xref: /openbsd/sys/dev/pci/drm/i915/i915_vma.c (revision 7f10cbd3)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28 
29 #include "display/intel_display.h"
30 #include "display/intel_frontbuffer.h"
31 #include "gem/i915_gem_lmem.h"
32 #include "gem/i915_gem_tiling.h"
33 #include "gt/intel_engine.h"
34 #include "gt/intel_engine_heartbeat.h"
35 #include "gt/intel_gt.h"
36 #include "gt/intel_gt_pm.h"
37 #include "gt/intel_gt_requests.h"
38 #include "gt/intel_tlb.h"
39 
40 #include "i915_drv.h"
41 #include "i915_gem_evict.h"
42 #include "i915_sw_fence_work.h"
43 #include "i915_trace.h"
44 #include "i915_vma.h"
45 #include "i915_vma_resource.h"
46 
assert_vma_held_evict(const struct i915_vma * vma)47 static inline void assert_vma_held_evict(const struct i915_vma *vma)
48 {
49 	/*
50 	 * We may be forced to unbind when the vm is dead, to clean it up.
51 	 * This is the only exception to the requirement of the object lock
52 	 * being held.
53 	 */
54 	if (kref_read(&vma->vm->ref))
55 		assert_object_held_shared(vma->obj);
56 }
57 
58 static struct pool slab_vmas;
59 
i915_vma_alloc(void)60 static struct i915_vma *i915_vma_alloc(void)
61 {
62 #ifdef __linux__
63 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
64 #else
65 	return pool_get(&slab_vmas, PR_WAITOK | PR_ZERO);
66 #endif
67 }
68 
i915_vma_free(struct i915_vma * vma)69 static void i915_vma_free(struct i915_vma *vma)
70 {
71 #ifdef __linux__
72 	return kmem_cache_free(slab_vmas, vma);
73 #else
74 	pool_put(&slab_vmas, vma);
75 #endif
76 }
77 
78 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
79 
80 #include <linux/stackdepot.h>
81 
vma_print_allocator(struct i915_vma * vma,const char * reason)82 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
83 {
84 	char buf[512];
85 
86 	if (!vma->node.stack) {
87 		drm_dbg(vma->obj->base.dev,
88 			"vma.node [%08llx + %08llx] %s: unknown owner\n",
89 			vma->node.start, vma->node.size, reason);
90 		return;
91 	}
92 
93 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
94 	drm_dbg(vma->obj->base.dev,
95 		"vma.node [%08llx + %08llx] %s: inserted at %s\n",
96 		vma->node.start, vma->node.size, reason, buf);
97 }
98 
99 #else
100 
vma_print_allocator(struct i915_vma * vma,const char * reason)101 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
102 {
103 }
104 
105 #endif
106 
active_to_vma(struct i915_active * ref)107 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
108 {
109 	return container_of(ref, typeof(struct i915_vma), active);
110 }
111 
__i915_vma_active(struct i915_active * ref)112 static int __i915_vma_active(struct i915_active *ref)
113 {
114 	struct i915_vma *vma = active_to_vma(ref);
115 
116 	if (!i915_vma_tryget(vma))
117 		return -ENOENT;
118 
119 	/*
120 	 * Exclude global GTT VMA from holding a GT wakeref
121 	 * while active, otherwise GPU never goes idle.
122 	 */
123 	if (!i915_vma_is_ggtt(vma))
124 		intel_gt_pm_get(vma->vm->gt);
125 
126 	return 0;
127 }
128 
__i915_vma_retire(struct i915_active * ref)129 static void __i915_vma_retire(struct i915_active *ref)
130 {
131 	struct i915_vma *vma = active_to_vma(ref);
132 
133 	if (!i915_vma_is_ggtt(vma)) {
134 		/*
135 		 * Since we can be called from atomic contexts,
136 		 * use an async variant of intel_gt_pm_put().
137 		 */
138 		intel_gt_pm_put_async(vma->vm->gt);
139 	}
140 
141 	i915_vma_put(vma);
142 }
143 
144 static struct i915_vma *
vma_create(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_gtt_view * view)145 vma_create(struct drm_i915_gem_object *obj,
146 	   struct i915_address_space *vm,
147 	   const struct i915_gtt_view *view)
148 {
149 	struct i915_vma *pos = ERR_PTR(-E2BIG);
150 	struct i915_vma *vma;
151 	struct rb_node *rb, **p;
152 	int err;
153 
154 	/* The aliasing_ppgtt should never be used directly! */
155 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
156 
157 	vma = i915_vma_alloc();
158 	if (vma == NULL)
159 		return ERR_PTR(-ENOMEM);
160 
161 	vma->ops = &vm->vma_ops;
162 	vma->obj = obj;
163 	vma->size = obj->base.size;
164 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
165 
166 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
167 
168 #ifdef notyet
169 	/* Declare ourselves safe for use inside shrinkers */
170 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
171 		fs_reclaim_acquire(GFP_KERNEL);
172 		might_lock(&vma->active.mutex);
173 		fs_reclaim_release(GFP_KERNEL);
174 	}
175 #endif
176 
177 	INIT_LIST_HEAD(&vma->closed_link);
178 	INIT_LIST_HEAD(&vma->obj_link);
179 	RB_CLEAR_NODE(&vma->obj_node);
180 
181 	if (view && view->type != I915_GTT_VIEW_NORMAL) {
182 		vma->gtt_view = *view;
183 		if (view->type == I915_GTT_VIEW_PARTIAL) {
184 			GEM_BUG_ON(range_overflows_t(u64,
185 						     view->partial.offset,
186 						     view->partial.size,
187 						     obj->base.size >> PAGE_SHIFT));
188 			vma->size = view->partial.size;
189 			vma->size <<= PAGE_SHIFT;
190 			GEM_BUG_ON(vma->size > obj->base.size);
191 		} else if (view->type == I915_GTT_VIEW_ROTATED) {
192 			vma->size = intel_rotation_info_size(&view->rotated);
193 			vma->size <<= PAGE_SHIFT;
194 		} else if (view->type == I915_GTT_VIEW_REMAPPED) {
195 			vma->size = intel_remapped_info_size(&view->remapped);
196 			vma->size <<= PAGE_SHIFT;
197 		}
198 	}
199 
200 	if (unlikely(vma->size > vm->total))
201 		goto err_vma;
202 
203 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
204 
205 	err = mutex_lock_interruptible(&vm->mutex);
206 	if (err) {
207 		pos = ERR_PTR(err);
208 		goto err_vma;
209 	}
210 
211 	vma->vm = vm;
212 	list_add_tail(&vma->vm_link, &vm->unbound_list);
213 
214 	spin_lock(&obj->vma.lock);
215 	if (i915_is_ggtt(vm)) {
216 		if (unlikely(overflows_type(vma->size, u32)))
217 			goto err_unlock;
218 
219 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
220 						      i915_gem_object_get_tiling(obj),
221 						      i915_gem_object_get_stride(obj));
222 		if (unlikely(vma->fence_size < vma->size || /* overflow */
223 			     vma->fence_size > vm->total))
224 			goto err_unlock;
225 
226 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
227 
228 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
229 								i915_gem_object_get_tiling(obj),
230 								i915_gem_object_get_stride(obj));
231 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
232 
233 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
234 	}
235 
236 	rb = NULL;
237 	p = &obj->vma.tree.rb_node;
238 	while (*p) {
239 		long cmp;
240 
241 		rb = *p;
242 		pos = rb_entry(rb, struct i915_vma, obj_node);
243 
244 		/*
245 		 * If the view already exists in the tree, another thread
246 		 * already created a matching vma, so return the older instance
247 		 * and dispose of ours.
248 		 */
249 		cmp = i915_vma_compare(pos, vm, view);
250 		if (cmp < 0)
251 			p = &rb->rb_right;
252 		else if (cmp > 0)
253 			p = &rb->rb_left;
254 		else
255 			goto err_unlock;
256 	}
257 	rb_link_node(&vma->obj_node, rb, p);
258 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
259 
260 	if (i915_vma_is_ggtt(vma))
261 		/*
262 		 * We put the GGTT vma at the start of the vma-list, followed
263 		 * by the ppGGTT vma. This allows us to break early when
264 		 * iterating over only the GGTT vma for an object, see
265 		 * for_each_ggtt_vma()
266 		 */
267 		list_add(&vma->obj_link, &obj->vma.list);
268 	else
269 		list_add_tail(&vma->obj_link, &obj->vma.list);
270 
271 	spin_unlock(&obj->vma.lock);
272 	mutex_unlock(&vm->mutex);
273 
274 	return vma;
275 
276 err_unlock:
277 	spin_unlock(&obj->vma.lock);
278 	list_del_init(&vma->vm_link);
279 	mutex_unlock(&vm->mutex);
280 err_vma:
281 	i915_vma_free(vma);
282 	return pos;
283 }
284 
285 static struct i915_vma *
i915_vma_lookup(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_gtt_view * view)286 i915_vma_lookup(struct drm_i915_gem_object *obj,
287 	   struct i915_address_space *vm,
288 	   const struct i915_gtt_view *view)
289 {
290 	struct rb_node *rb;
291 
292 	rb = obj->vma.tree.rb_node;
293 	while (rb) {
294 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
295 		long cmp;
296 
297 		cmp = i915_vma_compare(vma, vm, view);
298 		if (cmp == 0)
299 			return vma;
300 
301 		if (cmp < 0)
302 			rb = rb->rb_right;
303 		else
304 			rb = rb->rb_left;
305 	}
306 
307 	return NULL;
308 }
309 
310 /**
311  * i915_vma_instance - return the singleton instance of the VMA
312  * @obj: parent &struct drm_i915_gem_object to be mapped
313  * @vm: address space in which the mapping is located
314  * @view: additional mapping requirements
315  *
316  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
317  * the same @view characteristics. If a match is not found, one is created.
