y));
4349 }
4350 
4351 /* Generate and return an insn body to subtract r1 and c,
4352    storing the result in r0.  */
4353 rtx
gen_sub3_insn(r0,r1,c)4354 gen_sub3_insn (r0, r1, c)
4355      rtx r0, r1, c;
4356 {
4357   int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4358 
4359   if (icode == CODE_FOR_nothing
4360       || ! ((*insn_data[icode].operand[0].predicate)
4361 	    (r0, insn_data[icode].operand[0].mode))
4362       || ! ((*insn_data[icode].operand[1].predicate)
4363 	    (r1, insn_data[icode].operand[1].mode))
4364       || ! ((*insn_data[icode].operand[2].predicate)
4365 	    (c, insn_data[icode].operand[2].mode)))
4366     return NULL_RTX;
4367 
4368   return (GEN_FCN (icode) (r0, r1, c));
4369 }
4370 
4371 int
have_sub2_insn(x,y)4372 have_sub2_insn (x, y)
4373      rtx x, y;
4374 {
4375   int icode;
4376 
4377   if (GET_MODE (x) == VOIDmode)
4378     abort ();
4379 
4380   icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4381 
4382   if (icode == CODE_FOR_nothing)
4383     return 0;
4384 
4385   if (! ((*insn_data[icode].operand[0].predicate)
4386 	 (x, insn_data[icode].operand[0].mode))
4387       || ! ((*insn_data[icode].operand[1].predicate)
4388 	    (x, insn_data[icode].operand[1].mode))
4389       || ! ((*insn_data[icode].operand[2].predicate)
4390 	    (y, insn_data[icode].operand[2].mode)))
4391     return 0;
4392 
4393   return 1;
4394 }
4395 
4396 /* Generate the body of an instruction to copy Y into X.
4397    It may be a list of insns, if one insn isn't enough.  */
4398 
4399 rtx
gen_move_insn(x,y)4400 gen_move_insn (x, y)
4401      rtx x, y;
4402 {
4403   enum machine_mode mode = GET_MODE (x);
4404   enum insn_code insn_code;
4405   rtx seq;
4406 
4407   if (mode == VOIDmode)
4408     mode = GET_MODE (y);
4409 
4410   insn_code = mov_optab->handlers[(int) mode].insn_code;
4411 
4412   /* Handle MODE_CC modes:  If we don't have a special move insn for this mode,
4413      find a mode to do it in.  If we have a movcc, use it.  Otherwise,
4414      find the MODE_INT mode of the same width.  */
4415 
4416   if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
4417     {
4418       enum machine_mode tmode = VOIDmode;
4419       rtx x1 = x, y1 = y;
4420 
4421       if (mode != CCmode
4422 	  && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
4423 	tmode = CCmode;
4424       else
4425 	for (tmode = QImode; tmode != VOIDmode;
4426 	     tmode = GET_MODE_WIDER_MODE (tmode))
4427 	  if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
4428 	    break;
4429 
4430       if (tmode == VOIDmode)
4431 	abort ();
4432 
4433       /* Get X and Y in TMODE.  We can't use gen_lowpart here because it
4434 	 may call change_address which is not appropriate if we were
4435 	 called when a reload was in progress.  We don't have to worry
4436 	 about changing the address since the size in bytes is supposed to
4437 	 be the same.  Copy the MEM to change the mode and move any
4438 	 substitutions from the old MEM to the new one.  */
4439 
4440       if (reload_in_progress)
4441 	{
4442 	  x = gen_lowpart_common (tmode, x1);
4443 	  if (x == 0 && GET_CODE (x1) == MEM)
4444 	    {
4445 	      x = adjust_address_nv (x1, tmode, 0);
4446 	      copy_replacements (x1, x);
4447 	    }
4448 
4449 	  y = gen_lowpart_common (tmode, y1);
4450 	  if (y == 0 && GET_CODE (y1) == MEM)
4451 	    {
4452 	      y = adjust_address_nv (y1, tmode, 0);
4453 	      copy_replacements (y1, y);
4454 	    }
4455 	}
4456       else
4457 	{
4458 	  x = gen_lowpart (tmode, x);
4459 	  y = gen_lowpart (tmode, y);
4460 	}
4461 
4462       insn_code = mov_optab->handlers[(int) tmode].insn_code;
4463       return (GEN_FCN (insn_code) (x, y));
4464     }
4465 
4466   start_sequence ();
4467   emit_move_insn_1 (x, y);
4468   seq = get_insns ();
4469   end_sequence ();
4470   return seq;
4471 }
4472 
4473 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4474    UNSIGNEDP specifies zero-extension instead of sign-extension.  If
4475    no such operation exists, CODE_FOR_nothing will be returned.  */
4476 
4477 enum insn_code
can_extend_p(to_mode,from_mode,unsignedp)4478 can_extend_p (to_mode, from_mode, unsignedp)
4479      enum machine_mode to_mode, from_mode;
4480      int unsignedp;
4481 {
4482 #ifdef HAVE_ptr_extend
4483   if (unsignedp < 0)
4484     return CODE_FOR_ptr_extend;
4485   else
4486 #endif
4487     return extendtab[(int) to_mode][(int) from_mode][unsignedp != 0];
4488 }
4489 
4490 /* Generate the body of an insn to extend Y (with mode MFROM)
4491    into X (with mode MTO).  Do zero-extension if UNSIGNEDP is nonzero.  */
4492 
4493 rtx
gen_extend_insn(x,y,mto,mfrom,unsignedp)4494 gen_extend_insn (x, y, mto, mfrom, unsignedp)
4495      rtx x, y;
4496      enum machine_mode mto, mfrom;
4497      int unsignedp;
4498 {
4499   return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp != 0]) (x, y));
4500 }
4501 
4502 /* can_fix_p and can_float_p say whether the target machine
4503    can directly convert a given fixed point type to
4504    a given floating point type, or vice versa.
4505    The returned value is the CODE_FOR_... value to use,
4506    or CODE_FOR_nothing if these modes cannot be directly converted.
