xref: /openbsd/sys/dev/ic/re.c (revision 3836e7c7)
1 /*	$OpenBSD: re.c,v 1.219 2024/11/05 18:58:59 miod Exp $	*/
2 /*	$FreeBSD: if_re.c,v 1.31 2004/09/04 07:54:05 ru Exp $	*/
3 /*
4  * Copyright (c) 1997, 1998-2003
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Realtek 8139C+/8169/8169S/8110S PCI NIC driver
37  *
38  * Written by Bill Paul <wpaul@windriver.com>
39  * Senior Networking Software Engineer
40  * Wind River Systems
41  */
42 
43 /*
44  * This driver is designed to support Realtek's next generation of
45  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
46  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
47  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
48  *
49  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
50  * with the older 8139 family, however it also supports a special
51  * C+ mode of operation that provides several new performance enhancing
52  * features. These include:
53  *
54  *	o Descriptor based DMA mechanism. Each descriptor represents
55  *	  a single packet fragment. Data buffers may be aligned on
56  *	  any byte boundary.
57  *
58  *	o 64-bit DMA
59  *
60  *	o TCP/IP checksum offload for both RX and TX
61  *
62  *	o High and normal priority transmit DMA rings
63  *
64  *	o VLAN tag insertion and extraction
65  *
66  *	o TCP large send (segmentation offload)
67  *
68  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
69  * programming API is fairly straightforward. The RX filtering, EEPROM
70  * access and PHY access is the same as it is on the older 8139 series
71  * chips.
72  *
73  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
74  * same programming API and feature set as the 8139C+ with the following
75  * differences and additions:
76  *
77  *	o 1000Mbps mode
78  *
79  *	o Jumbo frames
80  *
81  * 	o GMII and TBI ports/registers for interfacing with copper
82  *	  or fiber PHYs
83  *
84  *      o RX and TX DMA rings can have up to 1024 descriptors
85  *        (the 8139C+ allows a maximum of 64)
86  *
87  *	o Slight differences in register layout from the 8139C+
88  *
89  * The TX start and timer interrupt registers are at different locations
90  * on the 8169 than they are on the 8139C+. Also, the status word in the
91  * RX descriptor has a slightly different bit layout. The 8169 does not
92  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
93  * copper gigE PHY.
94  *
95  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
96  * (the 'S' stands for 'single-chip'). These devices have the same
97  * programming API as the older 8169, but also have some vendor-specific
98  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
99  * part designed to be pin-compatible with the Realtek 8100 10/100 chip.
100  *
101  * This driver takes advantage of the RX and TX checksum offload and
102  * VLAN tag insertion/extraction features. It also implements TX
103  * interrupt moderation using the timer interrupt registers, which
104  * significantly reduces TX interrupt load. There is also support
105  * for jumbo frames, however the 8169/8169S/8110S can not transmit
106  * jumbo frames larger than 7440, so the max MTU possible with this
107  * driver is 7422 bytes.
108  */
109 
110 #include "bpfilter.h"
111 #include "vlan.h"
112 #include "kstat.h"
113 
114 #include <sys/param.h>
115 #include <sys/endian.h>
116 #include <sys/systm.h>
117 #include <sys/sockio.h>
118 #include <sys/mbuf.h>
119 #include <sys/malloc.h>
120 #include <sys/kernel.h>
121 #include <sys/device.h>
122 #include <sys/timeout.h>
123 #include <sys/socket.h>
124 #include <sys/atomic.h>
125 
126 #include <machine/bus.h>
127 
128 #include <net/if.h>
129 #include <net/if_media.h>
130 
131 #include <netinet/in.h>
132 #include <netinet/ip.h>
133 #include <netinet/if_ether.h>
134 
135 #if NBPFILTER > 0
136 #include <net/bpf.h>
137 #endif
138 
139 #if NKSTAT > 0
140 #include <sys/kstat.h>
141 #endif
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 
146 #include <dev/pci/pcidevs.h>
147 
148 #include <dev/ic/rtl81x9reg.h>
149 #include <dev/ic/revar.h>
150 
151 #ifdef RE_DEBUG
152 int redebug = 0;
153 #define DPRINTF(x)	do { if (redebug) printf x; } while (0)
154 #else
155 #define DPRINTF(x)
156 #endif
157 
158 static inline void re_set_bufaddr(struct rl_desc *, bus_addr_t);
159 
160 int	re_encap(struct rl_softc *, unsigned int, struct mbuf *);
161 
162 int	re_newbuf(struct rl_softc *);
163 int	re_rx_list_init(struct rl_softc *);
164 void	re_rx_list_fill(struct rl_softc *);
165 int	re_tx_list_init(struct rl_softc *);
166 int	re_rxeof(struct rl_softc *);
167 int	re_txeof(struct rl_softc *);
168 void	re_tick(void *);
169 void	re_start(struct ifqueue *);
170 void	re_txstart(void *);
171 int	re_ioctl(struct ifnet *, u_long, caddr_t);
172 void	re_watchdog(struct ifnet *);
173 int	re_ifmedia_upd(struct ifnet *);
174 void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175 
176 void	re_set_jumbo(struct rl_softc *);
177 
178 void	re_eeprom_putbyte(struct rl_softc *, int);
179 void	re_eeprom_getword(struct rl_softc *, int, u_int16_t *);
180 void	re_read_eeprom(struct rl_softc *, caddr_t, int, int);
181 
182 int	re_gmii_readreg(struct device *, int, int);
183 void	re_gmii_writereg(struct device *, int, int, int);
184 
185 int	re_miibus_readreg(struct device *, int, int);
186 void	re_miibus_writereg(struct device *, int, int, int);
187 void	re_miibus_statchg(struct device *);
188 
189 void	re_iff(struct rl_softc *);
190 
191 void	re_setup_hw_im(struct rl_softc *);
192 void	re_setup_sim_im(struct rl_softc *);
193 void	re_disable_hw_im(struct rl_softc *);
194 void	re_disable_sim_im(struct rl_softc *);
195 void	re_config_imtype(struct rl_softc *, int);
196 void	re_setup_intr(struct rl_softc *, int, int);
197 #ifndef SMALL_KERNEL
198 int	re_wol(struct ifnet*, int);
199 #endif
200 #if NKSTAT > 0
201 void	re_kstat_attach(struct rl_softc *);
202 void	re_kstat_detach(struct rl_softc *);
203 #endif
204 
205 void	in_delayed_cksum(struct mbuf *);
206 
207 struct cfdriver re_cd = {
208 	NULL, "re", DV_IFNET
209 };
210 
211 #define EE_SET(x)					\
212 	CSR_WRITE_1(sc, RL_EECMD,			\
213 		CSR_READ_1(sc, RL_EECMD) | x)
214 
215 #define EE_CLR(x)					\
216 	CSR_WRITE_1(sc, RL_EECMD,			\
217 		CSR_READ_1(sc, RL_EECMD) & ~x)
218 
219 #define RL_FRAMELEN(mtu)				\
220 	(mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +		\
221 		ETHER_VLAN_ENCAP_LEN)
222 
223 static const struct re_revision {
224 	u_int32_t		re_chipid;
225 	const char		*re_name;
226 } re_revisions[] = {
227 	{ RL_HWREV_8100,	"RTL8100" },
228 	{ RL_HWREV_8100E,	"RTL8100E" },
229 	{ RL_HWREV_8100E_SPIN2, "RTL8100E 2" },
230 	{ RL_HWREV_8101,	"RTL8101" },
231 	{ RL_HWREV_8101E,	"RTL8101E" },
232 	{ RL_HWREV_8102E,	"RTL8102E" },
233 	{ RL_HWREV_8106E,	"RTL8106E" },
234 	{ RL_HWREV_8401E,	"RTL8401E" },
235 	{ RL_HWREV_8402,	"RTL8402" },
236 	{ RL_HWREV_8411,	"RTL8411" },
237 	{ RL_HWREV_8411B,	"RTL8411B" },
238 	{ RL_HWREV_8102EL,	"RTL8102EL" },
239 	{ RL_HWREV_8102EL_SPIN1, "RTL8102EL 1" },
240 	{ RL_HWREV_8103E,       "RTL8103E" },
241 	{ RL_HWREV_8110S,	"RTL8110S" },
242 	{ RL_HWREV_8139CPLUS,	"RTL8139C+" },
243 	{ RL_HWREV_8168B_SPIN1,	"RTL8168 1" },
244 	{ RL_HWREV_8168B_SPIN2,	"RTL8168 2" },
245 	{ RL_HWREV_8168B_SPIN3,	"RTL8168 3" },
246 	{ RL_HWREV_8168C,	"RTL8168C/8111C" },
247 	{ RL_HWREV_8168C_SPIN2,	"RTL8168C/8111C" },
248 	{ RL_HWREV_8168CP,	"RTL8168CP/8111CP" },
249 	{ RL_HWREV_8168F,	"RTL8168F/8111F" },
250 	{ RL_HWREV_8168G,	"RTL8168G/8111G" },
251 	{ RL_HWREV_8168GU,	"RTL8168GU/8111GU" },
252 	{ RL_HWREV_8168H,	"RTL8168H/8111H" },
253 	{ RL_HWREV_8105E,	"RTL8105E" },
254 	{ RL_HWREV_8105E_SPIN1,	"RTL8105E" },
255 	{ RL_HWREV_8168D,	"RTL8168D/8111D" },
256 	{ RL_HWREV_8168DP,      "RTL8168DP/8111DP" },
257 	{ RL_HWREV_8168E,       "RTL8168E/8111E" },
258 	{ RL_HWREV_8168E_VL,	"RTL8168E/8111E-VL" },
259 	{ RL_HWREV_8168EP,	"RTL8168EP/8111EP" },
260 	{ RL_HWREV_8168FP,	"RTL8168FP/8111FP" },
261 	{ RL_HWREV_8169,	"RTL8169" },
262 	{ RL_HWREV_8169_8110SB,	"RTL8169/8110SB" },
263 	{ RL_HWREV_8169_8110SBL, "RTL8169SBL" },
264 	{ RL_HWREV_8169_8110SCd, "RTL8169/8110SCd" },
265 	{ RL_HWREV_8169_8110SCe, "RTL8169/8110SCe" },
266 	{ RL_HWREV_8169S,	"RTL8169S" },
267 
268 	{ 0, NULL }
269 };
270 
271 
272 static inline void
re_set_bufaddr(struct rl_desc * d,bus_addr_t addr)273 re_set_bufaddr(struct rl_desc *d, bus_addr_t addr)
274 {
275 	d->rl_bufaddr_lo = htole32((uint32_t)addr);
276 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
277 		d->rl_bufaddr_hi = htole32((uint64_t)addr >> 32);
278 	else
279 		d->rl_bufaddr_hi = 0;
280 }
281 
282 /*
283  * Send a read command and address to the EEPROM, check for ACK.
284  */
285 void
re_eeprom_putbyte(struct rl_softc * sc,int addr)286 re_eeprom_putbyte(struct rl_softc *sc, int addr)
287 {
288 	int	d, i;
289 
290 	d = addr | (RL_9346_READ << sc->rl_eewidth);
291 
292 	/*
293 	 * Feed in each bit and strobe the clock.
294 	 */
295 
296 	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
297 		if (d & i)
298 			EE_SET(RL_EE_DATAIN);
299 		else
300 			EE_CLR(RL_EE_DATAIN);
301 		DELAY(100);
302 		EE_SET(RL_EE_CLK);
303 		DELAY(150);
304 		EE_CLR(RL_EE_CLK);
305 		DELAY(100);
306 	}
307 }
308 
309 /*
310  * Read a word of data stored in the EEPROM at address 'addr.'
311  */
312 void
re_eeprom_getword(struct rl_softc * sc,int addr,u_int16_t * dest)313 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
314 {
315 	int		i;
316 	u_int16_t	word = 0;
317 
318 	/*
319 	 * Send address of word we want to read.
320 	 */
321 	re_eeprom_putbyte(sc, addr);
322 
323 	/*
324 	 * Start reading bits from EEPROM.
325 	 */
326 	for (i = 0x8000; i; i >>= 1) {
327 		EE_SET(RL_EE_CLK);
328 		DELAY(100);
329 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
330 			word |= i;
331 		EE_CLR(RL_EE_CLK);
332 		DELAY(100);
333 	}
334 
335 	*dest = word;
336 }
337 
338 /*
339  * Read a sequence of words from the EEPROM.
