xref: /openbsd/sys/dev/pci/drm/i915/gt/intel_lrc.c (revision 596b6869)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include "gem/i915_gem_lmem.h"
7 
8 #include "gen8_engine_cs.h"
9 #include "i915_drv.h"
10 #include "i915_perf.h"
11 #include "i915_reg.h"
12 #include "intel_context.h"
13 #include "intel_engine.h"
14 #include "intel_engine_regs.h"
15 #include "intel_gpu_commands.h"
16 #include "intel_gt.h"
17 #include "intel_gt_regs.h"
18 #include "intel_lrc.h"
19 #include "intel_lrc_reg.h"
20 #include "intel_ring.h"
21 #include "shmem_utils.h"
22 
23 /*
24  * The per-platform tables are u8-encoded in @data. Decode @data and set the
25  * addresses' offset and commands in @regs. The following encoding is used
26  * for each byte. There are 2 steps: decoding commands and decoding addresses.
27  *
28  * Commands:
29  * [7]: create NOPs - number of NOPs are set in lower bits
30  * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set
31  *      MI_LRI_FORCE_POSTED
32  * [5:0]: Number of NOPs or registers to set values to in case of
33  *        MI_LOAD_REGISTER_IMM
34  *
35  * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count"
36  * number of registers. They are set by using the REG/REG16 macros: the former
37  * is used for offsets smaller than 0x200 while the latter is for values bigger
38  * than that. Those macros already set all the bits documented below correctly:
39  *
40  * [7]: When a register offset needs more than 6 bits, use additional bytes, to
41  *      follow, for the lower bits
42  * [6:0]: Register offset, without considering the engine base.
43  *
44  * This function only tweaks the commands and register offsets. Values are not
45  * filled out.
46  */
set_offsets(u32 * regs,const u8 * data,const struct intel_engine_cs * engine,bool close)47 static void set_offsets(u32 *regs,
48 			const u8 *data,
49 			const struct intel_engine_cs *engine,
50 			bool close)
51 #define NOP(x) (BIT(7) | (x))
52 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
53 #define POSTED BIT(0)
54 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
55 #define REG16(x) \
56 	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
57 	(((x) >> 2) & 0x7f)
58 #define END 0
59 {
60 	const u32 base = engine->mmio_base;
61 
62 	while (*data) {
63 		u8 count, flags;
64 
65 		if (*data & BIT(7)) { /* skip */
66 			count = *data++ & ~BIT(7);
67 			regs += count;
68 			continue;
69 		}
70 
71 		count = *data & 0x3f;
72 		flags = *data >> 6;
73 		data++;
74 
75 		*regs = MI_LOAD_REGISTER_IMM(count);
76 		if (flags & POSTED)
77 			*regs |= MI_LRI_FORCE_POSTED;
78 		if (GRAPHICS_VER(engine->i915) >= 11)
79 			*regs |= MI_LRI_LRM_CS_MMIO;
80 		regs++;
81 
82 		GEM_BUG_ON(!count);
83 		do {
84 			u32 offset = 0;
85 			u8 v;
86 
87 			do {
88 				v = *data++;
89 				offset <<= 7;
90 				offset |= v & ~BIT(7);
91 			} while (v & BIT(7));
92 
93 			regs[0] = base + (offset << 2);
94 			regs += 2;
95 		} while (--count);
96 	}
97 
98 	if (close) {
99 		/* Close the batch; used mainly by live_lrc_layout() */
100 		*regs = MI_BATCH_BUFFER_END;
101 		if (GRAPHICS_VER(engine->i915) >= 11)
102 			*regs |= BIT(0);
103 	}
104 }
105 
106 static const u8 gen8_xcs_offsets[] = {
107 	NOP(1),
108 	LRI(11, 0),
109 	REG16(0x244),
110 	REG(0x034),
111 	REG(0x030),
112 	REG(0x038),
113 	REG(0x03c),
114 	REG(0x168),
115 	REG(0x140),
116 	REG(0x110),
117 	REG(0x11c),
118 	REG(0x114),
119 	REG(0x118),
120 
121 	NOP(9),
122 	LRI(9, 0),
123 	REG16(0x3a8),
124 	REG16(0x28c),
125 	REG16(0x288),
126 	REG16(0x284),
127 	REG16(0x280),
128 	REG16(0x27c),
129 	REG16(0x278),
130 	REG16(0x274),
131 	REG16(0x270),
132 
133 	NOP(13),
134 	LRI(2, 0),
135 	REG16(0x200),
136 	REG(0x028),
137 
138 	END
139 };
140 
141 static const u8 gen9_xcs_offsets[] = {
142 	NOP(1),
143 	LRI(14, POSTED),
144 	REG16(0x244),
145 	REG(0x034),
146 	REG(0x030),
147 	REG(0x038),
148 	REG(0x03c),
149 	REG(0x168),
150 	REG(0x140),
151 	REG(0x110),
152 	REG(0x11c),
153 	REG(0x114),
154 	REG(0x118),
155 	REG(0x1c0),
156 	REG(0x1c4),
157 	REG(0x1c8),
158 
159 	NOP(3),
160 	LRI(9, POSTED),
161 	REG16(0x3a8),
162 	REG16(0x28c),
163 	REG16(0x288),
164 	REG16(0x284),
165 	REG16(0x280),
166 	REG16(0x27c),
167 	REG16(0x278),
168 	REG16(0x274),
169 	REG16(0x270),
170 
171 	NOP(13),
172 	LRI(1, POSTED),
173 	REG16(0x200),
174 
175 	NOP(13),
176 	LRI(44, POSTED),
177 	REG(0x028),
178 	REG(0x09c),
179 	REG(0x0c0),
180 	REG(0x178),
181 	REG(0x17c),
182 	REG16(0x358),
183 	REG(0x170),
184 	REG(0x150),
185 	REG(0x154),
186 	REG(0x158),
187 	REG16(0x41c),
188 	REG16(0x600),
189 	REG16(0x604),
190 	REG16(0x608),
191 	REG16(0x60c),
192 	REG16(0x610),
193 	REG16(0x614),
194 	REG16(0x618),
195 	REG16(0x61c),
196 	REG16(0x620),
197 	REG16(0x624),
198 	REG16(0x628),
199 	REG16(0x62c),
200 	REG16(0x630),
201 	REG16(0x634),
202 	REG16(0x638),
203 	REG16(0x63c),
204 	REG16(0x640),
205 	REG16(0x644),
206 	REG16(0x648),
207 	REG16(0x64c),
208 	REG16(0x650),
209 	REG16(0x654),
210 	REG16(0x658),
211 	REG16(0x65c),
212 	REG16(0x660),
213 	REG16(0x664),
214 	REG16(0x668),
215 	REG16(0x66c),
216 	REG16(0x670),
217 	REG16(0x674),
218 	REG16(0x678),
219 	REG16(0x67c),
220 	REG(0x068),
221 
222 	END
223 };
224 
225 static const u8 gen12_xcs_offsets[] = {
226 	NOP(1),
227 	LRI(13, POSTED),
228 	REG16(0x244),
229 	REG(0x034),
230 	REG(0x030),
231 	REG(0x038),
232 	REG(0x03c),
233 	REG(0x168),
234 	REG(0x140),
235 	REG(0x110),
236 	REG(0x1c0),
237 	REG(0x1c4),
238 	REG(0x1c8),
239 	REG(0x180),
240 	REG16(0x2b4),
241 
242 	NOP(5),
243 	LRI(9, POSTED),
244 	REG16(0x3a8),
245 	REG16(0x28c),
246 	REG16(0x288),
