xref: /qemu/block/io.c (revision 02326733)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41 
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44 
45 static void coroutine_fn GRAPH_RDLOCK
46 bdrv_parent_cb_resize(BlockDriverState *bs);
47 
48 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
49     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
50 
51 static void GRAPH_RDLOCK
52 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
53 {
54     BdrvChild *c, *next;
55     IO_OR_GS_CODE();
56     assert_bdrv_graph_readable();
57 
58     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
59         if (c == ignore) {
60             continue;
61         }
62         bdrv_parent_drained_begin_single(c);
63     }
64 }
65 
66 void bdrv_parent_drained_end_single(BdrvChild *c)
67 {
68     GLOBAL_STATE_CODE();
69 
70     assert(c->quiesced_parent);
71     c->quiesced_parent = false;
72 
73     if (c->klass->drained_end) {
74         c->klass->drained_end(c);
75     }
76 }
77 
78 static void GRAPH_RDLOCK
79 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
80 {
81     BdrvChild *c;
82     IO_OR_GS_CODE();
83     assert_bdrv_graph_readable();
84 
85     QLIST_FOREACH(c, &bs->parents, next_parent) {
86         if (c == ignore) {
87             continue;
88         }
89         bdrv_parent_drained_end_single(c);
90     }
91 }
92 
93 bool bdrv_parent_drained_poll_single(BdrvChild *c)
94 {
95     IO_OR_GS_CODE();
96 
97     if (c->klass->drained_poll) {
98         return c->klass->drained_poll(c);
99     }
100     return false;
101 }
102 
103 static bool GRAPH_RDLOCK
104 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
105                          bool ignore_bds_parents)
106 {
107     BdrvChild *c, *next;
108     bool busy = false;
109     IO_OR_GS_CODE();
110     assert_bdrv_graph_readable();
111 
112     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
113         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
114             continue;
115         }
116         busy |= bdrv_parent_drained_poll_single(c);
117     }
118 
119     return busy;
120 }
121 
122 void bdrv_parent_drained_begin_single(BdrvChild *c)
123 {
124     GLOBAL_STATE_CODE();
125 
126     assert(!c->quiesced_parent);
127     c->quiesced_parent = true;
128 
129     if (c->klass->drained_begin) {
130         /* called with rdlock taken, but it doesn't really need it. */
131         c->klass->drained_begin(c);
132     }
133 }
134 
135 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
136 {
137     dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
138                                   src->pdiscard_alignment);
139     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
140     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
141     dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
142                                         src->max_hw_transfer);
143     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
144                                  src->opt_mem_alignment);
145     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
146                                  src->min_mem_alignment);
147     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
148     dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
149 }
150 
151 typedef struct BdrvRefreshLimitsState {
152     BlockDriverState *bs;
153     BlockLimits old_bl;
154 } BdrvRefreshLimitsState;
155 
156 static void bdrv_refresh_limits_abort(void *opaque)
157 {
158     BdrvRefreshLimitsState *s = opaque;
159 
160     s->bs->bl = s->old_bl;
161 }
162 
163 static TransactionActionDrv bdrv_refresh_limits_drv = {
164     .abort = bdrv_refresh_limits_abort,
165     .clean = g_free,
166 };
167 
168 /* @tran is allowed to be NULL, in this case no rollback is possible. */
169 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
170 {
171     ERRP_GUARD();
172     BlockDriver *drv = bs->drv;
173     BdrvChild *c;
174     bool have_limits;
175 
176     GLOBAL_STATE_CODE();
177 
178     if (tran) {
179         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
180         *s = (BdrvRefreshLimitsState) {
181             .bs = bs,
182             .old_bl = bs->bl,
183         };
184         tran_add(tran, &bdrv_refresh_limits_drv, s);
185     }
186 
187     memset(&bs->bl, 0, sizeof(bs->bl));
188 
189     if (!drv) {
190         return;
191     }
192 
193     /* Default alignment based on whether driver has byte interface */
194     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
195                                 drv->bdrv_aio_preadv ||
196                                 drv->bdrv_co_preadv_part) ? 1 : 512;
197 
198     /* Take some limits from the children as a default */
199     have_limits = false;
200     QLIST_FOREACH(c, &bs->children, next) {
201         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
202         {
203             bdrv_merge_limits(&bs->bl, &c->bs->bl);
204             have_limits = true;
205         }
206 
207         if (c->role & BDRV_CHILD_FILTERED) {
208             bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
209         }
210     }
211 
212     if (!have_limits) {
213         bs->bl.min_mem_alignment = 512;
214         bs->bl.opt_mem_alignment = qemu_real_host_page_size();
215 
216         /* Safe default since most protocols use readv()/writev()/etc */
217         bs->bl.max_iov = IOV_MAX;
218     }
219 
220     /* Then let the driver override it */
221     if (drv->bdrv_refresh_limits) {
222         drv->bdrv_refresh_limits(bs, errp);
223         if (*errp) {
224             return;
225         }
226     }
227 
228     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
229         error_setg(errp, "Driver requires too large request alignment");
230     }
231 }
232 
233 /**
234  * The copy-on-read flag is actually a reference count so multiple users may
235  * use the feature without worrying about clobbering its previous state.
236  * Copy-on-read stays enabled until all users have called to disable it.
237  */
238 void bdrv_enable_copy_on_read(BlockDriverState *bs)
239 {
240     IO_CODE();
241     qatomic_inc(&bs->copy_on_read);
242 }
243 
244 void bdrv_disable_copy_on_read(BlockDriverState *bs)
245 {
246     int old = qatomic_fetch_dec(&bs->copy_on_read);
247     IO_CODE();
248     assert(old >= 1);
249 }
250 
251 typedef struct {
252     Coroutine *co;
253     BlockDriverState *bs;
254     bool done;
255     bool begin;
256     bool poll;
257     BdrvChild *parent;
258 } BdrvCoDrainData;
259 
260 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
261 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
262                      bool ignore_bds_parents)
263 {
264     GLOBAL_STATE_CODE();
265 
266     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
267         return true;
268     }
269 
270     if (qatomic_read(&bs->in_flight)) {
271         return true;
272     }
273 
274     return false;
275 }
276 
277 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
278                                       BdrvChild *ignore_parent)
279 {
280     GLOBAL_STATE_CODE();
281     GRAPH_RDLOCK_GUARD_MAINLOOP();
282 
283     return bdrv_drain_poll(bs, ignore_parent, false);
284 }
285 
286 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
287                                   bool poll);
288 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
289 
290 static void bdrv_co_drain_bh_cb(void *opaque)
291 {
292     BdrvCoDrainData *data = opaque;
293     Coroutine *co = data->co;
294     BlockDriverState *bs = data->bs;
295 
296     if (bs) {
297         bdrv_dec_in_flight(bs);
298         if (data->begin) {
299             bdrv_do_drained_begin(bs, data->parent, data->poll);
300         } else {
301             assert(!data->poll);
302             bdrv_do_drained_end(bs, data->parent);
303         }
304     } else {
305         assert(data->begin);
306         bdrv_drain_all_begin();
307     }
308 
309     data->done = true;
310     aio_co_wake(co);
311 }
312 
313 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
314                                                 bool begin,
315                                                 BdrvChild *parent,
316                                                 bool poll)
317 {
318     BdrvCoDrainData data;
319     Coroutine *self = qemu_coroutine_self();
320 
321     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
322      * other coroutines run if they were queued by aio_co_enter(). */
323 
324     assert(qemu_in_coroutine());
325     data = (BdrvCoDrainData) {
326         .co = self,
327         .bs = bs,
328         .done = false,
329         .begin = begin,
330         .parent = parent,
331         .poll = poll,
332     };
333 
334     if (bs) {
335         bdrv_inc_in_flight(bs);
336     }
337 
338     replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
339                                      bdrv_co_drain_bh_cb, &data);
340 
341     qemu_coroutine_yield();
342     /* If we are resumed from some other event (such as an aio completion or a
343      * timer callback), it is a bug in the caller that should be fixed. */
344     assert(data.done);
345 }
346 
347 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
348                                   bool poll)
349 {
350     IO_OR_GS_CODE();
351 
352     if (qemu_in_coroutine()) {
353         bdrv_co_yield_to_drain(bs, true, parent, poll);
354         return;
355     }
356 
357     GLOBAL_STATE_CODE();
358 
359     /* Stop things in parent-to-child order */
360     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
361         GRAPH_RDLOCK_GUARD_MAINLOOP();
362         bdrv_parent_drained_begin(bs, parent);
363         if (bs->drv && bs->drv->bdrv_drain_begin) {
364             bs->drv->bdrv_drain_begin(bs);
365         }
366     }
367 
368     /*
369      * Wait for drained requests to finish.
