xref: /openbsd/gnu/usr.bin/gcc/gcc/unroll.c (revision a67f0032)
1 /* Try to unroll loops, and split induction variables.
2    Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002
3    Free Software Foundation, Inc.
4    Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING.  If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA.  */
22 
23 /* Try to unroll a loop, and split induction variables.
24 
25    Loops for which the number of iterations can be calculated exactly are
26    handled specially.  If the number of iterations times the insn_count is
27    less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28    Otherwise, we try to unroll the loop a number of times modulo the number
29    of iterations, so that only one exit test will be needed.  It is unrolled
30    a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31    the insn count.
32 
33    Otherwise, if the number of iterations can be calculated exactly at
34    run time, and the loop is always entered at the top, then we try to
35    precondition the loop.  That is, at run time, calculate how many times
36    the loop will execute, and then execute the loop body a few times so
37    that the remaining iterations will be some multiple of 4 (or 2 if the
38    loop is large).  Then fall through to a loop unrolled 4 (or 2) times,
39    with only one exit test needed at the end of the loop.
40 
41    Otherwise, if the number of iterations can not be calculated exactly,
42    not even at run time, then we still unroll the loop a number of times
43    approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44    but there must be an exit test after each copy of the loop body.
45 
46    For each induction variable, which is dead outside the loop (replaceable)
47    or for which we can easily calculate the final value, if we can easily
48    calculate its value at each place where it is set as a function of the
49    current loop unroll count and the variable's value at loop entry, then
50    the induction variable is split into `N' different variables, one for
51    each copy of the loop body.  One variable is live across the backward
52    branch, and the others are all calculated as a function of this variable.
53    This helps eliminate data dependencies, and leads to further opportunities
54    for cse.  */
55 
56 /* Possible improvements follow:  */
57 
58 /* ??? Add an extra pass somewhere to determine whether unrolling will
59    give any benefit.  E.g. after generating all unrolled insns, compute the
60    cost of all insns and compare against cost of insns in rolled loop.
61 
62    - On traditional architectures, unrolling a non-constant bound loop
63      is a win if there is a giv whose only use is in memory addresses, the
64      memory addresses can be split, and hence giv increments can be
65      eliminated.
66    - It is also a win if the loop is executed many times, and preconditioning
67      can be performed for the loop.
68    Add code to check for these and similar cases.  */
69 
70 /* ??? Improve control of which loops get unrolled.  Could use profiling
71    info to only unroll the most commonly executed loops.  Perhaps have
72    a user specifyable option to control the amount of code expansion,
73    or the percent of loops to consider for unrolling.  Etc.  */
74 
75 /* ??? Look at the register copies inside the loop to see if they form a
76    simple permutation.  If so, iterate the permutation until it gets back to
77    the start state.  This is how many times we should unroll the loop, for
78    best results, because then all register copies can be eliminated.
79    For example, the lisp nreverse function should be unrolled 3 times
80    while (this)
81      {
82        next = this->cdr;
83        this->cdr = prev;
84        prev = this;
85        this = next;
86      }
87 
88    ??? The number of times to unroll the loop may also be based on data
89    references in the loop.  For example, if we have a loop that references
90    x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times.  */
91 
92 /* ??? Add some simple linear equation solving capability so that we can
93    determine the number of loop iterations for more complex loops.
94    For example, consider this loop from gdb
95    #define SWAP_TARGET_AND_HOST(buffer,len)
96      {
97        char tmp;
98        char *p = (char *) buffer;
99        char *q = ((char *) buffer) + len - 1;
100        int iterations = (len + 1) >> 1;
101        int i;
102        for (p; p < q; p++, q--;)
103 	 {
104 	   tmp = *q;
105 	   *q = *p;
106 	   *p = tmp;
107 	 }
108      }
109    Note that:
110      start value = p = &buffer + current_iteration
111      end value   = q = &buffer + len - 1 - current_iteration
112    Given the loop exit test of "p < q", then there must be "q - p" iterations,
113    set equal to zero and solve for number of iterations:
114      q - p = len - 1 - 2*current_iteration = 0
115      current_iteration = (len - 1) / 2
116    Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117    iterations of this loop.  */
118 
119 /* ??? Currently, no labels are marked as loop invariant when doing loop
120    unrolling.  This is because an insn inside the loop, that loads the address
121    of a label inside the loop into a register, could be moved outside the loop
122    by the invariant code motion pass if labels were invariant.  If the loop
123    is subsequently unrolled, the code will be wrong because each unrolled
124    body of the loop will use the same address, whereas each actually needs a
125    different address.  A case where this happens is when a loop containing
126    a switch statement is unrolled.
127 
128    It would be better to let labels be considered invariant.  When we
129    unroll loops here, check to see if any insns using a label local to the
130    loop were moved before the loop.  If so, then correct the problem, by
131    moving the insn back into the loop, or perhaps replicate the insn before
132    the loop, one copy for each time the loop is unrolled.  */
133 
134 #include "config.h"
135 #include "system.h"
136 #include "rtl.h"
137 #include "tm_p.h"
138 #include "insn-config.h"
139 #include "integrate.h"
140 #include "regs.h"
141 #include "recog.h"
142 #include "flags.h"
143 #include "function.h"
144 #include "expr.h"
145 #include "loop.h"
146 #include "toplev.h"
147 #include "hard-reg-set.h"
148 #include "basic-block.h"
149 #include "predict.h"
150 #include "params.h"
151 
152 /* The prime factors looked for when trying to unroll a loop by some
153    number which is modulo the total number of iterations.  Just checking
154    for these 4 prime factors will find at least one factor for 75% of
155    all numbers theoretically.  Practically speaking, this will succeed
156    almost all of the time since loops are generally a multiple of 2
157    and/or 5.  */
158 
159 #define NUM_FACTORS 4
160 
161 static struct _factor { const int factor; int count; }
162 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
163 
164 /* Describes the different types of loop unrolling performed.  */
165 
166 enum unroll_types
167 {
168   UNROLL_COMPLETELY,
169   UNROLL_MODULO,
170   UNROLL_NAIVE
171 };
172 
173 /* Indexed by register number, if nonzero, then it contains a pointer
174    to a struct induction for a DEST_REG giv which has been combined with
175    one of more address givs.  This is needed because whenever such a DEST_REG
176    giv is modified, we must modify the value of all split address givs
177    that were combined with this DEST_REG giv.  */
178 
179 static struct induction **addr_combined_regs;
180 
181 /* Indexed by register number, if this is a splittable induction variable,
182    then this will hold the current value of the register, which depends on the
183    iteration number.  */
184 
185 static rtx *splittable_regs;
186 
187 /* Indexed by register number, if this is a splittable induction variable,
188    then this will hold the number of instructions in the loop that modify
189    the induction variable.  Used to ensure that only the last insn modifying
190    a split iv will update the original iv of the dest.  */
191 
192 static int *splittable_regs_updates;
193 
194 /* Forward declarations.  */
195 
196 static rtx simplify_cmp_and_jump_insns PARAMS ((enum rtx_code,
197 						enum machine_mode,
198 						rtx, rtx, rtx));
199 static void init_reg_map PARAMS ((struct inline_remap *, int));
200 static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
201 static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
202 static void final_reg_note_copy PARAMS ((rtx *, struct inline_remap *));
203 static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
204 				    struct inline_remap *, rtx, int,
205 				    enum unroll_types, rtx, rtx, rtx, rtx));
206 static int find_splittable_regs PARAMS ((const struct loop *,
207 					 enum unroll_types, int));
208 static int find_splittable_givs PARAMS ((const struct loop *,
209 					 struct iv_class *, enum unroll_types,
210 					 rtx, int));
211 static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
212 static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
213 static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
214 static rtx find_common_reg_term PARAMS ((rtx, rtx));
215 static rtx subtract_reg_term PARAMS ((rtx, rtx));
216 static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
217 static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
218 
219 /* Try to unroll one loop and split induction variables in the loop.
220 
221    The loop is described by the arguments LOOP and INSN_COUNT.
222    STRENGTH_REDUCTION_P indicates whether information generated in the
223    strength reduction pass is available.
224 
225    This function is intended to be called from within `strength_reduce'
226    in loop.c.  */
227 
228 void
unroll_loop(loop,insn_count,strength_reduce_p)229 unroll_loop (loop, insn_count, strength_reduce_p)
230      struct loop *loop;
231      int insn_count;
232      int strength_reduce_p;
233 {
234   struct loop_info *loop_info = LOOP_INFO (loop);
235   struct loop_ivs *ivs = LOOP_IVS (loop);
236   int i, j;
237   unsigned int r;
238   unsigned HOST_WIDE_INT temp;
239   int unroll_number = 1;
240   rtx copy_start, copy_end;
241   rtx insn, sequence, pattern, tem;
242   int max_labelno, max_insnno;
243   rtx insert_before;
244   struct inline_remap *map;
245   char *local_label = NULL;
246   char *local_regno;
247   unsigned int max_local_regnum;
248   unsigned int maxregnum;
249   rtx exit_label = 0;
250   rtx start_label;
251   struct iv_class *bl;
252   int splitting_not_safe = 0;
253   enum unroll_types unroll_type = UNROLL_NAIVE;
254   int loop_preconditioned = 0;
255   rtx safety_label;
256   /* This points to the last real insn in the loop, which should be either
257      a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
258      jumps).  */
259   rtx last_loop_insn;
260   rtx loop_start = loop->start;
261   rtx loop_end = loop->end;
262 
263   /* Don't bother unrolling huge loops.  Since the minimum factor is
264      two, loops greater than one half of MAX_UNROLLED_INSNS will never
265      be unrolled.  */
266   if (insn_count > MAX_UNROLLED_INSNS / 2)
267     {
268       if (loop_dump_stream)
269 	fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
270       return;
271     }
272 
273   /* Determine type of unroll to perform.  Depends on the number of iterations
274      and the size of the loop.  */
275 
276   /* If there is no strength reduce info, then set
277      loop_info->n_iterations to zero.  This can happen if
278      strength_reduce can't find any bivs in the loop.  A value of zero
279      indicates that the number of iterations could not be calculated.  */
280 
281   if (! strength_reduce_p)
282     loop_info->n_iterations = 0;
283 
284   if (loop_dump_stream && loop_info->n_iterations > 0)
285     {
286       fputs ("Loop unrolling: ", loop_dump_stream);
287       fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
288 	       loop_info->n_iterations);
289       fputs (" iterations.\n", loop_dump_stream);
290     }
291 
292   /* Find and save a pointer to the last nonnote insn in the loop.  */
293 
294   last_loop_insn = prev_nonnote_insn (loop_end);
295 
296   /* Calculate how many times to unroll the loop.  Indicate whether or
297      not the loop is being completely unrolled.  */
298 
299   if (loop_info->n_iterations == 1)
300     {
301       /* Handle the case where the loop begins with an unconditional
302 	 jump to the loop condition.  Make sure to delete the jump
303 	 insn, otherwise the loop body will never execute.  */
304 
305       /* FIXME this actually checks for a jump to the continue point, which
306 	 is not the same as the condition in a for loop.  As a result, this
307 	 optimization fails for most for loops.  We should really use flow
308 	 information rather than instruction pattern matching.  */
309       rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
310 
311       /* If number of iterations is exactly 1, then eliminate the compare and
312 	 branch at the end of the loop since they will never be taken.
313 	 Then return, since no other action is needed here.  */
314 
315       /* If the last instruction is not a BARRIER or a JUMP_INSN, then
316 	 don't do anything.  */
317 
318       if (GET_CODE (last_loop_insn) == BARRIER)
319 	{
320 	  /* Delete the jump insn.  This will delete the barrier also.  */
321 	  last_loop_insn = PREV_INSN (last_loop_insn);
322 	}
323 
324       if (ujump && GET_CODE (last_loop_insn) == JUMP_INSN)
325 	{
326 #ifdef HAVE_cc0
327 	  rtx prev = PREV_INSN (last_loop_insn);
328 #endif
329 	  delete_related_insns (last_loop_insn);
330 #ifdef HAVE_cc0
331 	  /* The immediately preceding insn may be a compare which must be
332 	     deleted.  */
333 	  if (only_sets_cc0_p (prev))
334 	    delete_related_insns (prev);
335 #endif
336 
337 	  delete_related_insns (ujump);
338 
339 	  /* Remove the loop notes since this is no longer a loop.  */
340 	  if (loop->vtop)
341 	    delete_related_insns (loop->vtop);
342 	  if (loop->cont)
343 	    delete_related_insns (loop->cont);
344 	  if (loop_start)
345 	    delete_related_insns (loop_start);
346 	  if (loop_end)
347 	    delete_related_insns (loop_end);
348 
349 	  return;
350 	}
351     }
352 
353   if (loop_info->n_iterations > 0
354       /* Avoid overflow in the next expression.  */
355       && loop_info->n_iterations < (unsigned) MAX_UNROLLED_INSNS
356       && loop_info->n_iterations * insn_count < (unsigned) MAX_UNROLLED_INSNS)
357     {
358       unroll_number = loop_info->n_iterations;
359       unroll_type = UNROLL_COMPLETELY;
360     }
361   else if (loop_info->n_iterations > 0)
362     {
363       /* Try to factor the number of iterations.  Don't bother with the
364 	 general case, only using 2, 3, 5, and 7 will get 75% of all
365 	 numbers theoretically, and almost all in practice.  */
366 
367       for (i = 0; i < NUM_FACTORS; i++)
368 	factors[i].count = 0;
369 
370       temp = loop_info->n_iterations;
371       for (i = NUM_FACTORS - 1; i >= 0; i--)
372 	while (temp % factors[i].factor == 0)
373 	  {
374 	    factors[i].count++;
375 	    temp = temp / factors[i].factor;
376 	  }
377 
378       /* Start with the larger factors first so that we generally
379 	 get lots of unrolling.  */
380 
381       unroll_number = 1;
382       temp = insn_count;
383       for (i = 3; i >= 0; i--)
384 	while (factors[i].count--)
385 	  {
386 	    if (temp * factors[i].factor < (unsigned) MAX_UNROLLED_INSNS)
387 	      {
388 		unroll_number *= factors[i].factor;
389 		temp *= factors[i].factor;
390 	      }
391 	    else
392 	      break;
393 	  }
394 
395       /* If we couldn't find any factors, then unroll as in the normal
396 	 case.  */
397       if (unroll_number == 1)
398 	{
399 	  if (loop_dump_stream)
400 	    fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
401 	}
402       else
403 	unroll_type = UNROLL_MODULO;
404     }
405 
406   /* Default case, calculate number of times to unroll loop based on its
407      size.  */
408   if (unroll_type == UNROLL_NAIVE)
409     {
410       if (8 * insn_count < MAX_UNROLLED_INSNS)
411 	unroll_number = 8;
412       else if (4 * insn_count < MAX_UNROLLED_INSNS)
413 	unroll_number = 4;
414       else
415 	unroll_number = 2;
416     }
417 
418   /* Now we know how many times to unroll the loop.  */
419 
420   if (loop_dump_stream)
421     fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
422 
423   if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
424     {
425       /* Loops of these types can start with jump down to the exit condition
426 	 in rare circumstances.
427 
428 	 Consider a pair of nested loops where the inner loop is part
429 	 of the exit code for the outer loop.
430 
431 	 In this case jump.c will not duplicate the exit test for the outer
432 	 loop, so it will start with a jump to the exit code.
433 
434 	 Then consider if the inner loop turns out to iterate once and
435 	 only once.  We will end up deleting the jumps associated with
436 	 the inner loop.  However, the loop notes are not removed from
437 	 the instruction stream.
438 
439 	 And finally assume that we can compute the number of iterations
440 	 for the outer loop.
441 
442 	 In this case unroll may want to unroll the outer loop even though
443 	 it starts with a jump to the outer loop's exit code.
444 
445 	 We could try to optimize this case, but it hardly seems worth it.
446 	 Just return without unrolling the loop in such cases.  */
447 
448       insn = loop_start;
449       while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
450 	insn = NEXT_INSN (insn);
451       if (GET_CODE (insn) == JUMP_INSN)
452 	return;
453     }
454 
455   if (unroll_type == UNROLL_COMPLETELY)
456     {
457       /* Completely unrolling the loop:  Delete the compare and branch at
458 	 the end (the last two instructions).   This delete must done at the
459 	 very end of loop unrolling, to avoid problems with calls to
460 	 back_branch_in_range_p, which is called by find_splittable_regs.
461 	 All increments of splittable bivs/givs are changed to load constant
462 	 instructions.  */
463 
464       copy_start = loop_start;
465 
466       /* Set insert_before to the instruction immediately after the JUMP_INSN
467 	 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
468 	 the loop will be correctly handled by copy_loop_body.  */
469       insert_before = NEXT_INSN (last_loop_insn);
470 
471       /* Set copy_end to the insn before the jump at the end of the loop.  */
472       if (GET_CODE (last_loop_insn) == BARRIER)
473 	copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
474       else if (GET_CODE (last_loop_insn) == JUMP_INSN)
475 	{
476 	  copy_end = PREV_INSN (last_loop_insn);
477 #ifdef HAVE_cc0
478 	  /* The instruction immediately before the JUMP_INSN may be a compare
479 	     instruction which we do not want to copy.  */
480 	  if (sets_cc0_p (PREV_INSN (copy_end)))
481 	    copy_end = PREV_INSN (copy_end);
482 #endif
483 	}
484       else
485 	{
486 	  /* We currently can't unroll a loop if it doesn't end with a
487 	     JUMP_INSN.  There would need to be a mechanism that recognizes
488 	     this case, and then inserts a jump after each loop body, which
489 	     jumps to after the last loop body.  */
490 	  if (loop_dump_stream)
491 	    fprintf (loop_dump_stream,
492 		     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
493 	  return;
494 	}
495     }
496   else if (unroll_type == UNROLL_MODULO)
497     {
498       /* Partially unrolling the loop:  The compare and branch at the end
499 	 (the last two instructions) must remain.  Don't copy the compare
500 	 and branch instructions at the end of the loop.  Insert the unrolled
501 	 code immediately before the compare/branch at the end so that the
502 	 code will fall through to them as before.  */
503 
504       copy_start = loop_start;
505 
506       /* Set insert_before to the jump insn at the end of the loop.