340  */
341 void
re_read_eeprom(struct rl_softc * sc,caddr_t dest,int off,int cnt)342 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
343 {
344 	int		i;
345 	u_int16_t	word = 0, *ptr;
346 
347 	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
348 
349 	DELAY(100);
350 
351 	for (i = 0; i < cnt; i++) {
352 		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
353 		re_eeprom_getword(sc, off + i, &word);
354 		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
355 		ptr = (u_int16_t *)(dest + (i * 2));
356 		*ptr = word;
357 	}
358 
359 	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
360 }
361 
362 int
re_gmii_readreg(struct device * self,int phy,int reg)363 re_gmii_readreg(struct device *self, int phy, int reg)
364 {
365 	struct rl_softc	*sc = (struct rl_softc *)self;
366 	u_int32_t	rval;
367 	int		i;
368 
369 	if (phy != 7)
370 		return (0);
371 
372 	/* Let the rgephy driver read the GMEDIASTAT register */
373 
374 	if (reg == RL_GMEDIASTAT) {
375 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
376 		return (rval);
377 	}
378 
379 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
380 
381 	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
382 		rval = CSR_READ_4(sc, RL_PHYAR);
383 		if (rval & RL_PHYAR_BUSY)
384 			break;
385 		DELAY(25);
386 	}
387 
388 	if (i == RL_PHY_TIMEOUT) {
389 		printf ("%s: PHY read failed\n", sc->sc_dev.dv_xname);
390 		return (0);
391 	}
392 
393 	DELAY(20);
394 
395 	return (rval & RL_PHYAR_PHYDATA);
396 }
397 
398 void
re_gmii_writereg(struct device * dev,int phy,int reg,int data)399 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
400 {
401 	struct rl_softc	*sc = (struct rl_softc *)dev;
402 	u_int32_t	rval;
403 	int		i;
404 
405 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
406 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
407 
408 	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
409 		rval = CSR_READ_4(sc, RL_PHYAR);
410 		if (!(rval & RL_PHYAR_BUSY))
411 			break;
412 		DELAY(25);
413 	}
414 
415 	if (i == RL_PHY_TIMEOUT)
416 		printf ("%s: PHY write failed\n", sc->sc_dev.dv_xname);
417 
418 	DELAY(20);
419 }
420 
421 int
re_miibus_readreg(struct device * dev,int phy,int reg)422 re_miibus_readreg(struct device *dev, int phy, int reg)
423 {
424 	struct rl_softc	*sc = (struct rl_softc *)dev;
425 	u_int16_t	rval = 0;
426 	u_int16_t	re8139_reg = 0;
427 	int		s;
428 
429 	s = splnet();
430 
431 	if (sc->sc_hwrev != RL_HWREV_8139CPLUS) {
432 		rval = re_gmii_readreg(dev, phy, reg);
433 		splx(s);
434 		return (rval);
435 	}
436 
437 	/* Pretend the internal PHY is only at address 0 */
438 	if (phy) {
439 		splx(s);
440 		return (0);
441 	}
442 	switch(reg) {
443 	case MII_BMCR:
444 		re8139_reg = RL_BMCR;
445 		break;
446 	case MII_BMSR:
447 		re8139_reg = RL_BMSR;
448 		break;
449 	case MII_ANAR:
450 		re8139_reg = RL_ANAR;
451 		break;
452 	case MII_ANER:
453 		re8139_reg = RL_ANER;
454 		break;
455 	case MII_ANLPAR:
456 		re8139_reg = RL_LPAR;
457 		break;
458 	case MII_PHYIDR1:
459 	case MII_PHYIDR2:
460 		splx(s);
461 		return (0);
462 	/*
463 	 * Allow the rlphy driver to read the media status
464 	 * register. If we have a link partner which does not
465 	 * support NWAY, this is the register which will tell
466 	 * us the results of parallel detection.
467 	 */
468 	case RL_MEDIASTAT:
469 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
470 		splx(s);
471 		return (rval);
472 	default:
473 		printf("%s: bad phy register %x\n", sc->sc_dev.dv_xname, reg);
474 		splx(s);
475 		return (0);
476 	}
477 	rval = CSR_READ_2(sc, re8139_reg);
478 	if (re8139_reg == RL_BMCR) {
479 		/* 8139C+ has different bit layout. */
480 		rval &= ~(BMCR_LOOP | BMCR_ISO);
481 	}
482 	splx(s);
483 	return (rval);
484 }
485 
486 void
re_miibus_writereg(struct device * dev,int phy,int reg,int data)487 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
488 {
489 	struct rl_softc	*sc = (struct rl_softc *)dev;
490 	u_int16_t	re8139_reg = 0;
491 	int		s;
492 
493 	s = splnet();
494 
495 	if (sc->sc_hwrev != RL_HWREV_8139CPLUS) {
496 		re_gmii_writereg(dev, phy, reg, data);
497 		splx(s);
498 		return;
499 	}
500 
501 	/* Pretend the internal PHY is only at address 0 */
502 	if (phy) {
503 		splx(s);
504 		return;
505 	}
506 	switch(reg) {
507 	case MII_BMCR:
508 		re8139_reg = RL_BMCR;
509 		/* 8139C+ has different bit layout. */
510 		data &= ~(BMCR_LOOP | BMCR_ISO);
511 		break;
512 	case MII_BMSR:
513 		re8139_reg = RL_BMSR;
514 		break;
515 	case MII_ANAR:
516 		re8139_reg = RL_ANAR;
517 		break;
518 	case MII_ANER:
519 		re8139_reg = RL_ANER;
520 		break;
521 	case MII_ANLPAR:
522 		re8139_reg = RL_LPAR;
523 		break;
524 	case MII_PHYIDR1:
525 	case MII_PHYIDR2:
526 		splx(s);
527 		return;
528 		break;
529 	default:
530 		printf("%s: bad phy register %x\n", sc->sc_dev.dv_xname, reg);
531 		splx(s);
532 		return;
533 	}
534 	CSR_WRITE_2(sc, re8139_reg, data);
535 	splx(s);
536 }
537 
538 void
re_miibus_statchg(struct device * dev)539 re_miibus_statchg(struct device *dev)
540 {
541 	struct rl_softc		*sc = (struct rl_softc *)dev;
542 	struct ifnet		*ifp = &sc->sc_arpcom.ac_if;
543 	struct mii_data		*mii = &sc->sc_mii;
544 
545 	if ((ifp->if_flags & IFF_RUNNING) == 0)
546 		return;
547 
548 	sc->rl_flags &= ~RL_FLAG_LINK;
549 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
550 	    (IFM_ACTIVE | IFM_AVALID)) {
551 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
552 		case IFM_10_T:
553 		case IFM_100_TX:
554 			sc->rl_flags |= RL_FLAG_LINK;
555 			break;
556 		case IFM_1000_T:
557 			if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
558 				break;
559 			sc->rl_flags |= RL_FLAG_LINK;
560 			break;
561 		default:
562 			break;
563 		}
564 	}
565 
566 	/*
567 	 * Realtek controllers do not provide an interface to
568 	 * Tx/Rx MACs for resolved speed, duplex and flow-control
569 	 * parameters.
570 	 */
571 }
572 
573 void
re_iff(struct rl_softc * sc)574 re_iff(struct rl_softc *sc)
575 {
576 	struct ifnet		*ifp = &sc->sc_arpcom.ac_if;
577 	int			h = 0;
578 	u_int32_t		hashes[2];
579 	u_int32_t		rxfilt;
580 	struct arpcom		*ac = &sc->sc_arpcom;
581 	struct ether_multi	*enm;
582 	struct ether_multistep	step;
583 
584 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
585 	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
586 	    RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI);
587 	ifp->if_flags &= ~IFF_ALLMULTI;
588 
589 	/*
590 	 * Always accept frames destined to our station address.
591 	 * Always accept broadcast frames.
592 	 */
593 	rxfilt |= RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
594 
595 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
596 		ifp->if_flags |= IFF_ALLMULTI;
597 		rxfilt |= RL_RXCFG_RX_MULTI;
598 		if (ifp->if_flags & IFF_PROMISC)
599 			rxfilt |= RL_RXCFG_RX_ALLPHYS;
600 		hashes[0] = hashes[1] = 0xFFFFFFFF;
601 	} else {
602 		rxfilt |= RL_RXCFG_RX_MULTI;
603 		/* Program new filter. */
604 		bzero(hashes, sizeof(hashes));
605 
606 		ETHER_FIRST_MULTI(step, ac, enm);
607 		while (enm != NULL) {
608 			h = ether_crc32_be(enm->enm_addrlo,
609 			    ETHER_ADDR_LEN) >> 26;
610 
611 			if (h < 32)
612 				hashes[0] |= (1 << h);
613 			else
614 				hashes[1] |= (1 << (h - 32));
615 
616 			ETHER_NEXT_MULTI(step, enm);
617 		}
618 	}
619 
620 	/*
621 	 * For some unfathomable reason, Realtek decided to reverse
622 	 * the order of the multicast hash registers in the PCI Express
623 	 * parts. This means we have to write the hash pattern in reverse
624 	 * order for those devices.
625 	 */
626 	if (sc->rl_flags & RL_FLAG_PCIE) {
627 		CSR_WRITE_4(sc, RL_MAR0, swap32(hashes[1]));
628 		CSR_WRITE_4(sc, RL_MAR4, swap32(hashes[0]));
629 	} else {
630 		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
631 		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
632 	}
633 
634 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
635 }
636 
637 void
re_reset(struct rl_softc * sc)638 re_reset(struct rl_softc *sc)
639 {
640 	int	i;
641 
642 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
643 
644 	for (i = 0; i < RL_TIMEOUT; i++) {
645 		DELAY(10);
646 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
647 			break;
648 	}
649 	if (i == RL_TIMEOUT)
650 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
651 
652 	if (sc->rl_flags & RL_FLAG_MACRESET)
653 		CSR_WRITE_1(sc, RL_LDPS, 1);
654 }
655 
656 /*
657  * Attach the interface. Allocate softc structures, do ifmedia
658  * setup and ethernet/BPF attach.