247 	REG16(0x284),
248 	REG16(0x280),
249 	REG16(0x27c),
250 	REG16(0x278),
251 	REG16(0x274),
252 	REG16(0x270),
253 
254 	END
255 };
256 
257 static const u8 dg2_xcs_offsets[] = {
258 	NOP(1),
259 	LRI(15, POSTED),
260 	REG16(0x244),
261 	REG(0x034),
262 	REG(0x030),
263 	REG(0x038),
264 	REG(0x03c),
265 	REG(0x168),
266 	REG(0x140),
267 	REG(0x110),
268 	REG(0x1c0),
269 	REG(0x1c4),
270 	REG(0x1c8),
271 	REG(0x180),
272 	REG16(0x2b4),
273 	REG(0x120),
274 	REG(0x124),
275 
276 	NOP(1),
277 	LRI(9, POSTED),
278 	REG16(0x3a8),
279 	REG16(0x28c),
280 	REG16(0x288),
281 	REG16(0x284),
282 	REG16(0x280),
283 	REG16(0x27c),
284 	REG16(0x278),
285 	REG16(0x274),
286 	REG16(0x270),
287 
288 	END
289 };
290 
291 static const u8 gen8_rcs_offsets[] = {
292 	NOP(1),
293 	LRI(14, POSTED),
294 	REG16(0x244),
295 	REG(0x034),
296 	REG(0x030),
297 	REG(0x038),
298 	REG(0x03c),
299 	REG(0x168),
300 	REG(0x140),
301 	REG(0x110),
302 	REG(0x11c),
303 	REG(0x114),
304 	REG(0x118),
305 	REG(0x1c0),
306 	REG(0x1c4),
307 	REG(0x1c8),
308 
309 	NOP(3),
310 	LRI(9, POSTED),
311 	REG16(0x3a8),
312 	REG16(0x28c),
313 	REG16(0x288),
314 	REG16(0x284),
315 	REG16(0x280),
316 	REG16(0x27c),
317 	REG16(0x278),
318 	REG16(0x274),
319 	REG16(0x270),
320 
321 	NOP(13),
322 	LRI(1, 0),
323 	REG(0x0c8),
324 
325 	END
326 };
327 
328 static const u8 gen9_rcs_offsets[] = {
329 	NOP(1),
330 	LRI(14, POSTED),
331 	REG16(0x244),
332 	REG(0x34),
333 	REG(0x30),
334 	REG(0x38),
335 	REG(0x3c),
336 	REG(0x168),
337 	REG(0x140),
338 	REG(0x110),
339 	REG(0x11c),
340 	REG(0x114),
341 	REG(0x118),
342 	REG(0x1c0),
343 	REG(0x1c4),
344 	REG(0x1c8),
345 
346 	NOP(3),
347 	LRI(9, POSTED),
348 	REG16(0x3a8),
349 	REG16(0x28c),
350 	REG16(0x288),
351 	REG16(0x284),
352 	REG16(0x280),
353 	REG16(0x27c),
354 	REG16(0x278),
355 	REG16(0x274),
356 	REG16(0x270),
357 
358 	NOP(13),
359 	LRI(1, 0),
360 	REG(0xc8),
361 
362 	NOP(13),
363 	LRI(44, POSTED),
364 	REG(0x28),
365 	REG(0x9c),
366 	REG(0xc0),
367 	REG(0x178),
368 	REG(0x17c),
369 	REG16(0x358),
370 	REG(0x170),
371 	REG(0x150),
372 	REG(0x154),
373 	REG(0x158),
374 	REG16(0x41c),
375 	REG16(0x600),
376 	REG16(0x604),
377 	REG16(0x608),
378 	REG16(0x60c),
379 	REG16(0x610),
380 	REG16(0x614),
381 	REG16(0x618),
382 	REG16(0x61c),
383 	REG16(0x620),
384 	REG16(0x624),
385 	REG16(0x628),
386 	REG16(0x62c),
387 	REG16(0x630),
388 	REG16(0x634),
389 	REG16(0x638),
390 	REG16(0x63c),
391 	REG16(0x640),
392 	REG16(0x644),
393 	REG16(0x648),
394 	REG16(0x64c),
395 	REG16(0x650),
396 	REG16(0x654),
397 	REG16(0x658),
398 	REG16(0x65c),
399 	REG16(0x660),
400 	REG16(0x664),
401 	REG16(0x668),
402 	REG16(0x66c),
403 	REG16(0x670),
404 	REG16(0x674),
405 	REG16(0x678),
406 	REG16(0x67c),
407 	REG(0x68),
408 
409 	END
410 };
411 
412 static const u8 gen11_rcs_offsets[] = {
413 	NOP(1),
414 	LRI(15, POSTED),
415 	REG16(0x244),
416 	REG(0x034),
417 	REG(0x030),
418 	REG(0x038),
419 	REG(0x03c),
420 	REG(0x168),
421 	REG(0x140),
422 	REG(0x110),
423 	REG(0x11c),
424 	REG(0x114),
425 	REG(0x118),
426 	REG(0x1c0),
427 	REG(0x1c4),
428 	REG(0x1c8),
429 	REG(0x180),
430 
431 	NOP(1),
432 	LRI(9, POSTED),
433 	REG16(0x3a8),
434 	REG16(0x28c),
435 	REG16(0x288),
436 	REG16(0x284),
437 	REG16(0x280),
438 	REG16(0x27c),
439 	REG16(0x278),
440 	REG16(0x274),
441 	REG16(0x270),
442 
443 	LRI(1, POSTED),
444 	REG(0x1b0),
445 
446 	NOP(10),
447 	LRI(1, 0),
448 	REG(0x0c8),
449 
450 	END
451 };
452 
453 static const u8 gen12_rcs_offsets[] = {
454 	NOP(1),
455 	LRI(13, POSTED),
456 	REG16(0x244),
457 	REG(0x034),
458 	REG(0x030),
459 	REG(0x038),
460 	REG(0x03c),
461 	REG(0x168),
462 	REG(0x140),
463 	REG(0x110),
464 	REG(0x1c0),
465 	REG(0x1c4),
466 	REG(0x1c8),
467 	REG(0x180),
468 	REG16(0x2b4),
469 
470 	NOP(5),
471 	LRI(9, POSTED),
472 	REG16(0x3a8),
473 	REG16(0x28c),
474 	REG16(0x288),
475 	REG16(0x284),
476 	REG16(0x280),
477 	REG16(0x27c),
478 	REG16(0x278),
479 	REG16(0x274),
480 	REG16(0x270),
481 
482 	LRI(3, POSTED),
483 	REG(0x1b0),
484 	REG16(0x5a8),
485 	REG16(0x5ac),
486 
487 	NOP(6),
488 	LRI(1, 0),
489 	REG(0x0c8),
490 	NOP(3 + 9 + 1),
491 
492 	LRI(51, POSTED),
493 	REG16(0x588),
494 	REG16(0x588),
495 	REG16(0x588),
496 	REG16(0x588),
497 	REG16(0x588),
498 	REG16(0x588),
499 	REG(0x028),
500 	REG(0x09c),
501 	REG(0x0c0),
502 	REG(0x178),
503 	REG(0x17c),
504 	REG16(0x358),
505 	REG(0x170),
506 	REG(0x150),
507 	REG(0x154),
508 	REG(0x158),
509 	REG16(0x41c),
510 	REG16(0x600),
511 	REG16(0x604),
512 	REG16(0x608),
513 	REG16(0x60c),
514 	REG16(0x610),
515 	REG16(0x614),
516 	REG16(0x618),
517 	REG16(0x61c),
518 	REG16(0x620),
519 	REG16(0x624),
520 	REG16(0x628),
521 	REG16(0x62c),
522 	REG16(0x630),
523 	REG16(0x634),
524 	REG16(0x638),
525 	REG16(0x63c),
526 	REG16(0x640),
527 	REG16(0x644),
528 	REG16(0x648),
529 	REG16(0x64c),
530 	REG16(0x650),
531 	REG16(0x654),
532 	REG16(0x658),
533 	REG16(0x65c),
534 	REG16(0x660),
535 	REG16(0x664),
536 	REG16(0x668),
537 	REG16(0x66c),
538 	REG16(0x670),
539 	REG16(0x674),
540 	REG16(0x678),
541 	REG16(0x67c),
542 	REG(0x068),
543 	REG(0x084),
544 	NOP(1),
545 
546 	END
547 };
548 
549 static const u8 xehp_rcs_offsets[] = {
550 	NOP(1),
551 	LRI(13, POSTED),
552 	REG16(0x244),
553 	REG(0x034),
554 	REG(0x030),
555 	REG(0x038),
556 	REG(0x03c),
557 	REG(0x168),
558 	REG(0x140),
559 	REG(0x110),
560 	REG(0x1c0),
561 	REG(0x1c4),
562 	REG(0x1c8),
563 	REG(0x180),
564 	REG16(0x2b4),
565 
566 	NOP(5),
567 	LRI(9, POSTED),
568 	REG16(0x3a8),
569 	REG16(0x28c),
570 	REG16(0x288),
571 	REG16(0x284),
572 	REG16(0x280),
573 	REG16(0x27c),
574 	REG16(0x278),
575 	REG16(0x274),
