xref: /openbsd/sbin/growfs/growfs.c (revision e6c7c102)
1 /*	$OpenBSD: growfs.c,v 1.57 2024/04/23 13:34:50 jsg Exp $	*/
2 /*
3  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
4  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgment:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors, as well as Christoph
22  *      Herrmann and Thomas-Henning von Kamptz.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
40  * $FreeBSD: src/sbin/growfs/growfs.c,v 1.25 2006/07/17 20:48:36 stefanf Exp $
41  *
42  */
43 
44 #include <sys/param.h>	/* DEV_BSIZE MAXBSIZE setbit isset isclr clrbit */
45 #include <sys/types.h>
46 #include <sys/disklabel.h>
47 #include <sys/ioctl.h>
48 #include <sys/dkio.h>
49 #include <sys/stat.h>
50 
51 #include <stdio.h>
52 #include <paths.h>
53 #include <ctype.h>
54 #include <err.h>
55 #include <fcntl.h>
56 #include <limits.h>
57 #include <stdlib.h>
58 #include <stdint.h>
59 #include <string.h>
60 #include <time.h>
61 #include <unistd.h>
62 #include <util.h>
63 
64 #include <ufs/ufs/dinode.h>
65 #include <ufs/ffs/fs.h>
66 
67 #define MINIMUM(a, b)	(((a) < (b)) ? (a) : (b))
68 #define MAXIMUM(a, b)	(((a) > (b)) ? (a) : (b))
69 
70 #define	rounddown(x, y)	(((x)/(y))*(y))
71 #define	roundup(x, y)	((((x)+((y)-1))/(y))*(y))
72 
73 static int quiet;		/* quiet flag */
74 
75 static union {
76 	struct	fs fs;
77 	char	pad[SBLOCKSIZE];
78 } fsun1, fsun2;
79 #define	sblock	fsun1.fs	/* the new superblock */
80 #define	osblock	fsun2.fs	/* the old superblock */
81 
82 /*
83  * Possible superblock locations ordered from most to least likely.
84  */
85 static int sblock_try[] = SBLOCKSEARCH;
86 static daddr_t sblockloc;
87 
88 static union {
89 	struct	cg cg;
90 	char	pad[MAXBSIZE];
91 } cgun1, cgun2;
92 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
93 #define	aocg	cgun2.cg	/* an old cylinder group */
94 
95 static char	ablk[MAXBSIZE];		/* a block */
96 
97 static struct csum	*fscs;	/* cylinder summary */
98 
99 union dinode {
100 	struct ufs1_dinode dp1;
101 	struct ufs2_dinode dp2;
102 };
103 #define	DIP(dp, field) \
104 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
105 	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
106 #define	DIP_SET(dp, field, val) do { \
107 	if (sblock.fs_magic == FS_UFS1_MAGIC) \
108 		(dp)->dp1.field = (val); \
109 	else \
110 		(dp)->dp2.field = (val); \
111 	} while (0)
112 static daddr_t		inoblk;			/* inode block address */
113 static char		inobuf[MAXBSIZE];	/* inode block */
114 ino_t			maxino;			/* last valid inode */
115 
116 /*
117  * An array of elements of type struct gfs_bpp describes all blocks to
118  * be relocated in order to free the space needed for the cylinder group
119  * summary for all cylinder groups located in the first cylinder group.
120  */
121 struct gfs_bpp {
122 	daddr_t		old;		/* old block number */
123 	daddr_t		new;		/* new block number */
124 #define GFS_FL_FIRST	1
125 #define GFS_FL_LAST	2
126 	unsigned int	flags;		/* special handling required */
127 	int		found;		/* how many references were updated */
128 };
129 
130 static void	growfs(int, int, unsigned int);
131 static void	rdfs(daddr_t, size_t, void *, int);
132 static void	wtfs(daddr_t, size_t, void *, int, unsigned int);
133 static daddr_t alloc(void);
134 static int	charsperline(void);
135 static void	usage(void);
136 static int	isblock(struct fs *, unsigned char *, int);
137 static void	clrblock(struct fs *, unsigned char *, int);
138 static void	setblock(struct fs *, unsigned char *, int);
139 static void	initcg(u_int, time_t, int, unsigned int);
140 static void	updjcg(u_int, time_t, int, int, unsigned int);
141 static void	updcsloc(time_t, int, int, unsigned int);
142 static struct disklabel	*get_disklabel(int);
143 static void	return_disklabel(int, struct disklabel *, unsigned int);
144 static union dinode *ginode(ino_t, int, int);
145 static void	frag_adjust(daddr_t, int);
146 static int	cond_bl_upd(daddr_t *, struct gfs_bpp *, int, int,
147 		    unsigned int);
148 static void	updclst(int);
149 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
150 static void	indirchk(daddr_t, daddr_t, daddr_t, daddr_t,
151 		    struct gfs_bpp *, int, int, unsigned int);
152 static void	ffs1_sb_update(struct fs *, daddr_t);
153 
154 int	colwidth;
155 
156 /*
157  * Here we actually start growing the filesystem. We basically read the
158  * cylinder summary from the first cylinder group as we want to update
159  * this on the fly during our various operations. First we handle the
160  * changes in the former last cylinder group. Afterwards we create all new
161  * cylinder groups. Now we handle the cylinder group containing the
162  * cylinder summary which might result in a relocation of the whole
163  * structure. In the end we write back the updated cylinder summary, the
164  * new superblock, and slightly patched versions of the super block
165  * copies.
166  */
167 static void
growfs(int fsi,int fso,unsigned int Nflag)168 growfs(int fsi, int fso, unsigned int Nflag)
169 {
170 	int	i, j;
171 	u_int	cg;
172 	time_t	utime;
173 	char	tmpbuf[100];
174 
175 	time(&utime);
176 
177 	/*
178 	 * Get the cylinder summary into the memory.
179 	 */
180 	fscs = calloc(1, (size_t)sblock.fs_cssize);
181 	if (fscs == NULL)
182 		errx(1, "calloc failed");
183 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
184 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
185 		    numfrags(&osblock, i)), (size_t)MINIMUM(osblock.fs_cssize - i,
186 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
187 	}
188 
189 	/*
190 	 * Do all needed changes in the former last cylinder group.
191 	 */
192 	updjcg(osblock.fs_ncg - 1, utime, fsi, fso, Nflag);
193 
194 	/*
195 	 * Dump out summary information about filesystem.
196 	 */
197 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
198 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
199 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
200 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
201 	    sblock.fs_fsize);
202 	printf("\tusing %u cylinder groups of %.2fMB, %d blks, %u inodes.\n",
203 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
204 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
205 #undef B2MBFACTOR
206 
207 	/*
208 	 * Now build the cylinders group blocks and
209 	 * then print out indices of cylinder groups.
210 	 */
211 	if (!quiet)
212 		printf("super-block backups (for fsck -b #) at:\n");
213 	i = 0;
214 
215 	/*
216 	 * Iterate for only the new cylinder groups.
217 	 */
218 	for (cg = osblock.fs_ncg; cg < sblock.fs_ncg; cg++) {
219 		initcg(cg, utime, fso, Nflag);
220 		if (quiet)
221 			continue;
222 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %lld%s",
223 		    fsbtodb(&sblock, cgsblock(&sblock, cg)),
224 		    cg < (sblock.fs_ncg - 1) ? "," : "");
225 		if (j >= sizeof(tmpbuf))
226 			j = sizeof(tmpbuf) - 1;
227 		if (j < 0 || i + j >= colwidth) {
228 			printf("\n");
229 			i = 0;
230 		}
231 		i += j;
232 		printf("%s", tmpbuf);
233 		fflush(stdout);
234 	}
235 	if (!quiet)
236 		printf("\n");
237 
238 	/*
239 	 * Do all needed changes in the first cylinder group.
240 	 * allocate blocks in new location
241 	 */
242 	updcsloc(utime, fsi, fso, Nflag);
243 
244 	/*
245 	 * Now write the cylinder summary back to disk.
246 	 */
247 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
248 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
249 		    (size_t)MINIMUM(sblock.fs_cssize - i, sblock.fs_bsize),
250 		    (void *)(((char *)fscs) + i), fso, Nflag);
251 	}
252 
253 	/*
254 	 * Now write the new superblock back to disk.
255 	 */
256 	sblock.fs_time = utime;
257 	sblock.fs_clean = 0;
258 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
259 		sblock.fs_ffs1_time = (int32_t)sblock.fs_time;
260 		sblock.fs_ffs1_size = (int32_t)sblock.fs_size;
261 		sblock.fs_ffs1_dsize = (int32_t)sblock.fs_dsize;
262 		sblock.fs_ffs1_csaddr = (int32_t)sblock.fs_csaddr;
263 		sblock.fs_ffs1_cstotal.cs_ndir =
264 		    (int32_t)sblock.fs_cstotal.cs_ndir;
265 		sblock.fs_ffs1_cstotal.cs_nbfree =
266 		    (int32_t)sblock.fs_cstotal.cs_nbfree;
267 		sblock.fs_ffs1_cstotal.cs_nifree =
268 		    (int32_t)sblock.fs_cstotal.cs_nifree;
269 		sblock.fs_ffs1_cstotal.cs_nffree =
270 		    (int32_t)sblock.fs_cstotal.cs_nffree;
271 	}
272 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
273 
274 	/*
275 	 * Clean up the dynamic fields in our superblock copies.
276 	 */
277 	sblock.fs_fmod = 0;
278 	sblock.fs_clean = 1;
279 	sblock.fs_ronly = 0;
280 	sblock.fs_cgrotor = 0;
281 	sblock.fs_state = 0;
282 	memset(&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
283 
284 	/*
285 	 * XXX
286 	 * The following fields are currently distributed from the  superblock
287 	 * to the copies:
288 	 *     fs_minfree
289 	 *     fs_rotdelay
290 	 *     fs_maxcontig
291 	 *     fs_maxbpg
292 	 *     fs_minfree,
293 	 *     fs_optim
294 	 *     fs_flags regarding SOFTPDATES
295 	 *
296 	 * We probably should rather change the summary for the cylinder group
297 	 * statistics here to the value of what would be in there, if the file
298 	 * system were created initially with the new size. Therefore we still
299 	 * need to find an easy way of calculating that.