659  */
660 int
re_attach(struct rl_softc * sc,const char * intrstr)661 re_attach(struct rl_softc *sc, const char *intrstr)
662 {
663 	u_char		eaddr[ETHER_ADDR_LEN];
664 	u_int16_t	as[ETHER_ADDR_LEN / 2];
665 	struct ifnet	*ifp;
666 	u_int16_t	re_did = 0;
667 	int		error = 0, i;
668 	const struct re_revision *rr;
669 	const char	*re_name = NULL;
670 
671 	sc->sc_hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
672 
673 	switch (sc->sc_hwrev) {
674 	case RL_HWREV_8139CPLUS:
675 		sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
676 		sc->rl_max_mtu = RL_MTU;
677 		break;
678 	case RL_HWREV_8100E:
679 	case RL_HWREV_8100E_SPIN2:
680 	case RL_HWREV_8101E:
681 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
682 		sc->rl_max_mtu = RL_MTU;
683 		break;
684 	case RL_HWREV_8103E:
685 		sc->rl_flags |= RL_FLAG_MACSLEEP;
686 		/* FALLTHROUGH */
687 	case RL_HWREV_8102E:
688 	case RL_HWREV_8102EL:
689 	case RL_HWREV_8102EL_SPIN1:
690 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
691 		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_FASTETHER |
692 		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
693 		sc->rl_max_mtu = RL_MTU;
694 		break;
695 	case RL_HWREV_8401E:
696 	case RL_HWREV_8105E:
697 	case RL_HWREV_8105E_SPIN1:
698 	case RL_HWREV_8106E:
699 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
700 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
701 		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
702 		sc->rl_max_mtu = RL_MTU;
703 		break;
704 	case RL_HWREV_8402:
705 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
706 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
707 		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
708 		    RL_FLAG_CMDSTOP_WAIT_TXQ;
709 		sc->rl_max_mtu = RL_MTU;
710 		break;
711 	case RL_HWREV_8168B_SPIN1:
712 	case RL_HWREV_8168B_SPIN2:
713 		sc->rl_flags |= RL_FLAG_WOLRXENB;
714 		/* FALLTHROUGH */
715 	case RL_HWREV_8168B_SPIN3:
716 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
717 		sc->rl_max_mtu = RL_MTU;
718 		break;
719 	case RL_HWREV_8168C_SPIN2:
720 		sc->rl_flags |= RL_FLAG_MACSLEEP;
721 		/* FALLTHROUGH */
722 	case RL_HWREV_8168C:
723 	case RL_HWREV_8168CP:
724 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
725 		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
726 		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
727 		sc->rl_max_mtu = RL_JUMBO_MTU_6K;
728 		break;
729 	case RL_HWREV_8168D:
730 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
731 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
732 		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
733 		    RL_FLAG_WOL_MANLINK;
734 		sc->rl_max_mtu = RL_JUMBO_MTU_9K;
735 		break;
736 	case RL_HWREV_8168DP:
737 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
738 		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD |
739 		    RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK;
740 		sc->rl_max_mtu = RL_JUMBO_MTU_9K;
741 		break;
742 	case RL_HWREV_8168E:
743 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
744 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
745 		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
746 		    RL_FLAG_WOL_MANLINK;
747 		sc->rl_max_mtu = RL_JUMBO_MTU_9K;
748 		break;
749 	case RL_HWREV_8168E_VL:
750 		sc->rl_flags |= RL_FLAG_EARLYOFF | RL_FLAG_PHYWAKE | RL_FLAG_PAR |
751 		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
752 		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_CMDSTOP_WAIT_TXQ |
753 		    RL_FLAG_WOL_MANLINK;
754 		sc->rl_max_mtu = RL_JUMBO_MTU_6K;
755 		break;
756 	case RL_HWREV_8168F:
757 		sc->rl_flags |= RL_FLAG_EARLYOFF;
758 		/* FALLTHROUGH */
759 	case RL_HWREV_8411:
760 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
761 		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
762 		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_CMDSTOP_WAIT_TXQ |
763 		    RL_FLAG_WOL_MANLINK;
764 		sc->rl_max_mtu = RL_JUMBO_MTU_9K;
765 		break;
766 	case RL_HWREV_8168EP:
767 	case RL_HWREV_8168FP:
768 	case RL_HWREV_8168G:
769 	case RL_HWREV_8168GU:
770 	case RL_HWREV_8168H:
771 	case RL_HWREV_8411B:
772 		if (sc->sc_product == PCI_PRODUCT_REALTEK_RT8101E) {
773 			/* RTL8106EUS */
774 			sc->rl_flags |= RL_FLAG_FASTETHER;
775 			sc->rl_max_mtu = RL_MTU;
776 		} else {
777 			sc->rl_flags |= RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
778 			sc->rl_max_mtu = RL_JUMBO_MTU_9K;
779 		}
780 
781 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
782 		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
783 		    RL_FLAG_AUTOPAD | RL_FLAG_CMDSTOP_WAIT_TXQ |
784 		    RL_FLAG_EARLYOFFV2 | RL_FLAG_RXDV_GATED;
785 		break;
786 	case RL_HWREV_8169_8110SB:
787 	case RL_HWREV_8169_8110SBL:
788 	case RL_HWREV_8169_8110SCd:
789 	case RL_HWREV_8169_8110SCe:
790 		sc->rl_flags |= RL_FLAG_PHYWAKE;
791 		/* FALLTHROUGH */
792 	case RL_HWREV_8169:
793 	case RL_HWREV_8169S:
794 	case RL_HWREV_8110S:
795 		sc->rl_flags |= RL_FLAG_MACRESET;
796 		sc->rl_max_mtu = RL_JUMBO_MTU_7K;
797 		break;
798 	default:
799 		break;
800 	}
801 
802 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS) {
803 		sc->rl_cfg0 = RL_8139_CFG0;
804 		sc->rl_cfg1 = RL_8139_CFG1;
805 		sc->rl_cfg2 = 0;
806 		sc->rl_cfg3 = RL_8139_CFG3;
807 		sc->rl_cfg4 = RL_8139_CFG4;
808 		sc->rl_cfg5 = RL_8139_CFG5;
809 	} else {
810 		sc->rl_cfg0 = RL_CFG0;
811 		sc->rl_cfg1 = RL_CFG1;
812 		sc->rl_cfg2 = RL_CFG2;
813 		sc->rl_cfg3 = RL_CFG3;
814 		sc->rl_cfg4 = RL_CFG4;
815 		sc->rl_cfg5 = RL_CFG5;
816 	}
817 
818 	/* Reset the adapter. */
819 	re_reset(sc);
820 
821 	sc->rl_tx_time = 5;		/* 125us */
822 	sc->rl_rx_time = 2;		/* 50us */
823 	if (sc->rl_flags & RL_FLAG_PCIE)
824 		sc->rl_sim_time = 75;	/* 75us */
825 	else
826 		sc->rl_sim_time = 125;	/* 125us */
827 	sc->rl_imtype = RL_IMTYPE_SIM;	/* simulated interrupt moderation */
828 
829 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS)
830 		sc->rl_bus_speed = 33; /* XXX */
831 	else if (sc->rl_flags & RL_FLAG_PCIE)
832 		sc->rl_bus_speed = 125;
833 	else {
834 		u_int8_t cfg2;
835 
836 		cfg2 = CSR_READ_1(sc, sc->rl_cfg2);
837 		switch (cfg2 & RL_CFG2_PCI_MASK) {
838 		case RL_CFG2_PCI_33MHZ:
839 			sc->rl_bus_speed = 33;
840 			break;
841 		case RL_CFG2_PCI_66MHZ:
842 			sc->rl_bus_speed = 66;
843 			break;
844 		default:
845 			printf("%s: unknown bus speed, assume 33MHz\n",
846 			    sc->sc_dev.dv_xname);
847 			sc->rl_bus_speed = 33;
848 			break;
849 		}
850 
851 		if (cfg2 & RL_CFG2_PCI_64BIT)
852 			sc->rl_flags |= RL_FLAG_PCI64;
853 	}
854 
855 	re_config_imtype(sc, sc->rl_imtype);
856 
857 	if (sc->rl_flags & RL_FLAG_PAR) {
858 		/*
859 		 * XXX Should have a better way to extract station
860 		 * address from EEPROM.
861 		 */
862 		for (i = 0; i < ETHER_ADDR_LEN; i++)
863 			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
864 	} else {
865 		sc->rl_eewidth = RL_9356_ADDR_LEN;
866 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
867 		if (re_did != 0x8129)
868 			sc->rl_eewidth = RL_9346_ADDR_LEN;
869 
870 		/*
871 		 * Get station address from the EEPROM.
872 		 */
873 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
874 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
875 			as[i] = letoh16(as[i]);
876 		bcopy(as, eaddr, ETHER_ADDR_LEN);
877 	}
878 
879 	/*
880 	 * Set RX length mask, TX poll request register
881 	 * and descriptor count.
882 	 */
883 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS) {
884 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
885 		sc->rl_txstart = RL_TXSTART;
886 		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
887 		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
888 		sc->rl_ldata.rl_tx_ndescs = RL_8139_NTXSEGS;
889 	} else {
890 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
891 		sc->rl_txstart = RL_GTXSTART;
892 		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
893 		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
894 		sc->rl_ldata.rl_tx_ndescs = RL_8169_NTXSEGS;
895 	}
896 
897 	bcopy(eaddr, (char *)&sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
898 
899 	for (rr = re_revisions; rr->re_name != NULL; rr++) {
900 		if (rr->re_chipid == sc->sc_hwrev)
901 			re_name = rr->re_name;
902 	}
903 
904 	if (re_name == NULL)
905 		printf(": unknown ASIC (0x%04x)", sc->sc_hwrev >> 16);
906 	else
907 		printf(": %s (0x%04x)", re_name, sc->sc_hwrev >> 16);
908 
909 	printf(", %s, address %s\n", intrstr,
910 	    ether_sprintf(sc->sc_arpcom.ac_enaddr));
911 
912 	/* Allocate DMA'able memory for the TX ring */
913 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RL_TX_LIST_SZ(sc),
914 		    RL_RING_ALIGN, 0, &sc->rl_ldata.rl_tx_listseg, 1,
915 		    &sc->rl_ldata.rl_tx_listnseg, BUS_DMA_NOWAIT |
916 		    BUS_DMA_ZERO)) != 0) {
917 		printf("%s: can't allocate tx listseg, error = %d\n",
918 		    sc->sc_dev.dv_xname, error);
919 		goto fail_0;
920 	}
921 
922 	/* Load the map for the TX ring. */
923 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rl_ldata.rl_tx_listseg,
924 		    sc->rl_ldata.rl_tx_listnseg, RL_TX_LIST_SZ(sc),
925 		    (caddr_t *)&sc->rl_ldata.rl_tx_list,
926 		    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
927 		printf("%s: can't map tx list, error = %d\n",
928 		    sc->sc_dev.dv_xname, error);
929 		goto fail_1;
930 	}
931 
932 	if ((error = bus_dmamap_create(sc->sc_dmat, RL_TX_LIST_SZ(sc), 1,
933 		    RL_TX_LIST_SZ(sc), 0, 0,
934 		    &sc->rl_ldata.rl_tx_list_map)) != 0) {
935 		printf("%s: can't create tx list map, error = %d\n",
936 		    sc->sc_dev.dv_xname, error);
937 		goto fail_2;
938 	}
939 
940 	if ((error = bus_dmamap_load(sc->sc_dmat,
941 		    sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
942 		    RL_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
943 		printf("%s: can't load tx list, error = %d\n",
944 		    sc->sc_dev.dv_xname, error);
945 		goto fail_3;
946 	}
947 
948 	/* Create DMA maps for TX buffers */
949 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
950 		error = bus_dmamap_create(sc->sc_dmat,
951 		    RL_JUMBO_FRAMELEN, sc->rl_ldata.rl_tx_ndescs,
952 		    RL_JUMBO_FRAMELEN, 0, 0,
953 		    &sc->rl_ldata.rl_txq[i].txq_dmamap);
954 		if (error) {
955 			printf("%s: can't create DMA map for TX\n",
956 			    sc->sc_dev.dv_xname);
957 			goto fail_4;
958 		}
959 	}
960 
961         /* Allocate DMA'able memory for the RX ring */
962 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RL_RX_DMAMEM_SZ(sc),
963 		    RL_RING_ALIGN, 0, &sc->rl_ldata.rl_rx_listseg, 1,
964 		    &sc->rl_ldata.rl_rx_listnseg, BUS_DMA_NOWAIT |
965 		    BUS_DMA_ZERO)) != 0) {
966 		printf("%s: can't allocate rx listnseg, error = %d\n",
967 		    sc->sc_dev.dv_xname, error);
968 		goto fail_4;
969 	}
970 
971         /* Load the map for the RX ring. */
972 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rl_ldata.rl_rx_listseg,
973 		    sc->rl_ldata.rl_rx_listnseg, RL_RX_DMAMEM_SZ(sc),
974 		    (caddr_t *)&sc->rl_ldata.rl_rx_list,
975 		    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
976 		printf("%s: can't map rx list, error = %d\n",
977 		    sc->sc_dev.dv_xname, error);
978 		goto fail_5;
979 
980 	}
981 
982 	if ((error = bus_dmamap_create(sc->sc_dmat, RL_RX_DMAMEM_SZ(sc), 1,
983 		    RL_RX_DMAMEM_SZ(sc), 0, 0,
984 		    &sc->rl_ldata.rl_rx_list_map)) != 0) {
985 		printf("%s: can't create rx list map, error = %d\n",
986 		    sc->sc_dev.dv_xname, error);
987 		goto fail_6;
988 	}
989 
990 	if ((error = bus_dmamap_load(sc->sc_dmat,
991 		    sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
992 		    RL_RX_DMAMEM_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
993 		printf("%s: can't load rx list, error = %d\n",
994 		    sc->sc_dev.dv_xname, error);
995 		goto fail_7;
996 	}
997 
998 	/* Create DMA maps for RX buffers */
999 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1000 		error = bus_dmamap_create(sc->sc_dmat,
1001 		    RL_FRAMELEN(sc->rl_max_mtu), 1,
1002 		    RL_FRAMELEN(sc->rl_max_mtu), 0, 0,
1003 		    &sc->rl_ldata.rl_rxsoft[i].rxs_dmamap);
1004 		if (error) {
1005 			printf("%s: can't create DMA map for RX\n",
1006 			    sc->sc_dev.dv_xname);
1007 			goto fail_8;
1008 		}
1009 	}
1010 
1011 	ifp = &sc->sc_arpcom.ac_if;
1012 	ifp->if_softc = sc;
1013 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
1014 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1015 	ifp->if_xflags = IFXF_MPSAFE;
1016 	ifp->if_ioctl = re_ioctl;
1017 	ifp->if_qstart = re_start;
1018 	ifp->if_watchdog = re_watchdog;
1019 	ifp->if_hardmtu = sc->rl_max_mtu;
1020 	ifq_init_maxlen(&ifp->if_snd, sc->rl_ldata.rl_tx_desc_cnt);
1021 
1022 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_TCPv4 |
1023 	    IFCAP_CSUM_UDPv4;
1024 
1025 	/*
1026 	 * RTL8168/8111C generates wrong IP checksummed frame if the
1027 	 * packet has IP options so disable TX IP checksum offloading.
1028 	 */
1029 	switch (sc->sc_hwrev) {
1030 	case RL_HWREV_8168C:
1031 	case RL_HWREV_8168C_SPIN2:
1032 	case RL_HWREV_8168CP:
1033 		break;
1034 	default:
1035 		ifp->if_capabilities |= IFCAP_CSUM_IPv4;
1036 	}
1037 
1038 #if NVLAN > 0
1039 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
1040 #endif
1041 
1042 #ifndef SMALL_KERNEL
1043 	ifp->if_capabilities |= IFCAP_WOL;
1044 	ifp->if_wol = re_wol;
1045 	re_wol(ifp, 0);
1046 #endif
1047 	timeout_set(&sc->timer_handle, re_tick, sc);
1048 	task_set(&sc->rl_start, re_txstart, sc);
1049 
1050 	/* Take PHY out of power down mode. */
1051 	if (sc->rl_flags & RL_FLAG_PHYWAKE_PM) {
1052 		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1053 		if (sc->sc_hwrev == RL_HWREV_8401E)
1054 			CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1055 	}
1056 	if (sc->rl_flags & RL_FLAG_PHYWAKE) {
1057 		re_gmii_writereg((struct device *)sc, 1, 0x1f, 0);
1058 		re_gmii_writereg((struct device *)sc, 1, 0x0e, 0);
1059 	}
1060 
1061 	/* Do MII setup */
1062 	sc->sc_mii.mii_ifp = ifp;
1063 	sc->sc_mii.mii_readreg = re_miibus_readreg;
1064 	sc->sc_mii.mii_writereg = re_miibus_writereg;
1065 	sc->sc_mii.mii_statchg = re_miibus_statchg;
1066 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, re_ifmedia_upd,
1067 	    re_ifmedia_sts);
1068 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1069 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
1070 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1071 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
1072 		ifmedia_add(&sc->sc_mii.mii_media,
1073 		    IFM_ETHER|IFM_NONE, 0, NULL);
1074 		ifmedia_set(&sc->sc_mii.mii_media,
1075 		    IFM_ETHER|IFM_NONE);
1076 	} else
1077 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1078 
1079 	/*
1080 	 * Call MI attach routine.