576 	REG16(0x270),
577 
578 	LRI(3, POSTED),
579 	REG(0x1b0),
580 	REG16(0x5a8),
581 	REG16(0x5ac),
582 
583 	NOP(6),
584 	LRI(1, 0),
585 	REG(0x0c8),
586 
587 	END
588 };
589 
590 static const u8 dg2_rcs_offsets[] = {
591 	NOP(1),
592 	LRI(15, POSTED),
593 	REG16(0x244),
594 	REG(0x034),
595 	REG(0x030),
596 	REG(0x038),
597 	REG(0x03c),
598 	REG(0x168),
599 	REG(0x140),
600 	REG(0x110),
601 	REG(0x1c0),
602 	REG(0x1c4),
603 	REG(0x1c8),
604 	REG(0x180),
605 	REG16(0x2b4),
606 	REG(0x120),
607 	REG(0x124),
608 
609 	NOP(1),
610 	LRI(9, POSTED),
611 	REG16(0x3a8),
612 	REG16(0x28c),
613 	REG16(0x288),
614 	REG16(0x284),
615 	REG16(0x280),
616 	REG16(0x27c),
617 	REG16(0x278),
618 	REG16(0x274),
619 	REG16(0x270),
620 
621 	LRI(3, POSTED),
622 	REG(0x1b0),
623 	REG16(0x5a8),
624 	REG16(0x5ac),
625 
626 	NOP(6),
627 	LRI(1, 0),
628 	REG(0x0c8),
629 
630 	END
631 };
632 
633 static const u8 mtl_rcs_offsets[] = {
634 	NOP(1),
635 	LRI(15, POSTED),
636 	REG16(0x244),
637 	REG(0x034),
638 	REG(0x030),
639 	REG(0x038),
640 	REG(0x03c),
641 	REG(0x168),
642 	REG(0x140),
643 	REG(0x110),
644 	REG(0x1c0),
645 	REG(0x1c4),
646 	REG(0x1c8),
647 	REG(0x180),
648 	REG16(0x2b4),
649 	REG(0x120),
650 	REG(0x124),
651 
652 	NOP(1),
653 	LRI(9, POSTED),
654 	REG16(0x3a8),
655 	REG16(0x28c),
656 	REG16(0x288),
657 	REG16(0x284),
658 	REG16(0x280),
659 	REG16(0x27c),
660 	REG16(0x278),
661 	REG16(0x274),
662 	REG16(0x270),
663 
664 	NOP(2),
665 	LRI(2, POSTED),
666 	REG16(0x5a8),
667 	REG16(0x5ac),
668 
669 	NOP(6),
670 	LRI(1, 0),
671 	REG(0x0c8),
672 
673 	END
674 };
675 
676 #undef END
677 #undef REG16
678 #undef REG
679 #undef LRI
680 #undef NOP
681 
reg_offsets(const struct intel_engine_cs * engine)682 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
683 {
684 	/*
685 	 * The gen12+ lists only have the registers we program in the basic
686 	 * default state. We rely on the context image using relative
687 	 * addressing to automatic fixup the register state between the
688 	 * physical engines for virtual engine.
689 	 */
690 	GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 &&
691 		   !intel_engine_has_relative_mmio(engine));
692 
693 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) {
694 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70))
695 			return mtl_rcs_offsets;
696 		else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
697 			return dg2_rcs_offsets;
698 		else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
699 			return xehp_rcs_offsets;
700 		else if (GRAPHICS_VER(engine->i915) >= 12)
701 			return gen12_rcs_offsets;
702 		else if (GRAPHICS_VER(engine->i915) >= 11)
703 			return gen11_rcs_offsets;
704 		else if (GRAPHICS_VER(engine->i915) >= 9)
705 			return gen9_rcs_offsets;
706 		else
707 			return gen8_rcs_offsets;
708 	} else {
709 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
710 			return dg2_xcs_offsets;
711 		else if (GRAPHICS_VER(engine->i915) >= 12)
712 			return gen12_xcs_offsets;
713 		else if (GRAPHICS_VER(engine->i915) >= 9)
714 			return gen9_xcs_offsets;
715 		else
716 			return gen8_xcs_offsets;
717 	}
718 }
719 
lrc_ring_mi_mode(const struct intel_engine_cs * engine)720 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
721 {
722 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
723 		return 0x70;
724 	else if (GRAPHICS_VER(engine->i915) >= 12)
725 		return 0x60;
726 	else if (GRAPHICS_VER(engine->i915) >= 9)
727 		return 0x54;
728 	else if (engine->class == RENDER_CLASS)
729 		return 0x58;
730 	else
731 		return -1;
732 }
733 
lrc_ring_bb_offset(const struct intel_engine_cs * engine)734 static int lrc_ring_bb_offset(const struct intel_engine_cs *engine)
735 {
736 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
737 		return 0x80;
738 	else if (GRAPHICS_VER(engine->i915) >= 12)
739 		return 0x70;
740 	else if (GRAPHICS_VER(engine->i915) >= 9)
741 		return 0x64;
742 	else if (GRAPHICS_VER(engine->i915) >= 8 &&
743 		 engine->class == RENDER_CLASS)
744 		return 0xc4;
745 	else
746 		return -1;
747 }
748 
lrc_ring_gpr0(const struct intel_engine_cs * engine)749 static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
750 {
751 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
752 		return 0x84;
753 	else if (GRAPHICS_VER(engine->i915) >= 12)
754 		return 0x74;
755 	else if (GRAPHICS_VER(engine->i915) >= 9)
756 		return 0x68;
757 	else if (engine->class == RENDER_CLASS)
758 		return 0xd8;
759 	else
760 		return -1;
761 }
762 
lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs * engine)763 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
764 {
765 	if (GRAPHICS_VER(engine->i915) >= 12)
766 		return 0x12;
767 	else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS)
768 		return 0x18;
769 	else
770 		return -1;
771 }
772 
lrc_ring_indirect_ptr(const struct intel_engine_cs * engine)773 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
774 {
775 	int x;
776 
777 	x = lrc_ring_wa_bb_per_ctx(engine);
778 	if (x < 0)
779 		return x;
780 
781 	return x + 2;
782 }
783 
lrc_ring_indirect_offset(const struct intel_engine_cs * engine)784 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
785 {
786 	int x;
787 
788 	x = lrc_ring_indirect_ptr(engine);
789 	if (x < 0)
790 		return x;
791 
792 	return x + 2;
793 }
794 
lrc_ring_cmd_buf_cctl(const struct intel_engine_cs * engine)795 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
796 {
797 
798 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
799 		/*
800 		 * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL
801 		 * simply to match the RCS context image layout.