507 	 Set copy_end to before the jump insn at the end of the loop.  */
508       if (GET_CODE (last_loop_insn) == BARRIER)
509 	{
510 	  insert_before = PREV_INSN (last_loop_insn);
511 	  copy_end = PREV_INSN (insert_before);
512 	}
513       else if (GET_CODE (last_loop_insn) == JUMP_INSN)
514 	{
515 	  insert_before = last_loop_insn;
516 #ifdef HAVE_cc0
517 	  /* The instruction immediately before the JUMP_INSN may be a compare
518 	     instruction which we do not want to copy or delete.  */
519 	  if (sets_cc0_p (PREV_INSN (insert_before)))
520 	    insert_before = PREV_INSN (insert_before);
521 #endif
522 	  copy_end = PREV_INSN (insert_before);
523 	}
524       else
525 	{
526 	  /* We currently can't unroll a loop if it doesn't end with a
527 	     JUMP_INSN.  There would need to be a mechanism that recognizes
528 	     this case, and then inserts a jump after each loop body, which
529 	     jumps to after the last loop body.  */
530 	  if (loop_dump_stream)
531 	    fprintf (loop_dump_stream,
532 		     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
533 	  return;
534 	}
535     }
536   else
537     {
538       /* Normal case: Must copy the compare and branch instructions at the
539 	 end of the loop.  */
540 
541       if (GET_CODE (last_loop_insn) == BARRIER)
542 	{
543 	  /* Loop ends with an unconditional jump and a barrier.
544 	     Handle this like above, don't copy jump and barrier.
545 	     This is not strictly necessary, but doing so prevents generating
546 	     unconditional jumps to an immediately following label.
547 
548 	     This will be corrected below if the target of this jump is
549 	     not the start_label.  */
550 
551 	  insert_before = PREV_INSN (last_loop_insn);
552 	  copy_end = PREV_INSN (insert_before);
553 	}
554       else if (GET_CODE (last_loop_insn) == JUMP_INSN)
555 	{
556 	  /* Set insert_before to immediately after the JUMP_INSN, so that
557 	     NOTEs at the end of the loop will be correctly handled by
558 	     copy_loop_body.  */
559 	  insert_before = NEXT_INSN (last_loop_insn);
560 	  copy_end = last_loop_insn;
561 	}
562       else
563 	{
564 	  /* We currently can't unroll a loop if it doesn't end with a
565 	     JUMP_INSN.  There would need to be a mechanism that recognizes
566 	     this case, and then inserts a jump after each loop body, which
567 	     jumps to after the last loop body.  */
568 	  if (loop_dump_stream)
569 	    fprintf (loop_dump_stream,
570 		     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
571 	  return;
572 	}
573 
574       /* If copying exit test branches because they can not be eliminated,
575 	 then must convert the fall through case of the branch to a jump past
576 	 the end of the loop.  Create a label to emit after the loop and save
577 	 it for later use.  Do not use the label after the loop, if any, since
578 	 it might be used by insns outside the loop, or there might be insns
579 	 added before it later by final_[bg]iv_value which must be after
580 	 the real exit label.  */
581       exit_label = gen_label_rtx ();
582 
583       insn = loop_start;
584       while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
585 	insn = NEXT_INSN (insn);
586 
587       if (GET_CODE (insn) == JUMP_INSN)
588 	{
589 	  /* The loop starts with a jump down to the exit condition test.
590 	     Start copying the loop after the barrier following this
591 	     jump insn.  */
592 	  copy_start = NEXT_INSN (insn);
593 
594 	  /* Splitting induction variables doesn't work when the loop is
595 	     entered via a jump to the bottom, because then we end up doing
596 	     a comparison against a new register for a split variable, but
597 	     we did not execute the set insn for the new register because
598 	     it was skipped over.  */
599 	  splitting_not_safe = 1;
600 	  if (loop_dump_stream)
601 	    fprintf (loop_dump_stream,
602 		     "Splitting not safe, because loop not entered at top.\n");
603 	}
604       else
605 	copy_start = loop_start;
606     }
607 
608   /* This should always be the first label in the loop.  */
609   start_label = NEXT_INSN (copy_start);
610   /* There may be a line number note and/or a loop continue note here.  */
611   while (GET_CODE (start_label) == NOTE)
612     start_label = NEXT_INSN (start_label);
613   if (GET_CODE (start_label) != CODE_LABEL)
614     {
615       /* This can happen as a result of jump threading.  If the first insns in
616 	 the loop test the same condition as the loop's backward jump, or the
617 	 opposite condition, then the backward jump will be modified to point
618 	 to elsewhere, and the loop's start label is deleted.
619 
620 	 This case currently can not be handled by the loop unrolling code.  */
621 
622       if (loop_dump_stream)
623 	fprintf (loop_dump_stream,
624 		 "Unrolling failure: unknown insns between BEG note and loop label.\n");
625       return;
626     }
627   if (LABEL_NAME (start_label))
628     {
629       /* The jump optimization pass must have combined the original start label
630 	 with a named label for a goto.  We can't unroll this case because
631 	 jumps which go to the named label must be handled differently than
632 	 jumps to the loop start, and it is impossible to differentiate them
633 	 in this case.  */
634       if (loop_dump_stream)
635 	fprintf (loop_dump_stream,
636 		 "Unrolling failure: loop start label is gone\n");
637       return;
638     }
639 
640   if (unroll_type == UNROLL_NAIVE
641       && GET_CODE (last_loop_insn) == BARRIER
642       && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
643       && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
644     {
645       /* In this case, we must copy the jump and barrier, because they will
646 	 not be converted to jumps to an immediately following label.  */
647 
648       insert_before = NEXT_INSN (last_loop_insn);
649       copy_end = last_loop_insn;
650     }
651 
652   if (unroll_type == UNROLL_NAIVE
653       && GET_CODE (last_loop_insn) == JUMP_INSN
654       && start_label != JUMP_LABEL (last_loop_insn))
655     {
656       /* ??? The loop ends with a conditional branch that does not branch back
657 	 to the loop start label.  In this case, we must emit an unconditional
658 	 branch to the loop exit after emitting the final branch.
659 	 copy_loop_body does not have support for this currently, so we
660 	 give up.  It doesn't seem worthwhile to unroll anyways since
661 	 unrolling would increase the number of branch instructions
662 	 executed.  */
663       if (loop_dump_stream)
664 	fprintf (loop_dump_stream,
665 		 "Unrolling failure: final conditional branch not to loop start\n");
666       return;
667     }
668 
669   /* Allocate a translation table for the labels and insn numbers.
670      They will be filled in as we copy the insns in the loop.  */
671 
672   max_labelno = max_label_num ();
673   max_insnno = get_max_uid ();
674 
675   /* Various paths through the unroll code may reach the "egress" label
676      without initializing fields within the map structure.
677 
678      To be safe, we use xcalloc to zero the memory.  */
679   map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
680 
681   /* Allocate the label map.  */
682 
683   if (max_labelno > 0)
684     {
685       map->label_map = (rtx *) xcalloc (max_labelno, sizeof (rtx));
686       local_label = (char *) xcalloc (max_labelno, sizeof (char));
687     }
688 
689   /* Search the loop and mark all local labels, i.e. the ones which have to
690      be distinct labels when copied.  For all labels which might be
691      non-local, set their label_map entries to point to themselves.
692      If they happen to be local their label_map entries will be overwritten
693      before the loop body is copied.  The label_map entries for local labels
694      will be set to a different value each time the loop body is copied.  */
695 
696   for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
697     {
698       rtx note;
699 
700       if (GET_CODE (insn) == CODE_LABEL)
701 	local_label[CODE_LABEL_NUMBER (insn)] = 1;
702       else if (GET_CODE (insn) == JUMP_INSN)
703 	{
704 	  if (JUMP_LABEL (insn))
705 	    set_label_in_map (map,
706 			      CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
707 			      JUMP_LABEL (insn));
708 	  else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
709 		   || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
710 	    {
711 	      rtx pat = PATTERN (insn);
712 	      int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
713 	      int len = XVECLEN (pat, diff_vec_p);
714 	      rtx label;
715 
716 	      for (i = 0; i < len; i++)
717 		{
718 		  label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
719 		  set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
720 		}
721 	    }
722 	}
723       if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
724 	set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
725 			  XEXP (note, 0));
726     }
727 
728   /* Allocate space for the insn map.  */
729 
730   map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
731 
732   /* Set this to zero, to indicate that we are doing loop unrolling,
733      not function inlining.  */
734   map->inline_target = 0;
735 
736   /* The register and constant maps depend on the number of registers
737      present, so the final maps can't be created until after
738      find_splittable_regs is called.  However, they are needed for
739      preconditioning, so we create temporary maps when preconditioning
740      is performed.  */
741 
742   /* The preconditioning code may allocate two new pseudo registers.  */
743   maxregnum = max_reg_num ();
744 
745   /* local_regno is only valid for regnos < max_local_regnum.  */
746   max_local_regnum = maxregnum;
747 
748   /* Allocate and zero out the splittable_regs and addr_combined_regs
749      arrays.  These must be zeroed here because they will be used if
750      loop preconditioning is performed, and must be zero for that case.
751 
752      It is safe to do this here, since the extra registers created by the
753      preconditioning code and find_splittable_regs will never be used
754      to access the splittable_regs[] and addr_combined_regs[] arrays.  */
755 
756   splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
757   splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
758   addr_combined_regs
759     = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
760   local_regno = (char *) xcalloc (maxregnum, sizeof (char));
761 
762   /* Mark all local registers, i.e. the ones which are referenced only
763      inside the loop.  */
764   if (INSN_UID (copy_end) < max_uid_for_loop)
765     {
766       int copy_start_luid = INSN_LUID (copy_start);
767       int copy_end_luid = INSN_LUID (copy_end);
768 
769       /* If a register is used in the jump insn, we must not duplicate it
770 	 since it will also be used outside the loop.  */
771       if (GET_CODE (copy_end) == JUMP_INSN)
772 	copy_end_luid--;
773 
774       /* If we have a target that uses cc0, then we also must not duplicate
775 	 the insn that sets cc0 before the jump insn, if one is present.  */
776 #ifdef HAVE_cc0
777       if (GET_CODE (copy_end) == JUMP_INSN
778 	  && sets_cc0_p (PREV_INSN (copy_end)))
779 	copy_end_luid--;
780 #endif
781 
782       /* If copy_start points to the NOTE that starts the loop, then we must
783 	 use the next luid, because invariant pseudo-regs moved out of the loop
784 	 have their lifetimes modified to start here, but they are not safe
785 	 to duplicate.  */
786       if (copy_start == loop_start)
787 	copy_start_luid++;
788 
789       /* If a pseudo's lifetime is entirely contained within this loop, then we
790 	 can use a different pseudo in each unrolled copy of the loop.  This
791 	 results in better code.  */
792       /* We must limit the generic test to max_reg_before_loop, because only
793 	 these pseudo registers have valid regno_first_uid info.  */
794       for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
795 	if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) < max_uid_for_loop
796 	    && REGNO_FIRST_LUID (r) >= copy_start_luid
797 	    /* See the comment in reg_scan_mark_refs on the relationship between
798 	       last_uid and last_note_uid.  */
799 	    && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) < max_uid_for_loop
800 	    && REGNO_LAST_LUID (r) <= copy_end_luid
801 	    && REGNO_LAST_NOTE_UID (r) > 0 && REGNO_LAST_NOTE_UID (r) < max_uid_for_loop
802 	    && REGNO_LAST_NOTE_LUID (r) <= copy_end_luid)
803 	  {
804 	    /* However, we must also check for loop-carried dependencies.
805 	       If the value the pseudo has at the end of iteration X is
806 	       used by iteration X+1, then we can not use a different pseudo
807 	       for each unrolled copy of the loop.  */
808 	    /* A pseudo is safe if regno_first_uid is a set, and this
809 	       set dominates all instructions from regno_first_uid to
810 	       regno_last_uid.  */
811 	    /* ??? This check is simplistic.  We would get better code if
812 	       this check was more sophisticated.  */
813 	    if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
814 				   copy_start, copy_end))
815 	      local_regno[r] = 1;
816 
817 	    if (loop_dump_stream)
818 	      {
819 		if (local_regno[r])
820 		  fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
821 		else
822 		  fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
823 			   r);
824 	      }
825 	  }
826     }
827 
828   /* If this loop requires exit tests when unrolled, check to see if we
829      can precondition the loop so as to make the exit tests unnecessary.
830      Just like variable splitting, this is not safe if the loop is entered
831      via a jump to the bottom.  Also, can not do this if no strength
832      reduce info, because precondition_loop_p uses this info.  */
833 
834   /* Must copy the loop body for preconditioning before the following
835      find_splittable_regs call since that will emit insns which need to
836      be after the preconditioned loop copies, but immediately before the
837      unrolled loop copies.  */
838 
839   /* Also, it is not safe to split induction variables for the preconditioned
840      copies of the loop body.  If we split induction variables, then the code
841      assumes that each induction variable can be represented as a function
842      of its initial value and the loop iteration number.  This is not true
843      in this case, because the last preconditioned copy of the loop body
844      could be any iteration from the first up to the `unroll_number-1'th,
845      depending on the initial value of the iteration variable.  Therefore
846      we can not split induction variables here, because we can not calculate
847      their value.  Hence, this code must occur before find_splittable_regs
848      is called.  */
849 
850   if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
851     {
852       rtx initial_value, final_value, increment;
853       enum machine_mode mode;
854 
855       if (precondition_loop_p (loop,
856 			       &initial_value, &final_value, &increment,
857 			       &mode))
858 	{
859 	  rtx diff, insn;
860 	  rtx *labels;
861 	  int abs_inc, neg_inc;
862 	  enum rtx_code cc = loop_info->comparison_code;
863 	  int less_p     = (cc == LE  || cc == LEU || cc == LT  || cc == LTU);
864 	  int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
865 
866 	  map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
867 
868 	  VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
869 				   "unroll_loop_precondition");
870 	  global_const_equiv_varray = map->const_equiv_varray;
871 
872 	  init_reg_map (map, maxregnum);
873 
874 	  /* Limit loop unrolling to 4, since this will make 7 copies of
875 	     the loop body.  */
876 	  if (unroll_number > 4)
877 	    unroll_number = 4;
878 
879 	  /* Save the absolute value of the increment, and also whether or
880 	     not it is negative.  */
881 	  neg_inc = 0;
882 	  abs_inc = INTVAL (increment);
883 	  if (abs_inc < 0)
884 	    {
885 	      abs_inc = -abs_inc;
886 	      neg_inc = 1;
887 	    }
888 
889 	  start_sequence ();
890 
891 	  /* We must copy the final and initial values here to avoid
892 	     improperly shared rtl.  */
893 	  final_value = copy_rtx (final_value);
894 	  initial_value = copy_rtx (initial_value);
895 
896 	  /* Final value may have form of (PLUS val1 const1_rtx).  We need
897 	     to convert it into general operand, so compute the real value.  */
898 
899 	  final_value = force_operand (final_value, NULL_RTX);
900 	  if (!nonmemory_operand (final_value, VOIDmode))
901 	    final_value = force_reg (mode, final_value);
902 
903 	  /* Calculate the difference between the final and initial values.
904 	     Final value may be a (plus (reg x) (const_int 1)) rtx.
905 
906 	     We have to deal with for (i = 0; --i < 6;) type loops.
907 	     For such loops the real final value is the first time the
908 	     loop variable overflows, so the diff we calculate is the
909 	     distance from the overflow value.  This is 0 or ~0 for
910 	     unsigned loops depending on the direction, or INT_MAX,
911 	     INT_MAX+1 for signed loops.  We really do not need the
912 	     exact value, since we are only interested in the diff
913 	     modulo the increment, and the increment is a power of 2,
914 	     so we can pretend that the overflow value is 0/~0.  */
915 
916 	  if (cc == NE || less_p != neg_inc)
917 	    diff = simplify_gen_binary (MINUS, mode, final_value,
918 					initial_value);
919 	  else
920 	    diff = simplify_gen_unary (neg_inc ? NOT : NEG, mode,
921 				       initial_value, mode);
922 	  diff = force_operand (diff, NULL_RTX);
923 
924 	  /* Now calculate (diff % (unroll * abs (increment))) by using an
925 	     and instruction.  */
926 	  diff = simplify_gen_binary (AND, mode, diff,
927 				      GEN_INT (unroll_number*abs_inc - 1));
928 	  diff = force_operand (diff, NULL_RTX);
929 
930 	  /* Now emit a sequence of branches to jump to the proper precond
931 	     loop entry point.  */
932 
933 	  labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
934 	  for (i = 0; i < unroll_number; i++)
935 	    labels[i] = gen_label_rtx ();
936 
937 	  /* Check for the case where the initial value is greater than or
938 	     equal to the final value.  In that case, we want to execute
939 	     exactly one loop iteration.  The code below will fail for this
940 	     case.  This check does not apply if the loop has a NE
941 	     comparison at the end.  */
942 
943 	  if (cc != NE)
944 	    {
945 	      rtx incremented_initval;
946 	      enum rtx_code cmp_code;
947 
948 	      incremented_initval
949 		= simplify_gen_binary (PLUS, mode, initial_value, increment);
950 	      incremented_initval
951 		= force_operand (incremented_initval, NULL_RTX);
952 
953 	      cmp_code = (less_p
954 			  ? (unsigned_p ? GEU : GE)
955 			  : (unsigned_p ? LEU : LE));
956 
957 	      insn = simplify_cmp_and_jump_insns (cmp_code, mode,
958 						  incremented_initval,
959 						  final_value, labels[1]);
960 	      if (insn)
961 	        predict_insn_def (insn, PRED_LOOP_CONDITION, TAKEN);
962 	    }
963 
964 	  /* Assuming the unroll_number is 4, and the increment is 2, then
965 	     for a negative increment:	for a positive increment:
966 	     diff = 0,1   precond 0	diff = 0,7   precond 0
967 	     diff = 2,3   precond 3     diff = 1,2   precond 1
968 	     diff = 4,5   precond 2     diff = 3,4   precond 2
969 	     diff = 6,7   precond 1     diff = 5,6   precond 3  */
970 
971 	  /* We only need to emit (unroll_number - 1) branches here, the
972 	     last case just falls through to the following code.  */
973 
974 	  /* ??? This would give better code if we emitted a tree of branches
975 	     instead of the current linear list of branches.  */
976 
977 	  for (i = 0; i < unroll_number - 1; i++)
978 	    {
979 	      int cmp_const;
980 	      enum rtx_code cmp_code;
981 
982 	      /* For negative increments, must invert the constant compared
983 		 against, except when comparing against zero.  */
984 	      if (i == 0)
985 		{
986 		  cmp_const = 0;
987 		  cmp_code = EQ;
988 		}
989 	      else if (neg_inc)
990 		{
991 		  cmp_const = unroll_number - i;
992 		  cmp_code = GE;
993 		}
994 	      else
995 		{
996 		  cmp_const = i;
997 		  cmp_code = LE;
998 		}
999 
1000 	      insn = simplify_cmp_and_jump_insns (cmp_code, mode, diff,
1001 						  GEN_INT (abs_inc*cmp_const),
1002 						  labels[i]);
1003 	      if (insn)
1004 	        predict_insn (insn, PRED_LOOP_PRECONDITIONING,
1005 			      REG_BR_PROB_BASE / (unroll_number - i));
1006 	    }
1007 
1008 	  /* If the increment is greater than one, then we need another branch,
1009 	     to handle other cases equivalent to 0.  */
1010 
1011 	  /* ??? This should be merged into the code above somehow to help
1012 	     simplify the code here, and reduce the number of branches emitted.