370      *
371      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
372      * call is needed so things in this AioContext can make progress even
373      * though we don't return to the main AioContext loop - this automatically
374      * includes other nodes in the same AioContext and therefore all child
375      * nodes.
376      */
377     if (poll) {
378         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
379     }
380 }
381 
382 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
383 {
384     bdrv_do_drained_begin(bs, parent, false);
385 }
386 
387 void coroutine_mixed_fn
388 bdrv_drained_begin(BlockDriverState *bs)
389 {
390     IO_OR_GS_CODE();
391     bdrv_do_drained_begin(bs, NULL, true);
392 }
393 
394 /**
395  * This function does not poll, nor must any of its recursively called
396  * functions.
397  */
398 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
399 {
400     int old_quiesce_counter;
401 
402     IO_OR_GS_CODE();
403 
404     if (qemu_in_coroutine()) {
405         bdrv_co_yield_to_drain(bs, false, parent, false);
406         return;
407     }
408 
409     /* At this point, we should be always running in the main loop. */
410     GLOBAL_STATE_CODE();
411     assert(bs->quiesce_counter > 0);
412     GLOBAL_STATE_CODE();
413 
414     /* Re-enable things in child-to-parent order */
415     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
416     if (old_quiesce_counter == 1) {
417         GRAPH_RDLOCK_GUARD_MAINLOOP();
418         if (bs->drv && bs->drv->bdrv_drain_end) {
419             bs->drv->bdrv_drain_end(bs);
420         }
421         bdrv_parent_drained_end(bs, parent);
422     }
423 }
424 
425 void bdrv_drained_end(BlockDriverState *bs)
426 {
427     IO_OR_GS_CODE();
428     bdrv_do_drained_end(bs, NULL);
429 }
430 
431 void bdrv_drain(BlockDriverState *bs)
432 {
433     IO_OR_GS_CODE();
434     bdrv_drained_begin(bs);
435     bdrv_drained_end(bs);
436 }
437 
438 static void bdrv_drain_assert_idle(BlockDriverState *bs)
439 {
440     BdrvChild *child, *next;
441     GLOBAL_STATE_CODE();
442     GRAPH_RDLOCK_GUARD_MAINLOOP();
443 
444     assert(qatomic_read(&bs->in_flight) == 0);
445     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
446         bdrv_drain_assert_idle(child->bs);
447     }
448 }
449 
450 unsigned int bdrv_drain_all_count = 0;
451 
452 static bool bdrv_drain_all_poll(void)
453 {
454     BlockDriverState *bs = NULL;
455     bool result = false;
456 
457     GLOBAL_STATE_CODE();
458     GRAPH_RDLOCK_GUARD_MAINLOOP();
459 
460     /*
461      * bdrv_drain_poll() can't make changes to the graph and we hold the BQL,
462      * so iterating bdrv_next_all_states() is safe.
463      */
464     while ((bs = bdrv_next_all_states(bs))) {
465         result |= bdrv_drain_poll(bs, NULL, true);
466     }
467 
468     return result;
469 }
470 
471 /*
472  * Wait for pending requests to complete across all BlockDriverStates
473  *
474  * This function does not flush data to disk, use bdrv_flush_all() for that
475  * after calling this function.
476  *
477  * This pauses all block jobs and disables external clients. It must
478  * be paired with bdrv_drain_all_end().
479  *
480  * NOTE: no new block jobs or BlockDriverStates can be created between
481  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
482  */
483 void bdrv_drain_all_begin_nopoll(void)
484 {
485     BlockDriverState *bs = NULL;
486     GLOBAL_STATE_CODE();
487 
488     /*
489      * bdrv queue is managed by record/replay,
490      * waiting for finishing the I/O requests may
491      * be infinite
492      */
493     if (replay_events_enabled()) {
494         return;
495     }
496 
497     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
498      * loop AioContext, so make sure we're in the main context. */
499     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
500     assert(bdrv_drain_all_count < INT_MAX);
501     bdrv_drain_all_count++;
502 
503     /* Quiesce all nodes, without polling in-flight requests yet. The graph
504      * cannot change during this loop. */
505     while ((bs = bdrv_next_all_states(bs))) {
506         bdrv_do_drained_begin(bs, NULL, false);
507     }
508 }
509 
510 void coroutine_mixed_fn bdrv_drain_all_begin(void)
511 {
512     BlockDriverState *bs = NULL;
513 
514     if (qemu_in_coroutine()) {
515         bdrv_co_yield_to_drain(NULL, true, NULL, true);
516         return;
517     }
518 
519     /*
520      * bdrv queue is managed by record/replay,
521      * waiting for finishing the I/O requests may
522      * be infinite
523      */
524     if (replay_events_enabled()) {
525         return;
526     }
527 
528     bdrv_drain_all_begin_nopoll();
529 
530     /* Now poll the in-flight requests */
531     AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
532 
533     while ((bs = bdrv_next_all_states(bs))) {
534         bdrv_drain_assert_idle(bs);
535     }
536 }
537 
538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
539 {
540     GLOBAL_STATE_CODE();
541 
542     g_assert(bs->quiesce_counter > 0);
543     g_assert(!bs->refcnt);
544 
545     while (bs->quiesce_counter) {
546         bdrv_do_drained_end(bs, NULL);
547     }
548 }
549 
550 void bdrv_drain_all_end(void)
551 {
552     BlockDriverState *bs = NULL;
553     GLOBAL_STATE_CODE();
554 
555     /*
556      * bdrv queue is managed by record/replay,
557      * waiting for finishing the I/O requests may
558      * be endless
559      */
560     if (replay_events_enabled()) {
561         return;
562     }
563 
564     while ((bs = bdrv_next_all_states(bs))) {
565         bdrv_do_drained_end(bs, NULL);
566     }
567 
568     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
569     assert(bdrv_drain_all_count > 0);
570     bdrv_drain_all_count--;
571 }
572 
573 void bdrv_drain_all(void)
574 {
575     GLOBAL_STATE_CODE();
576     bdrv_drain_all_begin();
577     bdrv_drain_all_end();
578 }
579 
580 /**
581  * Remove an active request from the tracked requests list
582  *
583  * This function should be called when a tracked request is completing.
