xref: /openbsd/lib/libm/arch/amd64/fenv.c (revision 2c53affb)
1 /*	$OpenBSD: fenv.c,v 1.6 2022/12/27 17:10:07 jmc Exp $	*/
2 /*	$NetBSD: fenv.c,v 1.1 2010/07/31 21:47:53 joerg Exp $	*/
3 
4 /*-
5  * Copyright (c) 2004-2005 David Schultz <das (at) FreeBSD.ORG>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <fenv.h>
31 #include <machine/fpu.h>
32 
33 /*
34  * The following constant represents the default floating-point environment
35  * (that is, the one installed at program startup) and has type pointer to
36  * const-qualified fenv_t.
37  *
38  * It can be used as an argument to the functions within the <fenv.h> header
39  * that manage the floating-point environment, namely fesetenv() and
40  * feupdateenv().
41  *
42  * x87 fpu registers are 16bit wide. The upper bits, 31-16, are marked as
43  * RESERVED.
44  */
45 fenv_t __fe_dfl_env = {
46 	{
47 		0xffff0000 | __INITIAL_NPXCW__,	/* Control word register */
48 		0xffff0000,			/* Status word register */
49 		0xffffffff,			/* Tag word register */
50 		{
51 			0x00000000,
52 			0x00000000,
53 			0x00000000,
54 			0xffff0000
55 		}
56 	},
57 	__INITIAL_MXCSR__			/* MXCSR register */
58 };
59 
60 
61 /*
62  * The feclearexcept() function clears the supported floating-point exceptions
63  * represented by `excepts'.
64  */
65 int
feclearexcept(int excepts)66 feclearexcept(int excepts)
67 {
68 	fenv_t fenv;
69 	unsigned int mxcsr;
70 
71 	excepts &= FE_ALL_EXCEPT;
72 
73 	/* Store the current x87 floating-point environment */
74 	__asm__ volatile ("fnstenv %0" : "=m" (fenv));
75 
76 	/* Clear the requested floating-point exceptions */
77 	fenv.__x87.__status &= ~excepts;
78 
79 	/* Load the x87 floating-point environment */
80 	__asm__ volatile ("fldenv %0" : : "m" (fenv));
81 
82 	/* Same for SSE environment */
83 	__asm__ volatile ("stmxcsr %0" : "=m" (mxcsr));
84 	mxcsr &= ~excepts;
85 	__asm__ volatile ("ldmxcsr %0" : : "m" (mxcsr));
86 
87 	return (0);
88 }
89 DEF_STD(feclearexcept);
90 
91 /*
92  * The fegetexceptflag() function stores an implementation-defined
93  * representation of the states of the floating-point status flags indicated by
94  * the argument excepts in the object pointed to by the argument flagp.
95  */
96 int
fegetexceptflag(fexcept_t * flagp,int excepts)97 fegetexceptflag(fexcept_t *flagp, int excepts)
98 {
99 	unsigned short status;
100 	unsigned int mxcsr;
101 
102 	excepts &= FE_ALL_EXCEPT;
103 
104 	/* Store the current x87 status register */
105 	__asm__ volatile ("fnstsw %0" : "=am" (status));
106 
107 	/* Store the MXCSR register */
108 	__asm__ volatile ("stmxcsr %0" : "=m" (mxcsr));
109 
110 	/* Store the results in flagp */
111 	*flagp = (status | mxcsr) & excepts;
112 
113 	return (0);
114 }
115 
116 /*
117  * The feraiseexcept() function raises the supported floating-point exceptions
118  * represented by the argument `excepts'.
119  *
120  * The standard explicitly allows us to execute an instruction that has the
121  * exception as a side effect, but we choose to manipulate the status register
122  * directly.
123  *
124  * The validation of input is being deferred to fesetexceptflag().
125  */
126 int
feraiseexcept(int excepts)127 feraiseexcept(int excepts)
128 {
129 	excepts &= FE_ALL_EXCEPT;
130 
131 	fesetexceptflag((fexcept_t *)&excepts, excepts);
132 	__asm__ volatile ("fwait");
133 
134 	return (0);
135 }
136 DEF_STD(feraiseexcept);
137 
138 /*
139  * This function sets the floating-point status flags indicated by the argument
140  * `excepts' to the states stored in the object pointed to by `flagp'. It does
141  * NOT raise any floating-point exceptions, but only sets the state of the flags.