300 	 * Possibly we can try to read the first superblock copy and apply the
301 	 * "diffed" stats between the old and new superblock by still  copying
302 	 * certain parameters onto that.
303 	 */
304 
305 	/*
306 	 * Write out the duplicate superblocks.
307 	 */
308 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
309 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cg)),
310 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
311 	}
312 }
313 
314 /*
315  * This creates a new cylinder group structure, for more details please  see
316  * the  source of newfs(8), as this function is taken over almost unchanged.
317  * As  this  is  never called for the  first  cylinder  group,  the  special
318  * provisions for that case are removed here.
319  */
320 static void
initcg(u_int cg,time_t utime,int fso,unsigned int Nflag)321 initcg(u_int cg, time_t utime, int fso, unsigned int Nflag)
322 {
323 	static char *iobuf;
324 	daddr_t d, dlower, dupper, blkno, start;
325 	daddr_t i, cbase, dmax;
326 	struct ufs1_dinode *dp1;
327 	struct ufs2_dinode *dp2;
328 	struct csum *cs;
329 	ino_t j;
330 	size_t iobufsize;
331 
332 	if (sblock.fs_bsize < SBLOCKSIZE)
333 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
334 	else
335 		iobufsize = 4 * sblock.fs_bsize;
336 
337 	if (iobuf == NULL && (iobuf = malloc(iobufsize)) == NULL)
338 		errx(37, "panic: cannot allocate I/O buffer");
339 	bzero(iobuf, iobufsize);
340 
341 	/*
342 	 * Determine block bounds for cylinder group.
343 	 * Allow space for super block summary information in first
344 	 * cylinder group.
345 	 */
346 	cbase = cgbase(&sblock, cg);
347 	dmax = cbase + sblock.fs_fpg;
348 	if (dmax > sblock.fs_size)
349 		dmax = sblock.fs_size;
350 	dlower = cgsblock(&sblock, cg) - cbase;
351 	dupper = cgdmin(&sblock, cg) - cbase;
352 	if (cg == 0) /* XXX fscs may be relocated */
353 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
354 	cs = &fscs[cg];
355 	memset(&acg, 0, sblock.fs_cgsize);
356 	acg.cg_ffs2_time = utime;
357 	acg.cg_magic = CG_MAGIC;
358 	acg.cg_cgx = cg;
359 	acg.cg_ffs2_niblk = sblock.fs_ipg;
360 	acg.cg_initediblk = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock));
361 	acg.cg_ndblk = dmax - cbase;
362 	if (sblock.fs_contigsumsize > 0)
363 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
364 	start = sizeof(struct cg);
365 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
366 		acg.cg_iusedoff = start;
367 	} else {
368 		if (cg == sblock.fs_ncg - 1)
369 			acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
370 		else
371 			acg.cg_ncyl = sblock.fs_cpg;
372 		acg.cg_time = (int32_t)acg.cg_ffs2_time;
373 		acg.cg_ffs2_time = 0;
374 		acg.cg_niblk = (int16_t)acg.cg_ffs2_niblk;
375 		acg.cg_ffs2_niblk = 0;
376 		acg.cg_initediblk = 0;
377 		acg.cg_btotoff = start;
378 		acg.cg_boff = acg.cg_btotoff +
379 		    sblock.fs_cpg * sizeof(int32_t);
380 		acg.cg_iusedoff = acg.cg_boff +
381 		    sblock.fs_cpg * sizeof(u_int16_t);
382 	}
383 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
384 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
385 	if (sblock.fs_contigsumsize > 0) {
386 		acg.cg_clustersumoff =
387 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
388 		acg.cg_clustersumoff -= sizeof(u_int32_t);
389 		acg.cg_clusteroff = acg.cg_clustersumoff +
390 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
391 		acg.cg_nextfreeoff = acg.cg_clusteroff +
392 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
393 	}
394 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
395 		/*
396 		 * This should never happen as we would have had that panic
397 		 *     already on filesystem creation
398 		 */
399 		errx(37, "panic: cylinder group too big");
400 	}
401 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
402 	if (cg == 0) {
403 		for (i = 0; i < ROOTINO; i++) {
404 			setbit(cg_inosused(&acg), i);
405 			acg.cg_cs.cs_nifree--;
406 		}
407 	}
408 	if (cg > 0) {
409 		/*
410 		 * In cg 0, beginning space is reserved
411 		 * for boot and super blocks.
412 		 */
413 		for (d = 0; d < dlower; d += sblock.fs_frag) {
414 			blkno = d / sblock.fs_frag;
415 			setblock(&sblock, cg_blksfree(&acg), blkno);
416 			if (sblock.fs_contigsumsize > 0)
417 				setbit(cg_clustersfree(&acg), blkno);
418 			acg.cg_cs.cs_nbfree++;
419 		}
420 		sblock.fs_dsize += dlower;
421 	}
422 	sblock.fs_dsize += acg.cg_ndblk - dupper;
423 	if ((i = dupper % sblock.fs_frag)) {
424 		acg.cg_frsum[sblock.fs_frag - i]++;
425 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
426 			setbit(cg_blksfree(&acg), dupper);
427 			acg.cg_cs.cs_nffree++;
428 		}
429 	}
430 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
431 	    d += sblock.fs_frag) {
432 		blkno = d / sblock.fs_frag;
433 		setblock(&sblock, cg_blksfree(&acg), blkno);
434 		if (sblock.fs_contigsumsize > 0)
435 			setbit(cg_clustersfree(&acg), blkno);
436 		acg.cg_cs.cs_nbfree++;
437 	}
438 	if (d < acg.cg_ndblk) {
439 		acg.cg_frsum[acg.cg_ndblk - d]++;
440 		for (; d < acg.cg_ndblk; d++) {
441 			setbit(cg_blksfree(&acg), d);
442 			acg.cg_cs.cs_nffree++;
443 		}
444 	}
445 	if (sblock.fs_contigsumsize > 0) {
446 		int32_t	*sump = cg_clustersum(&acg);
447 		u_char	*mapp = cg_clustersfree(&acg);
448 		int	map = *mapp++;
449 		int	bit = 1;
450 		int	run = 0;
451 
452 		for (i = 0; i < acg.cg_nclusterblks; i++) {
453 			if ((map & bit) != 0)
454 				run++;
455 			else if (run != 0) {
456 				if (run > sblock.fs_contigsumsize)
457 					run = sblock.fs_contigsumsize;
458 				sump[run]++;
459 				run = 0;
460 			}
461 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
462 				bit <<= 1;
463 			else {
464 				map = *mapp++;
465 				bit = 1;
466 			}
467 		}
468 		if (run != 0) {
469 			if (run > sblock.fs_contigsumsize)
470 				run = sblock.fs_contigsumsize;
471 			sump[run]++;
472 		}
473 	}
474 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
475 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
476 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
477 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
478 	*cs = acg.cg_cs;
479 
480 	/*
481 	 * Write out the duplicate superblock, the cylinder group map
482 	 * and two blocks worth of inodes in a single write.
483 	 */
484 	bcopy(&sblock, iobuf, SBLOCKSIZE);
485 	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
486 	bcopy(&acg, &iobuf[start], sblock.fs_cgsize);
487 	start += sblock.fs_bsize;
488 	dp1 = (struct ufs1_dinode *)&iobuf[start];
489 	dp2 = (struct ufs2_dinode *)&iobuf[start];
490 	for (i = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock)); i != 0; i--) {
491 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
492 			dp1->di_gen = arc4random();
493 			dp1++;
494 		} else {
495 			dp2->di_gen = arc4random();
496 			dp2++;
497 		}
498 	}
499 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cg)), iobufsize,
500 	    iobuf, fso, Nflag);
501 
502 	/* Initialize inodes for FFS1. */
503 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
504 		for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock);
505 		    i += sblock.fs_frag) {
506 			dp1 = (struct ufs1_dinode *)&iobuf[start];
507 			for (j = 0; j < INOPB(&sblock); j++) {
508 				dp1->di_gen = arc4random();
509 				dp1++;
510 			}
511 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cg) + i),
512 			    (size_t)sblock.fs_bsize, &iobuf[start], fso, Nflag);
513 		}
514 	}
515 }
516 
517 /*
518  * Here  we add or subtract (sign +1/-1) the available fragments in  a  given
519  * block to or from the fragment statistics. By subtracting before and adding
520  * after  an operation on the free frag map we can easy update  the  fragment
521  * statistic, which seems to be otherwise a rather complex operation.
522  */
523 static void
frag_adjust(daddr_t frag,int sign)524 frag_adjust(daddr_t frag, int sign)
525 {
526 	int fragsize;
527 	int f;
528 
529 	fragsize = 0;
530 	/*
531 	 * Here frag only needs to point to any fragment in the block we want
532 	 * to examine.
533 	 */
534 	for (f = rounddown(frag, sblock.fs_frag);
535 	    f < roundup(frag + 1, sblock.fs_frag);
536 	    f++) {
537 		/*
538 		 * Count contiguous free fragments.
539 		 */
540 		if (isset(cg_blksfree(&acg), f)) {
541 			fragsize++;
542 		} else {
543 			if (fragsize && fragsize < sblock.fs_frag) {
544 				/*
545 				 * We found something in between.
546 				 */
547 				acg.cg_frsum[fragsize] += sign;
548 			}
549 			fragsize = 0;
550 		}
551 	}
552 	if (fragsize && fragsize < sblock.fs_frag) {
553 		/*
554 		 * We found something.