318  * Once created, the VMA is kept until either the object is freed, or the
319  * address space is closed.
320  *
321  * Returns the vma, or an error pointer.
322  */
323 struct i915_vma *
i915_vma_instance(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_gtt_view * view)324 i915_vma_instance(struct drm_i915_gem_object *obj,
325 		  struct i915_address_space *vm,
326 		  const struct i915_gtt_view *view)
327 {
328 	struct i915_vma *vma;
329 
330 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
331 	GEM_BUG_ON(!kref_read(&vm->ref));
332 
333 	spin_lock(&obj->vma.lock);
334 	vma = i915_vma_lookup(obj, vm, view);
335 	spin_unlock(&obj->vma.lock);
336 
337 	/* vma_create() will resolve the race if another creates the vma */
338 	if (unlikely(!vma))
339 		vma = vma_create(obj, vm, view);
340 
341 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
342 	return vma;
343 }
344 
345 struct i915_vma_work {
346 	struct dma_fence_work base;
347 	struct i915_address_space *vm;
348 	struct i915_vm_pt_stash stash;
349 	struct i915_vma_resource *vma_res;
350 	struct drm_i915_gem_object *obj;
351 	struct i915_sw_dma_fence_cb cb;
352 	unsigned int pat_index;
353 	unsigned int flags;
354 };
355 
__vma_bind(struct dma_fence_work * work)356 static void __vma_bind(struct dma_fence_work *work)
357 {
358 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
359 	struct i915_vma_resource *vma_res = vw->vma_res;
360 
361 	/*
362 	 * We are about the bind the object, which must mean we have already
363 	 * signaled the work to potentially clear/move the pages underneath. If
364 	 * something went wrong at that stage then the object should have
365 	 * unknown_state set, in which case we need to skip the bind.
366 	 */
367 	if (i915_gem_object_has_unknown_state(vw->obj))
368 		return;
369 
370 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
371 			       vma_res, vw->pat_index, vw->flags);
372 }
373 
__vma_release(struct dma_fence_work * work)374 static void __vma_release(struct dma_fence_work *work)
375 {
376 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
377 
378 	if (vw->obj)
379 		i915_gem_object_put(vw->obj);
380 
381 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
382 	if (vw->vma_res)
383 		i915_vma_resource_put(vw->vma_res);
384 }
385 
386 static const struct dma_fence_work_ops bind_ops = {
387 	.name = "bind",
388 	.work = __vma_bind,
389 	.release = __vma_release,
390 };
391 
i915_vma_work(void)392 struct i915_vma_work *i915_vma_work(void)
393 {
394 	struct i915_vma_work *vw;
395 
396 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
397 	if (!vw)
398 		return NULL;
399 
400 	dma_fence_work_init(&vw->base, &bind_ops);
401 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
402 
403 	return vw;
404 }
405 
i915_vma_wait_for_bind(struct i915_vma * vma)406 int i915_vma_wait_for_bind(struct i915_vma *vma)
407 {
408 	int err = 0;
409 
410 	if (rcu_access_pointer(vma->active.excl.fence)) {
411 		struct dma_fence *fence;
412 
413 		rcu_read_lock();
414 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
415 		rcu_read_unlock();
416 		if (fence) {
417 			err = dma_fence_wait(fence, true);
418 			dma_fence_put(fence);
419 		}
420 	}
421 
422 	return err;
423 }
424 
425 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
i915_vma_verify_bind_complete(struct i915_vma * vma)426 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
427 {
428 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
429 	int err;
430 
431 	if (!fence)
432 		return 0;
433 
434 	if (dma_fence_is_signaled(fence))
435 		err = fence->error;
436 	else
437 		err = -EBUSY;
438 
439 	dma_fence_put(fence);
440 
441 	return err;
442 }
443 #else
444 #define i915_vma_verify_bind_complete(_vma) 0
445 #endif
446 
447 I915_SELFTEST_EXPORT void
i915_vma_resource_init_from_vma(struct i915_vma_resource * vma_res,struct i915_vma * vma)448 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
449 				struct i915_vma *vma)
450 {
451 	struct drm_i915_gem_object *obj = vma->obj;
452 
453 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
454 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
455 			       i915_gem_object_is_lmem(obj), obj->mm.region,
456 			       vma->ops, vma->private, __i915_vma_offset(vma),
457 			       __i915_vma_size(vma), vma->size, vma->guard);
458 }
459 
460 /**
461  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
462  * @vma: VMA to map
463  * @pat_index: PAT index to set in PTE
464  * @flags: flags like global or local mapping
465  * @work: preallocated worker for allocating and binding the PTE
466  * @vma_res: pointer to a preallocated vma resource. The resource is either
467  * consumed or freed.
468  *
469  * DMA addresses are taken from the scatter-gather table of this object (or of
470  * this VMA in case of non-default GGTT views) and PTE entries set up.
471  * Note that DMA addresses are also the only part of the SG table we care about.
472  */
i915_vma_bind(struct i915_vma * vma,unsigned int pat_index,u32 flags,struct i915_vma_work * work,struct i915_vma_resource * vma_res)473 int i915_vma_bind(struct i915_vma *vma,
474 		  unsigned int pat_index,
475 		  u32 flags,
476 		  struct i915_vma_work *work,
477 		  struct i915_vma_resource *vma_res)
478 {
479 	u32 bind_flags;
480 	u32 vma_flags;
481 	int ret;
482 
483 	lockdep_assert_held(&vma->vm->mutex);
484 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
485 	GEM_BUG_ON(vma->size > i915_vma_size(vma));
486 
487 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
488 					      vma->node.size,
489 					      vma->vm->total))) {
490 		i915_vma_resource_free(vma_res);
491 		return -ENODEV;
492 	}
493 
494 	if (GEM_DEBUG_WARN_ON(!flags)) {
495 		i915_vma_resource_free(vma_res);
496 		return -EINVAL;
497 	}
498 
499 	bind_flags = flags;
500 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
501 
502 	vma_flags = atomic_read(&vma->flags);
503 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
504 
505 	bind_flags &= ~vma_flags;
506 	if (bind_flags == 0) {
507 		i915_vma_resource_free(vma_res);
508 		return 0;
509 	}
510 
511 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
512 
513 	/* Wait for or await async unbinds touching our range */
514 	if (work && bind_flags & vma->vm->bind_async_flags)
515 		ret = i915_vma_resource_bind_dep_await(vma->vm,
516 						       &work->base.chain,
517 						       vma->node.start,
518 						       vma->node.size,
519 						       true,
520 						       GFP_NOWAIT |
521 						       __GFP_RETRY_MAYFAIL |
522 						       __GFP_NOWARN);
523 	else
524 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
525 						      vma->node.size, true);
526 	if (ret) {
527 		i915_vma_resource_free(vma_res);
528 		return ret;
529 	}
530 
531 	if (vma->resource || !vma_res) {
532 		/* Rebinding with an additional I915_VMA_*_BIND */
533 		GEM_WARN_ON(!vma_flags);
534 		i915_vma_resource_free(vma_res);
535 	} else {
536 		i915_vma_resource_init_from_vma(vma_res, vma);
537 		vma->resource = vma_res;
538 	}
539 	trace_i915_vma_bind(vma, bind_flags);
540 	if (work && bind_flags & vma->vm->bind_async_flags) {
541 		struct dma_fence *prev;
542 
543 		work->vma_res = i915_vma_resource_get(vma->resource);
544 		work->pat_index = pat_index;
545 		work->flags = bind_flags;
546 
547 		/*
548 		 * Note we only want to chain up to the migration fence on
549 		 * the pages (not the object itself). As we don't track that,
550 		 * yet, we have to use the exclusive fence instead.
551 		 *
552 		 * Also note that we do not want to track the async vma as
553 		 * part of the obj->resv->excl_fence as it only affects
554 		 * execution and not content or object's backing store lifetime.
