xref: /openbsd/sbin/growfs/growfs.c (revision d415bd75)
1 /*	$OpenBSD: growfs.c,v 1.55 2022/12/04 23:50:46 cheloha Exp $	*/
2 /*
3  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
4  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgment:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors, as well as Christoph
22  *      Herrmann and Thomas-Henning von Kamptz.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
40  * $FreeBSD: src/sbin/growfs/growfs.c,v 1.25 2006/07/17 20:48:36 stefanf Exp $
41  *
42  */
43 
44 #include <sys/param.h>	/* DEV_BSIZE MAXBSIZE setbit isset isclr clrbit */
45 #include <sys/types.h>
46 #include <sys/disklabel.h>
47 #include <sys/ioctl.h>
48 #include <sys/dkio.h>
49 #include <sys/stat.h>
50 
51 #include <stdio.h>
52 #include <paths.h>
53 #include <ctype.h>
54 #include <err.h>
55 #include <fcntl.h>
56 #include <limits.h>
57 #include <stdlib.h>
58 #include <stdint.h>
59 #include <string.h>
60 #include <time.h>
61 #include <unistd.h>
62 #include <util.h>
63 
64 #include <ufs/ufs/dinode.h>
65 #include <ufs/ffs/fs.h>
66 
67 #define MINIMUM(a, b)	(((a) < (b)) ? (a) : (b))
68 #define MAXIMUM(a, b)	(((a) > (b)) ? (a) : (b))
69 
70 #define	rounddown(x, y)	(((x)/(y))*(y))
71 #define	roundup(x, y)	((((x)+((y)-1))/(y))*(y))
72 
73 static int quiet;		/* quiet flag */
74 
75 static union {
76 	struct	fs fs;
77 	char	pad[SBLOCKSIZE];
78 } fsun1, fsun2;
79 #define	sblock	fsun1.fs	/* the new superblock */
80 #define	osblock	fsun2.fs	/* the old superblock */
81 
82 /*
83  * Possible superblock locations ordered from most to least likely.
84  */
85 static int sblock_try[] = SBLOCKSEARCH;
86 static daddr_t sblockloc;
87 
88 static union {
89 	struct	cg cg;
90 	char	pad[MAXBSIZE];
91 } cgun1, cgun2;
92 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
93 #define	aocg	cgun2.cg	/* an old cylinder group */
94 
95 static char	ablk[MAXBSIZE];		/* a block */
96 
97 static struct csum	*fscs;	/* cylinder summary */
98 
99 union dinode {
100 	struct ufs1_dinode dp1;
101 	struct ufs2_dinode dp2;
102 };
103 #define	DIP(dp, field) \
104 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
105 	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
106 #define	DIP_SET(dp, field, val) do { \
107 	if (sblock.fs_magic == FS_UFS1_MAGIC) \
108 		(dp)->dp1.field = (val); \
109 	else \
110 		(dp)->dp2.field = (val); \
111 	} while (0)
112 static daddr_t		inoblk;			/* inode block address */
113 static char		inobuf[MAXBSIZE];	/* inode block */
114 ino_t			maxino;			/* last valid inode */
115 
116 /*
117  * An array of elements of type struct gfs_bpp describes all blocks to
118  * be relocated in order to free the space needed for the cylinder group
119  * summary for all cylinder groups located in the first cylinder group.
120  */
121 struct gfs_bpp {
122 	daddr_t		old;		/* old block number */
123 	daddr_t		new;		/* new block number */
124 #define GFS_FL_FIRST	1
125 #define GFS_FL_LAST	2
126 	unsigned int	flags;		/* special handling required */
127 	int		found;		/* how many references were updated */
128 };
129 
130 static void	growfs(int, int, unsigned int);
131 static void	rdfs(daddr_t, size_t, void *, int);
132 static void	wtfs(daddr_t, size_t, void *, int, unsigned int);
133 static daddr_t alloc(void);
134 static int	charsperline(void);
135 static void	usage(void);
136 static int	isblock(struct fs *, unsigned char *, int);
137 static void	clrblock(struct fs *, unsigned char *, int);
138 static void	setblock(struct fs *, unsigned char *, int);
139 static void	initcg(u_int, time_t, int, unsigned int);
140 static void	updjcg(u_int, time_t, int, int, unsigned int);
141 static void	updcsloc(time_t, int, int, unsigned int);
142 static struct disklabel	*get_disklabel(int);
143 static void	return_disklabel(int, struct disklabel *, unsigned int);
144 static union dinode *ginode(ino_t, int, int);
145 static void	frag_adjust(daddr_t, int);
146 static int	cond_bl_upd(daddr_t *, struct gfs_bpp *, int, int,
147 		    unsigned int);
148 static void	updclst(int);
149 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
150 static void	indirchk(daddr_t, daddr_t, daddr_t, daddr_t,
151 		    struct gfs_bpp *, int, int, unsigned int);
152 static void	ffs1_sb_update(struct fs *, daddr_t);
153 
154 int	colwidth;
155 
156 /*
157  * Here we actually start growing the filesystem. We basically read the
158  * cylinder summary from the first cylinder group as we want to update
159  * this on the fly during our various operations. First we handle the
160  * changes in the former last cylinder group. Afterwards we create all new
161  * cylinder groups. Now we handle the cylinder group containing the
162  * cylinder summary which might result in a relocation of the whole
163  * structure. In the end we write back the updated cylinder summary, the
164  * new superblock, and slightly patched versions of the super block
165  * copies.
166  */
167 static void
168 growfs(int fsi, int fso, unsigned int Nflag)
169 {
170 	int	i, j;
171 	u_int	cg;
172 	time_t	utime;
173 	char	tmpbuf[100];
174 
175 	time(&utime);
176 
177 	/*
178 	 * Get the cylinder summary into the memory.
179 	 */
180 	fscs = calloc(1, (size_t)sblock.fs_cssize);
181 	if (fscs == NULL)
182 		errx(1, "calloc failed");
183 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
184 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
185 		    numfrags(&osblock, i)), (size_t)MINIMUM(osblock.fs_cssize - i,
186 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
187 	}
188 
189 	/*
190 	 * Do all needed changes in the former last cylinder group.
191 	 */
192 	updjcg(osblock.fs_ncg - 1, utime, fsi, fso, Nflag);
193 
194 	/*
195 	 * Dump out summary information about filesystem.
196 	 */
197 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
198 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
199 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
200 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
201 	    sblock.fs_fsize);
202 	printf("\tusing %u cylinder groups of %.2fMB, %d blks, %u inodes.\n",
203 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
204 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
205 	if (sblock.fs_flags & FS_DOSOFTDEP)
206 		printf("\twith soft updates\n");
207 #undef B2MBFACTOR
208 
209 	/*
210 	 * Now build the cylinders group blocks and
211 	 * then print out indices of cylinder groups.
212 	 */
213 	if (!quiet)
214 		printf("super-block backups (for fsck -b #) at:\n");
215 	i = 0;
216 
217 	/*
218 	 * Iterate for only the new cylinder groups.
219 	 */
220 	for (cg = osblock.fs_ncg; cg < sblock.fs_ncg; cg++) {
221 		initcg(cg, utime, fso, Nflag);
222 		if (quiet)
223 			continue;
224 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %lld%s",
225 		    fsbtodb(&sblock, cgsblock(&sblock, cg)),
226 		    cg < (sblock.fs_ncg - 1) ? "," : "");
227 		if (j >= sizeof(tmpbuf))
228 			j = sizeof(tmpbuf) - 1;
229 		if (j < 0 || i + j >= colwidth) {
230 			printf("\n");
231 			i = 0;
232 		}
233 		i += j;
234 		printf("%s", tmpbuf);
235 		fflush(stdout);
236 	}
237 	if (!quiet)
238 		printf("\n");
239 
240 	/*
241 	 * Do all needed changes in the first cylinder group.
242 	 * allocate blocks in new location
243 	 */
244 	updcsloc(utime, fsi, fso, Nflag);
245 
246 	/*
247 	 * Now write the cylinder summary back to disk.
248 	 */
249 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
250 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
251 		    (size_t)MINIMUM(sblock.fs_cssize - i, sblock.fs_bsize),
252 		    (void *)(((char *)fscs) + i), fso, Nflag);
253 	}
254 
255 	/*
256 	 * Now write the new superblock back to disk.
257 	 */
258 	sblock.fs_time = utime;
259 	sblock.fs_clean = 0;
260 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
261 		sblock.fs_ffs1_time = (int32_t)sblock.fs_time;
262 		sblock.fs_ffs1_size = (int32_t)sblock.fs_size;
263 		sblock.fs_ffs1_dsize = (int32_t)sblock.fs_dsize;
264 		sblock.fs_ffs1_csaddr = (int32_t)sblock.fs_csaddr;
265 		sblock.fs_ffs1_cstotal.cs_ndir =
266 		    (int32_t)sblock.fs_cstotal.cs_ndir;
267 		sblock.fs_ffs1_cstotal.cs_nbfree =
268 		    (int32_t)sblock.fs_cstotal.cs_nbfree;
269 		sblock.fs_ffs1_cstotal.cs_nifree =
270 		    (int32_t)sblock.fs_cstotal.cs_nifree;
271 		sblock.fs_ffs1_cstotal.cs_nffree =
272 		    (int32_t)sblock.fs_cstotal.cs_nffree;
273 	}
274 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
275 
276 	/*
277 	 * Clean up the dynamic fields in our superblock copies.