555 		 */
556 		acg.cg_frsum[fragsize] += sign;
557 	}
558 }
559 
560 /*
561  * Here we conditionally update a pointer to a fragment. We check for all
562  * relocated blocks if any of its fragments is referenced by the current
563  * field,  and update the pointer to the respective fragment in  our  new
564  * block.  If  we find a reference we write back the  block  immediately,
565  * as there is no easy way for our general block reading engine to figure
566  * out if a write back operation is needed.
567  */
568 static int
cond_bl_upd(daddr_t * block,struct gfs_bpp * field,int fsi,int fso,unsigned int Nflag)569 cond_bl_upd(daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
570     unsigned int Nflag)
571 {
572 	struct gfs_bpp	*f;
573 	daddr_t src, dst;
574 	int fragnum;
575 	void *ibuf;
576 
577 	for (f = field; f->old != 0; f++) {
578 		src = *block;
579 		if (fragstoblks(&sblock, src) != f->old)
580 			continue;
581 		/*
582 		 * The fragment is part of the block, so update.
583 		 */
584 		dst = blkstofrags(&sblock, f->new);
585 		fragnum = fragnum(&sblock, src);
586 		*block = dst + fragnum;
587 		f->found++;
588 
589 		/*
590 		 * Copy the block back immediately.
591 		 *
592 		 * XXX	If src is from an indirect block we have
593 		 *	to implement copy on write here in case of
594 		 *	active snapshots.
595 		 */
596 		ibuf = malloc(sblock.fs_bsize);
597 		if (!ibuf)
598 			errx(1, "malloc failed");
599 		src -= fragnum;
600 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
601 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
602 		free(ibuf);
603 		/*
604 		 * The same block can't be found again in this loop.
605 		 */
606 		return (1);
607 	}
608 
609 	return (0);
610 }
611 
612 /*
613  * Here we do all needed work for the former last cylinder group. It has to be
614  * changed  in  any case, even if the filesystem ended exactly on the  end  of
615  * this  group, as there is some slightly inconsistent handling of the  number
616  * of cylinders in the cylinder group. We start again by reading the  cylinder
617  * group from disk. If the last block was not fully available, we first handle
618  * the  missing  fragments, then we handle all new full blocks  in  that  file
619  * system  and  finally we handle the new last fragmented block  in  the  file
620  * system.  We again have to handle the fragment statistics rotational  layout
621  * tables and cluster summary during all those operations.
622  */
623 static void
updjcg(u_int cg,time_t utime,int fsi,int fso,unsigned int Nflag)624 updjcg(u_int cg, time_t utime, int fsi, int fso, unsigned int Nflag)
625 {
626 	daddr_t	cbase, dmax, dupper;
627 	struct csum	*cs;
628 	int	i, k;
629 	int	j = 0;
630 
631 	/*
632 	 * Read the former last (joining) cylinder group from disk, and make
633 	 * a copy.
634 	 */
635 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cg)),
636 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
637 
638 	memcpy(&cgun1, &cgun2, sizeof(cgun2));
639 
640 	/*
641 	 * If the cylinder group had already its new final size almost
642 	 * nothing is to be done ... except:
643 	 * For some reason the value of cg_ncyl in the last cylinder group has
644 	 * to  be  zero instead of fs_cpg. As this is now no longer  the  last
645 	 * cylinder group we have to change that value now to fs_cpg.
646 	 */
647 	if (cgbase(&osblock, cg+1) == osblock.fs_size) {
648 		if (sblock.fs_magic == FS_UFS1_MAGIC)
649 			acg.cg_ncyl = sblock.fs_cpg;
650 
651 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cg)),
652 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
653 
654 		return;
655 	}
656 
657 	/*
658 	 * Set up some variables needed later.
659 	 */
660 	cbase = cgbase(&sblock, cg);
661 	dmax = cbase + sblock.fs_fpg;
662 	if (dmax > sblock.fs_size)
663 		dmax = sblock.fs_size;
664 	dupper = cgdmin(&sblock, cg) - cbase;
665 	if (cg == 0)	/* XXX fscs may be relocated */
666 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
667 
668 	/*
669 	 * Set pointer to the cylinder summary for our cylinder group.
670 	 */
671 	cs = fscs + cg;
672 
673 	/*
674 	 * Touch the cylinder group, update all fields in the cylinder group as
675 	 * needed, update the free space in the superblock.
676 	 */
677 	acg.cg_time = utime;
678 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
679 		if (cg == sblock.fs_ncg - 1) {
680 			/*
681 			 * This is still the last cylinder group.
682 			 */
683 			acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
684 		} else {
685 			acg.cg_ncyl = sblock.fs_cpg;
686 		}
687 	}
688 	acg.cg_ndblk = dmax - cbase;
689 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
690 	if (sblock.fs_contigsumsize > 0)
691 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
692 
693 	/*
694 	 * Now  we have to update the free fragment bitmap for our new  free
695 	 * space.  There again we have to handle the fragmentation and  also
696 	 * the  rotational  layout tables and the cluster summary.  This  is
697 	 * also  done per fragment for the first new block if the  old  file
698 	 * system end was not on a block boundary, per fragment for the  new
699 	 * last block if the new filesystem end is not on a block boundary,
700 	 * and per block for all space in between.
701 	 *
702 	 * Handle the first new block here if it was partially available
703 	 * before.
704 	 */
705 	if (osblock.fs_size % sblock.fs_frag) {
706 		if (roundup(osblock.fs_size, sblock.fs_frag) <= sblock.fs_size) {
707 			/*
708 			 * The new space is enough to fill at least this
709 			 * block
710 			 */
711 			j = 0;
712 			for (i = roundup(osblock.fs_size-cbase, sblock.fs_frag) - 1;
713 			    i >= osblock.fs_size-cbase; i--) {
714 				setbit(cg_blksfree(&acg), i);
715 				acg.cg_cs.cs_nffree++;
716 				j++;
717 			}
718 
719 			/*
720 			 * Check  if the fragment just created could join  an
721 			 * already existing fragment at the former end of the
722 			 * filesystem.
723 			 */
724 			if (isblock(&sblock, cg_blksfree(&acg),
725 			    ((osblock.fs_size - cgbase(&sblock, cg))/
726 			    sblock.fs_frag))) {
727 				/*
728 				 * The block is now completely available.
729 				 */
730 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
731 				acg.cg_cs.cs_nbfree++;
732 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
733 				k = rounddown(osblock.fs_size-cbase,
734 				    sblock.fs_frag);
735 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
736 			} else {
737 				/*
738 				 * Lets rejoin a possible partially growed
739 				 * fragment.
740 				 */
741 				k = 0;
742 				while (isset(cg_blksfree(&acg), i) &&
743 				    (i >= rounddown(osblock.fs_size - cbase,
744 				    sblock.fs_frag))) {
745 					i--;
746 					k++;
747 				}
748 				if (k)
749 					acg.cg_frsum[k]--;
750 				acg.cg_frsum[k + j]++;
751 			}
752 		} else {
753 			/*
754 			 * We only grow by some fragments within this last
755 			 * block.
756 			 */
757 			for (i = sblock.fs_size-cbase-1;
758 			    i >= osblock.fs_size-cbase; i--) {
759 				setbit(cg_blksfree(&acg), i);
760 				acg.cg_cs.cs_nffree++;
761 				j++;
762 			}
763 			/*
764 			 * Lets rejoin a possible partially growed fragment.
765 			 */
766 			k = 0;
767 			while (isset(cg_blksfree(&acg), i) &&
768 			    (i >= rounddown(osblock.fs_size - cbase,
769 			    sblock.fs_frag))) {
770 				i--;
771 				k++;
772 			}
773 			if (k)
774 				acg.cg_frsum[k]--;
775 			acg.cg_frsum[k + j]++;
776 		}
777 	}
778 
779 	/*
780 	 * Handle all new complete blocks here.
781 	 */
782 	for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag);
783 	    i + sblock.fs_frag <= dmax-cbase;	/* XXX <= or only < ? */
784 	    i += sblock.fs_frag) {
785 		j = i / sblock.fs_frag;
786 		setblock(&sblock, cg_blksfree(&acg), j);
787 		updclst(j);
788 		acg.cg_cs.cs_nbfree++;
789 	}
790 
791 	/*
792 	 * Handle the last new block if there are stll some new fragments left.
793 	 * Here  we don't have to bother about the cluster summary or the  even
794 	 * the rotational layout table.
795 	 */
796 	if (i < (dmax - cbase)) {
797 		acg.cg_frsum[dmax - cbase - i]++;
798 		for (; i < dmax - cbase; i++) {
799 			setbit(cg_blksfree(&acg), i);
800 			acg.cg_cs.cs_nffree++;
801 		}
802 	}
803 
804 	sblock.fs_cstotal.cs_nffree +=
805 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
806 	sblock.fs_cstotal.cs_nbfree +=
807 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
808 	/*
809 	 * The following statistics are not changed here:
810 	 *     sblock.fs_cstotal.cs_ndir
811 	 *     sblock.fs_cstotal.cs_nifree
812 	 * As the statistics for this cylinder group are ready, copy it to
813 	 * the summary information array.
814 	 */
815 	*cs = acg.cg_cs;
816 
817 	/*
818 	 * Write the updated "joining" cylinder group back to disk.
819 	 */
820 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cg)), (size_t)sblock.fs_cgsize,
821 	    (void *)&acg, fso, Nflag);
822 }
823 
824 /*
825  * Here  we update the location of the cylinder summary. We have  two  possible
826  * ways of growing the cylinder summary.
827  * (1)	We can try to grow the summary in the current location, and  relocate
828  *	possibly used blocks within the current cylinder group.
829  * (2)	Alternatively we can relocate the whole cylinder summary to the first
830  *	new completely empty cylinder group. Once the cylinder summary is  no
831  *	longer in the beginning of the first cylinder group you should  never
832  *	use  a version of fsck which is not aware of the possibility to  have
833  *	this structure in a non standard place.