142  */
143 int
fesetexceptflag(const fexcept_t * flagp,int excepts)144 fesetexceptflag(const fexcept_t *flagp, int excepts)
145 {
146 	fenv_t fenv;
147 	unsigned int mxcsr;
148 
149 	excepts &= FE_ALL_EXCEPT;
150 
151 	/* Store the current x87 floating-point environment */
152 	__asm__ volatile ("fnstenv %0" : "=m" (fenv));
153 
154 	/* Set the requested status flags */
155 	fenv.__x87.__status &= ~excepts;
156 	fenv.__x87.__status |= *flagp & excepts;
157 
158 	/* Load the x87 floating-point environment */
159 	__asm__ volatile ("fldenv %0" : : "m" (fenv));
160 
161 	/* Same for SSE environment */
162 	__asm__ volatile ("stmxcsr %0" : "=m" (mxcsr));
163 	mxcsr &= ~excepts;
164 	mxcsr |= *flagp & excepts;
165 	__asm__ volatile ("ldmxcsr %0" : : "m" (mxcsr));
166 
167 	return (0);
168 }
169 DEF_STD(fesetexceptflag);
170 
171 /*
172  * The fetestexcept() function determines which of a specified subset of the
173  * floating-point exception flags are currently set. The `excepts' argument
174  * specifies the floating-point status flags to be queried.
175  */
176 int
fetestexcept(int excepts)177 fetestexcept(int excepts)
178 {
179 	unsigned short status;
180 	unsigned int mxcsr;
181 
182 	excepts &= FE_ALL_EXCEPT;
183 
184 	/* Store the current x87 status register */
185 	__asm__ volatile ("fnstsw %0" : "=am" (status));
186 
187 	/* Store the MXCSR register state */
188 	__asm__ volatile ("stmxcsr %0" : "=m" (mxcsr));
189 
190 	return ((status | mxcsr) & excepts);
191 }
192 DEF_STD(fetestexcept);
193 
194 /*
195  * The fegetround() function gets the current rounding direction.
196  */
197 int
fegetround(void)198 fegetround(void)
199 {
200 	unsigned short control;
201 
202 	/*
203 	 * We assume that the x87 and the SSE unit agree on the
204 	 * rounding mode.  Reading the control word on the x87 turns
205 	 * out to be about 5 times faster than reading it on the SSE
206 	 * unit on an Opteron 244.
207 	 */
208 	__asm__ volatile ("fnstcw %0" : "=m" (control));
209 
210 	return (control & _X87_ROUND_MASK);
211 }
212 DEF_STD(fegetround);
213 
214 /*
215  * The fesetround() function establishes the rounding direction represented by
216  * its argument `round'. If the argument is not equal to the value of a rounding
217  * direction macro, the rounding direction is not changed.
218  */
219 int
fesetround(int round)220 fesetround(int round)
221 {
222 	unsigned short control;
223 	unsigned int mxcsr;
224 
225 	/* Check whether requested rounding direction is supported */
226 	if (round & ~_X87_ROUND_MASK)
227 		return (-1);
228 
229 	/* Store the current x87 control word register */
230 	__asm__ volatile ("fnstcw %0" : "=m" (control));
231 
232 	/* Set the rounding direction */
233 	control &= ~_X87_ROUND_MASK;
234 	control |= round;
235 
236 	/* Load the x87 control word register */
237 	__asm__ volatile ("fldcw %0" : : "m" (control));
238 
239 	/* Same for the SSE environment */
240 	__asm__ volatile ("stmxcsr %0" : "=m" (mxcsr));
241 	mxcsr &= ~(_X87_ROUND_MASK << _SSE_ROUND_SHIFT);
242 	mxcsr |= round << _SSE_ROUND_SHIFT;
243 	__asm__ volatile ("ldmxcsr %0" : : "m" (mxcsr));
244 
245 	return (0);
246 }
247 DEF_STD(fesetround);
248 
249 /*
250  * The fegetenv() function attempts to store the current floating-point
251  * environment in the object pointed to by envp.
252  */
253 int
fegetenv(fenv_t * envp)254 fegetenv(fenv_t *envp)
255 {
256 	/* Store the current x87 floating-point environment */
257 	__asm__ volatile ("fnstenv %0" : "=m" (*envp));
258 
259 	/* Store the MXCSR register state */
260 	__asm__ volatile ("stmxcsr %0" : "=m" (envp->__mxcsr));
261 
262 	/*
263 	 * When an FNSTENV instruction is executed, all pending exceptions are
264 	 * essentially lost (either the x87 FPU status register is cleared or
265 	 * all exceptions are masked).
266 	 *
267 	 * 8.6 X87 FPU EXCEPTION SYNCHRONIZATION -
268 	 * Intel(R) 64 and IA-32 Architectures Softare Developer's Manual - Vol1
269 	 */
270 	__asm__ volatile ("fldcw %0" : : "m" (envp->__x87.__control));
271 
272 	return (0);
273 }
274 DEF_STD(fegetenv);
275 
276 /*
277  * The feholdexcept() function saves the current floating-point environment
278  * in the object pointed to by envp, clears the floating-point status flags, and
279  * then installs a non-stop (continue on floating-point exceptions) mode, if
280  * available, for all floating-point exceptions.
