xref: /openbsd/sys/dev/usb/dwc2/dwc2_hcdqueue.c (revision a0d2b8da)
1 /*	$OpenBSD: dwc2_hcdqueue.c,v 1.15 2022/09/09 21:16:54 mglocker Exp $	*/
2 /*	$NetBSD: dwc2_hcdqueue.c,v 1.11 2014/09/03 10:00:08 skrll Exp $	*/
3 
4 /*
5  * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
6  *
7  * Copyright (C) 2004-2013 Synopsys, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions, and the following disclaimer,
14  *    without modification.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The names of the above-listed copyright holders may not be used
19  *    to endorse or promote products derived from this software without
20  *    specific prior written permission.
21  *
22  * ALTERNATIVELY, this software may be distributed under the terms of the
23  * GNU General Public License ("GPL") as published by the Free Software
24  * Foundation; either version 2 of the License, or (at your option) any
25  * later version.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
28  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
29  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
31  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
32  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
33  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
34  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
35  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
36  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
37  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * This file contains the functions to manage Queue Heads and Queue
42  * Transfer Descriptors for Host mode
43  */
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/malloc.h>
47 #include <sys/pool.h>
48 
49 #include <machine/bus.h>
50 
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdivar.h>
54 #include <dev/usb/usb_mem.h>
55 
56 #include <dev/usb/dwc2/dwc2.h>
57 #include <dev/usb/dwc2/dwc2var.h>
58 
59 #include <dev/usb/dwc2/dwc2_core.h>
60 #include <dev/usb/dwc2/dwc2_hcd.h>
61 
62 #include <dev/usb/dwc2/gcd.h>
63 #include <dev/usb/dwc2/bitmap.h>
64 
65 STATIC void dwc2_wait_timer_fn(void *);
66 
67 /* Wait this long before releasing periodic reservation */
68 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
69 
70 /* If we get a NAK, wait this long before retrying */
71 #define DWC2_RETRY_WAIT_DELAY 1	/* msec */
72 
73 /**
74  * dwc2_periodic_channel_available() - Checks that a channel is available for a
75  * periodic transfer
76  *
77  * @hsotg: The HCD state structure for the DWC OTG controller
78  *
79  * Return: 0 if successful, negative error code otherwise
80  */
dwc2_periodic_channel_available(struct dwc2_hsotg * hsotg)81 STATIC int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
82 {
83 	/*
84 	 * Currently assuming that there is a dedicated host channel for
85 	 * each periodic transaction plus at least one host channel for
86 	 * non-periodic transactions
87 	 */
88 	int status;
89 	int num_channels;
90 
91 	num_channels = hsotg->params.host_channels;
92 	if ((hsotg->periodic_channels + hsotg->non_periodic_channels <
93 	     num_channels) && (hsotg->periodic_channels < num_channels - 1)) {
94 		status = 0;
95 	} else {
96 		dev_dbg(hsotg->dev,
97 			"%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
98 			__func__, num_channels,
99 			hsotg->periodic_channels, hsotg->non_periodic_channels);
100 		status = -ENOSPC;
101 	}
102 
103 	return status;
104 }
105 
106 /**
107  * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
108  * for the specified QH in the periodic schedule
109  *
110  * @hsotg: The HCD state structure for the DWC OTG controller
111  * @qh:    QH containing periodic bandwidth required
112  *
113  * Return: 0 if successful, negative error code otherwise
114  *
115  * For simplicity, this calculation assumes that all the transfers in the
116  * periodic schedule may occur in the same (micro)frame
117  */
dwc2_check_periodic_bandwidth(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)118 STATIC int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
119 					 struct dwc2_qh *qh)
120 {
121 	int status;
122 	s16 max_claimed_usecs;
123 
124 	status = 0;
125 
126 	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
127 		/*
128 		 * High speed mode
129 		 * Max periodic usecs is 80% x 125 usec = 100 usec
130 		 */
131 		max_claimed_usecs = 100 - qh->host_us;
132 	} else {
133 		/*
134 		 * Full speed mode
135 		 * Max periodic usecs is 90% x 1000 usec = 900 usec
136 		 */
137 		max_claimed_usecs = 900 - qh->host_us;
138 	}
139 
140 	if (hsotg->periodic_usecs > max_claimed_usecs) {
141 		dev_err(hsotg->dev,
142 			"%s: already claimed usecs %d, required usecs %d\n",
143 			__func__, hsotg->periodic_usecs, qh->host_us);
144 		status = -ENOSPC;
145 	}
146 
147 	return status;
148 }
149 
150 /**
151  * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
152  *
153  * @map:             The bitmap representing the schedule; will be updated
154  *                   upon success.
155  * @bits_per_period: The schedule represents several periods.  This is how many
156  *                   bits are in each period.  It's assumed that the beginning
157  *                   of the schedule will repeat after its end.
158  * @periods_in_map:  The number of periods in the schedule.
159  * @num_bits:        The number of bits we need per period we want to reserve
160  *                   in this function call.
161  * @interval:        How often we need to be scheduled for the reservation this
162  *                   time.  1 means every period.  2 means every other period.
163  *                   ...you get the picture?
164  * @start:           The bit number to start at.  Normally 0.  Must be within
165  *                   the interval or we return failure right away.
166  * @only_one_period: Normally we'll allow picking a start anywhere within the
167  *                   first interval, since we can still make all repetition
168  *                   requirements by doing that.  However, if you pass true
169  *                   here then we'll return failure if we can't fit within
170  *                   the period that "start" is in.
171  *
172  * The idea here is that we want to schedule time for repeating events that all
173  * want the same resource.  The resource is divided into fixed-sized periods
174  * and the events want to repeat every "interval" periods.  The schedule
175  * granularity is one bit.
176  *
177  * To keep things "simple", we'll represent our schedule with a bitmap that
178  * contains a fixed number of periods.  This gets rid of a lot of complexity
179  * but does mean that we need to handle things specially (and non-ideally) if
180  * the number of the periods in the schedule doesn't match well with the
181  * intervals that we're trying to schedule.
182  *
183  * Here's an explanation of the scheme we'll implement, assuming 8 periods.
184  * - If interval is 1, we need to take up space in each of the 8
185  *   periods we're scheduling.  Easy.
186  * - If interval is 2, we need to take up space in half of the
187  *   periods.  Again, easy.
188  * - If interval is 3, we actually need to fall back to interval 1.
189  *   Why?  Because we might need time in any period.  AKA for the
190  *   first 8 periods, we'll be in slot 0, 3, 6.  Then we'll be
191  *   in slot 1, 4, 7.  Then we'll be in 2, 5.  Then we'll be back to
192  *   0, 3, and 6.  Since we could be in any frame we need to reserve
193  *   for all of them.  Sucks, but that's what you gotta do.  Note that
194  *   if we were instead scheduling 8 * 3 = 24 we'd do much better, but
195  *   then we need more memory and time to do scheduling.
196  * - If interval is 4, easy.
197  * - If interval is 5, we again need interval 1.  The schedule will be
198  *   0, 5, 2, 7, 4, 1, 6, 3, 0
199  * - If interval is 6, we need interval 2.  0, 6, 4, 2.
200  * - If interval is 7, we need interval 1.
201  * - If interval is 8, we need interval 8.
202  *
203  * If you do the math, you'll see that we need to pretend that interval is
204  * equal to the greatest_common_divisor(interval, periods_in_map).
205  *
206  * Note that at the moment this function tends to front-pack the schedule.
207  * In some cases that's really non-ideal (it's hard to schedule things that
208  * need to repeat every period).  In other cases it's perfect (you can easily
209  * schedule bigger, less often repeating things).
210  *
211  * Here's the algorithm in action (8 periods, 5 bits per period):
212  *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
213  *  |*****|  ***|*****|  ***|*****|  ***|*****|  ***|   OK 3 bits, intv 3 at 2
214  *  |*****|* ***|*****|  ***|*****|* ***|*****|  ***|   OK 1 bits, intv 4 at 5
215  *  |**   |*    |**   |     |**   |*    |**   |     | Remv 3 bits, intv 3 at 2
216  *  |***  |*    |***  |     |***  |*    |***  |     |   OK 1 bits, intv 6 at 2
217  *  |**** |*  * |**** |   * |**** |*  * |**** |   * |   OK 1 bits, intv 1 at 3
218  *  |**** |**** |**** | *** |**** |**** |**** | *** |   OK 2 bits, intv 2 at 6
219  *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 1 at 4
220  *  |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
221  *  |  ***|*****|  ***| ****|  ***|*****|  ***| ****| Remv 2 bits, intv 2 at 0
222  *  |  ***| ****|  ***| ****|  ***| ****|  ***| ****| Remv 1 bits, intv 4 at 5
223  *  |   **| ****|   **| ****|   **| ****|   **| ****| Remv 1 bits, intv 6 at 2
224  *  |    *| ** *|    *| ** *|    *| ** *|    *| ** *| Remv 1 bits, intv 1 at 3
225  *  |    *|    *|    *|    *|    *|    *|    *|    *| Remv 2 bits, intv 2 at 6
226  *  |     |     |     |     |     |     |     |     | Remv 1 bits, intv 1 at 4
227  *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
228  *  |***  |     |**   |     |***  |     |**   |     |   OK 1 bits, intv 4 at 2
229  *  |*****|     |** **|     |*****|     |** **|     |   OK 2 bits, intv 2 at 3
230  *  |*****|*    |** **|     |*****|*    |** **|     |   OK 1 bits, intv 4 at 5
231  *  |*****|***  |** **| **  |*****|***  |** **| **  |   OK 2 bits, intv 2 at 6
232  *  |*****|*****|** **| ****|*****|*****|** **| ****|   OK 2 bits, intv 2 at 8
233  *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 4 at 12
234  *
235  * This function is pretty generic and could be easily abstracted if anything
236  * needed similar scheduling.
237  *
238  * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
239  * unschedule routine.  The map bitmap will be updated on a non-error result.