834  * Option (1) is considered to be less intrusive to the structure of the  file-
835  * system. So we try to stick to that whenever possible. If there is not enough
836  * space  in the cylinder group containing the cylinder summary we have to  use
837  * method  (2). In case of active snapshots in the filesystem we  probably  can
838  * completely avoid implementing copy on write if we stick to method (2) only.
839  */
840 static void
updcsloc(time_t utime,int fsi,int fso,unsigned int Nflag)841 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
842 {
843 	struct csum	*cs;
844 	int	ocscg, ncscg;
845 	int	blocks;
846 	daddr_t	cbase, dupper, odupper, d, f, g;
847 	int	ind;
848 	u_int	cg, inc;
849 	struct gfs_bpp	*bp;
850 	int	i, l;
851 	int	lcs = 0;
852 	int	block;
853 
854 	if (howmany(sblock.fs_cssize, sblock.fs_fsize) ==
855 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
856 		/*
857 		 * No new fragment needed.
858 		 */
859 		return;
860 	}
861 	ocscg = dtog(&osblock, osblock.fs_csaddr);
862 	cs = fscs + ocscg;
863 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
864 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
865 
866 	/*
867 	 * Read original cylinder group from disk, and make a copy.
868 	 * XXX	If Nflag is set in some very rare cases we now miss
869 	 *	some changes done in updjcg by reading the unmodified
870 	 *	block from disk.
871 	 */
872 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
873 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
874 
875 	memcpy(&cgun1, &cgun2, sizeof(cgun2));
876 
877 	/*
878 	 * Touch the cylinder group, set up local variables needed later
879 	 * and update the superblock.
880 	 */
881 	acg.cg_time = utime;
882 
883 	/*
884 	 * XXX	In the case of having active snapshots we may need much more
885 	 *	blocks for the copy on write. We need each block twice,  and
886 	 *	also  up to 8*3 blocks for indirect blocks for all  possible
887 	 *	references.
888 	 */
889 	if (/*((int)sblock.fs_time & 0x3) > 0 || */ cs->cs_nbfree < blocks) {
890 		/*
891 		 * There  is  not enough space in the old cylinder  group  to
892 		 * relocate  all blocks as needed, so we relocate  the  whole
893 		 * cylinder  group summary to a new group. We try to use  the
894 		 * first complete new cylinder group just created. Within the
895 		 * cylinder  group we align the area immediately  after  the
896 		 * cylinder  group  information location in order  to  be  as
897 		 * close as possible to the original implementation of ffs.
898 		 *
899 		 * First  we have to make sure we'll find enough space in  the
900 		 * new  cylinder  group. If not, then we  currently  give  up.
901 		 * We  start  with freeing everything which was  used  by  the
902 		 * fragments of the old cylinder summary in the current group.
903 		 * Now  we write back the group meta data, read in the  needed
904 		 * meta data from the new cylinder group, and start allocating
905 		 * within  that  group. Here we can assume, the  group  to  be
906 		 * completely empty. Which makes the handling of fragments and
907 		 * clusters a lot easier.
908 		 */
909 		if (sblock.fs_ncg-osblock.fs_ncg < 2)
910 			errx(2, "panic: not enough space");
911 
912 		/*
913 		 * Point "d" to the first fragment not used by the cylinder
914 		 * summary.
915 		 */
916 		d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize);
917 
918 		/*
919 		 * Set up last cluster size ("lcs") already here. Calculate
920 		 * the size for the trailing cluster just behind where  "d"
921 		 * points to.
922 		 */
923 		if (sblock.fs_contigsumsize > 0) {
924 			for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag),
925 			    lcs = 0; lcs < sblock.fs_contigsumsize;
926 			    block++, lcs++) {
927 				if (isclr(cg_clustersfree(&acg), block))
928 					break;
929 			}
930 		}
931 
932 		/*
933 		 * Point "d" to the last frag used by the cylinder summary.
934 		 */
935 		d--;
936 
937 		if ((d + 1) % sblock.fs_frag) {
938 			/*
939 			 * The end of the cylinder summary is not a complete
940 			 * block.
941 			 */
942 			frag_adjust(d % sblock.fs_fpg, -1);
943 			for (; (d + 1) % sblock.fs_frag; d--) {
944 				setbit(cg_blksfree(&acg), d % sblock.fs_fpg);
945 				acg.cg_cs.cs_nffree++;
946 				sblock.fs_cstotal.cs_nffree++;
947 			}
948 			/*
949 			 * Point  "d" to the last fragment of the  last
950 			 * (incomplete) block of the cylinder summary.
951 			 */
952 			d++;
953 			frag_adjust(d % sblock.fs_fpg, 1);
954 
955 			if (isblock(&sblock, cg_blksfree(&acg),
956 			    (d % sblock.fs_fpg) / sblock.fs_frag)) {
957 				acg.cg_cs.cs_nffree -= sblock.fs_frag;
958 				acg.cg_cs.cs_nbfree++;
959 				sblock.fs_cstotal.cs_nffree -= sblock.fs_frag;
960 				sblock.fs_cstotal.cs_nbfree++;
961 				if (sblock.fs_contigsumsize > 0) {
962 					setbit(cg_clustersfree(&acg),
963 					    (d % sblock.fs_fpg) / sblock.fs_frag);
964 					if (lcs < sblock.fs_contigsumsize) {
965 						if (lcs) {
966 							cg_clustersum(&acg)
967 							    [lcs]--;
968 						}
969 						lcs++;
970 						cg_clustersum(&acg)[lcs]++;
971 					}
972 				}
973 			}
974 			/*
975 			 * Point "d" to the first fragment of the block before
976 			 * the last incomplete block.
977 			 */
978 			d--;
979 		}
980 
981 		for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
982 		    d -= sblock.fs_frag) {
983 			setblock(&sblock, cg_blksfree(&acg),
984 			    (d % sblock.fs_fpg) / sblock.fs_frag);
985 			acg.cg_cs.cs_nbfree++;
986 			sblock.fs_cstotal.cs_nbfree++;
987 			if (sblock.fs_contigsumsize > 0) {
988 				setbit(cg_clustersfree(&acg),
989 				    (d % sblock.fs_fpg) / sblock.fs_frag);
990 				/*
991 				 * The last cluster size is already set up.
992 				 */
993 				if (lcs < sblock.fs_contigsumsize) {
994 					if (lcs) {
995 						cg_clustersum(&acg)[lcs]--;
996 					}
997 					lcs++;
998 					cg_clustersum(&acg)[lcs]++;
999 				}
1000 			}
1001 		}
1002 		*cs = acg.cg_cs;
1003 
1004 		/*
1005 		 * Now write the former cylinder group containing the cylinder
1006 		 * summary back to disk.
1007 		 */
1008 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1009 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1010 
1011 		/*
1012 		 * Find the beginning of the new cylinder group containing the
1013 		 * cylinder summary.
1014 		 */
1015 		sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg);
1016 		ncscg = dtog(&sblock, sblock.fs_csaddr);
1017 		cs = fscs + ncscg;
1018 
1019 
1020 		/*
1021 		 * If Nflag is specified, we would now read random data instead
1022 		 * of an empty cg structure from disk. So we can't simulate that
1023 		 * part for now.
1024 		 */
1025 		if (Nflag)
1026 			return;
1027 
1028 		/*
1029 		 * Read the future cylinder group containing the cylinder
1030 		 * summary from disk, and make a copy.
1031 		 */
1032 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1033 		    (size_t)sblock.fs_cgsize, &aocg, fsi);
1034 
1035 		memcpy(&cgun1, &cgun2, sizeof(cgun2));
1036 
1037 		/*
1038 		 * Allocate all complete blocks used by the new cylinder
1039 		 * summary.
1040 		 */
1041 		for (d = sblock.fs_csaddr; d + sblock.fs_frag <=
1042 		    sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize);
1043 		    d += sblock.fs_frag) {
1044 			clrblock(&sblock, cg_blksfree(&acg),
1045 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1046 			acg.cg_cs.cs_nbfree--;
1047 			sblock.fs_cstotal.cs_nbfree--;
1048 			if (sblock.fs_contigsumsize > 0) {
1049 				clrbit(cg_clustersfree(&acg),
1050 				    (d % sblock.fs_fpg) / sblock.fs_frag);
1051 			}
1052 		}
1053 
1054 		/*
1055 		 * Allocate all fragments used by the cylinder summary in the
1056 		 * last block.
1057 		 */
1058 		if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) {
1059 			for (; d - sblock.fs_csaddr <
1060 			    sblock.fs_cssize/sblock.fs_fsize;
1061 			    d++) {
1062 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1063 				acg.cg_cs.cs_nffree--;
1064 				sblock.fs_cstotal.cs_nffree--;
1065 			}
1066 			acg.cg_cs.cs_nbfree--;
1067 			acg.cg_cs.cs_nffree += sblock.fs_frag;
1068 			sblock.fs_cstotal.cs_nbfree--;
1069 			sblock.fs_cstotal.cs_nffree += sblock.fs_frag;
1070 			if (sblock.fs_contigsumsize > 0) {
1071 				clrbit(cg_clustersfree(&acg),
1072 				    (d%sblock.fs_fpg) / sblock.fs_frag);
1073 			}
1074 
1075 			frag_adjust(d % sblock.fs_fpg, 1);
1076 		}
1077 		/*
1078 		 * XXX	Handle the cluster statistics here in the case  this
1079 		 *	cylinder group is now almost full, and the remaining
1080 		 *	space is less then the maximum cluster size. This is
1081 		 *	probably not needed, as you would hardly find a file
1082 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1083 		 *	space right behind the cylinder group information in
1084 		 *	any new cylinder group.
1085 		 */
1086 
1087 		/*
1088 		 * Update our statistics in the cylinder summary.
1089 		 */
1090 		*cs = acg.cg_cs;
1091 
1092 		/*
1093 		 * Write the new cylinder group containing the cylinder summary
1094 		 * back to disk.