4507 
4508    *TRUNCP_PTR is set to 1 if it is necessary to output
4509    an explicit FTRUNC insn before the fix insn; otherwise 0.  */
4510 
4511 static enum insn_code
can_fix_p(fixmode,fltmode,unsignedp,truncp_ptr)4512 can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
4513      enum machine_mode fltmode, fixmode;
4514      int unsignedp;
4515      int *truncp_ptr;
4516 {
4517   *truncp_ptr = 0;
4518   if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0]
4519       != CODE_FOR_nothing)
4520     return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0];
4521 
4522   if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
4523     {
4524       *truncp_ptr = 1;
4525       return fixtab[(int) fltmode][(int) fixmode][unsignedp != 0];
4526     }
4527   return CODE_FOR_nothing;
4528 }
4529 
4530 static enum insn_code
can_float_p(fltmode,fixmode,unsignedp)4531 can_float_p (fltmode, fixmode, unsignedp)
4532      enum machine_mode fixmode, fltmode;
4533      int unsignedp;
4534 {
4535   return floattab[(int) fltmode][(int) fixmode][unsignedp != 0];
4536 }
4537 
4538 /* Generate code to convert FROM to floating point
4539    and store in TO.  FROM must be fixed point and not VOIDmode.
4540    UNSIGNEDP nonzero means regard FROM as unsigned.
4541    Normally this is done by correcting the final value
4542    if it is negative.  */
4543 
4544 void
expand_float(to,from,unsignedp)4545 expand_float (to, from, unsignedp)
4546      rtx to, from;
4547      int unsignedp;
4548 {
4549   enum insn_code icode;
4550   rtx target = to;
4551   enum machine_mode fmode, imode;
4552 
4553   /* Crash now, because we won't be able to decide which mode to use.  */
4554   if (GET_MODE (from) == VOIDmode)
4555     abort ();
4556 
4557   /* Look for an insn to do the conversion.  Do it in the specified
4558      modes if possible; otherwise convert either input, output or both to
4559      wider mode.  If the integer mode is wider than the mode of FROM,
4560      we can do the conversion signed even if the input is unsigned.  */
4561 
4562   for (fmode = GET_MODE (to); fmode != VOIDmode;
4563        fmode = GET_MODE_WIDER_MODE (fmode))
4564     for (imode = GET_MODE (from); imode != VOIDmode;
4565 	 imode = GET_MODE_WIDER_MODE (imode))
4566       {
4567 	int doing_unsigned = unsignedp;
4568 
4569 	if (fmode != GET_MODE (to)
4570 	    && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4571 	  continue;
4572 
4573 	icode = can_float_p (fmode, imode, unsignedp);
4574 	if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4575 	  icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4576 
4577 	if (icode != CODE_FOR_nothing)
4578 	  {
4579 	    to = protect_from_queue (to, 1);
4580 	    from = protect_from_queue (from, 0);
4581 
4582 	    if (imode != GET_MODE (from))
4583 	      from = convert_to_mode (imode, from, unsignedp);
4584 
4585 	    if (fmode != GET_MODE (to))
4586 	      target = gen_reg_rtx (fmode);
4587 
4588 	    emit_unop_insn (icode, target, from,
4589 			    doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4590 
4591 	    if (target != to)
4592 	      convert_move (to, target, 0);
4593 	    return;
4594 	  }
4595       }
4596 
4597   /* Unsigned integer, and no way to convert directly.
4598      Convert as signed, then conditionally adjust the result.  */
4599   if (unsignedp)
4600     {
4601       rtx label = gen_label_rtx ();
4602       rtx temp;
4603       REAL_VALUE_TYPE offset;
4604 
4605       emit_queue ();
4606 
4607       to = protect_from_queue (to, 1);
4608       from = protect_from_queue (from, 0);
4609 
4610       if (flag_force_mem)
4611 	from = force_not_mem (from);
4612 
4613       /* Look for a usable floating mode FMODE wider than the source and at
4614 	 least as wide as the target.  Using FMODE will avoid rounding woes
4615 	 with unsigned values greater than the signed maximum value.  */
4616 
4617       for (fmode = GET_MODE (to);  fmode != VOIDmode;
4618 	   fmode = GET_MODE_WIDER_MODE (fmode))
4619 	if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4620 	    && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4621 	  break;
4622 
4623       if (fmode == VOIDmode)
4624 	{
4625 	  /* There is no such mode.  Pretend the target is wide enough.  */
4626 	  fmode = GET_MODE (to);
4627 
4628 	  /* Avoid double-rounding when TO is narrower than FROM.  */
4629 	  if ((significand_size (fmode) + 1)
4630 	      < GET_MODE_BITSIZE (GET_MODE (from)))
4631 	    {
4632 	      rtx temp1;
4633 	      rtx neglabel = gen_label_rtx ();
4634 
4635 	      /* Don't use TARGET if it isn't a register, is a hard register,
4636 		 or is the wrong mode.  */
4637 	      if (GET_CODE (target) != REG
4638 		  || REGNO (target) < FIRST_PSEUDO_REGISTER
4639 		  || GET_MODE (target) != fmode)
4640 		target = gen_reg_rtx (fmode);
4641 
4642 	      imode = GET_MODE (from);
4643 	      do_pending_stack_adjust ();
4644 
4645 	      /* Test whether the sign bit is set.  */
4646 	      emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4647 				       0, neglabel);
4648 
4649 	      /* The sign bit is not set.  Convert as signed.  */
4650 	      expand_float (target, from, 0);
4651 	      emit_jump_insn (gen_jump (label));
4652 	      emit_barrier ();
4653 
4654 	      /* The sign bit is set.