555 		 */
556 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
557 		if (prev) {
558 			__i915_sw_fence_await_dma_fence(&work->base.chain,
559 							prev,
560 							&work->cb);
561 			dma_fence_put(prev);
562 		}
563 
564 		work->base.dma.error = 0; /* enable the queue_work() */
565 		work->obj = i915_gem_object_get(vma->obj);
566 	} else {
567 		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
568 		if (ret) {
569 			i915_vma_resource_free(vma->resource);
570 			vma->resource = NULL;
571 
572 			return ret;
573 		}
574 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, pat_index,
575 				   bind_flags);
576 	}
577 
578 	atomic_or(bind_flags, &vma->flags);
579 	return 0;
580 }
581 
i915_vma_pin_iomap(struct i915_vma * vma)582 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
583 {
584 	void __iomem *ptr;
585 	int err;
586 
587 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
588 		return IOMEM_ERR_PTR(-EINVAL);
589 
590 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
591 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
592 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
593 
594 	ptr = READ_ONCE(vma->iomap);
595 	if (ptr == NULL) {
596 		/*
597 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
598 		 * instead, which already supports mapping non-contiguous chunks
599 		 * of pages, that way we can also drop the
600 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
601 		 */
602 		if (i915_gem_object_is_lmem(vma->obj)) {
603 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
604 							  vma->obj->base.size);
605 		} else if (i915_vma_is_map_and_fenceable(vma)) {
606 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
607 						i915_vma_offset(vma),
608 						i915_vma_size(vma));
609 		} else {
610 			ptr = (void __iomem *)
611 				i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
612 			if (IS_ERR(ptr)) {
613 				err = PTR_ERR(ptr);
614 				goto err;
615 			}
616 			ptr = page_pack_bits(ptr, 1);
617 		}
618 
619 		if (ptr == NULL) {
620 			err = -ENOMEM;
621 			goto err;
622 		}
623 
624 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
625 			if (page_unmask_bits(ptr))
626 				__i915_gem_object_release_map(vma->obj);
627 			else
628 				io_mapping_unmap(ptr);
629 			ptr = vma->iomap;
630 		}
631 	}
632 
633 	__i915_vma_pin(vma);
634 
635 	err = i915_vma_pin_fence(vma);
636 	if (err)
637 		goto err_unpin;
638 
639 	i915_vma_set_ggtt_write(vma);
640 
641 	/* NB Access through the GTT requires the device to be awake. */
642 	return page_mask_bits(ptr);
643 
644 err_unpin:
645 	__i915_vma_unpin(vma);
646 err:
647 	return IOMEM_ERR_PTR(err);
648 }
649 
i915_vma_flush_writes(struct i915_vma * vma)650 void i915_vma_flush_writes(struct i915_vma *vma)
651 {
652 	if (i915_vma_unset_ggtt_write(vma))
653 		intel_gt_flush_ggtt_writes(vma->vm->gt);
654 }
655 
i915_vma_unpin_iomap(struct i915_vma * vma)656 void i915_vma_unpin_iomap(struct i915_vma *vma)
657 {
658 	GEM_BUG_ON(vma->iomap == NULL);
659 
660 	/* XXX We keep the mapping until __i915_vma_unbind()/evict() */
661 
662 	i915_vma_flush_writes(vma);
663 
664 	i915_vma_unpin_fence(vma);
665 	i915_vma_unpin(vma);
666 }
667 
i915_vma_unpin_and_release(struct i915_vma ** p_vma,unsigned int flags)668 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
669 {
670 	struct i915_vma *vma;
671 	struct drm_i915_gem_object *obj;
672 
673 	vma = fetch_and_zero(p_vma);
674 	if (!vma)
675 		return;
676 
677 	obj = vma->obj;
678 	GEM_BUG_ON(!obj);
679 
680 	i915_vma_unpin(vma);
681 
682 	if (flags & I915_VMA_RELEASE_MAP)
683 		i915_gem_object_unpin_map(obj);
684 
685 	i915_gem_object_put(obj);
686 }
687 
i915_vma_misplaced(const struct i915_vma * vma,u64 size,u64 alignment,u64 flags)688 bool i915_vma_misplaced(const struct i915_vma *vma,
689 			u64 size, u64 alignment, u64 flags)
690 {
691 	if (!drm_mm_node_allocated(&vma->node))
692 		return false;
693 
694 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
695 		return true;
696 
697 	if (i915_vma_size(vma) < size)
698 		return true;
699 
700 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
701 	if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment))
702 		return true;
703 
704 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
705 		return true;
706 
707 	if (flags & PIN_OFFSET_BIAS &&
708 	    i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK))
709 		return true;
710 
711 	if (flags & PIN_OFFSET_FIXED &&
712 	    i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK))
713 		return true;
714 
715 	if (flags & PIN_OFFSET_GUARD &&
716 	    vma->guard < (flags & PIN_OFFSET_MASK))
717 		return true;
718 
719 	return false;
720 }
721 
__i915_vma_set_map_and_fenceable(struct i915_vma * vma)722 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
723 {
724 	bool mappable, fenceable;
725 
726 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
727 	GEM_BUG_ON(!vma->fence_size);
728 
729 	fenceable = (i915_vma_size(vma) >= vma->fence_size &&
730 		     IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment));
731 
732 	mappable = i915_ggtt_offset(vma) + vma->fence_size <=
733 		   i915_vm_to_ggtt(vma->vm)->mappable_end;
734 
735 	if (mappable && fenceable)
736 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
737 	else
738 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
739 }
740 
i915_gem_valid_gtt_space(struct i915_vma * vma,unsigned long color)741 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
742 {
743 	struct drm_mm_node *node = &vma->node;
744 	struct drm_mm_node *other;
745 
746 	/*
747 	 * On some machines we have to be careful when putting differing types
748 	 * of snoopable memory together to avoid the prefetcher crossing memory
749 	 * domains and dying. During vm initialisation, we decide whether or not
750 	 * these constraints apply and set the drm_mm.color_adjust
751 	 * appropriately.
752 	 */
753 	if (!i915_vm_has_cache_coloring(vma->vm))
754 		return true;
755 
756 	/* Only valid to be called on an already inserted vma */
757 	GEM_BUG_ON(!drm_mm_node_allocated(node));
758 	GEM_BUG_ON(list_empty(&node->node_list));
759 
760 	other = list_prev_entry(node, node_list);
761 	if (i915_node_color_differs(other, color) &&
762 	    !drm_mm_hole_follows(other))
763 		return false;
764 
765 	other = list_next_entry(node, node_list);
766 	if (i915_node_color_differs(other, color) &&
767 	    !drm_mm_hole_follows(node))
768 		return false;
769 
770 	return true;
771 }
772 
773 /**
774  * i915_vma_insert - finds a slot for the vma in its address space
775  * @vma: the vma
776  * @ww: An optional struct i915_gem_ww_ctx
777  * @size: requested size in bytes (can be larger than the VMA)
778  * @alignment: required alignment
779  * @flags: mask of PIN_* flags to use
780  *
781  * First we try to allocate some free space that meets the requirements for
782  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
783  * preferrably the oldest idle entry to make room for the new VMA.
784  *
785  * Returns:
786  * 0 on success, negative error code otherwise.
787  */
788 static int
i915_vma_insert(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u64 size,u64 alignment,u64 flags)789 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
790 		u64 size, u64 alignment, u64 flags)
791 {
792 	unsigned long color, guard;
793 	u64 start, end;
794 	int ret;
795 
796 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
797 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
798 	GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1);
799 
800 	size = max(size, vma->size);
801 	alignment = max_t(typeof(alignment), alignment, vma->display_alignment);
802 	if (flags & PIN_MAPPABLE) {
803 		size = max_t(typeof(size), size, vma->fence_size);
804 		alignment = max_t(typeof(alignment),
805 				  alignment, vma->fence_alignment);
806 	}
807 
808 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
809 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
810 	GEM_BUG_ON(!is_power_of_2(alignment));
811 
812 	guard = vma->guard; /* retain guard across rebinds */
813 	if (flags & PIN_OFFSET_GUARD) {
814 		GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32));
815 		guard = max_t(u32, guard, flags & PIN_OFFSET_MASK);
816 	}
817 	/*
818 	 * As we align the node upon insertion, but the hardware gets
819 	 * node.start + guard, the easiest way to make that work is
820 	 * to make the guard a multiple of the alignment size.
821 	 */
822 	guard = ALIGN(guard, alignment);
823 
824 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
825 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
826 
827 	end = vma->vm->total;
828 	if (flags & PIN_MAPPABLE)
829 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
830 	if (flags & PIN_ZONE_4G)
831 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
832 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
833 
834 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
835 
836 	/*
837 	 * If binding the object/GGTT view requires more space than the entire
838 	 * aperture has, reject it early before evicting everything in a vain
839 	 * attempt to find space.
840 	 */
841 	if (size > end - 2 * guard) {
842 		drm_dbg(vma->obj->base.dev,
843 			"Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
844 			size, flags & PIN_MAPPABLE ? "mappable" : "total", end);
845 		return -ENOSPC;
846 	}
847 
848 	color = 0;
849 
850 	if (i915_vm_has_cache_coloring(vma->vm))
851 		color = vma->obj->pat_index;
852 
853 	if (flags & PIN_OFFSET_FIXED) {
854 		u64 offset = flags & PIN_OFFSET_MASK;
855 		if (!IS_ALIGNED(offset, alignment) ||
856 		    range_overflows(offset, size, end))
857 			return -EINVAL;
858 		/*
859 		 * The caller knows not of the guard added by others and
860 		 * requests for the offset of the start of its buffer
861 		 * to be fixed, which may not be the same as the position
862 		 * of the vma->node due to the guard pages.
863 		 */
864 		if (offset < guard || offset + size > end - guard)
865 			return -ENOSPC;
866 
867 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
868 					   size + 2 * guard,
869 					   offset - guard,
870 					   color, flags);
871 		if (ret)
872 			return ret;
873 	} else {
874 		size += 2 * guard;
875 		/*
876 		 * We only support huge gtt pages through the 48b PPGTT,
877 		 * however we also don't want to force any alignment for
878 		 * objects which need to be tightly packed into the low 32bits.
879 		 *
880 		 * Note that we assume that GGTT are limited to 4GiB for the
881 		 * forseeable future. See also i915_ggtt_offset().
882 		 */
883 		if (upper_32_bits(end - 1) &&
884 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
885 		    !HAS_64K_PAGES(vma->vm->i915)) {
886 			/*
887 			 * We can't mix 64K and 4K PTEs in the same page-table
888 			 * (2M block), and so to avoid the ugliness and
889 			 * complexity of coloring we opt for just aligning 64K
890 			 * objects to 2M.
891 			 */
892 			u64 page_alignment =
893 				rounddown_pow_of_two(vma->page_sizes.sg |
894 						     I915_GTT_PAGE_SIZE_2M);
895 
896 			/*
897 			 * Check we don't expand for the limited Global GTT
898 			 * (mappable aperture is even more precious!). This
899 			 * also checks that we exclude the aliasing-ppgtt.