278 	 */
279 	sblock.fs_fmod = 0;
280 	sblock.fs_clean = 1;
281 	sblock.fs_ronly = 0;
282 	sblock.fs_cgrotor = 0;
283 	sblock.fs_state = 0;
284 	memset(&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
285 	sblock.fs_flags &= FS_DOSOFTDEP;
286 	if (sblock.fs_magic == FS_UFS1_MAGIC)
287 		sblock.fs_ffs1_flags &= FS_DOSOFTDEP;
288 
289 	/*
290 	 * XXX
291 	 * The following fields are currently distributed from the  superblock
292 	 * to the copies:
293 	 *     fs_minfree
294 	 *     fs_rotdelay
295 	 *     fs_maxcontig
296 	 *     fs_maxbpg
297 	 *     fs_minfree,
298 	 *     fs_optim
299 	 *     fs_flags regarding SOFTPDATES
300 	 *
301 	 * We probably should rather change the summary for the cylinder group
302 	 * statistics here to the value of what would be in there, if the file
303 	 * system were created initially with the new size. Therefore we still
304 	 * need to find an easy way of calculating that.
305 	 * Possibly we can try to read the first superblock copy and apply the
306 	 * "diffed" stats between the old and new superblock by still  copying
307 	 * certain parameters onto that.
308 	 */
309 
310 	/*
311 	 * Write out the duplicate superblocks.
312 	 */
313 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
314 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cg)),
315 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
316 	}
317 }
318 
319 /*
320  * This creates a new cylinder group structure, for more details please  see
321  * the  source of newfs(8), as this function is taken over almost unchanged.
322  * As  this  is  never called for the  first  cylinder  group,  the  special
323  * provisions for that case are removed here.
324  */
325 static void
326 initcg(u_int cg, time_t utime, int fso, unsigned int Nflag)
327 {
328 	static char *iobuf;
329 	daddr_t d, dlower, dupper, blkno, start;
330 	daddr_t i, cbase, dmax;
331 	struct ufs1_dinode *dp1;
332 	struct ufs2_dinode *dp2;
333 	struct csum *cs;
334 	ino_t j;
335 	size_t iobufsize;
336 
337 	if (sblock.fs_bsize < SBLOCKSIZE)
338 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
339 	else
340 		iobufsize = 4 * sblock.fs_bsize;
341 
342 	if (iobuf == NULL && (iobuf = malloc(iobufsize)) == NULL)
343 		errx(37, "panic: cannot allocate I/O buffer");
344 	bzero(iobuf, iobufsize);
345 
346 	/*
347 	 * Determine block bounds for cylinder group.
348 	 * Allow space for super block summary information in first
349 	 * cylinder group.
350 	 */
351 	cbase = cgbase(&sblock, cg);
352 	dmax = cbase + sblock.fs_fpg;
353 	if (dmax > sblock.fs_size)
354 		dmax = sblock.fs_size;
355 	dlower = cgsblock(&sblock, cg) - cbase;
356 	dupper = cgdmin(&sblock, cg) - cbase;
357 	if (cg == 0) /* XXX fscs may be relocated */
358 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
359 	cs = &fscs[cg];
360 	memset(&acg, 0, sblock.fs_cgsize);
361 	acg.cg_ffs2_time = utime;
362 	acg.cg_magic = CG_MAGIC;
363 	acg.cg_cgx = cg;
364 	acg.cg_ffs2_niblk = sblock.fs_ipg;
365 	acg.cg_initediblk = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock));
366 	acg.cg_ndblk = dmax - cbase;
367 	if (sblock.fs_contigsumsize > 0)
368 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
369 	start = sizeof(struct cg);
370 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
371 		acg.cg_iusedoff = start;
372 	} else {
373 		if (cg == sblock.fs_ncg - 1)
374 			acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
375 		else
376 			acg.cg_ncyl = sblock.fs_cpg;
377 		acg.cg_time = (int32_t)acg.cg_ffs2_time;
378 		acg.cg_ffs2_time = 0;
379 		acg.cg_niblk = (int16_t)acg.cg_ffs2_niblk;
380 		acg.cg_ffs2_niblk = 0;
381 		acg.cg_initediblk = 0;
382 		acg.cg_btotoff = start;
383 		acg.cg_boff = acg.cg_btotoff +
384 		    sblock.fs_cpg * sizeof(int32_t);
385 		acg.cg_iusedoff = acg.cg_boff +
386 		    sblock.fs_cpg * sizeof(u_int16_t);
387 	}
388 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
389 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
390 	if (sblock.fs_contigsumsize > 0) {
391 		acg.cg_clustersumoff =
392 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
393 		acg.cg_clustersumoff -= sizeof(u_int32_t);
394 		acg.cg_clusteroff = acg.cg_clustersumoff +
395 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
396 		acg.cg_nextfreeoff = acg.cg_clusteroff +
397 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
398 	}
399 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
400 		/*
401 		 * This should never happen as we would have had that panic
402 		 *     already on filesystem creation
403 		 */
404 		errx(37, "panic: cylinder group too big");
405 	}
406 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
407 	if (cg == 0) {
408 		for (i = 0; i < ROOTINO; i++) {
409 			setbit(cg_inosused(&acg), i);
410 			acg.cg_cs.cs_nifree--;
411 		}
412 	}
413 	if (cg > 0) {
414 		/*
415 		 * In cg 0, beginning space is reserved
416 		 * for boot and super blocks.
417 		 */
418 		for (d = 0; d < dlower; d += sblock.fs_frag) {
419 			blkno = d / sblock.fs_frag;
420 			setblock(&sblock, cg_blksfree(&acg), blkno);
421 			if (sblock.fs_contigsumsize > 0)
422 				setbit(cg_clustersfree(&acg), blkno);
423 			acg.cg_cs.cs_nbfree++;
424 		}
425 		sblock.fs_dsize += dlower;
426 	}
427 	sblock.fs_dsize += acg.cg_ndblk - dupper;
428 	if ((i = dupper % sblock.fs_frag)) {
429 		acg.cg_frsum[sblock.fs_frag - i]++;
430 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
431 			setbit(cg_blksfree(&acg), dupper);
432 			acg.cg_cs.cs_nffree++;
433 		}
434 	}
435 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
436 	    d += sblock.fs_frag) {
437 		blkno = d / sblock.fs_frag;
438 		setblock(&sblock, cg_blksfree(&acg), blkno);
439 		if (sblock.fs_contigsumsize > 0)
440 			setbit(cg_clustersfree(&acg), blkno);
441 		acg.cg_cs.cs_nbfree++;
442 	}
443 	if (d < acg.cg_ndblk) {
444 		acg.cg_frsum[acg.cg_ndblk - d]++;
445 		for (; d < acg.cg_ndblk; d++) {
446 			setbit(cg_blksfree(&acg), d);
447 			acg.cg_cs.cs_nffree++;
448 		}
449 	}
450 	if (sblock.fs_contigsumsize > 0) {
451 		int32_t	*sump = cg_clustersum(&acg);
452 		u_char	*mapp = cg_clustersfree(&acg);
453 		int	map = *mapp++;
454 		int	bit = 1;
455 		int	run = 0;
456 
457 		for (i = 0; i < acg.cg_nclusterblks; i++) {
458 			if ((map & bit) != 0)
459 				run++;
460 			else if (run != 0) {
461 				if (run > sblock.fs_contigsumsize)
462 					run = sblock.fs_contigsumsize;
463 				sump[run]++;
464 				run = 0;
465 			}
466 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
467 				bit <<= 1;
468 			else {
469 				map = *mapp++;
470 				bit = 1;
471 			}
472 		}
473 		if (run != 0) {
474 			if (run > sblock.fs_contigsumsize)
475 				run = sblock.fs_contigsumsize;
476 			sump[run]++;
477 		}
478 	}
479 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
480 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
481 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
482 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
483 	*cs = acg.cg_cs;
484 
485 	/*
486 	 * Write out the duplicate superblock, the cylinder group map
487 	 * and two blocks worth of inodes in a single write.
488 	 */
489 	bcopy(&sblock, iobuf, SBLOCKSIZE);
490 	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
491 	bcopy(&acg, &iobuf[start], sblock.fs_cgsize);
492 	start += sblock.fs_bsize;
493 	dp1 = (struct ufs1_dinode *)&iobuf[start];
494 	dp2 = (struct ufs2_dinode *)&iobuf[start];
495 	for (i = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock)); i != 0; i--) {
496 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
497 			dp1->di_gen = arc4random();
498 			dp1++;
499 		} else {
500 			dp2->di_gen = arc4random();
501 			dp2++;
502 		}
503 	}
504 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cg)), iobufsize,
505 	    iobuf, fso, Nflag);
506 
507 	/* Initialize inodes for FFS1. */
508 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
509 		for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock);
510 		    i += sblock.fs_frag) {
511 			dp1 = (struct ufs1_dinode *)&iobuf[start];
512 			for (j = 0; j < INOPB(&sblock); j++) {
513 				dp1->di_gen = arc4random();
514 				dp1++;
515 			}
516 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cg) + i),
517 			    (size_t)sblock.fs_bsize, &iobuf[start], fso, Nflag);
518 		}
519 	}
520 }
521 
522 /*
523  * Here  we add or subtract (sign +1/-1) the available fragments in  a  given
524  * block to or from the fragment statistics. By subtracting before and adding
525  * after  an operation on the free frag map we can easy update  the  fragment
526  * statistic, which seems to be otherwise a rather complex operation.
527  */
528 static void
529 frag_adjust(daddr_t frag, int sign)
530 {
531 	int fragsize;
532 	int f;
533 
534 	fragsize = 0;
535 	/*
536 	 * Here frag only needs to point to any fragment in the block we want
537 	 * to examine.
538 	 */
539 	for (f = rounddown(frag, sblock.fs_frag);
540 	    f < roundup(frag + 1, sblock.fs_frag);
541 	    f++) {
542 		/*
543 		 * Count contiguous free fragments.
544 		 */
545 		if (isset(cg_blksfree(&acg), f)) {
546 			fragsize++;
547 		} else {
548 			if (fragsize && fragsize < sblock.fs_frag) {
549 				/*
550 				 * We found something in between.