1095 		 */
1096 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1097 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1098 		return;
1099 	}
1100 	/*
1101 	 * We have got enough of space in the current cylinder group, so we
1102 	 * can relocate just a few blocks, and let the summary  information
1103 	 * grow in place where it is right now.
1104 	 */
1105 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1106 	dupper = sblock.fs_csaddr - cbase +
1107 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1108 	odupper = osblock.fs_csaddr - cbase +
1109 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1110 
1111 	sblock.fs_dsize -= dupper-odupper;
1112 
1113 	/*
1114 	 * Allocate the space for the array of blocks to be relocated.
1115 	 */
1116 	bp = calloc(((dupper-odupper) / sblock.fs_frag + 2),
1117 	    sizeof(struct gfs_bpp));
1118 	if (bp == NULL)
1119 		errx(1, "calloc failed");
1120 
1121 	/*
1122 	 * Lock all new frags needed for the cylinder group summary. This  is
1123 	 * done per fragment in the first and last block of the new  required
1124 	 * area, and per block for all other blocks.
1125 	 *
1126 	 * Handle the first new  block here (but only if some fragments where
1127 	 * already used for the cylinder summary).
1128 	 */
1129 	ind = 0;
1130 	frag_adjust(odupper, -1);
1131 	for (d = odupper; ((d < dupper) && (d % sblock.fs_frag)); d++) {
1132 		if (isclr(cg_blksfree(&acg), d)) {
1133 			if (!ind) {
1134 				bp[ind].old = d / sblock.fs_frag;
1135 				bp[ind].flags|=GFS_FL_FIRST;
1136 				if (roundup(d, sblock.fs_frag) >= dupper)
1137 					bp[ind].flags |= GFS_FL_LAST;
1138 				ind++;
1139 			}
1140 		} else {
1141 			clrbit(cg_blksfree(&acg), d);
1142 			acg.cg_cs.cs_nffree--;
1143 			sblock.fs_cstotal.cs_nffree--;
1144 		}
1145 		/*
1146 		 * No cluster handling is needed here, as there was at least
1147 		 * one  fragment in use by the cylinder summary in  the  old
1148 		 * filesystem.
1149 		 * No block - free counter handling here as this block was not
1150 		 * a free block.
1151 		 */
1152 	}
1153 	frag_adjust(odupper, 1);
1154 
1155 	/*
1156 	 * Handle all needed complete blocks here.
1157 	 */
1158 	for (; d + sblock.fs_frag <= dupper; d += sblock.fs_frag) {
1159 		if (!isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) {
1160 			for (f = d; f < d + sblock.fs_frag; f++) {
1161 				if (isset(cg_blksfree(&aocg), f)) {
1162 					acg.cg_cs.cs_nffree--;
1163 					sblock.fs_cstotal.cs_nffree--;
1164 				}
1165 			}
1166 			clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
1167 			bp[ind].old = d / sblock.fs_frag;
1168 			ind++;
1169 		} else {
1170 			clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
1171 			acg.cg_cs.cs_nbfree--;
1172 			sblock.fs_cstotal.cs_nbfree--;
1173 			if (sblock.fs_contigsumsize > 0) {
1174 				clrbit(cg_clustersfree(&acg), d / sblock.fs_frag);
1175 				for (lcs = 0, l = (d / sblock.fs_frag) + 1;
1176 				    lcs < sblock.fs_contigsumsize;
1177 				    l++, lcs++) {
1178 					if (isclr(cg_clustersfree(&acg), l))
1179 						break;
1180 				}
1181 				if (lcs < sblock.fs_contigsumsize) {
1182 					cg_clustersum(&acg)[lcs + 1]--;
1183 					if (lcs)
1184 						cg_clustersum(&acg)[lcs]++;
1185 				}
1186 			}
1187 		}
1188 		/*
1189 		 * No fragment counter handling is needed here, as this finally
1190 		 * doesn't change after the relocation.
1191 		 */
1192 	}
1193 
1194 	/*
1195 	 * Handle all fragments needed in the last new affected block.
1196 	 */
1197 	if (d < dupper) {
1198 		frag_adjust(dupper - 1, -1);
1199 
1200 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) {
1201 			acg.cg_cs.cs_nbfree--;
1202 			sblock.fs_cstotal.cs_nbfree--;
1203 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1204 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1205 			if (sblock.fs_contigsumsize > 0) {
1206 				clrbit(cg_clustersfree(&acg), d / sblock.fs_frag);
1207 				for (lcs = 0, l = (d / sblock.fs_frag) + 1;
1208 				    lcs < sblock.fs_contigsumsize;
1209 				    l++, lcs++) {
1210 					if (isclr(cg_clustersfree(&acg), l))
1211 						break;
1212 				}
1213 				if (lcs < sblock.fs_contigsumsize) {
1214 					cg_clustersum(&acg)[lcs + 1]--;
1215 					if (lcs)
1216 						cg_clustersum(&acg)[lcs]++;
1217 				}
1218 			}
1219 		}
1220 
1221 		for (; d < dupper; d++) {
1222 			if (isclr(cg_blksfree(&acg), d)) {
1223 				bp[ind].old = d / sblock.fs_frag;
1224 				bp[ind].flags |= GFS_FL_LAST;
1225 			} else {
1226 				clrbit(cg_blksfree(&acg), d);
1227 				acg.cg_cs.cs_nffree--;
1228 				sblock.fs_cstotal.cs_nffree--;
1229 			}
1230 		}
1231 		if (bp[ind].flags & GFS_FL_LAST) /* we have to advance here */
1232 			ind++;
1233 		frag_adjust(dupper - 1, 1);
1234 	}
1235 
1236 	/*
1237 	 * If we found a block to relocate just do so.
1238 	 */
1239 	if (ind) {
1240 		for (i = 0; i < ind; i++) {
1241 			if (!bp[i].old) { /* no more blocks listed */
1242 				/*
1243 				 * XXX	A relative blocknumber should not be
1244 				 *	zero,   which  is   not   explicitly
1245 				 *	guaranteed by our code.
1246 				 */
1247 				break;
1248 			}
1249 			/*
1250 			 * Allocate a complete block in the same (current)
1251 			 * cylinder group.
1252 			 */
1253 			bp[i].new = alloc() / sblock.fs_frag;
1254 
1255 			/*
1256 			 * There is no frag_adjust() needed for the new block
1257 			 * as it will have no fragments yet :-).
1258 			 */
1259 			for (f = bp[i].old * sblock.fs_frag,
1260 			    g = bp[i].new * sblock.fs_frag;
1261 			    f < (bp[i].old + 1) * sblock.fs_frag;
1262 			    f++, g++) {
1263 				if (isset(cg_blksfree(&aocg), f)) {
1264 					setbit(cg_blksfree(&acg), g);
1265 					acg.cg_cs.cs_nffree++;
1266 					sblock.fs_cstotal.cs_nffree++;
1267 				}
1268 			}
1269 
1270 			/*
1271 			 * Special handling is required if this was the  first
1272 			 * block. We have to consider the fragments which were
1273 			 * used by the cylinder summary in the original  block
1274 			 * which  re to be free in the copy of our  block.  We
1275 			 * have  to be careful if this first block happens  to
1276 			 * be also the last block to be relocated.
1277 			 */
1278 			if (bp[i].flags & GFS_FL_FIRST) {
1279 				for (f = bp[i].old * sblock.fs_frag,
1280 				    g = bp[i].new * sblock.fs_frag;
1281 				    f < odupper;
1282 				    f++, g++) {
1283 					setbit(cg_blksfree(&acg), g);
1284 					acg.cg_cs.cs_nffree++;
1285 					sblock.fs_cstotal.cs_nffree++;
1286 				}
1287 				if (!(bp[i].flags & GFS_FL_LAST))
1288 					frag_adjust(bp[i].new * sblock.fs_frag, 1);
1289 			}
1290 
1291 			/*
1292 			 * Special handling is required if this is the last
1293 			 * block to be relocated.
1294 			 */
1295 			if (bp[i].flags & GFS_FL_LAST) {
1296 				frag_adjust(bp[i].new * sblock.fs_frag, 1);
1297 				frag_adjust(bp[i].old * sblock.fs_frag, -1);
1298 				for (f = dupper;
1299 				    f < roundup(dupper, sblock.fs_frag);
1300 				    f++) {
1301 					if (isclr(cg_blksfree(&acg), f)) {
1302 						setbit(cg_blksfree(&acg), f);
1303 						acg.cg_cs.cs_nffree++;
1304 						sblock.fs_cstotal.cs_nffree++;
1305 					}
1306 				}
1307 				frag_adjust(bp[i].old * sblock.fs_frag, 1);
1308 			}
1309 
1310 			/*
1311 			 * !!! Attach the cylindergroup offset here.
1312 			 */
1313 			bp[i].old += cbase / sblock.fs_frag;
1314 			bp[i].new += cbase / sblock.fs_frag;
1315 
1316 			/*
1317 			 * Copy the content of the block.
1318 			 */
1319 			/*
1320 			 * XXX	Here we will have to implement a copy on write
1321 			 *	in the case we have any active snapshots.
1322 			 */
1323 			rdfs(fsbtodb(&sblock, bp[i].old * sblock.fs_frag),
1324 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1325 			wtfs(fsbtodb(&sblock, bp[i].new * sblock.fs_frag),
1326 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1327 		}
1328 
1329 		/*
1330 		 * Now we have to update all references to any fragment which
1331 		 * belongs  to any block relocated. We iterate now  over  all
1332 		 * cylinder  groups,  within those over all non  zero  length
1333 		 * inodes.
1334 		 */
1335 		for (cg = 0; cg < osblock.fs_ncg; cg++) {
1336 			for (inc = osblock.fs_ipg - 1; inc > 0; inc--) {
1337 				updrefs(cg, (ino_t)inc, bp, fsi, fso, Nflag);
1338 			}
1339 		}
1340 
1341 		/*
1342 		 * All inodes are checked, now make sure the number of
1343 		 * references found make sense.