1013 	     For the negative increment case, the branch here could easily
1014 	     be merged with the `0' case branch above.  For the positive
1015 	     increment case, it is not clear how this can be simplified.  */
1016 
1017 	  if (abs_inc != 1)
1018 	    {
1019 	      int cmp_const;
1020 	      enum rtx_code cmp_code;
1021 
1022 	      if (neg_inc)
1023 		{
1024 		  cmp_const = abs_inc - 1;
1025 		  cmp_code = LE;
1026 		}
1027 	      else
1028 		{
1029 		  cmp_const = abs_inc * (unroll_number - 1) + 1;
1030 		  cmp_code = GE;
1031 		}
1032 
1033 	      simplify_cmp_and_jump_insns (cmp_code, mode, diff,
1034 					   GEN_INT (cmp_const), labels[0]);
1035 	    }
1036 
1037 	  sequence = get_insns ();
1038 	  end_sequence ();
1039 	  loop_insn_hoist (loop, sequence);
1040 
1041 	  /* Only the last copy of the loop body here needs the exit
1042 	     test, so set copy_end to exclude the compare/branch here,
1043 	     and then reset it inside the loop when get to the last
1044 	     copy.  */
1045 
1046 	  if (GET_CODE (last_loop_insn) == BARRIER)
1047 	    copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1048 	  else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1049 	    {
1050 	      copy_end = PREV_INSN (last_loop_insn);
1051 #ifdef HAVE_cc0
1052 	      /* The immediately preceding insn may be a compare which
1053 		 we do not want to copy.  */
1054 	      if (sets_cc0_p (PREV_INSN (copy_end)))
1055 		copy_end = PREV_INSN (copy_end);
1056 #endif
1057 	    }
1058 	  else
1059 	    abort ();
1060 
1061 	  for (i = 1; i < unroll_number; i++)
1062 	    {
1063 	      emit_label_after (labels[unroll_number - i],
1064 				PREV_INSN (loop_start));
1065 
1066 	      memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1067 	      memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1068 		      0, (VARRAY_SIZE (map->const_equiv_varray)
1069 			  * sizeof (struct const_equiv_data)));
1070 	      map->const_age = 0;
1071 
1072 	      for (j = 0; j < max_labelno; j++)
1073 		if (local_label[j])
1074 		  set_label_in_map (map, j, gen_label_rtx ());
1075 
1076 	      for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1077 		if (local_regno[r])
1078 		  {
1079 		    map->reg_map[r]
1080 		      = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1081 		    record_base_value (REGNO (map->reg_map[r]),
1082 				       regno_reg_rtx[r], 0);
1083 		  }
1084 	      /* The last copy needs the compare/branch insns at the end,
1085 		 so reset copy_end here if the loop ends with a conditional
1086 		 branch.  */
1087 
1088 	      if (i == unroll_number - 1)
1089 		{
1090 		  if (GET_CODE (last_loop_insn) == BARRIER)
1091 		    copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1092 		  else
1093 		    copy_end = last_loop_insn;
1094 		}
1095 
1096 	      /* None of the copies are the `last_iteration', so just
1097 		 pass zero for that parameter.  */
1098 	      copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1099 			      unroll_type, start_label, loop_end,
1100 			      loop_start, copy_end);
1101 	    }
1102 	  emit_label_after (labels[0], PREV_INSN (loop_start));
1103 
1104 	  if (GET_CODE (last_loop_insn) == BARRIER)
1105 	    {
1106 	      insert_before = PREV_INSN (last_loop_insn);
1107 	      copy_end = PREV_INSN (insert_before);
1108 	    }
1109 	  else
1110 	    {
1111 	      insert_before = last_loop_insn;
1112 #ifdef HAVE_cc0
1113 	      /* The instruction immediately before the JUMP_INSN may
1114 		 be a compare instruction which we do not want to copy
1115 		 or delete.  */
1116 	      if (sets_cc0_p (PREV_INSN (insert_before)))
1117 		insert_before = PREV_INSN (insert_before);
1118 #endif
1119 	      copy_end = PREV_INSN (insert_before);
1120 	    }
1121 
1122 	  /* Set unroll type to MODULO now.  */
1123 	  unroll_type = UNROLL_MODULO;
1124 	  loop_preconditioned = 1;
1125 
1126 	  /* Preconditioning changes the loop's initial value.  We set
1127 	     it to an unknown value so that doloop_optimize won't get
1128 	     confused.  */
1129 	  loop_info->initial_value = 0;
1130 
1131 	  /* Clean up.  */
1132 	  free (labels);
1133 	}
1134     }
1135 
1136   /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1137      the loop unless all loops are being unrolled.  */
1138   if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1139     {
1140       if (loop_dump_stream)
1141 	fprintf (loop_dump_stream,
1142 		 "Unrolling failure: Naive unrolling not being done.\n");
1143       goto egress;
1144     }
1145 
1146   /* At this point, we are guaranteed to unroll the loop.  */
1147 
1148   /* Keep track of the unroll factor for the loop.  */
1149   loop_info->unroll_number = unroll_number;
1150 
1151   /* And whether the loop has been preconditioned.  */
1152   loop_info->preconditioned = loop_preconditioned;
1153 
1154   /* Remember whether it was preconditioned for the second loop pass.  */
1155   NOTE_PRECONDITIONED (loop->end) = loop_preconditioned;
1156 
1157   /* For each biv and giv, determine whether it can be safely split into
1158      a different variable for each unrolled copy of the loop body.
1159      We precalculate and save this info here, since computing it is
1160      expensive.
1161 
1162      Do this before deleting any instructions from the loop, so that
1163      back_branch_in_range_p will work correctly.  */
1164 
1165   if (splitting_not_safe)
1166     temp = 0;
1167   else
1168     temp = find_splittable_regs (loop, unroll_type, unroll_number);
1169 
1170   /* find_splittable_regs may have created some new registers, so must
1171      reallocate the reg_map with the new larger size, and must realloc
1172      the constant maps also.  */
1173 
1174   maxregnum = max_reg_num ();
1175   map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1176 
1177   init_reg_map (map, maxregnum);
1178 
1179   if (map->const_equiv_varray == 0)
1180     VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1181 			     maxregnum + temp * unroll_number * 2,
1182 			     "unroll_loop");
1183   global_const_equiv_varray = map->const_equiv_varray;
1184 
1185   /* Search the list of bivs and givs to find ones which need to be remapped
1186      when split, and set their reg_map entry appropriately.  */
1187 
1188   for (bl = ivs->list; bl; bl = bl->next)
1189     {
1190       if (REGNO (bl->biv->src_reg) != bl->regno)
1191 	map->reg_map[bl->regno] = bl->biv->src_reg;
1192 #if 0
1193       /* Currently, non-reduced/final-value givs are never split.  */
1194       for (v = bl->giv; v; v = v->next_iv)
1195 	if (REGNO (v->src_reg) != bl->regno)
1196 	  map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1197 #endif
1198     }
1199 
1200   /* Use our current register alignment and pointer flags.  */
1201   map->regno_pointer_align = cfun->emit->regno_pointer_align;
1202   map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1203 
1204   /* If the loop is being partially unrolled, and the iteration variables
1205      are being split, and are being renamed for the split, then must fix up
1206      the compare/jump instruction at the end of the loop to refer to the new
1207      registers.  This compare isn't copied, so the registers used in it
1208      will never be replaced if it isn't done here.  */
1209 
1210   if (unroll_type == UNROLL_MODULO)
1211     {
1212       insn = NEXT_INSN (copy_end);
1213       if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1214 	PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1215     }
1216 
1217   /* For unroll_number times, make a copy of each instruction
1218      between copy_start and copy_end, and insert these new instructions
1219      before the end of the loop.  */
1220 
1221   for (i = 0; i < unroll_number; i++)
1222     {
1223       memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1224       memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1225 	      VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1226       map->const_age = 0;
1227 
1228       for (j = 0; j < max_labelno; j++)
1229 	if (local_label[j])
1230 	  set_label_in_map (map, j, gen_label_rtx ());
1231 
1232       for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1233 	if (local_regno[r])
1234 	  {
1235 	    map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1236 	    record_base_value (REGNO (map->reg_map[r]),
1237 			       regno_reg_rtx[r], 0);
1238 	  }
1239 
1240       /* If loop starts with a branch to the test, then fix it so that
1241 	 it points to the test of the first unrolled copy of the loop.  */
1242       if (i == 0 && loop_start != copy_start)
1243 	{
1244 	  insn = PREV_INSN (copy_start);
1245 	  pattern = PATTERN (insn);
1246 
1247 	  tem = get_label_from_map (map,
1248 				    CODE_LABEL_NUMBER
1249 				    (XEXP (SET_SRC (pattern), 0)));
1250 	  SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1251 
1252 	  /* Set the jump label so that it can be used by later loop unrolling
1253 	     passes.  */
1254 	  JUMP_LABEL (insn) = tem;
1255 	  LABEL_NUSES (tem)++;
1256 	}
1257 
1258       copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1259 		      i == unroll_number - 1, unroll_type, start_label,
1260 		      loop_end, insert_before, insert_before);
1261     }
1262 
1263   /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1264      insn to be deleted.  This prevents any runaway delete_insn call from
1265      more insns that it should, as it always stops at a CODE_LABEL.  */
1266 
1267   /* Delete the compare and branch at the end of the loop if completely
1268      unrolling the loop.  Deleting the backward branch at the end also
1269      deletes the code label at the start of the loop.  This is done at
1270      the very end to avoid problems with back_branch_in_range_p.  */
1271 
1272   if (unroll_type == UNROLL_COMPLETELY)
1273     safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1274   else
1275     safety_label = emit_label_after (gen_label_rtx (), copy_end);
1276 
1277   /* Delete all of the original loop instructions.  Don't delete the
1278      LOOP_BEG note, or the first code label in the loop.  */
1279 
1280   insn = NEXT_INSN (copy_start);
1281   while (insn != safety_label)
1282     {
1283       /* ??? Don't delete named code labels.  They will be deleted when the
1284 	 jump that references them is deleted.  Otherwise, we end up deleting
1285 	 them twice, which causes them to completely disappear instead of turn
1286 	 into NOTE_INSN_DELETED_LABEL notes.  This in turn causes aborts in
1287 	 dwarfout.c/dwarf2out.c.  We could perhaps fix the dwarf*out.c files
1288 	 to handle deleted labels instead.  Or perhaps fix DECL_RTL of the
1289 	 associated LABEL_DECL to point to one of the new label instances.  */
1290       /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note.  */
1291       if (insn != start_label
1292 	  && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1293 	  && ! (GET_CODE (insn) == NOTE
1294 		&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1295 	insn = delete_related_insns (insn);
1296       else
1297 	insn = NEXT_INSN (insn);
1298     }
1299 
1300   /* Can now delete the 'safety' label emitted to protect us from runaway
1301      delete_related_insns calls.  */
1302   if (INSN_DELETED_P (safety_label))
1303     abort ();
1304   delete_related_insns (safety_label);
1305 
1306   /* If exit_label exists, emit it after the loop.  Doing the emit here
1307      forces it to have a higher INSN_UID than any insn in the unrolled loop.
1308      This is needed so that mostly_true_jump in reorg.c will treat jumps
1309      to this loop end label correctly, i.e. predict that they are usually
1310      not taken.  */
1311   if (exit_label)
1312     emit_label_after (exit_label, loop_end);
1313 
1314  egress:
1315   if (unroll_type == UNROLL_COMPLETELY)
1316     {
1317       /* Remove the loop notes since this is no longer a loop.  */
1318       if (loop->vtop)
1319 	delete_related_insns (loop->vtop);
1320       if (loop->cont)
1321 	delete_related_insns (loop->cont);
1322       if (loop_start)
1323 	delete_related_insns (loop_start);
1324       if (loop_end)
1325 	delete_related_insns (loop_end);
1326     }
1327 
1328   if (map->const_equiv_varray)
1329     VARRAY_FREE (map->const_equiv_varray);
1330   if (map->label_map)
1331     {
1332       free (map->label_map);
1333       free (local_label);
1334     }
1335   free (map->insn_map);
1336   free (splittable_regs);
1337   free (splittable_regs_updates);
1338   free (addr_combined_regs);
1339   free (local_regno);
1340   if (map->reg_map)
1341     free (map->reg_map);
1342   free (map);
1343 }
1344 
1345 /* A helper function for unroll_loop.  Emit a compare and branch to
1346    satisfy (CMP OP1 OP2), but pass this through the simplifier first.
1347    If the branch turned out to be conditional, return it, otherwise
1348    return NULL.  */
1349 
1350 static rtx
simplify_cmp_and_jump_insns(code,mode,op0,op1,label)1351 simplify_cmp_and_jump_insns (code, mode, op0, op1, label)
1352      enum rtx_code code;
1353      enum machine_mode mode;
1354      rtx op0, op1, label;
1355 {
1356   rtx t, insn;
1357 
1358   t = simplify_relational_operation (code, mode, op0, op1);
1359   if (!t)
1360     {
1361       enum rtx_code scode = signed_condition (code);
1362       emit_cmp_and_jump_insns (op0, op1, scode, NULL_RTX, mode,
1363 			       code != scode, label);
1364       insn = get_last_insn ();
1365 
1366       JUMP_LABEL (insn) = label;
1367       LABEL_NUSES (label) += 1;
1368 
1369       return insn;
1370     }
1371   else if (t == const_true_rtx)
1372     {
1373       insn = emit_jump_insn (gen_jump (label));
1374       emit_barrier ();
1375       JUMP_LABEL (insn) = label;
1376       LABEL_NUSES (label) += 1;
1377     }
1378 
1379   return NULL_RTX;
1380 }
1381 
1382 /* Return true if the loop can be safely, and profitably, preconditioned
1383    so that the unrolled copies of the loop body don't need exit tests.
1384 
1385    This only works if final_value, initial_value and increment can be
1386    determined, and if increment is a constant power of 2.
1387    If increment is not a power of 2, then the preconditioning modulo
1388    operation would require a real modulo instead of a boolean AND, and this
1389    is not considered `profitable'.  */
1390 
1391 /* ??? If the loop is known to be executed very many times, or the machine
1392    has a very cheap divide instruction, then preconditioning is a win even
1393    when the increment is not a power of 2.  Use RTX_COST to compute
1394    whether divide is cheap.
1395    ??? A divide by constant doesn't actually need a divide, look at
1396    expand_divmod.  The reduced cost of this optimized modulo is not
1397    reflected in RTX_COST.  */
1398 
1399 int
precondition_loop_p(loop,initial_value,final_value,increment,mode)1400 precondition_loop_p (loop, initial_value, final_value, increment, mode)
1401      const struct loop *loop;
1402      rtx *initial_value, *final_value, *increment;
1403      enum machine_mode *mode;
1404 {
1405   rtx loop_start = loop->start;
1406   struct loop_info *loop_info = LOOP_INFO (loop);
1407 
1408   if (loop_info->n_iterations > 0)
1409     {
1410       if (INTVAL (loop_info->increment) > 0)
1411 	{
1412 	  *initial_value = const0_rtx;
1413 	  *increment = const1_rtx;
1414 	  *final_value = GEN_INT (loop_info->n_iterations);
1415 	}
1416       else
1417 	{
1418 	  *initial_value = GEN_INT (loop_info->n_iterations);
1419 	  *increment = constm1_rtx;
1420 	  *final_value = const0_rtx;
1421 	}
1422       *mode = word_mode;
1423 
1424       if (loop_dump_stream)
1425 	{
1426 	  fputs ("Preconditioning: Success, number of iterations known, ",
1427 		 loop_dump_stream);
1428 	  fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1429 		   loop_info->n_iterations);
1430 	  fputs (".\n", loop_dump_stream);
1431 	}
1432       return 1;
1433     }
1434 
1435   if (loop_info->iteration_var == 0)
1436     {
1437       if (loop_dump_stream)
1438 	fprintf (loop_dump_stream,
1439 		 "Preconditioning: Could not find iteration variable.\n");
1440       return 0;
1441     }
1442   else if (loop_info->initial_value == 0)
1443     {
1444       if (loop_dump_stream)
1445 	fprintf (loop_dump_stream,
1446 		 "Preconditioning: Could not find initial value.\n");
1447       return 0;
1448     }
1449   else if (loop_info->increment == 0)
1450     {
1451       if (loop_dump_stream)
1452 	fprintf (loop_dump_stream,
1453 		 "Preconditioning: Could not find increment value.\n");
1454       return 0;
1455     }
1456   else if (GET_CODE (loop_info->increment) != CONST_INT)
1457     {
1458       if (loop_dump_stream)
1459 	fprintf (loop_dump_stream,
1460 		 "Preconditioning: Increment not a constant.\n");
1461       return 0;
1462     }
1463   else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1464 	   && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1465     {
1466       if (loop_dump_stream)
1467 	fprintf (loop_dump_stream,
1468 		 "Preconditioning: Increment not a constant power of 2.\n");
1469       return 0;
1470     }
1471 
1472   /* Unsigned_compare and compare_dir can be ignored here, since they do
1473      not matter for preconditioning.  */
1474 
1475   if (loop_info->final_value == 0)
1476     {
1477       if (loop_dump_stream)
1478 	fprintf (loop_dump_stream,
1479 		 "Preconditioning: EQ comparison loop.\n");
1480       return 0;
1481     }
1482 
1483   /* Must ensure that final_value is invariant, so call
1484      loop_invariant_p to check.  Before doing so, must check regno
1485      against max_reg_before_loop to make sure that the register is in
1486      the range covered by loop_invariant_p.  If it isn't, then it is
1487      most likely a biv/giv which by definition are not invariant.  */
1488   if ((GET_CODE (loop_info->final_value) == REG
1489        && REGNO (loop_info->final_value) >= max_reg_before_loop)
1490       || (GET_CODE (loop_info->final_value) == PLUS
1491 	  && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1492       || ! loop_invariant_p (loop, loop_info->final_value))
1493     {
1494       if (loop_dump_stream)
1495 	fprintf (loop_dump_stream,
1496 		 "Preconditioning: Final value not invariant.\n");
1497       return 0;
1498     }
1499 
1500   /* Fail for floating point values, since the caller of this function
1501      does not have code to deal with them.  */
1502   if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1503       || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1504     {
1505       if (loop_dump_stream)
1506 	fprintf (loop_dump_stream,
1507 		 "Preconditioning: Floating point final or initial value.\n");
1508       return 0;
1509     }
1510 
1511   /* Fail if loop_info->iteration_var is not live before loop_start,
1512      since we need to test its value in the preconditioning code.  */
1513 
1514   if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1515       > INSN_LUID (loop_start))
1516     {
1517       if (loop_dump_stream)
1518 	fprintf (loop_dump_stream,
1519 		 "Preconditioning: Iteration var not live before loop start.\n");
1520       return 0;
1521     }
1522 
1523   /* Note that loop_iterations biases the initial value for GIV iterators
1524      such as "while (i-- > 0)" so that we can calculate the number of
1525      iterations just like for BIV iterators.
