xref: /openbsd/lib/libc/arch/sparc64/fpu/fpu_explode.c (revision 6244ddcc)
1 /*	$OpenBSD: fpu_explode.c,v 1.12 2024/03/29 21:02:11 miod Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
45  *	$NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp $
46  */
47 
48 /*
49  * FPU subroutines: `explode' the machine's `packed binary' format numbers
50  * into our internal format.
51  */
52 
53 #include <sys/types.h>
54 
55 #include <machine/fsr.h>
56 #include <machine/ieee.h>
57 #include <machine/instr.h>
58 
59 #include "fpu_arith.h"
60 #include "fpu_emu.h"
61 #include "fpu_extern.h"
62 #include "fpu_reg.h"
63 
64 /*
65  * N.B.: in all of the following, we assume the FP format is
66  *
67  *	---------------------------
68  *	| s | exponent | fraction |
69  *	---------------------------
70  *
71  * (which represents -1**s * 1.fraction * 2**exponent), so that the
72  * sign bit is way at the top (bit 31), the exponent is next, and
73  * then the remaining bits mark the fraction.  A zero exponent means
74  * zero or denormalized (0.fraction rather than 1.fraction), and the
75  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
76  *
77  * Since the sign bit is always the topmost bit---this holds even for
78  * integers---we set that outside all the *tof functions.  Each function
79  * returns the class code for the new number (but note that we use
80  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
81  */
82 
83 /*
84  * int -> fpn.
85  */
86 int
__fpu_itof(fp,i)87 __fpu_itof(fp, i)
88 	struct fpn *fp;
89 	u_int i;
90 {
91 
92 	if (i == 0)
93 		return (FPC_ZERO);
94 	/*
95 	 * The value FP_1 represents 2^FP_LG, so set the exponent
96 	 * there and let normalization fix it up.  Convert negative
97 	 * numbers to sign-and-magnitude.  Note that this relies on
98 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
99 	 */
100 	fp->fp_exp = FP_LG;
101 	fp->fp_mant[0] = (fp->fp_sign && (int)i < 0) ? -i : i;
102 	fp->fp_mant[1] = 0;
103 	fp->fp_mant[2] = 0;
104 	fp->fp_mant[3] = 0;
105 	__fpu_norm(fp);
106 	return (FPC_NUM);
107 }
108 
109 /*
110  * uint -> fpn.
111  */
112 int
__fpu_uitof(fp,i)113 __fpu_uitof(fp, i)
114 	struct fpn *fp;
115 	u_int i;
116 {
117 
118 	if (i == 0)
119 		return (FPC_ZERO);
120 	/*
121 	 * The value FP_1 represents 2^FP_LG, so set the exponent
122 	 * there and let normalization fix it up.
123 	 * Note that this relies on fpu_norm()'s handling of
124 	 * `supernormals'; see fpu_subr.c.
125 	 */
126 	fp->fp_exp = FP_LG;
127 	fp->fp_mant[0] = i;
128 	fp->fp_mant[1] = 0;
129 	fp->fp_mant[2] = 0;
130 	fp->fp_mant[3] = 0;
131 	__fpu_norm(fp);
132 	return (FPC_NUM);
133 }
134 
135 /*
136  * 64-bit int -> fpn.
137  */
138 int
__fpu_xtof(fp,i)139 __fpu_xtof(fp, i)
140 	struct fpn *fp;
141 	u_int64_t i;
142 {
143 
144 	if (i == 0)
145 		return (FPC_ZERO);
146 	/*
147 	 * The value FP_1 represents 2^FP_LG, so set the exponent
148 	 * there and let normalization fix it up.  Convert negative
149 	 * numbers to sign-and-magnitude.  Note that this relies on
150 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
151 	 */
152 	fp->fp_exp = FP_LG2;
153 	i = (fp->fp_sign && (int64_t)i < 0) ? -i : i;
154 	fp->fp_mant[0] = (i >> 32) & 0xffffffff;
155 	fp->fp_mant[1] = (i >> 0)  & 0xffffffff;
156 	fp->fp_mant[2] = 0;
157 	fp->fp_mant[3] = 0;
158 	__fpu_norm(fp);
159 	return (FPC_NUM);
160 }
161 
162 /*
163  * 64-bit uint -> fpn.
164  */
165 int
__fpu_uxtof(fp,i)166 __fpu_uxtof(fp, i)
167 	struct fpn *fp;
168 	u_int64_t i;
169 {
170 
171 	if (i == 0)
172 		return (FPC_ZERO);
173 	/*
174 	 * The value FP_1 represents 2^FP_LG, so set the exponent
175 	 * there and let normalization fix it up.
176 	 * Note that this relies on fpu_norm()'s handling of
177 	 * `supernormals'; see fpu_subr.c.
178 	 */
179 	fp->fp_exp = FP_LG2;
180 	fp->fp_mant[0] = (i >> 32) & 0xffffffff;
181 	fp->fp_mant[1] = (i >> 0)  & 0xffffffff;
182 	fp->fp_mant[2] = 0;
183 	fp->fp_mant[3] = 0;
184 	__fpu_norm(fp);
185 	return (FPC_NUM);
186 }
187 
188 #define	mask(nbits) ((1L << (nbits)) - 1)
189 
190 /*
191  * All external floating formats convert to internal in the same manner,
192  * as defined here.  Note that only normals get an implied 1.0 inserted.