1081 	 */
1082 	if_attach(ifp);
1083 	ether_ifattach(ifp);
1084 
1085 #if NKSTAT > 0
1086 	re_kstat_attach(sc);
1087 #endif
1088 
1089 	return (0);
1090 
1091 fail_8:
1092 	/* Destroy DMA maps for RX buffers. */
1093 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1094 		if (sc->rl_ldata.rl_rxsoft[i].rxs_dmamap != NULL)
1095 			bus_dmamap_destroy(sc->sc_dmat,
1096 			    sc->rl_ldata.rl_rxsoft[i].rxs_dmamap);
1097 	}
1098 
1099 	/* Free DMA'able memory for the RX ring. */
1100 	bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map);
1101 fail_7:
1102 	bus_dmamap_destroy(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map);
1103 fail_6:
1104 	bus_dmamem_unmap(sc->sc_dmat,
1105 	    (caddr_t)sc->rl_ldata.rl_rx_list, RL_RX_DMAMEM_SZ(sc));
1106 fail_5:
1107 	bus_dmamem_free(sc->sc_dmat,
1108 	    &sc->rl_ldata.rl_rx_listseg, sc->rl_ldata.rl_rx_listnseg);
1109 
1110 fail_4:
1111 	/* Destroy DMA maps for TX buffers. */
1112 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1113 		if (sc->rl_ldata.rl_txq[i].txq_dmamap != NULL)
1114 			bus_dmamap_destroy(sc->sc_dmat,
1115 			    sc->rl_ldata.rl_txq[i].txq_dmamap);
1116 	}
1117 
1118 	/* Free DMA'able memory for the TX ring. */
1119 	bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map);
1120 fail_3:
1121 	bus_dmamap_destroy(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map);
1122 fail_2:
1123 	bus_dmamem_unmap(sc->sc_dmat,
1124 	    (caddr_t)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ(sc));
1125 fail_1:
1126 	bus_dmamem_free(sc->sc_dmat,
1127 	    &sc->rl_ldata.rl_tx_listseg, sc->rl_ldata.rl_tx_listnseg);
1128 fail_0:
1129 	return (1);
1130 }
1131 
1132 void
re_detach(struct rl_softc * sc)1133 re_detach(struct rl_softc *sc)
1134 {
1135 	struct ifnet	*ifp = &sc->sc_arpcom.ac_if;
1136 
1137 #if NKSTAT > 0
1138 	re_kstat_detach(sc);
1139 #endif
1140 
1141 	/* Remove timeout handler */
1142 	timeout_del(&sc->timer_handle);
1143 
1144 	/* Detach PHY */
1145 	if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL)
1146 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1147 
1148 	/* Delete media stuff */
1149 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1150 	ether_ifdetach(ifp);
1151 	if_detach(ifp);
1152 }
1153 
1154 int
re_newbuf(struct rl_softc * sc)1155 re_newbuf(struct rl_softc *sc)
1156 {
1157 	struct mbuf	*m;
1158 	bus_dmamap_t	map;
1159 	struct rl_desc	*d;
1160 	struct rl_rxsoft *rxs;
1161 	u_int32_t	cmdstat;
1162 	int		error, idx;
1163 
1164 	m = MCLGETL(NULL, M_DONTWAIT, RL_FRAMELEN(sc->rl_max_mtu));
1165 	if (!m)
1166 		return (ENOBUFS);
1167 
1168 	/*
1169 	 * Initialize mbuf length fields and fixup
1170 	 * alignment so that the frame payload is
1171 	 * longword aligned on strict alignment archs.
1172 	 */
1173 	m->m_len = m->m_pkthdr.len = RL_FRAMELEN(sc->rl_max_mtu);
1174 	m->m_data += RE_ETHER_ALIGN;
1175 
1176 	idx = sc->rl_ldata.rl_rx_prodidx;
1177 	rxs = &sc->rl_ldata.rl_rxsoft[idx];
1178 	map = rxs->rxs_dmamap;
1179 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1180 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1181 	if (error) {
1182 		m_freem(m);
1183 		return (ENOBUFS);
1184 	}
1185 
1186 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1187 	    BUS_DMASYNC_PREREAD);
1188 
1189 	d = &sc->rl_ldata.rl_rx_list[idx];
1190 	RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1191 	cmdstat = letoh32(d->rl_cmdstat);
1192 	RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1193 	if (cmdstat & RL_RDESC_STAT_OWN) {
1194 		printf("%s: tried to map busy RX descriptor\n",
1195 		    sc->sc_dev.dv_xname);
1196 		m_freem(m);
1197 		return (ENOBUFS);
1198 	}
1199 
1200 	rxs->rxs_mbuf = m;
1201 
1202 	d->rl_vlanctl = 0;
1203 	cmdstat = map->dm_segs[0].ds_len;
1204 	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1205 		cmdstat |= RL_RDESC_CMD_EOR;
1206 	re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1207 	d->rl_cmdstat = htole32(cmdstat);
1208 	RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1209 	cmdstat |= RL_RDESC_CMD_OWN;
1210 	d->rl_cmdstat = htole32(cmdstat);
1211 	RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1212 
1213 	sc->rl_ldata.rl_rx_prodidx = RL_NEXT_RX_DESC(sc, idx);
1214 
1215 	return (0);
1216 }
1217 
1218 
1219 int
re_tx_list_init(struct rl_softc * sc)1220 re_tx_list_init(struct rl_softc *sc)
1221 {
1222 	int i;
1223 
1224 	memset(sc->rl_ldata.rl_tx_list, 0, RL_TX_LIST_SZ(sc));
1225 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1226 		sc->rl_ldata.rl_txq[i].txq_mbuf = NULL;
1227 	}
1228 
1229 	bus_dmamap_sync(sc->sc_dmat,
1230 	    sc->rl_ldata.rl_tx_list_map, 0,
1231 	    sc->rl_ldata.rl_tx_list_map->dm_mapsize,
1232 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1233 	sc->rl_ldata.rl_txq_prodidx = 0;
1234 	sc->rl_ldata.rl_txq_considx = 0;
1235 	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1236 	sc->rl_ldata.rl_tx_nextfree = 0;
1237 
1238 	return (0);
1239 }
1240 
1241 int
re_rx_list_init(struct rl_softc * sc)1242 re_rx_list_init(struct rl_softc *sc)
1243 {
1244 	bzero(sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ(sc));
1245 
1246 	sc->rl_ldata.rl_rx_prodidx = 0;
1247 	sc->rl_ldata.rl_rx_considx = 0;
1248 	sc->rl_head = sc->rl_tail = NULL;
1249 
1250 	if_rxr_init(&sc->rl_ldata.rl_rx_ring, 2,
1251 	    sc->rl_ldata.rl_rx_desc_cnt - 1);
1252 	re_rx_list_fill(sc);
1253 
1254 	return (0);
1255 }
1256 
1257 void
re_rx_list_fill(struct rl_softc * sc)1258 re_rx_list_fill(struct rl_softc *sc)
1259 {
1260 	u_int slots;
1261 
1262 	for (slots = if_rxr_get(&sc->rl_ldata.rl_rx_ring,
1263 	    sc->rl_ldata.rl_rx_desc_cnt);
1264 	    slots > 0; slots--) {
1265 		if (re_newbuf(sc) == ENOBUFS)
1266 			break;
1267 	}
1268 	if_rxr_put(&sc->rl_ldata.rl_rx_ring, slots);
1269 }
1270 
1271 /*
1272  * RX handler for C+ and 8169. For the gigE chips, we support
1273  * the reception of jumbo frames that have been fragmented
1274  * across multiple 2K mbuf cluster buffers.
1275  */
1276 int
re_rxeof(struct rl_softc * sc)1277 re_rxeof(struct rl_softc *sc)
1278 {
1279 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1280 	struct mbuf	*m;
1281 	struct ifnet	*ifp;
1282 	int		i, total_len, rx = 0;
1283 	struct rl_desc	*cur_rx;
1284 	struct rl_rxsoft *rxs;
1285 	u_int32_t	rxstat, rxvlan;
1286 
1287 	ifp = &sc->sc_arpcom.ac_if;
1288 
1289 	for (i = sc->rl_ldata.rl_rx_considx;
1290 	    if_rxr_inuse(&sc->rl_ldata.rl_rx_ring) > 0;
1291 	     i = RL_NEXT_RX_DESC(sc, i)) {
1292 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1293 		RL_RXDESCSYNC(sc, i,
1294 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1295 		rxstat = letoh32(cur_rx->rl_cmdstat);
1296 		rxvlan = letoh32(cur_rx->rl_vlanctl);
1297 		RL_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1298 		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1299 			break;
1300 		total_len = rxstat & sc->rl_rxlenmask;
1301 		rxs = &sc->rl_ldata.rl_rxsoft[i];
1302 		m = rxs->rxs_mbuf;
1303 		rxs->rxs_mbuf = NULL;
1304 		if_rxr_put(&sc->rl_ldata.rl_rx_ring, 1);
1305 		rx = 1;
1306 
1307 		/* Invalidate the RX mbuf and unload its map */
1308 
1309 		bus_dmamap_sync(sc->sc_dmat,
1310 		    rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1311 		    BUS_DMASYNC_POSTREAD);
1312 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1313 
1314 		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
1315 		    (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
1316 		    (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
1317 			ifp->if_ierrors++;
1318 			m_freem(m);
1319 			continue;
1320 		} else if (!(rxstat & RL_RDESC_STAT_EOF)) {
1321 			m->m_len = RL_FRAMELEN(sc->rl_max_mtu);
1322 			if (sc->rl_head == NULL)
1323 				sc->rl_head = sc->rl_tail = m;
1324 			else {
1325 				m->m_flags &= ~M_PKTHDR;
1326 				sc->rl_tail->m_next = m;
1327 				sc->rl_tail = m;
1328 			}
1329 			continue;
1330 		}
1331 
1332 		/*
1333 		 * NOTE: for the 8139C+, the frame length field
1334 		 * is always 12 bits in size, but for the gigE chips,
1335 		 * it is 13 bits (since the max RX frame length is 16K).
1336 		 * Unfortunately, all 32 bits in the status word
1337 		 * were already used, so to make room for the extra
1338 		 * length bit, Realtek took out the 'frame alignment
1339 		 * error' bit and shifted the other status bits
1340 		 * over one slot. The OWN, EOR, FS and LS bits are
1341 		 * still in the same places. We have already extracted
1342 		 * the frame length and checked the OWN bit, so rather
1343 		 * than using an alternate bit mapping, we shift the
1344 		 * status bits one space to the right so we can evaluate
1345 		 * them using the 8169 status as though it was in the
1346 		 * same format as that of the 8139C+.
1347 		 */
1348 		if (sc->sc_hwrev != RL_HWREV_8139CPLUS)
1349 			rxstat >>= 1;
1350 
1351 		/*
1352 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1353 		 * set, but if CRC is clear, it will still be a valid frame.
1354 		 */
1355 		if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0 &&
1356 		    !(rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1357 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT))) {
1358 			ifp->if_ierrors++;
1359 			/*
1360 			 * If this is part of a multi-fragment packet,
1361 			 * discard all the pieces.
1362 			 */
1363 			if (sc->rl_head != NULL) {
1364 				m_freem(sc->rl_head);
1365 				sc->rl_head = sc->rl_tail = NULL;
1366 			}
1367 			m_freem(m);
1368 			continue;
1369 		}
1370 
1371 		if (sc->rl_head != NULL) {
1372 			m->m_len = total_len % RL_FRAMELEN(sc->rl_max_mtu);
1373 			if (m->m_len == 0)
1374 				m->m_len = RL_FRAMELEN(sc->rl_max_mtu);
1375 			/*
1376 			 * Special case: if there's 4 bytes or less
1377 			 * in this buffer, the mbuf can be discarded:
1378 			 * the last 4 bytes is the CRC, which we don't
1379 			 * care about anyway.