802 		 */
803 		return 0xc6;
804 	else if (engine->class != RENDER_CLASS)
805 		return -1;
806 	else if (GRAPHICS_VER(engine->i915) >= 12)
807 		return 0xb6;
808 	else if (GRAPHICS_VER(engine->i915) >= 11)
809 		return 0xaa;
810 	else
811 		return -1;
812 }
813 
814 static u32
lrc_ring_indirect_offset_default(const struct intel_engine_cs * engine)815 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
816 {
817 	if (GRAPHICS_VER(engine->i915) >= 12)
818 		return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
819 	else if (GRAPHICS_VER(engine->i915) >= 11)
820 		return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
821 	else if (GRAPHICS_VER(engine->i915) >= 9)
822 		return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
823 	else if (GRAPHICS_VER(engine->i915) >= 8)
824 		return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
825 
826 	GEM_BUG_ON(GRAPHICS_VER(engine->i915) < 8);
827 
828 	return 0;
829 }
830 
831 static void
lrc_setup_indirect_ctx(u32 * regs,const struct intel_engine_cs * engine,u32 ctx_bb_ggtt_addr,u32 size)832 lrc_setup_indirect_ctx(u32 *regs,
833 		       const struct intel_engine_cs *engine,
834 		       u32 ctx_bb_ggtt_addr,
835 		       u32 size)
836 {
837 	GEM_BUG_ON(!size);
838 	GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
839 	GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
840 	regs[lrc_ring_indirect_ptr(engine) + 1] =
841 		ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);
842 
843 	GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
844 	regs[lrc_ring_indirect_offset(engine) + 1] =
845 		lrc_ring_indirect_offset_default(engine) << 6;
846 }
847 
init_common_regs(u32 * const regs,const struct intel_context * ce,const struct intel_engine_cs * engine,bool inhibit)848 static void init_common_regs(u32 * const regs,
849 			     const struct intel_context *ce,
850 			     const struct intel_engine_cs *engine,
851 			     bool inhibit)
852 {
853 	u32 ctl;
854 	int loc;
855 
856 	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
857 	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
858 	if (inhibit)
859 		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
860 	if (GRAPHICS_VER(engine->i915) < 11)
861 		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
862 					   CTX_CTRL_RS_CTX_ENABLE);
863 	regs[CTX_CONTEXT_CONTROL] = ctl;
864 
865 	regs[CTX_TIMESTAMP] = ce->stats.runtime.last;
866 
867 	loc = lrc_ring_bb_offset(engine);
868 	if (loc != -1)
869 		regs[loc + 1] = 0;
870 }
871 
init_wa_bb_regs(u32 * const regs,const struct intel_engine_cs * engine)872 static void init_wa_bb_regs(u32 * const regs,
873 			    const struct intel_engine_cs *engine)
874 {
875 	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
876 
877 	if (wa_ctx->per_ctx.size) {
878 		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
879 
880 		GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
881 		regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
882 			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
883 	}
884 
885 	if (wa_ctx->indirect_ctx.size) {
886 		lrc_setup_indirect_ctx(regs, engine,
887 				       i915_ggtt_offset(wa_ctx->vma) +
888 				       wa_ctx->indirect_ctx.offset,
889 				       wa_ctx->indirect_ctx.size);
890 	}
891 }
892 
init_ppgtt_regs(u32 * regs,const struct i915_ppgtt * ppgtt)893 static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt)
894 {
895 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
896 		/* 64b PPGTT (48bit canonical)
897 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
898 		 * other PDP Descriptors are ignored.
899 		 */
900 		ASSIGN_CTX_PML4(ppgtt, regs);
901 	} else {
902 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
903 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
904 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
905 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
906 	}
907 }
908 
vm_alias(struct i915_address_space * vm)909 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
910 {
911 	if (i915_is_ggtt(vm))
912 		return i915_vm_to_ggtt(vm)->alias;
913 	else
914 		return i915_vm_to_ppgtt(vm);
915 }
916 
__reset_stop_ring(u32 * regs,const struct intel_engine_cs * engine)917 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
918 {
919 	int x;
920 
921 	x = lrc_ring_mi_mode(engine);
922 	if (x != -1) {
923 		regs[x + 1] &= ~STOP_RING;
924 		regs[x + 1] |= STOP_RING << 16;
925 	}
926 }
927 
__lrc_init_regs(u32 * regs,const struct intel_context * ce,const struct intel_engine_cs * engine,bool inhibit)928 static void __lrc_init_regs(u32 *regs,
929 			    const struct intel_context *ce,
930 			    const struct intel_engine_cs *engine,
931 			    bool inhibit)
932 {
933 	/*
934 	 * A context is actually a big batch buffer with several
935 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
936 	 * values we are setting here are only for the first context restore:
937 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
938 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
939 	 * we are not initializing here).
940 	 *
941 	 * Must keep consistent with virtual_update_register_offsets().
942 	 */
943 
944 	if (inhibit)
945 		memset(regs, 0, PAGE_SIZE);
946 
947 	set_offsets(regs, reg_offsets(engine), engine, inhibit);
948 
949 	init_common_regs(regs, ce, engine, inhibit);
950 	init_ppgtt_regs(regs, vm_alias(ce->vm));
951 
952 	init_wa_bb_regs(regs, engine);
953 
954 	__reset_stop_ring(regs, engine);
955 }
956 
lrc_init_regs(const struct intel_context * ce,const struct intel_engine_cs * engine,bool inhibit)957 void lrc_init_regs(const struct intel_context *ce,
958 		   const struct intel_engine_cs *engine,
959 		   bool inhibit)
960 {
961 	__lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit);
962 }
963 
lrc_reset_regs(const struct intel_context * ce,const struct intel_engine_cs * engine)964 void lrc_reset_regs(const struct intel_context *ce,
965 		    const struct intel_engine_cs *engine)
966 {
967 	__reset_stop_ring(ce->lrc_reg_state, engine);
968 }
969 
970 static void
set_redzone(void * vaddr,const struct intel_engine_cs * engine)971 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
972 {
973 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
974 		return;
975 
976 	vaddr += engine->context_size;
977 
978 	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
979 }
980 
981 static void
check_redzone(const void * vaddr,const struct intel_engine_cs * engine)982 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
983 {
984 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
985 		return;
986 
987 	vaddr += engine->context_size;
988 
989 	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
990 		drm_err_once(&engine->i915->drm,
991 			     "%s context redzone overwritten!\n",
992 			     engine->name);
993 }
994 
context_wa_bb_offset(const struct intel_context * ce)995 static u32 context_wa_bb_offset(const struct intel_context *ce)
996 {
997 	return PAGE_SIZE * ce->wa_bb_page;
998 }
999 
context_indirect_bb(const struct intel_context * ce)1000 static u32 *context_indirect_bb(const struct intel_context *ce)
1001 {
1002 	void *ptr;
1003 
1004 	GEM_BUG_ON(!ce->wa_bb_page);
1005 
1006 	ptr = ce->lrc_reg_state;
1007 	ptr -= LRC_STATE_OFFSET; /* back to start of context image */
1008 	ptr += context_wa_bb_offset(ce);
1009 
1010 	return ptr;
1011 }
1012 
lrc_init_state(struct intel_context * ce,struct intel_engine_cs * engine,void * state)1013 void lrc_init_state(struct intel_context *ce,
1014 		    struct intel_engine_cs *engine,
1015 		    void *state)
1016 {
1017 	bool inhibit = true;
1018 
1019 	set_redzone(state, engine);
1020 
1021 	if (engine->default_state) {
1022 #ifdef __linux__
1023 		shmem_read(engine->default_state, 0,
1024 			   state, engine->context_size);
1025 #else
1026 		uao_read(engine->default_state, 0,
1027 			   state, engine->context_size);
1028 #endif
1029 		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
1030 		inhibit = false;
1031 	}
1032 
1033 	/* Clear the ppHWSP (inc. per-context counters) */
1034 	memset(state, 0, PAGE_SIZE);
1035 
1036 	/* Clear the indirect wa and storage */
1037 	if (ce->wa_bb_page)
1038 		memset(state + context_wa_bb_offset(ce), 0, PAGE_SIZE);
1039 
1040 	/*
1041 	 * The second page of the context object contains some registers which
1042 	 * must be set up prior to the first execution.