1344 		 */
1345 		for (i = 0; i < ind; i++) {
1346 			if (!bp[i].found || (bp[i].found > sblock.fs_frag)) {
1347 				warnx("error: %jd refs found for block %jd.",
1348 				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1349 			}
1350 
1351 		}
1352 	}
1353 	/*
1354 	 * The following statistics are not changed here:
1355 	 *     sblock.fs_cstotal.cs_ndir
1356 	 *     sblock.fs_cstotal.cs_nifree
1357 	 * The following statistics were already updated on the fly:
1358 	 *     sblock.fs_cstotal.cs_nffree
1359 	 *     sblock.fs_cstotal.cs_nbfree
1360 	 * As the statistics for this cylinder group are ready, copy it to
1361 	 * the summary information array.
1362 	 */
1363 
1364 	*cs = acg.cg_cs;
1365 
1366 	/*
1367 	 * Write summary cylinder group back to disk.
1368 	 */
1369 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1370 	    (void *)&acg, fso, Nflag);
1371 }
1372 
1373 /*
1374  * Here we read some block(s) from disk.
1375  */
1376 static void
rdfs(daddr_t bno,size_t size,void * bf,int fsi)1377 rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1378 {
1379 	ssize_t	n;
1380 
1381 	if (bno < 0) {
1382 		err(32, "rdfs: attempting to read negative block number");
1383 	}
1384 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, SEEK_SET) == -1) {
1385 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1386 	}
1387 	n = read(fsi, bf, size);
1388 	if (n != (ssize_t)size) {
1389 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1390 	}
1391 }
1392 
1393 /*
1394  * Here we write some block(s) to disk.
1395  */
1396 static void
wtfs(daddr_t bno,size_t size,void * bf,int fso,unsigned int Nflag)1397 wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1398 {
1399 	ssize_t	n;
1400 
1401 	if (Nflag)
1402 		return;
1403 
1404 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) == -1)
1405 		err(35, "wtfs: seek error: %ld", (long)bno);
1406 	n = write(fso, bf, size);
1407 	if (n != (ssize_t)size)
1408 		err(36, "wtfs: write error: %ld", (long)bno);
1409 }
1410 
1411 /*
1412  * Here we allocate a free block in the current cylinder group. It is assumed,
1413  * that  acg contains the current cylinder group. As we may take a block  from
1414  * somewhere in the filesystem we have to handle cluster summary here.
1415  */
1416 static daddr_t
alloc(void)1417 alloc(void)
1418 {
1419 	daddr_t	d, blkno;
1420 	int	lcs1, lcs2;
1421 	int	l;
1422 	int	csmin, csmax;
1423 	int	dlower, dupper, dmax;
1424 
1425 	if (acg.cg_magic != CG_MAGIC) {
1426 		warnx("acg: bad magic number");
1427 		return (0);
1428 	}
1429 	if (acg.cg_cs.cs_nbfree == 0) {
1430 		warnx("error: cylinder group ran out of space");
1431 		return (0);
1432 	}
1433 	/*
1434 	 * We start seeking for free blocks only from the space available after
1435 	 * the  end of the new grown cylinder summary. Otherwise we allocate  a
1436 	 * block here which we have to relocate a couple of seconds later again
1437 	 * again, and we are not prepared to to this anyway.
1438 	 */
1439 	blkno = -1;
1440 	dlower = cgsblock(&sblock, acg.cg_cgx) - cgbase(&sblock, acg.cg_cgx);
1441 	dupper = cgdmin(&sblock, acg.cg_cgx) - cgbase(&sblock, acg.cg_cgx);
1442 	dmax = cgbase(&sblock, acg.cg_cgx) + sblock.fs_fpg;
1443 	if (dmax > sblock.fs_size) {
1444 		dmax = sblock.fs_size;
1445 	}
1446 	dmax -= cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1447 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1448 	csmax = csmin + howmany(sblock.fs_cssize, sblock.fs_fsize);
1449 
1450 	for (d = 0; (d < dlower && blkno == -1); d += sblock.fs_frag) {
1451 		if (d >= csmin && d <= csmax) {
1452 			continue;
1453 		}
1454 		if (isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1455 		    d))) {
1456 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1457 			break;
1458 		}
1459 	}
1460 	for (d = dupper; (d < dmax && blkno == -1); d += sblock.fs_frag) {
1461 		if (d >= csmin && d <= csmax) {
1462 			continue;
1463 		}
1464 		if (isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1465 		    d))) {
1466 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1467 			break;
1468 		}
1469 	}
1470 	if (blkno == -1) {
1471 		warnx("internal error: couldn't find promised block in cg");
1472 		return (0);
1473 	}
1474 
1475 	/*
1476 	 * This is needed if the block was found already in the first loop.
1477 	 */
1478 	d = blkstofrags(&sblock, blkno);
1479 
1480 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1481 	if (sblock.fs_contigsumsize > 0) {
1482 		/*
1483 		 * Handle the cluster allocation bitmap.
1484 		 */
1485 		clrbit(cg_clustersfree(&acg), blkno);
1486 		/*
1487 		 * We  possibly have split a cluster here, so we have  to  do
1488 		 * recalculate the sizes of the remaining cluster halves now,
1489 		 * and use them for updating the cluster summary information.
1490 		 *
1491 		 * Lets start with the blocks before our allocated block ...
1492 		 */
1493 		for (lcs1 = 0, l = blkno - 1; lcs1 < sblock.fs_contigsumsize;
1494 		    l--, lcs1++) {
1495 			if (isclr(cg_clustersfree(&acg), l))
1496 				break;
1497 		}
1498 		/*
1499 		 * ... and continue with the blocks right after our allocated
1500 		 * block.
1501 		 */
1502 		for (lcs2 = 0, l = blkno + 1; lcs2 < sblock.fs_contigsumsize;
1503 		    l++, lcs2++) {
1504 			if (isclr(cg_clustersfree(&acg), l))
1505 				break;
1506 		}
1507 
1508 		/*
1509 		 * Now update all counters.
1510 		 */
1511 		cg_clustersum(&acg)[MINIMUM(lcs1 + lcs2 + 1, sblock.fs_contigsumsize)]--;
1512 		if (lcs1)
1513 			cg_clustersum(&acg)[lcs1]++;
1514 		if (lcs2)
1515 			cg_clustersum(&acg)[lcs2]++;
1516 	}
1517 	/*
1518 	 * Update all statistics based on blocks.
1519 	 */
1520 	acg.cg_cs.cs_nbfree--;
1521 	sblock.fs_cstotal.cs_nbfree--;
1522 
1523 	return (d);
1524 }
1525 
1526 /*
1527  * Here  we check if all frags of a block are free. For more details  again
1528  * please see the source of newfs(8), as this function is taken over almost
1529  * unchanged.
1530  */
1531 static int
isblock(struct fs * fs,unsigned char * cp,int h)1532 isblock(struct fs *fs, unsigned char *cp, int h)
1533 {
1534 	unsigned char	mask;
1535 
1536 	switch (fs->fs_frag) {
1537 	case 8:
1538 		return (cp[h] == 0xff);
1539 	case 4:
1540 		mask = 0x0f << ((h & 0x1) << 2);
1541 		return ((cp[h >> 1] & mask) == mask);
1542 	case 2:
1543 		mask = 0x03 << ((h & 0x3) << 1);
1544 		return ((cp[h >> 2] & mask) == mask);
1545 	case 1:
1546 		mask = 0x01 << (h & 0x7);
1547 		return ((cp[h >> 3] & mask) == mask);
1548 	default:
1549 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1550 		return (0);
1551 	}
1552 }
1553 
1554 /*
1555  * Here we allocate a complete block in the block map. For more details again
1556  * please  see the source of newfs(8), as this function is taken over  almost
1557  * unchanged.
1558  */
1559 static void
clrblock(struct fs * fs,unsigned char * cp,int h)1560 clrblock(struct fs *fs, unsigned char *cp, int h)
1561 {
1562 	switch ((fs)->fs_frag) {
1563 	case 8:
1564 		cp[h] = 0;
1565 		break;
1566 	case 4:
1567 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1568 		break;
1569 	case 2:
1570 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1571 		break;
1572 	case 1:
1573 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1574 		break;
1575 	default:
1576 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1577 		break;
1578 	}
1579 }
1580 
1581 /*
1582  * Here we free a complete block in the free block map. For more details again
1583  * please  see the source of newfs(8), as this function is taken  over  almost
1584  * unchanged.
1585  */
1586 static void
setblock(struct fs * fs,unsigned char * cp,int h)1587 setblock(struct fs *fs, unsigned char *cp, int h)
1588 {
1589 	switch (fs->fs_frag) {
1590 	case 8:
1591 		cp[h] = 0xff;
1592 		break;
1593 	case 4:
1594 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1595 		break;
1596 	case 2:
1597 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1598 		break;
1599 	case 1:
1600 		cp[h >> 3] |= (0x01 << (h & 0x7));
1601 		break;
1602 	default:
1603 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1604 		break;
1605 	}
1606 }
1607 
1608 /*
1609  * This function provides access to an individual inode. We find out in which
1610  * block  the  requested inode is located, read it from disk if  needed,  and
1611  * return  the pointer into that block. We maintain a cache of one  block  to
1612  * not  read the same block again and again if we iterate linearly  over  all
1613  * inodes.
1614  */
1615 static union dinode *
ginode(ino_t inumber,int fsi,int cg)1616 ginode(ino_t inumber, int fsi, int cg)
1617 {
1618 	static ino_t	startinum = 0;	/* first inode in cached block */
1619 
1620 	/*
1621 	 * The inumber passed in is relative to the cg, so use it here to see
1622 	 * if the inode has been allocated yet.
1623 	 */
1624 	if (isclr(cg_inosused(&aocg), inumber)) {
1625 		return NULL;
1626 	}
1627 	/*
1628 	 * Now make the inumber relative to the entire inode space so it can
1629 	 * be sanity checked.