1380 			 */
1381 			if (m->m_len <= ETHER_CRC_LEN) {
1382 				sc->rl_tail->m_len -=
1383 				    (ETHER_CRC_LEN - m->m_len);
1384 				m_freem(m);
1385 			} else {
1386 				m->m_len -= ETHER_CRC_LEN;
1387 				m->m_flags &= ~M_PKTHDR;
1388 				sc->rl_tail->m_next = m;
1389 			}
1390 			m = sc->rl_head;
1391 			sc->rl_head = sc->rl_tail = NULL;
1392 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1393 		} else
1394 			m->m_pkthdr.len = m->m_len =
1395 			    (total_len - ETHER_CRC_LEN);
1396 
1397 		/* Do RX checksumming */
1398 
1399 		if (sc->rl_flags & RL_FLAG_DESCV2) {
1400 			/* Check IP header checksum */
1401 			if ((rxvlan & RL_RDESC_IPV4) &&
1402 			    !(rxstat & RL_RDESC_STAT_IPSUMBAD))
1403 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1404 
1405 			/* Check TCP/UDP checksum */
1406 			if ((rxvlan & (RL_RDESC_IPV4|RL_RDESC_IPV6)) &&
1407 			    (((rxstat & RL_RDESC_STAT_TCP) &&
1408 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1409 			    ((rxstat & RL_RDESC_STAT_UDP) &&
1410 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))))
1411 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
1412 				    M_UDP_CSUM_IN_OK;
1413 		} else {
1414 			/* Check IP header checksum */
1415 			if ((rxstat & RL_RDESC_STAT_PROTOID) &&
1416 			    !(rxstat & RL_RDESC_STAT_IPSUMBAD))
1417 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1418 
1419 			/* Check TCP/UDP checksum */
1420 			if ((RL_TCPPKT(rxstat) &&
1421 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1422 			    (RL_UDPPKT(rxstat) &&
1423 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD)))
1424 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
1425 				    M_UDP_CSUM_IN_OK;
1426 		}
1427 #if NVLAN > 0
1428 		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1429 			m->m_pkthdr.ether_vtag =
1430 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1431 			m->m_flags |= M_VLANTAG;
1432 		}
1433 #endif
1434 
1435 		ml_enqueue(&ml, m);
1436 	}
1437 
1438 	if (ifiq_input(&ifp->if_rcv, &ml))
1439 		if_rxr_livelocked(&sc->rl_ldata.rl_rx_ring);
1440 
1441 	sc->rl_ldata.rl_rx_considx = i;
1442 	re_rx_list_fill(sc);
1443 
1444 
1445 	return (rx);
1446 }
1447 
1448 int
re_txeof(struct rl_softc * sc)1449 re_txeof(struct rl_softc *sc)
1450 {
1451 	struct ifnet	*ifp = &sc->sc_arpcom.ac_if;
1452 	struct rl_txq	*txq;
1453 	uint32_t	txstat;
1454 	unsigned int	prod, cons;
1455 	unsigned int	idx;
1456 	int		free = 0;
1457 
1458 	prod = sc->rl_ldata.rl_txq_prodidx;
1459 	cons = sc->rl_ldata.rl_txq_considx;
1460 
1461 	while (prod != cons) {
1462 		txq = &sc->rl_ldata.rl_txq[cons];
1463 
1464 		idx = txq->txq_descidx;
1465 		RL_TXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD);
1466 		txstat = letoh32(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1467 		RL_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1468 		if (ISSET(txstat, RL_TDESC_CMD_OWN)) {
1469 			free = 2;
1470 			break;
1471 		}
1472 
1473 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1474 		    0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1475 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1476 		m_freem(txq->txq_mbuf);
1477 		txq->txq_mbuf = NULL;
1478 
1479 		if (txstat & (RL_TDESC_STAT_EXCESSCOL | RL_TDESC_STAT_COLCNT))
1480 			ifp->if_collisions++;
1481 		if (txstat & RL_TDESC_STAT_TXERRSUM)
1482 			ifp->if_oerrors++;
1483 
1484 		cons = RL_NEXT_TX_DESC(sc, idx);
1485 		free = 1;
1486 	}
1487 
1488 	if (free == 0)
1489 		return (0);
1490 
1491 	sc->rl_ldata.rl_txq_considx = cons;
1492 
1493 	/*
1494 	 * Some chips will ignore a second TX request issued while an
1495 	 * existing transmission is in progress. If the transmitter goes
1496 	 * idle but there are still packets waiting to be sent, we need
1497 	 * to restart the channel here to flush them out. This only
1498 	 * seems to be required with the PCIe devices.
1499 	 */
1500 	if (ifq_is_oactive(&ifp->if_snd))
1501 		ifq_restart(&ifp->if_snd);
1502 	else if (free == 2)
1503 		ifq_serialize(&ifp->if_snd, &sc->rl_start);
1504 	else
1505 		ifp->if_timer = 0;
1506 
1507 	return (1);
1508 }
1509 
1510 void
re_tick(void * xsc)1511 re_tick(void *xsc)
1512 {
1513 	struct rl_softc	*sc = xsc;
1514 	struct mii_data	*mii;
1515 	int s;
1516 
1517 	mii = &sc->sc_mii;
1518 
1519 	s = splnet();
1520 
1521 	mii_tick(mii);
1522 
1523 	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
1524 		re_miibus_statchg(&sc->sc_dev);
1525 
1526 	splx(s);
1527 
1528 	timeout_add_sec(&sc->timer_handle, 1);
1529 }
1530 
1531 int
re_intr(void * arg)1532 re_intr(void *arg)
1533 {
1534 	struct rl_softc	*sc = arg;
1535 	struct ifnet	*ifp;
1536 	u_int16_t	status;
1537 	int		claimed = 0, rx, tx;
1538 
1539 	ifp = &sc->sc_arpcom.ac_if;
1540 
1541 	if (!(ifp->if_flags & IFF_RUNNING))
1542 		return (0);
1543 
1544 	/* Disable interrupts. */
1545 	CSR_WRITE_2(sc, RL_IMR, 0);
1546 
1547 	rx = tx = 0;
1548 	status = CSR_READ_2(sc, RL_ISR);
1549 	/* If the card has gone away the read returns 0xffff. */
1550 	if (status == 0xffff)
1551 		return (0);
1552 	if (status)
1553 		CSR_WRITE_2(sc, RL_ISR, status);
1554 
1555 	if (status & RL_ISR_TIMEOUT_EXPIRED)
1556 		claimed = 1;
1557 
1558 	if (status & RL_INTRS_CPLUS) {
1559 		if (status &
1560 		    (sc->rl_rx_ack | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW)) {
1561 			rx |= re_rxeof(sc);
1562 			claimed = 1;
1563 		}
1564 
1565 		if (status & (sc->rl_tx_ack | RL_ISR_TX_ERR)) {
1566 			tx |= re_txeof(sc);
1567 			claimed = 1;
1568 		}
1569 
1570 		if (status & RL_ISR_SYSTEM_ERR) {
1571 			KERNEL_LOCK();
1572 			re_init(ifp);
1573 			KERNEL_UNLOCK();
1574 			claimed = 1;
1575 		}
1576 	}
1577 
1578 	if (sc->rl_imtype == RL_IMTYPE_SIM) {
1579 		if (sc->rl_timerintr) {
1580 			if ((tx | rx) == 0) {
1581 				/*
1582 				 * Nothing needs to be processed, fallback
1583 				 * to use TX/RX interrupts.
1584 				 */
1585 				re_setup_intr(sc, 1, RL_IMTYPE_NONE);
1586 
1587 				/*
1588 				 * Recollect, mainly to avoid the possible
1589 				 * race introduced by changing interrupt
1590 				 * masks.
1591 				 */
1592 				re_rxeof(sc);
1593 				re_txeof(sc);
1594 			} else
1595 				CSR_WRITE_4(sc, RL_TIMERCNT, 1); /* reload */
1596 		} else if (tx | rx) {
1597 			/*
1598 			 * Assume that using simulated interrupt moderation
1599 			 * (hardware timer based) could reduce the interrupt
1600 			 * rate.
1601 			 */
1602 			re_setup_intr(sc, 1, RL_IMTYPE_SIM);
1603 		}
1604 	}
1605 
1606 	CSR_WRITE_2(sc, RL_IMR, sc->rl_intrs);
1607 
1608 	return (claimed);
1609 }
1610 
1611 int
re_encap(struct rl_softc * sc,unsigned int idx,struct mbuf * m)1612 re_encap(struct rl_softc *sc, unsigned int idx, struct mbuf *m)
1613 {
1614 	struct rl_txq	*txq;
1615 	bus_dmamap_t	map;
1616 	int		error, seg, nsegs, curidx, lastidx, pad;
1617 	int		off;
1618 	struct ip	*ip;
1619 	struct rl_desc	*d;
1620 	u_int32_t	cmdstat, vlanctl = 0, csum_flags = 0;
1621 
1622 	/*
1623 	 * Set up checksum offload. Note: checksum offload bits must
1624 	 * appear in all descriptors of a multi-descriptor transmit
1625 	 * attempt. This is according to testing done with an 8169
1626 	 * chip. This is a requirement.
1627 	 */
1628 
1629 	/*
1630 	 * Set RL_TDESC_CMD_IPCSUM if any checksum offloading
1631 	 * is requested.  Otherwise, RL_TDESC_CMD_TCPCSUM/
1632 	 * RL_TDESC_CMD_UDPCSUM does not take affect.
1633 	 */
1634 
1635 	if ((sc->rl_flags & RL_FLAG_JUMBOV2) &&
1636 	    m->m_pkthdr.len > RL_MTU &&
1637 	    (m->m_pkthdr.csum_flags &
1638 	    (M_IPV4_CSUM_OUT|M_TCP_CSUM_OUT|M_UDP_CSUM_OUT)) != 0) {
1639 		struct mbuf mh, *mp;
1640 
1641 		mp = m_getptr(m, ETHER_HDR_LEN, &off);
1642 		mh.m_flags = 0;
1643 		mh.m_data = mtod(mp, caddr_t) + off;
1644 		mh.m_next = mp->m_next;
1645 		mh.m_pkthdr.len = mp->m_pkthdr.len - ETHER_HDR_LEN;
1646 		mh.m_len = mp->m_len - off;
1647 		ip = (struct ip *)mh.m_data;
1648 
1649 		if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1650 			ip->ip_sum = in_cksum(&mh, sizeof(struct ip));
1651 		if (m->m_pkthdr.csum_flags & (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT))
1652 			in_delayed_cksum(&mh);
1653 
1654 		m->m_pkthdr.csum_flags &=
1655 		    ~(M_IPV4_CSUM_OUT|M_TCP_CSUM_OUT|M_UDP_CSUM_OUT);
1656 	}
1657 
1658 	if ((m->m_pkthdr.csum_flags &
1659 	    (M_IPV4_CSUM_OUT|M_TCP_CSUM_OUT|M_UDP_CSUM_OUT)) != 0) {
1660 		if (sc->rl_flags & RL_FLAG_DESCV2) {
1661 			vlanctl |= RL_TDESC_CMD_IPCSUMV2;
1662 			if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
1663 				vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
1664 			if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
1665 				vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
1666 		} else {
1667 			csum_flags |= RL_TDESC_CMD_IPCSUM;
1668 			if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
1669 				csum_flags |= RL_TDESC_CMD_TCPCSUM;
1670 			if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
1671 				csum_flags |= RL_TDESC_CMD_UDPCSUM;
1672 		}
1673 	}
1674 
1675 	txq = &sc->rl_ldata.rl_txq[idx];
1676 	map = txq->txq_dmamap;
1677 
1678 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1679 	    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1680 	switch (error) {
1681 	case 0:
1682 		break;
1683 
1684 	case EFBIG:
1685 		if (m_defrag(m, M_DONTWAIT) == 0 &&
1686 		    bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1687 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) == 0)
1688 			break;
1689 
1690 		/* FALLTHROUGH */
1691 	default:
1692 		return (0);
1693 	}
1694 
1695 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1696 	    BUS_DMASYNC_PREWRITE);
1697 
1698 	nsegs = map->dm_nsegs;
1699 	pad = 0;
1700 
1701 	/*
1702 	 * With some of the Realtek chips, using the checksum offload
1703 	 * support in conjunction with the autopadding feature results
1704 	 * in the transmission of corrupt frames. For example, if we
1705 	 * need to send a really small IP fragment that's less than 60
1706 	 * bytes in size, and IP header checksumming is enabled, the
1707 	 * resulting ethernet frame that appears on the wire will
1708 	 * have garbled payload. To work around this, if TX IP checksum
1709 	 * offload is enabled, we always manually pad short frames out
1710 	 * to the minimum ethernet frame size.
1711 	 */
1712 	if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
1713 	    m->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
1714 	    (m->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT) != 0) {
1715 		pad = 1;
1716 		nsegs++;
1717 	}
1718 
1719 	/*
1720 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1721 	 * appear in all descriptors of a multi-descriptor
1722 	 * transmission attempt.
1723 	 */
1724 #if NVLAN > 0
1725 	if (m->m_flags & M_VLANTAG)
1726 		vlanctl |= swap16(m->m_pkthdr.ether_vtag) |
1727 		    RL_TDESC_VLANCTL_TAG;
1728 #endif
1729 
1730 	/*
1731 	 * Map the segment array into descriptors. Note that we set the
1732 	 * start-of-frame and end-of-frame markers for either TX or RX, but
1733 	 * they really only have meaning in the TX case. (In the RX case,
1734 	 * it's the chip that tells us where packets begin and end.)