240  */
pmap_schedule(unsigned long * map,int bits_per_period,int periods_in_map,int num_bits,int interval,int start,bool only_one_period)241 static int pmap_schedule(unsigned long *map, int bits_per_period,
242 			 int periods_in_map, int num_bits,
243 			 int interval, int start, bool only_one_period)
244 {
245 	int interval_bits;
246 	int to_reserve;
247 	int first_end;
248 	int i;
249 
250 	if (num_bits > bits_per_period)
251 		return -ENOSPC;
252 
253 	/* Adjust interval as per description */
254 	interval = gcd(interval, periods_in_map);
255 
256 	interval_bits = bits_per_period * interval;
257 	to_reserve = periods_in_map / interval;
258 
259 	/* If start has gotten us past interval then we can't schedule */
260 	if (start >= interval_bits)
261 		return -ENOSPC;
262 
263 	if (only_one_period)
264 		/* Must fit within same period as start; end at begin of next */
265 		first_end = (start / bits_per_period + 1) * bits_per_period;
266 	else
267 		/* Can fit anywhere in the first interval */
268 		first_end = interval_bits;
269 
270 	/*
271 	 * We'll try to pick the first repetition, then see if that time
272 	 * is free for each of the subsequent repetitions.  If it's not
273 	 * we'll adjust the start time for the next search of the first
274 	 * repetition.
275 	 */
276 	while (start + num_bits <= first_end) {
277 		int end;
278 
279 		/* Need to stay within this period */
280 		end = (start / bits_per_period + 1) * bits_per_period;
281 
282 		/* Look for num_bits us in this microframe starting at start */
283 		start = bitmap_find_next_zero_area(map, end, start, num_bits,
284 						   0);
285 
286 		/*
287 		 * We should get start >= end if we fail.  We might be
288 		 * able to check the next microframe depending on the
289 		 * interval, so continue on (start already updated).
290 		 */
291 		if (start >= end) {
292 			start = end;
293 			continue;
294 		}
295 
296 		/* At this point we have a valid point for first one */
297 		for (i = 1; i < to_reserve; i++) {
298 			int ith_start = start + interval_bits * i;
299 			int ith_end = end + interval_bits * i;
300 			int ret;
301 
302 			/* Use this as a dumb "check if bits are 0" */
303 			ret = bitmap_find_next_zero_area(
304 				map, ith_start + num_bits, ith_start, num_bits,
305 				0);
306 
307 			/* We got the right place, continue checking */
308 			if (ret == ith_start)
309 				continue;
310 
311 			/* Move start up for next time and exit for loop */
312 			ith_start = bitmap_find_next_zero_area(
313 				map, ith_end, ith_start, num_bits, 0);
314 			if (ith_start >= ith_end)
315 				/* Need a while new period next time */
316 				start = end;
317 			else
318 				start = ith_start - interval_bits * i;
319 			break;
320 		}
321 
322 		/* If didn't exit the for loop with a break, we have success */
323 		if (i == to_reserve)
324 			break;
325 	}
326 
327 	if (start + num_bits > first_end)
328 		return -ENOSPC;
329 
330 	for (i = 0; i < to_reserve; i++) {
331 		int ith_start = start + interval_bits * i;
332 
333 		bitmap_set(map, ith_start, num_bits);
334 	}
335 
336 	return start;
337 }
338 
339 /**
340  * pmap_unschedule() - Undo work done by pmap_schedule()
341  *
342  * @map:             See pmap_schedule().
343  * @bits_per_period: See pmap_schedule().
344  * @periods_in_map:  See pmap_schedule().
345  * @num_bits:        The number of bits that was passed to schedule.
346  * @interval:        The interval that was passed to schedule.
347  * @start:           The return value from pmap_schedule().
348  */
pmap_unschedule(unsigned long * map,int bits_per_period,int periods_in_map,int num_bits,int interval,int start)349 static void pmap_unschedule(unsigned long *map, int bits_per_period,
350 			    int periods_in_map, int num_bits,
351 			    int interval, int start)
352 {
353 	int interval_bits;
354 	int to_release;
355 	int i;
356 
357 	/* Adjust interval as per description in pmap_schedule() */
358 	interval = gcd(interval, periods_in_map);
359 
360 	interval_bits = bits_per_period * interval;
361 	to_release = periods_in_map / interval;
362 
363 	for (i = 0; i < to_release; i++) {
364 		int ith_start = start + interval_bits * i;
365 
366 		bitmap_clear(map, ith_start, num_bits);
367 	}
368 }
369 
370 /**
371  * dwc2_get_ls_map() - Get the map used for the given qh
372  *
373  * @hsotg: The HCD state structure for the DWC OTG controller.
374  * @qh:    QH for the periodic transfer.
375  *
376  * We'll always get the periodic map out of our TT.  Note that even if we're
377  * running the host straight in low speed / full speed mode it appears as if
378  * a TT is allocated for us, so we'll use it.  If that ever changes we can
379  * add logic here to get a map out of "hsotg" if !qh->do_split.
380  *
381  * Returns: the map or NULL if a map couldn't be found.
382  */
dwc2_get_ls_map(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)383 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
384 				      struct dwc2_qh *qh)
385 {
386 	unsigned long *map;
387 
388 	/* Don't expect to be missing a TT and be doing low speed scheduling */
389 	if (WARN_ON(!qh->dwc_tt))
390 		return NULL;
391 
392 	/* Get the map and adjust if this is a multi_tt hub */
393 	map = qh->dwc_tt->periodic_bitmaps;
394 	if (qh->dwc_tt->usb_tt->hub->multi)
395 		map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1);
396 
397 	return map;
398 }
399 
400 #ifdef DWC2_PRINT_SCHEDULE
401 /*
402  * cat_printf() - A printf() + strcat() helper
403  *
404  * This is useful for concatenating a bunch of strings where each string is
405  * constructed using printf.
406  *
407  * @buf:   The destination buffer; will be updated to point after the printed
408  *         data.
409  * @size:  The number of bytes in the buffer (includes space for '\0').
410  * @fmt:   The format for printf.
411  * @...:   The args for printf.
412  */
413 static __printf(3, 4)
cat_printf(char ** buf,size_t * size,const char * fmt,...)414 void cat_printf(char **buf, size_t *size, const char *fmt, ...)
415 {
416 	va_list args;
417 	int i;
418 
419 	if (*size == 0)
420 		return;
421 
422 	va_start(args, fmt);
423 	i = vsnprintf(*buf, *size, fmt, args);
424 	va_end(args);
425 
426 	if (i >= *size) {
427 		(*buf)[*size - 1] = '\0';
428 		*buf += *size;
429 		*size = 0;
430 	} else {
431 		*buf += i;
432 		*size -= i;
433 	}
434 }
435 
436 /*
437  * pmap_print() - Print the given periodic map
438  *
439  * Will attempt to print out the periodic schedule.
440  *
441  * @map:             See pmap_schedule().
442  * @bits_per_period: See pmap_schedule().
443  * @periods_in_map:  See pmap_schedule().
444  * @period_name:     The name of 1 period, like "uFrame"
445  * @units:           The name of the units, like "us".
446  * @print_fn:        The function to call for printing.
447  * @print_data:      Opaque data to pass to the print function.
448  */
pmap_print(unsigned long * map,int bits_per_period,int periods_in_map,const char * period_name,const char * units,void (* print_fn)(const char * str,void * data),void * print_data)449 static void pmap_print(unsigned long *map, int bits_per_period,
450 		       int periods_in_map, const char *period_name,
451 		       const char *units,
452 		       void (*print_fn)(const char *str, void *data),
453 		       void *print_data)
454 {
455 	int period;
456 
457 	for (period = 0; period < periods_in_map; period++) {
458 		char tmp[64];
459 		char *buf = tmp;
460 		size_t buf_size = sizeof(tmp);
461 		int period_start = period * bits_per_period;
462 		int period_end = period_start + bits_per_period;
463 		int start = 0;
464 		int count = 0;
465 		bool printed = false;
466 		int i;
467 
468 		for (i = period_start; i < period_end + 1; i++) {
469 			/* Handle case when ith bit is set */
470 			if (i < period_end &&
471 			    bitmap_find_next_zero_area(map, i + 1,
472 						       i, 1, 0) != i) {
473 				if (count == 0)
474 					start = i - period_start;
475 				count++;
476 				continue;
477 			}
478 
479 			/* ith bit isn't set; don't care if count == 0 */
480 			if (count == 0)
481 				continue;
482 
483 			if (!printed)
484 				cat_printf(&buf, &buf_size, "%s %d: ",
485 					   period_name, period);
486 			else
487 				cat_printf(&buf, &buf_size, ", ");
488 			printed = true;
489 
490 			cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
491 				   units, start + count - 1, units);
492 			count = 0;
493 		}
494 
495 		if (printed)
496 			print_fn(tmp, print_data);
497 	}
498 }
499 
500 struct dwc2_qh_print_data {
501 	struct dwc2_hsotg *hsotg;
502 	struct dwc2_qh *qh;
503 };
504 
505 /**
506  * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
507  *
508  * @str:  The string to print
509  * @data: A pointer to a struct dwc2_qh_print_data
510  */
dwc2_qh_print(const char * str,void * data)511 static void dwc2_qh_print(const char *str, void *data)
512 {
513 	struct dwc2_qh_print_data *print_data = data;
514 
515 	dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
516 }
517 
518 /**
519  * dwc2_qh_schedule_print() - Print the periodic schedule
520  *
521  * @hsotg: The HCD state structure for the DWC OTG controller.
522  * @qh:    QH to print.
523  */
dwc2_qh_schedule_print(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)524 static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
525 				   struct dwc2_qh *qh)
526 {
527 	struct dwc2_qh_print_data print_data = { hsotg, qh };
528 	int i;
529 
530 	/*
531 	 * The printing functions are quite slow and inefficient.
532 	 * If we don't have tracing turned on, don't run unless the special
533 	 * define is turned on.