1526 
1527      Also note that the absolute values of initial_value and
1528      final_value are unimportant as only their difference is used for
1529      calculating the number of loop iterations.  */
1530   *initial_value = loop_info->initial_value;
1531   *increment = loop_info->increment;
1532   *final_value = loop_info->final_value;
1533 
1534   /* Decide what mode to do these calculations in.  Choose the larger
1535      of final_value's mode and initial_value's mode, or a full-word if
1536      both are constants.  */
1537   *mode = GET_MODE (*final_value);
1538   if (*mode == VOIDmode)
1539     {
1540       *mode = GET_MODE (*initial_value);
1541       if (*mode == VOIDmode)
1542 	*mode = word_mode;
1543     }
1544   else if (*mode != GET_MODE (*initial_value)
1545 	   && (GET_MODE_SIZE (*mode)
1546 	       < GET_MODE_SIZE (GET_MODE (*initial_value))))
1547     *mode = GET_MODE (*initial_value);
1548 
1549   /* Success!  */
1550   if (loop_dump_stream)
1551     fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1552   return 1;
1553 }
1554 
1555 /* All pseudo-registers must be mapped to themselves.  Two hard registers
1556    must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1557    REGNUM, to avoid function-inlining specific conversions of these
1558    registers.  All other hard regs can not be mapped because they may be
1559    used with different
1560    modes.  */
1561 
1562 static void
init_reg_map(map,maxregnum)1563 init_reg_map (map, maxregnum)
1564      struct inline_remap *map;
1565      int maxregnum;
1566 {
1567   int i;
1568 
1569   for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1570     map->reg_map[i] = regno_reg_rtx[i];
1571   /* Just clear the rest of the entries.  */
1572   for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1573     map->reg_map[i] = 0;
1574 
1575   map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1576     = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1577   map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1578     = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1579 }
1580 
1581 /* Strength-reduction will often emit code for optimized biv/givs which
1582    calculates their value in a temporary register, and then copies the result
1583    to the iv.  This procedure reconstructs the pattern computing the iv;
1584    verifying that all operands are of the proper form.
1585 
1586    PATTERN must be the result of single_set.
1587    The return value is the amount that the giv is incremented by.  */
1588 
1589 static rtx
calculate_giv_inc(pattern,src_insn,regno)1590 calculate_giv_inc (pattern, src_insn, regno)
1591      rtx pattern, src_insn;
1592      unsigned int regno;
1593 {
1594   rtx increment;
1595   rtx increment_total = 0;
1596   int tries = 0;
1597 
1598  retry:
1599   /* Verify that we have an increment insn here.  First check for a plus
1600      as the set source.  */
1601   if (GET_CODE (SET_SRC (pattern)) != PLUS)
1602     {
1603       /* SR sometimes computes the new giv value in a temp, then copies it
1604 	 to the new_reg.  */
1605       src_insn = PREV_INSN (src_insn);
1606       pattern = single_set (src_insn);
1607       if (GET_CODE (SET_SRC (pattern)) != PLUS)
1608 	abort ();
1609 
1610       /* The last insn emitted is not needed, so delete it to avoid confusing
1611 	 the second cse pass.  This insn sets the giv unnecessarily.  */
1612       delete_related_insns (get_last_insn ());
1613     }
1614 
1615   /* Verify that we have a constant as the second operand of the plus.  */
1616   increment = XEXP (SET_SRC (pattern), 1);
1617   if (GET_CODE (increment) != CONST_INT)
1618     {
1619       /* SR sometimes puts the constant in a register, especially if it is
1620 	 too big to be an add immed operand.  */
1621       increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1622 
1623       /* SR may have used LO_SUM to compute the constant if it is too large
1624 	 for a load immed operand.  In this case, the constant is in operand
1625 	 one of the LO_SUM rtx.  */
1626       if (GET_CODE (increment) == LO_SUM)
1627 	increment = XEXP (increment, 1);
1628 
1629       /* Some ports store large constants in memory and add a REG_EQUAL
1630 	 note to the store insn.  */
1631       else if (GET_CODE (increment) == MEM)
1632 	{
1633 	  rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1634 	  if (note)
1635 	    increment = XEXP (note, 0);
1636 	}
1637 
1638       else if (GET_CODE (increment) == IOR
1639 	       || GET_CODE (increment) == PLUS
1640 	       || GET_CODE (increment) == ASHIFT
1641 	       || GET_CODE (increment) == LSHIFTRT)
1642 	{
1643 	  /* The rs6000 port loads some constants with IOR.
1644 	     The alpha port loads some constants with ASHIFT and PLUS.
1645 	     The sparc64 port loads some constants with LSHIFTRT.  */
1646 	  rtx second_part = XEXP (increment, 1);
1647 	  enum rtx_code code = GET_CODE (increment);
1648 
1649 	  increment = find_last_value (XEXP (increment, 0),
1650 				       &src_insn, NULL_RTX, 0);
1651 	  /* Don't need the last insn anymore.  */
1652 	  delete_related_insns (get_last_insn ());
1653 
1654 	  if (GET_CODE (second_part) != CONST_INT
1655 	      || GET_CODE (increment) != CONST_INT)
1656 	    abort ();
1657 
1658 	  if (code == IOR)
1659 	    increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1660 	  else if (code == PLUS)
1661 	    increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1662 	  else if (code == ASHIFT)
1663 	    increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1664 	  else
1665 	    increment = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (increment) >> INTVAL (second_part));
1666 	}
1667 
1668       if (GET_CODE (increment) != CONST_INT)
1669 	abort ();
1670 
1671       /* The insn loading the constant into a register is no longer needed,
1672 	 so delete it.  */
1673       delete_related_insns (get_last_insn ());
1674     }
1675 
1676   if (increment_total)
1677     increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1678   else
1679     increment_total = increment;
1680 
1681   /* Check that the source register is the same as the register we expected
1682      to see as the source.  If not, something is seriously wrong.  */
1683   if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1684       || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1685     {
1686       /* Some machines (e.g. the romp), may emit two add instructions for
1687 	 certain constants, so lets try looking for another add immediately
1688 	 before this one if we have only seen one add insn so far.  */
1689 
1690       if (tries == 0)
1691 	{
1692 	  tries++;
1693 
1694 	  src_insn = PREV_INSN (src_insn);
1695 	  pattern = single_set (src_insn);
1696 
1697 	  delete_related_insns (get_last_insn ());
1698 
1699 	  goto retry;
1700 	}
1701 
1702       abort ();
1703     }
1704 
1705   return increment_total;
1706 }
1707 
1708 /* Copy REG_NOTES, except for insn references, because not all insn_map
1709    entries are valid yet.  We do need to copy registers now though, because
1710    the reg_map entries can change during copying.  */
1711 
1712 static rtx
initial_reg_note_copy(notes,map)1713 initial_reg_note_copy (notes, map)
1714      rtx notes;
1715      struct inline_remap *map;
1716 {
1717   rtx copy;
1718 
1719   if (notes == 0)
1720     return 0;
1721 
1722   copy = rtx_alloc (GET_CODE (notes));
1723   PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1724 
1725   if (GET_CODE (notes) == EXPR_LIST)
1726     XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1727   else if (GET_CODE (notes) == INSN_LIST)
1728     /* Don't substitute for these yet.  */
1729     XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1730   else
1731     abort ();
1732 
1733   XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1734 
1735   return copy;
1736 }
1737 
1738 /* Fixup insn references in copied REG_NOTES.  */
1739 
1740 static void
final_reg_note_copy(notesp,map)1741 final_reg_note_copy (notesp, map)
1742      rtx *notesp;
1743      struct inline_remap *map;
1744 {
1745   while (*notesp)
1746     {
1747       rtx note = *notesp;
1748 
1749       if (GET_CODE (note) == INSN_LIST)
1750 	{
1751 	  /* Sometimes, we have a REG_WAS_0 note that points to a
1752 	     deleted instruction.  In that case, we can just delete the
1753 	     note.  */
1754 	  if (REG_NOTE_KIND (note) == REG_WAS_0)
1755 	    {
1756 	      *notesp = XEXP (note, 1);
1757 	      continue;
1758 	    }
1759 	  else
1760 	    {
1761 	      rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1762 
1763 	      /* If we failed to remap the note, something is awry.
1764 		 Allow REG_LABEL as it may reference label outside
1765 		 the unrolled loop.  */
1766 	      if (!insn)
1767 		{
1768 		  if (REG_NOTE_KIND (note) != REG_LABEL)
1769 		    abort ();
1770 		}
1771 	      else
1772 	        XEXP (note, 0) = insn;
1773 	    }
1774 	}
1775 
1776       notesp = &XEXP (note, 1);
1777     }
1778 }
1779 
1780 /* Copy each instruction in the loop, substituting from map as appropriate.
1781    This is very similar to a loop in expand_inline_function.  */
1782 
1783 static void
copy_loop_body(loop,copy_start,copy_end,map,exit_label,last_iteration,unroll_type,start_label,loop_end,insert_before,copy_notes_from)1784 copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
1785 		unroll_type, start_label, loop_end, insert_before,
1786 		copy_notes_from)
1787      struct loop *loop;
1788      rtx copy_start, copy_end;
1789      struct inline_remap *map;
1790      rtx exit_label;
1791      int last_iteration;
1792      enum unroll_types unroll_type;
1793      rtx start_label, loop_end, insert_before, copy_notes_from;
1794 {
1795   struct loop_ivs *ivs = LOOP_IVS (loop);
1796   rtx insn, pattern;
1797   rtx set, tem, copy = NULL_RTX;
1798   int dest_reg_was_split, i;
1799 #ifdef HAVE_cc0
1800   rtx cc0_insn = 0;
1801 #endif
1802   rtx final_label = 0;
1803   rtx giv_inc, giv_dest_reg, giv_src_reg;
1804 
1805   /* If this isn't the last iteration, then map any references to the
1806      start_label to final_label.  Final label will then be emitted immediately
1807      after the end of this loop body if it was ever used.
1808 
1809      If this is the last iteration, then map references to the start_label
1810      to itself.  */
1811   if (! last_iteration)
1812     {
1813       final_label = gen_label_rtx ();
1814       set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1815     }
1816   else
1817     set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1818 
1819   start_sequence ();
1820 
1821   insn = copy_start;
1822   do
1823     {
1824       insn = NEXT_INSN (insn);
1825 
1826       map->orig_asm_operands_vector = 0;
1827 
1828       switch (GET_CODE (insn))
1829 	{
1830 	case INSN:
1831 	  pattern = PATTERN (insn);
1832 	  copy = 0;
1833 	  giv_inc = 0;
1834 
1835 	  /* Check to see if this is a giv that has been combined with
1836 	     some split address givs.  (Combined in the sense that
1837 	     `combine_givs' in loop.c has put two givs in the same register.)
1838 	     In this case, we must search all givs based on the same biv to
1839 	     find the address givs.  Then split the address givs.
1840 	     Do this before splitting the giv, since that may map the
1841 	     SET_DEST to a new register.  */
1842 
1843 	  if ((set = single_set (insn))
1844 	      && GET_CODE (SET_DEST (set)) == REG
1845 	      && addr_combined_regs[REGNO (SET_DEST (set))])
1846 	    {
1847 	      struct iv_class *bl;
1848 	      struct induction *v, *tv;
1849 	      unsigned int regno = REGNO (SET_DEST (set));
1850 
1851 	      v = addr_combined_regs[REGNO (SET_DEST (set))];
1852 	      bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1853 
1854 	      /* Although the giv_inc amount is not needed here, we must call
1855 		 calculate_giv_inc here since it might try to delete the
1856 		 last insn emitted.  If we wait until later to call it,
1857 		 we might accidentally delete insns generated immediately
1858 		 below by emit_unrolled_add.  */
1859 
1860 	      giv_inc = calculate_giv_inc (set, insn, regno);
1861 
1862 	      /* Now find all address giv's that were combined with this
1863 		 giv 'v'.  */
1864 	      for (tv = bl->giv; tv; tv = tv->next_iv)
1865 		if (tv->giv_type == DEST_ADDR && tv->same == v)
1866 		  {
1867 		    int this_giv_inc;
1868 
1869 		    /* If this DEST_ADDR giv was not split, then ignore it.  */
1870 		    if (*tv->location != tv->dest_reg)
1871 		      continue;
1872 
1873 		    /* Scale this_giv_inc if the multiplicative factors of
1874 		       the two givs are different.  */
1875 		    this_giv_inc = INTVAL (giv_inc);
1876 		    if (tv->mult_val != v->mult_val)
1877 		      this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1878 				      * INTVAL (tv->mult_val));
1879 
1880 		    tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1881 		    *tv->location = tv->dest_reg;
1882 
1883 		    if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1884 		      {
1885 			/* Must emit an insn to increment the split address
1886 			   giv.  Add in the const_adjust field in case there
1887 			   was a constant eliminated from the address.  */
1888 			rtx value, dest_reg;
1889 
1890 			/* tv->dest_reg will be either a bare register,
1891 			   or else a register plus a constant.  */
1892 			if (GET_CODE (tv->dest_reg) == REG)
1893 			  dest_reg = tv->dest_reg;
1894 			else
1895 			  dest_reg = XEXP (tv->dest_reg, 0);
1896 
1897 			/* Check for shared address givs, and avoid
1898 			   incrementing the shared pseudo reg more than
1899 			   once.  */
1900 			if (! tv->same_insn && ! tv->shared)
1901 			  {
1902 			    /* tv->dest_reg may actually be a (PLUS (REG)
1903 			       (CONST)) here, so we must call plus_constant
1904 			       to add the const_adjust amount before calling
1905 			       emit_unrolled_add below.  */
1906 			    value = plus_constant (tv->dest_reg,
1907 						   tv->const_adjust);
1908 
1909 			    if (GET_CODE (value) == PLUS)
1910 			      {
1911 				/* The constant could be too large for an add
1912 				   immediate, so can't directly emit an insn
1913 				   here.  */
1914 				emit_unrolled_add (dest_reg, XEXP (value, 0),
1915 						   XEXP (value, 1));
1916 			      }
1917 			  }
1918 
1919 			/* Reset the giv to be just the register again, in case
1920 			   it is used after the set we have just emitted.
1921 			   We must subtract the const_adjust factor added in
1922 			   above.  */
1923 			tv->dest_reg = plus_constant (dest_reg,
1924 						      -tv->const_adjust);
1925 			*tv->location = tv->dest_reg;
1926 		      }
1927 		  }
1928 	    }
1929 
1930 	  /* If this is a setting of a splittable variable, then determine
1931 	     how to split the variable, create a new set based on this split,
1932 	     and set up the reg_map so that later uses of the variable will
1933 	     use the new split variable.  */
1934 
1935 	  dest_reg_was_split = 0;
1936 
1937 	  if ((set = single_set (insn))
1938 	      && GET_CODE (SET_DEST (set)) == REG
1939 	      && splittable_regs[REGNO (SET_DEST (set))])
1940 	    {
1941 	      unsigned int regno = REGNO (SET_DEST (set));
1942 	      unsigned int src_regno;
1943 
1944 	      dest_reg_was_split = 1;
1945 
1946 	      giv_dest_reg = SET_DEST (set);
1947 	      giv_src_reg = giv_dest_reg;
1948 	      /* Compute the increment value for the giv, if it wasn't
1949 		 already computed above.  */
1950 	      if (giv_inc == 0)
1951 		giv_inc = calculate_giv_inc (set, insn, regno);
1952 
1953 	      src_regno = REGNO (giv_src_reg);
1954 
1955 	      if (unroll_type == UNROLL_COMPLETELY)
1956 		{
1957 		  /* Completely unrolling the loop.  Set the induction
1958 		     variable to a known constant value.  */
1959 
1960 		  /* The value in splittable_regs may be an invariant
1961 		     value, so we must use plus_constant here.  */
1962 		  splittable_regs[regno]
1963 		    = plus_constant (splittable_regs[src_regno],
1964 				     INTVAL (giv_inc));
1965 
1966 		  if (GET_CODE (splittable_regs[regno]) == PLUS)
1967 		    {
1968 		      giv_src_reg = XEXP (splittable_regs[regno], 0);
1969 		      giv_inc = XEXP (splittable_regs[regno], 1);
1970 		    }
1971 		  else
1972 		    {
1973 		      /* The splittable_regs value must be a REG or a
1974 			 CONST_INT, so put the entire value in the giv_src_reg
1975 			 variable.  */
1976 		      giv_src_reg = splittable_regs[regno];
1977 		      giv_inc = const0_rtx;
1978 		    }
1979 		}
1980 	      else
1981 		{
1982 		  /* Partially unrolling loop.  Create a new pseudo
1983 		     register for the iteration variable, and set it to
1984 		     be a constant plus the original register.  Except
1985 		     on the last iteration, when the result has to
1986 		     go back into the original iteration var register.  */
1987 
1988 		  /* Handle bivs which must be mapped to a new register
1989 		     when split.  This happens for bivs which need their
1990 		     final value set before loop entry.  The new register
1991 		     for the biv was stored in the biv's first struct
1992 		     induction entry by find_splittable_regs.  */
1993 
1994 		  if (regno < ivs->n_regs
1995 		      && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1996 		    {
1997 		      giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1998 		      giv_dest_reg = giv_src_reg;
1999 		    }
2000 
2001 #if 0
2002 		  /* If non-reduced/final-value givs were split, then
2003 		     this would have to remap those givs also.  See
2004 		     find_splittable_regs.  */
2005 #endif
2006 
2007 		  splittable_regs[regno]
2008 		    = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
2009 					   giv_inc,
2010 					   splittable_regs[src_regno]);
2011 		  giv_inc = splittable_regs[regno];
2012 
2013 		  /* Now split the induction variable by changing the dest
2014 		     of this insn to a new register, and setting its
2015 		     reg_map entry to point to this new register.
2016 
2017 		     If this is the last iteration, and this is the last insn
2018 		     that will update the iv, then reuse the original dest,
2019 		     to ensure that the iv will have the proper value when
2020 		     the loop exits or repeats.