1043 	 */
1044 	__lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit);
1045 }
1046 
lrc_indirect_bb(const struct intel_context * ce)1047 u32 lrc_indirect_bb(const struct intel_context *ce)
1048 {
1049 	return i915_ggtt_offset(ce->state) + context_wa_bb_offset(ce);
1050 }
1051 
setup_predicate_disable_wa(const struct intel_context * ce,u32 * cs)1052 static u32 *setup_predicate_disable_wa(const struct intel_context *ce, u32 *cs)
1053 {
1054 	/* If predication is active, this will be noop'ed */
1055 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1056 	*cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1057 	*cs++ = 0;
1058 	*cs++ = 0; /* No predication */
1059 
1060 	/* predicated end, only terminates if SET_PREDICATE_RESULT:0 is clear */
1061 	*cs++ = MI_BATCH_BUFFER_END | BIT(15);
1062 	*cs++ = MI_SET_PREDICATE | MI_SET_PREDICATE_DISABLE;
1063 
1064 	/* Instructions are no longer predicated (disabled), we can proceed */
1065 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1066 	*cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1067 	*cs++ = 0;
1068 	*cs++ = 1; /* enable predication before the next BB */
1069 
1070 	*cs++ = MI_BATCH_BUFFER_END;
1071 	GEM_BUG_ON(offset_in_page(cs) > DG2_PREDICATE_RESULT_WA);
1072 
1073 	return cs;
1074 }
1075 
1076 static struct i915_vma *
__lrc_alloc_state(struct intel_context * ce,struct intel_engine_cs * engine)1077 __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine)
1078 {
1079 	struct drm_i915_gem_object *obj;
1080 	struct i915_vma *vma;
1081 	u32 context_size;
1082 
1083 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
1084 
1085 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1086 		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
1087 
1088 	if (GRAPHICS_VER(engine->i915) >= 12) {
1089 		ce->wa_bb_page = context_size / PAGE_SIZE;
1090 		context_size += PAGE_SIZE;
1091 	}
1092 
1093 	if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) {
1094 		ce->parallel.guc.parent_page = context_size / PAGE_SIZE;
1095 		context_size += PARENT_SCRATCH_SIZE;
1096 	}
1097 
1098 	obj = i915_gem_object_create_lmem(engine->i915, context_size,
1099 					  I915_BO_ALLOC_PM_VOLATILE);
1100 	if (IS_ERR(obj)) {
1101 		obj = i915_gem_object_create_shmem(engine->i915, context_size);
1102 		if (IS_ERR(obj))
1103 			return ERR_CAST(obj);
1104 
1105 		/*
1106 		 * Wa_22016122933: For Media version 13.0, all Media GT shared
1107 		 * memory needs to be mapped as WC on CPU side and UC (PAT
1108 		 * index 2) on GPU side.
1109 		 */
1110 		if (intel_gt_needs_wa_22016122933(engine->gt))
1111 			i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
1112 	}
1113 
1114 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1115 	if (IS_ERR(vma)) {
1116 		i915_gem_object_put(obj);
1117 		return vma;
1118 	}
1119 
1120 	return vma;
1121 }
1122 
1123 static struct intel_timeline *
pinned_timeline(struct intel_context * ce,struct intel_engine_cs * engine)1124 pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine)
1125 {
1126 	struct intel_timeline *tl = fetch_and_zero(&ce->timeline);
1127 
1128 	return intel_timeline_create_from_engine(engine, page_unmask_bits(tl));
1129 }
1130 
lrc_alloc(struct intel_context * ce,struct intel_engine_cs * engine)1131 int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine)
1132 {
1133 	struct intel_ring *ring;
1134 	struct i915_vma *vma;
1135 	int err;
1136 
1137 	GEM_BUG_ON(ce->state);
1138 
1139 	vma = __lrc_alloc_state(ce, engine);
1140 	if (IS_ERR(vma))
1141 		return PTR_ERR(vma);
1142 
1143 	ring = intel_engine_create_ring(engine, ce->ring_size);
1144 	if (IS_ERR(ring)) {
1145 		err = PTR_ERR(ring);
1146 		goto err_vma;
1147 	}
1148 
1149 	if (!page_mask_bits(ce->timeline)) {
1150 		struct intel_timeline *tl;
1151 
1152 		/*
1153 		 * Use the static global HWSP for the kernel context, and
1154 		 * a dynamically allocated cacheline for everyone else.
1155 		 */
1156 		if (unlikely(ce->timeline))
1157 			tl = pinned_timeline(ce, engine);
1158 		else
1159 			tl = intel_timeline_create(engine->gt);
1160 		if (IS_ERR(tl)) {
1161 			err = PTR_ERR(tl);
1162 			goto err_ring;
1163 		}
1164 
1165 		ce->timeline = tl;
1166 	}
1167 
1168 	ce->ring = ring;
1169 	ce->state = vma;
1170 
1171 	return 0;
1172 
1173 err_ring:
1174 	intel_ring_put(ring);
1175 err_vma:
1176 	i915_vma_put(vma);
1177 	return err;
1178 }
1179 
lrc_reset(struct intel_context * ce)1180 void lrc_reset(struct intel_context *ce)
1181 {
1182 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1183 
1184 	intel_ring_reset(ce->ring, ce->ring->emit);
1185 
1186 	/* Scrub away the garbage */
1187 	lrc_init_regs(ce, ce->engine, true);
1188 	ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail);
1189 }
1190 
1191 int
lrc_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)1192 lrc_pre_pin(struct intel_context *ce,
1193 	    struct intel_engine_cs *engine,
1194 	    struct i915_gem_ww_ctx *ww,
1195 	    void **vaddr)
1196 {
1197 	GEM_BUG_ON(!ce->state);
1198 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1199 
1200 	*vaddr = i915_gem_object_pin_map(ce->state->obj,
1201 					 intel_gt_coherent_map_type(ce->engine->gt,
1202 								    ce->state->obj,
1203 								    false) |
1204 					 I915_MAP_OVERRIDE);
1205 
1206 	return PTR_ERR_OR_ZERO(*vaddr);
1207 }
1208 
1209 int
lrc_pin(struct intel_context * ce,struct intel_engine_cs * engine,void * vaddr)1210 lrc_pin(struct intel_context *ce,
1211 	struct intel_engine_cs *engine,
1212 	void *vaddr)
1213 {
1214 	ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
1215 
1216 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags))
1217 		lrc_init_state(ce, engine, vaddr);
1218 
1219 	ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail);
1220 	return 0;
1221 }
1222 
lrc_unpin(struct intel_context * ce)1223 void lrc_unpin(struct intel_context *ce)
1224 {
1225 	if (unlikely(ce->parallel.last_rq)) {
1226 		i915_request_put(ce->parallel.last_rq);
1227 		ce->parallel.last_rq = NULL;
1228 	}
1229 	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
1230 		      ce->engine);
1231 }
1232 
lrc_post_unpin(struct intel_context * ce)1233 void lrc_post_unpin(struct intel_context *ce)
1234 {
1235 	i915_gem_object_unpin_map(ce->state->obj);
1236 }
1237 
lrc_fini(struct intel_context * ce)1238 void lrc_fini(struct intel_context *ce)
1239 {
1240 	if (!ce->state)
1241 		return;
1242 
1243 	intel_ring_put(fetch_and_zero(&ce->ring));
1244 	i915_vma_put(fetch_and_zero(&ce->state));
1245 }
1246 
lrc_destroy(struct kref * kref)1247 void lrc_destroy(struct kref *kref)
1248 {
1249 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1250 
1251 	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1252 	GEM_BUG_ON(intel_context_is_pinned(ce));
1253 
1254 	lrc_fini(ce);
1255 