534 	 */
535 
536 	if (qh->schedule_low_speed) {
537 		unsigned long *map = dwc2_get_ls_map(hsotg, qh);
538 
539 		dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
540 			     qh, qh->device_us,
541 			     DWC2_ROUND_US_TO_SLICE(qh->device_us),
542 			     DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
543 
544 		if (map) {
545 			dwc2_sch_dbg(hsotg,
546 				     "QH=%p Whole low/full speed map %p now:\n",
547 				     qh, map);
548 			pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
549 				   DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
550 				   dwc2_qh_print, &print_data);
551 		}
552 	}
553 
554 	for (i = 0; i < qh->num_hs_transfers; i++) {
555 		struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
556 		int uframe = trans_time->start_schedule_us /
557 			     DWC2_HS_PERIODIC_US_PER_UFRAME;
558 		int rel_us = trans_time->start_schedule_us %
559 			     DWC2_HS_PERIODIC_US_PER_UFRAME;
560 
561 		dwc2_sch_dbg(hsotg,
562 			     "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
563 			     qh, i, trans_time->duration_us, uframe, rel_us);
564 	}
565 	if (qh->num_hs_transfers) {
566 		dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
567 		pmap_print(hsotg->hs_periodic_bitmap,
568 			   DWC2_HS_PERIODIC_US_PER_UFRAME,
569 			   DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
570 			   dwc2_qh_print, &print_data);
571 	}
572 }
573 #else
dwc2_qh_schedule_print(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)574 static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
575 					  struct dwc2_qh *qh) {};
576 #endif
577 
578 /**
579  * dwc2_ls_pmap_schedule() - Schedule a low speed QH
580  *
581  * @hsotg:        The HCD state structure for the DWC OTG controller.
582  * @qh:           QH for the periodic transfer.
583  * @search_slice: We'll start trying to schedule at the passed slice.
584  *                Remember that slices are the units of the low speed
585  *                schedule (think 25us or so).
586  *
587  * Wraps pmap_schedule() with the right parameters for low speed scheduling.
588  *
589  * Normally we schedule low speed devices on the map associated with the TT.
590  *
591  * Returns: 0 for success or an error code.
592  */
dwc2_ls_pmap_schedule(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,int search_slice)593 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
594 				 int search_slice)
595 {
596 	int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
597 	unsigned long *map = dwc2_get_ls_map(hsotg, qh);
598 	int slice;
599 
600 	if (!map)
601 		return -EINVAL;
602 
603 	/*
604 	 * Schedule on the proper low speed map with our low speed scheduling
605 	 * parameters.  Note that we use the "device_interval" here since
606 	 * we want the low speed interval and the only way we'd be in this
607 	 * function is if the device is low speed.
608 	 *
609 	 * If we happen to be doing low speed and high speed scheduling for the
610 	 * same transaction (AKA we have a split) we always do low speed first.
611 	 * That means we can always pass "false" for only_one_period (that
612 	 * parameters is only useful when we're trying to get one schedule to
613 	 * match what we already planned in the other schedule).
614 	 */
615 	slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
616 			      DWC2_LS_SCHEDULE_FRAMES, slices,
617 			      qh->device_interval, search_slice, false);
618 
619 	if (slice < 0)
620 		return slice;
621 
622 	qh->ls_start_schedule_slice = slice;
623 	return 0;
624 }
625 
626 /**
627  * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
628  *
629  * @hsotg:       The HCD state structure for the DWC OTG controller.
630  * @qh:          QH for the periodic transfer.
631  */
dwc2_ls_pmap_unschedule(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)632 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
633 				    struct dwc2_qh *qh)
634 {
635 	int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
636 	unsigned long *map = dwc2_get_ls_map(hsotg, qh);
637 
638 	/* Schedule should have failed, so no worries about no error code */
639 	if (!map)
640 		return;
641 
642 	pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
643 			DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
644 			qh->ls_start_schedule_slice);
645 }
646 
647 /**
648  * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
649  *
650  * This will schedule something on the main dwc2 schedule.
651  *
652  * We'll start looking in qh->hs_transfers[index].start_schedule_us.  We'll
653  * update this with the result upon success.  We also use the duration from
654  * the same structure.
655  *
656  * @hsotg:           The HCD state structure for the DWC OTG controller.
657  * @qh:              QH for the periodic transfer.
658  * @only_one_period: If true we will limit ourselves to just looking at
659  *                   one period (aka one 100us chunk).  This is used if we have
660  *                   already scheduled something on the low speed schedule and
661  *                   need to find something that matches on the high speed one.
662  * @index:           The index into qh->hs_transfers that we're working with.
663  *
664  * Returns: 0 for success or an error code.  Upon success the
665  *          dwc2_hs_transfer_time specified by "index" will be updated.
666  */
dwc2_hs_pmap_schedule(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,bool only_one_period,int index)667 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
668 				 bool only_one_period, int index)
669 {
670 	struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
671 	int us;
672 
673 	us = pmap_schedule(hsotg->hs_periodic_bitmap,
674 			   DWC2_HS_PERIODIC_US_PER_UFRAME,
675 			   DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
676 			   qh->host_interval, trans_time->start_schedule_us,
677 			   only_one_period);
678 
679 	if (us < 0)
680 		return us;
681 
682 	trans_time->start_schedule_us = us;
683 	return 0;
684 }
685 
686 /**
687  * dwc2_hs_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
688  *
689  * @hsotg:       The HCD state structure for the DWC OTG controller.
690  * @qh:          QH for the periodic transfer.
691  * @index:       Transfer index
692  */
dwc2_hs_pmap_unschedule(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,int index)693 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
694 				    struct dwc2_qh *qh, int index)
695 {
696 	struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
697 
698 	pmap_unschedule(hsotg->hs_periodic_bitmap,
699 			DWC2_HS_PERIODIC_US_PER_UFRAME,
700 			DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
701 			qh->host_interval, trans_time->start_schedule_us);
702 }
703 
704 /**
705  * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
706  *
707  * This is the most complicated thing in USB.  We have to find matching time
708  * in both the global high speed schedule for the port and the low speed
709  * schedule for the TT associated with the given device.
710  *
711  * Being here means that the host must be running in high speed mode and the
712  * device is in low or full speed mode (and behind a hub).
713  *
714  * @hsotg:       The HCD state structure for the DWC OTG controller.
715  * @qh:          QH for the periodic transfer.
716  */
dwc2_uframe_schedule_split(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)717 static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
718 				      struct dwc2_qh *qh)
719 {
720 	int bytecount = qh->maxp_mult * qh->maxp;
721 	int ls_search_slice;
722 	int err = 0;
723 	int host_interval_in_sched;
724 
725 	/*
726 	 * The interval (how often to repeat) in the actual host schedule.
727 	 * See pmap_schedule() for gcd() explanation.
728 	 */
729 	host_interval_in_sched = gcd(qh->host_interval,
730 				     DWC2_HS_SCHEDULE_UFRAMES);
731 
732 	/*
733 	 * We always try to find space in the low speed schedule first, then
734 	 * try to find high speed time that matches.  If we don't, we'll bump
735 	 * up the place we start searching in the low speed schedule and try
736 	 * again.  To start we'll look right at the beginning of the low speed
737 	 * schedule.
738 	 *
739 	 * Note that this will tend to front-load the high speed schedule.
740 	 * We may eventually want to try to avoid this by either considering
741 	 * both schedules together or doing some sort of round robin.
742 	 */
743 	ls_search_slice = 0;
744 
745 	while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
746 		int start_s_uframe;
747 		int ssplit_s_uframe;
748 		int second_s_uframe;
749 		int rel_uframe;
750 		int first_count;
751 		int middle_count;
752 		int end_count;
753 		int first_data_bytes;
754 		int other_data_bytes;
755 		int i;
756 
757 		if (qh->schedule_low_speed) {
758 			err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
759 
760 			/*
761 			 * If we got an error here there's no other magic we
762 			 * can do, so bail.  All the looping above is only
763 			 * helpful to redo things if we got a low speed slot
764 			 * and then couldn't find a matching high speed slot.
765 			 */
766 			if (err)
767 				return err;
768 		} else {
769 			/* Must be missing the tt structure?  Why? */
770 			WARN_ON_ONCE(1);
771 		}
772 
773 		/*
774 		 * This will give us a number 0 - 7 if
775 		 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
776 		 */
777 		start_s_uframe = qh->ls_start_schedule_slice /
778 				 DWC2_SLICES_PER_UFRAME;
779 
780 		/* Get a number that's always 0 - 7 */
781 		rel_uframe = (start_s_uframe % 8);
782 
783 		/*
784 		 * If we were going to start in uframe 7 then we would need to
785 		 * issue a start split in uframe 6, which spec says is not OK.
786 		 * Move on to the next full frame (assuming there is one).
787 		 *
788 		 * See 11.18.4 Host Split Transaction Scheduling Requirements
789 		 * bullet 1.
790 		 */
791 		if (rel_uframe == 7) {
792 			if (qh->schedule_low_speed)
793 				dwc2_ls_pmap_unschedule(hsotg, qh);
794 			ls_search_slice =
795 				(qh->ls_start_schedule_slice /
796 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
797 				DWC2_LS_PERIODIC_SLICES_PER_FRAME;
798 			continue;
799 		}
800 
801 		/*
802 		 * For ISOC in:
803 		 * - start split            (frame -1)
804 		 * - complete split w/ data (frame +1)
805 		 * - complete split w/ data (frame +2)
806 		 * - ...
807 		 * - complete split w/ data (frame +num_data_packets)
808 		 * - complete split w/ data (frame +num_data_packets+1)
809 		 * - complete split w/ data (frame +num_data_packets+2, max 8)
810 		 *   ...though if frame was "0" then max is 7...
811 		 *
812 		 * For ISOC out we might need to do:
813 		 * - start split w/ data    (frame -1)
814 		 * - start split w/ data    (frame +0)
815 		 * - ...
816 		 * - start split w/ data    (frame +num_data_packets-2)
817 		 *
818 		 * For INTERRUPT in we might need to do:
819 		 * - start split            (frame -1)
820 		 * - complete split w/ data (frame +1)
821 		 * - complete split w/ data (frame +2)
822 		 * - complete split w/ data (frame +3, max 8)
823 		 *
824 		 * For INTERRUPT out we might need to do:
825 		 * - start split w/ data    (frame -1)
826 		 * - complete split         (frame +1)
827 		 * - complete split         (frame +2)
828 		 * - complete split         (frame +3, max 8)
829 		 *
830 		 * Start adjusting!