4655 		 Convert to a usable (positive signed) value by shifting right
4656 		 one bit, while remembering if a nonzero bit was shifted
4657 		 out; i.e., compute  (from & 1) | (from >> 1).  */
4658 
4659 	      emit_label (neglabel);
4660 	      temp = expand_binop (imode, and_optab, from, const1_rtx,
4661 				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
4662 	      temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4663 				    NULL_RTX, 1);
4664 	      temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4665 				   OPTAB_LIB_WIDEN);
4666 	      expand_float (target, temp, 0);
4667 
4668 	      /* Multiply by 2 to undo the shift above.  */
4669 	      temp = expand_binop (fmode, add_optab, target, target,
4670 				   target, 0, OPTAB_LIB_WIDEN);
4671 	      if (temp != target)
4672 		emit_move_insn (target, temp);
4673 
4674 	      do_pending_stack_adjust ();
4675 	      emit_label (label);
4676 	      goto done;
4677 	    }
4678 	}
4679 
4680       /* If we are about to do some arithmetic to correct for an
4681 	 unsigned operand, do it in a pseudo-register.  */
4682 
4683       if (GET_MODE (to) != fmode
4684 	  || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
4685 	target = gen_reg_rtx (fmode);
4686 
4687       /* Convert as signed integer to floating.  */
4688       expand_float (target, from, 0);
4689 
4690       /* If FROM is negative (and therefore TO is negative),
4691 	 correct its value by 2**bitwidth.  */
4692 
4693       do_pending_stack_adjust ();
4694       emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4695 			       0, label);
4696 
4697 
4698       real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
4699       temp = expand_binop (fmode, add_optab, target,
4700 			   CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4701 			   target, 0, OPTAB_LIB_WIDEN);
4702       if (temp != target)
4703 	emit_move_insn (target, temp);
4704 
4705       do_pending_stack_adjust ();
4706       emit_label (label);
4707       goto done;
4708     }
4709 
4710   /* No hardware instruction available; call a library routine to convert from
4711      SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode.  */
4712     {
4713       rtx libfcn;
4714       rtx insns;
4715       rtx value;
4716 
4717       to = protect_from_queue (to, 1);
4718       from = protect_from_queue (from, 0);
4719 
4720       if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4721 	from = convert_to_mode (SImode, from, unsignedp);
4722 
4723       if (flag_force_mem)
4724 	from = force_not_mem (from);
4725 
4726       if (GET_MODE (to) == SFmode)
4727 	{
4728 	  if (GET_MODE (from) == SImode)
4729 	    libfcn = floatsisf_libfunc;
4730 	  else if (GET_MODE (from) == DImode)
4731 	    libfcn = floatdisf_libfunc;
4732 	  else if (GET_MODE (from) == TImode)
4733 	    libfcn = floattisf_libfunc;
4734 	  else
4735 	    abort ();
4736 	}
4737       else if (GET_MODE (to) == DFmode)
4738 	{
4739 	  if (GET_MODE (from) == SImode)
4740 	    libfcn = floatsidf_libfunc;
4741 	  else if (GET_MODE (from) == DImode)
4742 	    libfcn = floatdidf_libfunc;
4743 	  else if (GET_MODE (from) == TImode)
4744 	    libfcn = floattidf_libfunc;
4745 	  else
4746 	    abort ();
4747 	}
4748       else if (GET_MODE (to) == XFmode)
4749 	{
4750 	  if (GET_MODE (from) == SImode)
4751 	    libfcn = floatsixf_libfunc;
4752 	  else if (GET_MODE (from) == DImode)
4753 	    libfcn = floatdixf_libfunc;
4754 	  else if (GET_MODE (from) == TImode)
4755 	    libfcn = floattixf_libfunc;
4756 	  else
4757 	    abort ();
4758 	}
4759       else if (GET_MODE (to) == TFmode)
4760 	{
4761 	  if (GET_MODE (from) == SImode)
4762 	    libfcn = floatsitf_libfunc;
4763 	  else if (GET_MODE (from) == DImode)
4764 	    libfcn = floatditf_libfunc;
4765 	  else if (GET_MODE (from) == TImode)
4766 	    libfcn = floattitf_libfunc;
4767 	  else
4768 	    abort ();
4769 	}
4770       else
4771 	abort ();
4772 
4773       start_sequence ();
4774 
4775       value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4776 				       GET_MODE (to), 1, from,
4777 				       GET_MODE (from));
4778       insns = get_insns ();
4779       end_sequence ();
4780 
4781       emit_libcall_block (insns, target, value,
4782 			  gen_rtx_FLOAT (GET_MODE (to), from));
4783     }
4784 
4785  done:
4786 
4787   /* Copy result to requested destination
4788      if we have been computing in a temp location.  */
4789 
4790   if (target != to)
4791     {
4792       if (GET_MODE (target) == GET_MODE (to))
4793 	emit_move_insn (to, target);
4794       else
4795 	convert_move (to, target, 0);
4796     }
4797 }
4798 
4799 /* expand_fix: generate code to convert FROM to fixed point
4800    and store in TO.  FROM must be floating point.  */
4801 
4802 static rtx
ftruncify(x)4803 ftruncify (x)
4804      rtx x;
4805 {
4806   rtx temp = gen_reg_rtx (GET_MODE (x));
4807   return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
4808 }
4809 
4810 void
expand_fix(to,from,unsignedp)4811 expand_fix (to, from, unsignedp)
4812      rtx to, from;
4813      int unsignedp;
4814 {
4815   enum insn_code icode;
4816   rtx target = to;
4817   enum machine_mode fmode, imode;
4818   int must_trunc = 0;
4819   rtx libfcn = 0;
4820 
4821   /* We first try to find a pair of modes, one real and one integer, at
4822      least as wide as FROM and TO, respectively, in which we can open-code
4823      this conversion.  If the integer mode is wider than the mode of TO,
4824      we can do the conversion either signed or unsigned.  */
4825 
4826   for (fmode = GET_MODE (from); fmode != VOIDmode;
4827        fmode = GET_MODE_WIDER_MODE (fmode))
4828     for (imode = GET_MODE (to); imode != VOIDmode;
4829 	 imode = GET_MODE_WIDER_MODE (imode))
4830       {
4831 	int doing_unsigned = unsignedp;
4832 
4833 	icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4834 	if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4835 	  icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4836 
4837 	if (icode != CODE_FOR_nothing)
4838 	  {
4839 	    to = protect_from_queue (to, 1);
4840 	    from = protect_from_queue (from, 0);
4841 
4842 	    if (fmode != GET_MODE (from))
4843 	      from = convert_to_mode (fmode, from, 0);
4844 
4845 	    if (must_trunc)
4846 	      from = ftruncify (from);
4847 
4848 	    if (imode != GET_MODE (to))
4849 	      target = gen_reg_rtx (imode);
4850 
4851 	    emit_unop_insn (icode, target, from,
4852 			    doing_unsigned ? UNSIGNED_FIX : FIX);
4853 	    if (target != to)
4854 	      convert_move (to, target, unsignedp);
4855 	    return;
4856 	  }
4857       }
4858 
4859   /* For an unsigned conversion, there is one more way to do it.
4860      If we have a signed conversion, we generate code that compares
4861      the real value to the largest representable positive number.  If if
4862      is smaller, the conversion is done normally.  Otherwise, subtract
4863      one plus the highest signed number, convert, and add it back.