584  */
585 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
586 {
587     if (req->serialising) {
588         qatomic_dec(&req->bs->serialising_in_flight);
589     }
590 
591     qemu_mutex_lock(&req->bs->reqs_lock);
592     QLIST_REMOVE(req, list);
593     qemu_mutex_unlock(&req->bs->reqs_lock);
594 
595     /*
596      * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called
597      * anymore because the request has been removed from the list, so it's safe
598      * to restart the queue outside reqs_lock to minimize the critical section.
599      */
600     qemu_co_queue_restart_all(&req->wait_queue);
601 }
602 
603 /**
604  * Add an active request to the tracked requests list
605  */
606 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
607                                                BlockDriverState *bs,
608                                                int64_t offset,
609                                                int64_t bytes,
610                                                enum BdrvTrackedRequestType type)
611 {
612     bdrv_check_request(offset, bytes, &error_abort);
613 
614     *req = (BdrvTrackedRequest){
615         .bs = bs,
616         .offset         = offset,
617         .bytes          = bytes,
618         .type           = type,
619         .co             = qemu_coroutine_self(),
620         .serialising    = false,
621         .overlap_offset = offset,
622         .overlap_bytes  = bytes,
623     };
624 
625     qemu_co_queue_init(&req->wait_queue);
626 
627     qemu_mutex_lock(&bs->reqs_lock);
628     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
629     qemu_mutex_unlock(&bs->reqs_lock);
630 }
631 
632 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
633                                      int64_t offset, int64_t bytes)
634 {
635     bdrv_check_request(offset, bytes, &error_abort);
636 
637     /*        aaaa   bbbb */
638     if (offset >= req->overlap_offset + req->overlap_bytes) {
639         return false;
640     }
641     /* bbbb   aaaa        */
642     if (req->overlap_offset >= offset + bytes) {
643         return false;
644     }
645     return true;
646 }
647 
648 /* Called with self->bs->reqs_lock held */
649 static coroutine_fn BdrvTrackedRequest *
650 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
651 {
652     BdrvTrackedRequest *req;
653 
654     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
655         if (req == self || (!req->serialising && !self->serialising)) {
656             continue;
657         }
658         if (tracked_request_overlaps(req, self->overlap_offset,
659                                      self->overlap_bytes))
660         {
661             /*
662              * Hitting this means there was a reentrant request, for
663              * example, a block driver issuing nested requests.  This must
664              * never happen since it means deadlock.
665              */
666             assert(qemu_coroutine_self() != req->co);
667 
668             /*
669              * If the request is already (indirectly) waiting for us, or
670              * will wait for us as soon as it wakes up, then just go on
671              * (instead of producing a deadlock in the former case).
672              */
673             if (!req->waiting_for) {
674                 return req;
675             }
676         }
677     }
678 
679     return NULL;
680 }
681 
682 /* Called with self->bs->reqs_lock held */
683 static void coroutine_fn
684 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
685 {
686     BdrvTrackedRequest *req;
687 
688     while ((req = bdrv_find_conflicting_request(self))) {
689         self->waiting_for = req;
690         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
691         self->waiting_for = NULL;
692     }
693 }
694 
695 /* Called with req->bs->reqs_lock held */
696 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
697                                             uint64_t align)
698 {
699     int64_t overlap_offset = req->offset & ~(align - 1);
700     int64_t overlap_bytes =
701         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
702 
703     bdrv_check_request(req->offset, req->bytes, &error_abort);
704 
705     if (!req->serialising) {
706         qatomic_inc(&req->bs->serialising_in_flight);
707         req->serialising = true;
708     }
709 
710     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
711     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
712 }
713 
714 /**
715  * Return the tracked request on @bs for the current coroutine, or
716  * NULL if there is none.
717  */
718 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
719 {
720     BdrvTrackedRequest *req;
721     Coroutine *self = qemu_coroutine_self();
722     IO_CODE();
723 
724     QLIST_FOREACH(req, &bs->tracked_requests, list) {
725         if (req->co == self) {
726             return req;
727         }
728     }
729 
730     return NULL;
731 }
732 
733 /**
734  * Round a region to subcluster (if supported) or cluster boundaries
735  */
736 void coroutine_fn GRAPH_RDLOCK
737 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
738                           int64_t *align_offset, int64_t *align_bytes)
739 {
740     BlockDriverInfo bdi;
741     IO_CODE();
742     if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) {
743         *align_offset = offset;
744         *align_bytes = bytes;
745     } else {
746         int64_t c = bdi.subcluster_size;
747         *align_offset = QEMU_ALIGN_DOWN(offset, c);
748         *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c);
749     }
750 }
751 
752 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
753 {
754     BlockDriverInfo bdi;
755     int ret;
756 
757     ret = bdrv_co_get_info(bs, &bdi);
758     if (ret < 0 || bdi.cluster_size == 0) {
759         return bs->bl.request_alignment;
760     } else {
761         return bdi.cluster_size;
762     }
763 }
764 
765 void bdrv_inc_in_flight(BlockDriverState *bs)
766 {
767     IO_CODE();
768     qatomic_inc(&bs->in_flight);
769 }
770 
771 void bdrv_wakeup(BlockDriverState *bs)
772 {
773     IO_CODE();
774     aio_wait_kick();
775 }
776 
777 void bdrv_dec_in_flight(BlockDriverState *bs)
778 {
779     IO_CODE();
780     qatomic_dec(&bs->in_flight);
781     bdrv_wakeup(bs);
782 }
783 
784 static void coroutine_fn
785 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
786 {
787     BlockDriverState *bs = self->bs;
788 
789     if (!qatomic_read(&bs->serialising_in_flight)) {
790         return;
791     }
792 
793     qemu_mutex_lock(&bs->reqs_lock);
794     bdrv_wait_serialising_requests_locked(self);
795     qemu_mutex_unlock(&bs->reqs_lock);
796 }
797 
798 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
799                                                 uint64_t align)
800 {
801     IO_CODE();
802 
803     qemu_mutex_lock(&req->bs->reqs_lock);
804 
805     tracked_request_set_serialising(req, align);
806     bdrv_wait_serialising_requests_locked(req);
807 
808     qemu_mutex_unlock(&req->bs->reqs_lock);
809 }
810 
811 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
812                             QEMUIOVector *qiov, size_t qiov_offset,
813                             Error **errp)
814 {
815     /*
816      * Check generic offset/bytes correctness
817      */
818 
819     if (offset < 0) {
820         error_setg(errp, "offset is negative: %" PRIi64, offset);
821         return -EIO;
822     }
823 
824     if (bytes < 0) {
825         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
826         return -EIO;
827     }
828 
829     if (bytes > BDRV_MAX_LENGTH) {
830         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
831                    bytes, BDRV_MAX_LENGTH);
832         return -EIO;
833     }
834 
835     if (offset > BDRV_MAX_LENGTH) {
836         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
837                    offset, BDRV_MAX_LENGTH);
838         return -EIO;
839     }
840 
841     if (offset > BDRV_MAX_LENGTH - bytes) {
842         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
843                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
844                    BDRV_MAX_LENGTH);
845         return -EIO;
846     }
847 
848     if (!qiov) {
849         return 0;
850     }
851 
852     /*
853      * Check qiov and qiov_offset
854      */
855 
856     if (qiov_offset > qiov->size) {
857         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
858                    qiov_offset, qiov->size);
859         return -EIO;
860     }
861 
862     if (bytes > qiov->size - qiov_offset) {
863         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
864                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
865         return -EIO;
866     }
867 
868     return 0;
869 }
870 
871 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
872 {
873     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
874 }
875 
876 static int bdrv_check_request32(int64_t offset, int64_t bytes,
877                                 QEMUIOVector *qiov, size_t qiov_offset)
878 {
879     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
880     if (ret < 0) {
881         return ret;
882     }
883 
884     if (bytes > BDRV_REQUEST_MAX_BYTES) {
885         return -EIO;
886     }
887 
888     return 0;
889 }
890 
891 /*
892  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
893  * The operation is sped up by checking the block status and only writing
894  * zeroes to the device if they currently do not return zeroes. Optional
895  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
896  * BDRV_REQ_FUA).