831 		 */
832 		ssplit_s_uframe = (start_s_uframe +
833 				   host_interval_in_sched - 1) %
834 				  host_interval_in_sched;
835 		if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
836 			second_s_uframe = start_s_uframe;
837 		else
838 			second_s_uframe = start_s_uframe + 1;
839 
840 		/* First data transfer might not be all 188 bytes. */
841 		first_data_bytes = 188 -
842 			DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
843 					    DWC2_SLICES_PER_UFRAME),
844 				     DWC2_SLICES_PER_UFRAME);
845 		if (first_data_bytes > bytecount)
846 			first_data_bytes = bytecount;
847 		other_data_bytes = bytecount - first_data_bytes;
848 
849 		/*
850 		 * For now, skip OUT xfers where first xfer is partial
851 		 *
852 		 * Main dwc2 code assumes:
853 		 * - INT transfers never get split in two.
854 		 * - ISOC transfers can always transfer 188 bytes the first
855 		 *   time.
856 		 *
857 		 * Until that code is fixed, try again if the first transfer
858 		 * couldn't transfer everything.
859 		 *
860 		 * This code can be removed if/when the rest of dwc2 handles
861 		 * the above cases.  Until it's fixed we just won't be able
862 		 * to schedule quite as tightly.
863 		 */
864 		if (!qh->ep_is_in &&
865 		    (first_data_bytes != min_t(int, 188, bytecount))) {
866 			dwc2_sch_dbg(hsotg,
867 				     "QH=%p avoiding broken 1st xfer (%d, %d)\n",
868 				     qh, first_data_bytes, bytecount);
869 			if (qh->schedule_low_speed)
870 				dwc2_ls_pmap_unschedule(hsotg, qh);
871 			ls_search_slice = (start_s_uframe + 1) *
872 				DWC2_SLICES_PER_UFRAME;
873 			continue;
874 		}
875 
876 		/* Start by assuming transfers for the bytes */
877 		qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
878 
879 		/*
880 		 * Everything except ISOC OUT has extra transfers.  Rules are
881 		 * complicated.  See 11.18.4 Host Split Transaction Scheduling
882 		 * Requirements bullet 3.
883 		 */
884 		if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
885 			if (rel_uframe == 6)
886 				qh->num_hs_transfers += 2;
887 			else
888 				qh->num_hs_transfers += 3;
889 
890 			if (qh->ep_is_in) {
891 				/*
892 				 * First is start split, middle/end is data.
893 				 * Allocate full data bytes for all data.
894 				 */
895 				first_count = 4;
896 				middle_count = bytecount;
897 				end_count = bytecount;
898 			} else {
899 				/*
900 				 * First is data, middle/end is complete.
901 				 * First transfer and second can have data.
902 				 * Rest should just have complete split.
903 				 */
904 				first_count = first_data_bytes;
905 				middle_count = max_t(int, 4, other_data_bytes);
906 				end_count = 4;
907 			}
908 		} else {
909 			if (qh->ep_is_in) {
910 				int last;
911 
912 				/* Account for the start split */
913 				qh->num_hs_transfers++;
914 
915 				/* Calculate "L" value from spec */
916 				last = rel_uframe + qh->num_hs_transfers + 1;
917 
918 				/* Start with basic case */
919 				if (last <= 6)
920 					qh->num_hs_transfers += 2;
921 				else
922 					qh->num_hs_transfers += 1;
923 
924 				/* Adjust downwards */
925 				if (last >= 6 && rel_uframe == 0)
926 					qh->num_hs_transfers--;
927 
928 				/* 1st = start; rest can contain data */
929 				first_count = 4;
930 				middle_count = min_t(int, 188, bytecount);
931 				end_count = middle_count;
932 			} else {
933 				/* All contain data, last might be smaller */
934 				first_count = first_data_bytes;
935 				middle_count = min_t(int, 188,
936 						     other_data_bytes);
937 				end_count = other_data_bytes % 188;
938 			}
939 		}
940 
941 		/* Assign durations per uFrame */
942 		qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
943 		for (i = 1; i < qh->num_hs_transfers - 1; i++)
944 			qh->hs_transfers[i].duration_us =
945 				HS_USECS_ISO(middle_count);
946 		if (qh->num_hs_transfers > 1)
947 			qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
948 				HS_USECS_ISO(end_count);
949 
950 		/*
951 		 * Assign start us.  The call below to dwc2_hs_pmap_schedule()
952 		 * will start with these numbers but may adjust within the same
953 		 * microframe.
954 		 */
955 		qh->hs_transfers[0].start_schedule_us =
956 			ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
957 		for (i = 1; i < qh->num_hs_transfers; i++)
958 			qh->hs_transfers[i].start_schedule_us =
959 				((second_s_uframe + i - 1) %
960 				 DWC2_HS_SCHEDULE_UFRAMES) *
961 				DWC2_HS_PERIODIC_US_PER_UFRAME;
962 
963 		/* Try to schedule with filled in hs_transfers above */
964 		for (i = 0; i < qh->num_hs_transfers; i++) {
965 			err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
966 			if (err)
967 				break;
968 		}
969 
970 		/* If we scheduled all w/out breaking out then we're all good */
971 		if (i == qh->num_hs_transfers)
972 			break;
973 
974 		for (; i >= 0; i--)
975 			dwc2_hs_pmap_unschedule(hsotg, qh, i);
976 
977 		if (qh->schedule_low_speed)
978 			dwc2_ls_pmap_unschedule(hsotg, qh);
979 
980 		/* Try again starting in the next microframe */
981 		ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
982 	}
983 
984 	if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
985 		return -ENOSPC;
986 
987 	return 0;
988 }
989 
990 /**
991  * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
992  *
993  * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
994  * interface.
995  *
996  * @hsotg:       The HCD state structure for the DWC OTG controller.
997  * @qh:          QH for the periodic transfer.
998  */
dwc2_uframe_schedule_hs(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)999 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1000 {
1001 	/* In non-split host and device time are the same */
1002 	WARN_ON(qh->host_us != qh->device_us);
1003 	WARN_ON(qh->host_interval != qh->device_interval);
1004 	WARN_ON(qh->num_hs_transfers != 1);
1005 
1006 	/* We'll have one transfer; init start to 0 before calling scheduler */
1007 	qh->hs_transfers[0].start_schedule_us = 0;
1008 	qh->hs_transfers[0].duration_us = qh->host_us;
1009 
1010 	return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
1011 }
1012 
1013 /**
1014  * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
1015  *
1016  * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
1017  * interface.
1018  *
1019  * @hsotg:       The HCD state structure for the DWC OTG controller.
1020  * @qh:          QH for the periodic transfer.
1021  */
dwc2_uframe_schedule_ls(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1022 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1023 {
1024 	/* In non-split host and device time are the same */
1025 	WARN_ON(qh->host_us != qh->device_us);
1026 	WARN_ON(qh->host_interval != qh->device_interval);
1027 	WARN_ON(!qh->schedule_low_speed);
1028 
1029 	/* Run on the main low speed schedule (no split = no hub = no TT) */
1030 	return dwc2_ls_pmap_schedule(hsotg, qh, 0);
1031 }
1032 
1033 /**
1034  * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
1035  *
1036  * Calls one of the 3 sub-function depending on what type of transfer this QH
1037  * is for.  Also adds some printing.
1038  *
1039  * @hsotg:       The HCD state structure for the DWC OTG controller.
1040  * @qh:          QH for the periodic transfer.
1041  */
dwc2_uframe_schedule(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1042 static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1043 {
1044 	int ret;
1045 
1046 	if (qh->dev_speed == USB_SPEED_HIGH)
1047 		ret = dwc2_uframe_schedule_hs(hsotg, qh);
1048 	else if (!qh->do_split)
1049 		ret = dwc2_uframe_schedule_ls(hsotg, qh);
1050 	else
1051 		ret = dwc2_uframe_schedule_split(hsotg, qh);
1052 
1053 	if (ret)
1054 		dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
1055 	else
1056 		dwc2_qh_schedule_print(hsotg, qh);
1057 
1058 	return ret;
1059 }
1060 
1061 /**
1062  * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
1063  *
1064  * @hsotg:       The HCD state structure for the DWC OTG controller.
1065  * @qh:          QH for the periodic transfer.
1066  */
dwc2_uframe_unschedule(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1067 static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1068 {
1069 	int i;
1070 
1071 	for (i = 0; i < qh->num_hs_transfers; i++)
1072 		dwc2_hs_pmap_unschedule(hsotg, qh, i);
1073 
1074 	if (qh->schedule_low_speed)
1075 		dwc2_ls_pmap_unschedule(hsotg, qh);
1076 
1077 	dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
1078 }
1079 
1080 /**
1081  * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1082  *
1083  * Takes a qh that has already been scheduled (which means we know we have the
1084  * bandwdith reserved for us) and set the next_active_frame and the
1085  * start_active_frame.
1086  *
1087  * This is expected to be called on qh's that weren't previously actively
1088  * running.  It just picks the next frame that we can fit into without any
1089  * thought about the past.
1090  *
1091  * @hsotg: The HCD state structure for the DWC OTG controller
1092  * @qh:    QH for a periodic endpoint
1093  *
1094  */
dwc2_pick_first_frame(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1095 static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1096 {
1097 	u16 frame_number;
1098 	u16 earliest_frame;
1099 	u16 next_active_frame;
1100 	u16 relative_frame;
1101 	u16 interval;
1102 
1103 	/*
1104 	 * Use the real frame number rather than the cached value as of the
1105 	 * last SOF to give us a little extra slop.
1106 	 */
1107 	frame_number = dwc2_hcd_get_frame_number(hsotg);
1108 
1109 	/*
1110 	 * We wouldn't want to start any earlier than the next frame just in
1111 	 * case the frame number ticks as we're doing this calculation.
1112 	 *
1113 	 * NOTE: if we could quantify how long till we actually get scheduled
1114 	 * we might be able to avoid the "+ 1" by looking at the upper part of
1115 	 * HFNUM (the FRREM field).  For now we'll just use the + 1 though.