4864 
4865      We only need to check all real modes, since we know we didn't find
4866      anything with a wider integer mode.  */
4867 
4868   if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4869     for (fmode = GET_MODE (from); fmode != VOIDmode;
4870 	 fmode = GET_MODE_WIDER_MODE (fmode))
4871       /* Make sure we won't lose significant bits doing this.  */
4872       if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
4873 	  && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4874 					    &must_trunc))
4875 	{
4876 	  int bitsize;
4877 	  REAL_VALUE_TYPE offset;
4878 	  rtx limit, lab1, lab2, insn;
4879 
4880 	  bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4881 	  real_2expN (&offset, bitsize - 1);
4882 	  limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4883 	  lab1 = gen_label_rtx ();
4884 	  lab2 = gen_label_rtx ();
4885 
4886 	  emit_queue ();
4887 	  to = protect_from_queue (to, 1);
4888 	  from = protect_from_queue (from, 0);
4889 
4890 	  if (flag_force_mem)
4891 	    from = force_not_mem (from);
4892 
4893 	  if (fmode != GET_MODE (from))
4894 	    from = convert_to_mode (fmode, from, 0);
4895 
4896 	  /* See if we need to do the subtraction.  */
4897 	  do_pending_stack_adjust ();
4898 	  emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4899 				   0, lab1);
4900 
4901 	  /* If not, do the signed "fix" and branch around fixup code.  */
4902 	  expand_fix (to, from, 0);
4903 	  emit_jump_insn (gen_jump (lab2));
4904 	  emit_barrier ();
4905 
4906 	  /* Otherwise, subtract 2**(N-1), convert to signed number,
4907 	     then add 2**(N-1).  Do the addition using XOR since this
4908 	     will often generate better code.  */
4909 	  emit_label (lab1);
4910 	  target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4911 				 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4912 	  expand_fix (to, target, 0);
4913 	  target = expand_binop (GET_MODE (to), xor_optab, to,
4914 				 gen_int_mode
4915 				 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4916 				  GET_MODE (to)),
4917 				 to, 1, OPTAB_LIB_WIDEN);
4918 
4919 	  if (target != to)
4920 	    emit_move_insn (to, target);
4921 
4922 	  emit_label (lab2);
4923 
4924 	  if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4925 	      != CODE_FOR_nothing)
4926 	    {
4927 	      /* Make a place for a REG_NOTE and add it.  */
4928 	      insn = emit_move_insn (to, to);
4929 	      set_unique_reg_note (insn,
4930 	                           REG_EQUAL,
4931 				   gen_rtx_fmt_e (UNSIGNED_FIX,
4932 						  GET_MODE (to),
4933 						  copy_rtx (from)));
4934 	    }
4935 
4936 	  return;
4937 	}
4938 
4939   /* We can't do it with an insn, so use a library call.  But first ensure
4940      that the mode of TO is at least as wide as SImode, since those are the
4941      only library calls we know about.  */
4942 
4943   if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4944     {
4945       target = gen_reg_rtx (SImode);
4946 
4947       expand_fix (target, from, unsignedp);
4948     }
4949   else if (GET_MODE (from) == SFmode)
4950     {
4951       if (GET_MODE (to) == SImode)
4952 	libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
4953       else if (GET_MODE (to) == DImode)
4954 	libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
4955       else if (GET_MODE (to) == TImode)
4956 	libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
4957       else
4958 	abort ();
4959     }
4960   else if (GET_MODE (from) == DFmode)
4961     {
4962       if (GET_MODE (to) == SImode)
4963 	libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
4964       else if (GET_MODE (to) == DImode)
4965 	libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
4966       else if (GET_MODE (to) == TImode)
4967 	libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
4968       else
4969 	abort ();
4970     }
4971   else if (GET_MODE (from) == XFmode)
4972     {
4973       if (GET_MODE (to) == SImode)
4974 	libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
4975       else if (GET_MODE (to) == DImode)
4976 	libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
4977       else if (GET_MODE (to) == TImode)
4978 	libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
4979       else
4980 	abort ();
4981     }
4982   else if (GET_MODE (from) == TFmode)
4983     {
4984       if (GET_MODE (to) == SImode)
4985 	libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
4986       else if (GET_MODE (to) == DImode)
4987 	libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
4988       else if (GET_MODE (to) == TImode)
4989 	libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
4990       else
4991 	abort ();
4992     }
4993   else
4994     abort ();
4995 
4996   if (libfcn)
4997     {
4998       rtx insns;
4999       rtx value;
5000 
5001       to = protect_from_queue (to, 1);
5002       from = protect_from_queue (from, 0);
5003 
5004       if (flag_force_mem)
5005 	from = force_not_mem (from);
5006 
5007       start_sequence ();
5008 
5009       value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
5010 				       GET_MODE (to), 1, from,
5011 				       GET_MODE (from));
5012       insns = get_insns ();
5013       end_sequence ();
5014 
5015       emit_libcall_block (insns, target, value,
5016 			  gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5017 					 GET_MODE (to), from));
5018     }
5019 
5020   if (target != to)
5021     {
5022       if (GET_MODE (to) == GET_MODE (target))
5023         emit_move_insn (to, target);
5024       else
5025         convert_move (to, target, 0);
5026     }
5027 }
5028 
5029 /* Report whether we have an instruction to perform the operation
5030    specified by CODE on operands of mode MODE.  */
5031 int
have_insn_for(code,mode)5032 have_insn_for (code, mode)
5033      enum rtx_code code;
5034      enum machine_mode mode;
5035 {
5036   return (code_to_optab[(int) code] != 0
5037 	  && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
5038 	      != CODE_FOR_nothing));
5039 }
5040 
5041 /* Create a blank optab.  */
5042 static optab
new_optab()5043 new_optab ()
5044 {
5045   int i;
5046   optab op = (optab) ggc_alloc (sizeof (struct optab));
5047   for (i = 0; i < NUM_MACHINE_MODES; i++)
5048     {
5049       op->handlers[i].insn_code = CODE_FOR_nothing;
5050       op->handlers[i].libfunc = 0;
5051     }
5052 
5053   return op;
5054 }
5055 
5056 /* Same, but fill in its code as CODE, and write it into the
5057    code_to_optab table.  */
5058 static inline optab
init_optab(code)5059 init_optab (code)
5060      enum rtx_code code;
5061 {
5062   optab op = new_optab ();
5063   op->code = code;
5064   code_to_optab[(int) code] = op;
5065   return op;
5066 }
5067 
5068 /* Same, but fill in its code as CODE, and do _not_ write it into
5069    the code_to_optab table.  */
5070 static inline optab
init_optabv(code)5071 init_optabv (code)
5072      enum rtx_code code;
5073 {
5074   optab op = new_optab ();
5075   op->code = code;
5076   return op;
5077 }
5078 
5079 /* Initialize the libfunc fields of an entire group of entries in some
5080    optab.  Each entry is set equal to a string consisting of a leading
5081    pair of underscores followed by a generic operation name followed by
5082    a mode name (downshifted to lower case) followed by a single character
5083    representing the number of operands for the given operation (which is
5084    usually one of the characters '2', '3', or '4').