2021 
2022 		     Using splittable_regs_updates here like this is safe,
2023 		     because it can only be greater than one if all
2024 		     instructions modifying the iv are always executed in
2025 		     order.  */
2026 
2027 		  if (! last_iteration
2028 		      || (splittable_regs_updates[regno]-- != 1))
2029 		    {
2030 		      tem = gen_reg_rtx (GET_MODE (giv_src_reg));
2031 		      giv_dest_reg = tem;
2032 		      map->reg_map[regno] = tem;
2033 		      record_base_value (REGNO (tem),
2034 					 giv_inc == const0_rtx
2035 					 ? giv_src_reg
2036 					 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
2037 							 giv_src_reg, giv_inc),
2038 					 1);
2039 		    }
2040 		  else
2041 		    map->reg_map[regno] = giv_src_reg;
2042 		}
2043 
2044 	      /* The constant being added could be too large for an add
2045 		 immediate, so can't directly emit an insn here.  */
2046 	      emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
2047 	      copy = get_last_insn ();
2048 	      pattern = PATTERN (copy);
2049 	    }
2050 	  else
2051 	    {
2052 	      pattern = copy_rtx_and_substitute (pattern, map, 0);
2053 	      copy = emit_insn (pattern);
2054 	    }
2055 	  REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2056 	  INSN_SCOPE (copy) = INSN_SCOPE (insn);
2057 
2058 	  /* If there is a REG_EQUAL note present whose value
2059 	     is not loop invariant, then delete it, since it
2060 	     may cause problems with later optimization passes.  */
2061 	  if ((tem = find_reg_note (copy, REG_EQUAL, NULL_RTX))
2062 	      && !loop_invariant_p (loop, XEXP (tem, 0)))
2063 	    remove_note (copy, tem);
2064 
2065 #ifdef HAVE_cc0
2066 	  /* If this insn is setting CC0, it may need to look at
2067 	     the insn that uses CC0 to see what type of insn it is.
2068 	     In that case, the call to recog via validate_change will
2069 	     fail.  So don't substitute constants here.  Instead,
2070 	     do it when we emit the following insn.
2071 
2072 	     For example, see the pyr.md file.  That machine has signed and
2073 	     unsigned compares.  The compare patterns must check the
2074 	     following branch insn to see which what kind of compare to
2075 	     emit.
2076 
2077 	     If the previous insn set CC0, substitute constants on it as
2078 	     well.  */
2079 	  if (sets_cc0_p (PATTERN (copy)) != 0)
2080 	    cc0_insn = copy;
2081 	  else
2082 	    {
2083 	      if (cc0_insn)
2084 		try_constants (cc0_insn, map);
2085 	      cc0_insn = 0;
2086 	      try_constants (copy, map);
2087 	    }
2088 #else
2089 	  try_constants (copy, map);
2090 #endif
2091 
2092 	  /* Make split induction variable constants `permanent' since we
2093 	     know there are no backward branches across iteration variable
2094 	     settings which would invalidate this.  */
2095 	  if (dest_reg_was_split)
2096 	    {
2097 	      int regno = REGNO (SET_DEST (set));
2098 
2099 	      if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2100 		  && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2101 		      == map->const_age))
2102 		VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2103 	    }
2104 	  break;
2105 
2106 	case JUMP_INSN:
2107 	  pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2108 	  copy = emit_jump_insn (pattern);
2109 	  REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2110 	  INSN_SCOPE (copy) = INSN_SCOPE (insn);
2111 
2112 	  if (JUMP_LABEL (insn))
2113 	    {
2114 	      JUMP_LABEL (copy) = get_label_from_map (map,
2115 						      CODE_LABEL_NUMBER
2116 						      (JUMP_LABEL (insn)));
2117 	      LABEL_NUSES (JUMP_LABEL (copy))++;
2118 	    }
2119 	  if (JUMP_LABEL (insn) == start_label && insn == copy_end
2120 	      && ! last_iteration)
2121 	    {
2122 
2123 	      /* This is a branch to the beginning of the loop; this is the
2124 		 last insn being copied; and this is not the last iteration.
2125 		 In this case, we want to change the original fall through
2126 		 case to be a branch past the end of the loop, and the
2127 		 original jump label case to fall_through.  */
2128 
2129 	      if (!invert_jump (copy, exit_label, 0))
2130 		{
2131 		  rtx jmp;
2132 		  rtx lab = gen_label_rtx ();
2133 		  /* Can't do it by reversing the jump (probably because we
2134 		     couldn't reverse the conditions), so emit a new
2135 		     jump_insn after COPY, and redirect the jump around
2136 		     that.  */
2137 		  jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2138 		  JUMP_LABEL (jmp) = exit_label;
2139 		  LABEL_NUSES (exit_label)++;
2140 		  jmp = emit_barrier_after (jmp);
2141 		  emit_label_after (lab, jmp);
2142 		  LABEL_NUSES (lab) = 0;
2143 		  if (!redirect_jump (copy, lab, 0))
2144 		    abort ();
2145 		}
2146 	    }
2147 
2148 #ifdef HAVE_cc0
2149 	  if (cc0_insn)
2150 	    try_constants (cc0_insn, map);
2151 	  cc0_insn = 0;
2152 #endif
2153 	  try_constants (copy, map);
2154 
2155 	  /* Set the jump label of COPY correctly to avoid problems with
2156 	     later passes of unroll_loop, if INSN had jump label set.  */
2157 	  if (JUMP_LABEL (insn))
2158 	    {
2159 	      rtx label = 0;
2160 
2161 	      /* Can't use the label_map for every insn, since this may be
2162 		 the backward branch, and hence the label was not mapped.  */
2163 	      if ((set = single_set (copy)))
2164 		{
2165 		  tem = SET_SRC (set);
2166 		  if (GET_CODE (tem) == LABEL_REF)
2167 		    label = XEXP (tem, 0);
2168 		  else if (GET_CODE (tem) == IF_THEN_ELSE)
2169 		    {
2170 		      if (XEXP (tem, 1) != pc_rtx)
2171 			label = XEXP (XEXP (tem, 1), 0);
2172 		      else
2173 			label = XEXP (XEXP (tem, 2), 0);
2174 		    }
2175 		}
2176 
2177 	      if (label && GET_CODE (label) == CODE_LABEL)
2178 		JUMP_LABEL (copy) = label;
2179 	      else
2180 		{
2181 		  /* An unrecognizable jump insn, probably the entry jump
2182 		     for a switch statement.  This label must have been mapped,
2183 		     so just use the label_map to get the new jump label.  */
2184 		  JUMP_LABEL (copy)
2185 		    = get_label_from_map (map,
2186 					  CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2187 		}
2188 
2189 	      /* If this is a non-local jump, then must increase the label
2190 		 use count so that the label will not be deleted when the
2191 		 original jump is deleted.  */
2192 	      LABEL_NUSES (JUMP_LABEL (copy))++;
2193 	    }
2194 	  else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2195 		   || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2196 	    {
2197 	      rtx pat = PATTERN (copy);
2198 	      int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2199 	      int len = XVECLEN (pat, diff_vec_p);
2200 	      int i;
2201 
2202 	      for (i = 0; i < len; i++)
2203 		LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2204 	    }
2205 
2206 	  /* If this used to be a conditional jump insn but whose branch
2207 	     direction is now known, we must do something special.  */
2208 	  if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2209 	    {
2210 #ifdef HAVE_cc0
2211 	      /* If the previous insn set cc0 for us, delete it.  */
2212 	      if (only_sets_cc0_p (PREV_INSN (copy)))
2213 		delete_related_insns (PREV_INSN (copy));
2214 #endif
2215 
2216 	      /* If this is now a no-op, delete it.  */
2217 	      if (map->last_pc_value == pc_rtx)
2218 		{
2219 		  delete_insn (copy);
2220 		  copy = 0;
2221 		}
2222 	      else
2223 		/* Otherwise, this is unconditional jump so we must put a
2224 		   BARRIER after it.  We could do some dead code elimination
2225 		   here, but jump.c will do it just as well.  */
2226 		emit_barrier ();
2227 	    }
2228 	  break;
2229 
2230 	case CALL_INSN:
2231 	  pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2232 	  copy = emit_call_insn (pattern);
2233 	  REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2234 	  INSN_SCOPE (copy) = INSN_SCOPE (insn);
2235 	  SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
2236 	  CONST_OR_PURE_CALL_P (copy) = CONST_OR_PURE_CALL_P (insn);
2237 
2238 	  /* Because the USAGE information potentially contains objects other
2239 	     than hard registers, we need to copy it.  */
2240 	  CALL_INSN_FUNCTION_USAGE (copy)
2241 	    = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2242 				       map, 0);
2243 
2244 #ifdef HAVE_cc0
2245 	  if (cc0_insn)
2246 	    try_constants (cc0_insn, map);
2247 	  cc0_insn = 0;
2248 #endif
2249 	  try_constants (copy, map);
2250 
2251 	  /* Be lazy and assume CALL_INSNs clobber all hard registers.  */
2252 	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2253 	    VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2254 	  break;
2255 
2256 	case CODE_LABEL:
2257 	  /* If this is the loop start label, then we don't need to emit a
2258 	     copy of this label since no one will use it.  */
2259 
2260 	  if (insn != start_label)
2261 	    {
2262 	      copy = emit_label (get_label_from_map (map,
2263 						     CODE_LABEL_NUMBER (insn)));
2264 	      map->const_age++;
2265 	    }
2266 	  break;
2267 
2268 	case BARRIER:
2269 	  copy = emit_barrier ();
2270 	  break;
2271 
2272 	case NOTE:
2273 	  /* VTOP and CONT notes are valid only before the loop exit test.
2274 	     If placed anywhere else, loop may generate bad code.  */
2275 	  /* BASIC_BLOCK notes exist to stabilize basic block structures with
2276 	     the associated rtl.  We do not want to share the structure in
2277 	     this new block.  */
2278 
2279 	  if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2280 	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2281 	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2282 	      && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2283 		   && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2284 		  || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2285 	    copy = emit_note (NOTE_SOURCE_FILE (insn),
2286 			      NOTE_LINE_NUMBER (insn));
2287 	  else
2288 	    copy = 0;
2289 	  break;
2290 
2291 	default:
2292 	  abort ();
2293 	}
2294 
2295       map->insn_map[INSN_UID (insn)] = copy;
2296     }
2297   while (insn != copy_end);
2298 
2299   /* Now finish coping the REG_NOTES.  */
2300   insn = copy_start;
2301   do
2302     {
2303       insn = NEXT_INSN (insn);
2304       if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2305 	   || GET_CODE (insn) == CALL_INSN)
2306 	  && map->insn_map[INSN_UID (insn)])
2307 	final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2308     }
2309   while (insn != copy_end);
2310 
2311   /* There may be notes between copy_notes_from and loop_end.  Emit a copy of
2312      each of these notes here, since there may be some important ones, such as
2313      NOTE_INSN_BLOCK_END notes, in this group.  We don't do this on the last
2314      iteration, because the original notes won't be deleted.
2315 
2316      We can't use insert_before here, because when from preconditioning,
2317      insert_before points before the loop.  We can't use copy_end, because
2318      there may be insns already inserted after it (which we don't want to
2319      copy) when not from preconditioning code.  */
2320 
2321   if (! last_iteration)
2322     {
2323       for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2324 	{
2325 	  /* VTOP notes are valid only before the loop exit test.
2326 	     If placed anywhere else, loop may generate bad code.
2327 	     Although COPY_NOTES_FROM will be at most one or two (for cc0)
2328 	     instructions before the last insn in the loop, COPY_NOTES_FROM
2329 	     can be a NOTE_INSN_LOOP_CONT note if there is no VTOP note,
2330 	     as in a do .. while loop.  */
2331 	  if (GET_CODE (insn) == NOTE
2332 	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2333 	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2334 	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2335 	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2336 	    emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2337 	}
2338     }
2339 
2340   if (final_label && LABEL_NUSES (final_label) > 0)
2341     emit_label (final_label);
2342 
2343   tem = get_insns ();
2344   end_sequence ();
2345   loop_insn_emit_before (loop, 0, insert_before, tem);
2346 }
2347 
2348 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2349    emitted.  This will correctly handle the case where the increment value
2350    won't fit in the immediate field of a PLUS insns.  */
2351 
2352 void
emit_unrolled_add(dest_reg,src_reg,increment)2353 emit_unrolled_add (dest_reg, src_reg, increment)
2354      rtx dest_reg, src_reg, increment;
2355 {
2356   rtx result;
2357 
2358   result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2359 				dest_reg, 0, OPTAB_LIB_WIDEN);
2360 
2361   if (dest_reg != result)
2362     emit_move_insn (dest_reg, result);
2363 }
2364 
2365 /* Searches the insns between INSN and LOOP->END.  Returns 1 if there
2366    is a backward branch in that range that branches to somewhere between
2367    LOOP->START and INSN.  Returns 0 otherwise.  */
2368 
2369 /* ??? This is quadratic algorithm.  Could be rewritten to be linear.
2370    In practice, this is not a problem, because this function is seldom called,
2371    and uses a negligible amount of CPU time on average.  */
2372 
2373 int
back_branch_in_range_p(loop,insn)2374 back_branch_in_range_p (loop, insn)
2375      const struct loop *loop;
2376      rtx insn;
2377 {
2378   rtx p, q, target_insn;
2379   rtx loop_start = loop->start;
2380   rtx loop_end = loop->end;
2381   rtx orig_loop_end = loop->end;
2382 
2383   /* Stop before we get to the backward branch at the end of the loop.  */
2384   loop_end = prev_nonnote_insn (loop_end);
2385   if (GET_CODE (loop_end) == BARRIER)
2386     loop_end = PREV_INSN (loop_end);
2387 
2388   /* Check in case insn has been deleted, search forward for first non
2389      deleted insn following it.  */
2390   while (INSN_DELETED_P (insn))
2391     insn = NEXT_INSN (insn);
2392 
2393   /* Check for the case where insn is the last insn in the loop.  Deal
2394      with the case where INSN was a deleted loop test insn, in which case
2395      it will now be the NOTE_LOOP_END.  */
2396   if (insn == loop_end || insn == orig_loop_end)
2397     return 0;
2398 
2399   for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2400     {
2401       if (GET_CODE (p) == JUMP_INSN)
2402 	{
2403 	  target_insn = JUMP_LABEL (p);
2404 
2405 	  /* Search from loop_start to insn, to see if one of them is
2406 	     the target_insn.  We can't use INSN_LUID comparisons here,
2407 	     since insn may not have an LUID entry.  */
2408 	  for (q = loop_start; q != insn; q = NEXT_INSN (q))
2409 	    if (q == target_insn)
2410 	      return 1;
2411 	}
2412     }
2413 
2414   return 0;
2415 }
2416 
2417 /* Try to generate the simplest rtx for the expression
2418    (PLUS (MULT mult1 mult2) add1).  This is used to calculate the initial
2419    value of giv's.  */
2420 
2421 static rtx
fold_rtx_mult_add(mult1,mult2,add1,mode)2422 fold_rtx_mult_add (mult1, mult2, add1, mode)
2423      rtx mult1, mult2, add1;
2424      enum machine_mode mode;
2425 {
2426   rtx temp, mult_res;
2427   rtx result;
2428 
2429   /* The modes must all be the same.  This should always be true.  For now,
2430      check to make sure.  */
2431   if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2432       || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2433       || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2434     abort ();
2435 
2436   /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2437      will be a constant.  */
2438   if (GET_CODE (mult1) == CONST_INT)
2439     {
2440       temp = mult2;
2441       mult2 = mult1;
2442       mult1 = temp;
2443     }
2444 
2445   mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2446   if (! mult_res)
2447     mult_res = gen_rtx_MULT (mode, mult1, mult2);
2448 
2449   /* Again, put the constant second.  */
2450   if (GET_CODE (add1) == CONST_INT)
2451     {
2452       temp = add1;
2453       add1 = mult_res;
2454       mult_res = temp;
2455     }
2456 
2457   result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2458   if (! result)
2459     result = gen_rtx_PLUS (mode, add1, mult_res);
2460 
2461   return result;
2462 }
2463 
2464 /* Searches the list of induction struct's for the biv BL, to try to calculate
2465    the total increment value for one iteration of the loop as a constant.
2466 
2467    Returns the increment value as an rtx, simplified as much as possible,
2468    if it can be calculated.  Otherwise, returns 0.  */
2469 
2470 rtx
biv_total_increment(bl)2471 biv_total_increment (bl)
2472      const struct iv_class *bl;
2473 {
2474   struct induction *v;
2475   rtx result;
2476 
2477   /* For increment, must check every instruction that sets it.  Each
2478      instruction must be executed only once each time through the loop.
2479      To verify this, we check that the insn is always executed, and that
2480      there are no backward branches after the insn that branch to before it.
2481      Also, the insn must have a mult_val of one (to make sure it really is
2482      an increment).  */
2483 
2484   result = const0_rtx;
2485   for (v = bl->biv; v; v = v->next_iv)
2486     {
2487       if (v->always_computable && v->mult_val == const1_rtx
2488 	  && ! v->maybe_multiple
2489 	  && SCALAR_INT_MODE_P (v->mode))
2490 	{
2491 	  /* If we have already counted it, skip it.  */
2492 	  if (v->same)
2493 	    continue;
2494 
2495 	  result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2496 	}
2497       else
2498 	return 0;
2499     }
2500 
2501   return result;
2502 }
2503 
2504 /* For each biv and giv, determine whether it can be safely split into
2505    a different variable for each unrolled copy of the loop body.  If it
2506    is safe to split, then indicate that by saving some useful info
2507    in the splittable_regs array.
2508 
2509    If the loop is being completely unrolled, then splittable_regs will hold
2510    the current value of the induction variable while the loop is unrolled.
2511    It must be set to the initial value of the induction variable here.
2512    Otherwise, splittable_regs will hold the difference between the current
2513    value of the induction variable and the value the induction variable had
2514    at the top of the loop.  It must be set to the value 0 here.