551 				 */
552 				acg.cg_frsum[fragsize] += sign;
553 			}
554 			fragsize = 0;
555 		}
556 	}
557 	if (fragsize && fragsize < sblock.fs_frag) {
558 		/*
559 		 * We found something.
560 		 */
561 		acg.cg_frsum[fragsize] += sign;
562 	}
563 }
564 
565 /*
566  * Here we conditionally update a pointer to a fragment. We check for all
567  * relocated blocks if any of its fragments is referenced by the current
568  * field,  and update the pointer to the respective fragment in  our  new
569  * block.  If  we find a reference we write back the  block  immediately,
570  * as there is no easy way for our general block reading engine to figure
571  * out if a write back operation is needed.
572  */
573 static int
574 cond_bl_upd(daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
575     unsigned int Nflag)
576 {
577 	struct gfs_bpp	*f;
578 	daddr_t src, dst;
579 	int fragnum;
580 	void *ibuf;
581 
582 	for (f = field; f->old != 0; f++) {
583 		src = *block;
584 		if (fragstoblks(&sblock, src) != f->old)
585 			continue;
586 		/*
587 		 * The fragment is part of the block, so update.
588 		 */
589 		dst = blkstofrags(&sblock, f->new);
590 		fragnum = fragnum(&sblock, src);
591 		*block = dst + fragnum;
592 		f->found++;
593 
594 		/*
595 		 * Copy the block back immediately.
596 		 *
597 		 * XXX	If src is from an indirect block we have
598 		 *	to implement copy on write here in case of
599 		 *	active snapshots.
600 		 */
601 		ibuf = malloc(sblock.fs_bsize);
602 		if (!ibuf)
603 			errx(1, "malloc failed");
604 		src -= fragnum;
605 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
606 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
607 		free(ibuf);
608 		/*
609 		 * The same block can't be found again in this loop.
610 		 */
611 		return (1);
612 	}
613 
614 	return (0);
615 }
616 
617 /*
618  * Here we do all needed work for the former last cylinder group. It has to be
619  * changed  in  any case, even if the filesystem ended exactly on the  end  of
620  * this  group, as there is some slightly inconsistent handling of the  number
621  * of cylinders in the cylinder group. We start again by reading the  cylinder
622  * group from disk. If the last block was not fully available, we first handle
623  * the  missing  fragments, then we handle all new full blocks  in  that  file
624  * system  and  finally we handle the new last fragmented block  in  the  file
625  * system.  We again have to handle the fragment statistics rotational  layout
626  * tables and cluster summary during all those operations.
627  */
628 static void
629 updjcg(u_int cg, time_t utime, int fsi, int fso, unsigned int Nflag)
630 {
631 	daddr_t	cbase, dmax, dupper;
632 	struct csum	*cs;
633 	int	i, k;
634 	int	j = 0;
635 
636 	/*
637 	 * Read the former last (joining) cylinder group from disk, and make
638 	 * a copy.
639 	 */
640 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cg)),
641 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
642 
643 	memcpy(&cgun1, &cgun2, sizeof(cgun2));
644 
645 	/*
646 	 * If the cylinder group had already its new final size almost
647 	 * nothing is to be done ... except:
648 	 * For some reason the value of cg_ncyl in the last cylinder group has
649 	 * to  be  zero instead of fs_cpg. As this is now no longer  the  last
650 	 * cylinder group we have to change that value now to fs_cpg.
651 	 */
652 	if (cgbase(&osblock, cg+1) == osblock.fs_size) {
653 		if (sblock.fs_magic == FS_UFS1_MAGIC)
654 			acg.cg_ncyl = sblock.fs_cpg;
655 
656 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cg)),
657 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
658 
659 		return;
660 	}
661 
662 	/*
663 	 * Set up some variables needed later.
664 	 */
665 	cbase = cgbase(&sblock, cg);
666 	dmax = cbase + sblock.fs_fpg;
667 	if (dmax > sblock.fs_size)
668 		dmax = sblock.fs_size;
669 	dupper = cgdmin(&sblock, cg) - cbase;
670 	if (cg == 0)	/* XXX fscs may be relocated */
671 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
672 
673 	/*
674 	 * Set pointer to the cylinder summary for our cylinder group.
675 	 */
676 	cs = fscs + cg;
677 
678 	/*
679 	 * Touch the cylinder group, update all fields in the cylinder group as
680 	 * needed, update the free space in the superblock.
681 	 */
682 	acg.cg_time = utime;
683 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
684 		if (cg == sblock.fs_ncg - 1) {
685 			/*
686 			 * This is still the last cylinder group.
687 			 */
688 			acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
689 		} else {
690 			acg.cg_ncyl = sblock.fs_cpg;
691 		}
692 	}
693 	acg.cg_ndblk = dmax - cbase;
694 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
695 	if (sblock.fs_contigsumsize > 0)
696 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
697 
698 	/*
699 	 * Now  we have to update the free fragment bitmap for our new  free
700 	 * space.  There again we have to handle the fragmentation and  also
701 	 * the  rotational  layout tables and the cluster summary.  This  is
702 	 * also  done per fragment for the first new block if the  old  file
703 	 * system end was not on a block boundary, per fragment for the  new
704 	 * last block if the new filesystem end is not on a block boundary,
705 	 * and per block for all space in between.
706 	 *
707 	 * Handle the first new block here if it was partially available
708 	 * before.
709 	 */
710 	if (osblock.fs_size % sblock.fs_frag) {
711 		if (roundup(osblock.fs_size, sblock.fs_frag) <= sblock.fs_size) {
712 			/*
713 			 * The new space is enough to fill at least this
714 			 * block
715 			 */
716 			j = 0;
717 			for (i = roundup(osblock.fs_size-cbase, sblock.fs_frag) - 1;
718 			    i >= osblock.fs_size-cbase; i--) {
719 				setbit(cg_blksfree(&acg), i);
720 				acg.cg_cs.cs_nffree++;
721 				j++;
722 			}
723 
724 			/*
725 			 * Check  if the fragment just created could join  an
726 			 * already existing fragment at the former end of the
727 			 * filesystem.
728 			 */
729 			if (isblock(&sblock, cg_blksfree(&acg),
730 			    ((osblock.fs_size - cgbase(&sblock, cg))/
731 			    sblock.fs_frag))) {
732 				/*
733 				 * The block is now completely available.
734 				 */
735 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
736 				acg.cg_cs.cs_nbfree++;
737 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
738 				k = rounddown(osblock.fs_size-cbase,
739 				    sblock.fs_frag);
740 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
741 			} else {
742 				/*
743 				 * Lets rejoin a possible partially growed
744 				 * fragment.
745 				 */
746 				k = 0;
747 				while (isset(cg_blksfree(&acg), i) &&
748 				    (i >= rounddown(osblock.fs_size - cbase,
749 				    sblock.fs_frag))) {
750 					i--;
751 					k++;
752 				}
753 				if (k)
754 					acg.cg_frsum[k]--;
755 				acg.cg_frsum[k + j]++;
756 			}
757 		} else {
758 			/*
759 			 * We only grow by some fragments within this last
760 			 * block.
761 			 */
762 			for (i = sblock.fs_size-cbase-1;
763 			    i >= osblock.fs_size-cbase; i--) {
764 				setbit(cg_blksfree(&acg), i);
765 				acg.cg_cs.cs_nffree++;
766 				j++;
767 			}
768 			/*
769 			 * Lets rejoin a possible partially growed fragment.
770 			 */
771 			k = 0;
772 			while (isset(cg_blksfree(&acg), i) &&
773 			    (i >= rounddown(osblock.fs_size - cbase,
774 			    sblock.fs_frag))) {
775 				i--;
776 				k++;
777 			}
778 			if (k)
779 				acg.cg_frsum[k]--;
780 			acg.cg_frsum[k + j]++;
781 		}
782 	}
783 
784 	/*
785 	 * Handle all new complete blocks here.
786 	 */
787 	for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag);
788 	    i + sblock.fs_frag <= dmax-cbase;	/* XXX <= or only < ? */
789 	    i += sblock.fs_frag) {
790 		j = i / sblock.fs_frag;
791 		setblock(&sblock, cg_blksfree(&acg), j);
792 		updclst(j);
793 		acg.cg_cs.cs_nbfree++;
794 	}
795 
796 	/*
797 	 * Handle the last new block if there are stll some new fragments left.
798 	 * Here  we don't have to bother about the cluster summary or the  even
799 	 * the rotational layout table.
800 	 */
801 	if (i < (dmax - cbase)) {
802 		acg.cg_frsum[dmax - cbase - i]++;
803 		for (; i < dmax - cbase; i++) {
804 			setbit(cg_blksfree(&acg), i);
805 			acg.cg_cs.cs_nffree++;
806 		}
807 	}
808 
809 	sblock.fs_cstotal.cs_nffree +=
810 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
811 	sblock.fs_cstotal.cs_nbfree +=
812 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
813 	/*
814 	 * The following statistics are not changed here:
815 	 *     sblock.fs_cstotal.cs_ndir
816 	 *     sblock.fs_cstotal.cs_nifree
817 	 * As the statistics for this cylinder group are ready, copy it to
818 	 * the summary information array.
819 	 */
820 	*cs = acg.cg_cs;
821 
822 	/*
823 	 * Write the updated "joining" cylinder group back to disk.
824 	 */
825 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cg)), (size_t)sblock.fs_cgsize,
826 	    (void *)&acg, fso, Nflag);
827 }
828 
829 /*
830  * Here  we update the location of the cylinder summary. We have  two  possible
831  * ways of growing the cylinder summary.
832  * (1)	We can try to grow the summary in the current location, and  relocate
833  *	possibly used blocks within the current cylinder group.