897  *
898  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
899  */
900 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
901 {
902     int ret;
903     int64_t target_size, bytes, offset = 0;
904     BlockDriverState *bs = child->bs;
905     IO_CODE();
906 
907     target_size = bdrv_getlength(bs);
908     if (target_size < 0) {
909         return target_size;
910     }
911 
912     for (;;) {
913         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
914         if (bytes <= 0) {
915             return 0;
916         }
917         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
918         if (ret < 0) {
919             return ret;
920         }
921         if (ret & BDRV_BLOCK_ZERO) {
922             offset += bytes;
923             continue;
924         }
925         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
926         if (ret < 0) {
927             return ret;
928         }
929         offset += bytes;
930     }
931 }
932 
933 /*
934  * Writes to the file and ensures that no writes are reordered across this
935  * request (acts as a barrier)
936  *
937  * Returns 0 on success, -errno in error cases.
938  */
939 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
940                                      int64_t bytes, const void *buf,
941                                      BdrvRequestFlags flags)
942 {
943     int ret;
944     IO_CODE();
945     assert_bdrv_graph_readable();
946 
947     ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
948     if (ret < 0) {
949         return ret;
950     }
951 
952     ret = bdrv_co_flush(child->bs);
953     if (ret < 0) {
954         return ret;
955     }
956 
957     return 0;
958 }
959 
960 typedef struct CoroutineIOCompletion {
961     Coroutine *coroutine;
962     int ret;
963 } CoroutineIOCompletion;
964 
965 static void bdrv_co_io_em_complete(void *opaque, int ret)
966 {
967     CoroutineIOCompletion *co = opaque;
968 
969     co->ret = ret;
970     aio_co_wake(co->coroutine);
971 }
972 
973 static int coroutine_fn GRAPH_RDLOCK
974 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
975                    QEMUIOVector *qiov, size_t qiov_offset, int flags)
976 {
977     BlockDriver *drv = bs->drv;
978     int64_t sector_num;
979     unsigned int nb_sectors;
980     QEMUIOVector local_qiov;
981     int ret;
982     assert_bdrv_graph_readable();
983 
984     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
985     assert(!(flags & ~bs->supported_read_flags));
986 
987     if (!drv) {
988         return -ENOMEDIUM;
989     }
990 
991     if (drv->bdrv_co_preadv_part) {
992         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
993                                         flags);
994     }
995 
996     if (qiov_offset > 0 || bytes != qiov->size) {
997         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
998         qiov = &local_qiov;
999     }
1000 
1001     if (drv->bdrv_co_preadv) {
1002         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1003         goto out;
1004     }
1005 
1006     if (drv->bdrv_aio_preadv) {
1007         BlockAIOCB *acb;
1008         CoroutineIOCompletion co = {
1009             .coroutine = qemu_coroutine_self(),
1010         };
1011 
1012         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1013                                    bdrv_co_io_em_complete, &co);
1014         if (acb == NULL) {
1015             ret = -EIO;
1016             goto out;
1017         } else {
1018             qemu_coroutine_yield();
1019             ret = co.ret;
1020             goto out;
1021         }
1022     }
1023 
1024     sector_num = offset >> BDRV_SECTOR_BITS;
1025     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1026 
1027     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1028     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1029     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1030     assert(drv->bdrv_co_readv);
1031 
1032     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1033 
1034 out:
1035     if (qiov == &local_qiov) {
1036         qemu_iovec_destroy(&local_qiov);
1037     }
1038 
1039     return ret;
1040 }
1041 
1042 static int coroutine_fn GRAPH_RDLOCK
1043 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1044                     QEMUIOVector *qiov, size_t qiov_offset,
1045                     BdrvRequestFlags flags)
1046 {
1047     BlockDriver *drv = bs->drv;
1048     bool emulate_fua = false;
1049     int64_t sector_num;
1050     unsigned int nb_sectors;
1051     QEMUIOVector local_qiov;
1052     int ret;
1053     assert_bdrv_graph_readable();
1054 
1055     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1056 
1057     if (!drv) {
1058         return -ENOMEDIUM;
1059     }
1060 
1061     if ((flags & BDRV_REQ_FUA) &&
1062         (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1063         flags &= ~BDRV_REQ_FUA;
1064         emulate_fua = true;
1065     }
1066 
1067     flags &= bs->supported_write_flags;
1068 
1069     if (drv->bdrv_co_pwritev_part) {
1070         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1071                                         flags);
1072         goto emulate_flags;
1073     }
1074 
1075     if (qiov_offset > 0 || bytes != qiov->size) {
1076         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1077         qiov = &local_qiov;
1078     }
1079 
1080     if (drv->bdrv_co_pwritev) {
1081         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1082         goto emulate_flags;
1083     }
1084 
1085     if (drv->bdrv_aio_pwritev) {
1086         BlockAIOCB *acb;
1087         CoroutineIOCompletion co = {
1088             .coroutine = qemu_coroutine_self(),
1089         };
1090 
1091         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1092                                     bdrv_co_io_em_complete, &co);
1093         if (acb == NULL) {
1094             ret = -EIO;
1095         } else {
1096             qemu_coroutine_yield();
1097             ret = co.ret;
1098         }
1099         goto emulate_flags;
1100     }
1101 
1102     sector_num = offset >> BDRV_SECTOR_BITS;
1103     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1104 
1105     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1106     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1107     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1108 
1109     assert(drv->bdrv_co_writev);
1110     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1111 
1112 emulate_flags:
1113     if (ret == 0 && emulate_fua) {
1114         ret = bdrv_co_flush(bs);
1115     }
1116 
1117     if (qiov == &local_qiov) {
1118         qemu_iovec_destroy(&local_qiov);
1119     }
1120 
1121     return ret;
1122 }
1123 
1124 static int coroutine_fn GRAPH_RDLOCK
1125 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1126                                int64_t bytes, QEMUIOVector *qiov,
1127                                size_t qiov_offset)
1128 {
1129     BlockDriver *drv = bs->drv;
1130     QEMUIOVector local_qiov;
1131     int ret;
1132     assert_bdrv_graph_readable();
1133 
1134     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1135 
1136     if (!drv) {
1137         return -ENOMEDIUM;
1138     }
1139 
1140     if (!block_driver_can_compress(drv)) {
1141         return -ENOTSUP;
1142     }
1143 
1144     if (drv->bdrv_co_pwritev_compressed_part) {
1145         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1146                                                     qiov, qiov_offset);
1147     }
1148 
1149     if (qiov_offset == 0) {
1150         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1151     }
1152 
1153     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1154     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1155     qemu_iovec_destroy(&local_qiov);
1156 
1157     return ret;
1158 }
1159 
1160 static int coroutine_fn GRAPH_RDLOCK
1161 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1162                          QEMUIOVector *qiov, size_t qiov_offset, int flags)
1163 {
1164     BlockDriverState *bs = child->bs;
1165 
1166     /* Perform I/O through a temporary buffer so that users who scribble over
1167      * their read buffer while the operation is in progress do not end up
1168      * modifying the image file.  This is critical for zero-copy guest I/O
1169      * where anything might happen inside guest memory.