900 			 */
901 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
902 
903 			alignment = max(alignment, page_alignment);
904 
905 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
906 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
907 		}
908 
909 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
910 					  size, alignment, color,
911 					  start, end, flags);
912 		if (ret)
913 			return ret;
914 
915 		GEM_BUG_ON(vma->node.start < start);
916 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
917 	}
918 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
919 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
920 
921 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
922 	vma->guard = guard;
923 
924 	return 0;
925 }
926 
927 static void
i915_vma_detach(struct i915_vma * vma)928 i915_vma_detach(struct i915_vma *vma)
929 {
930 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
931 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
932 
933 	/*
934 	 * And finally now the object is completely decoupled from this
935 	 * vma, we can drop its hold on the backing storage and allow
936 	 * it to be reaped by the shrinker.
937 	 */
938 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
939 }
940 
try_qad_pin(struct i915_vma * vma,unsigned int flags)941 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
942 {
943 	unsigned int bound;
944 
945 	bound = atomic_read(&vma->flags);
946 
947 	if (flags & PIN_VALIDATE) {
948 		flags &= I915_VMA_BIND_MASK;
949 
950 		return (flags & bound) == flags;
951 	}
952 
953 	/* with the lock mandatory for unbind, we don't race here */
954 	flags &= I915_VMA_BIND_MASK;
955 	do {
956 		if (unlikely(flags & ~bound))
957 			return false;
958 
959 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
960 			return false;
961 
962 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
963 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
964 
965 	return true;
966 }
967 
968 static struct scatterlist *
rotate_pages(struct drm_i915_gem_object * obj,unsigned int offset,unsigned int width,unsigned int height,unsigned int src_stride,unsigned int dst_stride,struct sg_table * st,struct scatterlist * sg)969 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
970 	     unsigned int width, unsigned int height,
971 	     unsigned int src_stride, unsigned int dst_stride,
972 	     struct sg_table *st, struct scatterlist *sg)
973 {
974 	unsigned int column, row;
975 	pgoff_t src_idx;
976 
977 	for (column = 0; column < width; column++) {
978 		unsigned int left;
979 
980 		src_idx = src_stride * (height - 1) + column + offset;
981 		for (row = 0; row < height; row++) {
982 			st->nents++;
983 			/*
984 			 * We don't need the pages, but need to initialize
985 			 * the entries so the sg list can be happily traversed.
986 			 * The only thing we need are DMA addresses.
987 			 */
988 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
989 			sg_dma_address(sg) =
990 				i915_gem_object_get_dma_address(obj, src_idx);
991 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
992 			sg = sg_next(sg);
993 			src_idx -= src_stride;
994 		}
995 
996 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
997 
998 		if (!left)
999 			continue;
1000 
1001 		st->nents++;
1002 
1003 		/*
1004 		 * The DE ignores the PTEs for the padding tiles, the sg entry
1005 		 * here is just a conenience to indicate how many padding PTEs
1006 		 * to insert at this spot.
1007 		 */
1008 		sg_set_page(sg, NULL, left, 0);
1009 		sg_dma_address(sg) = 0;
1010 		sg_dma_len(sg) = left;
1011 		sg = sg_next(sg);
1012 	}
1013 
1014 	return sg;
1015 }
1016 
1017 static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info * rot_info,struct drm_i915_gem_object * obj)1018 intel_rotate_pages(struct intel_rotation_info *rot_info,
1019 		   struct drm_i915_gem_object *obj)
1020 {
1021 	unsigned int size = intel_rotation_info_size(rot_info);
1022 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1023 	struct sg_table *st;
1024 	struct scatterlist *sg;
1025 	int ret = -ENOMEM;
1026 	int i;
1027 
1028 	/* Allocate target SG list. */
1029 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1030 	if (!st)
1031 		goto err_st_alloc;
1032 
1033 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1034 	if (ret)
1035 		goto err_sg_alloc;
1036 
1037 	st->nents = 0;
1038 	sg = st->sgl;
1039 
1040 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1041 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1042 				  rot_info->plane[i].width, rot_info->plane[i].height,
1043 				  rot_info->plane[i].src_stride,
1044 				  rot_info->plane[i].dst_stride,
1045 				  st, sg);
1046 
1047 	return st;
1048 
1049 err_sg_alloc:
1050 	kfree(st);
1051 err_st_alloc:
1052 
1053 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1054 		obj->base.size, rot_info->plane[0].width,
1055 		rot_info->plane[0].height, size);
1056 
1057 	return ERR_PTR(ret);
1058 }
1059 
1060 static struct scatterlist *
add_padding_pages(unsigned int count,struct sg_table * st,struct scatterlist * sg)1061 add_padding_pages(unsigned int count,
1062 		  struct sg_table *st, struct scatterlist *sg)
1063 {
1064 	st->nents++;
1065 
1066 	/*
1067 	 * The DE ignores the PTEs for the padding tiles, the sg entry
1068 	 * here is just a convenience to indicate how many padding PTEs
1069 	 * to insert at this spot.
1070 	 */
1071 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1072 	sg_dma_address(sg) = 0;
1073 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1074 	sg = sg_next(sg);
1075 
1076 	return sg;
1077 }
1078 
1079 static struct scatterlist *
remap_tiled_color_plane_pages(struct drm_i915_gem_object * obj,unsigned long offset,unsigned int alignment_pad,unsigned int width,unsigned int height,unsigned int src_stride,unsigned int dst_stride,struct sg_table * st,struct scatterlist * sg,unsigned int * gtt_offset)1080 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1081 			      unsigned long offset, unsigned int alignment_pad,
1082 			      unsigned int width, unsigned int height,
1083 			      unsigned int src_stride, unsigned int dst_stride,
1084 			      struct sg_table *st, struct scatterlist *sg,
1085 			      unsigned int *gtt_offset)
1086 {
1087 	unsigned int row;
1088 
1089 	if (!width || !height)
1090 		return sg;
1091 
1092 	if (alignment_pad)
1093 		sg = add_padding_pages(alignment_pad, st, sg);
1094 
1095 	for (row = 0; row < height; row++) {
1096 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1097 
1098 		while (left) {
1099 			dma_addr_t addr;
1100 			unsigned int length;
1101 
1102 			/*
1103 			 * We don't need the pages, but need to initialize
1104 			 * the entries so the sg list can be happily traversed.
1105 			 * The only thing we need are DMA addresses.
1106 			 */
1107 
1108 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1109 
1110 			length = min(left, length);
1111 
1112 			st->nents++;
1113 
1114 			sg_set_page(sg, NULL, length, 0);
1115 			sg_dma_address(sg) = addr;
1116 			sg_dma_len(sg) = length;
1117 			sg = sg_next(sg);
1118 
1119 			offset += length / I915_GTT_PAGE_SIZE;
1120 			left -= length;
1121 		}
1122 
1123 		offset += src_stride - width;
1124 
1125 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1126 
1127 		if (!left)
1128 			continue;
1129 
1130 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1131 	}
1132 
1133 	*gtt_offset += alignment_pad + dst_stride * height;
1134 
1135 	return sg;
1136 }
1137 
1138 static struct scatterlist *
remap_contiguous_pages(struct drm_i915_gem_object * obj,pgoff_t obj_offset,unsigned int count,struct sg_table * st,struct scatterlist * sg)1139 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1140 		       pgoff_t obj_offset,
1141 		       unsigned int count,
1142 		       struct sg_table *st, struct scatterlist *sg)
1143 {
1144 	struct scatterlist *iter;
1145 	unsigned int offset;
1146 
1147 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1148 	GEM_BUG_ON(!iter);
1149 
1150 	do {
1151 		unsigned int len;
1152 
1153 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1154 			  count << PAGE_SHIFT);
1155 		sg_set_page(sg, NULL, len, 0);
1156 		sg_dma_address(sg) =
1157 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1158 		sg_dma_len(sg) = len;
1159 
1160 		st->nents++;
1161 		count -= len >> PAGE_SHIFT;
1162 		if (count == 0)
1163 			return sg;
1164 
1165 		sg = __sg_next(sg);
1166 		iter = __sg_next(iter);
1167 		offset = 0;
1168 	} while (1);
1169 }
1170 
1171 static struct scatterlist *
remap_linear_color_plane_pages(struct drm_i915_gem_object * obj,pgoff_t obj_offset,unsigned int alignment_pad,unsigned int size,struct sg_table * st,struct scatterlist * sg,unsigned int * gtt_offset)1172 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1173 			       pgoff_t obj_offset, unsigned int alignment_pad,
1174 			       unsigned int size,
1175 			       struct sg_table *st, struct scatterlist *sg,
1176 			       unsigned int *gtt_offset)
1177 {
1178 	if (!size)
1179 		return sg;
1180 
1181 	if (alignment_pad)
1182 		sg = add_padding_pages(alignment_pad, st, sg);
1183 
1184 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1185 	sg = sg_next(sg);
1186 
1187 	*gtt_offset += alignment_pad + size;
1188 
1189 	return sg;
1190 }
1191 
1192 static struct scatterlist *
remap_color_plane_pages(const struct intel_remapped_info * rem_info,struct drm_i915_gem_object * obj,int color_plane,struct sg_table * st,struct scatterlist * sg,unsigned int * gtt_offset)1193 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1194 			struct drm_i915_gem_object *obj,
1195 			int color_plane,
1196 			struct sg_table *st, struct scatterlist *sg,
1197 			unsigned int *gtt_offset)
1198 {
1199 	unsigned int alignment_pad = 0;