834  * (2)	Alternatively we can relocate the whole cylinder summary to the first
835  *	new completely empty cylinder group. Once the cylinder summary is  no
836  *	longer in the beginning of the first cylinder group you should  never
837  *	use  a version of fsck which is not aware of the possibility to  have
838  *	this structure in a non standard place.
839  * Option (1) is considered to be less intrusive to the structure of the  file-
840  * system. So we try to stick to that whenever possible. If there is not enough
841  * space  in the cylinder group containing the cylinder summary we have to  use
842  * method  (2). In case of active snapshots in the filesystem we  probably  can
843  * completely avoid implementing copy on write if we stick to method (2) only.
844  */
845 static void
846 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
847 {
848 	struct csum	*cs;
849 	int	ocscg, ncscg;
850 	int	blocks;
851 	daddr_t	cbase, dupper, odupper, d, f, g;
852 	int	ind;
853 	u_int	cg, inc;
854 	struct gfs_bpp	*bp;
855 	int	i, l;
856 	int	lcs = 0;
857 	int	block;
858 
859 	if (howmany(sblock.fs_cssize, sblock.fs_fsize) ==
860 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
861 		/*
862 		 * No new fragment needed.
863 		 */
864 		return;
865 	}
866 	ocscg = dtog(&osblock, osblock.fs_csaddr);
867 	cs = fscs + ocscg;
868 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
869 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
870 
871 	/*
872 	 * Read original cylinder group from disk, and make a copy.
873 	 * XXX	If Nflag is set in some very rare cases we now miss
874 	 *	some changes done in updjcg by reading the unmodified
875 	 *	block from disk.
876 	 */
877 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
878 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
879 
880 	memcpy(&cgun1, &cgun2, sizeof(cgun2));
881 
882 	/*
883 	 * Touch the cylinder group, set up local variables needed later
884 	 * and update the superblock.
885 	 */
886 	acg.cg_time = utime;
887 
888 	/*
889 	 * XXX	In the case of having active snapshots we may need much more
890 	 *	blocks for the copy on write. We need each block twice,  and
891 	 *	also  up to 8*3 blocks for indirect blocks for all  possible
892 	 *	references.
893 	 */
894 	if (/*((int)sblock.fs_time & 0x3) > 0 || */ cs->cs_nbfree < blocks) {
895 		/*
896 		 * There  is  not enough space in the old cylinder  group  to
897 		 * relocate  all blocks as needed, so we relocate  the  whole
898 		 * cylinder  group summary to a new group. We try to use  the
899 		 * first complete new cylinder group just created. Within the
900 		 * cylinder  group we align the area immediately  after  the
901 		 * cylinder  group  information location in order  to  be  as
902 		 * close as possible to the original implementation of ffs.
903 		 *
904 		 * First  we have to make sure we'll find enough space in  the
905 		 * new  cylinder  group. If not, then we  currently  give  up.
906 		 * We  start  with freeing everything which was  used  by  the
907 		 * fragments of the old cylinder summary in the current group.
908 		 * Now  we write back the group meta data, read in the  needed
909 		 * meta data from the new cylinder group, and start allocating
910 		 * within  that  group. Here we can assume, the  group  to  be
911 		 * completely empty. Which makes the handling of fragments and
912 		 * clusters a lot easier.
913 		 */
914 		if (sblock.fs_ncg-osblock.fs_ncg < 2)
915 			errx(2, "panic: not enough space");
916 
917 		/*
918 		 * Point "d" to the first fragment not used by the cylinder
919 		 * summary.
920 		 */
921 		d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize);
922 
923 		/*
924 		 * Set up last cluster size ("lcs") already here. Calculate
925 		 * the size for the trailing cluster just behind where  "d"
926 		 * points to.
927 		 */
928 		if (sblock.fs_contigsumsize > 0) {
929 			for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag),
930 			    lcs = 0; lcs < sblock.fs_contigsumsize;
931 			    block++, lcs++) {
932 				if (isclr(cg_clustersfree(&acg), block))
933 					break;
934 			}
935 		}
936 
937 		/*
938 		 * Point "d" to the last frag used by the cylinder summary.
939 		 */
940 		d--;
941 
942 		if ((d + 1) % sblock.fs_frag) {
943 			/*
944 			 * The end of the cylinder summary is not a complete
945 			 * block.
946 			 */
947 			frag_adjust(d % sblock.fs_fpg, -1);
948 			for (; (d + 1) % sblock.fs_frag; d--) {
949 				setbit(cg_blksfree(&acg), d % sblock.fs_fpg);
950 				acg.cg_cs.cs_nffree++;
951 				sblock.fs_cstotal.cs_nffree++;
952 			}
953 			/*
954 			 * Point  "d" to the last fragment of the  last
955 			 * (incomplete) block of the cylinder summary.
956 			 */
957 			d++;
958 			frag_adjust(d % sblock.fs_fpg, 1);
959 
960 			if (isblock(&sblock, cg_blksfree(&acg),
961 			    (d % sblock.fs_fpg) / sblock.fs_frag)) {
962 				acg.cg_cs.cs_nffree -= sblock.fs_frag;
963 				acg.cg_cs.cs_nbfree++;
964 				sblock.fs_cstotal.cs_nffree -= sblock.fs_frag;
965 				sblock.fs_cstotal.cs_nbfree++;
966 				if (sblock.fs_contigsumsize > 0) {
967 					setbit(cg_clustersfree(&acg),
968 					    (d % sblock.fs_fpg) / sblock.fs_frag);
969 					if (lcs < sblock.fs_contigsumsize) {
970 						if (lcs) {
971 							cg_clustersum(&acg)
972 							    [lcs]--;
973 						}
974 						lcs++;
975 						cg_clustersum(&acg)[lcs]++;
976 					}
977 				}
978 			}
979 			/*
980 			 * Point "d" to the first fragment of the block before
981 			 * the last incomplete block.
982 			 */
983 			d--;
984 		}
985 
986 		for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
987 		    d -= sblock.fs_frag) {
988 			setblock(&sblock, cg_blksfree(&acg),
989 			    (d % sblock.fs_fpg) / sblock.fs_frag);
990 			acg.cg_cs.cs_nbfree++;
991 			sblock.fs_cstotal.cs_nbfree++;
992 			 if (sblock.fs_contigsumsize > 0) {
993 				setbit(cg_clustersfree(&acg),
994 				    (d % sblock.fs_fpg) / sblock.fs_frag);
995 				/*
996 				 * The last cluster size is already set up.
997 				 */
998 				if (lcs < sblock.fs_contigsumsize) {
999 					if (lcs) {
1000 						cg_clustersum(&acg)[lcs]--;
1001 					}
1002 					lcs++;
1003 					cg_clustersum(&acg)[lcs]++;
1004 				}
1005 			}
1006 		}
1007 		*cs = acg.cg_cs;
1008 
1009 		/*
1010 		 * Now write the former cylinder group containing the cylinder
1011 		 * summary back to disk.
1012 		 */
1013 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1014 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1015 
1016 		/*
1017 		 * Find the beginning of the new cylinder group containing the
1018 		 * cylinder summary.
1019 		 */
1020 		sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg);
1021 		ncscg = dtog(&sblock, sblock.fs_csaddr);
1022 		cs = fscs + ncscg;
1023 
1024 
1025 		/*
1026 		 * If Nflag is specified, we would now read random data instead
1027 		 * of an empty cg structure from disk. So we can't simulate that
1028 		 * part for now.
1029 		 */
1030 		if (Nflag)
1031 			return;
1032 
1033 		/*
1034 		 * Read the future cylinder group containing the cylinder
1035 		 * summary from disk, and make a copy.
1036 		 */
1037 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1038 		    (size_t)sblock.fs_cgsize, &aocg, fsi);
1039 
1040 		memcpy(&cgun1, &cgun2, sizeof(cgun2));
1041 
1042 		/*
1043 		 * Allocate all complete blocks used by the new cylinder
1044 		 * summary.
1045 		 */
1046 		for (d = sblock.fs_csaddr; d + sblock.fs_frag <=
1047 		    sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize);
1048 		    d += sblock.fs_frag) {
1049 			clrblock(&sblock, cg_blksfree(&acg),
1050 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1051 			acg.cg_cs.cs_nbfree--;
1052 			sblock.fs_cstotal.cs_nbfree--;
1053 			if (sblock.fs_contigsumsize > 0) {
1054 				clrbit(cg_clustersfree(&acg),
1055 				    (d % sblock.fs_fpg) / sblock.fs_frag);
1056 			}
1057 		}
1058 
1059 		/*
1060 		 * Allocate all fragments used by the cylinder summary in the
1061 		 * last block.
1062 		 */
1063 		if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) {
1064 			for (; d - sblock.fs_csaddr <
1065 			    sblock.fs_cssize/sblock.fs_fsize;
1066 			    d++) {
1067 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1068 				acg.cg_cs.cs_nffree--;
1069 				sblock.fs_cstotal.cs_nffree--;
1070 			}
1071 			acg.cg_cs.cs_nbfree--;
1072 			acg.cg_cs.cs_nffree += sblock.fs_frag;
1073 			sblock.fs_cstotal.cs_nbfree--;
1074 			sblock.fs_cstotal.cs_nffree += sblock.fs_frag;
1075 			if (sblock.fs_contigsumsize > 0) {
1076 				clrbit(cg_clustersfree(&acg),
1077 				    (d%sblock.fs_fpg) / sblock.fs_frag);
1078 			}
1079 
1080 			frag_adjust(d % sblock.fs_fpg, 1);
1081 		}
1082 		/*
1083 		 * XXX	Handle the cluster statistics here in the case  this
1084 		 *	cylinder group is now almost full, and the remaining
1085 		 *	space is less then the maximum cluster size. This is
1086 		 *	probably not needed, as you would hardly find a file
1087 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1088 		 *	space right behind the cylinder group information in
1089 		 *	any new cylinder group.