1256 	intel_context_fini(ce);
1257 	intel_context_free(ce);
1258 }
1259 
1260 static u32 *
gen12_emit_timestamp_wa(const struct intel_context * ce,u32 * cs)1261 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
1262 {
1263 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1264 		MI_SRM_LRM_GLOBAL_GTT |
1265 		MI_LRI_LRM_CS_MMIO;
1266 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1267 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1268 		CTX_TIMESTAMP * sizeof(u32);
1269 	*cs++ = 0;
1270 
1271 	*cs++ = MI_LOAD_REGISTER_REG |
1272 		MI_LRR_SOURCE_CS_MMIO |
1273 		MI_LRI_LRM_CS_MMIO;
1274 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1275 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1276 
1277 	*cs++ = MI_LOAD_REGISTER_REG |
1278 		MI_LRR_SOURCE_CS_MMIO |
1279 		MI_LRI_LRM_CS_MMIO;
1280 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1281 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1282 
1283 	return cs;
1284 }
1285 
1286 static u32 *
gen12_emit_restore_scratch(const struct intel_context * ce,u32 * cs)1287 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
1288 {
1289 	GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);
1290 
1291 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1292 		MI_SRM_LRM_GLOBAL_GTT |
1293 		MI_LRI_LRM_CS_MMIO;
1294 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1295 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1296 		(lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
1297 	*cs++ = 0;
1298 
1299 	return cs;
1300 }
1301 
1302 static u32 *
gen12_emit_cmd_buf_wa(const struct intel_context * ce,u32 * cs)1303 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
1304 {
1305 	GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);
1306 
1307 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1308 		MI_SRM_LRM_GLOBAL_GTT |
1309 		MI_LRI_LRM_CS_MMIO;
1310 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1311 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1312 		(lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
1313 	*cs++ = 0;
1314 
1315 	*cs++ = MI_LOAD_REGISTER_REG |
1316 		MI_LRR_SOURCE_CS_MMIO |
1317 		MI_LRI_LRM_CS_MMIO;
1318 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1319 	*cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));
1320 
1321 	return cs;
1322 }
1323 
1324 /*
1325  * The bspec's tuning guide asks us to program a vertical watermark value of
1326  * 0x3FF.  However this register is not saved/restored properly by the
1327  * hardware, so we're required to apply the desired value via INDIRECT_CTX
1328  * batch buffer to ensure the value takes effect properly.  All other bits
1329  * in this register should remain at 0 (the hardware default).
1330  */
1331 static u32 *
dg2_emit_draw_watermark_setting(u32 * cs)1332 dg2_emit_draw_watermark_setting(u32 *cs)
1333 {
1334 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1335 	*cs++ = i915_mmio_reg_offset(DRAW_WATERMARK);
1336 	*cs++ = REG_FIELD_PREP(VERT_WM_VAL, 0x3FF);
1337 
1338 	return cs;
1339 }
1340 
1341 static u32 *
gen12_emit_indirect_ctx_rcs(const struct intel_context * ce,u32 * cs)1342 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
1343 {
1344 	cs = gen12_emit_timestamp_wa(ce, cs);
1345 	cs = gen12_emit_cmd_buf_wa(ce, cs);
1346 	cs = gen12_emit_restore_scratch(ce, cs);
1347 
1348 	/* Wa_16013000631:dg2 */
1349 	if (IS_DG2_G11(ce->engine->i915))
1350 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0);
1351 
1352 	cs = gen12_emit_aux_table_inv(ce->engine, cs);
1353 
1354 	/* Wa_16014892111 */
1355 	if (IS_GFX_GT_IP_STEP(ce->engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1356 	    IS_GFX_GT_IP_STEP(ce->engine->gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
1357 	    IS_DG2(ce->engine->i915))
1358 		cs = dg2_emit_draw_watermark_setting(cs);
1359 
1360 	return cs;
1361 }
1362 
1363 static u32 *
gen12_emit_indirect_ctx_xcs(const struct intel_context * ce,u32 * cs)1364 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
1365 {
1366 	cs = gen12_emit_timestamp_wa(ce, cs);
1367 	cs = gen12_emit_restore_scratch(ce, cs);
1368 
1369 	/* Wa_16013000631:dg2 */
1370 	if (IS_DG2_G11(ce->engine->i915))
1371 		if (ce->engine->class == COMPUTE_CLASS)
1372 			cs = gen8_emit_pipe_control(cs,
1373 						    PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE,
1374 						    0);
1375 
1376 	return gen12_emit_aux_table_inv(ce->engine, cs);
1377 }
1378 
1379 static void
setup_indirect_ctx_bb(const struct intel_context * ce,const struct intel_engine_cs * engine,u32 * (* emit)(const struct intel_context *,u32 *))1380 setup_indirect_ctx_bb(const struct intel_context *ce,
1381 		      const struct intel_engine_cs *engine,
1382 		      u32 *(*emit)(const struct intel_context *, u32 *))
1383 {
1384 	u32 * const start = context_indirect_bb(ce);
1385 	u32 *cs;
1386 
1387 	cs = emit(ce, start);
1388 	GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
1389 	while ((unsigned long)cs % CACHELINE_BYTES)
1390 		*cs++ = MI_NOOP;
1391 
1392 	GEM_BUG_ON(cs - start > DG2_PREDICATE_RESULT_BB / sizeof(*start));
1393 	setup_predicate_disable_wa(ce, start + DG2_PREDICATE_RESULT_BB / sizeof(*start));
1394 
1395 	lrc_setup_indirect_ctx(ce->lrc_reg_state, engine,
1396 			       lrc_indirect_bb(ce),
1397 			       (cs - start) * sizeof(*cs));
1398 }
1399 
1400 /*
1401  * The context descriptor encodes various attributes of a context,
1402  * including its GTT address and some flags. Because it's fairly
1403  * expensive to calculate, we'll just do it once and cache the result,
1404  * which remains valid until the context is unpinned.
1405  *
1406  * This is what a descriptor looks like, from LSB to MSB::
1407  *
1408  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
1409  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
1410  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
1411  *      bits 53-54:    mbz, reserved for use by hardware
1412  *      bits 55-63:    group ID, currently unused and set to 0
1413  *
1414  * Starting from Gen11, the upper dword of the descriptor has a new format:
1415  *
1416  *      bits 32-36:    reserved
1417  *      bits 37-47:    SW context ID
1418  *      bits 48:53:    engine instance
1419  *      bit 54:        mbz, reserved for use by hardware
1420  *      bits 55-60:    SW counter
1421  *      bits 61-63:    engine class
1422  *
1423  * On Xe_HP, the upper dword of the descriptor has a new format:
1424  *
1425  *      bits 32-37:    virtual function number
1426  *      bit 38:        mbz, reserved for use by hardware
1427  *      bits 39-54:    SW context ID
1428  *      bits 55-57:    reserved
1429  *      bits 58-63:    SW counter
1430  *
1431  * engine info, SW context ID and SW counter need to form a unique number
1432  * (Context ID) per lrc.