1200 
1201 	if (rem_info->plane_alignment)
1202 		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1203 
1204 	if (rem_info->plane[color_plane].linear)
1205 		sg = remap_linear_color_plane_pages(obj,
1206 						    rem_info->plane[color_plane].offset,
1207 						    alignment_pad,
1208 						    rem_info->plane[color_plane].size,
1209 						    st, sg,
1210 						    gtt_offset);
1211 
1212 	else
1213 		sg = remap_tiled_color_plane_pages(obj,
1214 						   rem_info->plane[color_plane].offset,
1215 						   alignment_pad,
1216 						   rem_info->plane[color_plane].width,
1217 						   rem_info->plane[color_plane].height,
1218 						   rem_info->plane[color_plane].src_stride,
1219 						   rem_info->plane[color_plane].dst_stride,
1220 						   st, sg,
1221 						   gtt_offset);
1222 
1223 	return sg;
1224 }
1225 
1226 static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info * rem_info,struct drm_i915_gem_object * obj)1227 intel_remap_pages(struct intel_remapped_info *rem_info,
1228 		  struct drm_i915_gem_object *obj)
1229 {
1230 	unsigned int size = intel_remapped_info_size(rem_info);
1231 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1232 	struct sg_table *st;
1233 	struct scatterlist *sg;
1234 	unsigned int gtt_offset = 0;
1235 	int ret = -ENOMEM;
1236 	int i;
1237 
1238 	/* Allocate target SG list. */
1239 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1240 	if (!st)
1241 		goto err_st_alloc;
1242 
1243 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1244 	if (ret)
1245 		goto err_sg_alloc;
1246 
1247 	st->nents = 0;
1248 	sg = st->sgl;
1249 
1250 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1251 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1252 
1253 	i915_sg_trim(st);
1254 
1255 	return st;
1256 
1257 err_sg_alloc:
1258 	kfree(st);
1259 err_st_alloc:
1260 
1261 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1262 		obj->base.size, rem_info->plane[0].width,
1263 		rem_info->plane[0].height, size);
1264 
1265 	return ERR_PTR(ret);
1266 }
1267 
1268 static noinline struct sg_table *
intel_partial_pages(const struct i915_gtt_view * view,struct drm_i915_gem_object * obj)1269 intel_partial_pages(const struct i915_gtt_view *view,
1270 		    struct drm_i915_gem_object *obj)
1271 {
1272 	struct sg_table *st;
1273 	struct scatterlist *sg;
1274 	unsigned int count = view->partial.size;
1275 	int ret = -ENOMEM;
1276 
1277 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1278 	if (!st)
1279 		goto err_st_alloc;
1280 
1281 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1282 	if (ret)
1283 		goto err_sg_alloc;
1284 
1285 	st->nents = 0;
1286 
1287 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1288 
1289 	sg_mark_end(sg);
1290 	i915_sg_trim(st); /* Drop any unused tail entries. */
1291 
1292 	return st;
1293 
1294 err_sg_alloc:
1295 	kfree(st);
1296 err_st_alloc:
1297 	return ERR_PTR(ret);
1298 }
1299 
1300 static int
__i915_vma_get_pages(struct i915_vma * vma)1301 __i915_vma_get_pages(struct i915_vma *vma)
1302 {
1303 	struct sg_table *pages;
1304 
1305 	/*
1306 	 * The vma->pages are only valid within the lifespan of the borrowed
1307 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1308 	 * must be the vma->pages. A simple rule is that vma->pages must only
1309 	 * be accessed when the obj->mm.pages are pinned.
1310 	 */
1311 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1312 
1313 	switch (vma->gtt_view.type) {
1314 	default:
1315 		GEM_BUG_ON(vma->gtt_view.type);
1316 		fallthrough;
1317 	case I915_GTT_VIEW_NORMAL:
1318 		pages = vma->obj->mm.pages;
1319 		break;
1320 
1321 	case I915_GTT_VIEW_ROTATED:
1322 		pages =
1323 			intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1324 		break;
1325 
1326 	case I915_GTT_VIEW_REMAPPED:
1327 		pages =
1328 			intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1329 		break;
1330 
1331 	case I915_GTT_VIEW_PARTIAL:
1332 		pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1333 		break;
1334 	}
1335 
1336 	if (IS_ERR(pages)) {
1337 		drm_err(&vma->vm->i915->drm,
1338 			"Failed to get pages for VMA view type %u (%ld)!\n",
1339 			vma->gtt_view.type, PTR_ERR(pages));
1340 		return PTR_ERR(pages);
1341 	}
1342 
1343 	vma->pages = pages;
1344 
1345 	return 0;
1346 }
1347 
i915_vma_get_pages(struct i915_vma * vma)1348 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1349 {
1350 	int err;
1351 
1352 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1353 		return 0;
1354 
1355 	err = i915_gem_object_pin_pages(vma->obj);
1356 	if (err)
1357 		return err;
1358 
1359 	err = __i915_vma_get_pages(vma);
1360 	if (err)
1361 		goto err_unpin;
1362 
1363 	vma->page_sizes = vma->obj->mm.page_sizes;
1364 	atomic_inc(&vma->pages_count);
1365 
1366 	return 0;
1367 
1368 err_unpin:
1369 	__i915_gem_object_unpin_pages(vma->obj);
1370 
1371 	return err;
1372 }
1373 
vma_invalidate_tlb(struct i915_address_space * vm,u32 * tlb)1374 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1375 {
1376 	struct intel_gt *gt;
1377 	int id;
1378 
1379 	if (!tlb)
1380 		return;
1381 
1382 	/*
1383 	 * Before we release the pages that were bound by this vma, we
1384 	 * must invalidate all the TLBs that may still have a reference
1385 	 * back to our physical address. It only needs to be done once,
1386 	 * so after updating the PTE to point away from the pages, record
1387 	 * the most recent TLB invalidation seqno, and if we have not yet
1388 	 * flushed the TLBs upon release, perform a full invalidation.
1389 	 */
1390 	for_each_gt(gt, vm->i915, id)
1391 		WRITE_ONCE(tlb[id],
1392 			   intel_gt_next_invalidate_tlb_full(gt));
1393 }
1394 
__vma_put_pages(struct i915_vma * vma,unsigned int count)1395 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1396 {
1397 	/* We allocate under vma_get_pages, so beware the shrinker */
1398 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1399 
1400 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1401 		if (vma->pages != vma->obj->mm.pages) {
1402 			sg_free_table(vma->pages);
1403 			kfree(vma->pages);
1404 		}
1405 		vma->pages = NULL;
1406 
1407 		i915_gem_object_unpin_pages(vma->obj);
1408 	}
1409 }
1410 
i915_vma_put_pages(struct i915_vma * vma)1411 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1412 {
1413 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1414 		return;
1415 
1416 	__vma_put_pages(vma, 1);
1417 }
1418 
vma_unbind_pages(struct i915_vma * vma)1419 static void vma_unbind_pages(struct i915_vma *vma)
1420 {
1421 	unsigned int count;
1422 
1423 	lockdep_assert_held(&vma->vm->mutex);
1424 
1425 	/* The upper portion of pages_count is the number of bindings */
1426 	count = atomic_read(&vma->pages_count);
1427 	count >>= I915_VMA_PAGES_BIAS;
1428 	GEM_BUG_ON(!count);
1429 
1430 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1431 }
1432 
i915_vma_pin_ww(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u64 size,u64 alignment,u64 flags)1433 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1434 		    u64 size, u64 alignment, u64 flags)
1435 {
1436 	struct i915_vma_work *work = NULL;
1437 	struct dma_fence *moving = NULL;
1438 	struct i915_vma_resource *vma_res = NULL;
1439 	intel_wakeref_t wakeref;
1440 	unsigned int bound;
1441 	int err;
1442 
1443 	assert_vma_held(vma);
1444 	GEM_BUG_ON(!ww);
1445 
1446 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1447 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1448 
1449 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1450 
1451 	/* First try and grab the pin without rebinding the vma */
1452 	if (try_qad_pin(vma, flags))
1453 		return 0;
1454 
1455 	err = i915_vma_get_pages(vma);
1456 	if (err)
1457 		return err;
1458 
1459 	/*
1460 	 * In case of a global GTT, we must hold a runtime-pm wakeref
1461 	 * while global PTEs are updated.  In other cases, we hold
1462 	 * the rpm reference while the VMA is active.  Since runtime
1463 	 * resume may require allocations, which are forbidden inside
1464 	 * vm->mutex, get the first rpm wakeref outside of the mutex.
1465 	 */
1466 	wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1467 
1468 	if (flags & vma->vm->bind_async_flags) {
1469 		/* lock VM */
1470 		err = i915_vm_lock_objects(vma->vm, ww);
1471 		if (err)
1472 			goto err_rpm;
1473 
1474 		work = i915_vma_work();
1475 		if (!work) {
1476 			err = -ENOMEM;
1477 			goto err_rpm;
1478 		}
1479 
1480 		work->vm = vma->vm;
1481 
1482 		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1483 		if (err)
1484 			goto err_rpm;
1485 
1486 		dma_fence_work_chain(&work->base, moving);
1487 
1488 		/* Allocate enough page directories to used PTE */
1489 		if (vma->vm->allocate_va_range) {
1490 			err = i915_vm_alloc_pt_stash(vma->vm,
1491 						     &work->stash,
1492 						     vma->size);
1493 			if (err)
1494 				goto err_fence;
1495 
1496 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1497 			if (err)
1498 				goto err_fence;
1499 		}
1500 	}
1501 
1502 	vma_res = i915_vma_resource_alloc();
1503 	if (IS_ERR(vma_res)) {
1504 		err = PTR_ERR(vma_res);
1505 		goto err_fence;
1506 	}
1507 
1508 	/*
1509 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1510 	 *
1511 	 * We conflate the Global GTT with the user's vma when using the
1512 	 * aliasing-ppgtt, but it is still vitally important to try and
1513 	 * keep the use cases distinct. For example, userptr objects are
1514 	 * not allowed inside the Global GTT as that will cause lock
1515 	 * inversions when we have to evict them the mmu_notifier callbacks -
1516 	 * but they are allowed to be part of the user ppGTT which can never
1517 	 * be mapped. As such we try to give the distinct users of the same
1518 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1519 	 * and i915_ppgtt separate].