1090 		 */
1091 
1092 		/*
1093 		 * Update our statistics in the cylinder summary.
1094 		 */
1095 		*cs = acg.cg_cs;
1096 
1097 		/*
1098 		 * Write the new cylinder group containing the cylinder summary
1099 		 * back to disk.
1100 		 */
1101 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1102 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1103 		return;
1104 	}
1105 	/*
1106 	 * We have got enough of space in the current cylinder group, so we
1107 	 * can relocate just a few blocks, and let the summary  information
1108 	 * grow in place where it is right now.
1109 	 */
1110 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1111 	dupper = sblock.fs_csaddr - cbase +
1112 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1113 	odupper = osblock.fs_csaddr - cbase +
1114 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1115 
1116 	sblock.fs_dsize -= dupper-odupper;
1117 
1118 	/*
1119 	 * Allocate the space for the array of blocks to be relocated.
1120 	 */
1121 	bp = calloc(((dupper-odupper) / sblock.fs_frag + 2),
1122 	    sizeof(struct gfs_bpp));
1123 	if (bp == NULL)
1124 		errx(1, "calloc failed");
1125 
1126 	/*
1127 	 * Lock all new frags needed for the cylinder group summary. This  is
1128 	 * done per fragment in the first and last block of the new  required
1129 	 * area, and per block for all other blocks.
1130 	 *
1131 	 * Handle the first new  block here (but only if some fragments where
1132 	 * already used for the cylinder summary).
1133 	 */
1134 	ind = 0;
1135 	frag_adjust(odupper, -1);
1136 	for (d = odupper; ((d < dupper) && (d % sblock.fs_frag)); d++) {
1137 		if (isclr(cg_blksfree(&acg), d)) {
1138 			if (!ind) {
1139 				bp[ind].old = d / sblock.fs_frag;
1140 				bp[ind].flags|=GFS_FL_FIRST;
1141 				if (roundup(d, sblock.fs_frag) >= dupper)
1142 					bp[ind].flags |= GFS_FL_LAST;
1143 				ind++;
1144 			}
1145 		} else {
1146 			clrbit(cg_blksfree(&acg), d);
1147 			acg.cg_cs.cs_nffree--;
1148 			sblock.fs_cstotal.cs_nffree--;
1149 		}
1150 		/*
1151 		 * No cluster handling is needed here, as there was at least
1152 		 * one  fragment in use by the cylinder summary in  the  old
1153 		 * filesystem.
1154 		 * No block - free counter handling here as this block was not
1155 		 * a free block.
1156 		 */
1157 	}
1158 	frag_adjust(odupper, 1);
1159 
1160 	/*
1161 	 * Handle all needed complete blocks here.
1162 	 */
1163 	for (; d + sblock.fs_frag <= dupper; d += sblock.fs_frag) {
1164 		if (!isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) {
1165 			for (f = d; f < d + sblock.fs_frag; f++) {
1166 				if (isset(cg_blksfree(&aocg), f)) {
1167 					acg.cg_cs.cs_nffree--;
1168 					sblock.fs_cstotal.cs_nffree--;
1169 				}
1170 			}
1171 			clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
1172 			bp[ind].old = d / sblock.fs_frag;
1173 			ind++;
1174 		} else {
1175 			clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
1176 			acg.cg_cs.cs_nbfree--;
1177 			sblock.fs_cstotal.cs_nbfree--;
1178 			if (sblock.fs_contigsumsize > 0) {
1179 				clrbit(cg_clustersfree(&acg), d / sblock.fs_frag);
1180 				for (lcs = 0, l = (d / sblock.fs_frag) + 1;
1181 				    lcs < sblock.fs_contigsumsize;
1182 				    l++, lcs++) {
1183 					if (isclr(cg_clustersfree(&acg), l))
1184 						break;
1185 				}
1186 				if (lcs < sblock.fs_contigsumsize) {
1187 					cg_clustersum(&acg)[lcs + 1]--;
1188 					if (lcs)
1189 						cg_clustersum(&acg)[lcs]++;
1190 				}
1191 			}
1192 		}
1193 		/*
1194 		 * No fragment counter handling is needed here, as this finally
1195 		 * doesn't change after the relocation.
1196 		 */
1197 	}
1198 
1199 	/*
1200 	 * Handle all fragments needed in the last new affected block.
1201 	 */
1202 	if (d < dupper) {
1203 		frag_adjust(dupper - 1, -1);
1204 
1205 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) {
1206 			acg.cg_cs.cs_nbfree--;
1207 			sblock.fs_cstotal.cs_nbfree--;
1208 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1209 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1210 			if (sblock.fs_contigsumsize > 0) {
1211 				clrbit(cg_clustersfree(&acg), d / sblock.fs_frag);
1212 				for (lcs = 0, l = (d / sblock.fs_frag) + 1;
1213 				    lcs < sblock.fs_contigsumsize;
1214 				    l++, lcs++) {
1215 					if (isclr(cg_clustersfree(&acg), l))
1216 						break;
1217 				}
1218 				if (lcs < sblock.fs_contigsumsize) {
1219 					cg_clustersum(&acg)[lcs + 1]--;
1220 					if (lcs)
1221 						cg_clustersum(&acg)[lcs]++;
1222 				}
1223 			}
1224 		}
1225 
1226 		for (; d < dupper; d++) {
1227 			if (isclr(cg_blksfree(&acg), d)) {
1228 				bp[ind].old = d / sblock.fs_frag;
1229 				bp[ind].flags |= GFS_FL_LAST;
1230 			} else {
1231 				clrbit(cg_blksfree(&acg), d);
1232 				acg.cg_cs.cs_nffree--;
1233 				sblock.fs_cstotal.cs_nffree--;
1234 			}
1235 		}
1236 		if (bp[ind].flags & GFS_FL_LAST) /* we have to advance here */
1237 			ind++;
1238 		frag_adjust(dupper - 1, 1);
1239 	}
1240 
1241 	/*
1242 	 * If we found a block to relocate just do so.
1243 	 */
1244 	if (ind) {
1245 		for (i = 0; i < ind; i++) {
1246 			if (!bp[i].old) { /* no more blocks listed */
1247 				/*
1248 				 * XXX	A relative blocknumber should not be
1249 				 *	zero,   which  is   not   explicitly
1250 				 *	guaranteed by our code.
1251 				 */
1252 				break;
1253 			}
1254 			/*
1255 			 * Allocate a complete block in the same (current)
1256 			 * cylinder group.
1257 			 */
1258 			bp[i].new = alloc() / sblock.fs_frag;
1259 
1260 			/*
1261 			 * There is no frag_adjust() needed for the new block
1262 			 * as it will have no fragments yet :-).
1263 			 */
1264 			for (f = bp[i].old * sblock.fs_frag,
1265 			    g = bp[i].new * sblock.fs_frag;
1266 			    f < (bp[i].old + 1) * sblock.fs_frag;
1267 			    f++, g++) {
1268 				if (isset(cg_blksfree(&aocg), f)) {
1269 					setbit(cg_blksfree(&acg), g);
1270 					acg.cg_cs.cs_nffree++;
1271 					sblock.fs_cstotal.cs_nffree++;
1272 				}
1273 			}
1274 
1275 			/*
1276 			 * Special handling is required if this was the  first
1277 			 * block. We have to consider the fragments which were
1278 			 * used by the cylinder summary in the original  block
1279 			 * which  re to be free in the copy of our  block.  We
1280 			 * have  to be careful if this first block happens  to
1281 			 * be also the last block to be relocated.
1282 			 */
1283 			if (bp[i].flags & GFS_FL_FIRST) {
1284 				for (f = bp[i].old * sblock.fs_frag,
1285 				    g = bp[i].new * sblock.fs_frag;
1286 				    f < odupper;
1287 				    f++, g++) {
1288 					setbit(cg_blksfree(&acg), g);
1289 					acg.cg_cs.cs_nffree++;
1290 					sblock.fs_cstotal.cs_nffree++;
1291 				}
1292 				if (!(bp[i].flags & GFS_FL_LAST))
1293 					frag_adjust(bp[i].new * sblock.fs_frag, 1);
1294 			}
1295 
1296 			/*
1297 			 * Special handling is required if this is the last
1298 			 * block to be relocated.
1299 			 */
1300 			if (bp[i].flags & GFS_FL_LAST) {
1301 				frag_adjust(bp[i].new * sblock.fs_frag, 1);
1302 				frag_adjust(bp[i].old * sblock.fs_frag, -1);
1303 				for (f = dupper;
1304 				    f < roundup(dupper, sblock.fs_frag);
1305 				    f++) {
1306 					if (isclr(cg_blksfree(&acg), f)) {
1307 						setbit(cg_blksfree(&acg), f);
1308 						acg.cg_cs.cs_nffree++;
1309 						sblock.fs_cstotal.cs_nffree++;
1310 					}
1311 				}
1312 				frag_adjust(bp[i].old * sblock.fs_frag, 1);
1313 			}
1314 
1315 			/*
1316 			 * !!! Attach the cylindergroup offset here.
1317 			 */
1318 			bp[i].old += cbase / sblock.fs_frag;
1319 			bp[i].new += cbase / sblock.fs_frag;
1320 
1321 			/*
1322 			 * Copy the content of the block.
1323 			 */
1324 			/*
1325 			 * XXX	Here we will have to implement a copy on write
1326 			 *	in the case we have any active snapshots.
1327 			 */
1328 			rdfs(fsbtodb(&sblock, bp[i].old * sblock.fs_frag),
1329 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1330 			wtfs(fsbtodb(&sblock, bp[i].new * sblock.fs_frag),
1331 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1332 		}
1333 
1334 		/*
1335 		 * Now we have to update all references to any fragment which
1336 		 * belongs  to any block relocated. We iterate now  over  all
1337 		 * cylinder  groups,  within those over all non  zero  length
1338 		 * inodes.