1170      */
1171     void *bounce_buffer = NULL;
1172 
1173     BlockDriver *drv = bs->drv;
1174     int64_t align_offset;
1175     int64_t align_bytes;
1176     int64_t skip_bytes;
1177     int ret;
1178     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1179                                     BDRV_REQUEST_MAX_BYTES);
1180     int64_t progress = 0;
1181     bool skip_write;
1182 
1183     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1184 
1185     if (!drv) {
1186         return -ENOMEDIUM;
1187     }
1188 
1189     /*
1190      * Do not write anything when the BDS is inactive.  That is not
1191      * allowed, and it would not help.
1192      */
1193     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1194 
1195     /* FIXME We cannot require callers to have write permissions when all they
1196      * are doing is a read request. If we did things right, write permissions
1197      * would be obtained anyway, but internally by the copy-on-read code. As
1198      * long as it is implemented here rather than in a separate filter driver,
1199      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1200      * it could request permissions. Therefore we have to bypass the permission
1201      * system for the moment. */
1202     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1203 
1204     /* Cover entire cluster so no additional backing file I/O is required when
1205      * allocating cluster in the image file.  Note that this value may exceed
1206      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1207      * is one reason we loop rather than doing it all at once.
1208      */
1209     bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes);
1210     skip_bytes = offset - align_offset;
1211 
1212     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1213                                    align_offset, align_bytes);
1214 
1215     while (align_bytes) {
1216         int64_t pnum;
1217 
1218         if (skip_write) {
1219             ret = 1; /* "already allocated", so nothing will be copied */
1220             pnum = MIN(align_bytes, max_transfer);
1221         } else {
1222             ret = bdrv_co_is_allocated(bs, align_offset,
1223                                        MIN(align_bytes, max_transfer), &pnum);
1224             if (ret < 0) {
1225                 /*
1226                  * Safe to treat errors in querying allocation as if
1227                  * unallocated; we'll probably fail again soon on the
1228                  * read, but at least that will set a decent errno.
1229                  */
1230                 pnum = MIN(align_bytes, max_transfer);
1231             }
1232 
1233             /* Stop at EOF if the image ends in the middle of the cluster */
1234             if (ret == 0 && pnum == 0) {
1235                 assert(progress >= bytes);
1236                 break;
1237             }
1238 
1239             assert(skip_bytes < pnum);
1240         }
1241 
1242         if (ret <= 0) {
1243             QEMUIOVector local_qiov;
1244 
1245             /* Must copy-on-read; use the bounce buffer */
1246             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1247             if (!bounce_buffer) {
1248                 int64_t max_we_need = MAX(pnum, align_bytes - pnum);
1249                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1250                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1251 
1252                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1253                 if (!bounce_buffer) {
1254                     ret = -ENOMEM;
1255                     goto err;
1256                 }
1257             }
1258             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1259 
1260             ret = bdrv_driver_preadv(bs, align_offset, pnum,
1261                                      &local_qiov, 0, 0);
1262             if (ret < 0) {
1263                 goto err;
1264             }
1265 
1266             bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1267             if (drv->bdrv_co_pwrite_zeroes &&
1268                 buffer_is_zero(bounce_buffer, pnum)) {
1269                 /* FIXME: Should we (perhaps conditionally) be setting
1270                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1271                  * that still correctly reads as zero? */
1272                 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum,
1273                                                BDRV_REQ_WRITE_UNCHANGED);
1274             } else {
1275                 /* This does not change the data on the disk, it is not
1276                  * necessary to flush even in cache=writethrough mode.
1277                  */
1278                 ret = bdrv_driver_pwritev(bs, align_offset, pnum,
1279                                           &local_qiov, 0,
1280                                           BDRV_REQ_WRITE_UNCHANGED);
1281             }
1282 
1283             if (ret < 0) {
1284                 /* It might be okay to ignore write errors for guest
1285                  * requests.  If this is a deliberate copy-on-read
1286                  * then we don't want to ignore the error.  Simply
1287                  * report it in all cases.
1288                  */
1289                 goto err;
1290             }
1291 
1292             if (!(flags & BDRV_REQ_PREFETCH)) {
1293                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1294                                     bounce_buffer + skip_bytes,
1295                                     MIN(pnum - skip_bytes, bytes - progress));
1296             }
1297         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1298             /* Read directly into the destination */
1299             ret = bdrv_driver_preadv(bs, offset + progress,
1300                                      MIN(pnum - skip_bytes, bytes - progress),
1301                                      qiov, qiov_offset + progress, 0);
1302             if (ret < 0) {
1303                 goto err;
1304             }
1305         }
1306 
1307         align_offset += pnum;
1308         align_bytes -= pnum;
1309         progress += pnum - skip_bytes;
1310         skip_bytes = 0;
1311     }
1312     ret = 0;
1313 
1314 err:
1315     qemu_vfree(bounce_buffer);
1316     return ret;
1317 }
1318 
1319 /*
1320  * Forwards an already correctly aligned request to the BlockDriver. This
1321  * handles copy on read, zeroing after EOF, and fragmentation of large
1322  * reads; any other features must be implemented by the caller.