2515 
2516    Returns the total number of instructions that set registers that are
2517    splittable.  */
2518 
2519 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2520    constant values are unnecessary, since we can easily calculate increment
2521    values in this case even if nothing is constant.  The increment value
2522    should not involve a multiply however.  */
2523 
2524 /* ?? Even if the biv/giv increment values aren't constant, it may still
2525    be beneficial to split the variable if the loop is only unrolled a few
2526    times, since multiplies by small integers (1,2,3,4) are very cheap.  */
2527 
2528 static int
find_splittable_regs(loop,unroll_type,unroll_number)2529 find_splittable_regs (loop, unroll_type, unroll_number)
2530      const struct loop *loop;
2531      enum unroll_types unroll_type;
2532      int unroll_number;
2533 {
2534   struct loop_ivs *ivs = LOOP_IVS (loop);
2535   struct iv_class *bl;
2536   struct induction *v;
2537   rtx increment, tem;
2538   rtx biv_final_value;
2539   int biv_splittable;
2540   int result = 0;
2541 
2542   for (bl = ivs->list; bl; bl = bl->next)
2543     {
2544       /* Biv_total_increment must return a constant value,
2545 	 otherwise we can not calculate the split values.  */
2546 
2547       increment = biv_total_increment (bl);
2548       if (! increment || GET_CODE (increment) != CONST_INT)
2549 	continue;
2550 
2551       /* The loop must be unrolled completely, or else have a known number
2552 	 of iterations and only one exit, or else the biv must be dead
2553 	 outside the loop, or else the final value must be known.  Otherwise,
2554 	 it is unsafe to split the biv since it may not have the proper
2555 	 value on loop exit.  */
2556 
2557       /* loop_number_exit_count is nonzero if the loop has an exit other than
2558 	 a fall through at the end.  */
2559 
2560       biv_splittable = 1;
2561       biv_final_value = 0;
2562       if (unroll_type != UNROLL_COMPLETELY
2563 	  && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2564 	  && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2565 	      || ! bl->init_insn
2566 	      || INSN_UID (bl->init_insn) >= max_uid_for_loop
2567 	      || (REGNO_FIRST_LUID (bl->regno)
2568 		  < INSN_LUID (bl->init_insn))
2569 	      || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2570 	  && ! (biv_final_value = final_biv_value (loop, bl)))
2571 	biv_splittable = 0;
2572 
2573       /* If any of the insns setting the BIV don't do so with a simple
2574 	 PLUS, we don't know how to split it.  */
2575       for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2576 	if ((tem = single_set (v->insn)) == 0
2577 	    || GET_CODE (SET_DEST (tem)) != REG
2578 	    || REGNO (SET_DEST (tem)) != bl->regno
2579 	    || GET_CODE (SET_SRC (tem)) != PLUS)
2580 	  biv_splittable = 0;
2581 
2582       /* If final value is nonzero, then must emit an instruction which sets
2583 	 the value of the biv to the proper value.  This is done after
2584 	 handling all of the givs, since some of them may need to use the
2585 	 biv's value in their initialization code.  */
2586 
2587       /* This biv is splittable.  If completely unrolling the loop, save
2588 	 the biv's initial value.  Otherwise, save the constant zero.  */
2589 
2590       if (biv_splittable == 1)
2591 	{
2592 	  if (unroll_type == UNROLL_COMPLETELY)
2593 	    {
2594 	      /* If the initial value of the biv is itself (i.e. it is too
2595 		 complicated for strength_reduce to compute), or is a hard
2596 		 register, or it isn't invariant, then we must create a new
2597 		 pseudo reg to hold the initial value of the biv.  */
2598 
2599 	      if (GET_CODE (bl->initial_value) == REG
2600 		  && (REGNO (bl->initial_value) == bl->regno
2601 		      || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2602 		      || ! loop_invariant_p (loop, bl->initial_value)))
2603 		{
2604 		  rtx tem = gen_reg_rtx (bl->biv->mode);
2605 
2606 		  record_base_value (REGNO (tem), bl->biv->add_val, 0);
2607 		  loop_insn_hoist (loop,
2608 				   gen_move_insn (tem, bl->biv->src_reg));
2609 
2610 		  if (loop_dump_stream)
2611 		    fprintf (loop_dump_stream,
2612 			     "Biv %d initial value remapped to %d.\n",
2613 			     bl->regno, REGNO (tem));
2614 
2615 		  splittable_regs[bl->regno] = tem;
2616 		}
2617 	      else
2618 		splittable_regs[bl->regno] = bl->initial_value;
2619 	    }
2620 	  else
2621 	    splittable_regs[bl->regno] = const0_rtx;
2622 
2623 	  /* Save the number of instructions that modify the biv, so that
2624 	     we can treat the last one specially.  */
2625 
2626 	  splittable_regs_updates[bl->regno] = bl->biv_count;
2627 	  result += bl->biv_count;
2628 
2629 	  if (loop_dump_stream)
2630 	    fprintf (loop_dump_stream,
2631 		     "Biv %d safe to split.\n", bl->regno);
2632 	}
2633 
2634       /* Check every giv that depends on this biv to see whether it is
2635 	 splittable also.  Even if the biv isn't splittable, givs which
2636 	 depend on it may be splittable if the biv is live outside the
2637 	 loop, and the givs aren't.  */
2638 
2639       result += find_splittable_givs (loop, bl, unroll_type, increment,
2640 				      unroll_number);
2641 
2642       /* If final value is nonzero, then must emit an instruction which sets
2643 	 the value of the biv to the proper value.  This is done after
2644 	 handling all of the givs, since some of them may need to use the
2645 	 biv's value in their initialization code.  */
2646       if (biv_final_value)
2647 	{
2648 	  /* If the loop has multiple exits, emit the insns before the
2649 	     loop to ensure that it will always be executed no matter
2650 	     how the loop exits.  Otherwise emit the insn after the loop,
2651 	     since this is slightly more efficient.  */
2652 	  if (! loop->exit_count)
2653 	    loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2654 						 biv_final_value));
2655 	  else
2656 	    {
2657 	      /* Create a new register to hold the value of the biv, and then
2658 		 set the biv to its final value before the loop start.  The biv
2659 		 is set to its final value before loop start to ensure that
2660 		 this insn will always be executed, no matter how the loop
2661 		 exits.  */
2662 	      rtx tem = gen_reg_rtx (bl->biv->mode);
2663 	      record_base_value (REGNO (tem), bl->biv->add_val, 0);
2664 
2665 	      loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2666 	      loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2667 						    biv_final_value));
2668 
2669 	      if (loop_dump_stream)
2670 		fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2671 			 REGNO (bl->biv->src_reg), REGNO (tem));
2672 
2673 	      /* Set up the mapping from the original biv register to the new
2674 		 register.  */
2675 	      bl->biv->src_reg = tem;
2676 	    }
2677 	}
2678     }
2679   return result;
2680 }
2681 
2682 /* For every giv based on the biv BL, check to determine whether it is
2683    splittable.  This is a subroutine to find_splittable_regs ().
2684 
2685    Return the number of instructions that set splittable registers.  */
2686 
2687 static int
find_splittable_givs(loop,bl,unroll_type,increment,unroll_number)2688 find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2689      const struct loop *loop;
2690      struct iv_class *bl;
2691      enum unroll_types unroll_type;
2692      rtx increment;
2693      int unroll_number ATTRIBUTE_UNUSED;
2694 {
2695   struct loop_ivs *ivs = LOOP_IVS (loop);
2696   struct induction *v, *v2;
2697   rtx final_value;
2698   rtx tem;
2699   int result = 0;
2700 
2701   /* Scan the list of givs, and set the same_insn field when there are
2702      multiple identical givs in the same insn.  */
2703   for (v = bl->giv; v; v = v->next_iv)
2704     for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2705       if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2706 	  && ! v2->same_insn)
2707 	v2->same_insn = v;
2708 
2709   for (v = bl->giv; v; v = v->next_iv)
2710     {
2711       rtx giv_inc, value;
2712 
2713       /* Only split the giv if it has already been reduced, or if the loop is
2714 	 being completely unrolled.  */
2715       if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2716 	continue;
2717 
2718       /* The giv can be split if the insn that sets the giv is executed once
2719 	 and only once on every iteration of the loop.  */
2720       /* An address giv can always be split.  v->insn is just a use not a set,
2721 	 and hence it does not matter whether it is always executed.  All that
2722 	 matters is that all the biv increments are always executed, and we
2723 	 won't reach here if they aren't.  */
2724       if (v->giv_type != DEST_ADDR
2725 	  && (! v->always_computable
2726 	      || back_branch_in_range_p (loop, v->insn)))
2727 	continue;
2728 
2729       /* The giv increment value must be a constant.  */
2730       giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2731 				   v->mode);
2732       if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2733 	continue;
2734 
2735       /* The loop must be unrolled completely, or else have a known number of
2736 	 iterations and only one exit, or else the giv must be dead outside
2737 	 the loop, or else the final value of the giv must be known.
2738 	 Otherwise, it is not safe to split the giv since it may not have the
2739 	 proper value on loop exit.  */
2740 
2741       /* The used outside loop test will fail for DEST_ADDR givs.  They are
2742 	 never used outside the loop anyways, so it is always safe to split a
2743 	 DEST_ADDR giv.  */
2744 
2745       final_value = 0;
2746       if (unroll_type != UNROLL_COMPLETELY
2747 	  && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2748 	  && v->giv_type != DEST_ADDR
2749 	  /* The next part is true if the pseudo is used outside the loop.
2750 	     We assume that this is true for any pseudo created after loop
2751 	     starts, because we don't have a reg_n_info entry for them.  */
2752 	  && (REGNO (v->dest_reg) >= max_reg_before_loop
2753 	      || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2754 		  /* Check for the case where the pseudo is set by a shift/add
2755 		     sequence, in which case the first insn setting the pseudo
2756 		     is the first insn of the shift/add sequence.  */
2757 		  && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2758 		      || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2759 			  != INSN_UID (XEXP (tem, 0)))))
2760 	      /* Line above always fails if INSN was moved by loop opt.  */
2761 	      || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2762 		  >= INSN_LUID (loop->end)))
2763 	  && ! (final_value = v->final_value))
2764 	continue;
2765 
2766 #if 0
2767       /* Currently, non-reduced/final-value givs are never split.  */
2768       /* Should emit insns after the loop if possible, as the biv final value
2769 	 code below does.  */
2770 
2771       /* If the final value is nonzero, and the giv has not been reduced,
2772 	 then must emit an instruction to set the final value.  */
2773       if (final_value && !v->new_reg)
2774 	{
2775 	  /* Create a new register to hold the value of the giv, and then set
2776 	     the giv to its final value before the loop start.  The giv is set
2777 	     to its final value before loop start to ensure that this insn
2778 	     will always be executed, no matter how we exit.  */
2779 	  tem = gen_reg_rtx (v->mode);
2780 	  loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2781 	  loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2782 
2783 	  if (loop_dump_stream)
2784 	    fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2785 		     REGNO (v->dest_reg), REGNO (tem));
2786 
2787 	  v->src_reg = tem;
2788 	}
2789 #endif
2790 
2791       /* This giv is splittable.  If completely unrolling the loop, save the
2792 	 giv's initial value.  Otherwise, save the constant zero for it.  */
2793 
2794       if (unroll_type == UNROLL_COMPLETELY)
2795 	{
2796 	  /* It is not safe to use bl->initial_value here, because it may not
2797 	     be invariant.  It is safe to use the initial value stored in
2798 	     the splittable_regs array if it is set.  In rare cases, it won't
2799 	     be set, so then we do exactly the same thing as
2800 	     find_splittable_regs does to get a safe value.  */
2801 	  rtx biv_initial_value;
2802 
2803 	  if (splittable_regs[bl->regno])
2804 	    biv_initial_value = splittable_regs[bl->regno];
2805 	  else if (GET_CODE (bl->initial_value) != REG
2806 		   || (REGNO (bl->initial_value) != bl->regno
2807 		       && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2808 	    biv_initial_value = bl->initial_value;
2809 	  else
2810 	    {
2811 	      rtx tem = gen_reg_rtx (bl->biv->mode);
2812 
2813 	      record_base_value (REGNO (tem), bl->biv->add_val, 0);
2814 	      loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2815 	      biv_initial_value = tem;
2816 	    }
2817 	  biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2818 	  value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2819 				     v->add_val, v->mode);
2820 	}
2821       else
2822 	value = const0_rtx;
2823 
2824       if (v->new_reg)
2825 	{
2826 	  /* If a giv was combined with another giv, then we can only split
2827 	     this giv if the giv it was combined with was reduced.  This
2828 	     is because the value of v->new_reg is meaningless in this
2829 	     case.  */
2830 	  if (v->same && ! v->same->new_reg)
2831 	    {
2832 	      if (loop_dump_stream)
2833 		fprintf (loop_dump_stream,
2834 			 "giv combined with unreduced giv not split.\n");
2835 	      continue;
2836 	    }
2837 	  /* If the giv is an address destination, it could be something other
2838 	     than a simple register, these have to be treated differently.  */
2839 	  else if (v->giv_type == DEST_REG)
2840 	    {
2841 	      /* If value is not a constant, register, or register plus
2842 		 constant, then compute its value into a register before
2843 		 loop start.  This prevents invalid rtx sharing, and should
2844 		 generate better code.  We can use bl->initial_value here
2845 		 instead of splittable_regs[bl->regno] because this code
2846 		 is going before the loop start.  */
2847 	      if (unroll_type == UNROLL_COMPLETELY
2848 		  && GET_CODE (value) != CONST_INT
2849 		  && GET_CODE (value) != REG
2850 		  && (GET_CODE (value) != PLUS
2851 		      || GET_CODE (XEXP (value, 0)) != REG
2852 		      || GET_CODE (XEXP (value, 1)) != CONST_INT))
2853 		{
2854 		  rtx tem = gen_reg_rtx (v->mode);
2855 		  record_base_value (REGNO (tem), v->add_val, 0);
2856 		  loop_iv_add_mult_hoist (loop,
2857 				extend_value_for_giv (v, bl->initial_value),
2858 				v->mult_val, v->add_val, tem);
2859 		  value = tem;
2860 		}
2861 
2862 	      splittable_regs[reg_or_subregno (v->new_reg)] = value;
2863 	    }
2864 	  else
2865 	    continue;
2866 	}
2867       else
2868 	{
2869 #if 0
2870 	  /* Currently, unreduced giv's can't be split.  This is not too much
2871 	     of a problem since unreduced giv's are not live across loop
2872 	     iterations anyways.  When unrolling a loop completely though,
2873 	     it makes sense to reduce&split givs when possible, as this will
2874 	     result in simpler instructions, and will not require that a reg
2875 	     be live across loop iterations.  */
2876 
2877 	  splittable_regs[REGNO (v->dest_reg)] = value;
2878 	  fprintf (stderr, "Giv %d at insn %d not reduced\n",
2879 		   REGNO (v->dest_reg), INSN_UID (v->insn));
2880 #else
2881 	  continue;
2882 #endif
2883 	}
2884 
2885       /* Unreduced givs are only updated once by definition.  Reduced givs
2886 	 are updated as many times as their biv is.  Mark it so if this is
2887 	 a splittable register.  Don't need to do anything for address givs
2888 	 where this may not be a register.  */
2889 
2890       if (GET_CODE (v->new_reg) == REG)
2891 	{
2892 	  int count = 1;
2893 	  if (! v->ignore)
2894 	    count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
2895 
2896 	  splittable_regs_updates[reg_or_subregno (v->new_reg)] = count;
2897 	}
2898 
2899       result++;
2900 
2901       if (loop_dump_stream)
2902 	{
2903 	  int regnum;
2904 
2905 	  if (GET_CODE (v->dest_reg) == CONST_INT)
2906 	    regnum = -1;
2907 	  else if (GET_CODE (v->dest_reg) != REG)
2908 	    regnum = REGNO (XEXP (v->dest_reg, 0));
2909 	  else
2910 	    regnum = REGNO (v->dest_reg);
2911 	  fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2912 		   regnum, INSN_UID (v->insn));
2913 	}
2914     }
2915 
2916   return result;
2917 }
2918 
2919 /* Try to prove that the register is dead after the loop exits.  Trace every
2920    loop exit looking for an insn that will always be executed, which sets
2921    the register to some value, and appears before the first use of the register
2922    is found.  If successful, then return 1, otherwise return 0.  */
2923 
2924 /* ?? Could be made more intelligent in the handling of jumps, so that
2925    it can search past if statements and other similar structures.  */
2926 
2927 static int
reg_dead_after_loop(loop,reg)2928 reg_dead_after_loop (loop, reg)
2929      const struct loop *loop;
2930      rtx reg;
2931 {
2932   rtx insn, label;
2933   enum rtx_code code;
2934   int jump_count = 0;
2935   int label_count = 0;
2936 
2937   /* In addition to checking all exits of this loop, we must also check
2938      all exits of inner nested loops that would exit this loop.  We don't
2939      have any way to identify those, so we just give up if there are any
2940      such inner loop exits.  */
2941 
2942   for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
2943     label_count++;
2944 
2945   if (label_count != loop->exit_count)
2946     return 0;
2947 
2948   /* HACK: Must also search the loop fall through exit, create a label_ref
2949      here which points to the loop->end, and append the loop_number_exit_labels
2950      list to it.  */
2951   label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
2952   LABEL_NEXTREF (label) = loop->exit_labels;
2953 
2954   for (; label; label = LABEL_NEXTREF (label))
2955     {
2956       /* Succeed if find an insn which sets the biv or if reach end of
2957 	 function.  Fail if find an insn that uses the biv, or if come to
2958 	 a conditional jump.  */
2959 
2960       insn = NEXT_INSN (XEXP (label, 0));
2961       while (insn)
2962 	{
2963 	  code = GET_CODE (insn);
2964 	  if (GET_RTX_CLASS (code) == 'i')
2965 	    {
2966 	      rtx set, note;
2967 
2968 	      if (reg_referenced_p (reg, PATTERN (insn)))
2969 		return 0;
2970 
2971 	      note = find_reg_equal_equiv_note (insn);
2972 	      if (note && reg_overlap_mentioned_p (reg, XEXP (note, 0)))
2973 		return 0;
2974 
2975 	      set = single_set (insn);
2976 	      if (set && rtx_equal_p (SET_DEST (set), reg))
2977 		break;
2978 	    }
2979 
2980 	  if (code == JUMP_INSN)
2981 	    {
2982 	      if (GET_CODE (PATTERN (insn)) == RETURN)
2983 		break;
2984 	      else if (!any_uncondjump_p (insn)
2985 		       /* Prevent infinite loop following infinite loops.  */
2986 		       || jump_count++ > 20)
2987 		return 0;
2988 	      else
2989 		insn = JUMP_LABEL (insn);
2990 	    }
2991 
2992 	  insn = NEXT_INSN (insn);
2993 	}
2994     }
2995 
2996   /* Success, the register is dead on all loop exits.  */
2997   return 1;
2998 }
2999 
3000 /* Try to calculate the final value of the biv, the value it will have at
3001    the end of the loop.  If we can do it, return that value.  */
3002 
3003 rtx
final_biv_value(loop,bl)3004 final_biv_value (loop, bl)
3005      const struct loop *loop;
3006      struct iv_class *bl;
3007 {
3008   unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3009   rtx increment, tem;
3010 
3011   /* ??? This only works for MODE_INT biv's.  Reject all others for now.  */
3012 
3013   if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3014     return 0;
3015 
3016   /* The final value for reversed bivs must be calculated differently than
3017      for ordinary bivs.  In this case, there is already an insn after the
3018      loop which sets this biv's final value (if necessary), and there are
3019      no other loop exits, so we can return any value.  */
3020   if (bl->reversed)
3021     {
3022       if (loop_dump_stream)
3023 	fprintf (loop_dump_stream,
3024 		 "Final biv value for %d, reversed biv.\n", bl->regno);
3025 
3026       return const0_rtx;
3027     }
3028 
3029   /* Try to calculate the final value as initial value + (number of iterations
3030      * increment).  For this to work, increment must be invariant, the only
3031      exit from the loop must be the fall through at the bottom (otherwise
3032      it may not have its final value when the loop exits), and the initial
3033      value of the biv must be invariant.  */
3034 
3035   if (n_iterations != 0
3036       && ! loop->exit_count
3037       && loop_invariant_p (loop, bl->initial_value))
3038     {
3039       increment = biv_total_increment (bl);
3040 
3041       if (increment && loop_invariant_p (loop, increment))
3042 	{
3043 	  /* Can calculate the loop exit value, emit insns after loop
3044 	     end to calculate this value into a temporary register in
3045 	     case it is needed later.  */
3046 
3047 	  tem = gen_reg_rtx (bl->biv->mode);
3048 	  record_base_value (REGNO (tem), bl->biv->add_val, 0);
3049 	  loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
3050 				 bl->initial_value, tem);
3051 
3052 	  if (loop_dump_stream)
3053 	    fprintf (loop_dump_stream,
3054 		     "Final biv value for %d, calculated.\n", bl->regno);
3055 
3056 	  return tem;
3057 	}
3058     }
3059 
3060   /* Check to see if the biv is dead at all loop exits.  */
3061   if (reg_dead_after_loop (loop, bl->biv->src_reg))
3062     {
3063       if (loop_dump_stream)
3064 	fprintf (loop_dump_stream,
3065 		 "Final biv value for %d, biv dead after loop exit.\n",
3066 		 bl->regno);
3067 
3068       return const0_rtx;
3069     }
3070 
3071   return 0;
3072 }
3073 
3074 /* Try to calculate the final value of the giv, the value it will have at
3075    the end of the loop.  If we can do it, return that value.  */
3076 
3077 rtx
final_giv_value(loop,v)3078 final_giv_value (loop, v)
3079      const struct loop *loop;
3080      struct induction *v;
3081 {
3082   struct loop_ivs *ivs = LOOP_IVS (loop);
3083   struct iv_class *bl;
3084   rtx insn;
3085   rtx increment, tem;
3086   rtx seq;
3087   rtx loop_end = loop->end;
3088   unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3089 
3090   bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3091 
3092   /* The final value for givs which depend on reversed bivs must be calculated
3093      differently than for ordinary givs.  In this case, there is already an
3094      insn after the loop which sets this giv's final value (if necessary),
3095      and there are no other loop exits, so we can return any value.  */
3096   if (bl->reversed)
3097     {
3098       if (loop_dump_stream)
3099 	fprintf (loop_dump_stream,
3100 		 "Final giv value for %d, depends on reversed biv\n",
3101 		 REGNO (v->dest_reg));
3102       return const0_rtx;
3103     }
3104 
3105   /* Try to calculate the final value as a function of the biv it depends
3106      upon.  The only exit from the loop must be the fall through at the bottom
3107      and the insn that sets the giv must be executed on every iteration
3108      (otherwise the giv may not have its final value when the loop exits).  */
3109 
3110   /* ??? Can calculate the final giv value by subtracting off the
3111      extra biv increments times the giv's mult_val.  The loop must have
3112      only one exit for this to work, but the loop iterations does not need
3113      to be known.  */
3114 
3115   if (n_iterations != 0
3116       && ! loop->exit_count
3117       && v->always_executed)
3118     {
3119       /* ?? It is tempting to use the biv's value here since these insns will
3120 	 be put after the loop, and hence the biv will have its final value
3121 	 then.  However, this fails if the biv is subsequently eliminated.