1735 	 * We also keep track of the end of the ring and set the
1736 	 * end-of-ring bits as needed, and we set the ownership bits
1737 	 * in all except the very first descriptor. (The caller will
1738 	 * set this descriptor later when it start transmission or
1739 	 * reception.)
1740 	 */
1741 	curidx = idx;
1742 	cmdstat = RL_TDESC_CMD_SOF;
1743 
1744 	for (seg = 0; seg < map->dm_nsegs; seg++) {
1745 		d = &sc->rl_ldata.rl_tx_list[curidx];
1746 
1747 		RL_TXDESCSYNC(sc, curidx, BUS_DMASYNC_POSTWRITE);
1748 
1749 		d->rl_vlanctl = htole32(vlanctl);
1750 		re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1751 		cmdstat |= csum_flags | map->dm_segs[seg].ds_len;
1752 
1753 		if (curidx == sc->rl_ldata.rl_tx_desc_cnt - 1)
1754 			cmdstat |= RL_TDESC_CMD_EOR;
1755 
1756 		d->rl_cmdstat = htole32(cmdstat);
1757 
1758 		RL_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREWRITE);
1759 
1760 		lastidx = curidx;
1761 		cmdstat = RL_TDESC_CMD_OWN;
1762 		curidx = RL_NEXT_TX_DESC(sc, curidx);
1763 	}
1764 
1765 	if (pad) {
1766 		d = &sc->rl_ldata.rl_tx_list[curidx];
1767 
1768 		RL_TXDESCSYNC(sc, curidx, BUS_DMASYNC_POSTWRITE);
1769 
1770 		d->rl_vlanctl = htole32(vlanctl);
1771 		re_set_bufaddr(d, RL_TXPADDADDR(sc));
1772 		cmdstat = csum_flags |
1773 		    RL_TDESC_CMD_OWN | RL_TDESC_CMD_EOF |
1774 		    (RL_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1775 
1776 		if (curidx == sc->rl_ldata.rl_tx_desc_cnt - 1)
1777 			cmdstat |= RL_TDESC_CMD_EOR;
1778 
1779 		d->rl_cmdstat = htole32(cmdstat);
1780 
1781 		RL_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREWRITE);
1782 
1783 		lastidx = curidx;
1784 	}
1785 
1786 	/* d is already pointing at the last descriptor */
1787 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
1788 
1789 	/* Transfer ownership of packet to the chip. */
1790 	d = &sc->rl_ldata.rl_tx_list[idx];
1791 
1792 	RL_TXDESCSYNC(sc, curidx, BUS_DMASYNC_POSTWRITE);
1793 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN);
1794 	RL_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREWRITE);
1795 
1796 	/* update info of TX queue and descriptors */
1797 	txq->txq_mbuf = m;
1798 	txq->txq_descidx = lastidx;
1799 
1800 	return (nsegs);
1801 }
1802 
1803 void
re_txstart(void * xsc)1804 re_txstart(void *xsc)
1805 {
1806 	struct rl_softc *sc = xsc;
1807 
1808 	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1809 }
1810 
1811 /*
1812  * Main transmit routine for C+ and gigE NICs.
1813  */
1814 
1815 void
re_start(struct ifqueue * ifq)1816 re_start(struct ifqueue *ifq)
1817 {
1818 	struct ifnet	*ifp = ifq->ifq_if;
1819 	struct rl_softc	*sc = ifp->if_softc;
1820 	struct mbuf	*m;
1821 	unsigned int	idx;
1822 	unsigned int	free, used;
1823 	int		post = 0;
1824 
1825 	if (!ISSET(sc->rl_flags, RL_FLAG_LINK)) {
1826 		ifq_purge(ifq);
1827 		return;
1828 	}
1829 
1830 	free = sc->rl_ldata.rl_txq_considx;
1831 	idx = sc->rl_ldata.rl_txq_prodidx;
1832 	if (free <= idx)
1833 		free += sc->rl_ldata.rl_tx_desc_cnt;
1834 	free -= idx;
1835 
1836 	for (;;) {
1837 		if (free < sc->rl_ldata.rl_tx_ndescs + 2) {
1838 			ifq_set_oactive(ifq);
1839 			break;
1840 		}
1841 
1842 		m = ifq_dequeue(ifq);
1843 		if (m == NULL)
1844 			break;
1845 
1846 		used = re_encap(sc, idx, m);
1847 		if (used == 0) {
1848 			m_freem(m);
1849 			continue;
1850 		}
1851 
1852 #if NBPFILTER > 0
1853 		if (ifp->if_bpf)
1854 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1855 #endif
1856 
1857 		KASSERT(used <= free);
1858 		free -= used;
1859 
1860 		idx += used;
1861 		if (idx >= sc->rl_ldata.rl_tx_desc_cnt)
1862 			idx -= sc->rl_ldata.rl_tx_desc_cnt;
1863 
1864 		post = 1;
1865 	}
1866 
1867 	if (post == 0)
1868 		return;
1869 
1870 	ifp->if_timer = 5;
1871 	sc->rl_ldata.rl_txq_prodidx = idx;
1872 	ifq_serialize(ifq, &sc->rl_start);
1873 }
1874 
1875 int
re_init(struct ifnet * ifp)1876 re_init(struct ifnet *ifp)
1877 {
1878 	struct rl_softc *sc = ifp->if_softc;
1879 	u_int16_t	cfg;
1880 	uint32_t	rxcfg;
1881 	int		s;
1882 	union {
1883 		u_int32_t align_dummy;
1884 		u_char eaddr[ETHER_ADDR_LEN];
1885 	} eaddr;
1886 
1887 	s = splnet();
1888 
1889 	/*
1890 	 * Cancel pending I/O and free all RX/TX buffers.
1891 	 */
1892 	re_stop(ifp);
1893 
1894 	/* Put controller into known state. */
1895 	re_reset(sc);
1896 
1897 	/*
1898 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
1899 	 * RX checksum offload. We must configure the C+ register
1900 	 * before all others.
1901 	 */
1902 	cfg = RL_CPLUSCMD_TXENB | RL_CPLUSCMD_PCI_MRW |
1903 	    RL_CPLUSCMD_RXCSUM_ENB;
1904 
1905 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1906 		cfg |= RL_CPLUSCMD_VLANSTRIP;
1907 
1908 	if (sc->rl_flags & RL_FLAG_MACSTAT)
1909 		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
1910 	else
1911 		cfg |= RL_CPLUSCMD_RXENB;
1912 
1913 	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
1914 
1915 	/*
1916 	 * Init our MAC address.  Even though the chipset
1917 	 * documentation doesn't mention it, we need to enter "Config
1918 	 * register write enable" mode to modify the ID registers.
1919 	 */
1920 	bcopy(sc->sc_arpcom.ac_enaddr, eaddr.eaddr, ETHER_ADDR_LEN);
1921 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1922 	CSR_WRITE_4(sc, RL_IDR4,
1923 	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
1924 	CSR_WRITE_4(sc, RL_IDR0,
1925 	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
1926 	/*
1927 	 * Default on PC Engines APU1 is to have all LEDs off unless
1928 	 * there is network activity. Override to provide a link status
1929 	 * LED.
1930 	 */
1931 	if (sc->sc_hwrev == RL_HWREV_8168E &&
1932 	    hw_vendor != NULL && hw_prod != NULL &&
1933 	    strcmp(hw_vendor, "PC Engines") == 0 &&
1934 	    strcmp(hw_prod, "APU") == 0) {
1935 		CSR_SETBIT_1(sc, RL_CFG4, RL_CFG4_CUSTOM_LED);
1936 		CSR_WRITE_1(sc, RL_LEDSEL, RL_LED_LINK | RL_LED_ACT << 4);
1937 	}
1938 	/*
1939 	 * Protect config register again
1940 	 */
1941 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1942 
1943 	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1944 		re_set_jumbo(sc);
1945 
1946 	/*
1947 	 * For C+ mode, initialize the RX descriptors and mbufs.
1948 	 */
1949 	re_rx_list_init(sc);
1950 	re_tx_list_init(sc);
1951 
1952 	/*
1953 	 * Load the addresses of the RX and TX lists into the chip.
1954 	 */
1955 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
1956 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_map->dm_segs[0].ds_addr));
1957 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
1958 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_map->dm_segs[0].ds_addr));
1959 
1960 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
1961 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_map->dm_segs[0].ds_addr));
1962 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
1963 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_map->dm_segs[0].ds_addr));
1964 
1965 	if (sc->rl_flags & RL_FLAG_RXDV_GATED)
1966 		CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) &
1967 		    ~0x00080000);
1968 
1969 	/*
1970 	 * Set the initial TX and RX configuration.
1971 	 */
1972 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1973 
1974 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
1975 
1976 	rxcfg = RL_RXCFG_CONFIG;
1977 	if (sc->rl_flags & RL_FLAG_EARLYOFF)
1978 		rxcfg |= RL_RXCFG_EARLYOFF;
1979 	else if (sc->rl_flags & RL_FLAG_EARLYOFFV2)
1980 		rxcfg |= RL_RXCFG_EARLYOFFV2;
1981 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1982 
1983 	/*
1984 	 * Enable transmit and receive.
1985 	 */
1986 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB);
1987 
1988 	/* Program promiscuous mode and multicast filters. */
1989 	re_iff(sc);
1990 
1991 	/*
1992 	 * Enable interrupts.
1993 	 */
1994 	re_setup_intr(sc, 1, sc->rl_imtype);
1995 	CSR_WRITE_2(sc, RL_ISR, sc->rl_intrs);
1996 
1997 	/* Start RX/TX process. */
1998 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1999 
2000 	/*
2001 	 * For 8169 gigE NICs, set the max allowed RX packet
2002 	 * size so we can receive jumbo frames.
2003 	 */
2004 	if (sc->sc_hwrev != RL_HWREV_8139CPLUS) {
2005 		if (sc->rl_flags & RL_FLAG_PCIE &&
2006 		    (sc->rl_flags & RL_FLAG_JUMBOV2) == 0)
2007 			CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
2008 		else
2009 			CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2010 	}
2011 
2012 	CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) |
2013 	    RL_CFG1_DRVLOAD);
2014 
2015 	ifp->if_flags |= IFF_RUNNING;
2016 	ifq_clr_oactive(&ifp->if_snd);
2017 
2018 	splx(s);
2019 
2020 	sc->rl_flags &= ~RL_FLAG_LINK;
2021 	mii_mediachg(&sc->sc_mii);
2022 
2023 	timeout_add_sec(&sc->timer_handle, 1);
2024 
2025 	return (0);
2026 }
2027 
2028 /*
2029  * Set media options.
2030  */
2031 int
re_ifmedia_upd(struct ifnet * ifp)2032 re_ifmedia_upd(struct ifnet *ifp)
2033 {
2034 	struct rl_softc	*sc;
2035 
2036 	sc = ifp->if_softc;
2037 
2038 	return (mii_mediachg(&sc->sc_mii));
2039 }
2040 
2041 /*
2042  * Report current media status.
2043  */
2044 void
re_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)2045 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2046 {
2047 	struct rl_softc	*sc;
2048 
2049 	sc = ifp->if_softc;
2050 
2051 	mii_pollstat(&sc->sc_mii);
2052 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2053 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2054 }
2055 
2056 int
re_ioctl(struct ifnet * ifp,u_long command,caddr_t data)2057 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2058 {
2059 	struct rl_softc	*sc = ifp->if_softc;
2060 	struct ifreq	*ifr = (struct ifreq *) data;
2061 	int		s, error = 0;
2062 
2063 	s = splnet();
2064 
2065 	switch(command) {
2066 	case SIOCSIFADDR:
2067 		ifp->if_flags |= IFF_UP;
2068 		if (!(ifp->if_flags & IFF_RUNNING))
2069 			re_init(ifp);
2070 		break;
2071 	case SIOCSIFFLAGS:
2072 		if (ifp->if_flags & IFF_UP) {
2073 			if (ifp->if_flags & IFF_RUNNING)
2074 				error = ENETRESET;
2075 			else
2076 				re_init(ifp);
2077 		} else {
2078 			if (ifp->if_flags & IFF_RUNNING)
2079 				re_stop(ifp);
2080 		}
2081 		break;
2082 	case SIOCGIFMEDIA:
2083 	case SIOCSIFMEDIA:
2084 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
2085 		break;
2086 	case SIOCGIFRXR:
2087 		error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data,
2088 		    NULL, RL_FRAMELEN(sc->rl_max_mtu), &sc->rl_ldata.rl_rx_ring);
2089 		break;
2090 	default:
2091 		error = ether_ioctl(ifp, &sc->sc_arpcom, command, data);
2092 	}
2093 
2094 	if (error == ENETRESET) {
2095 		if (ifp->if_flags & IFF_RUNNING)
2096 			re_iff(sc);
2097 		error = 0;
2098 	}
2099 
2100 	splx(s);
2101 	return (error);
2102 }
2103 
2104 void
re_watchdog(struct ifnet * ifp)2105 re_watchdog(struct ifnet *ifp)
2106 {
2107 	struct rl_softc	*sc;
2108 	int	s;
2109 
2110 	sc = ifp->if_softc;
2111 	s = splnet();
2112 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2113 
2114 	re_init(ifp);
2115 
2116 	splx(s);
2117 }
2118 
2119 /*
2120  * Stop the adapter and free any mbufs allocated to the
2121  * RX and TX lists.