1323  */
1324 static int coroutine_fn GRAPH_RDLOCK
1325 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1326                     int64_t offset, int64_t bytes, int64_t align,
1327                     QEMUIOVector *qiov, size_t qiov_offset, int flags)
1328 {
1329     BlockDriverState *bs = child->bs;
1330     int64_t total_bytes, max_bytes;
1331     int ret = 0;
1332     int64_t bytes_remaining = bytes;
1333     int max_transfer;
1334 
1335     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1336     assert(is_power_of_2(align));
1337     assert((offset & (align - 1)) == 0);
1338     assert((bytes & (align - 1)) == 0);
1339     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1340     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1341                                    align);
1342 
1343     /*
1344      * TODO: We would need a per-BDS .supported_read_flags and
1345      * potential fallback support, if we ever implement any read flags
1346      * to pass through to drivers.  For now, there aren't any
1347      * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1348      */
1349     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1350                        BDRV_REQ_REGISTERED_BUF)));
1351 
1352     /* Handle Copy on Read and associated serialisation */
1353     if (flags & BDRV_REQ_COPY_ON_READ) {
1354         /* If we touch the same cluster it counts as an overlap.  This
1355          * guarantees that allocating writes will be serialized and not race
1356          * with each other for the same cluster.  For example, in copy-on-read
1357          * it ensures that the CoR read and write operations are atomic and
1358          * guest writes cannot interleave between them. */
1359         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1360     } else {
1361         bdrv_wait_serialising_requests(req);
1362     }
1363 
1364     if (flags & BDRV_REQ_COPY_ON_READ) {
1365         int64_t pnum;
1366 
1367         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1368         flags &= ~BDRV_REQ_COPY_ON_READ;
1369 
1370         ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum);
1371         if (ret < 0) {
1372             goto out;
1373         }
1374 
1375         if (!ret || pnum != bytes) {
1376             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1377                                            qiov, qiov_offset, flags);
1378             goto out;
1379         } else if (flags & BDRV_REQ_PREFETCH) {
1380             goto out;
1381         }
1382     }
1383 
1384     /* Forward the request to the BlockDriver, possibly fragmenting it */
1385     total_bytes = bdrv_co_getlength(bs);
1386     if (total_bytes < 0) {
1387         ret = total_bytes;
1388         goto out;
1389     }
1390 
1391     assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1392 
1393     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1394     if (bytes <= max_bytes && bytes <= max_transfer) {
1395         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1396         goto out;
1397     }
1398 
1399     while (bytes_remaining) {
1400         int64_t num;
1401 
1402         if (max_bytes) {
1403             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1404             assert(num);
1405 
1406             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1407                                      num, qiov,
1408                                      qiov_offset + bytes - bytes_remaining,
1409                                      flags);
1410             max_bytes -= num;
1411         } else {
1412             num = bytes_remaining;
1413             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1414                                     0, bytes_remaining);
1415         }
1416         if (ret < 0) {
1417             goto out;
1418         }
1419         bytes_remaining -= num;
1420     }
1421 
1422 out:
1423     return ret < 0 ? ret : 0;
1424 }
1425 
1426 /*
1427  * Request padding
1428  *
1429  *  |<---- align ----->|                     |<----- align ---->|
1430  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1431  *  |          |       |                     |     |            |
1432  * -*----------$-------*-------- ... --------*-----$------------*---
1433  *  |          |       |                     |     |            |
1434  *  |          offset  |                     |     end          |
1435  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1436  *  [buf   ... )                             [tail_buf          )
1437  *
1438  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1439  * is placed at the beginning of @buf and @tail at the @end.
1440  *
1441  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1442  * around tail, if tail exists.
1443  *
1444  * @merge_reads is true for small requests,
1445  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1446  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1447  *
1448  * @write is true for write requests, false for read requests.
1449  *
1450  * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1451  * merge existing vector elements into a single one.  @collapse_bounce_buf acts
1452  * as the bounce buffer in such cases.  @pre_collapse_qiov has the pre-collapse
1453  * I/O vector elements so for read requests, the data can be copied back after
1454  * the read is done.
1455  */
1456 typedef struct BdrvRequestPadding {
1457     uint8_t *buf;
1458     size_t buf_len;
1459     uint8_t *tail_buf;
1460     size_t head;
1461     size_t tail;
1462     bool merge_reads;
1463     bool write;
1464     QEMUIOVector local_qiov;
1465 
1466     uint8_t *collapse_bounce_buf;
1467     size_t collapse_len;
1468     QEMUIOVector pre_collapse_qiov;
1469 } BdrvRequestPadding;
1470 
1471 static bool bdrv_init_padding(BlockDriverState *bs,
1472                               int64_t offset, int64_t bytes,
1473                               bool write,
1474                               BdrvRequestPadding *pad)
1475 {
1476     int64_t align = bs->bl.request_alignment;
1477     int64_t sum;
1478 
1479     bdrv_check_request(offset, bytes, &error_abort);
1480     assert(align <= INT_MAX); /* documented in block/block_int.h */
1481     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1482 
1483     memset(pad, 0, sizeof(*pad));
1484 
1485     pad->head = offset & (align - 1);
1486     pad->tail = ((offset + bytes) & (align - 1));
1487     if (pad->tail) {
1488         pad->tail = align - pad->tail;
1489     }
1490 
1491     if (!pad->head && !pad->tail) {
1492         return false;
1493     }
1494 
1495     assert(bytes); /* Nothing good in aligning zero-length requests */
1496 
1497     sum = pad->head + bytes + pad->tail;
1498     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1499     pad->buf = qemu_blockalign(bs, pad->buf_len);
1500     pad->merge_reads = sum == pad->buf_len;
1501     if (pad->tail) {
1502         pad->tail_buf = pad->buf + pad->buf_len - align;
1503     }
1504 
1505     pad->write = write;
1506 
1507     return true;
1508 }
1509 
1510 static int coroutine_fn GRAPH_RDLOCK
1511 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1512                       BdrvRequestPadding *pad, bool zero_middle)
1513 {
1514     QEMUIOVector local_qiov;
1515     BlockDriverState *bs = child->bs;
1516     uint64_t align = bs->bl.request_alignment;
1517     int ret;
1518 
1519     assert(req->serialising && pad->buf);
1520 
1521     if (pad->head || pad->merge_reads) {
1522         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1523 
1524         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1525 
1526         if (pad->head) {
1527             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1528         }
1529         if (pad->merge_reads && pad->tail) {
1530             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1531         }
1532         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1533                                   align, &local_qiov, 0, 0);
1534         if (ret < 0) {
1535             return ret;
1536         }
1537         if (pad->head) {
1538             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1539         }
1540         if (pad->merge_reads && pad->tail) {
1541             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1542         }
1543 
1544         if (pad->merge_reads) {
1545             goto zero_mem;
1546         }
1547     }
1548 
1549     if (pad->tail) {
1550         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1551 
1552         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1553         ret = bdrv_aligned_preadv(
1554                 child, req,
1555                 req->overlap_offset + req->overlap_bytes - align,
1556                 align, align, &local_qiov, 0, 0);
1557         if (ret < 0) {
1558             return ret;
1559         }
1560         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1561     }
1562 
1563 zero_mem:
1564     if (zero_middle) {
1565         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1566     }
1567 
1568     return 0;
1569 }
1570 
1571 /**
1572  * Free *pad's associated buffers, and perform any necessary finalization steps.
1573  */
1574 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1575 {
1576     if (pad->collapse_bounce_buf) {
1577         if (!pad->write) {
1578             /*
1579              * If padding required elements in the vector to be collapsed into a
1580              * bounce buffer, copy the bounce buffer content back
1581              */
1582             qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1583                                 pad->collapse_bounce_buf, pad->collapse_len);
1584         }
1585         qemu_vfree(pad->collapse_bounce_buf);
1586         qemu_iovec_destroy(&pad->pre_collapse_qiov);
1587     }
1588     if (pad->buf) {
1589         qemu_vfree(pad->buf);
1590         qemu_iovec_destroy(&pad->local_qiov);
1591     }
1592     memset(pad, 0, sizeof(*pad));
1593 }
1594 
1595 /*
1596  * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1597  * ensuring that the resulting vector will not exceed IOV_MAX elements.
1598  *
1599  * To ensure this, when necessary, the first two or three elements of @iov are
1600  * merged into pad->collapse_bounce_buf and replaced by a reference to that
1601  * bounce buffer in pad->local_qiov.
1602  *
1603  * After performing a read request, the data from the bounce buffer must be
1604  * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1605  */
1606 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1607                                    BdrvRequestPadding *pad,
1608                                    struct iovec *iov, int niov,
1609                                    size_t iov_offset, size_t bytes)
1610 {
1611     int padded_niov, surplus_count, collapse_count;
1612 
1613     /* Assert this invariant */
1614     assert(niov <= IOV_MAX);
1615 
1616     /*
1617      * Cannot pad if resulting length would exceed SIZE_MAX.  Returning an error
1618      * to the guest is not ideal, but there is little else we can do.  At least
1619      * this will practically never happen on 64-bit systems.