1116 	 */
1117 	earliest_frame = dwc2_frame_num_inc(frame_number, 1);
1118 	next_active_frame = earliest_frame;
1119 
1120 	/* Get the "no microframe schduler" out of the way... */
1121 	if (!hsotg->params.uframe_sched) {
1122 		if (qh->do_split)
1123 			/* Splits are active at microframe 0 minus 1 */
1124 			next_active_frame |= 0x7;
1125 		goto exit;
1126 	}
1127 
1128 	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
1129 		/*
1130 		 * We're either at high speed or we're doing a split (which
1131 		 * means we're talking high speed to a hub).  In any case
1132 		 * the first frame should be based on when the first scheduled
1133 		 * event is.
1134 		 */
1135 		WARN_ON(qh->num_hs_transfers < 1);
1136 
1137 		relative_frame = qh->hs_transfers[0].start_schedule_us /
1138 				 DWC2_HS_PERIODIC_US_PER_UFRAME;
1139 
1140 		/* Adjust interval as per high speed schedule */
1141 		interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
1142 
1143 	} else {
1144 		/*
1145 		 * Low or full speed directly on dwc2.  Just about the same
1146 		 * as high speed but on a different schedule and with slightly
1147 		 * different adjustments.  Note that this works because when
1148 		 * the host and device are both low speed then frames in the
1149 		 * controller tick at low speed.
1150 		 */
1151 		relative_frame = qh->ls_start_schedule_slice /
1152 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
1153 		interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
1154 	}
1155 
1156 	/* Scheduler messed up if frame is past interval */
1157 	WARN_ON(relative_frame >= interval);
1158 
1159 	/*
1160 	 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1161 	 * done the gcd(), so it's safe to move to the beginning of the current
1162 	 * interval like this.
1163 	 *
1164 	 * After this we might be before earliest_frame, but don't worry,
1165 	 * we'll fix it...
1166 	 */
1167 	next_active_frame = (next_active_frame / interval) * interval;
1168 
1169 	/*
1170 	 * Actually choose to start at the frame number we've been
1171 	 * scheduled for.
1172 	 */
1173 	next_active_frame = dwc2_frame_num_inc(next_active_frame,
1174 					       relative_frame);
1175 
1176 	/*
1177 	 * We actually need 1 frame before since the next_active_frame is
1178 	 * the frame number we'll be put on the ready list and we won't be on
1179 	 * the bus until 1 frame later.
1180 	 */
1181 	next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
1182 
1183 	/*
1184 	 * By now we might actually be before the earliest_frame.  Let's move
1185 	 * up intervals until we're not.
1186 	 */
1187 	while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
1188 		next_active_frame = dwc2_frame_num_inc(next_active_frame,
1189 						       interval);
1190 
1191 exit:
1192 	qh->next_active_frame = next_active_frame;
1193 	qh->start_active_frame = next_active_frame;
1194 
1195 	dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
1196 		      qh, frame_number, qh->next_active_frame);
1197 }
1198 
1199 /**
1200  * dwc2_do_reserve() - Make a periodic reservation
1201  *
1202  * Try to allocate space in the periodic schedule.  Depending on parameters
1203  * this might use the microframe scheduler or the dumb scheduler.
1204  *
1205  * @hsotg: The HCD state structure for the DWC OTG controller
1206  * @qh:    QH for the periodic transfer.
1207  *
1208  * Returns: 0 upon success; error upon failure.
1209  */
dwc2_do_reserve(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1210 static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1211 {
1212 	int status;
1213 
1214 	if (hsotg->params.uframe_sched) {
1215 		status = dwc2_uframe_schedule(hsotg, qh);
1216 	} else {
1217 		status = dwc2_periodic_channel_available(hsotg);
1218 		if (status) {
1219 			dev_info(hsotg->dev,
1220 				 "%s: No host channel available for periodic transfer\n",
1221 				 __func__);
1222 			return status;
1223 		}
1224 
1225 		status = dwc2_check_periodic_bandwidth(hsotg, qh);
1226 	}
1227 
1228 	if (status) {
1229 		dev_dbg(hsotg->dev,
1230 			"%s: Insufficient periodic bandwidth for periodic transfer\n",
1231 			__func__);
1232 		return status;
1233 	}
1234 
1235 	if (!hsotg->params.uframe_sched)
1236 		/* Reserve periodic channel */
1237 		hsotg->periodic_channels++;
1238 
1239 	/* Update claimed usecs per (micro)frame */
1240 	hsotg->periodic_usecs += qh->host_us;
1241 
1242 	dwc2_pick_first_frame(hsotg, qh);
1243 
1244 	return 0;
1245 }
1246 
1247 /**
1248  * dwc2_do_unreserve() - Actually release the periodic reservation
1249  *
1250  * This function actually releases the periodic bandwidth that was reserved
1251  * by the given qh.
1252  *
1253  * @hsotg: The HCD state structure for the DWC OTG controller
1254  * @qh:    QH for the periodic transfer.
1255  */
dwc2_do_unreserve(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1256 static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1257 {
1258 	MUTEX_ASSERT_LOCKED(&hsotg->lock);
1259 
1260 	WARN_ON(!qh->unreserve_pending);
1261 
1262 	/* No more unreserve pending--we're doing it */
1263 	qh->unreserve_pending = false;
1264 
1265 	if (WARN_ON(!list_empty(&qh->qh_list_entry)))
1266 		list_del_init(&qh->qh_list_entry);
1267 
1268 	/* Update claimed usecs per (micro)frame */
1269 	hsotg->periodic_usecs -= qh->host_us;
1270 
1271 	if (hsotg->params.uframe_sched) {
1272 		dwc2_uframe_unschedule(hsotg, qh);
1273 	} else {
1274 		/* Release periodic channel reservation */
1275 		hsotg->periodic_channels--;
1276 	}
1277 }
1278 
1279 /**
1280  * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1281  *
1282  * According to the kernel doc for usb_submit_urb() (specifically the part about
1283  * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1284  * long as a device driver keeps submitting.  Since we're using HCD_BH to give
1285  * back the URB we need to give the driver a little bit of time before we
1286  * release the reservation.  This worker is called after the appropriate
1287  * delay.
1288  *
1289  * @t: Address to a qh unreserve_work.
1290  */
dwc2_unreserve_timer_fn(void * arg)1291 static void dwc2_unreserve_timer_fn(void *arg)
1292 {
1293 	struct dwc2_qh *qh = arg;
1294 	struct dwc2_hsotg *hsotg = qh->hsotg;
1295 	unsigned long flags;
1296 
1297 	/*
1298 	 * Wait for the lock, or for us to be scheduled again.  We
1299 	 * could be scheduled again if:
1300 	 * - We started executing but didn't get the lock yet.
1301 	 * - A new reservation came in, but cancel didn't take effect
1302 	 *   because we already started executing.
1303 	 * - The timer has been kicked again.
1304 	 * In that case cancel and wait for the next call.
1305 	 */
1306 	while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
1307 		if (timeout_pending(&qh->unreserve_timer))
1308 			return;
1309 	}
1310 
1311 	/*
1312 	 * Might be no more unreserve pending if:
1313 	 * - We started executing but didn't get the lock yet.
1314 	 * - A new reservation came in, but cancel didn't take effect
1315 	 *   because we already started executing.
1316 	 *
1317 	 * We can't put this in the loop above because unreserve_pending needs
1318 	 * to be accessed under lock, so we can only check it once we got the
1319 	 * lock.
1320 	 */
1321 	if (qh->unreserve_pending)
1322 		dwc2_do_unreserve(hsotg, qh);
1323 
1324 	spin_unlock_irqrestore(&hsotg->lock, flags);
1325 }
1326 
1327 /**
1328  * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1329  * host channel is large enough to handle the maximum data transfer in a single
1330  * (micro)frame for a periodic transfer
1331  *
1332  * @hsotg: The HCD state structure for the DWC OTG controller
1333  * @qh:    QH for a periodic endpoint
1334  *
1335  * Return: 0 if successful, negative error code otherwise
1336  */
dwc2_check_max_xfer_size(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1337 STATIC int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
1338 				    struct dwc2_qh *qh)
1339 {
1340 	u32 max_xfer_size;
1341 	u32 max_channel_xfer_size;
1342 	int status = 0;
1343 
1344 	max_xfer_size = qh->maxp * qh->maxp_mult;
1345 	max_channel_xfer_size = hsotg->params.max_transfer_size;
1346 
1347 	if (max_xfer_size > max_channel_xfer_size) {
1348 		dev_err(hsotg->dev,
1349 			"%s: Periodic xfer length %d > max xfer length for channel %d\n",
1350 			__func__, max_xfer_size, max_channel_xfer_size);
1351 		status = -ENOSPC;
1352 	}
1353 
1354 	return status;
1355 }
1356 
1357 /**
1358  * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1359  * the periodic schedule
1360  *
1361  * @hsotg: The HCD state structure for the DWC OTG controller
1362  * @qh:    QH for the periodic transfer. The QH should already contain the
1363  *         scheduling information.
1364  *
1365  * Return: 0 if successful, negative error code otherwise
1366  */
dwc2_schedule_periodic(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1367 STATIC int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1368 {
1369 	int status;
1370 
1371 	status = dwc2_check_max_xfer_size(hsotg, qh);
1372 	if (status) {
1373 		dev_dbg(hsotg->dev,
1374 			"%s: Channel max transfer size too small for periodic transfer\n",
1375 			__func__);
1376 		return status;
1377 	}
1378 
1379 	/* Cancel pending unreserve; if canceled OK, unreserve was pending */
1380 	if (timeout_del(&qh->unreserve_timer))
1381 		WARN_ON(!qh->unreserve_pending);
1382 
1383 	/*
1384 	 * Only need to reserve if there's not an unreserve pending, since if an
1385 	 * unreserve is pending then by definition our old reservation is still
1386 	 * valid.  Unreserve might still be pending even if we didn't cancel if
1387 	 * dwc2_unreserve_timer_fn() already started.  Code in the timer handles
1388 	 * that case.
1389 	 */
1390 	if (!qh->unreserve_pending) {
1391 		status = dwc2_do_reserve(hsotg, qh);
1392 		if (status)
1393 			return status;
1394 	} else {
1395 		/*
1396 		 * It might have been a while, so make sure that frame_number
1397 		 * is still good.  Note: we could also try to use the similar
1398 		 * dwc2_next_periodic_start() but that schedules much more
1399 		 * tightly and we might need to hurry and queue things up.