2122  */
2123 void
re_stop(struct ifnet * ifp)2124 re_stop(struct ifnet *ifp)
2125 {
2126 	struct rl_softc *sc;
2127 	int	i;
2128 
2129 	sc = ifp->if_softc;
2130 
2131 	ifp->if_timer = 0;
2132 	sc->rl_flags &= ~RL_FLAG_LINK;
2133 	sc->rl_timerintr = 0;
2134 
2135 	timeout_del(&sc->timer_handle);
2136 	ifp->if_flags &= ~IFF_RUNNING;
2137 
2138 	/*
2139 	 * Disable accepting frames to put RX MAC into idle state.
2140 	 * Otherwise it's possible to get frames while stop command
2141 	 * execution is in progress and controller can DMA the frame
2142 	 * to already freed RX buffer during that period.
2143 	 */
2144 	CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) &
2145 	    ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD | RL_RXCFG_RX_INDIV |
2146 	    RL_RXCFG_RX_MULTI));
2147 
2148 	if (sc->rl_flags & RL_FLAG_WAIT_TXPOLL) {
2149 		for (i = RL_TIMEOUT; i > 0; i--) {
2150 			if ((CSR_READ_1(sc, sc->rl_txstart) &
2151 			    RL_TXSTART_START) == 0)
2152 				break;
2153 			DELAY(20);
2154 		}
2155 		if (i == 0)
2156 			printf("%s: stopping TX poll timed out!\n",
2157 			    sc->sc_dev.dv_xname);
2158 		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2159 	} else if (sc->rl_flags & RL_FLAG_CMDSTOP) {
2160 		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
2161 		    RL_CMD_RX_ENB);
2162 		if (sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) {
2163 			for (i = RL_TIMEOUT; i > 0; i--) {
2164 				if ((CSR_READ_4(sc, RL_TXCFG) &
2165 				    RL_TXCFG_QUEUE_EMPTY) != 0)
2166 					break;
2167 				DELAY(100);
2168 			}
2169 			if (i == 0)
2170 				printf("%s: stopping TXQ timed out!\n",
2171 				    sc->sc_dev.dv_xname);
2172 		}
2173 	} else
2174 		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2175 	DELAY(1000);
2176 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2177 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2178 
2179 	intr_barrier(sc->sc_ih);
2180 	ifq_barrier(&ifp->if_snd);
2181 
2182 	ifq_clr_oactive(&ifp->if_snd);
2183 	mii_down(&sc->sc_mii);
2184 
2185 	if (sc->rl_head != NULL) {
2186 		m_freem(sc->rl_head);
2187 		sc->rl_head = sc->rl_tail = NULL;
2188 	}
2189 
2190 	/* Free the TX list buffers. */
2191 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
2192 		if (sc->rl_ldata.rl_txq[i].txq_mbuf != NULL) {
2193 			bus_dmamap_unload(sc->sc_dmat,
2194 			    sc->rl_ldata.rl_txq[i].txq_dmamap);
2195 			m_freem(sc->rl_ldata.rl_txq[i].txq_mbuf);
2196 			sc->rl_ldata.rl_txq[i].txq_mbuf = NULL;
2197 		}
2198 	}
2199 
2200 	/* Free the RX list buffers. */
2201 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2202 		if (sc->rl_ldata.rl_rxsoft[i].rxs_mbuf != NULL) {
2203 			bus_dmamap_unload(sc->sc_dmat,
2204 			    sc->rl_ldata.rl_rxsoft[i].rxs_dmamap);
2205 			m_freem(sc->rl_ldata.rl_rxsoft[i].rxs_mbuf);
2206 			sc->rl_ldata.rl_rxsoft[i].rxs_mbuf = NULL;
2207 		}
2208 	}
2209 }
2210 
2211 void
re_setup_hw_im(struct rl_softc * sc)2212 re_setup_hw_im(struct rl_softc *sc)
2213 {
2214 	KASSERT(sc->rl_flags & RL_FLAG_HWIM);
2215 
2216 	/*
2217 	 * Interrupt moderation
2218 	 *
2219 	 * 0xABCD
2220 	 * A - unknown (maybe TX related)
2221 	 * B - TX timer (unit: 25us)
2222 	 * C - unknown (maybe RX related)
2223 	 * D - RX timer (unit: 25us)
2224 	 *
2225 	 *
2226 	 * re(4)'s interrupt moderation is actually controlled by
2227 	 * two variables, like most other NICs (bge, bnx etc.)
2228 	 * o  timer
2229 	 * o  number of packets [P]
2230 	 *
2231 	 * The logic relationship between these two variables is
2232 	 * similar to other NICs too:
2233 	 * if (timer expire || packets > [P])
2234 	 *     Interrupt is delivered
2235 	 *
2236 	 * Currently we only know how to set 'timer', but not
2237 	 * 'number of packets', which should be ~30, as far as I
2238 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
2239 	 */
2240 	CSR_WRITE_2(sc, RL_IM,
2241 		    RL_IM_RXTIME(sc->rl_rx_time) |
2242 		    RL_IM_TXTIME(sc->rl_tx_time) |
2243 		    RL_IM_MAGIC);
2244 }
2245 
2246 void
re_disable_hw_im(struct rl_softc * sc)2247 re_disable_hw_im(struct rl_softc *sc)
2248 {
2249 	if (sc->rl_flags & RL_FLAG_HWIM)
2250 		CSR_WRITE_2(sc, RL_IM, 0);
2251 }
2252 
2253 void
re_setup_sim_im(struct rl_softc * sc)2254 re_setup_sim_im(struct rl_softc *sc)
2255 {
2256 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS)
2257 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400); /* XXX */
2258 	else {
2259 		u_int32_t nticks;
2260 
2261 		/*
2262 		 * Datasheet says tick decreases at bus speed,
2263 		 * but it seems the clock runs a little bit
2264 		 * faster, so we do some compensation here.
2265 		 */
2266 		nticks = (sc->rl_sim_time * sc->rl_bus_speed * 8) / 5;
2267 		CSR_WRITE_4(sc, RL_TIMERINT_8169, nticks);
2268 	}
2269 	CSR_WRITE_4(sc, RL_TIMERCNT, 1); /* reload */
2270 	sc->rl_timerintr = 1;
2271 }
2272 
2273 void
re_disable_sim_im(struct rl_softc * sc)2274 re_disable_sim_im(struct rl_softc *sc)
2275 {
2276 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS)
2277 		CSR_WRITE_4(sc, RL_TIMERINT, 0);
2278 	else
2279 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0);
2280 	sc->rl_timerintr = 0;
2281 }
2282 
2283 void
re_config_imtype(struct rl_softc * sc,int imtype)2284 re_config_imtype(struct rl_softc *sc, int imtype)
2285 {
2286 	switch (imtype) {
2287 	case RL_IMTYPE_HW:
2288 		KASSERT(sc->rl_flags & RL_FLAG_HWIM);
2289 		/* FALLTHROUGH */
2290 	case RL_IMTYPE_NONE:
2291 		sc->rl_intrs = RL_INTRS_CPLUS;
2292 		sc->rl_rx_ack = RL_ISR_RX_OK | RL_ISR_FIFO_OFLOW |
2293 				RL_ISR_RX_OVERRUN;
2294 		sc->rl_tx_ack = RL_ISR_TX_OK;
2295 		break;
2296 
2297 	case RL_IMTYPE_SIM:
2298 		sc->rl_intrs = RL_INTRS_TIMER;
2299 		sc->rl_rx_ack = RL_ISR_TIMEOUT_EXPIRED;
2300 		sc->rl_tx_ack = RL_ISR_TIMEOUT_EXPIRED;
2301 		break;
2302 
2303 	default:
2304 		panic("%s: unknown imtype %d",
2305 		      sc->sc_dev.dv_xname, imtype);
2306 	}
2307 }
2308 
2309 void
re_set_jumbo(struct rl_softc * sc)2310 re_set_jumbo(struct rl_softc *sc)
2311 {
2312 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2313 	CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) |
2314 	    RL_CFG3_JUMBO_EN0);
2315 
2316 	switch (sc->sc_hwrev) {
2317 	case RL_HWREV_8168DP:
2318 		break;
2319 	case RL_HWREV_8168E:
2320 		CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
2321 		    RL_CFG4_8168E_JUMBO_EN1);
2322 		break;
2323 	default:
2324 		CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
2325 		    RL_CFG4_JUMBO_EN1);
2326 		break;
2327 	}
2328 
2329 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2330 }
2331 
2332 void
re_setup_intr(struct rl_softc * sc,int enable_intrs,int imtype)2333 re_setup_intr(struct rl_softc *sc, int enable_intrs, int imtype)
2334 {
2335 	re_config_imtype(sc, imtype);
2336 
2337 	if (enable_intrs)
2338 		CSR_WRITE_2(sc, RL_IMR, sc->rl_intrs);
2339 	else
2340 		CSR_WRITE_2(sc, RL_IMR, 0);
2341 
2342 	switch (imtype) {
2343 	case RL_IMTYPE_NONE:
2344 		re_disable_sim_im(sc);
2345 		re_disable_hw_im(sc);
2346 		break;
2347 
2348 	case RL_IMTYPE_HW:
2349 		KASSERT(sc->rl_flags & RL_FLAG_HWIM);
2350 		re_disable_sim_im(sc);
2351 		re_setup_hw_im(sc);
2352 		break;
2353 
2354 	case RL_IMTYPE_SIM:
2355 		re_disable_hw_im(sc);
2356 		re_setup_sim_im(sc);
2357 		break;
2358 
2359 	default:
2360 		panic("%s: unknown imtype %d",
2361 		      sc->sc_dev.dv_xname, imtype);
2362 	}
2363 }
2364 
2365 #ifndef SMALL_KERNEL
2366 int
re_wol(struct ifnet * ifp,int enable)2367 re_wol(struct ifnet *ifp, int enable)
2368 {
2369 	struct rl_softc *sc = ifp->if_softc;
2370 	u_int8_t val;
2371 
2372 	if (enable) {
2373 		if ((CSR_READ_1(sc, sc->rl_cfg1) & RL_CFG1_PME) == 0) {
2374 			printf("%s: power management is disabled, "
2375 			    "cannot do WOL\n", sc->sc_dev.dv_xname);
2376 			return (ENOTSUP);
2377 		}
2378 		if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_AUXPWR) == 0)
2379 			printf("%s: no auxiliary power, cannot do WOL from D3 "
2380 			    "(power-off) state\n", sc->sc_dev.dv_xname);
2381 	}
2382 
2383 	re_iff(sc);
2384 
2385 	/* Temporarily enable write to configuration registers. */
2386 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2387 
2388 	/* Always disable all wake events except magic packet. */
2389 	if (enable) {
2390 		val = CSR_READ_1(sc, sc->rl_cfg5);
2391 		val &= ~(RL_CFG5_WOL_UCAST | RL_CFG5_WOL_MCAST |
2392 		    RL_CFG5_WOL_BCAST);
2393 		CSR_WRITE_1(sc, sc->rl_cfg5, val);
2394 
2395 		val = CSR_READ_1(sc, sc->rl_cfg3);
2396 		val |= RL_CFG3_WOL_MAGIC;
2397 		val &= ~RL_CFG3_WOL_LINK;
2398 		CSR_WRITE_1(sc, sc->rl_cfg3, val);
2399 	} else {
2400 		val = CSR_READ_1(sc, sc->rl_cfg5);
2401 		val &= ~(RL_CFG5_WOL_UCAST | RL_CFG5_WOL_MCAST |
2402 		    RL_CFG5_WOL_BCAST);