1630 	 */
1631 	inumber += (cg * sblock.fs_ipg);
1632 	if (inumber < ROOTINO) {
1633 		return NULL;
1634 	}
1635 	if (inumber > maxino)
1636 		errx(8, "bad inode number %llu to ginode",
1637 		    (unsigned long long)inumber);
1638 	if (startinum == 0 ||
1639 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1640 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1641 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1642 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1643 	}
1644 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1645 		return (union dinode *)((uintptr_t)inobuf +
1646 		    (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1647 	return (union dinode *)((uintptr_t)inobuf +
1648 	    (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1649 }
1650 
1651 /*
1652  * Figure out how many lines our current terminal has. For more details again
1653  * please see the source of newfs(8), as this function is taken over almost
1654  * unchanged.
1655  */
1656 static int
charsperline(void)1657 charsperline(void)
1658 {
1659 	int	columns;
1660 	char	*cp;
1661 	struct winsize	ws;
1662 
1663 	columns = 0;
1664 	if ((cp = getenv("COLUMNS")) != NULL)
1665 		columns = strtonum(cp, 1, INT_MAX, NULL);
1666 	if (columns == 0 && ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) == 0 &&
1667 	    ws.ws_col > 0)
1668 		columns = ws.ws_col;
1669 	if (columns == 0)
1670 		columns = 80;
1671 
1672 	return columns;
1673 }
1674 
1675 /*
1676  * growfs(8) is a utility which allows to increase the size of an existing
1677  * ufs filesystem. Currently this can only be done on unmounted file system.
1678  * It recognizes some command line options to specify the new desired size,
1679  * and it does some basic checkings. The old filesystem size is determined
1680  * and after some more checks like we can really access the new last block
1681  * on the disk etc. we calculate the new parameters for the superblock. After
1682  * having done this we just call growfs() which will do the work. Before
1683  * we finish the only thing left is to update the disklabel.
1684  * We still have to provide support for snapshots. Therefore we first have to
1685  * understand what data structures are always replicated in the snapshot on
1686  * creation, for all other blocks we touch during our procedure, we have to
1687  * keep the old blocks unchanged somewhere available for the snapshots. If we
1688  * are lucky, then we only have to handle our blocks to be relocated in that
1689  * way.
1690  * Also we have to consider in what order we actually update the critical
1691  * data structures of the filesystem to make sure, that in case of a disaster
1692  * fsck(8) is still able to restore any lost data.
1693  * The foreseen last step then will be to provide for growing even mounted
1694  * file systems. There we have to extend the mount() system call to provide
1695  * userland access to the filesystem locking facility.
1696  */
1697 int
main(int argc,char ** argv)1698 main(int argc, char **argv)
1699 {
1700 	char	*device, *lastsector;
1701 	int	ch;
1702 	long long	size = 0;
1703 	unsigned int	Nflag = 0;
1704 	int	ExpertFlag = 0;
1705 	struct stat	st;
1706 	struct disklabel	*lp;
1707 	struct partition	*pp;
1708 	int	i, fsi, fso;
1709 	char	reply[5];
1710 	const char *errstr;
1711 #ifdef FSMAXSNAP
1712 	int	j;
1713 #endif /* FSMAXSNAP */
1714 
1715 	while ((ch = getopt(argc, argv, "Nqs:vy")) != -1) {
1716 		switch (ch) {
1717 		case 'N':
1718 			Nflag = 1;
1719 			break;
1720 		case 'q':
1721 			quiet = 1;
1722 			break;
1723 		case 's':
1724 			size = strtonum(optarg, 1, LLONG_MAX, &errstr);
1725 			if (errstr)
1726 				usage();
1727 			break;
1728 		case 'v': /* for compatibility to newfs */
1729 			break;
1730 		case 'y':
1731 			ExpertFlag = 1;
1732 			break;
1733 		default:
1734 			usage();
1735 		}
1736 	}
1737 	argc -= optind;
1738 	argv += optind;
1739 
1740 	if (argc != 1)
1741 		usage();
1742 
1743 	colwidth = charsperline();
1744 
1745 	/*
1746 	 * Rather than guessing, use opendev() to get the device
1747 	 * name, which we open for reading.
1748 	 */
1749 	if ((fsi = opendev(*argv, O_RDONLY, 0, &device)) == -1)
1750 		err(1, "%s", *argv);
1751 
1752 	/*
1753 	 * Try to access our devices for writing ...
1754 	 */
1755 	if (Nflag) {
1756 		fso = -1;
1757 	} else {
1758 		fso = open(device, O_WRONLY);
1759 		if (fso == -1)
1760 			err(1, "%s", device);
1761 	}
1762 
1763 	/*
1764 	 * Now we have a file descriptor for our device, fstat() it to
1765 	 * figure out the partition number.
1766 	 */
1767 	if (fstat(fsi, &st) == -1)
1768 		err(1, "%s: fstat()", device);
1769 
1770 	/*
1771 	 * Try to read a label from the disk. Then get the partition from the
1772 	 * device minor number, using DISKPART(). Probably don't need to
1773 	 * check against getmaxpartitions().
1774 	 */
1775 	lp = get_disklabel(fsi);
1776 	if (DISKPART(st.st_rdev) < getmaxpartitions())
1777 		pp = &lp->d_partitions[DISKPART(st.st_rdev)];
1778 	else
1779 		errx(1, "%s: invalid partition number %u",
1780 		    device, DISKPART(st.st_rdev));
1781 
1782 	if (pledge("stdio disklabel", NULL) == -1)
1783 		err(1, "pledge");
1784 
1785 	/*
1786 	 * Check if that partition is suitable for growing a file system.
1787 	 */
1788 	if (DL_GETPSIZE(pp) < 1)
1789 		errx(1, "partition is unavailable");
1790 	if (pp->p_fstype != FS_BSDFFS)
1791 		errx(1, "can only grow ffs partitions");
1792 
1793 	/*
1794 	 * Read the current superblock, and take a backup.
1795 	 */
1796 	for (i = 0; sblock_try[i] != -1; i++) {
1797 		sblockloc = sblock_try[i] / DEV_BSIZE;
1798 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
1799 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
1800 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
1801 		      osblock.fs_sblockloc == sblock_try[i])) &&
1802 		    osblock.fs_bsize <= MAXBSIZE &&
1803 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
1804 			break;
1805 	}
1806 	if (sblock_try[i] == -1)
1807 		errx(1, "superblock not recognized");
1808 	if (osblock.fs_clean == 0)
1809 		errx(1, "filesystem not clean - run fsck");
1810 	if (sblock.fs_magic == FS_UFS1_MAGIC &&
1811 	    (sblock.fs_ffs1_flags & FS_FLAGS_UPDATED) == 0)
1812 		ffs1_sb_update(&sblock, sblock_try[i]);
1813 	memcpy(&fsun1, &fsun2, sizeof(fsun2));
1814 	maxino = sblock.fs_ncg * sblock.fs_ipg;
1815 
1816 	/*
1817 	 * Determine size to grow to. Default to the full size specified in
1818 	 * the disk label.
1819 	 */
1820 	sblock.fs_size = dbtofsb(&osblock, DL_SECTOBLK(lp, DL_GETPSIZE(pp)));
1821 	if (size != 0) {
1822 		if (size > DL_GETPSIZE(pp)) {
1823 			errx(1, "there is not enough space (%llu < %lld)",
1824 			    DL_GETPSIZE(pp), size);
1825 		}
1826 		sblock.fs_size = dbtofsb(&osblock, DL_SECTOBLK(lp, size));
1827 	}
1828 
1829 	/*
1830 	 * Are we really growing ?
1831 	 */
1832 	if (osblock.fs_size >= sblock.fs_size) {
1833 		errx(1, "we are not growing (%jd->%jd)",
1834 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
1835 	}
1836 
1837 
1838 #ifdef FSMAXSNAP
1839 	/*
1840 	 * Check if we find an active snapshot.
1841 	 */
1842 	if (ExpertFlag == 0) {
1843 		for (j = 0; j < FSMAXSNAP; j++) {
1844 			if (sblock.fs_snapinum[j]) {
1845 				errx(1, "active snapshot found in filesystem\n"
1846 				    "	please remove all snapshots before "
1847 				    "using growfs");
1848 			}
1849 			if (!sblock.fs_snapinum[j])	/* list is dense */
1850 				break;
1851 		}
1852 	}
1853 #endif
1854 
1855 	if (ExpertFlag == 0 && Nflag == 0) {
1856 		printf("We strongly recommend you to make a backup "
1857 		    "before growing the Filesystem\n\n"
1858 		    " Did you backup your data (Yes/No) ? ");
1859 		if (fgets(reply, (int)sizeof(reply), stdin) == NULL ||
1860 		    strncasecmp(reply, "Yes", 3)) {
1861 			printf("\n Nothing done \n");
1862 			exit (0);
1863 		}
1864 	}
1865 
1866 	if (!quiet)
1867 		printf("new filesystem size is: %jd frags\n",
1868 		    (intmax_t)sblock.fs_size);
1869 
1870 	/*
1871 	 * Try to access our new last sector in the filesystem. Even if we
1872 	 * later on realize we have to abort our operation, on that sector
1873 	 * there should be no data, so we can't destroy something yet.
1874 	 */
1875 	lastsector = calloc(1, lp->d_secsize);
1876 	if (!lastsector)
1877 		err(1, "No memory for last sector test write");
1878 	wtfs(DL_SECTOBLK(lp, DL_GETPSIZE(pp) - 1), lp->d_secsize,
1879 	    lastsector, fso, Nflag);
1880 	free(lastsector);
1881 
1882 	/*
1883 	 * Now calculate new superblock values and check for reasonable
1884 	 * bound for new filesystem size:
1885 	 *     fs_size:    is derived from label or user input
1886 	 *     fs_dsize:   should get updated in the routines creating or
1887 	 *                 updating the cylinder groups on the fly
1888 	 *     fs_cstotal: should get updated in the routines creating or
1889 	 *                 updating the cylinder groups
1890 	 */
1891 
1892 	/*
1893 	 * Update the number of cylinders and cylinder groups in the file system.