1400 		 */
1401 		if (dwc2_frame_num_le(qh->next_active_frame,
1402 				      hsotg->frame_number))
1403 			dwc2_pick_first_frame(hsotg, qh);
1404 	}
1405 
1406 	qh->unreserve_pending = 0;
1407 
1408 	if (hsotg->params.dma_desc_enable)
1409 		/* Don't rely on SOF and start in ready schedule */
1410 		list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
1411 	else
1412 		/* Always start in inactive schedule */
1413 		list_add_tail(&qh->qh_list_entry,
1414 			      &hsotg->periodic_sched_inactive);
1415 
1416 	return 0;
1417 }
1418 
1419 /**
1420  * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1421  * from the periodic schedule
1422  *
1423  * @hsotg: The HCD state structure for the DWC OTG controller
1424  * @qh:	   QH for the periodic transfer
1425  */
dwc2_deschedule_periodic(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1426 STATIC void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
1427 				     struct dwc2_qh *qh)
1428 {
1429 	MUTEX_ASSERT_LOCKED(&hsotg->lock);
1430 
1431 	/*
1432 	 * Schedule the unreserve to happen in a little bit.  Cases here:
1433 	 * - Unreserve worker might be sitting there waiting to grab the lock.
1434 	 *   In this case it will notice it's been schedule again and will
1435 	 *   quit.
1436 	 * - Unreserve worker might not be scheduled.
1437 	 *
1438 	 * We should never already be scheduled since dwc2_schedule_periodic()
1439 	 * should have canceled the scheduled unreserve timer (hence the
1440 	 * warning on did_modify).
1441 	 *
1442 	 * We add + 1 to the timer to guarantee that at least 1 jiffy has
1443 	 * passed (otherwise if the jiffy counter might tick right after we
1444 	 * read it and we'll get no delay).
1445 	 */
1446 	timeout_add(&qh->unreserve_timer, DWC2_UNRESERVE_DELAY + 1);
1447 	qh->unreserve_pending = 1;
1448 
1449 	list_del_init(&qh->qh_list_entry);
1450 }
1451 
1452 /**
1453  * dwc2_wait_timer_fn() - Timer function to re-queue after waiting
1454  *
1455  * As per the spec, a NAK indicates that "a function is temporarily unable to
1456  * transmit or receive data, but will eventually be able to do so without need
1457  * of host intervention".
1458  *
1459  * That means that when we encounter a NAK we're supposed to retry.
1460  *
1461  * ...but if we retry right away (from the interrupt handler that saw the NAK)
1462  * then we can end up with an interrupt storm (if the other side keeps NAKing
1463  * us) because on slow enough CPUs it could take us longer to get out of the
1464  * interrupt routine than it takes for the device to send another NAK.  That
1465  * leads to a constant stream of NAK interrupts and the CPU locks.
1466  *
1467  * ...so instead of retrying right away in the case of a NAK we'll set a timer
1468  * to retry some time later.  This function handles that timer and moves the
1469  * qh back to the "inactive" list, then queues transactions.
1470  *
1471  * @t: Pointer to wait_timer in a qh.
1472  *
1473  * Return: HRTIMER_NORESTART to not automatically restart this timer.
1474  */
dwc2_wait_timer_fn(void * arg)1475 STATIC void dwc2_wait_timer_fn(void *arg)
1476 {
1477 	struct dwc2_qh *qh = arg;
1478 	struct dwc2_hsotg *hsotg = qh->hsotg;
1479 	unsigned long flags;
1480 
1481 	spin_lock_irqsave(&hsotg->lock, flags);
1482 
1483 	/*
1484 	 * We'll set wait_timer_cancel to true if we want to cancel this
1485 	 * operation in dwc2_hcd_qh_unlink().
1486 	 */
1487 	if (!qh->wait_timer_cancel) {
1488 		enum dwc2_transaction_type tr_type;
1489 
1490 		qh->want_wait = false;
1491 
1492 		list_move(&qh->qh_list_entry,
1493 			  &hsotg->non_periodic_sched_inactive);
1494 
1495 		tr_type = dwc2_hcd_select_transactions(hsotg);
1496 		if (tr_type != DWC2_TRANSACTION_NONE)
1497 			dwc2_hcd_queue_transactions(hsotg, tr_type);
1498 	}
1499 
1500 	spin_unlock_irqrestore(&hsotg->lock, flags);
1501 }
1502 
1503 /**
1504  * dwc2_qh_init() - Initializes a QH structure
1505  *
1506  * @hsotg: The HCD state structure for the DWC OTG controller
1507  * @qh:    The QH to init
1508  * @urb:   Holds the information about the device/endpoint needed to initialize
1509  *         the QH
1510  * @mem_flags: Flags for allocating memory.
1511  */
dwc2_qh_init(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,struct dwc2_hcd_urb * urb,gfp_t mem_flags)1512 STATIC void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1513 			 struct dwc2_hcd_urb *urb, gfp_t mem_flags)
1514 {
1515 	int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1516 	u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
1517 	bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
1518 	bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
1519 	bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
1520 	u32 hprt = dwc2_readl(hsotg, HPRT0);
1521 	u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1522 	bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
1523 			 dev_speed != USB_SPEED_HIGH);
1524 	int maxp = dwc2_hcd_get_maxp(&urb->pipe_info);
1525 	int maxp_mult = dwc2_hcd_get_maxp_mult(&urb->pipe_info);
1526 	int bytecount = maxp_mult * maxp;
1527 	char *speed, *type;
1528 
1529 	/* Initialize QH */
1530 	qh->hsotg = hsotg;
1531 	timeout_set(&qh->unreserve_timer, dwc2_unreserve_timer_fn, qh);
1532 	timeout_set(&qh->wait_timer, dwc2_wait_timer_fn, qh);
1533 	qh->ep_type = ep_type;
1534 	qh->ep_is_in = ep_is_in;
1535 
1536 	qh->data_toggle = DWC2_HC_PID_DATA0;
1537 	qh->maxp = maxp;
1538 	qh->maxp_mult = maxp_mult;
1539 	INIT_LIST_HEAD(&qh->qtd_list);
1540 	INIT_LIST_HEAD(&qh->qh_list_entry);
1541 
1542 	qh->do_split = do_split;
1543 	qh->dev_speed = dev_speed;
1544 
1545 	if (ep_is_int || ep_is_isoc) {
1546 		/* Compute scheduling parameters once and save them */
1547 		int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
1548 		struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
1549 							       mem_flags,
1550 							       &qh->ttport);
1551 		int device_ns;
1552 
1553 		qh->dwc_tt = dwc_tt;
1554 
1555 		qh->host_us = NS_TO_US(dwc2_usb_calc_bus_time(host_speed,
1556 				       ep_is_in, ep_is_isoc, bytecount));
1557 		device_ns = dwc2_usb_calc_bus_time(dev_speed, ep_is_in,
1558 						   ep_is_isoc, bytecount);
1559 
1560 		if (do_split && dwc_tt)
1561 			device_ns += dwc2_ttthink_to_ns(hsotg, urb->priv,
1562 			    dwc_tt->usb_tt->hub->ttthink);
1563 		qh->device_us = NS_TO_US(device_ns);
1564 
1565 		qh->device_interval = urb->interval;
1566 		qh->host_interval = urb->interval * (do_split ? 8 : 1);
1567 
1568 		/*
1569 		 * Schedule low speed if we're running the host in low or
1570 		 * full speed OR if we've got a "TT" to deal with to access this
1571 		 * device.
1572 		 */
1573 		qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
1574 					 dwc_tt;
1575 
1576 		if (do_split) {
1577 			/* We won't know num transfers until we schedule */
1578 			qh->num_hs_transfers = -1;
1579 		} else if (dev_speed == USB_SPEED_HIGH) {
1580 			qh->num_hs_transfers = 1;
1581 		} else {
1582 			qh->num_hs_transfers = 0;
1583 		}
1584 
1585 		/* We'll schedule later when we have something to do */
1586 	}
1587 
1588 	switch (dev_speed) {
1589 	case USB_SPEED_LOW:
1590 		speed = "low";
1591 		break;
1592 	case USB_SPEED_FULL:
1593 		speed = "full";
1594 		break;
1595 	case USB_SPEED_HIGH:
1596 		speed = "high";
1597 		break;
1598 	default:
1599 		speed = "?";
1600 		break;
1601 	}
1602 
1603 	switch (qh->ep_type) {
1604 	case USB_ENDPOINT_XFER_ISOC:
1605 		type = "isochronous";
1606 		break;
1607 	case USB_ENDPOINT_XFER_INT:
1608 		type = "interrupt";
1609 		break;
1610 	case USB_ENDPOINT_XFER_CONTROL:
1611 		type = "control";
1612 		break;
1613 	case USB_ENDPOINT_XFER_BULK:
1614 		type = "bulk";
1615 		break;
1616 	default:
1617 		type = "?";
1618 		break;
1619 	}
1620 
1621 	dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
1622 		     speed, bytecount);
1623 	dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
1624 		     dwc2_hcd_get_dev_addr(&urb->pipe_info),
1625 		     dwc2_hcd_get_ep_num(&urb->pipe_info),
1626 		     ep_is_in ? "IN" : "OUT");
1627 	if (ep_is_int || ep_is_isoc) {
1628 		dwc2_sch_dbg(hsotg,
1629 			     "QH=%p ...duration: host=%d us, device=%d us\n",
1630 			     qh, qh->host_us, qh->device_us);
1631 		dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
1632 			     qh, qh->host_interval, qh->device_interval);
1633 		if (qh->schedule_low_speed)
1634 			dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
1635 				     qh, dwc2_get_ls_map(hsotg, qh));
1636 	}
1637 }
1638 
1639 /**
1640  * dwc2_hcd_qh_create() - Allocates and initializes a QH
1641  *
1642  * @hsotg:        The HCD state structure for the DWC OTG controller
1643  * @urb:          Holds the information about the device/endpoint needed
1644  *                to initialize the QH
1645  * @mem_flags:   Flags for allocating memory.