5085 
5086    OPTABLE is the table in which libfunc fields are to be initialized.
5087    FIRST_MODE is the first machine mode index in the given optab to
5088      initialize.
5089    LAST_MODE is the last machine mode index in the given optab to
5090      initialize.
5091    OPNAME is the generic (string) name of the operation.
5092    SUFFIX is the character which specifies the number of operands for
5093      the given generic operation.
5094 */
5095 
5096 static void
init_libfuncs(optable,first_mode,last_mode,opname,suffix)5097 init_libfuncs (optable, first_mode, last_mode, opname, suffix)
5098      optab optable;
5099      int first_mode;
5100      int last_mode;
5101      const char *opname;
5102      int suffix;
5103 {
5104   int mode;
5105   unsigned opname_len = strlen (opname);
5106 
5107   for (mode = first_mode; (int) mode <= (int) last_mode;
5108        mode = (enum machine_mode) ((int) mode + 1))
5109     {
5110       const char *mname = GET_MODE_NAME (mode);
5111       unsigned mname_len = strlen (mname);
5112       char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
5113       char *p;
5114       const char *q;
5115 
5116       p = libfunc_name;
5117       *p++ = '_';
5118       *p++ = '_';
5119       for (q = opname; *q; )
5120 	*p++ = *q++;
5121       for (q = mname; *q; q++)
5122 	*p++ = TOLOWER (*q);
5123       *p++ = suffix;
5124       *p = '\0';
5125 
5126       optable->handlers[(int) mode].libfunc
5127 	= gen_rtx_SYMBOL_REF (Pmode, ggc_alloc_string (libfunc_name,
5128 						       p - libfunc_name));
5129     }
5130 }
5131 
5132 /* Initialize the libfunc fields of an entire group of entries in some
5133    optab which correspond to all integer mode operations.  The parameters
5134    have the same meaning as similarly named ones for the `init_libfuncs'
5135    routine.  (See above).  */
5136 
5137 static void
init_integral_libfuncs(optable,opname,suffix)5138 init_integral_libfuncs (optable, opname, suffix)
5139      optab optable;
5140      const char *opname;
5141      int suffix;
5142 {
5143   init_libfuncs (optable, SImode, TImode, opname, suffix);
5144 }
5145 
5146 /* Initialize the libfunc fields of an entire group of entries in some
5147    optab which correspond to all real mode operations.  The parameters
5148    have the same meaning as similarly named ones for the `init_libfuncs'
5149    routine.  (See above).  */
5150 
5151 static void
init_floating_libfuncs(optable,opname,suffix)5152 init_floating_libfuncs (optable, opname, suffix)
5153      optab optable;
5154      const char *opname;
5155      int suffix;
5156 {
5157   init_libfuncs (optable, SFmode, TFmode, opname, suffix);
5158 }
5159 
5160 rtx
init_one_libfunc(name)5161 init_one_libfunc (name)
5162      const char *name;
5163 {
5164   /* Create a FUNCTION_DECL that can be passed to
5165      targetm.encode_section_info.  */
5166   /* ??? We don't have any type information except for this is
5167      a function.  Pretend this is "int foo()".  */
5168   tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
5169 			  build_function_type (integer_type_node, NULL_TREE));
5170   DECL_ARTIFICIAL (decl) = 1;
5171   DECL_EXTERNAL (decl) = 1;
5172   TREE_PUBLIC (decl) = 1;
5173 
5174   /* Return the symbol_ref from the mem rtx.  */
5175   return XEXP (DECL_RTL (decl), 0);
5176 }
5177 
5178 /* Call this once to initialize the contents of the optabs
5179    appropriately for the current target machine.  */
5180 
5181 void
init_optabs()5182 init_optabs ()
5183 {
5184   unsigned int i, j, k;
5185 
5186   /* Start by initializing all tables to contain CODE_FOR_nothing.  */
5187 
5188   for (i = 0; i < ARRAY_SIZE (fixtab); i++)
5189     for (j = 0; j < ARRAY_SIZE (fixtab[0]); j++)
5190       for (k = 0; k < ARRAY_SIZE (fixtab[0][0]); k++)
5191 	fixtab[i][j][k] = CODE_FOR_nothing;
5192 
5193   for (i = 0; i < ARRAY_SIZE (fixtrunctab); i++)
5194     for (j = 0; j < ARRAY_SIZE (fixtrunctab[0]); j++)
5195       for (k = 0; k < ARRAY_SIZE (fixtrunctab[0][0]); k++)
5196 	fixtrunctab[i][j][k] = CODE_FOR_nothing;
5197 
5198   for (i = 0; i < ARRAY_SIZE (floattab); i++)
5199     for (j = 0; j < ARRAY_SIZE (floattab[0]); j++)
5200       for (k = 0; k < ARRAY_SIZE (floattab[0][0]); k++)
5201 	floattab[i][j][k] = CODE_FOR_nothing;
5202 
5203   for (i = 0; i < ARRAY_SIZE (extendtab); i++)
5204     for (j = 0; j < ARRAY_SIZE (extendtab[0]); j++)
5205       for (k = 0; k < ARRAY_SIZE (extendtab[0][0]); k++)
5206 	extendtab[i][j][k] = CODE_FOR_nothing;
5207 
5208   for (i = 0; i < NUM_RTX_CODE; i++)
5209     setcc_gen_code[i] = CODE_FOR_nothing;
5210 
5211 #ifdef HAVE_conditional_move
5212   for (i = 0; i < NUM_MACHINE_MODES; i++)
5213     movcc_gen_code[i] = CODE_FOR_nothing;
5214 #endif
5215 
5216   add_optab = init_optab (PLUS);
5217   addv_optab = init_optabv (PLUS);
5218   sub_optab = init_optab (MINUS);
5219   subv_optab = init_optabv (MINUS);