1894 	 */
1895 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
1896 		sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
1897 		if (sblock.fs_size * NSPF(&sblock) >
1898 		    sblock.fs_ncyl * sblock.fs_spc)
1899 			sblock.fs_ncyl++;
1900 	}
1901 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
1902 	if ((ino_t)sblock.fs_ncg * sblock.fs_ipg > UINT_MAX)
1903 		errx(1, "more than 2^32 inodes requested");
1904 	maxino = sblock.fs_ncg * sblock.fs_ipg;
1905 
1906 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
1907 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
1908 		/*
1909 		 * The space in the new last cylinder group is too small,
1910 		 * so revert back.
1911 		 */
1912 		sblock.fs_ncg--;
1913 		if (sblock.fs_magic == FS_UFS1_MAGIC)
1914 			sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
1915 		if (!quiet)
1916 			printf("Warning: %jd sector(s) cannot be allocated.\n",
1917 			    (intmax_t)fsbtodb(&sblock,
1918 			    sblock.fs_size % sblock.fs_fpg));
1919 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
1920 	}
1921 
1922 	/*
1923 	 * Update the space for the cylinder group summary information in the
1924 	 * respective cylinder group data area.
1925 	 */
1926 	sblock.fs_cssize =
1927 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
1928 
1929 	if (osblock.fs_size >= sblock.fs_size)
1930 		errx(1, "not enough new space");
1931 
1932 	/*
1933 	 * Ok, everything prepared, so now let's do the tricks.
1934 	 */
1935 	growfs(fsi, fso, Nflag);
1936 
1937 	/*
1938 	 * Update the disk label.
1939 	 */
1940 	pp->p_fragblock =
1941 	    DISKLABELV1_FFS_FRAGBLOCK(sblock.fs_fsize, sblock.fs_frag);
1942 	pp->p_cpg = sblock.fs_fpg;
1943 
1944 	return_disklabel(fso, lp, Nflag);
1945 
1946 	close(fsi);
1947 	if (fso > -1)
1948 		close(fso);
1949 
1950 	return 0;
1951 }
1952 
1953 /*
1954  * Write the updated disklabel back to disk.
1955  */
1956 static void
return_disklabel(int fd,struct disklabel * lp,unsigned int Nflag)1957 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
1958 {
1959 	u_short	sum;
1960 	u_short	*ptr;
1961 
1962 	if (!lp)
1963 		return;
1964 
1965 	if (!Nflag) {
1966 		lp->d_checksum = 0;
1967 		sum = 0;
1968 		ptr = (u_short *)lp;
1969 
1970 		/*
1971 		 * recalculate checksum
1972 		 */
1973 		while (ptr < (u_short *)&lp->d_partitions[lp->d_npartitions])
1974 			sum ^= *ptr++;
1975 		lp->d_checksum = sum;
1976 
1977 		if (ioctl(fd, DIOCWDINFO, (char *)lp) == -1)
1978 			errx(1, "DIOCWDINFO failed");
1979 	}
1980 	free(lp);
1981 
1982 	return ;
1983 }
1984 
1985 /*
1986  * Read the disklabel from disk.
1987  */
1988 static struct disklabel *
get_disklabel(int fd)1989 get_disklabel(int fd)
1990 {
1991 	static struct	disklabel *lab;
1992 
1993 	lab = malloc(sizeof(struct disklabel));
1994 	if (!lab)
1995 		errx(1, "malloc failed");
1996 	if (ioctl(fd, DIOCGDINFO, (char *)lab) != 0)
1997 		err(1, "DIOCGDINFO");
1998 
1999 	return (lab);
2000 }
2001 
2002 
2003 /*
2004  * Dump a line of usage.
2005  */
2006 static void
usage(void)2007 usage(void)
2008 {
2009 	fprintf(stderr, "usage: growfs [-Nqy] [-s size] special\n");
2010 	exit(1);
2011 }
2012 
2013 /*
2014  * This updates most parameters and the bitmap related to cluster. We have to
2015  * assume that sblock, osblock, acg are set up.
2016  */
2017 static void
updclst(int block)2018 updclst(int block)
2019 {
2020 	static int	lcs = 0;
2021 
2022 	if (sblock.fs_contigsumsize < 1)	/* no clustering */
2023 		return;
2024 
2025 	/*
2026 	 * update cluster allocation map
2027 	 */
2028 	setbit(cg_clustersfree(&acg), block);
2029 
2030 	/*
2031 	 * update cluster summary table
2032 	 */
2033 	if (!lcs) {
2034 		/*
2035 		 * calculate size for the trailing cluster
2036 		 */
2037 		for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++) {
2038 			if (isclr(cg_clustersfree(&acg), block))
2039 				break;
2040 		}
2041 	}
2042 	if (lcs < sblock.fs_contigsumsize) {
2043 		if (lcs)
2044 			cg_clustersum(&acg)[lcs]--;
2045 		lcs++;
2046 		cg_clustersum(&acg)[lcs]++;
2047 	}
2048 }
2049 
2050 /*
2051  * This updates all references to relocated blocks for the given inode.  The
2052  * inode is given as number within the cylinder group, and the number of the
2053  * cylinder group.
2054  */
2055 static void
updrefs(int cg,ino_t in,struct gfs_bpp * bp,int fsi,int fso,unsigned int Nflag)2056 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2057     Nflag)
2058 {
2059 	daddr_t	len, lbn, numblks;
2060 	daddr_t	iptr, blksperindir;
2061 	union dinode	*ino;
2062 	int		i, mode, inodeupdated;
2063 
2064 	ino = ginode(in, fsi, cg);
2065 	if (ino == NULL)
2066 		return;
2067 
2068 	mode = DIP(ino, di_mode) & IFMT;
2069 	if (mode != IFDIR && mode != IFREG && mode != IFLNK)
2070 		return; /* only check DIR, FILE, LINK */
2071 	if (mode == IFLNK &&
2072 	    DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen)
2073 		return;	/* skip short symlinks */
2074 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2075 	if (numblks == 0)
2076 		return;	/* skip empty file */
2077 	if (DIP(ino, di_blocks) == 0)
2078 		return;	/* skip empty swiss cheesy file or old fastlink */
2079 
2080 	/*
2081 	 * Check all the blocks.
2082 	 */
2083 	inodeupdated = 0;
2084 	len = numblks < NDADDR ? numblks : NDADDR;
2085 	for (i = 0; i < len; i++) {
2086 		iptr = DIP(ino, di_db[i]);
2087 		if (iptr == 0)
2088 			continue;
2089 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2090 			DIP_SET(ino, di_db[i], iptr);
2091 			inodeupdated++;
2092 		}
2093 	}
2094 
2095 	blksperindir = 1;
2096 	len = numblks - NDADDR;
2097 	lbn = NDADDR;
2098 	for (i = 0; len > 0 && i < NIADDR; i++) {
2099 		iptr = DIP(ino, di_ib[i]);
2100 		if (iptr == 0)
2101 			continue;
2102 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2103 			DIP_SET(ino, di_ib[i], iptr);
2104 			inodeupdated++;
2105 		}
2106 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2107 		blksperindir *= NINDIR(&sblock);
2108 		lbn += blksperindir;
2109 		len -= blksperindir;
2110 	}
2111 	if (inodeupdated)
2112 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2113 }
2114 
2115 /*
2116  * Recursively check all the indirect blocks.
2117  */
2118 static void
indirchk(daddr_t blksperindir,daddr_t lbn,daddr_t blkno,daddr_t lastlbn,struct gfs_bpp * bp,int fsi,int fso,unsigned int Nflag)2119 indirchk(daddr_t blksperindir, daddr_t lbn, daddr_t blkno,
2120     daddr_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2121 {
2122 	void *ibuf;
2123 	int i, last;
2124 	daddr_t iptr;
2125 
2126 	/* read in the indirect block. */
2127 	ibuf = malloc(sblock.fs_bsize);
2128 	if (!ibuf)
2129 		errx(1, "malloc failed");
2130 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2131 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2132 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2133 	for (i = 0; i < last; i++) {
2134 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2135 			iptr = ((int32_t *)ibuf)[i];
2136 		else
2137 			iptr = ((daddr_t *)ibuf)[i];
2138 		if (iptr == 0)
2139 			continue;
2140 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2141 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2142 				((int32_t *)ibuf)[i] = iptr;
2143 			else
2144 				((daddr_t *)ibuf)[i] = iptr;
2145 		}
2146 		if (blksperindir == 1)
2147 			continue;
2148 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2149 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2150 	}
2151 	free(ibuf);
2152 }
2153 
2154 static void
ffs1_sb_update(struct fs * fs,daddr_t sbloc)2155 ffs1_sb_update(struct fs *fs, daddr_t sbloc)
2156 {
2157 	fs->fs_flags = fs->fs_ffs1_flags;
2158 	fs->fs_sblockloc = sbloc;
2159 	fs->fs_maxbsize = fs->fs_bsize;
2160 	fs->fs_time = fs->fs_ffs1_time;
2161 	fs->fs_size = fs->fs_ffs1_size;
2162 	fs->fs_dsize = fs->fs_ffs1_dsize;
2163 	fs->fs_csaddr = fs->fs_ffs1_csaddr;
2164 	fs->fs_cstotal.cs_ndir = fs->fs_ffs1_cstotal.cs_ndir;
2165 	fs->fs_cstotal.cs_nbfree = fs->fs_ffs1_cstotal.cs_nbfree;
2166 	fs->fs_cstotal.cs_nifree = fs->fs_ffs1_cstotal.cs_nifree;
2167 	fs->fs_cstotal.cs_nffree = fs->fs_ffs1_cstotal.cs_nffree;
2168 	fs->fs_ffs1_flags |= FS_FLAGS_UPDATED;
2169 }
2170