1339 		 */
1340 		for (cg = 0; cg < osblock.fs_ncg; cg++) {
1341 			for (inc = osblock.fs_ipg - 1; inc > 0; inc--) {
1342 				updrefs(cg, (ino_t)inc, bp, fsi, fso, Nflag);
1343 			}
1344 		}
1345 
1346 		/*
1347 		 * All inodes are checked, now make sure the number of
1348 		 * references found make sense.
1349 		 */
1350 		for (i = 0; i < ind; i++) {
1351 			if (!bp[i].found || (bp[i].found > sblock.fs_frag)) {
1352 				warnx("error: %jd refs found for block %jd.",
1353 				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1354 			}
1355 
1356 		}
1357 	}
1358 	/*
1359 	 * The following statistics are not changed here:
1360 	 *     sblock.fs_cstotal.cs_ndir
1361 	 *     sblock.fs_cstotal.cs_nifree
1362 	 * The following statistics were already updated on the fly:
1363 	 *     sblock.fs_cstotal.cs_nffree
1364 	 *     sblock.fs_cstotal.cs_nbfree
1365 	 * As the statistics for this cylinder group are ready, copy it to
1366 	 * the summary information array.
1367 	 */
1368 
1369 	*cs = acg.cg_cs;
1370 
1371 	/*
1372 	 * Write summary cylinder group back to disk.
1373 	 */
1374 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1375 	    (void *)&acg, fso, Nflag);
1376 }
1377 
1378 /*
1379  * Here we read some block(s) from disk.
1380  */
1381 static void
1382 rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1383 {
1384 	ssize_t	n;
1385 
1386 	if (bno < 0) {
1387 		err(32, "rdfs: attempting to read negative block number");
1388 	}
1389 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, SEEK_SET) == -1) {
1390 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1391 	}
1392 	n = read(fsi, bf, size);
1393 	if (n != (ssize_t)size) {
1394 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1395 	}
1396 }
1397 
1398 /*
1399  * Here we write some block(s) to disk.
1400  */
1401 static void
1402 wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1403 {
1404 	ssize_t	n;
1405 
1406 	if (Nflag)
1407 		return;
1408 
1409 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) == -1)
1410 		err(35, "wtfs: seek error: %ld", (long)bno);
1411 	n = write(fso, bf, size);
1412 	if (n != (ssize_t)size)
1413 		err(36, "wtfs: write error: %ld", (long)bno);
1414 }
1415 
1416 /*
1417  * Here we allocate a free block in the current cylinder group. It is assumed,
1418  * that  acg contains the current cylinder group. As we may take a block  from
1419  * somewhere in the filesystem we have to handle cluster summary here.
1420  */
1421 static daddr_t
1422 alloc(void)
1423 {
1424 	daddr_t	d, blkno;
1425 	int	lcs1, lcs2;
1426 	int	l;
1427 	int	csmin, csmax;
1428 	int	dlower, dupper, dmax;
1429 
1430 	if (acg.cg_magic != CG_MAGIC) {
1431 		warnx("acg: bad magic number");
1432 		return (0);
1433 	}
1434 	if (acg.cg_cs.cs_nbfree == 0) {
1435 		warnx("error: cylinder group ran out of space");
1436 		return (0);
1437 	}
1438 	/*
1439 	 * We start seeking for free blocks only from the space available after
1440 	 * the  end of the new grown cylinder summary. Otherwise we allocate  a
1441 	 * block here which we have to relocate a couple of seconds later again
1442 	 * again, and we are not prepared to to this anyway.
1443 	 */
1444 	blkno = -1;
1445 	dlower = cgsblock(&sblock, acg.cg_cgx) - cgbase(&sblock, acg.cg_cgx);
1446 	dupper = cgdmin(&sblock, acg.cg_cgx) - cgbase(&sblock, acg.cg_cgx);
1447 	dmax = cgbase(&sblock, acg.cg_cgx) + sblock.fs_fpg;
1448 	if (dmax > sblock.fs_size) {
1449 		dmax = sblock.fs_size;
1450 	}
1451 	dmax -= cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1452 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1453 	csmax = csmin + howmany(sblock.fs_cssize, sblock.fs_fsize);
1454 
1455 	for (d = 0; (d < dlower && blkno == -1); d += sblock.fs_frag) {
1456 		if (d >= csmin && d <= csmax) {
1457 			continue;
1458 		}
1459 		if (isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1460 		    d))) {
1461 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1462 			break;
1463 		}
1464 	}
1465 	for (d = dupper; (d < dmax && blkno == -1); d += sblock.fs_frag) {
1466 		if (d >= csmin && d <= csmax) {
1467 			continue;
1468 		}
1469 		if (isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1470 		    d))) {
1471 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1472 			break;
1473 		}
1474 	}
1475 	if (blkno == -1) {
1476 		warnx("internal error: couldn't find promised block in cg");
1477 		return (0);
1478 	}
1479 
1480 	/*
1481 	 * This is needed if the block was found already in the first loop.
1482 	 */
1483 	d = blkstofrags(&sblock, blkno);
1484 
1485 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1486 	if (sblock.fs_contigsumsize > 0) {
1487 		/*
1488 		 * Handle the cluster allocation bitmap.
1489 		 */
1490 		clrbit(cg_clustersfree(&acg), blkno);
1491 		/*
1492 		 * We  possibly have split a cluster here, so we have  to  do
1493 		 * recalculate the sizes of the remaining cluster halves now,
1494 		 * and use them for updating the cluster summary information.
1495 		 *
1496 		 * Lets start with the blocks before our allocated block ...
1497 		 */
1498 		for (lcs1 = 0, l = blkno - 1; lcs1 < sblock.fs_contigsumsize;
1499 		    l--, lcs1++) {
1500 			if (isclr(cg_clustersfree(&acg), l))
1501 				break;
1502 		}
1503 		/*
1504 		 * ... and continue with the blocks right after our allocated
1505 		 * block.
1506 		 */
1507 		for (lcs2 = 0, l = blkno + 1; lcs2 < sblock.fs_contigsumsize;
1508 		    l++, lcs2++) {
1509 			if (isclr(cg_clustersfree(&acg), l))
1510 				break;
1511 		}
1512 
1513 		/*
1514 		 * Now update all counters.
1515 		 */
1516 		cg_clustersum(&acg)[MINIMUM(lcs1 + lcs2 + 1, sblock.fs_contigsumsize)]--;
1517 		if (lcs1)
1518 			cg_clustersum(&acg)[lcs1]++;
1519 		if (lcs2)
1520 			cg_clustersum(&acg)[lcs2]++;
1521 	}
1522 	/*
1523 	 * Update all statistics based on blocks.
1524 	 */
1525 	acg.cg_cs.cs_nbfree--;
1526 	sblock.fs_cstotal.cs_nbfree--;
1527 
1528 	return (d);
1529 }
1530 
1531 /*
1532  * Here  we check if all frags of a block are free. For more details  again
1533  * please see the source of newfs(8), as this function is taken over almost
1534  * unchanged.
1535  */
1536 static int
1537 isblock(struct fs *fs, unsigned char *cp, int h)
1538 {
1539 	unsigned char	mask;
1540 
1541 	switch (fs->fs_frag) {
1542 	case 8:
1543 		return (cp[h] == 0xff);
1544 	case 4:
1545 		mask = 0x0f << ((h & 0x1) << 2);
1546 		return ((cp[h >> 1] & mask) == mask);
1547 	case 2:
1548 		mask = 0x03 << ((h & 0x3) << 1);
1549 		return ((cp[h >> 2] & mask) == mask);
1550 	case 1:
1551 		mask = 0x01 << (h & 0x7);
1552 		return ((cp[h >> 3] & mask) == mask);
1553 	default:
1554 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1555 		return (0);
1556 	}
1557 }
1558 
1559 /*
1560  * Here we allocate a complete block in the block map. For more details again
1561  * please  see the source of newfs(8), as this function is taken over  almost
1562  * unchanged.
1563  */
1564 static void
1565 clrblock(struct fs *fs, unsigned char *cp, int h)
1566 {
1567 	switch ((fs)->fs_frag) {
1568 	case 8:
1569 		cp[h] = 0;
1570 		break;
1571 	case 4:
1572 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1573 		break;
1574 	case 2:
1575 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1576 		break;
1577 	case 1:
1578 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1579 		break;
1580 	default:
1581 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1582 		break;
1583 	}
1584 }
1585 
1586 /*
1587  * Here we free a complete block in the free block map. For more details again
1588  * please  see the source of newfs(8), as this function is taken  over  almost
1589  * unchanged.
1590  */
1591 static void
1592 setblock(struct fs *fs, unsigned char *cp, int h)
1593 {
1594 	switch (fs->fs_frag) {
1595 	case 8:
1596 		cp[h] = 0xff;
1597 		break;
1598 	case 4:
1599 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1600 		break;
1601 	case 2:
1602 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1603 		break;
1604 	case 1:
1605 		cp[h >> 3] |= (0x01 << (h & 0x7));
1606 		break;
1607 	default:
1608 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1609 		break;
1610 	}
1611 }
1612 
1613 /*
1614  * This function provides access to an individual inode. We find out in which
1615  * block  the  requested inode is located, read it from disk if  needed,  and
1616  * return  the pointer into that block. We maintain a cache of one  block  to
1617  * not  read the same block again and again if we iterate linearly  over  all
1618  * inodes.
1619  */
1620 static union dinode *
1621 ginode(ino_t inumber, int fsi, int cg)
1622 {
1623 	static ino_t	startinum = 0;	/* first inode in cached block */
1624 
1625 	/*
1626 	 * The inumber passed in is relative to the cg, so use it here to see
1627 	 * if the inode has been allocated yet.