5220   smul_optab = init_optab (MULT);
5221   smulv_optab = init_optabv (MULT);
5222   smul_highpart_optab = init_optab (UNKNOWN);
5223   umul_highpart_optab = init_optab (UNKNOWN);
5224   smul_widen_optab = init_optab (UNKNOWN);
5225   umul_widen_optab = init_optab (UNKNOWN);
5226   sdiv_optab = init_optab (DIV);
5227   sdivv_optab = init_optabv (DIV);
5228   sdivmod_optab = init_optab (UNKNOWN);
5229   udiv_optab = init_optab (UDIV);
5230   udivmod_optab = init_optab (UNKNOWN);
5231   smod_optab = init_optab (MOD);
5232   umod_optab = init_optab (UMOD);
5233   ftrunc_optab = init_optab (UNKNOWN);
5234   and_optab = init_optab (AND);
5235   ior_optab = init_optab (IOR);
5236   xor_optab = init_optab (XOR);
5237   ashl_optab = init_optab (ASHIFT);
5238   ashr_optab = init_optab (ASHIFTRT);
5239   lshr_optab = init_optab (LSHIFTRT);
5240   rotl_optab = init_optab (ROTATE);
5241   rotr_optab = init_optab (ROTATERT);
5242   smin_optab = init_optab (SMIN);
5243   smax_optab = init_optab (SMAX);
5244   umin_optab = init_optab (UMIN);
5245   umax_optab = init_optab (UMAX);
5246 
5247   /* These three have codes assigned exclusively for the sake of
5248      have_insn_for.  */
5249   mov_optab = init_optab (SET);
5250   movstrict_optab = init_optab (STRICT_LOW_PART);
5251   cmp_optab = init_optab (COMPARE);
5252 
5253   ucmp_optab = init_optab (UNKNOWN);
5254   tst_optab = init_optab (UNKNOWN);
5255   neg_optab = init_optab (NEG);
5256   negv_optab = init_optabv (NEG);
5257   abs_optab = init_optab (ABS);
5258   absv_optab = init_optabv (ABS);
5259   one_cmpl_optab = init_optab (NOT);
5260   ffs_optab = init_optab (FFS);
5261   sqrt_optab = init_optab (SQRT);
5262   sin_optab = init_optab (UNKNOWN);
5263   cos_optab = init_optab (UNKNOWN);
5264   exp_optab = init_optab (UNKNOWN);
5265   log_optab = init_optab (UNKNOWN);
5266   strlen_optab = init_optab (UNKNOWN);
5267   cbranch_optab = init_optab (UNKNOWN);
5268   cmov_optab = init_optab (UNKNOWN);
5269   cstore_optab = init_optab (UNKNOWN);
5270   push_optab = init_optab (UNKNOWN);
5271 
5272   for (i = 0; i < NUM_MACHINE_MODES; i++)
5273     {
5274       movstr_optab[i] = CODE_FOR_nothing;
5275       clrstr_optab[i] = CODE_FOR_nothing;
5276 
5277 #ifdef HAVE_SECONDARY_RELOADS
5278       reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
5279 #endif
5280     }
5281 
5282   /* Fill in the optabs with the insns we support.  */
5283   init_all_optabs ();
5284 
5285 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
5286   /* This flag says the same insns that convert to a signed fixnum
5287      also convert validly to an unsigned one.  */
5288   for (i = 0; i < NUM_MACHINE_MODES; i++)
5289     for (j = 0; j < NUM_MACHINE_MODES; j++)
5290       fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
5291 #endif
5292 
5293   /* Initialize the optabs with the names of the library functions.  */
5294   init_integral_libfuncs (add_optab, "add", '3');
5295   init_floating_libfuncs (add_optab, "add", '3');
5296   init_integral_libfuncs (addv_optab, "addv", '3');
5297   init_floating_libfuncs (addv_optab, "add", '3');
5298   init_integral_libfuncs (sub_optab, "sub", '3');
5299   init_floating_libfuncs (sub_optab, "sub", '3');
5300   init_integral_libfuncs (subv_optab, "subv", '3');
5301   init_floating_libfuncs (subv_optab, "sub", '3');
5302   init_integral_libfuncs (smul_optab, "mul", '3');
5303   init_floating_libfuncs (smul_optab, "mul", '3');
5304   init_integral_libfuncs (smulv_optab, "mulv", '3');
5305   init_floating_libfuncs (smulv_optab, "mul", '3');
5306   init_integral_libfuncs (sdiv_optab, "div", '3');
5307   init_floating_libfuncs (sdiv_optab, "div", '3');
5308   init_integral_libfuncs (sdivv_optab, "divv", '3');
5309   init_integral_libfuncs (udiv_optab, "udiv", '3');
5310   init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5311   init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5312   init_integral_libfuncs (smod_optab, "mod", '3');
5313   init_integral_libfuncs (umod_optab, "umod", '3');
5314   init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5315   init_integral_libfuncs (and_optab, "and", '3');
5316   init_integral_libfuncs (ior_optab, "ior", '3');
5317   init_integral_libfuncs (xor_optab, "xor", '3');
5318   init_integral_libfuncs (ashl_optab, "ashl", '3');
5319   init_integral_libfuncs (ashr_optab, "ashr", '3');
5320   init_integral_libfuncs (lshr_optab, "lshr", '3');
5321   init_integral_libfuncs (smin_optab, "min", '3');
5322   init_floating_libfuncs (smin_optab, "min", '3');
5323   init_integral_libfuncs (smax_optab, "max", '3');
5324   init_floating_libfuncs (smax_optab, "max", '3');
5325   init_integral_libfuncs (umin_optab, "umin", '3');
5326   init_integral_libfuncs (umax_optab, "umax", '3');
5327   init_integral_libfuncs (neg_optab, "neg", '2');
5328   init_floating_libfuncs (neg_optab, "neg", '2');
5329   init_integral_libfuncs (negv_optab, "negv", '2');