2403 		CSR_WRITE_1(sc, sc->rl_cfg5, val);
2404 
2405 		val = CSR_READ_1(sc, sc->rl_cfg3);
2406 		val &= ~(RL_CFG3_WOL_MAGIC | RL_CFG3_WOL_LINK);
2407 		CSR_WRITE_1(sc, sc->rl_cfg3, val);
2408 	}
2409 
2410 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2411 
2412 	return (0);
2413 }
2414 #endif
2415 
2416 #if NKSTAT > 0
2417 
2418 #define RE_DTCCR_CMD		(1U << 3)
2419 #define RE_DTCCR_LO		0x10
2420 #define RE_DTCCR_HI		0x14
2421 
2422 struct re_kstats {
2423 	struct kstat_kv		tx_ok;
2424 	struct kstat_kv		rx_ok;
2425 	struct kstat_kv		tx_er;
2426 	struct kstat_kv		rx_er;
2427 	struct kstat_kv		miss_pkt;
2428 	struct kstat_kv		fae;
2429 	struct kstat_kv		tx_1col;
2430 	struct kstat_kv		tx_mcol;
2431 	struct kstat_kv		rx_ok_phy;
2432 	struct kstat_kv		rx_ok_brd;
2433 	struct kstat_kv		rx_ok_mul;
2434 	struct kstat_kv		tx_abt;
2435 	struct kstat_kv		tx_undrn;
2436 };
2437 
2438 static const struct re_kstats re_kstats_tpl = {
2439 	.tx_ok =	KSTAT_KV_UNIT_INITIALIZER("TxOk",
2440 			    KSTAT_KV_T_COUNTER64, KSTAT_KV_U_PACKETS),
2441 	.rx_ok =	KSTAT_KV_UNIT_INITIALIZER("RxOk",
2442 			    KSTAT_KV_T_COUNTER64, KSTAT_KV_U_PACKETS),
2443 	.tx_er =	KSTAT_KV_UNIT_INITIALIZER("TxEr",
2444 			    KSTAT_KV_T_COUNTER64, KSTAT_KV_U_PACKETS),
2445 	.rx_er =	KSTAT_KV_UNIT_INITIALIZER("RxEr",
2446 			    KSTAT_KV_T_COUNTER32, KSTAT_KV_U_PACKETS),
2447 	.miss_pkt =	KSTAT_KV_UNIT_INITIALIZER("MissPkt",
2448 			    KSTAT_KV_T_COUNTER16, KSTAT_KV_U_PACKETS),
2449 	.fae =		KSTAT_KV_UNIT_INITIALIZER("FAE",
2450 			    KSTAT_KV_T_COUNTER16, KSTAT_KV_U_PACKETS),
2451 	.tx_1col =	KSTAT_KV_UNIT_INITIALIZER("Tx1Col",
2452 			    KSTAT_KV_T_COUNTER32, KSTAT_KV_U_PACKETS),
2453 	.tx_mcol =	KSTAT_KV_UNIT_INITIALIZER("TxMCol",
2454 			    KSTAT_KV_T_COUNTER32, KSTAT_KV_U_PACKETS),
2455 	.rx_ok_phy =	KSTAT_KV_UNIT_INITIALIZER("RxOkPhy",
2456 			    KSTAT_KV_T_COUNTER64, KSTAT_KV_U_PACKETS),
2457 	.rx_ok_brd =	KSTAT_KV_UNIT_INITIALIZER("RxOkBrd",
2458 			    KSTAT_KV_T_COUNTER64, KSTAT_KV_U_PACKETS),
2459 	.rx_ok_mul =	KSTAT_KV_UNIT_INITIALIZER("RxOkMul",
2460 			    KSTAT_KV_T_COUNTER32, KSTAT_KV_U_PACKETS),
2461 	.tx_abt =	KSTAT_KV_UNIT_INITIALIZER("TxAbt",
2462 			    KSTAT_KV_T_COUNTER16, KSTAT_KV_U_PACKETS),
2463 	.tx_undrn =	KSTAT_KV_UNIT_INITIALIZER("TxUndrn",
2464 			    KSTAT_KV_T_COUNTER16, KSTAT_KV_U_PACKETS),
2465 };
2466 
2467 struct re_kstat_softc {
2468 	struct re_stats		*re_ks_sc_stats;
2469 
2470 	bus_dmamap_t		 re_ks_sc_map;
2471 	bus_dma_segment_t	 re_ks_sc_seg;
2472 	int			 re_ks_sc_nsegs;
2473 
2474 	struct rwlock		 re_ks_sc_rwl;
2475 };
2476 
2477 static int
re_kstat_read(struct kstat * ks)2478 re_kstat_read(struct kstat *ks)
2479 {
2480 	struct rl_softc *sc = ks->ks_softc;
2481 	struct re_kstat_softc *re_ks_sc = ks->ks_ptr;
2482 	bus_dmamap_t map;
2483 	uint64_t cmd;
2484 	uint32_t reg;
2485 	uint8_t command;
2486 	int tmo;
2487 
2488 	command = CSR_READ_1(sc, RL_COMMAND);
2489 	if (!ISSET(command, RL_CMD_RX_ENB) || command == 0xff)
2490 		return (ENETDOWN);
2491 
2492 	map = re_ks_sc->re_ks_sc_map;
2493 	cmd = map->dm_segs[0].ds_addr | RE_DTCCR_CMD;
2494 
2495 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
2496 	    BUS_DMASYNC_PREREAD);
2497 
2498 	CSR_WRITE_4(sc, RE_DTCCR_HI, cmd >> 32);
2499 	bus_space_barrier(sc->rl_btag, sc->rl_bhandle, RE_DTCCR_HI, 8,
2500 	    BUS_SPACE_BARRIER_WRITE);
2501 	CSR_WRITE_4(sc, RE_DTCCR_LO, cmd);
2502 	bus_space_barrier(sc->rl_btag, sc->rl_bhandle, RE_DTCCR_LO, 4,
2503 	    BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE);
2504 
2505 	tmo = 1000;
2506 	do {
2507 		reg = CSR_READ_4(sc, RE_DTCCR_LO);
2508 		if (!ISSET(reg, RE_DTCCR_CMD))
2509 			break;
2510 
2511 		delay(10);
2512 		bus_space_barrier(sc->rl_btag, sc->rl_bhandle, RE_DTCCR_LO, 4,
2513 		    BUS_SPACE_BARRIER_READ);
2514 	} while (--tmo);
2515 
2516 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
2517 	    BUS_DMASYNC_POSTREAD);
2518 
2519 	if (ISSET(reg, RE_DTCCR_CMD))
2520 		return (EIO);
2521 
2522 	nanouptime(&ks->ks_updated);
2523 
2524 	return (0);
2525 }
2526 
2527 static int
re_kstat_copy(struct kstat * ks,void * dst)2528 re_kstat_copy(struct kstat *ks, void *dst)
2529 {
2530 	struct re_kstat_softc *re_ks_sc = ks->ks_ptr;
2531 	struct re_stats *rs = re_ks_sc->re_ks_sc_stats;
2532 	struct re_kstats *kvs = dst;
2533 
2534 	*kvs = re_kstats_tpl;
2535 	kstat_kv_u64(&kvs->tx_ok) = lemtoh64(&rs->re_tx_ok);
2536 	kstat_kv_u64(&kvs->rx_ok) = lemtoh64(&rs->re_rx_ok);
2537 	kstat_kv_u64(&kvs->tx_er) = lemtoh64(&rs->re_tx_er);
2538 	kstat_kv_u32(&kvs->rx_er) = lemtoh32(&rs->re_rx_er);
2539 	kstat_kv_u16(&kvs->miss_pkt) = lemtoh16(&rs->re_miss_pkt);
2540 	kstat_kv_u16(&kvs->fae) = lemtoh16(&rs->re_fae);
2541 	kstat_kv_u32(&kvs->tx_1col) = lemtoh32(&rs->re_tx_1col);
2542 	kstat_kv_u32(&kvs->tx_mcol) = lemtoh32(&rs->re_tx_mcol);
2543 	kstat_kv_u64(&kvs->rx_ok_phy) = lemtoh64(&rs->re_rx_ok_phy);
2544 	kstat_kv_u64(&kvs->rx_ok_brd) = lemtoh64(&rs->re_rx_ok_brd);
2545 	kstat_kv_u32(&kvs->rx_ok_mul) = lemtoh32(&rs->re_rx_ok_mul);
2546 	kstat_kv_u16(&kvs->tx_abt) = lemtoh16(&rs->re_tx_abt);
2547 	kstat_kv_u16(&kvs->tx_undrn) = lemtoh16(&rs->re_tx_undrn);
2548 
2549 	return (0);
2550 }
2551 
2552 void
re_kstat_attach(struct rl_softc * sc)2553 re_kstat_attach(struct rl_softc *sc)
2554 {
2555 	struct re_kstat_softc *re_ks_sc;
2556 	struct kstat *ks;
2557 
2558 	re_ks_sc = malloc(sizeof(*re_ks_sc), M_DEVBUF, M_NOWAIT);
2559 	if (re_ks_sc == NULL) {
2560 		printf("%s: cannot allocate kstat softc\n",
2561 		    sc->sc_dev.dv_xname);
2562 		return;
2563 	}
2564 
2565 	if (bus_dmamap_create(sc->sc_dmat,
2566 	    sizeof(struct re_stats), 1, sizeof(struct re_stats), 0,
2567 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW | BUS_DMA_64BIT,
2568 	    &re_ks_sc->re_ks_sc_map) != 0) {
2569 		printf("%s: cannot create counter dma memory map\n",
2570 		    sc->sc_dev.dv_xname);
2571 		goto free;
2572 	}
2573 
2574 	if (bus_dmamem_alloc(sc->sc_dmat,
2575 	    sizeof(struct re_stats), RE_STATS_ALIGNMENT, 0,
2576 	    &re_ks_sc->re_ks_sc_seg, 1, &re_ks_sc->re_ks_sc_nsegs,
2577 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO) != 0) {
2578 		printf("%s: cannot allocate counter dma memory\n",
2579 		    sc->sc_dev.dv_xname);
2580 		goto destroy;
2581 	}
2582 
2583 	if (bus_dmamem_map(sc->sc_dmat,
2584 	    &re_ks_sc->re_ks_sc_seg, re_ks_sc->re_ks_sc_nsegs,
2585 	    sizeof(struct re_stats), (caddr_t *)&re_ks_sc->re_ks_sc_stats,
2586 	    BUS_DMA_NOWAIT) != 0) {
2587 		printf("%s: cannot map counter dma memory\n",
2588 		    sc->sc_dev.dv_xname);
2589 		goto freedma;
2590 	}
2591 
2592 	if (bus_dmamap_load(sc->sc_dmat, re_ks_sc->re_ks_sc_map,
2593 	    (caddr_t)re_ks_sc->re_ks_sc_stats, sizeof(struct re_stats),
2594 	    NULL, BUS_DMA_NOWAIT) != 0) {
2595 		printf("%s: cannot load counter dma memory\n",
2596 		    sc->sc_dev.dv_xname);
2597 		goto unmap;
2598 	}
2599 
2600 	ks = kstat_create(sc->sc_dev.dv_xname, 0, "re-stats", 0,
2601 	    KSTAT_T_KV, 0);
2602 	if (ks == NULL) {
2603 		printf("%s: cannot create re-stats kstat\n",
2604 		    sc->sc_dev.dv_xname);
2605 		goto unload;
2606 	}
2607 
2608 	ks->ks_datalen = sizeof(re_kstats_tpl);
2609 
2610 	rw_init(&re_ks_sc->re_ks_sc_rwl, "restats");
2611 	kstat_set_wlock(ks, &re_ks_sc->re_ks_sc_rwl);
2612 	ks->ks_softc = sc;
2613 	ks->ks_ptr = re_ks_sc;
2614 	ks->ks_read = re_kstat_read;
2615 	ks->ks_copy = re_kstat_copy;
2616 
2617 	kstat_install(ks);
2618 
2619 	sc->rl_kstat = ks;
2620 
2621 	return;
2622 
2623 unload:
2624 	bus_dmamap_unload(sc->sc_dmat, re_ks_sc->re_ks_sc_map);
2625 unmap:
2626 	bus_dmamem_unmap(sc->sc_dmat,
2627 	    (caddr_t)re_ks_sc->re_ks_sc_stats, sizeof(struct re_stats));
2628 freedma:
2629 	bus_dmamem_free(sc->sc_dmat, &re_ks_sc->re_ks_sc_seg,
2630 	    re_ks_sc->re_ks_sc_nsegs);
2631 destroy:
2632 	bus_dmamap_destroy(sc->sc_dmat, re_ks_sc->re_ks_sc_map);
2633 free:
2634 	free(re_ks_sc, M_DEVBUF, sizeof(*re_ks_sc));
2635 }
2636 
2637 void
re_kstat_detach(struct rl_softc * sc)2638 re_kstat_detach(struct rl_softc *sc)
2639 {
2640 	struct kstat *ks = sc->rl_kstat;
2641 	struct re_kstat_softc *re_ks_sc;
2642 
2643 	if (ks == NULL)
2644 		return;
2645 
2646 	kstat_remove(ks);
2647 	re_ks_sc = ks->ks_ptr;
2648 	kstat_destroy(ks);
2649 
2650 	bus_dmamap_unload(sc->sc_dmat, re_ks_sc->re_ks_sc_map);
2651 	bus_dmamem_unmap(sc->sc_dmat,
2652 	    (caddr_t)re_ks_sc->re_ks_sc_stats, sizeof(struct re_stats));
2653 	bus_dmamem_free(sc->sc_dmat, &re_ks_sc->re_ks_sc_seg,
2654 	    re_ks_sc->re_ks_sc_nsegs);
2655 	bus_dmamap_destroy(sc->sc_dmat, re_ks_sc->re_ks_sc_map);
2656 	free(re_ks_sc, M_DEVBUF, sizeof(*re_ks_sc));
2657 }
2658 #endif /* NKSTAT > 0 */
2659