1646  *
1647  * Return: Pointer to the newly allocated QH, or NULL on error
1648  */
dwc2_hcd_qh_create(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb,gfp_t mem_flags)1649 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
1650 				   struct dwc2_hcd_urb *urb,
1651 					  gfp_t mem_flags)
1652 {
1653 	struct dwc2_softc *sc = hsotg->hsotg_sc;
1654 	struct dwc2_qh *qh;
1655 
1656 	if (!urb->priv)
1657 		return NULL;
1658 
1659 	/* Allocate memory */
1660 	qh = pool_get(&sc->sc_qhpool, PR_NOWAIT | PR_ZERO);
1661 	if (!qh)
1662 		return NULL;
1663 
1664 	dwc2_qh_init(hsotg, qh, urb, mem_flags);
1665 
1666 	if (hsotg->params.dma_desc_enable &&
1667 	    dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
1668 		dwc2_hcd_qh_free(hsotg, qh);
1669 		return NULL;
1670 	}
1671 
1672 	return qh;
1673 }
1674 
1675 /**
1676  * dwc2_hcd_qh_free() - Frees the QH
1677  *
1678  * @hsotg: HCD instance
1679  * @qh:    The QH to free
1680  *
1681  * QH should already be removed from the list. QTD list should already be empty
1682  * if called from URB Dequeue.
1683  *
1684  * Must NOT be called with interrupt disabled or spinlock held
1685  */
dwc2_hcd_qh_free(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1686 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1687 {
1688 	struct dwc2_softc *sc = hsotg->hsotg_sc;
1689 
1690 	/* Make sure any unreserve work is finished. */
1691 	if (timeout_del(&qh->unreserve_timer)) {
1692 		unsigned long flags;
1693 
1694 		spin_lock_irqsave(&hsotg->lock, flags);
1695 		dwc2_do_unreserve(hsotg, qh);
1696 		spin_unlock_irqrestore(&hsotg->lock, flags);
1697 	}
1698 
1699 	/*
1700 	 * We don't have the lock so we can safely wait until the wait timer
1701 	 * finishes.  Of course, at this point in time we'd better have set
1702 	 * wait_timer_active to false so if this timer was still pending it
1703 	 * won't do anything anyway, but we want it to finish before we free
1704 	 * memory.
1705 	 */
1706 	timeout_del(&qh->wait_timer);
1707 
1708 	dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
1709 
1710 	if (qh->desc_list)
1711 		dwc2_hcd_qh_free_ddma(hsotg, qh);
1712 	else if (hsotg->unaligned_cache && qh->dw_align_buf) {
1713 		usb_freemem(&sc->sc_bus, &qh->dw_align_buf_usbdma);
1714  		qh->dw_align_buf_dma = (dma_addr_t)0;
1715 	}
1716 
1717 	pool_put(&sc->sc_qhpool, qh);
1718 }
1719 
1720 /**
1721  * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1722  * schedule if it is not already in the schedule. If the QH is already in
1723  * the schedule, no action is taken.
1724  *
1725  * @hsotg: The HCD state structure for the DWC OTG controller
1726  * @qh:    The QH to add
1727  *
1728  * Return: 0 if successful, negative error code otherwise
1729  */
dwc2_hcd_qh_add(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1730 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1731 {
1732 	int status;
1733 	u32 intr_mask;
1734 
1735 	if (dbg_qh(qh))
1736 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1737 
1738 	if (!list_empty(&qh->qh_list_entry))
1739 		/* QH already in a schedule */
1740 		return 0;
1741 
1742 	/* Add the new QH to the appropriate schedule */
1743 	if (dwc2_qh_is_non_per(qh)) {
1744 		/* Schedule right away */
1745 		qh->start_active_frame = hsotg->frame_number;
1746 		qh->next_active_frame = qh->start_active_frame;
1747 
1748 		if (qh->want_wait) {
1749 			list_add_tail(&qh->qh_list_entry,
1750 				      &hsotg->non_periodic_sched_waiting);
1751 			qh->wait_timer_cancel = false;
1752 			timeout_add_msec(&qh->wait_timer,
1753 			    DWC2_RETRY_WAIT_DELAY);
1754 		} else {
1755 			list_add_tail(&qh->qh_list_entry,
1756 				      &hsotg->non_periodic_sched_inactive);
1757 		}
1758 		return 0;
1759 	}
1760 
1761 	status = dwc2_schedule_periodic(hsotg, qh);
1762 	if (status)
1763 		return status;
1764 	if (!hsotg->periodic_qh_count) {
1765 		intr_mask = dwc2_readl(hsotg, GINTMSK);
1766 		intr_mask |= GINTSTS_SOF;
1767 		dwc2_writel(hsotg, intr_mask, GINTMSK);
1768 	}
1769 	hsotg->periodic_qh_count++;
1770 
1771 	return 0;
1772 }
1773 
1774 /**
1775  * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1776  * schedule. Memory is not freed.
1777  *
1778  * @hsotg: The HCD state structure
1779  * @qh:    QH to remove from schedule
1780  */
dwc2_hcd_qh_unlink(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)1781 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1782 {
1783 	u32 intr_mask;
1784 
1785 	dev_vdbg(hsotg->dev, "%s()\n", __func__);
1786 
1787 	/* If the wait_timer is pending, this will stop it from acting */
1788 	qh->wait_timer_cancel = true;
1789 
1790 	if (list_empty(&qh->qh_list_entry))
1791 		/* QH is not in a schedule */
1792 		return;
1793 
1794 	if (dwc2_qh_is_non_per(qh)) {
1795 		if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
1796 			hsotg->non_periodic_qh_ptr =
1797 					hsotg->non_periodic_qh_ptr->next;
1798 		list_del_init(&qh->qh_list_entry);
1799 		return;
1800 	}
1801 
1802 	dwc2_deschedule_periodic(hsotg, qh);
1803 	hsotg->periodic_qh_count--;
1804 	if (!hsotg->periodic_qh_count &&
1805 	    !hsotg->params.dma_desc_enable) {
1806 		intr_mask = dwc2_readl(hsotg, GINTMSK);
1807 		intr_mask &= ~GINTSTS_SOF;
1808 		dwc2_writel(hsotg, intr_mask, GINTMSK);
1809 	}
1810 }
1811 
1812 /**
1813  * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1814  *
1815  * This is called for setting next_active_frame for periodic splits for all but
1816  * the first packet of the split.  Confusing?  I thought so...
1817  *
1818  * Periodic splits are single low/full speed transfers that we end up splitting
1819  * up into several high speed transfers.  They always fit into one full (1 ms)
1820  * frame but might be split over several microframes (125 us each).  We to put
1821  * each of the parts on a very specific high speed frame.
1822  *
1823  * This function figures out where the next active uFrame needs to be.
1824  *
1825  * @hsotg:        The HCD state structure
1826  * @qh:           QH for the periodic transfer.
1827  * @frame_number: The current frame number.
1828  *
1829  * Return: number missed by (or 0 if we didn't miss).
1830  */
dwc2_next_for_periodic_split(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,u16 frame_number)1831 static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
1832 					struct dwc2_qh *qh, u16 frame_number)
1833 {
1834 	u16 old_frame = qh->next_active_frame;
1835 	u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1836 	int missed = 0;
1837 	u16 incr;
1838 
1839 	/*
1840 	 * See dwc2_uframe_schedule_split() for split scheduling.
1841 	 *
1842 	 * Basically: increment 1 normally, but 2 right after the start split
1843 	 * (except for ISOC out).
1844 	 */
1845 	if (old_frame == qh->start_active_frame &&
1846 	    !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
1847 		incr = 2;
1848 	else
1849 		incr = 1;
1850 
1851 	qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
1852 
1853 	/*
1854 	 * Note that it's OK for frame_number to be 1 frame past
1855 	 * next_active_frame.  Remember that next_active_frame is supposed to
1856 	 * be 1 frame _before_ when we want to be scheduled.  If we're 1 frame
1857 	 * past it just means schedule ASAP.
1858 	 *
1859 	 * It's _not_ OK, however, if we're more than one frame past.
1860 	 */
1861 	if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
1862 		/*
1863 		 * OOPS, we missed.  That's actually pretty bad since
1864 		 * the hub will be unhappy; try ASAP I guess.
1865 		 */
1866 		missed = dwc2_frame_num_dec(prev_frame_number,
1867 					    qh->next_active_frame);
1868 		qh->next_active_frame = frame_number;
1869 	}
1870 
1871 	return missed;
1872 }
1873 
1874 /**
1875  * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1876  *
1877  * This is called for setting next_active_frame for a periodic transfer for
1878  * all cases other than midway through a periodic split.  This will also update
1879  * start_active_frame.
1880  *
1881  * Since we _always_ keep start_active_frame as the start of the previous
1882  * transfer this is normally pretty easy: we just add our interval to
1883  * start_active_frame and we've got our answer.
1884  *
1885  * The tricks come into play if we miss.  In that case we'll look for the next
1886  * slot we can fit into.
1887  *
1888  * @hsotg:        The HCD state structure
1889  * @qh:           QH for the periodic transfer.
1890  * @frame_number: The current frame number.
1891  *
1892  * Return: number missed by (or 0 if we didn't miss).
1893  */
dwc2_next_periodic_start(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,u16 frame_number)1894 static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
1895 				    struct dwc2_qh *qh, u16 frame_number)
1896 {
1897 	int missed = 0;
1898 	u16 interval = qh->host_interval;
1899 	u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1900 
1901 	qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
1902 						    interval);
1903 
1904 	/*
1905 	 * The dwc2_frame_num_gt() function used below won't work terribly well
1906 	 * with if we just incremented by a really large intervals since the
1907 	 * frame counter only goes to 0x3fff.  It's terribly unlikely that we
1908 	 * will have missed in this case anyway.  Just go to exit.  If we want
1909 	 * to try to do better we'll need to keep track of a bigger counter
1910 	 * somewhere in the driver and handle overflows.
1911 	 */
1912 	if (interval >= 0x1000)
1913 		goto exit;
1914 
1915 	/*
1916 	 * Test for misses, which is when it's too late to schedule.