1620      */
1621     if (SIZE_MAX - pad->head < bytes ||
1622         SIZE_MAX - pad->head - bytes < pad->tail)
1623     {
1624         return -EINVAL;
1625     }
1626 
1627     /* Length of the resulting IOV if we just concatenated everything */
1628     padded_niov = !!pad->head + niov + !!pad->tail;
1629 
1630     qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1631 
1632     if (pad->head) {
1633         qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1634     }
1635 
1636     /*
1637      * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1638      * Instead, merge the first two or three elements of @iov to reduce the
1639      * number of vector elements as necessary.
1640      */
1641     if (padded_niov > IOV_MAX) {
1642         /*
1643          * Only head and tail can have lead to the number of entries exceeding
1644          * IOV_MAX, so we can exceed it by the head and tail at most.  We need
1645          * to reduce the number of elements by `surplus_count`, so we merge that
1646          * many elements plus one into one element.
1647          */
1648         surplus_count = padded_niov - IOV_MAX;
1649         assert(surplus_count <= !!pad->head + !!pad->tail);
1650         collapse_count = surplus_count + 1;
1651 
1652         /*
1653          * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1654          * advance `iov` (and associated variables) by those elements.
1655          */
1656         qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1657         qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1658                               collapse_count, iov_offset, SIZE_MAX);
1659         iov += collapse_count;
1660         iov_offset = 0;
1661         niov -= collapse_count;
1662         bytes -= pad->pre_collapse_qiov.size;
1663 
1664         /*
1665          * Construct the bounce buffer to match the length of the to-collapse
1666          * vector elements, and for write requests, initialize it with the data
1667          * from those elements.  Then add it to `pad->local_qiov`.
1668          */
1669         pad->collapse_len = pad->pre_collapse_qiov.size;
1670         pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1671         if (pad->write) {
1672             qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1673                               pad->collapse_bounce_buf, pad->collapse_len);
1674         }
1675         qemu_iovec_add(&pad->local_qiov,
1676                        pad->collapse_bounce_buf, pad->collapse_len);
1677     }
1678 
1679     qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1680 
1681     if (pad->tail) {
1682         qemu_iovec_add(&pad->local_qiov,
1683                        pad->buf + pad->buf_len - pad->tail, pad->tail);
1684     }
1685 
1686     assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1687     return 0;
1688 }
1689 
1690 /*
1691  * bdrv_pad_request
1692  *
1693  * Exchange request parameters with padded request if needed. Don't include RMW
1694  * read of padding, bdrv_padding_rmw_read() should be called separately if
1695  * needed.
1696  *
1697  * @write is true for write requests, false for read requests.
1698  *
1699  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1700  *  - on function start they represent original request
1701  *  - on failure or when padding is not needed they are unchanged
1702  *  - on success when padding is needed they represent padded request
1703  */
1704 static int bdrv_pad_request(BlockDriverState *bs,
1705                             QEMUIOVector **qiov, size_t *qiov_offset,
1706                             int64_t *offset, int64_t *bytes,
1707                             bool write,
1708                             BdrvRequestPadding *pad, bool *padded,
1709                             BdrvRequestFlags *flags)
1710 {
1711     int ret;
1712     struct iovec *sliced_iov;
1713     int sliced_niov;
1714     size_t sliced_head, sliced_tail;
1715 
1716     /* Should have been checked by the caller already */
1717     ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1718     if (ret < 0) {
1719         return ret;
1720     }
1721 
1722     if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1723         if (padded) {
1724             *padded = false;
1725         }
1726         return 0;
1727     }
1728 
1729     /*
1730      * For prefetching in stream_populate(), no qiov is passed along, because
1731      * only copy-on-read matters.
1732      */
1733     if (*qiov) {
1734         sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1735                                       &sliced_head, &sliced_tail,
1736                                       &sliced_niov);
1737 
1738         /* Guaranteed by bdrv_check_request32() */
1739         assert(*bytes <= SIZE_MAX);
1740         ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1741                                       sliced_head, *bytes);
1742         if (ret < 0) {
1743             bdrv_padding_finalize(pad);
1744             return ret;
1745         }
1746         *qiov = &pad->local_qiov;
1747         *qiov_offset = 0;
1748     }
1749 
1750     *bytes += pad->head + pad->tail;
1751     *offset -= pad->head;
1752     if (padded) {
1753         *padded = true;
1754     }
1755     if (flags) {
1756         /* Can't use optimization hint with bounce buffer */
1757         *flags &= ~BDRV_REQ_REGISTERED_BUF;
1758     }
1759 
1760     return 0;
1761 }
1762 
1763 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1764     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1765     BdrvRequestFlags flags)
1766 {
1767     IO_CODE();
1768     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1769 }
1770 
1771 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1772     int64_t offset, int64_t bytes,
1773     QEMUIOVector *qiov, size_t qiov_offset,
1774     BdrvRequestFlags flags)
1775 {
1776     BlockDriverState *bs = child->bs;
1777     BdrvTrackedRequest req;
1778     BdrvRequestPadding pad;
1779     int ret;
1780     IO_CODE();
1781 
1782     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1783 
1784     if (!bdrv_co_is_inserted(bs)) {
1785         return -ENOMEDIUM;
1786     }
1787 
1788     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1789     if (ret < 0) {
1790         return ret;
1791     }
1792 
1793     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1794         /*
1795          * Aligning zero request is nonsense. Even if driver has special meaning
1796          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1797          * it to driver due to request_alignment.
1798          *
1799          * Still, no reason to return an error if someone do unaligned
1800          * zero-length read occasionally.
1801          */
1802         return 0;
1803     }
1804 
1805     bdrv_inc_in_flight(bs);
1806 
1807     /* Don't do copy-on-read if we read data before write operation */
1808     if (qatomic_read(&bs->copy_on_read)) {
1809         flags |= BDRV_REQ_COPY_ON_READ;
1810     }
1811 
1812     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1813                            &pad, NULL, &flags);
1814     if (ret < 0) {
1815         goto fail;
1816     }
1817 
1818     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1819     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1820                               bs->bl.request_alignment,
1821                               qiov, qiov_offset, flags);
1822     tracked_request_end(&req);
1823     bdrv_padding_finalize(&pad);
1824 
1825 fail:
1826     bdrv_dec_in_flight(bs);
1827 
1828     return ret;
1829 }
1830 
1831 static int coroutine_fn GRAPH_RDLOCK
1832 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1833                          BdrvRequestFlags flags)
1834 {
1835     BlockDriver *drv = bs->drv;
1836     QEMUIOVector qiov;
1837     void *buf = NULL;
1838     int ret = 0;
1839     bool need_flush = false;
1840     int head = 0;
1841     int tail = 0;
1842 
1843     int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1844                                             INT64_MAX);
1845     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1846                         bs->bl.request_alignment);
1847     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1848 
1849     assert_bdrv_graph_readable();
1850     bdrv_check_request(offset, bytes, &error_abort);
1851 
1852     if (!drv) {
1853         return -ENOMEDIUM;
1854     }
1855 
1856     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1857         return -ENOTSUP;
1858     }
1859 
1860     /* By definition there is no user buffer so this flag doesn't make sense */
1861     if (flags & BDRV_REQ_REGISTERED_BUF) {
1862         return -EINVAL;
1863     }
1864 
1865     /* Invalidate the cached block-status data range if this write overlaps */
1866     bdrv_bsc_invalidate_range(bs, offset, bytes);
1867 
1868     assert(alignment % bs->bl.request_alignment == 0);
1869     head = offset % alignment;
1870     tail = (offset + bytes) % alignment;
1871     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1872     assert(max_write_zeroes >= bs->bl.request_alignment);
1873 
1874     while (bytes > 0 && !ret) {
1875         int64_t num = bytes;
1876 
1877         /* Align request.  Block drivers can expect the "bulk" of the request
1878          * to be aligned, and that unaligned requests do not cross cluster
1879          * boundaries.