1520 	 *
1521 	 * NB this may cause us to mask real lock inversions -- while the
1522 	 * code is safe today, lockdep may not be able to spot future
1523 	 * transgressions.
1524 	 */
1525 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1526 					      !(flags & PIN_GLOBAL));
1527 	if (err)
1528 		goto err_vma_res;
1529 
1530 	/* No more allocations allowed now we hold vm->mutex */
1531 
1532 	if (unlikely(i915_vma_is_closed(vma))) {
1533 		err = -ENOENT;
1534 		goto err_unlock;
1535 	}
1536 
1537 	bound = atomic_read(&vma->flags);
1538 	if (unlikely(bound & I915_VMA_ERROR)) {
1539 		err = -ENOMEM;
1540 		goto err_unlock;
1541 	}
1542 
1543 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1544 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1545 		goto err_unlock;
1546 	}
1547 
1548 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1549 		if (!(flags & PIN_VALIDATE))
1550 			__i915_vma_pin(vma);
1551 		goto err_unlock;
1552 	}
1553 
1554 	err = i915_active_acquire(&vma->active);
1555 	if (err)
1556 		goto err_unlock;
1557 
1558 	if (!(bound & I915_VMA_BIND_MASK)) {
1559 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1560 		if (err)
1561 			goto err_active;
1562 
1563 		if (i915_is_ggtt(vma->vm))
1564 			__i915_vma_set_map_and_fenceable(vma);
1565 	}
1566 
1567 	GEM_BUG_ON(!vma->pages);
1568 	err = i915_vma_bind(vma,
1569 			    vma->obj->pat_index,
1570 			    flags, work, vma_res);
1571 	vma_res = NULL;
1572 	if (err)
1573 		goto err_remove;
1574 
1575 	/* There should only be at most 2 active bindings (user, global) */
1576 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1577 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1578 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1579 
1580 	if (!(flags & PIN_VALIDATE)) {
1581 		__i915_vma_pin(vma);
1582 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1583 	}
1584 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1585 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1586 
1587 err_remove:
1588 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1589 		i915_vma_detach(vma);
1590 		drm_mm_remove_node(&vma->node);
1591 	}
1592 err_active:
1593 	i915_active_release(&vma->active);
1594 err_unlock:
1595 	mutex_unlock(&vma->vm->mutex);
1596 err_vma_res:
1597 	i915_vma_resource_free(vma_res);
1598 err_fence:
1599 	if (work)
1600 		dma_fence_work_commit_imm(&work->base);
1601 err_rpm:
1602 	intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1603 
1604 	if (moving)
1605 		dma_fence_put(moving);
1606 
1607 	i915_vma_put_pages(vma);
1608 	return err;
1609 }
1610 
flush_idle_contexts(struct intel_gt * gt)1611 static void flush_idle_contexts(struct intel_gt *gt)
1612 {
1613 	struct intel_engine_cs *engine;
1614 	enum intel_engine_id id;
1615 
1616 	for_each_engine(engine, gt, id)
1617 		intel_engine_flush_barriers(engine);
1618 
1619 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1620 }
1621 
__i915_ggtt_pin(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u32 align,unsigned int flags)1622 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1623 			   u32 align, unsigned int flags)
1624 {
1625 	struct i915_address_space *vm = vma->vm;
1626 	struct intel_gt *gt;
1627 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1628 	int err;
1629 
1630 	do {
1631 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1632 
1633 		if (err != -ENOSPC) {
1634 			if (!err) {
1635 				err = i915_vma_wait_for_bind(vma);
1636 				if (err)
1637 					i915_vma_unpin(vma);
1638 			}
1639 			return err;
1640 		}
1641 
1642 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1643 		list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1644 			flush_idle_contexts(gt);
1645 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1646 			/*
1647 			 * We pass NULL ww here, as we don't want to unbind
1648 			 * locked objects when called from execbuf when pinning
1649 			 * is removed. This would probably regress badly.
1650 			 */
1651 			i915_gem_evict_vm(vm, NULL, NULL);
1652 			mutex_unlock(&vm->mutex);
1653 		}
1654 	} while (1);
1655 }
1656 
i915_ggtt_pin(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u32 align,unsigned int flags)1657 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1658 		  u32 align, unsigned int flags)
1659 {
1660 	struct i915_gem_ww_ctx _ww;
1661 	int err;
1662 
1663 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1664 
1665 	if (ww)
1666 		return __i915_ggtt_pin(vma, ww, align, flags);
1667 
1668 	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1669 
1670 	for_i915_gem_ww(&_ww, err, true) {
1671 		err = i915_gem_object_lock(vma->obj, &_ww);
1672 		if (!err)
1673 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1674 	}
1675 
1676 	return err;
1677 }
1678 
1679 /**
1680  * i915_ggtt_clear_scanout - Clear scanout flag for all objects ggtt vmas
1681  * @obj: i915 GEM object
1682  * This function clears scanout flags for objects ggtt vmas. These flags are set
1683  * when object is pinned for display use and this function to clear them all is
1684  * targeted to be called by frontbuffer tracking code when the frontbuffer is
1685  * about to be released.
1686  */
i915_ggtt_clear_scanout(struct drm_i915_gem_object * obj)1687 void i915_ggtt_clear_scanout(struct drm_i915_gem_object *obj)
1688 {
1689 	struct i915_vma *vma;
1690 
1691 	spin_lock(&obj->vma.lock);
1692 	for_each_ggtt_vma(vma, obj) {
1693 		i915_vma_clear_scanout(vma);
1694 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
1695 	}
1696 	spin_unlock(&obj->vma.lock);
1697 }
1698 
__vma_close(struct i915_vma * vma,struct intel_gt * gt)1699 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1700 {
1701 	/*
1702 	 * We defer actually closing, unbinding and destroying the VMA until
1703 	 * the next idle point, or if the object is freed in the meantime. By
1704 	 * postponing the unbind, we allow for it to be resurrected by the
1705 	 * client, avoiding the work required to rebind the VMA. This is
1706 	 * advantageous for DRI, where the client/server pass objects
1707 	 * between themselves, temporarily opening a local VMA to the
1708 	 * object, and then closing it again. The same object is then reused
1709 	 * on the next frame (or two, depending on the depth of the swap queue)
1710 	 * causing us to rebind the VMA once more. This ends up being a lot
1711 	 * of wasted work for the steady state.
1712 	 */
1713 	GEM_BUG_ON(i915_vma_is_closed(vma));
1714 	list_add(&vma->closed_link, &gt->closed_vma);
1715 }
1716 
i915_vma_close(struct i915_vma * vma)1717 void i915_vma_close(struct i915_vma *vma)
1718 {
1719 	struct intel_gt *gt = vma->vm->gt;
1720 	unsigned long flags;
1721 
1722 	if (i915_vma_is_ggtt(vma))
1723 		return;
1724 
1725 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1726 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1727 					&gt->closed_lock,
1728 					flags)) {
1729 		__vma_close(vma, gt);
1730 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1731 	}
1732 }
1733 
__i915_vma_remove_closed(struct i915_vma * vma)1734 static void __i915_vma_remove_closed(struct i915_vma *vma)
1735 {
1736 	list_del_init(&vma->closed_link);
1737 }
1738 
i915_vma_reopen(struct i915_vma * vma)1739 void i915_vma_reopen(struct i915_vma *vma)
1740 {
1741 	struct intel_gt *gt = vma->vm->gt;
1742 
1743 	spin_lock_irq(&gt->closed_lock);
1744 	if (i915_vma_is_closed(vma))
1745 		__i915_vma_remove_closed(vma);
1746 	spin_unlock_irq(&gt->closed_lock);
1747 }
1748 
force_unbind(struct i915_vma * vma)1749 static void force_unbind(struct i915_vma *vma)
1750 {
1751 	if (!drm_mm_node_allocated(&vma->node))
1752 		return;
1753 
1754 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1755 	WARN_ON(__i915_vma_unbind(vma));
1756 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1757 }
1758 
release_references(struct i915_vma * vma,struct intel_gt * gt,bool vm_ddestroy)1759 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1760 			       bool vm_ddestroy)
1761 {
1762 	struct drm_i915_gem_object *obj = vma->obj;
1763 
1764 	GEM_BUG_ON(i915_vma_is_active(vma));
1765 
1766 	spin_lock(&obj->vma.lock);
1767 	list_del(&vma->obj_link);
1768 	if (!RB_EMPTY_NODE(&vma->obj_node))
1769 		rb_erase(&vma->obj_node, &obj->vma.tree);
1770 
1771 	spin_unlock(&obj->vma.lock);
1772 
1773 	spin_lock_irq(&gt->closed_lock);
1774 	__i915_vma_remove_closed(vma);
1775 	spin_unlock_irq(&gt->closed_lock);
1776 
1777 	if (vm_ddestroy)
1778 		i915_vm_resv_put(vma->vm);
1779 
1780 	/* Wait for async active retire */
1781 	i915_active_wait(&vma->active);
1782 	i915_active_fini(&vma->active);
1783 	GEM_WARN_ON(vma->resource);
1784 	i915_vma_free(vma);
1785 }
1786 
1787 /*
1788  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1789  * the initial reference.