1917 	 *
1918 	 * A few things to note:
1919 	 * - We compare against prev_frame_number since start_active_frame
1920 	 *   and next_active_frame are always 1 frame before we want things
1921 	 *   to be active and we assume we can still get scheduled in the
1922 	 *   current frame number.
1923 	 * - It's possible for start_active_frame (now incremented) to be
1924 	 *   next_active_frame if we got an EO MISS (even_odd miss) which
1925 	 *   basically means that we detected there wasn't enough time for
1926 	 *   the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1927 	 *   at the last second.  We want to make sure we don't schedule
1928 	 *   another transfer for the same frame.  My test webcam doesn't seem
1929 	 *   terribly upset by missing a transfer but really doesn't like when
1930 	 *   we do two transfers in the same frame.
1931 	 * - Some misses are expected.  Specifically, in order to work
1932 	 *   perfectly dwc2 really needs quite spectacular interrupt latency
1933 	 *   requirements.  It needs to be able to handle its interrupts
1934 	 *   completely within 125 us of them being asserted. That not only
1935 	 *   means that the dwc2 interrupt handler needs to be fast but it
1936 	 *   means that nothing else in the system has to block dwc2 for a long
1937 	 *   time.  We can help with the dwc2 parts of this, but it's hard to
1938 	 *   guarantee that a system will have interrupt latency < 125 us, so
1939 	 *   we have to be robust to some misses.
1940 	 */
1941 	if (qh->start_active_frame == qh->next_active_frame ||
1942 	    dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
1943 		u16 ideal_start = qh->start_active_frame;
1944 		int periods_in_map;
1945 
1946 		/*
1947 		 * Adjust interval as per gcd with map size.
1948 		 * See pmap_schedule() for more details here.
1949 		 */
1950 		if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
1951 			periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
1952 		else
1953 			periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
1954 		interval = gcd(interval, periods_in_map);
1955 
1956 		do {
1957 			qh->start_active_frame = dwc2_frame_num_inc(
1958 				qh->start_active_frame, interval);
1959 		} while (dwc2_frame_num_gt(prev_frame_number,
1960 					   qh->start_active_frame));
1961 
1962 		missed = dwc2_frame_num_dec(qh->start_active_frame,
1963 					    ideal_start);
1964 	}
1965 
1966 exit:
1967 	qh->next_active_frame = qh->start_active_frame;
1968 
1969 	return missed;
1970 }
1971 
1972 /*
1973  * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1974  * non-periodic schedule. The QH is added to the inactive non-periodic
1975  * schedule if any QTDs are still attached to the QH.
1976  *
1977  * For periodic QHs, the QH is removed from the periodic queued schedule. If
1978  * there are any QTDs still attached to the QH, the QH is added to either the
1979  * periodic inactive schedule or the periodic ready schedule and its next
1980  * scheduled frame is calculated. The QH is placed in the ready schedule if
1981  * the scheduled frame has been reached already. Otherwise it's placed in the
1982  * inactive schedule. If there are no QTDs attached to the QH, the QH is
1983  * completely removed from the periodic schedule.
1984  */
dwc2_hcd_qh_deactivate(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,int sched_next_periodic_split)1985 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1986 			    int sched_next_periodic_split)
1987 {
1988 #ifdef DWC2_DEBUG
1989 	u16 old_frame = qh->next_active_frame;
1990 #endif
1991 	u16 frame_number;
1992 	int missed;
1993 
1994 	if (dbg_qh(qh))
1995 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1996 
1997 	if (dwc2_qh_is_non_per(qh)) {
1998 		dwc2_hcd_qh_unlink(hsotg, qh);
1999 		if (!list_empty(&qh->qtd_list))
2000 			/* Add back to inactive/waiting non-periodic schedule */
2001 			dwc2_hcd_qh_add(hsotg, qh);
2002 		return;
2003 	}
2004 
2005 	/*
2006 	 * Use the real frame number rather than the cached value as of the
2007 	 * last SOF just to get us a little closer to reality.  Note that
2008 	 * means we don't actually know if we've already handled the SOF
2009 	 * interrupt for this frame.
2010 	 */
2011 	frame_number = dwc2_hcd_get_frame_number(hsotg);
2012 
2013 	if (sched_next_periodic_split)
2014 		missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
2015 	else
2016 		missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
2017 
2018 	dwc2_sch_vdbg(hsotg,
2019 		      "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
2020 		     qh, sched_next_periodic_split, frame_number, old_frame,
2021 		     qh->next_active_frame,
2022 		     dwc2_frame_num_dec(qh->next_active_frame, old_frame),
2023 		missed, missed ? "MISS" : "");
2024 
2025 	if (list_empty(&qh->qtd_list)) {
2026 		dwc2_hcd_qh_unlink(hsotg, qh);
2027 		return;
2028 	}
2029 
2030 	/*
2031 	 * Remove from periodic_sched_queued and move to
2032 	 * appropriate queue
2033 	 *
2034 	 * Note: we purposely use the frame_number from the "hsotg" structure
2035 	 * since we know SOF interrupt will handle future frames.
2036 	 */
2037 	if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
2038 		list_move_tail(&qh->qh_list_entry,
2039 			       &hsotg->periodic_sched_ready);
2040 	else
2041 		list_move_tail(&qh->qh_list_entry,
2042 			       &hsotg->periodic_sched_inactive);
2043 }
2044 
2045 /**
2046  * dwc2_hcd_qtd_init() - Initializes a QTD structure
2047  *
2048  * @qtd: The QTD to initialize
2049  * @urb: The associated URB
2050  */
dwc2_hcd_qtd_init(struct dwc2_qtd * qtd,struct dwc2_hcd_urb * urb)2051 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2052 {
2053 	qtd->urb = urb;
2054 	if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
2055 			USB_ENDPOINT_XFER_CONTROL) {
2056 		/*
2057 		 * The only time the QTD data toggle is used is on the data
2058 		 * phase of control transfers. This phase always starts with
2059 		 * DATA1.
2060 		 */
2061 		qtd->data_toggle = DWC2_HC_PID_DATA1;
2062 		qtd->control_phase = DWC2_CONTROL_SETUP;
2063 	}
2064 
2065 	/* Start split */
2066 	qtd->complete_split = 0;
2067 	qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
2068 	qtd->isoc_split_offset = 0;
2069 	qtd->in_process = 0;
2070 
2071 	/* Store the qtd ptr in the urb to reference the QTD */
2072 	urb->qtd = qtd;
2073 }
2074 
2075 /**
2076  * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
2077  *			Caller must hold driver lock.
2078  *
2079  * @hsotg:        The DWC HCD structure
2080  * @qtd:          The QTD to add
2081  * @qh:           Queue head to add qtd to
2082  *
2083  * Return: 0 if successful, negative error code otherwise
2084  *
2085  * If the QH to which the QTD is added is not currently scheduled, it is placed
2086  * into the proper schedule based on its EP type.
2087  */
dwc2_hcd_qtd_add(struct dwc2_hsotg * hsotg,struct dwc2_qtd * qtd,struct dwc2_qh * qh)2088 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
2089 		     struct dwc2_qh *qh)
2090 {
2091 	int retval;
2092 
2093 	if (unlikely(!qh)) {
2094 		dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
2095 		retval = -EINVAL;
2096 		goto fail;
2097 	}
2098 
2099 	retval = dwc2_hcd_qh_add(hsotg, qh);
2100 	if (retval)
2101 		goto fail;
2102 
2103 	qtd->qh = qh;
2104 	list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
2105 
2106 	return 0;
2107 fail:
2108 	return retval;
2109 }
2110 
2111 /*** XXX: Include following functions in to our USB stack?  *******************/
2112 
2113 #define BW_HUB_LS_SETUP	333L	/* nanoseconds */
2114 #define BW_HOST_DELAY	1000L	/* nanoseconds */
2115 
2116 long
dwc2_usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)2117 dwc2_usb_calc_bus_time(int speed, int is_input, int isoc, int bytecount)
2118 {
2119 	unsigned long   tmp;
2120 
2121 	switch (speed) {
2122 	case USB_SPEED_LOW:     /* INTR only */
2123 		if (is_input) {
2124 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) /
2125 			    1000L;
2126 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY +
2127 			    tmp;
2128 		} else {
2129 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) /
2130 			    1000L;
2131 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY +
2132 			    tmp;
2133 		}
2134 	case USB_SPEED_FULL:	/* ISOC or INTR */
2135 		if (isoc) {
2136 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) /
2137 			    1000L;
2138 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY +
2139 			    tmp;
2140 		} else {
2141 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) /
2142 			    1000L;
2143 			return 9107L + BW_HOST_DELAY + tmp;
2144 		}
2145 	case USB_SPEED_HIGH:    /* ISOC or INTR */
2146 		/* FIXME adjust for input vs output */
2147 		if (isoc)
2148 			tmp = HS_NSECS_ISO (bytecount);
2149 		else
2150 			tmp = HS_NSECS (bytecount);
2151 		return tmp;
2152 	default:
2153 		printf ("%s: bogus device speed!\n", __func__);
2154 		return -1;
2155 	}
2156 }
2157 
2158 int
dwc2_ttthink_to_ns(struct dwc2_hsotg * hsotg,void * context,int ttthink)2159 dwc2_ttthink_to_ns(struct dwc2_hsotg *hsotg, void *context, int ttthink)
2160 {
2161 	struct usbd_xfer *xfer = context;
2162 	struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
2163 	struct usbd_device *dev = dpipe->pipe.device;
2164 
2165 	/* 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns */
2166 	switch (ttthink) {
2167 	case UHD_TT_THINK_8:
2168 		if (dev->ddesc.bDeviceProtocol != 0)
2169 			return 666;
2170 		else
2171 			return 0;
2172 	case UHD_TT_THINK_16:
2173 		return 666 * 2;
2174 	case UHD_TT_THINK_24:
2175 		return 666 * 3;
2176 	case UHD_TT_THINK_32:
2177 		return 666 * 4;
2178 	default:
2179 		dev_dbg(hsotg->dev, "%s: Invalid TT Think Time (0x%04x)!\n",
2180 		    __func__, ttthink);
2181 		break;
2182 	}
2183 
2184 	return 0;
2185 }
2186