5330   init_floating_libfuncs (negv_optab, "neg", '2');
5331   init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5332   init_integral_libfuncs (ffs_optab, "ffs", '2');
5333 
5334   /* Comparison libcalls for integers MUST come in pairs, signed/unsigned.  */
5335   init_integral_libfuncs (cmp_optab, "cmp", '2');
5336   init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5337   init_floating_libfuncs (cmp_optab, "cmp", '2');
5338 
5339 #ifdef MULSI3_LIBCALL
5340   smul_optab->handlers[(int) SImode].libfunc
5341     = init_one_libfunc (MULSI3_LIBCALL);
5342 #endif
5343 #ifdef MULDI3_LIBCALL
5344   smul_optab->handlers[(int) DImode].libfunc
5345     = init_one_libfunc (MULDI3_LIBCALL);
5346 #endif
5347 
5348 #ifdef DIVSI3_LIBCALL
5349   sdiv_optab->handlers[(int) SImode].libfunc
5350     = init_one_libfunc (DIVSI3_LIBCALL);
5351 #endif
5352 #ifdef DIVDI3_LIBCALL
5353   sdiv_optab->handlers[(int) DImode].libfunc
5354     = init_one_libfunc (DIVDI3_LIBCALL);
5355 #endif
5356 
5357 #ifdef UDIVSI3_LIBCALL
5358   udiv_optab->handlers[(int) SImode].libfunc
5359     = init_one_libfunc (UDIVSI3_LIBCALL);
5360 #endif
5361 #ifdef UDIVDI3_LIBCALL
5362   udiv_optab->handlers[(int) DImode].libfunc
5363     = init_one_libfunc (UDIVDI3_LIBCALL);
5364 #endif
5365 
5366 #ifdef MODSI3_LIBCALL
5367   smod_optab->handlers[(int) SImode].libfunc
5368     = init_one_libfunc (MODSI3_LIBCALL);
5369 #endif
5370 #ifdef MODDI3_LIBCALL
5371   smod_optab->handlers[(int) DImode].libfunc
5372     = init_one_libfunc (MODDI3_LIBCALL);
5373 #endif
5374 
5375 #ifdef UMODSI3_LIBCALL
5376   umod_optab->handlers[(int) SImode].libfunc
5377     = init_one_libfunc (UMODSI3_LIBCALL);
5378 #endif
5379 #ifdef UMODDI3_LIBCALL
5380   umod_optab->handlers[(int) DImode].libfunc
5381     = init_one_libfunc (UMODDI3_LIBCALL);
5382 #endif
5383 
5384   /* Use cabs for DC complex abs, since systems generally have cabs.
5385      Don't define any libcall for SCmode, so that cabs will be used.  */
5386   abs_optab->handlers[(int) DCmode].libfunc
5387     = init_one_libfunc ("cabs");
5388 
5389   /* The ffs function operates on `int'.  */
5390   ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
5391     = init_one_libfunc ("ffs");
5392 
5393   extendsfdf2_libfunc = init_one_libfunc ("__extendsfdf2");
5394   extendsfxf2_libfunc = init_one_libfunc ("__extendsfxf2");
5395   extendsftf2_libfunc = init_one_libfunc ("__extendsftf2");
5396   extenddfxf2_libfunc = init_one_libfunc ("__extenddfxf2");
5397   extenddftf2_libfunc = init_one_libfunc ("__extenddftf2");
5398 
5399   truncdfsf2_libfunc = init_one_libfunc ("__truncdfsf2");
5400   truncxfsf2_libfunc = init_one_libfunc ("__truncxfsf2");
5401   trunctfsf2_libfunc = init_one_libfunc ("__trunctfsf2");
5402   truncxfdf2_libfunc = init_one_libfunc ("__truncxfdf2");
5403   trunctfdf2_libfunc = init_one_libfunc ("__trunctfdf2");
5404 
5405   abort_libfunc = init_one_libfunc ("abort");
5406   memcpy_libfunc = init_one_libfunc ("memcpy");
5407   memmove_libfunc = init_one_libfunc ("memmove");
5408   bcopy_libfunc = init_one_libfunc ("bcopy");
5409   memcmp_libfunc = init_one_libfunc ("memcmp");
5410   bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
5411   memset_libfunc = init_one_libfunc ("memset");
5412   bzero_libfunc = init_one_libfunc ("bzero");
5413 
5414   unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5415 					    ? "_Unwind_SjLj_Resume"
5416 					    : "_Unwind_Resume");
5417 #ifndef DONT_USE_BUILTIN_SETJMP
5418   setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5419   longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
5420 #else
5421   setjmp_libfunc = init_one_libfunc ("setjmp");
5422   longjmp_libfunc = init_one_libfunc ("longjmp");
5423 #endif
5424   unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5425   unwind_sjlj_unregister_libfunc
5426     = init_one_libfunc ("_Unwind_SjLj_Unregister");
5427 
5428   eqhf2_libfunc = init_one_libfunc ("__eqhf2");
5429   nehf2_libfunc = init_one_libfunc ("__nehf2");
5430   gthf2_libfunc = init_one_libfunc ("__gthf2");
5431   gehf2_libfunc = init_one_libfunc ("__gehf2");
5432   lthf2_libfunc = init_one_libfunc ("__lthf2");
5433   lehf2_libfunc = init_one_libfunc ("__lehf2");
5434   unordhf2_libfunc = init_one_libfunc ("__unordhf2");
5435 
5436   eqsf2_libfunc = init_one_libfunc ("__eqsf2");
5437   nesf2_libfunc = init_one_libfunc ("__nesf2");
5438   gtsf2_libfunc = init_one_libfunc ("__gtsf2");
5439   gesf2_libfunc = init_one_libfunc ("__gesf2");
5440   ltsf2_libfunc = init_one_libfunc ("__ltsf2");
5441   lesf2_libfunc = init_one_libfunc ("__lesf2");
5442   unordsf2_libfunc = init_one_libfunc ("__unordsf2");
5443 
5444   eqdf2_libfunc = init_one_libfunc ("__eqdf2");
5445   nedf2_libfunc = init_one_libfunc ("__nedf2");
5446   gtdf2_libfunc = init_one_libfunc ("__gtdf2");
5447   gedf2_libfunc = init_one_libfunc ("__gedf2");