1433  */
lrc_descriptor(const struct intel_context * ce)1434 static u32 lrc_descriptor(const struct intel_context *ce)
1435 {
1436 	u32 desc;
1437 
1438 	desc = INTEL_LEGACY_32B_CONTEXT;
1439 	if (i915_vm_is_4lvl(ce->vm))
1440 		desc = INTEL_LEGACY_64B_CONTEXT;
1441 	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
1442 
1443 	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
1444 	if (GRAPHICS_VER(ce->vm->i915) == 8)
1445 		desc |= GEN8_CTX_L3LLC_COHERENT;
1446 
1447 	return i915_ggtt_offset(ce->state) | desc;
1448 }
1449 
lrc_update_regs(const struct intel_context * ce,const struct intel_engine_cs * engine,u32 head)1450 u32 lrc_update_regs(const struct intel_context *ce,
1451 		    const struct intel_engine_cs *engine,
1452 		    u32 head)
1453 {
1454 	struct intel_ring *ring = ce->ring;
1455 	u32 *regs = ce->lrc_reg_state;
1456 
1457 	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
1458 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1459 
1460 	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1461 	regs[CTX_RING_HEAD] = head;
1462 	regs[CTX_RING_TAIL] = ring->tail;
1463 	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1464 
1465 	/* RPCS */
1466 	if (engine->class == RENDER_CLASS) {
1467 		regs[CTX_R_PWR_CLK_STATE] =
1468 			intel_sseu_make_rpcs(engine->gt, &ce->sseu);
1469 
1470 		i915_oa_init_reg_state(ce, engine);
1471 	}
1472 
1473 	if (ce->wa_bb_page) {
1474 		u32 *(*fn)(const struct intel_context *ce, u32 *cs);
1475 
1476 		fn = gen12_emit_indirect_ctx_xcs;
1477 		if (ce->engine->class == RENDER_CLASS)
1478 			fn = gen12_emit_indirect_ctx_rcs;
1479 
1480 		/* Mutually exclusive wrt to global indirect bb */
1481 		GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
1482 		setup_indirect_ctx_bb(ce, engine, fn);
1483 	}
1484 
1485 	return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE;
1486 }
1487 
lrc_update_offsets(struct intel_context * ce,struct intel_engine_cs * engine)1488 void lrc_update_offsets(struct intel_context *ce,
1489 			struct intel_engine_cs *engine)
1490 {
1491 	set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false);
1492 }
1493 
lrc_check_regs(const struct intel_context * ce,const struct intel_engine_cs * engine,const char * when)1494 void lrc_check_regs(const struct intel_context *ce,
1495 		    const struct intel_engine_cs *engine,
1496 		    const char *when)
1497 {
1498 	const struct intel_ring *ring = ce->ring;
1499 	u32 *regs = ce->lrc_reg_state;
1500 	bool valid = true;
1501 	int x;
1502 
1503 	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1504 		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1505 		       engine->name,
1506 		       regs[CTX_RING_START],
1507 		       i915_ggtt_offset(ring->vma));
1508 		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1509 		valid = false;
1510 	}
1511 
1512 	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1513 	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1514 		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1515 		       engine->name,
1516 		       regs[CTX_RING_CTL],
1517 		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1518 		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1519 		valid = false;
1520 	}
1521 
1522 	x = lrc_ring_mi_mode(engine);
1523 	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1524 		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1525 		       engine->name, regs[x + 1]);
1526 		regs[x + 1] &= ~STOP_RING;
1527 		regs[x + 1] |= STOP_RING << 16;
1528 		valid = false;
1529 	}
1530 
1531 	WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when);
1532 }
1533 
1534 /*
1535  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1536  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1537  * but there is a slight complication as this is applied in WA batch where the
1538  * values are only initialized once so we cannot take register value at the
1539  * beginning and reuse it further; hence we save its value to memory, upload a
1540  * constant value with bit21 set and then we restore it back with the saved value.
1541  * To simplify the WA, a constant value is formed by using the default value
1542  * of this register. This shouldn't be a problem because we are only modifying
1543  * it for a short period and this batch in non-premptible. We can ofcourse
1544  * use additional instructions that read the actual value of the register
1545  * at that time and set our bit of interest but it makes the WA complicated.
1546  *
1547  * This WA is also required for Gen9 so extracting as a function avoids
1548  * code duplication.
1549  */
1550 static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs * engine,u32 * batch)1551 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1552 {
1553 	/* NB no one else is allowed to scribble over scratch + 256! */
1554 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1555 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1556 	*batch++ = intel_gt_scratch_offset(engine->gt,
1557 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1558 	*batch++ = 0;
1559 
1560 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1561 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1562 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1563 
1564 	batch = gen8_emit_pipe_control(batch,
1565 				       PIPE_CONTROL_CS_STALL |
1566 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1567 				       0);
1568 
1569 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1570 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1571 	*batch++ = intel_gt_scratch_offset(engine->gt,
1572 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1573 	*batch++ = 0;
1574 
1575 	return batch;
1576 }
1577 
1578 /*
1579  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1580  * initialized at the beginning and shared across all contexts but this field
1581  * helps us to have multiple batches at different offsets and select them based
1582  * on a criteria. At the moment this batch always start at the beginning of the page
1583  * and at this point we don't have multiple wa_ctx batch buffers.
1584  *
1585  * The number of WA applied are not known at the beginning; we use this field
1586  * to return the no of DWORDS written.
1587  *
1588  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1589  * so it adds NOOPs as padding to make it cacheline aligned.
1590  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1591  * makes a complete batch buffer.
1592  */
gen8_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1593 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1594 {
1595 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1596 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1597 
1598 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1599 	if (IS_BROADWELL(engine->i915))
1600 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1601 
1602 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1603 	/* Actual scratch location is at 128 bytes offset */
1604 	batch = gen8_emit_pipe_control(batch,
1605 				       PIPE_CONTROL_FLUSH_L3 |
1606 				       PIPE_CONTROL_STORE_DATA_INDEX |
1607 				       PIPE_CONTROL_CS_STALL |
1608 				       PIPE_CONTROL_QW_WRITE,
1609 				       LRC_PPHWSP_SCRATCH_ADDR);
1610 
1611 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1612 
1613 	/* Pad to end of cacheline */
1614 	while ((unsigned long)batch % CACHELINE_BYTES)
1615 		*batch++ = MI_NOOP;
1616 
1617 	/*
1618 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1619 	 * execution depends on the length specified in terms of cache lines
1620 	 * in the register CTX_RCS_INDIRECT_CTX
1621 	 */
1622 
1623 	return batch;
1624 }
1625 
1626 struct lri {
1627 	i915_reg_t reg;
1628 	u32 value;
1629 };
1630 
emit_lri(u32 * batch,const struct lri * lri,unsigned int count)1631 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1632 {
1633 	GEM_BUG_ON(!count || count > 63);
1634 
1635 	*batch++ = MI_LOAD_REGISTER_IMM(count);
1636 	do {
1637 		*batch++ = i915_mmio_reg_offset(lri->reg);
1638 		*batch++ = lri->value;
1639 	} while (lri++, --count);
1640 	*batch++ = MI_NOOP;
1641 
1642 	return batch;
1643 }
1644 
gen9_init_indirectctx_bb(struct intel_engine_cs * engine,u32 * batch)1645 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1646 {
1647 	static const struct lri lri[] = {
1648 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1649 		{
1650 			COMMON_SLICE_CHICKEN2,
1651 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1652 				       0),
1653 		},
1654 
1655 		/* BSpec: 11391 */
1656 		{
1657 			FF_SLICE_CHICKEN,
1658 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1659 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1660 		},
1661 
1662 		/* BSpec: 11299 */
1663 		{
1664 			_3D_CHICKEN3,
1665 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1666 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1667 		}
1668 	};
1669 
1670 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1671 
1672 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1673 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1674 
1675 	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1676 	batch = gen8_emit_pipe_control(batch,
1677 				       PIPE_CONTROL_FLUSH_L3 |
1678 				       PIPE_CONTROL_STORE_DATA_INDEX |
1679 				       PIPE_CONTROL_CS_STALL |
1680 				       PIPE_CONTROL_QW_WRITE,
1681 				       LRC_PPHWSP_SCRATCH_ADDR);
1682 
1683 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1684 
1685 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1686 	if (HAS_POOLED_EU(engine->i915)) {
1687 		/*
1688 		 * EU pool configuration is setup along with golden context
1689 		 * during context initialization. This value depends on
1690 		 * device type (2x6 or 3x6) and needs to be updated based
1691 		 * on which subslice is disabled especially for 2x6
1692 		 * devices, however it is safe to load default
1693 		 * configuration of 3x6 device instead of masking off
1694 		 * corresponding bits because HW ignores bits of a disabled
1695 		 * subslice and drops down to appropriate config. Please
1696 		 * see render_state_setup() in i915_gem_render_state.c for
1697 		 * possible configurations, to avoid duplication they are
1698 		 * not shown here again.