1790  *
1791  * This function should be called when it's decided the vma isn't needed
1792  * anymore. The caller must assure that it doesn't race with another lookup
1793  * plus destroy, typically by taking an appropriate reference.
1794  *
1795  * Current callsites are
1796  * - __i915_gem_object_pages_fini()
1797  * - __i915_vm_close() - Blocks the above function by taking a reference on
1798  * the object.
1799  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1800  * on the vm and a reference on the object. Also takes the object lock so
1801  * destruction from __i915_vma_parked() can be blocked by holding the
1802  * object lock. Since the object lock is only allowed from within i915 with
1803  * an object refcount, holding the object lock also implicitly blocks the
1804  * vma freeing from __i915_gem_object_pages_fini().
1805  *
1806  * Because of locks taken during destruction, a vma is also guaranteed to
1807  * stay alive while the following locks are held if it was looked up while
1808  * holding one of the locks:
1809  * - vm->mutex
1810  * - obj->vma.lock
1811  * - gt->closed_lock
1812  */
i915_vma_destroy_locked(struct i915_vma * vma)1813 void i915_vma_destroy_locked(struct i915_vma *vma)
1814 {
1815 	lockdep_assert_held(&vma->vm->mutex);
1816 
1817 	force_unbind(vma);
1818 	list_del_init(&vma->vm_link);
1819 	release_references(vma, vma->vm->gt, false);
1820 }
1821 
i915_vma_destroy(struct i915_vma * vma)1822 void i915_vma_destroy(struct i915_vma *vma)
1823 {
1824 	struct intel_gt *gt;
1825 	bool vm_ddestroy;
1826 
1827 	mutex_lock(&vma->vm->mutex);
1828 	force_unbind(vma);
1829 	list_del_init(&vma->vm_link);
1830 	vm_ddestroy = vma->vm_ddestroy;
1831 	vma->vm_ddestroy = false;
1832 
1833 	/* vma->vm may be freed when releasing vma->vm->mutex. */
1834 	gt = vma->vm->gt;
1835 	mutex_unlock(&vma->vm->mutex);
1836 	release_references(vma, gt, vm_ddestroy);
1837 }
1838 
i915_vma_parked(struct intel_gt * gt)1839 void i915_vma_parked(struct intel_gt *gt)
1840 {
1841 	struct i915_vma *vma, *next;
1842 	DRM_LIST_HEAD(closed);
1843 
1844 	spin_lock_irq(&gt->closed_lock);
1845 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1846 		struct drm_i915_gem_object *obj = vma->obj;
1847 		struct i915_address_space *vm = vma->vm;
1848 
1849 		/* XXX All to avoid keeping a reference on i915_vma itself */
1850 
1851 		if (!kref_get_unless_zero(&obj->base.refcount))
1852 			continue;
1853 
1854 		if (!i915_vm_tryget(vm)) {
1855 			i915_gem_object_put(obj);
1856 			continue;
1857 		}
1858 
1859 		list_move(&vma->closed_link, &closed);
1860 	}
1861 	spin_unlock_irq(&gt->closed_lock);
1862 
1863 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1864 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1865 		struct drm_i915_gem_object *obj = vma->obj;
1866 		struct i915_address_space *vm = vma->vm;
1867 
1868 		if (i915_gem_object_trylock(obj, NULL)) {
1869 			INIT_LIST_HEAD(&vma->closed_link);
1870 			i915_vma_destroy(vma);
1871 			i915_gem_object_unlock(obj);
1872 		} else {
1873 			/* back you go.. */
1874 			spin_lock_irq(&gt->closed_lock);
1875 			list_add(&vma->closed_link, &gt->closed_vma);
1876 			spin_unlock_irq(&gt->closed_lock);
1877 		}
1878 
1879 		i915_gem_object_put(obj);
1880 		i915_vm_put(vm);
1881 	}
1882 }
1883 
__i915_vma_iounmap(struct i915_vma * vma)1884 static void __i915_vma_iounmap(struct i915_vma *vma)
1885 {
1886 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1887 
1888 	if (vma->iomap == NULL)
1889 		return;
1890 
1891 	if (page_unmask_bits(vma->iomap))
1892 		__i915_gem_object_release_map(vma->obj);
1893 	else
1894 		io_mapping_unmap(vma->iomap);
1895 	vma->iomap = NULL;
1896 }
1897 
i915_vma_revoke_mmap(struct i915_vma * vma)1898 void i915_vma_revoke_mmap(struct i915_vma *vma)
1899 {
1900 	struct drm_vma_offset_node *node;
1901 	u64 vma_offset;
1902 
1903 	if (!i915_vma_has_userfault(vma))
1904 		return;
1905 
1906 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1907 	GEM_BUG_ON(!vma->obj->userfault_count);
1908 
1909 	node = &vma->mmo->vma_node;
1910 	vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1911 #ifdef __linux__
1912 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1913 			    drm_vma_node_offset_addr(node) + vma_offset,
1914 			    vma->size,
1915 			    1);
1916 #else
1917 	struct drm_i915_private *dev_priv = vma->obj->base.dev->dev_private;
1918 	struct vm_page *pg;
1919 
1920 	for (pg = &dev_priv->pgs[atop(vma->node.start)];
1921 	    pg != &dev_priv->pgs[atop(vma->node.start + vma->size)];
1922 	    pg++)
1923 		pmap_page_protect(pg, PROT_NONE);
1924 #endif
1925 
1926 	i915_vma_unset_userfault(vma);
1927 	if (!--vma->obj->userfault_count)
1928 		list_del(&vma->obj->userfault_link);
1929 }
1930 
1931 static int
__i915_request_await_bind(struct i915_request * rq,struct i915_vma * vma)1932 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1933 {
1934 	return __i915_request_await_exclusive(rq, &vma->active);
1935 }
1936 
__i915_vma_move_to_active(struct i915_vma * vma,struct i915_request * rq)1937 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1938 {
1939 	int err;
1940 
1941 	/* Wait for the vma to be bound before we start! */
1942 	err = __i915_request_await_bind(rq, vma);
1943 	if (err)
1944 		return err;
1945 
1946 	return i915_active_add_request(&vma->active, rq);
1947 }
1948 
_i915_vma_move_to_active(struct i915_vma * vma,struct i915_request * rq,struct dma_fence * fence,unsigned int flags)1949 int _i915_vma_move_to_active(struct i915_vma *vma,
1950 			     struct i915_request *rq,
1951 			     struct dma_fence *fence,
1952 			     unsigned int flags)
1953 {
1954 	struct drm_i915_gem_object *obj = vma->obj;
1955 	int err;
1956 
1957 	assert_object_held(obj);
1958 
1959 	GEM_BUG_ON(!vma->pages);
1960 
1961 	if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) {
1962 		err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE);
1963 		if (unlikely(err))
1964 			return err;
1965 	}
1966 	err = __i915_vma_move_to_active(vma, rq);
1967 	if (unlikely(err))
1968 		return err;
1969 
1970 	/*
1971 	 * Reserve fences slot early to prevent an allocation after preparing
1972 	 * the workload and associating fences with dma_resv.
1973 	 */
1974 	if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1975 		struct dma_fence *curr;
1976 		int idx;
1977 
1978 		dma_fence_array_for_each(curr, idx, fence)
1979 			;
1980 		err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1981 		if (unlikely(err))
1982 			return err;
1983 	}
1984 
1985 	if (flags & EXEC_OBJECT_WRITE) {
1986 		struct intel_frontbuffer *front;
1987 
1988 		front = i915_gem_object_get_frontbuffer(obj);
1989 		if (unlikely(front)) {
1990 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1991 				i915_active_add_request(&front->write, rq);
1992 			intel_frontbuffer_put(front);
1993 		}
1994 	}
1995 
1996 	if (fence) {
1997 		struct dma_fence *curr;
1998 		enum dma_resv_usage usage;
1999 		int idx;
2000 
2001 		if (flags & EXEC_OBJECT_WRITE) {
2002 			usage = DMA_RESV_USAGE_WRITE;
2003 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
2004 			obj->read_domains = 0;
2005 		} else {
2006 			usage = DMA_RESV_USAGE_READ;
2007 			obj->write_domain = 0;
2008 		}
2009 
2010 		dma_fence_array_for_each(curr, idx, fence)
2011 			dma_resv_add_fence(vma->obj->base.resv, curr, usage);
2012 	}
2013 
2014 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
2015 		i915_active_add_request(&vma->fence->active, rq);
2016 
2017 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
2018 	obj->mm.dirty = true;
2019 
2020 	GEM_BUG_ON(!i915_vma_is_active(vma));
2021 	return 0;
2022 }
2023 
__i915_vma_evict(struct i915_vma * vma,bool async)2024 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
2025 {
2026 	struct i915_vma_resource *vma_res = vma->resource;
2027 	struct dma_fence *unbind_fence;
2028 
2029 	GEM_BUG_ON(i915_vma_is_pinned(vma));
2030 	assert_vma_held_evict(vma);
2031 
2032 	if (i915_vma_is_map_and_fenceable(vma)) {
2033 		/* Force a pagefault for domain tracking on next user access */
2034 		i915_vma_revoke_mmap(vma);
2035 
2036 		/*
2037 		 * Check that we have flushed all writes through the GGTT
2038 		 * before the unbind, other due to non-strict nature of those
2039 		 * indirect writes they may end up referencing the GGTT PTE
2040 		 * after the unbind.