1628 	 */
1629 	if (isclr(cg_inosused(&aocg), inumber)) {
1630 		return NULL;
1631 	}
1632 	/*
1633 	 * Now make the inumber relative to the entire inode space so it can
1634 	 * be sanity checked.
1635 	 */
1636 	inumber += (cg * sblock.fs_ipg);
1637 	if (inumber < ROOTINO) {
1638 		return NULL;
1639 	}
1640 	if (inumber > maxino)
1641 		errx(8, "bad inode number %llu to ginode",
1642 		    (unsigned long long)inumber);
1643 	if (startinum == 0 ||
1644 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1645 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1646 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1647 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1648 	}
1649 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1650 		return (union dinode *)((uintptr_t)inobuf +
1651 		    (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1652 	return (union dinode *)((uintptr_t)inobuf +
1653 	    (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1654 }
1655 
1656 /*
1657  * Figure out how many lines our current terminal has. For more details again
1658  * please see the source of newfs(8), as this function is taken over almost
1659  * unchanged.
1660  */
1661 static int
1662 charsperline(void)
1663 {
1664 	int	columns;
1665 	char	*cp;
1666 	struct winsize	ws;
1667 
1668 	columns = 0;
1669 	if ((cp = getenv("COLUMNS")) != NULL)
1670 		columns = strtonum(cp, 1, INT_MAX, NULL);
1671 	if (columns == 0 && ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) == 0 &&
1672 	    ws.ws_col > 0)
1673 		columns = ws.ws_col;
1674 	if (columns == 0)
1675 		columns = 80;
1676 
1677 	return columns;
1678 }
1679 
1680 /*
1681  * growfs(8) is a utility which allows to increase the size of an existing
1682  * ufs filesystem. Currently this can only be done on unmounted file system.
1683  * It recognizes some command line options to specify the new desired size,
1684  * and it does some basic checkings. The old filesystem size is determined
1685  * and after some more checks like we can really access the new last block
1686  * on the disk etc. we calculate the new parameters for the superblock. After
1687  * having done this we just call growfs() which will do the work. Before
1688  * we finish the only thing left is to update the disklabel.
1689  * We still have to provide support for snapshots. Therefore we first have to
1690  * understand what data structures are always replicated in the snapshot on
1691  * creation, for all other blocks we touch during our procedure, we have to
1692  * keep the old blocks unchanged somewhere available for the snapshots. If we
1693  * are lucky, then we only have to handle our blocks to be relocated in that
1694  * way.
1695  * Also we have to consider in what order we actually update the critical
1696  * data structures of the filesystem to make sure, that in case of a disaster
1697  * fsck(8) is still able to restore any lost data.
1698  * The foreseen last step then will be to provide for growing even mounted
1699  * file systems. There we have to extend the mount() system call to provide
1700  * userland access to the filesystem locking facility.
1701  */
1702 int
1703 main(int argc, char **argv)
1704 {
1705 	char	*device, *lastsector;
1706 	int	ch;
1707 	long long	size = 0;
1708 	unsigned int	Nflag = 0;
1709 	int	ExpertFlag = 0;
1710 	struct stat	st;
1711 	struct disklabel	*lp;
1712 	struct partition	*pp;
1713 	int	i, fsi, fso;
1714 	char	reply[5];
1715 	const char *errstr;
1716 #ifdef FSMAXSNAP
1717 	int	j;
1718 #endif /* FSMAXSNAP */
1719 
1720 	while ((ch = getopt(argc, argv, "Nqs:vy")) != -1) {
1721 		switch (ch) {
1722 		case 'N':
1723 			Nflag = 1;
1724 			break;
1725 		case 'q':
1726 			quiet = 1;
1727 			break;
1728 		case 's':
1729 			size = strtonum(optarg, 1, LLONG_MAX, &errstr);
1730 			if (errstr)
1731 				usage();
1732 			break;
1733 		case 'v': /* for compatibility to newfs */
1734 			break;
1735 		case 'y':
1736 			ExpertFlag = 1;
1737 			break;
1738 		default:
1739 			usage();
1740 		}
1741 	}
1742 	argc -= optind;
1743 	argv += optind;
1744 
1745 	if (argc != 1)
1746 		usage();
1747 
1748 	colwidth = charsperline();
1749 
1750 	/*
1751 	 * Rather than guessing, use opendev() to get the device
1752 	 * name, which we open for reading.
1753 	 */
1754 	if ((fsi = opendev(*argv, O_RDONLY, 0, &device)) == -1)
1755 		err(1, "%s", *argv);
1756 
1757 	/*
1758 	 * Try to access our devices for writing ...
1759 	 */
1760 	if (Nflag) {
1761 		fso = -1;
1762 	} else {
1763 		fso = open(device, O_WRONLY);
1764 		if (fso == -1)
1765 			err(1, "%s", device);
1766 	}
1767 
1768 	/*
1769 	 * Now we have a file descriptor for our device, fstat() it to
1770 	 * figure out the partition number.
1771 	 */
1772 	if (fstat(fsi, &st) == -1)
1773 		err(1, "%s: fstat()", device);
1774 
1775 	/*
1776 	 * Try to read a label from the disk. Then get the partition from the
1777 	 * device minor number, using DISKPART(). Probably don't need to
1778 	 * check against getmaxpartitions().
1779 	 */
1780 	lp = get_disklabel(fsi);
1781 	if (DISKPART(st.st_rdev) < getmaxpartitions())
1782 		pp = &lp->d_partitions[DISKPART(st.st_rdev)];
1783 	else
1784 		errx(1, "%s: invalid partition number %u",
1785 		    device, DISKPART(st.st_rdev));
1786 
1787 	if (pledge("stdio disklabel", NULL) == -1)
1788 		err(1, "pledge");
1789 
1790 	/*
1791 	 * Check if that partition is suitable for growing a file system.
1792 	 */
1793 	if (DL_GETPSIZE(pp) < 1)
1794 		errx(1, "partition is unavailable");
1795 	if (pp->p_fstype != FS_BSDFFS)
1796 		errx(1, "can only grow ffs partitions");
1797 
1798 	/*
1799 	 * Read the current superblock, and take a backup.
1800 	 */
1801 	for (i = 0; sblock_try[i] != -1; i++) {
1802 		sblockloc = sblock_try[i] / DEV_BSIZE;
1803 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
1804 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
1805 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
1806 		      osblock.fs_sblockloc == sblock_try[i])) &&
1807 		    osblock.fs_bsize <= MAXBSIZE &&
1808 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
1809 			break;
1810 	}
1811 	if (sblock_try[i] == -1)
1812 		errx(1, "superblock not recognized");
1813 	if (osblock.fs_clean == 0)
1814 		errx(1, "filesystem not clean - run fsck");
1815 	if (sblock.fs_magic == FS_UFS1_MAGIC &&
1816 	    (sblock.fs_ffs1_flags & FS_FLAGS_UPDATED) == 0)
1817 		ffs1_sb_update(&sblock, sblock_try[i]);
1818 	memcpy(&fsun1, &fsun2, sizeof(fsun2));
1819 	maxino = sblock.fs_ncg * sblock.fs_ipg;
1820 
1821 	/*
1822 	 * Determine size to grow to. Default to the full size specified in
1823 	 * the disk label.
1824 	 */
1825 	sblock.fs_size = dbtofsb(&osblock, DL_SECTOBLK(lp, DL_GETPSIZE(pp)));
1826 	if (size != 0) {
1827 		if (size > DL_GETPSIZE(pp)) {
1828 			errx(1, "there is not enough space (%llu < %lld)",
1829 			    DL_GETPSIZE(pp), size);
1830 		}
1831 		sblock.fs_size = dbtofsb(&osblock, DL_SECTOBLK(lp, size));
1832 	}
1833 
1834 	/*
1835 	 * Are we really growing ?
1836 	 */
1837 	if (osblock.fs_size >= sblock.fs_size) {
1838 		errx(1, "we are not growing (%jd->%jd)",
1839 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
1840 	}
1841 
1842 
1843 #ifdef FSMAXSNAP
1844 	/*
1845 	 * Check if we find an active snapshot.
1846 	 */
1847 	if (ExpertFlag == 0) {
1848 		for (j = 0; j < FSMAXSNAP; j++) {
1849 			if (sblock.fs_snapinum[j]) {
1850 				errx(1, "active snapshot found in filesystem\n"
1851 				    "	please remove all snapshots before "
1852 				    "using growfs");
1853 			}
1854 			if (!sblock.fs_snapinum[j])	/* list is dense */
1855 				break;
1856 		}
1857 	}
1858 #endif
1859 
1860 	if (ExpertFlag == 0 && Nflag == 0) {
1861 		printf("We strongly recommend you to make a backup "
1862 		    "before growing the Filesystem\n\n"
1863 		    " Did you backup your data (Yes/No) ? ");
1864 		if (fgets(reply, (int)sizeof(reply), stdin) == NULL ||
1865 		    strncasecmp(reply, "Yes", 3)) {
1866 			printf("\n Nothing done \n");
1867 			exit (0);
1868 		}
1869 	}
1870 
1871 	if (!quiet)
1872 		printf("new filesystem size is: %jd frags\n",
1873 		    (intmax_t)sblock.fs_size);
1874 
1875 	/*
1876 	 * Try to access our new last sector in the filesystem. Even if we
1877 	 * later on realize we have to abort our operation, on that sector
1878 	 * there should be no data, so we can't destroy something yet.