5448   ltdf2_libfunc = init_one_libfunc ("__ltdf2");
5449   ledf2_libfunc = init_one_libfunc ("__ledf2");
5450   unorddf2_libfunc = init_one_libfunc ("__unorddf2");
5451 
5452   eqxf2_libfunc = init_one_libfunc ("__eqxf2");
5453   nexf2_libfunc = init_one_libfunc ("__nexf2");
5454   gtxf2_libfunc = init_one_libfunc ("__gtxf2");
5455   gexf2_libfunc = init_one_libfunc ("__gexf2");
5456   ltxf2_libfunc = init_one_libfunc ("__ltxf2");
5457   lexf2_libfunc = init_one_libfunc ("__lexf2");
5458   unordxf2_libfunc = init_one_libfunc ("__unordxf2");
5459 
5460   eqtf2_libfunc = init_one_libfunc ("__eqtf2");
5461   netf2_libfunc = init_one_libfunc ("__netf2");
5462   gttf2_libfunc = init_one_libfunc ("__gttf2");
5463   getf2_libfunc = init_one_libfunc ("__getf2");
5464   lttf2_libfunc = init_one_libfunc ("__lttf2");
5465   letf2_libfunc = init_one_libfunc ("__letf2");
5466   unordtf2_libfunc = init_one_libfunc ("__unordtf2");
5467 
5468   floatsisf_libfunc = init_one_libfunc ("__floatsisf");
5469   floatdisf_libfunc = init_one_libfunc ("__floatdisf");
5470   floattisf_libfunc = init_one_libfunc ("__floattisf");
5471 
5472   floatsidf_libfunc = init_one_libfunc ("__floatsidf");
5473   floatdidf_libfunc = init_one_libfunc ("__floatdidf");
5474   floattidf_libfunc = init_one_libfunc ("__floattidf");
5475 
5476   floatsixf_libfunc = init_one_libfunc ("__floatsixf");
5477   floatdixf_libfunc = init_one_libfunc ("__floatdixf");
5478   floattixf_libfunc = init_one_libfunc ("__floattixf");
5479 
5480   floatsitf_libfunc = init_one_libfunc ("__floatsitf");
5481   floatditf_libfunc = init_one_libfunc ("__floatditf");
5482   floattitf_libfunc = init_one_libfunc ("__floattitf");
5483 
5484   fixsfsi_libfunc = init_one_libfunc ("__fixsfsi");
5485   fixsfdi_libfunc = init_one_libfunc ("__fixsfdi");
5486   fixsfti_libfunc = init_one_libfunc ("__fixsfti");
5487 
5488   fixdfsi_libfunc = init_one_libfunc ("__fixdfsi");
5489   fixdfdi_libfunc = init_one_libfunc ("__fixdfdi");
5490   fixdfti_libfunc = init_one_libfunc ("__fixdfti");
5491 
5492   fixxfsi_libfunc = init_one_libfunc ("__fixxfsi");
5493   fixxfdi_libfunc = init_one_libfunc ("__fixxfdi");
5494   fixxfti_libfunc = init_one_libfunc ("__fixxfti");
5495 
5496   fixtfsi_libfunc = init_one_libfunc ("__fixtfsi");
5497   fixtfdi_libfunc = init_one_libfunc ("__fixtfdi");
5498   fixtfti_libfunc = init_one_libfunc ("__fixtfti");
5499 
5500   fixunssfsi_libfunc = init_one_libfunc ("__fixunssfsi");
5501   fixunssfdi_libfunc = init_one_libfunc ("__fixunssfdi");
5502   fixunssfti_libfunc = init_one_libfunc ("__fixunssfti");
5503 
5504   fixunsdfsi_libfunc = init_one_libfunc ("__fixunsdfsi");
5505   fixunsdfdi_libfunc = init_one_libfunc ("__fixunsdfdi");
5506   fixunsdfti_libfunc = init_one_libfunc ("__fixunsdfti");
5507 
5508   fixunsxfsi_libfunc = init_one_libfunc ("__fixunsxfsi");
5509   fixunsxfdi_libfunc = init_one_libfunc ("__fixunsxfdi");
5510   fixunsxfti_libfunc = init_one_libfunc ("__fixunsxfti");
5511 
5512   fixunstfsi_libfunc = init_one_libfunc ("__fixunstfsi");
5513   fixunstfdi_libfunc = init_one_libfunc ("__fixunstfdi");
5514   fixunstfti_libfunc = init_one_libfunc ("__fixunstfti");
5515 
5516   /* For function entry/exit instrumentation.  */
5517   profile_function_entry_libfunc
5518     = init_one_libfunc ("__cyg_profile_func_enter");
5519   profile_function_exit_libfunc
5520     = init_one_libfunc ("__cyg_profile_func_exit");
5521 
5522   if (HAVE_conditional_trap)
5523     trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
5524 
5525 #ifdef INIT_TARGET_OPTABS
5526   /* Allow the target to add more libcalls or rename some, etc.  */
5527   INIT_TARGET_OPTABS;
5528 #endif
5529 }
5530 
5531 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5532    CODE.  Return 0 on failure.  */
5533 
5534 rtx
gen_cond_trap(code,op1,op2,tcode)5535 gen_cond_trap (code, op1, op2, tcode)
5536      enum rtx_code code ATTRIBUTE_UNUSED;
5537      rtx op1, op2 ATTRIBUTE_UNUSED, tcode ATTRIBUTE_UNUSED;
5538 {
5539   enum machine_mode mode = GET_MODE (op1);
5540   enum insn_code icode;
5541   rtx insn;
5542 
5543   if (!HAVE_conditional_trap)
5544     return 0;
5545 
5546   if (mode == VOIDmode)
5547     return 0;
5548 
5549   icode = cmp_optab->handlers[(int) mode].insn_code;
5550   if (icode == CODE_FOR_nothing)
5551     return 0;
5552 
5553   start_sequence ();
5554   op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
5555   op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
5556   if (!op1 || !op2)
5557     {
5558       end_sequence ();
5559       return 0;
5560     }
5561   emit_insn (GEN_FCN (icode) (op1, op2));
5562 
5563   PUT_CODE (trap_rtx, code);
5564   insn = gen_conditional_trap (trap_rtx, tcode);
5565   if (insn)
5566     {
5567       emit_insn (insn);
5568       insn = get_insns ();
5569     }
5570   end_sequence ();
5571 
5572   return insn;
5573 }
5574 
5575 #include "gt-optabs.h"
5576