2041 		 *
2042 		 * Note that we may be concurrently poking at the GGTT_WRITE
2043 		 * bit from set-domain, as we mark all GGTT vma associated
2044 		 * with an object. We know this is for another vma, as we
2045 		 * are currently unbinding this one -- so if this vma will be
2046 		 * reused, it will be refaulted and have its dirty bit set
2047 		 * before the next write.
2048 		 */
2049 		i915_vma_flush_writes(vma);
2050 
2051 		/* release the fence reg _after_ flushing */
2052 		i915_vma_revoke_fence(vma);
2053 
2054 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
2055 	}
2056 
2057 	__i915_vma_iounmap(vma);
2058 
2059 	GEM_BUG_ON(vma->fence);
2060 	GEM_BUG_ON(i915_vma_has_userfault(vma));
2061 
2062 	/* Object backend must be async capable. */
2063 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
2064 
2065 	/* If vm is not open, unbind is a nop. */
2066 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
2067 		kref_read(&vma->vm->ref);
2068 	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
2069 		vma->vm->skip_pte_rewrite;
2070 	trace_i915_vma_unbind(vma);
2071 
2072 	if (async)
2073 		unbind_fence = i915_vma_resource_unbind(vma_res,
2074 							vma->obj->mm.tlb);
2075 	else
2076 		unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
2077 
2078 	vma->resource = NULL;
2079 
2080 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2081 		   &vma->flags);
2082 
2083 	i915_vma_detach(vma);
2084 
2085 	if (!async) {
2086 		if (unbind_fence) {
2087 			dma_fence_wait(unbind_fence, false);
2088 			dma_fence_put(unbind_fence);
2089 			unbind_fence = NULL;
2090 		}
2091 		vma_invalidate_tlb(vma->vm, vma->obj->mm.tlb);
2092 	}
2093 
2094 	/*
2095 	 * Binding itself may not have completed until the unbind fence signals,
2096 	 * so don't drop the pages until that happens, unless the resource is
2097 	 * async_capable.
2098 	 */
2099 
2100 	vma_unbind_pages(vma);
2101 	return unbind_fence;
2102 }
2103 
__i915_vma_unbind(struct i915_vma * vma)2104 int __i915_vma_unbind(struct i915_vma *vma)
2105 {
2106 	int ret;
2107 
2108 	lockdep_assert_held(&vma->vm->mutex);
2109 	assert_vma_held_evict(vma);
2110 
2111 	if (!drm_mm_node_allocated(&vma->node))
2112 		return 0;
2113 
2114 	if (i915_vma_is_pinned(vma)) {
2115 		vma_print_allocator(vma, "is pinned");
2116 		return -EAGAIN;
2117 	}
2118 
2119 	/*
2120 	 * After confirming that no one else is pinning this vma, wait for
2121 	 * any laggards who may have crept in during the wait (through
2122 	 * a residual pin skipping the vm->mutex) to complete.
2123 	 */
2124 	ret = i915_vma_sync(vma);
2125 	if (ret)
2126 		return ret;
2127 
2128 	GEM_BUG_ON(i915_vma_is_active(vma));
2129 	__i915_vma_evict(vma, false);
2130 
2131 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2132 	return 0;
2133 }
2134 
__i915_vma_unbind_async(struct i915_vma * vma)2135 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2136 {
2137 	struct dma_fence *fence;
2138 
2139 	lockdep_assert_held(&vma->vm->mutex);
2140 
2141 	if (!drm_mm_node_allocated(&vma->node))
2142 		return NULL;
2143 
2144 	if (i915_vma_is_pinned(vma) ||
2145 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2146 		return ERR_PTR(-EAGAIN);
2147 
2148 	/*
2149 	 * We probably need to replace this with awaiting the fences of the
2150 	 * object's dma_resv when the vma active goes away. When doing that
2151 	 * we need to be careful to not add the vma_resource unbind fence
2152 	 * immediately to the object's dma_resv, because then unbinding
2153 	 * the next vma from the object, in case there are many, will
2154 	 * actually await the unbinding of the previous vmas, which is
2155 	 * undesirable.
2156 	 */
2157 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2158 				       I915_ACTIVE_AWAIT_EXCL |
2159 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2160 		return ERR_PTR(-EBUSY);
2161 	}
2162 
2163 	fence = __i915_vma_evict(vma, true);
2164 
2165 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2166 
2167 	return fence;
2168 }
2169 
i915_vma_unbind(struct i915_vma * vma)2170 int i915_vma_unbind(struct i915_vma *vma)
2171 {
2172 	struct i915_address_space *vm = vma->vm;
2173 	intel_wakeref_t wakeref = 0;
2174 	int err;
2175 
2176 	assert_object_held_shared(vma->obj);
2177 
2178 	/* Optimistic wait before taking the mutex */
2179 	err = i915_vma_sync(vma);
2180 	if (err)
2181 		return err;
2182 
2183 	if (!drm_mm_node_allocated(&vma->node))
2184 		return 0;
2185 
2186 	if (i915_vma_is_pinned(vma)) {
2187 		vma_print_allocator(vma, "is pinned");
2188 		return -EAGAIN;
2189 	}
2190 
2191 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2192 		/* XXX not always required: nop_clear_range */
2193 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2194 
2195 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2196 	if (err)
2197 		goto out_rpm;
2198 
2199 	err = __i915_vma_unbind(vma);
2200 	mutex_unlock(&vm->mutex);
2201 
2202 out_rpm:
2203 	if (wakeref)
2204 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2205 	return err;
2206 }
2207 
i915_vma_unbind_async(struct i915_vma * vma,bool trylock_vm)2208 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2209 {
2210 	struct drm_i915_gem_object *obj = vma->obj;
2211 	struct i915_address_space *vm = vma->vm;
2212 	intel_wakeref_t wakeref = 0;
2213 	struct dma_fence *fence;
2214 	int err;
2215 
2216 	/*
2217 	 * We need the dma-resv lock since we add the
2218 	 * unbind fence to the dma-resv object.
2219 	 */
2220 	assert_object_held(obj);
2221 
2222 	if (!drm_mm_node_allocated(&vma->node))
2223 		return 0;
2224 
2225 	if (i915_vma_is_pinned(vma)) {
2226 		vma_print_allocator(vma, "is pinned");
2227 		return -EAGAIN;
2228 	}
2229 
2230 	if (!obj->mm.rsgt)
2231 		return -EBUSY;
2232 
2233 	err = dma_resv_reserve_fences(obj->base.resv, 2);
2234 	if (err)
2235 		return -EBUSY;
2236 
2237 	/*
2238 	 * It would be great if we could grab this wakeref from the
2239 	 * async unbind work if needed, but we can't because it uses
2240 	 * kmalloc and it's in the dma-fence signalling critical path.
2241 	 */
2242 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2243 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2244 
2245 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2246 		err = -EBUSY;
2247 		goto out_rpm;
2248 	} else if (!trylock_vm) {
2249 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2250 		if (err)
2251 			goto out_rpm;
2252 	}
2253 
2254 	fence = __i915_vma_unbind_async(vma);
2255 	mutex_unlock(&vm->mutex);
2256 	if (IS_ERR_OR_NULL(fence)) {
2257 		err = PTR_ERR_OR_ZERO(fence);
2258 		goto out_rpm;
2259 	}
2260 
2261 	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2262 	dma_fence_put(fence);
2263 
2264 out_rpm:
2265 	if (wakeref)
2266 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2267 	return err;
2268 }
2269 
i915_vma_unbind_unlocked(struct i915_vma * vma)2270 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2271 {
2272 	int err;
2273 
2274 	i915_gem_object_lock(vma->obj, NULL);
2275 	err = i915_vma_unbind(vma);
2276 	i915_gem_object_unlock(vma->obj);
2277 
2278 	return err;
2279 }
2280 
i915_vma_make_unshrinkable(struct i915_vma * vma)2281 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2282 {
2283 	i915_gem_object_make_unshrinkable(vma->obj);
2284 	return vma;
2285 }
2286 
i915_vma_make_shrinkable(struct i915_vma * vma)2287 void i915_vma_make_shrinkable(struct i915_vma *vma)
2288 {
2289 	i915_gem_object_make_shrinkable(vma->obj);
2290 }
2291 
i915_vma_make_purgeable(struct i915_vma * vma)2292 void i915_vma_make_purgeable(struct i915_vma *vma)
2293 {
2294 	i915_gem_object_make_purgeable(vma->obj);
2295 }
2296 
2297 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2298 #include "selftests/i915_vma.c"
2299 #endif
2300 
i915_vma_module_exit(void)2301 void i915_vma_module_exit(void)
2302 {
2303 #ifdef __linux__
2304 	kmem_cache_destroy(slab_vmas);
2305 #else
2306 	pool_destroy(&slab_vmas);
2307 #endif
2308 }
2309 
i915_vma_module_init(void)2310 int __init i915_vma_module_init(void)
2311 {
2312 #ifdef __linux__
2313 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2314 	if (!slab_vmas)
2315 		return -ENOMEM;
2316 #else
2317 	pool_init(&slab_vmas, sizeof(struct i915_vma),
2318 	    CACHELINESIZE, IPL_NONE, 0, "drmvma", NULL);
2319 #endif
2320 
2321 	return 0;
2322 }
2323