193  */
194 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
195 	if (exp == 0) { \
196 		if (allfrac == 0) \
197 			return (FPC_ZERO); \
198 		fp->fp_exp = 1 - expbias; \
199 		fp->fp_mant[0] = f0; \
200 		fp->fp_mant[1] = f1; \
201 		fp->fp_mant[2] = f2; \
202 		fp->fp_mant[3] = f3; \
203 		__fpu_norm(fp); \
204 		return (FPC_NUM); \
205 	} \
206 	if (exp == (2 * expbias + 1)) { \
207 		if (allfrac == 0) \
208 			return (FPC_INF); \
209 		fp->fp_mant[0] = f0; \
210 		fp->fp_mant[1] = f1; \
211 		fp->fp_mant[2] = f2; \
212 		fp->fp_mant[3] = f3; \
213 		return (FPC_QNAN); \
214 	} \
215 	fp->fp_exp = exp - expbias; \
216 	fp->fp_mant[0] = FP_1 | f0; \
217 	fp->fp_mant[1] = f1; \
218 	fp->fp_mant[2] = f2; \
219 	fp->fp_mant[3] = f3; \
220 	return (FPC_NUM)
221 
222 /*
223  * 32-bit single precision -> fpn.
224  * We assume a single occupies at most (64-FP_LG) bits in the internal
225  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
226  */
227 int
__fpu_stof(fp,i)228 __fpu_stof(fp, i)
229 	struct fpn *fp;
230 	u_int i;
231 {
232 	int exp;
233 	u_int frac, f0, f1;
234 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
235 
236 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
237 	frac = i & mask(SNG_FRACBITS);
238 	f0 = frac >> SNG_SHIFT;
239 	f1 = frac << (32 - SNG_SHIFT);
240 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
241 }
242 
243 /*
244  * 64-bit double -> fpn.
245  * We assume this uses at most (96-FP_LG) bits.
246  */
247 int
__fpu_dtof(fp,i,j)248 __fpu_dtof(fp, i, j)
249 	struct fpn *fp;
250 	u_int i, j;
251 {
252 	int exp;
253 	u_int frac, f0, f1, f2;
254 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
255 
256 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
257 	frac = i & mask(DBL_FRACBITS - 32);
258 	f0 = frac >> DBL_SHIFT;
259 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
260 	f2 = j << (32 - DBL_SHIFT);
261 	frac |= j;
262 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
263 }
264 
265 /*
266  * 128-bit extended -> fpn.
267  */
268 int
__fpu_qtof(fp,i,j,k,l)269 __fpu_qtof(fp, i, j, k, l)
270 	struct fpn *fp;
271 	u_int i, j, k, l;
272 {
273 	int exp;
274 	u_int frac, f0, f1, f2, f3;
275 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
276 
277 	/*
278 	 * Note that ext and fpn `line up', hence no shifting needed.
279 	 */
280 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
281 	frac = i & mask(EXT_FRACBITS - 3 * 32);
282 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
283 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
284 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
285 	f3 = l << EXT_SHIFT;
286 	frac |= j | k | l;
287 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
288 }
289 
290 #if 0	/* __fpu_explode is unused */
291 /*
292  * Explode the contents of a / regpair / regquad.
293  * If the input is a signalling NaN, an NV (invalid) exception
294  * will be set.  (Note that nothing but NV can occur until ALU
295  * operations are performed.)
296  */
297 void
298 __fpu_explode(fe, fp, type, reg)
299 	struct fpemu *fe;
300 	struct fpn *fp;
301 	int type, reg;
302 {
303 	u_int32_t s = 0/* XXX gcc */, *sp;
304 	u_int64_t l[2];
305 
306 	if (type == FTYPE_LNG || type == FTYPE_DBL || type == FTYPE_EXT) {
307 		l[0] = __fpu_getreg64(reg & ~1);
308 		sp = (u_int32_t *)l;
309 		fp->fp_sign = sp[0] >> 31;
310 		fp->fp_sticky = 0;
311 		switch (type) {
312 			case FTYPE_LNG:
313 				s = __fpu_xtof(fp, l[0]);
314 				break;
315 			case FTYPE_DBL:
316 				s = __fpu_dtof(fp, sp[0], sp[1]);
317 				break;
318 			case FTYPE_EXT:
319 				l[1] = __fpu_getreg64((reg & ~1) + 2);
320 				s = __fpu_qtof(fp, sp[0], sp[1], sp[2], sp[3]);
321 				break;
322 			default:
323 #ifdef DIAGNOSTIC
324 				__utrap_panic("fpu_explode");
325 #endif
326 				break;
327 		}
328 	} else {
329 #ifdef DIAGNOSTIC
330 		if (type != FTYPE_SNG)
331 			__utrap_panic("fpu_explode");
332 #endif
333 		s = __fpu_getreg32(reg);
334 		fp->fp_sign = s >> 31;
335 		fp->fp_sticky = 0;
336 		s = __fpu_stof(fp, s);
337 	}
338 
339 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
340 		/*
341 		 * Input is a signalling NaN.  All operations that return
342 		 * an input NaN operand put it through a ``NaN conversion'',
343 		 * which basically just means ``turn on the quiet bit''.
344 		 * We do this here so that all NaNs internally look quiet
345 		 * (we can tell signalling ones by their class).
346 		 */
347 		fp->fp_mant[0] |= FP_QUIETBIT;
348 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
349 		s = FPC_SNAN;
350 	}
351 	fp->fp_class = s;
352 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
353 		((type == FTYPE_INT) ? 'i' :
354 			((type == FTYPE_SNG) ? 's' :
355 				((type == FTYPE_DBL) ? 'd' :
356 					((type == FTYPE_EXT) ? 'q' : '?')))),
357 		reg));
358 	DUMPFPN(FPE_REG, fp);
359 	DPRINTF(FPE_REG, ("\n"));
360 }
361 #endif
362