3122 	 Perhaps determine whether biv's are eliminable before trying to
3123 	 determine whether giv's are replaceable so that we can use the
3124 	 biv value here if it is not eliminable.  */
3125 
3126       /* We are emitting code after the end of the loop, so we must make
3127 	 sure that bl->initial_value is still valid then.  It will still
3128 	 be valid if it is invariant.  */
3129 
3130       increment = biv_total_increment (bl);
3131 
3132       if (increment && loop_invariant_p (loop, increment)
3133 	  && loop_invariant_p (loop, bl->initial_value))
3134 	{
3135 	  /* Can calculate the loop exit value of its biv as
3136 	     (n_iterations * increment) + initial_value */
3137 
3138 	  /* The loop exit value of the giv is then
3139 	     (final_biv_value - extra increments) * mult_val + add_val.
3140 	     The extra increments are any increments to the biv which
3141 	     occur in the loop after the giv's value is calculated.
3142 	     We must search from the insn that sets the giv to the end
3143 	     of the loop to calculate this value.  */
3144 
3145 	  /* Put the final biv value in tem.  */
3146 	  tem = gen_reg_rtx (v->mode);
3147 	  record_base_value (REGNO (tem), bl->biv->add_val, 0);
3148 	  loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3149 				 GEN_INT (n_iterations),
3150 				 extend_value_for_giv (v, bl->initial_value),
3151 				 tem);
3152 
3153 	  /* Subtract off extra increments as we find them.  */
3154 	  for (insn = NEXT_INSN (v->insn); insn != loop_end;
3155 	       insn = NEXT_INSN (insn))
3156 	    {
3157 	      struct induction *biv;
3158 
3159 	      for (biv = bl->biv; biv; biv = biv->next_iv)
3160 		if (biv->insn == insn)
3161 		  {
3162 		    start_sequence ();
3163 		    tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3164 					       biv->add_val, NULL_RTX, 0,
3165 					       OPTAB_LIB_WIDEN);
3166 		    seq = get_insns ();
3167 		    end_sequence ();
3168 		    loop_insn_sink (loop, seq);
3169 		  }
3170 	    }
3171 
3172 	  /* Now calculate the giv's final value.  */
3173 	  loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3174 
3175 	  if (loop_dump_stream)
3176 	    fprintf (loop_dump_stream,
3177 		     "Final giv value for %d, calc from biv's value.\n",
3178 		     REGNO (v->dest_reg));
3179 
3180 	  return tem;
3181 	}
3182     }
3183 
3184   /* Replaceable giv's should never reach here.  */
3185   if (v->replaceable)
3186     abort ();
3187 
3188   /* Check to see if the biv is dead at all loop exits.  */
3189   if (reg_dead_after_loop (loop, v->dest_reg))
3190     {
3191       if (loop_dump_stream)
3192 	fprintf (loop_dump_stream,
3193 		 "Final giv value for %d, giv dead after loop exit.\n",
3194 		 REGNO (v->dest_reg));
3195 
3196       return const0_rtx;
3197     }
3198 
3199   return 0;
3200 }
3201 
3202 /* Look back before LOOP->START for the insn that sets REG and return
3203    the equivalent constant if there is a REG_EQUAL note otherwise just
3204    the SET_SRC of REG.  */
3205 
3206 static rtx
loop_find_equiv_value(loop,reg)3207 loop_find_equiv_value (loop, reg)
3208      const struct loop *loop;
3209      rtx reg;
3210 {
3211   rtx loop_start = loop->start;
3212   rtx insn, set;
3213   rtx ret;
3214 
3215   ret = reg;
3216   for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3217     {
3218       if (GET_CODE (insn) == CODE_LABEL)
3219 	break;
3220 
3221       else if (INSN_P (insn) && reg_set_p (reg, insn))
3222 	{
3223 	  /* We found the last insn before the loop that sets the register.
3224 	     If it sets the entire register, and has a REG_EQUAL note,
3225 	     then use the value of the REG_EQUAL note.  */
3226 	  if ((set = single_set (insn))
3227 	      && (SET_DEST (set) == reg))
3228 	    {
3229 	      rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3230 
3231 	      /* Only use the REG_EQUAL note if it is a constant.
3232 		 Other things, divide in particular, will cause
3233 		 problems later if we use them.  */
3234 	      if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3235 		  && CONSTANT_P (XEXP (note, 0)))
3236 		ret = XEXP (note, 0);
3237 	      else
3238 		ret = SET_SRC (set);
3239 
3240 	      /* We cannot do this if it changes between the
3241 		 assignment and loop start though.  */
3242 	      if (modified_between_p (ret, insn, loop_start))
3243 		ret = reg;
3244 	    }
3245 	  break;
3246 	}
3247     }
3248   return ret;
3249 }
3250 
3251 /* Return a simplified rtx for the expression OP - REG.
3252 
3253    REG must appear in OP, and OP must be a register or the sum of a register
3254    and a second term.
3255 
3256    Thus, the return value must be const0_rtx or the second term.
3257 
3258    The caller is responsible for verifying that REG appears in OP and OP has
3259    the proper form.  */
3260 
3261 static rtx
subtract_reg_term(op,reg)3262 subtract_reg_term (op, reg)
3263      rtx op, reg;
3264 {
3265   if (op == reg)
3266     return const0_rtx;
3267   if (GET_CODE (op) == PLUS)
3268     {
3269       if (XEXP (op, 0) == reg)
3270 	return XEXP (op, 1);
3271       else if (XEXP (op, 1) == reg)
3272 	return XEXP (op, 0);
3273     }
3274   /* OP does not contain REG as a term.  */
3275   abort ();
3276 }
3277 
3278 /* Find and return register term common to both expressions OP0 and
3279    OP1 or NULL_RTX if no such term exists.  Each expression must be a
3280    REG or a PLUS of a REG.  */
3281 
3282 static rtx
find_common_reg_term(op0,op1)3283 find_common_reg_term (op0, op1)
3284      rtx op0, op1;
3285 {
3286   if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3287       && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3288     {
3289       rtx op00;
3290       rtx op01;
3291       rtx op10;
3292       rtx op11;
3293 
3294       if (GET_CODE (op0) == PLUS)
3295 	op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3296       else
3297 	op01 = const0_rtx, op00 = op0;
3298 
3299       if (GET_CODE (op1) == PLUS)
3300 	op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3301       else
3302 	op11 = const0_rtx, op10 = op1;
3303 
3304       /* Find and return common register term if present.  */
3305       if (REG_P (op00) && (op00 == op10 || op00 == op11))
3306 	return op00;
3307       else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3308 	return op01;
3309     }
3310 
3311   /* No common register term found.  */
3312   return NULL_RTX;
3313 }
3314 
3315 /* Determine the loop iterator and calculate the number of loop
3316    iterations.  Returns the exact number of loop iterations if it can
3317    be calculated, otherwise returns zero.  */
3318 
3319 unsigned HOST_WIDE_INT
loop_iterations(loop)3320 loop_iterations (loop)
3321      struct loop *loop;
3322 {
3323   struct loop_info *loop_info = LOOP_INFO (loop);
3324   struct loop_ivs *ivs = LOOP_IVS (loop);
3325   rtx comparison, comparison_value;
3326   rtx iteration_var, initial_value, increment, final_value;
3327   enum rtx_code comparison_code;
3328   HOST_WIDE_INT inc;
3329   unsigned HOST_WIDE_INT abs_inc;
3330   unsigned HOST_WIDE_INT abs_diff;
3331   int off_by_one;
3332   int increment_dir;
3333   int unsigned_p, compare_dir, final_larger;
3334   rtx last_loop_insn;
3335   rtx reg_term;
3336   struct iv_class *bl;
3337 
3338   loop_info->n_iterations = 0;
3339   loop_info->initial_value = 0;
3340   loop_info->initial_equiv_value = 0;
3341   loop_info->comparison_value = 0;
3342   loop_info->final_value = 0;
3343   loop_info->final_equiv_value = 0;
3344   loop_info->increment = 0;
3345   loop_info->iteration_var = 0;
3346   loop_info->unroll_number = 1;
3347   loop_info->iv = 0;
3348 
3349   /* We used to use prev_nonnote_insn here, but that fails because it might
3350      accidentally get the branch for a contained loop if the branch for this
3351      loop was deleted.  We can only trust branches immediately before the
3352      loop_end.  */
3353   last_loop_insn = PREV_INSN (loop->end);
3354 
3355   /* ??? We should probably try harder to find the jump insn
3356      at the end of the loop.  The following code assumes that
3357      the last loop insn is a jump to the top of the loop.  */
3358   if (GET_CODE (last_loop_insn) != JUMP_INSN)
3359     {
3360       if (loop_dump_stream)
3361 	fprintf (loop_dump_stream,
3362 		 "Loop iterations: No final conditional branch found.\n");
3363       return 0;
3364     }
3365 
3366   /* If there is a more than a single jump to the top of the loop
3367      we cannot (easily) determine the iteration count.  */
3368   if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3369     {
3370       if (loop_dump_stream)
3371 	fprintf (loop_dump_stream,
3372 		 "Loop iterations: Loop has multiple back edges.\n");
3373       return 0;
3374     }
3375 
3376   /* If there are multiple conditionalized loop exit tests, they may jump
3377      back to differing CODE_LABELs.  */
3378   if (loop->top && loop->cont)
3379     {
3380       rtx temp = PREV_INSN (last_loop_insn);
3381 
3382       do
3383 	{
3384 	  if (GET_CODE (temp) == JUMP_INSN)
3385 	    {
3386 	      /* There are some kinds of jumps we can't deal with easily.  */
3387 	      if (JUMP_LABEL (temp) == 0)
3388 		{
3389 		  if (loop_dump_stream)
3390 		    fprintf
3391 		      (loop_dump_stream,
3392 		       "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3393 		  return 0;
3394 		}
3395 
3396 	      if (/* Previous unrolling may have generated new insns not
3397 		     covered by the uid_luid array.  */
3398 		  INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3399 		  /* Check if we jump back into the loop body.  */
3400 		  && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3401 		  && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3402 		{
3403 		  if (loop_dump_stream)
3404 		    fprintf
3405 		      (loop_dump_stream,
3406 		       "Loop iterations: Loop has multiple back edges.\n");
3407 		  return 0;
3408 		}
3409 	    }
3410 	}
3411       while ((temp = PREV_INSN (temp)) != loop->cont);
3412     }
3413 
3414   /* Find the iteration variable.  If the last insn is a conditional
3415      branch, and the insn before tests a register value, make that the
3416      iteration variable.  */
3417 
3418   comparison = get_condition_for_loop (loop, last_loop_insn);
3419   if (comparison == 0)
3420     {
3421       if (loop_dump_stream)
3422 	fprintf (loop_dump_stream,
3423 		 "Loop iterations: No final comparison found.\n");
3424       return 0;
3425     }
3426 
3427   /* ??? Get_condition may switch position of induction variable and
3428      invariant register when it canonicalizes the comparison.  */
3429 
3430   comparison_code = GET_CODE (comparison);
3431   iteration_var = XEXP (comparison, 0);
3432   comparison_value = XEXP (comparison, 1);
3433 
3434   if (GET_CODE (iteration_var) != REG)
3435     {
3436       if (loop_dump_stream)
3437 	fprintf (loop_dump_stream,
3438 		 "Loop iterations: Comparison not against register.\n");
3439       return 0;
3440     }
3441 
3442   /* The only new registers that are created before loop iterations
3443      are givs made from biv increments or registers created by
3444      load_mems.  In the latter case, it is possible that try_copy_prop
3445      will propagate a new pseudo into the old iteration register but
3446      this will be marked by having the REG_USERVAR_P bit set.  */
3447 
3448   if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3449       && ! REG_USERVAR_P (iteration_var))
3450     abort ();
3451 
3452   /* Determine the initial value of the iteration variable, and the amount
3453      that it is incremented each loop.  Use the tables constructed by
3454      the strength reduction pass to calculate these values.  */
3455 
3456   /* Clear the result values, in case no answer can be found.  */
3457   initial_value = 0;
3458   increment = 0;
3459 
3460   /* The iteration variable can be either a giv or a biv.  Check to see
3461      which it is, and compute the variable's initial value, and increment
3462      value if possible.  */
3463 
3464   /* If this is a new register, can't handle it since we don't have any
3465      reg_iv_type entry for it.  */
3466   if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3467     {
3468       if (loop_dump_stream)
3469 	fprintf (loop_dump_stream,
3470 		 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3471       return 0;
3472     }
3473 
3474   /* Reject iteration variables larger than the host wide int size, since they
3475      could result in a number of iterations greater than the range of our
3476      `unsigned HOST_WIDE_INT' variable loop_info->n_iterations.  */
3477   else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3478 	    > HOST_BITS_PER_WIDE_INT))
3479     {
3480       if (loop_dump_stream)
3481 	fprintf (loop_dump_stream,
3482 		 "Loop iterations: Iteration var rejected because mode too large.\n");
3483       return 0;
3484     }
3485   else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3486     {
3487       if (loop_dump_stream)
3488 	fprintf (loop_dump_stream,
3489 		 "Loop iterations: Iteration var not an integer.\n");
3490       return 0;
3491     }
3492   else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3493     {
3494       if (REGNO (iteration_var) >= ivs->n_regs)
3495 	abort ();
3496 
3497       /* Grab initial value, only useful if it is a constant.  */
3498       bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3499       initial_value = bl->initial_value;
3500       if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3501 	{
3502 	  if (loop_dump_stream)
3503 	    fprintf (loop_dump_stream,
3504 		     "Loop iterations: Basic induction var not set once in each iteration.\n");
3505 	  return 0;
3506 	}
3507 
3508       increment = biv_total_increment (bl);
3509     }
3510   else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3511     {
3512       HOST_WIDE_INT offset = 0;
3513       struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3514       rtx biv_initial_value;
3515 
3516       if (REGNO (v->src_reg) >= ivs->n_regs)
3517 	abort ();
3518 
3519       if (!v->always_executed || v->maybe_multiple)
3520 	{
3521 	  if (loop_dump_stream)
3522 	    fprintf (loop_dump_stream,
3523 		     "Loop iterations: General induction var not set once in each iteration.\n");
3524 	  return 0;
3525 	}
3526 
3527       bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3528 
3529       /* Increment value is mult_val times the increment value of the biv.  */
3530 
3531       increment = biv_total_increment (bl);
3532       if (increment)
3533 	{
3534 	  struct induction *biv_inc;
3535 
3536 	  increment = fold_rtx_mult_add (v->mult_val,
3537 					 extend_value_for_giv (v, increment),
3538 					 const0_rtx, v->mode);
3539 	  /* The caller assumes that one full increment has occurred at the
3540 	     first loop test.  But that's not true when the biv is incremented
3541 	     after the giv is set (which is the usual case), e.g.:
3542 	     i = 6; do {;} while (i++ < 9) .