281  */
282 int
feholdexcept(fenv_t * envp)283 feholdexcept(fenv_t *envp)
284 {
285 	unsigned int mxcsr;
286 
287 	/* Store the current x87 floating-point environment */
288 	__asm__ volatile ("fnstenv %0" : "=m" (*envp));
289 
290 	/* Clear all exception flags in FPU */
291 	__asm__ volatile ("fnclex");
292 
293 	/* Store the MXCSR register state */
294 	__asm__ volatile ("stmxcsr %0" : "=m" (envp->__mxcsr));
295 
296 	/* Clear exception flags in MXCSR */
297 	mxcsr = envp->__mxcsr;
298 	mxcsr &= ~FE_ALL_EXCEPT;
299 
300 	/* Mask all exceptions */
301 	mxcsr |= FE_ALL_EXCEPT << _SSE_MASK_SHIFT;
302 
303 	/* Store the MXCSR register */
304 	__asm__ volatile ("ldmxcsr %0" : : "m" (mxcsr));
305 
306 	return (0);
307 }
308 DEF_STD(feholdexcept);
309 
310 /*
311  * The fesetenv() function attempts to establish the floating-point environment
312  * represented by the object pointed to by envp. The argument `envp' points
313  * to an object set by a call to fegetenv() or feholdexcept(), or equal a
314  * floating-point environment macro. The fesetenv() function does not raise
315  * floating-point exceptions, but only installs the state of the floating-point
316  * status flags represented through its argument.
317  */
318 int
fesetenv(const fenv_t * envp)319 fesetenv(const fenv_t *envp)
320 {
321 	/* Load the x87 floating-point environment */
322 	__asm__ volatile ("fldenv %0" : : "m" (*envp));
323 
324 	/* Store the MXCSR register */
325 	__asm__ volatile ("ldmxcsr %0" : : "m" (envp->__mxcsr));
326 
327 	return (0);
328 }
329 DEF_STD(fesetenv);
330 
331 /*
332  * The feupdateenv() function saves the currently raised floating-point
333  * exceptions in its automatic storage, installs the floating-point environment
334  * represented by the object pointed to by `envp', and then raises the saved
335  * floating-point exceptions. The argument `envp' shall point to an object set
336  * by a call to feholdexcept() or fegetenv(), or equal a floating-point
337  * environment macro.
338  */
339 int
feupdateenv(const fenv_t * envp)340 feupdateenv(const fenv_t *envp)
341 {
342 	unsigned short status;
343 	unsigned int mxcsr;
344 
345 	/* Store the x87 status register */
346 	__asm__ volatile ("fnstsw %0" : "=am" (status));
347 
348 	/* Store the MXCSR register */
349 	__asm__ volatile ("stmxcsr %0" : "=m" (mxcsr));
350 
351 	/* Install new floating-point environment */
352 	fesetenv(envp);
353 
354 	/* Raise any previously accumulated exceptions */
355 	feraiseexcept(status | mxcsr);
356 
357 	return (0);
358 }
359 DEF_STD(feupdateenv);
360 
361 /*
362  * The following functions are extensions to the standard
363  */
364 int
feenableexcept(int mask)365 feenableexcept(int mask)
366 {
367 	unsigned int mxcsr, omask;
368 	unsigned short control;
369 
370 	mask &= FE_ALL_EXCEPT;
371 
372 	__asm__ volatile ("fnstcw %0" : "=m" (control));
373 	__asm__ volatile ("stmxcsr %0" : "=m" (mxcsr));
374 
375 	omask = ~(control | (mxcsr >> _SSE_MASK_SHIFT)) & FE_ALL_EXCEPT;
376 	control &= ~mask;
377 	__asm__ volatile ("fldcw %0" : : "m" (control));
378 
379 	mxcsr &= ~(mask << _SSE_MASK_SHIFT);
380 	__asm__ volatile ("ldmxcsr %0" : : "m" (mxcsr));
381 
382 	return (omask);
383 }
384 
385 int
fedisableexcept(int mask)386 fedisableexcept(int mask)
387 {
388 	unsigned int mxcsr, omask;
389 	unsigned short control;
390 
391 	mask &= FE_ALL_EXCEPT;
392 
393 	__asm__ volatile ("fnstcw %0" : "=m" (control));
394 	__asm__ volatile ("stmxcsr %0" : "=m" (mxcsr));
395 
396 	omask = ~(control | (mxcsr >> _SSE_MASK_SHIFT)) & FE_ALL_EXCEPT;
397 	control |= mask;
398 	__asm__ volatile ("fldcw %0" : : "m" (control));
399 
400 	mxcsr |= mask << _SSE_MASK_SHIFT;
401 	__asm__ volatile ("ldmxcsr %0" : : "m" (mxcsr));
402 
403 	return (omask);
404 }
405 
406 int
fegetexcept(void)407 fegetexcept(void)
408 {
409 	unsigned short control;
410 
411 	/*
412 	 * We assume that the masks for the x87 and the SSE unit are
413 	 * the same.
414 	 */
415 	__asm__ volatile ("fnstcw %0" : "=m" (control));
416 
417 	return (~control & FE_ALL_EXCEPT);
418 }
419