1879 	 */
1880 	lastsector = calloc(1, lp->d_secsize);
1881 	if (!lastsector)
1882 		err(1, "No memory for last sector test write");
1883 	wtfs(DL_SECTOBLK(lp, DL_GETPSIZE(pp) - 1), lp->d_secsize,
1884 	    lastsector, fso, Nflag);
1885 	free(lastsector);
1886 
1887 	/*
1888 	 * Now calculate new superblock values and check for reasonable
1889 	 * bound for new filesystem size:
1890 	 *     fs_size:    is derived from label or user input
1891 	 *     fs_dsize:   should get updated in the routines creating or
1892 	 *                 updating the cylinder groups on the fly
1893 	 *     fs_cstotal: should get updated in the routines creating or
1894 	 *                 updating the cylinder groups
1895 	 */
1896 
1897 	/*
1898 	 * Update the number of cylinders and cylinder groups in the file system.
1899 	 */
1900 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
1901 		sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
1902 		if (sblock.fs_size * NSPF(&sblock) >
1903 		    sblock.fs_ncyl * sblock.fs_spc)
1904 		sblock.fs_ncyl++;
1905 	}
1906 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
1907 	if ((ino_t)sblock.fs_ncg * sblock.fs_ipg > UINT_MAX)
1908 		errx(1, "more than 2^32 inodes requested");
1909 	maxino = sblock.fs_ncg * sblock.fs_ipg;
1910 
1911 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
1912 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
1913 		/*
1914 		 * The space in the new last cylinder group is too small,
1915 		 * so revert back.
1916 		 */
1917 		sblock.fs_ncg--;
1918 		if (sblock.fs_magic == FS_UFS1_MAGIC)
1919 			sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
1920 		if (!quiet)
1921 			printf("Warning: %jd sector(s) cannot be allocated.\n",
1922 			    (intmax_t)fsbtodb(&sblock,
1923 			    sblock.fs_size % sblock.fs_fpg));
1924 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
1925 	}
1926 
1927 	/*
1928 	 * Update the space for the cylinder group summary information in the
1929 	 * respective cylinder group data area.
1930 	 */
1931 	sblock.fs_cssize =
1932 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
1933 
1934 	if (osblock.fs_size >= sblock.fs_size)
1935 		errx(1, "not enough new space");
1936 
1937 	/*
1938 	 * Ok, everything prepared, so now let's do the tricks.
1939 	 */
1940 	growfs(fsi, fso, Nflag);
1941 
1942 	/*
1943 	 * Update the disk label.
1944 	 */
1945 	pp->p_fragblock =
1946 	    DISKLABELV1_FFS_FRAGBLOCK(sblock.fs_fsize, sblock.fs_frag);
1947 	pp->p_cpg = sblock.fs_fpg;
1948 
1949 	return_disklabel(fso, lp, Nflag);
1950 
1951 	close(fsi);
1952 	if (fso > -1)
1953 		close(fso);
1954 
1955 	return 0;
1956 }
1957 
1958 /*
1959  * Write the updated disklabel back to disk.
1960  */
1961 static void
1962 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
1963 {
1964 	u_short	sum;
1965 	u_short	*ptr;
1966 
1967 	if (!lp)
1968 		return;
1969 
1970 	if (!Nflag) {
1971 		lp->d_checksum = 0;
1972 		sum = 0;
1973 		ptr = (u_short *)lp;
1974 
1975 		/*
1976 		 * recalculate checksum
1977 		 */
1978 		while (ptr < (u_short *)&lp->d_partitions[lp->d_npartitions])
1979 			sum ^= *ptr++;
1980 		lp->d_checksum = sum;
1981 
1982 		if (ioctl(fd, DIOCWDINFO, (char *)lp) == -1)
1983 			errx(1, "DIOCWDINFO failed");
1984 	}
1985 	free(lp);
1986 
1987 	return ;
1988 }
1989 
1990 /*
1991  * Read the disklabel from disk.
1992  */
1993 static struct disklabel *
1994 get_disklabel(int fd)
1995 {
1996 	static struct	disklabel *lab;
1997 
1998 	lab = malloc(sizeof(struct disklabel));
1999 	if (!lab)
2000 		errx(1, "malloc failed");
2001 	if (ioctl(fd, DIOCGDINFO, (char *)lab) != 0)
2002 		err(1, "DIOCGDINFO");
2003 
2004 	return (lab);
2005 }
2006 
2007 
2008 /*
2009  * Dump a line of usage.
2010  */
2011 static void
2012 usage(void)
2013 {
2014 	fprintf(stderr, "usage: growfs [-Nqy] [-s size] special\n");
2015 	exit(1);
2016 }
2017 
2018 /*
2019  * This updates most parameters and the bitmap related to cluster. We have to
2020  * assume that sblock, osblock, acg are set up.
2021  */
2022 static void
2023 updclst(int block)
2024 {
2025 	static int	lcs = 0;
2026 
2027 	if (sblock.fs_contigsumsize < 1)	/* no clustering */
2028 		return;
2029 
2030 	/*
2031 	 * update cluster allocation map
2032 	 */
2033 	setbit(cg_clustersfree(&acg), block);
2034 
2035 	/*
2036 	 * update cluster summary table
2037 	 */
2038 	if (!lcs) {
2039 		/*
2040 		 * calculate size for the trailing cluster
2041 		 */
2042 		for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++) {
2043 			if (isclr(cg_clustersfree(&acg), block))
2044 				break;
2045 		}
2046 	}
2047 	if (lcs < sblock.fs_contigsumsize) {
2048 		if (lcs)
2049 			cg_clustersum(&acg)[lcs]--;
2050 		lcs++;
2051 		cg_clustersum(&acg)[lcs]++;
2052 	}
2053 }
2054 
2055 /*
2056  * This updates all references to relocated blocks for the given inode.  The
2057  * inode is given as number within the cylinder group, and the number of the
2058  * cylinder group.
2059  */
2060 static void
2061 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2062     Nflag)
2063 {
2064 	daddr_t	len, lbn, numblks;
2065 	daddr_t	iptr, blksperindir;
2066 	union dinode	*ino;
2067 	int		i, mode, inodeupdated;
2068 
2069 	ino = ginode(in, fsi, cg);
2070 	if (ino == NULL)
2071 		return;
2072 
2073 	mode = DIP(ino, di_mode) & IFMT;
2074 	if (mode != IFDIR && mode != IFREG && mode != IFLNK)
2075 		return; /* only check DIR, FILE, LINK */
2076 	if (mode == IFLNK &&
2077 	    DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen)
2078 		return;	/* skip short symlinks */
2079 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2080 	if (numblks == 0)
2081 		return;	/* skip empty file */
2082 	if (DIP(ino, di_blocks) == 0)
2083 		return;	/* skip empty swiss cheesy file or old fastlink */
2084 
2085 	/*
2086 	 * Check all the blocks.
2087 	 */
2088 	inodeupdated = 0;
2089 	len = numblks < NDADDR ? numblks : NDADDR;
2090 	for (i = 0; i < len; i++) {
2091 		iptr = DIP(ino, di_db[i]);
2092 		if (iptr == 0)
2093 			continue;
2094 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2095 			DIP_SET(ino, di_db[i], iptr);
2096 			inodeupdated++;
2097 		}
2098 	}
2099 
2100 	blksperindir = 1;
2101 	len = numblks - NDADDR;
2102 	lbn = NDADDR;
2103 	for (i = 0; len > 0 && i < NIADDR; i++) {
2104 		iptr = DIP(ino, di_ib[i]);
2105 		if (iptr == 0)
2106 			continue;
2107 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2108 			DIP_SET(ino, di_ib[i], iptr);
2109 			inodeupdated++;
2110 		}
2111 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2112 		blksperindir *= NINDIR(&sblock);
2113 		lbn += blksperindir;
2114 		len -= blksperindir;
2115 	}
2116 	if (inodeupdated)
2117 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2118 }
2119 
2120 /*
2121  * Recursively check all the indirect blocks.
2122  */
2123 static void
2124 indirchk(daddr_t blksperindir, daddr_t lbn, daddr_t blkno,
2125     daddr_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2126 {
2127 	void *ibuf;
2128 	int i, last;
2129 	daddr_t iptr;
2130 
2131 	/* read in the indirect block. */
2132 	ibuf = malloc(sblock.fs_bsize);
2133 	if (!ibuf)
2134 		errx(1, "malloc failed");
2135 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2136 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2137 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2138 	for (i = 0; i < last; i++) {
2139 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2140 			iptr = ((int32_t *)ibuf)[i];
2141 		else
2142 			iptr = ((daddr_t *)ibuf)[i];
2143 		if (iptr == 0)
2144 			continue;
2145 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2146 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2147 				((int32_t *)ibuf)[i] = iptr;
2148 			else
2149 				((daddr_t *)ibuf)[i] = iptr;
2150 		}
2151 		if (blksperindir == 1)
2152 			continue;
2153 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2154 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2155 	}
2156 	free(ibuf);
2157 }
2158 
2159 static void
2160 ffs1_sb_update(struct fs *fs, daddr_t sbloc)
2161 {
2162 	fs->fs_flags = fs->fs_ffs1_flags;
2163 	fs->fs_sblockloc = sbloc;
2164 	fs->fs_maxbsize = fs->fs_bsize;
2165 	fs->fs_time = fs->fs_ffs1_time;
2166 	fs->fs_size = fs->fs_ffs1_size;
2167 	fs->fs_dsize = fs->fs_ffs1_dsize;
2168 	fs->fs_csaddr = fs->fs_ffs1_csaddr;
2169 	fs->fs_cstotal.cs_ndir = fs->fs_ffs1_cstotal.cs_ndir;
2170 	fs->fs_cstotal.cs_nbfree = fs->fs_ffs1_cstotal.cs_nbfree;
2171 	fs->fs_cstotal.cs_nifree = fs->fs_ffs1_cstotal.cs_nifree;
2172 	fs->fs_cstotal.cs_nffree = fs->fs_ffs1_cstotal.cs_nffree;
2173 	fs->fs_ffs1_flags |= FS_FLAGS_UPDATED;
2174 }
2175