1699 		 */
1700 		*batch++ = GEN9_MEDIA_POOL_STATE;
1701 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1702 		*batch++ = 0x00777000;
1703 		*batch++ = 0;
1704 		*batch++ = 0;
1705 		*batch++ = 0;
1706 	}
1707 
1708 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1709 
1710 	/* Pad to end of cacheline */
1711 	while ((unsigned long)batch % CACHELINE_BYTES)
1712 		*batch++ = MI_NOOP;
1713 
1714 	return batch;
1715 }
1716 
1717 #define CTX_WA_BB_SIZE (PAGE_SIZE)
1718 
lrc_create_wa_ctx(struct intel_engine_cs * engine)1719 static int lrc_create_wa_ctx(struct intel_engine_cs *engine)
1720 {
1721 	struct drm_i915_gem_object *obj;
1722 	struct i915_vma *vma;
1723 	int err;
1724 
1725 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE);
1726 	if (IS_ERR(obj))
1727 		return PTR_ERR(obj);
1728 
1729 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1730 	if (IS_ERR(vma)) {
1731 		err = PTR_ERR(vma);
1732 		goto err;
1733 	}
1734 
1735 	engine->wa_ctx.vma = vma;
1736 	return 0;
1737 
1738 err:
1739 	i915_gem_object_put(obj);
1740 	return err;
1741 }
1742 
lrc_fini_wa_ctx(struct intel_engine_cs * engine)1743 void lrc_fini_wa_ctx(struct intel_engine_cs *engine)
1744 {
1745 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1746 }
1747 
1748 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1749 
lrc_init_wa_ctx(struct intel_engine_cs * engine)1750 void lrc_init_wa_ctx(struct intel_engine_cs *engine)
1751 {
1752 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1753 	struct i915_wa_ctx_bb *wa_bb[] = {
1754 		&wa_ctx->indirect_ctx, &wa_ctx->per_ctx
1755 	};
1756 	wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)];
1757 	struct i915_gem_ww_ctx ww;
1758 	void *batch, *batch_ptr;
1759 	unsigned int i;
1760 	int err;
1761 
1762 	if (GRAPHICS_VER(engine->i915) >= 11 ||
1763 	    !(engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
1764 		return;
1765 
1766 	if (GRAPHICS_VER(engine->i915) == 9) {
1767 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1768 		wa_bb_fn[1] = NULL;
1769 	} else if (GRAPHICS_VER(engine->i915) == 8) {
1770 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1771 		wa_bb_fn[1] = NULL;
1772 	}
1773 
1774 	err = lrc_create_wa_ctx(engine);
1775 	if (err) {
1776 		/*
1777 		 * We continue even if we fail to initialize WA batch
1778 		 * because we only expect rare glitches but nothing
1779 		 * critical to prevent us from using GPU
1780 		 */
1781 		drm_err(&engine->i915->drm,
1782 			"Ignoring context switch w/a allocation error:%d\n",
1783 			err);
1784 		return;
1785 	}
1786 
1787 	if (!engine->wa_ctx.vma)
1788 		return;
1789 
1790 	i915_gem_ww_ctx_init(&ww, true);
1791 retry:
1792 	err = i915_gem_object_lock(wa_ctx->vma->obj, &ww);
1793 	if (!err)
1794 		err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH);
1795 	if (err)
1796 		goto err;
1797 
1798 	batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB);
1799 	if (IS_ERR(batch)) {
1800 		err = PTR_ERR(batch);
1801 		goto err_unpin;
1802 	}
1803 
1804 	/*
1805 	 * Emit the two workaround batch buffers, recording the offset from the
1806 	 * start of the workaround batch buffer object for each and their
1807 	 * respective sizes.
1808 	 */
1809 	batch_ptr = batch;
1810 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1811 		wa_bb[i]->offset = batch_ptr - batch;
1812 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1813 						  CACHELINE_BYTES))) {
1814 			err = -EINVAL;
1815 			break;
1816 		}
1817 		if (wa_bb_fn[i])
1818 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1819 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1820 	}
1821 	GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE);
1822 
1823 	__i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch);
1824 	__i915_gem_object_release_map(wa_ctx->vma->obj);
1825 
1826 	/* Verify that we can handle failure to setup the wa_ctx */
1827 	if (!err)
1828 		err = i915_inject_probe_error(engine->i915, -ENODEV);
1829 
1830 err_unpin:
1831 	if (err)
1832 		i915_vma_unpin(wa_ctx->vma);
1833 err:
1834 	if (err == -EDEADLK) {
1835 		err = i915_gem_ww_ctx_backoff(&ww);
1836 		if (!err)
1837 			goto retry;
1838 	}
1839 	i915_gem_ww_ctx_fini(&ww);
1840 
1841 	if (err) {
1842 		i915_vma_put(engine->wa_ctx.vma);
1843 
1844 		/* Clear all flags to prevent further use */
1845 		memset(wa_ctx, 0, sizeof(*wa_ctx));
1846 	}
1847 }
1848 
st_runtime_underflow(struct intel_context_stats * stats,s32 dt)1849 static void st_runtime_underflow(struct intel_context_stats *stats, s32 dt)
1850 {
1851 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1852 	stats->runtime.num_underflow++;
1853 	stats->runtime.max_underflow =
1854 		max_t(u32, stats->runtime.max_underflow, -dt);
1855 #endif
1856 }
1857 
lrc_get_runtime(const struct intel_context * ce)1858 static u32 lrc_get_runtime(const struct intel_context *ce)
1859 {
1860 	/*
1861 	 * We can use either ppHWSP[16] which is recorded before the context
1862 	 * switch (and so excludes the cost of context switches) or use the
1863 	 * value from the context image itself, which is saved/restored earlier
1864 	 * and so includes the cost of the save.
1865 	 */
1866 	return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
1867 }
1868 
lrc_update_runtime(struct intel_context * ce)1869 void lrc_update_runtime(struct intel_context *ce)
1870 {
1871 	struct intel_context_stats *stats = &ce->stats;
1872 	u32 old;
1873 	s32 dt;
1874 
1875 	old = stats->runtime.last;
1876 	stats->runtime.last = lrc_get_runtime(ce);
1877 	dt = stats->runtime.last - old;
1878 	if (!dt)
1879 		return;
1880 
1881 	if (unlikely(dt < 0)) {
1882 		CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
1883 			 old, stats->runtime.last, dt);
1884 		st_runtime_underflow(stats, dt);
1885 		return;
1886 	}
1887 
1888 	ewma_runtime_add(&stats->runtime.avg, dt);
1889 	stats->runtime.total += dt;
1890 }
1891 
1892 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1893 #include "selftest_lrc.c"
1894 #endif
1895