3543 	     Therefore, we bias the initial value by subtracting the amount of
3544 	     the increment that occurs between the giv set and the giv test.  */
3545 	  for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3546 	    {
3547 	      if (loop_insn_first_p (v->insn, biv_inc->insn))
3548 		{
3549 		  if (REG_P (biv_inc->add_val))
3550 		    {
3551 		      if (loop_dump_stream)
3552 			fprintf (loop_dump_stream,
3553 				 "Loop iterations: Basic induction var add_val is REG %d.\n",
3554 				 REGNO (biv_inc->add_val));
3555 			return 0;
3556 		    }
3557 
3558 		  /* If we have already counted it, skip it.  */
3559 		  if (biv_inc->same)
3560 		    continue;
3561 
3562 		  offset -= INTVAL (biv_inc->add_val);
3563 		}
3564 	    }
3565 	}
3566       if (loop_dump_stream)
3567 	fprintf (loop_dump_stream,
3568 		 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3569 		 (long) offset);
3570 
3571       /* Initial value is mult_val times the biv's initial value plus
3572 	 add_val.  Only useful if it is a constant.  */
3573       biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3574       initial_value
3575 	= fold_rtx_mult_add (v->mult_val,
3576 			     plus_constant (biv_initial_value, offset),
3577 			     v->add_val, v->mode);
3578     }
3579   else
3580     {
3581       if (loop_dump_stream)
3582 	fprintf (loop_dump_stream,
3583 		 "Loop iterations: Not basic or general induction var.\n");
3584       return 0;
3585     }
3586 
3587   if (initial_value == 0)
3588     return 0;
3589 
3590   unsigned_p = 0;
3591   off_by_one = 0;
3592   switch (comparison_code)
3593     {
3594     case LEU:
3595       unsigned_p = 1;
3596     case LE:
3597       compare_dir = 1;
3598       off_by_one = 1;
3599       break;
3600     case GEU:
3601       unsigned_p = 1;
3602     case GE:
3603       compare_dir = -1;
3604       off_by_one = -1;
3605       break;
3606     case EQ:
3607       /* Cannot determine loop iterations with this case.  */
3608       compare_dir = 0;
3609       break;
3610     case LTU:
3611       unsigned_p = 1;
3612     case LT:
3613       compare_dir = 1;
3614       break;
3615     case GTU:
3616       unsigned_p = 1;
3617     case GT:
3618       compare_dir = -1;
3619     case NE:
3620       compare_dir = 0;
3621       break;
3622     default:
3623       abort ();
3624     }
3625 
3626   /* If the comparison value is an invariant register, then try to find
3627      its value from the insns before the start of the loop.  */
3628 
3629   final_value = comparison_value;
3630   if (GET_CODE (comparison_value) == REG
3631       && loop_invariant_p (loop, comparison_value))
3632     {
3633       final_value = loop_find_equiv_value (loop, comparison_value);
3634 
3635       /* If we don't get an invariant final value, we are better
3636 	 off with the original register.  */
3637       if (! loop_invariant_p (loop, final_value))
3638 	final_value = comparison_value;
3639     }
3640 
3641   /* Calculate the approximate final value of the induction variable
3642      (on the last successful iteration).  The exact final value
3643      depends on the branch operator, and increment sign.  It will be
3644      wrong if the iteration variable is not incremented by one each
3645      time through the loop and (comparison_value + off_by_one -
3646      initial_value) % increment != 0.
3647      ??? Note that the final_value may overflow and thus final_larger
3648      will be bogus.  A potentially infinite loop will be classified
3649      as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++)  */
3650   if (off_by_one)
3651     final_value = plus_constant (final_value, off_by_one);
3652 
3653   /* Save the calculated values describing this loop's bounds, in case
3654      precondition_loop_p will need them later.  These values can not be
3655      recalculated inside precondition_loop_p because strength reduction
3656      optimizations may obscure the loop's structure.
3657 
3658      These values are only required by precondition_loop_p and insert_bct
3659      whenever the number of iterations cannot be computed at compile time.
3660      Only the difference between final_value and initial_value is
3661      important.  Note that final_value is only approximate.  */
3662   loop_info->initial_value = initial_value;
3663   loop_info->comparison_value = comparison_value;
3664   loop_info->final_value = plus_constant (comparison_value, off_by_one);
3665   loop_info->increment = increment;
3666   loop_info->iteration_var = iteration_var;
3667   loop_info->comparison_code = comparison_code;
3668   loop_info->iv = bl;
3669 
3670   /* Try to determine the iteration count for loops such
3671      as (for i = init; i < init + const; i++).  When running the
3672      loop optimization twice, the first pass often converts simple
3673      loops into this form.  */
3674 
3675   if (REG_P (initial_value))
3676     {
3677       rtx reg1;
3678       rtx reg2;
3679       rtx const2;
3680 
3681       reg1 = initial_value;
3682       if (GET_CODE (final_value) == PLUS)
3683 	reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3684       else
3685 	reg2 = final_value, const2 = const0_rtx;
3686 
3687       /* Check for initial_value = reg1, final_value = reg2 + const2,
3688 	 where reg1 != reg2.  */
3689       if (REG_P (reg2) && reg2 != reg1)
3690 	{
3691 	  rtx temp;
3692 
3693 	  /* Find what reg1 is equivalent to.  Hopefully it will
3694 	     either be reg2 or reg2 plus a constant.  */
3695 	  temp = loop_find_equiv_value (loop, reg1);
3696 
3697 	  if (find_common_reg_term (temp, reg2))
3698 	    initial_value = temp;
3699 	  else if (loop_invariant_p (loop, reg2))
3700 	    {
3701 	      /* Find what reg2 is equivalent to.  Hopefully it will
3702 		 either be reg1 or reg1 plus a constant.  Let's ignore
3703 		 the latter case for now since it is not so common.  */
3704 	      temp = loop_find_equiv_value (loop, reg2);
3705 
3706 	      if (temp == loop_info->iteration_var)
3707 		temp = initial_value;
3708 	      if (temp == reg1)
3709 		final_value = (const2 == const0_rtx)
3710 		  ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3711 	    }
3712 	}
3713       else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3714 	{
3715 	  rtx temp;
3716 
3717 	  /* When running the loop optimizer twice, check_dbra_loop
3718 	     further obfuscates reversible loops of the form:
3719 	     for (i = init; i < init + const; i++).  We often end up with
3720 	     final_value = 0, initial_value = temp, temp = temp2 - init,
3721 	     where temp2 = init + const.  If the loop has a vtop we
3722 	     can replace initial_value with const.  */
3723 
3724 	  temp = loop_find_equiv_value (loop, reg1);
3725 
3726 	  if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3727 	    {
3728 	      rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3729 
3730 	      if (GET_CODE (temp2) == PLUS
3731 		  && XEXP (temp2, 0) == XEXP (temp, 1))
3732 		initial_value = XEXP (temp2, 1);
3733 	    }
3734 	}
3735     }
3736 
3737   /* If have initial_value = reg + const1 and final_value = reg +
3738      const2, then replace initial_value with const1 and final_value
3739      with const2.  This should be safe since we are protected by the
3740      initial comparison before entering the loop if we have a vtop.
3741      For example, a + b < a + c is not equivalent to b < c for all a
3742      when using modulo arithmetic.
3743 
3744      ??? Without a vtop we could still perform the optimization if we check
3745      the initial and final values carefully.  */
3746   if (loop->vtop
3747       && (reg_term = find_common_reg_term (initial_value, final_value)))
3748     {
3749       initial_value = subtract_reg_term (initial_value, reg_term);
3750       final_value = subtract_reg_term (final_value, reg_term);
3751     }
3752 
3753   loop_info->initial_equiv_value = initial_value;
3754   loop_info->final_equiv_value = final_value;
3755 
3756   /* For EQ comparison loops, we don't have a valid final value.
3757      Check this now so that we won't leave an invalid value if we
3758      return early for any other reason.  */
3759   if (comparison_code == EQ)
3760     loop_info->final_equiv_value = loop_info->final_value = 0;
3761 
3762   if (increment == 0)
3763     {
3764       if (loop_dump_stream)
3765 	fprintf (loop_dump_stream,
3766 		 "Loop iterations: Increment value can't be calculated.\n");
3767       return 0;
3768     }
3769 
3770   if (GET_CODE (increment) != CONST_INT)
3771     {
3772       /* If we have a REG, check to see if REG holds a constant value.  */
3773       /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3774 	 clear if it is worthwhile to try to handle such RTL.  */
3775       if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3776 	increment = loop_find_equiv_value (loop, increment);
3777 
3778       if (GET_CODE (increment) != CONST_INT)
3779 	{
3780 	  if (loop_dump_stream)
3781 	    {
3782 	      fprintf (loop_dump_stream,
3783 		       "Loop iterations: Increment value not constant ");
3784 	      print_simple_rtl (loop_dump_stream, increment);
3785 	      fprintf (loop_dump_stream, ".\n");
3786 	    }
3787 	  return 0;
3788 	}
3789       loop_info->increment = increment;
3790     }
3791 
3792   if (GET_CODE (initial_value) != CONST_INT)
3793     {
3794       if (loop_dump_stream)
3795 	{
3796 	  fprintf (loop_dump_stream,
3797 		   "Loop iterations: Initial value not constant ");
3798 	  print_simple_rtl (loop_dump_stream, initial_value);
3799 	  fprintf (loop_dump_stream, ".\n");
3800 	}
3801       return 0;
3802     }
3803   else if (GET_CODE (final_value) != CONST_INT)
3804     {
3805       if (loop_dump_stream)
3806 	{
3807 	  fprintf (loop_dump_stream,
3808 		   "Loop iterations: Final value not constant ");
3809 	  print_simple_rtl (loop_dump_stream, final_value);
3810 	  fprintf (loop_dump_stream, ".\n");
3811 	}
3812       return 0;
3813     }
3814   else if (comparison_code == EQ)
3815     {
3816       rtx inc_once;
3817 
3818       if (loop_dump_stream)
3819 	fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3820 
3821       inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
3822 			       GET_MODE (iteration_var));
3823 
3824       if (inc_once == final_value)
3825 	{
3826 	  /* The iterator value once through the loop is equal to the
3827 	     comparision value.  Either we have an infinite loop, or
3828 	     we'll loop twice.  */
3829 	  if (increment == const0_rtx)
3830 	    return 0;
3831 	  loop_info->n_iterations = 2;
3832 	}
3833       else
3834 	loop_info->n_iterations = 1;
3835 
3836       if (GET_CODE (loop_info->initial_value) == CONST_INT)
3837 	loop_info->final_value
3838 	  = gen_int_mode ((INTVAL (loop_info->initial_value)
3839 			   + loop_info->n_iterations * INTVAL (increment)),
3840 			  GET_MODE (iteration_var));
3841       else
3842 	loop_info->final_value
3843 	  = plus_constant (loop_info->initial_value,
3844 			   loop_info->n_iterations * INTVAL (increment));
3845       loop_info->final_equiv_value
3846 	= gen_int_mode ((INTVAL (initial_value)
3847 			 + loop_info->n_iterations * INTVAL (increment)),
3848 			GET_MODE (iteration_var));
3849       return loop_info->n_iterations;
3850     }
3851 
3852   /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1.  */
3853   if (unsigned_p)
3854     final_larger
3855       = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3856 	 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3857 	- ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3858 	   < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3859   else
3860     final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3861       - (INTVAL (final_value) < INTVAL (initial_value));
3862 
3863   if (INTVAL (increment) > 0)
3864     increment_dir = 1;
3865   else if (INTVAL (increment) == 0)
3866     increment_dir = 0;
3867   else
3868     increment_dir = -1;
3869 
3870   /* There are 27 different cases: compare_dir = -1, 0, 1;
3871      final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3872      There are 4 normal cases, 4 reverse cases (where the iteration variable
3873      will overflow before the loop exits), 4 infinite loop cases, and 15
3874      immediate exit (0 or 1 iteration depending on loop type) cases.
3875      Only try to optimize the normal cases.  */
3876 
3877   /* (compare_dir/final_larger/increment_dir)
3878      Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3879      Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3880      Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3881      Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3882 
3883   /* ?? If the meaning of reverse loops (where the iteration variable
3884      will overflow before the loop exits) is undefined, then could
3885      eliminate all of these special checks, and just always assume
3886      the loops are normal/immediate/infinite.  Note that this means
3887      the sign of increment_dir does not have to be known.  Also,
3888      since it does not really hurt if immediate exit loops or infinite loops
3889      are optimized, then that case could be ignored also, and hence all
3890      loops can be optimized.
3891 
3892      According to ANSI Spec, the reverse loop case result is undefined,
3893      because the action on overflow is undefined.
3894 
3895      See also the special test for NE loops below.  */
3896 
3897   if (final_larger == increment_dir && final_larger != 0
3898       && (final_larger == compare_dir || compare_dir == 0))
3899     /* Normal case.  */
3900     ;
3901   else
3902     {
3903       if (loop_dump_stream)
3904 	fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3905       return 0;
3906     }
3907 
3908   /* Calculate the number of iterations, final_value is only an approximation,
3909      so correct for that.  Note that abs_diff and n_iterations are
3910      unsigned, because they can be as large as 2^n - 1.  */
3911 
3912   inc = INTVAL (increment);
3913   if (inc > 0)
3914     {
3915       abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3916       abs_inc = inc;
3917     }
3918   else if (inc < 0)
3919     {
3920       abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3921       abs_inc = -inc;
3922     }
3923   else
3924     abort ();
3925 
3926   /* Given that iteration_var is going to iterate over its own mode,
3927      not HOST_WIDE_INT, disregard higher bits that might have come
3928      into the picture due to sign extension of initial and final
3929      values.  */
3930   abs_diff &= ((unsigned HOST_WIDE_INT) 1
3931 	       << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
3932 	       << 1) - 1;
3933 
3934   /* For NE tests, make sure that the iteration variable won't miss
3935      the final value.  If abs_diff mod abs_incr is not zero, then the
3936      iteration variable will overflow before the loop exits, and we
3937      can not calculate the number of iterations.  */
3938   if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3939     return 0;
3940 
3941   /* Note that the number of iterations could be calculated using
3942      (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3943      handle potential overflow of the summation.  */
3944   loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3945   return loop_info->n_iterations;
3946 }
3947 
3948 /* Replace uses of split bivs with their split pseudo register.  This is
3949    for original instructions which remain after loop unrolling without
3950    copying.  */
3951 
3952 static rtx
remap_split_bivs(loop,x)3953 remap_split_bivs (loop, x)
3954      struct loop *loop;
3955      rtx x;
3956 {
3957   struct loop_ivs *ivs = LOOP_IVS (loop);
3958   enum rtx_code code;
3959   int i;
3960   const char *fmt;
3961 
3962   if (x == 0)
3963     return x;
3964 
3965   code = GET_CODE (x);
3966   switch (code)
3967     {
3968     case SCRATCH:
3969     case PC:
3970     case CC0:
3971     case CONST_INT:
3972     case CONST_DOUBLE:
3973     case CONST:
3974     case SYMBOL_REF:
3975     case LABEL_REF:
3976       return x;
3977 
3978     case REG:
3979 #if 0
3980       /* If non-reduced/final-value givs were split, then this would also
3981 	 have to remap those givs also.  */
3982 #endif
3983       if (REGNO (x) < ivs->n_regs
3984 	  && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
3985 	return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
3986       break;
3987 
3988     default:
3989       break;
3990     }
3991 
3992   fmt = GET_RTX_FORMAT (code);
3993   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3994     {
3995       if (fmt[i] == 'e')
3996 	XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
3997       else if (fmt[i] == 'E')
3998 	{
3999 	  int j;
4000 	  for (j = 0; j < XVECLEN (x, i); j++)
4001 	    XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
4002 	}
4003     }
4004   return x;
4005 }
4006 
4007 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
4008    FIST_UID is always executed if LAST_UID is), then return 1.  Otherwise
4009    return 0.  COPY_START is where we can start looking for the insns
4010    FIRST_UID and LAST_UID.  COPY_END is where we stop looking for these
4011    insns.
4012 
4013    If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
4014    must dominate LAST_UID.
4015 
4016    If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4017    may not dominate LAST_UID.
4018 
4019    If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4020    must dominate LAST_UID.  */
4021 
4022 int
set_dominates_use(regno,first_uid,last_uid,copy_start,copy_end)4023 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
4024      int regno;
4025      int first_uid;
4026      int last_uid;
4027      rtx copy_start;
4028      rtx copy_end;
4029 {
4030   int passed_jump = 0;
4031   rtx p = NEXT_INSN (copy_start);
4032 
4033   while (INSN_UID (p) != first_uid)
4034     {
4035       if (GET_CODE (p) == JUMP_INSN)
4036 	passed_jump = 1;
4037       /* Could not find FIRST_UID.  */
4038       if (p == copy_end)
4039 	return 0;
4040       p = NEXT_INSN (p);
4041     }
4042 
4043   /* Verify that FIRST_UID is an insn that entirely sets REGNO.  */
4044   if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
4045     return 0;
4046 
4047   /* FIRST_UID is always executed.  */
4048   if (passed_jump == 0)
4049     return 1;
4050 
4051   while (INSN_UID (p) != last_uid)
4052     {
4053       /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4054 	 can not be sure that FIRST_UID dominates LAST_UID.  */
4055       if (GET_CODE (p) == CODE_LABEL)
4056 	return 0;
4057       /* Could not find LAST_UID, but we reached the end of the loop, so
4058 	 it must be safe.  */
4059       else if (p == copy_end)
4060 	return 1;
4061       p = NEXT_INSN (p);
4062     }
4063 
4064   /* FIRST_UID is always executed if LAST_UID is executed.  */
4065   return 1;
4066 }
4067 
4068 /* This routine is called when the number of iterations for the unrolled
4069    loop is one.   The goal is to identify a loop that begins with an
4070    unconditional branch to the loop continuation note (or a label just after).
4071    In this case, the unconditional branch that starts the loop needs to be
4072    deleted so that we execute the single iteration.  */
4073 
4074 static rtx
ujump_to_loop_cont(loop_start,loop_cont)4075 ujump_to_loop_cont (loop_start, loop_cont)
4076      rtx loop_start;
4077      rtx loop_cont;
4078 {
4079   rtx x, label, label_ref;
4080 
4081   /* See if loop start, or the next insn is an unconditional jump.  */
4082   loop_start = next_nonnote_insn (loop_start);
4083 
4084   x = pc_set (loop_start);
4085   if (!x)
4086     return NULL_RTX;
4087 
4088   label_ref = SET_SRC (x);
4089   if (!label_ref)
4090     return NULL_RTX;
4091 
4092   /* Examine insn after loop continuation note.  Return if not a label.  */
4093   label = next_nonnote_insn (loop_cont);
4094   if (label == 0 || GET_CODE (label) != CODE_LABEL)
4095     return NULL_RTX;
4096 
4097   /* Return the loop start if the branch label matches the code label.  */
4098   if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4099     return loop_start;
4100   else
4101     return NULL_RTX;
4102 }
4103