1880          */
1881         if (head) {
1882             /* Make a small request up to the first aligned sector. For
1883              * convenience, limit this request to max_transfer even if
1884              * we don't need to fall back to writes.  */
1885             num = MIN(MIN(bytes, max_transfer), alignment - head);
1886             head = (head + num) % alignment;
1887             assert(num < max_write_zeroes);
1888         } else if (tail && num > alignment) {
1889             /* Shorten the request to the last aligned sector.  */
1890             num -= tail;
1891         }
1892 
1893         /* limit request size */
1894         if (num > max_write_zeroes) {
1895             num = max_write_zeroes;
1896         }
1897 
1898         ret = -ENOTSUP;
1899         /* First try the efficient write zeroes operation */
1900         if (drv->bdrv_co_pwrite_zeroes) {
1901             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1902                                              flags & bs->supported_zero_flags);
1903             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1904                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1905                 need_flush = true;
1906             }
1907         } else {
1908             assert(!bs->supported_zero_flags);
1909         }
1910 
1911         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1912             /* Fall back to bounce buffer if write zeroes is unsupported */
1913             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1914 
1915             if ((flags & BDRV_REQ_FUA) &&
1916                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1917                 /* No need for bdrv_driver_pwrite() to do a fallback
1918                  * flush on each chunk; use just one at the end */
1919                 write_flags &= ~BDRV_REQ_FUA;
1920                 need_flush = true;
1921             }
1922             num = MIN(num, max_transfer);
1923             if (buf == NULL) {
1924                 buf = qemu_try_blockalign0(bs, num);
1925                 if (buf == NULL) {
1926                     ret = -ENOMEM;
1927                     goto fail;
1928                 }
1929             }
1930             qemu_iovec_init_buf(&qiov, buf, num);
1931 
1932             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1933 
1934             /* Keep bounce buffer around if it is big enough for all
1935              * all future requests.
1936              */
1937             if (num < max_transfer) {
1938                 qemu_vfree(buf);
1939                 buf = NULL;
1940             }
1941         }
1942 
1943         offset += num;
1944         bytes -= num;
1945     }
1946 
1947 fail:
1948     if (ret == 0 && need_flush) {
1949         ret = bdrv_co_flush(bs);
1950     }
1951     qemu_vfree(buf);
1952     return ret;
1953 }
1954 
1955 static inline int coroutine_fn GRAPH_RDLOCK
1956 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1957                           BdrvTrackedRequest *req, int flags)
1958 {
1959     BlockDriverState *bs = child->bs;
1960 
1961     bdrv_check_request(offset, bytes, &error_abort);
1962 
1963     if (bdrv_is_read_only(bs)) {
1964         return -EPERM;
1965     }
1966 
1967     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1968     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1969     assert(!(flags & ~BDRV_REQ_MASK));
1970     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1971 
1972     if (flags & BDRV_REQ_SERIALISING) {
1973         QEMU_LOCK_GUARD(&bs->reqs_lock);
1974 
1975         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1976 
1977         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1978             return -EBUSY;
1979         }
1980 
1981         bdrv_wait_serialising_requests_locked(req);
1982     } else {
1983         bdrv_wait_serialising_requests(req);
1984     }
1985 
1986     assert(req->overlap_offset <= offset);
1987     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1988     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1989            child->perm & BLK_PERM_RESIZE);
1990 
1991     switch (req->type) {
1992     case BDRV_TRACKED_WRITE:
1993     case BDRV_TRACKED_DISCARD:
1994         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1995             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1996         } else {
1997             assert(child->perm & BLK_PERM_WRITE);
1998         }
1999         bdrv_write_threshold_check_write(bs, offset, bytes);
2000         return 0;
2001     case BDRV_TRACKED_TRUNCATE:
2002         assert(child->perm & BLK_PERM_RESIZE);
2003         return 0;
2004     default:
2005         abort();
2006     }
2007 }
2008 
2009 static inline void coroutine_fn GRAPH_RDLOCK
2010 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2011                          BdrvTrackedRequest *req, int ret)
2012 {
2013     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2014     BlockDriverState *bs = child->bs;
2015 
2016     bdrv_check_request(offset, bytes, &error_abort);
2017 
2018     qatomic_inc(&bs->write_gen);
2019 
2020     /*
2021      * Discard cannot extend the image, but in error handling cases, such as
2022      * when reverting a qcow2 cluster allocation, the discarded range can pass
2023      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2024      * here. Instead, just skip it, since semantically a discard request
2025      * beyond EOF cannot expand the image anyway.
2026      */
2027     if (ret == 0 &&
2028         (req->type == BDRV_TRACKED_TRUNCATE ||
2029          end_sector > bs->total_sectors) &&
2030         req->type != BDRV_TRACKED_DISCARD) {
2031         bs->total_sectors = end_sector;
2032         bdrv_parent_cb_resize(bs);
2033         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2034     }
2035     if (req->bytes) {
2036         switch (req->type) {
2037         case BDRV_TRACKED_WRITE:
2038             stat64_max(&bs->wr_highest_offset, offset + bytes);
2039             /* fall through, to set dirty bits */
2040         case BDRV_TRACKED_DISCARD:
2041             bdrv_set_dirty(bs, offset, bytes);
2042             break;
2043         default:
2044             break;
2045         }
2046     }
2047 }
2048 
2049 /*
2050  * Forwards an already correctly aligned write request to the BlockDriver,
2051  * after possibly fragmenting it.
2052  */
2053 static int coroutine_fn GRAPH_RDLOCK
2054 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2055                      int64_t offset, int64_t bytes, int64_t align,
2056                      QEMUIOVector *qiov, size_t qiov_offset,
2057                      BdrvRequestFlags flags)
2058 {
2059     BlockDriverState *bs = child->bs;
2060     BlockDriver *drv = bs->drv;
2061     int ret;
2062 
2063     int64_t bytes_remaining = bytes;
2064     int max_transfer;
2065 
2066     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2067 
2068     if (!drv) {
2069         return -ENOMEDIUM;
2070     }
2071 
2072     if (bdrv_has_readonly_bitmaps(bs)) {
2073         return -EPERM;
2074     }
2075 
2076     assert(is_power_of_2(align));
2077     assert((offset & (align - 1)) == 0);
2078     assert((bytes & (align - 1)) == 0);
2079     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2080                                    align);
2081 
2082     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2083 
2084     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2085         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2086         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2087         flags |= BDRV_REQ_ZERO_WRITE;
2088         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2089             flags |= BDRV_REQ_MAY_UNMAP;
2090         }
2091 
2092         /* Can't use optimization hint with bufferless zero write */
2093         flags &= ~BDRV_REQ_REGISTERED_BUF;
2094     }
2095 
2096     if (ret < 0) {
2097         /* Do nothing, write notifier decided to fail this request */
2098     } else if (flags & BDRV_REQ_ZERO_WRITE) {
2099         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2100         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2101     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2102         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2103                                              qiov, qiov_offset);
2104     } else if (bytes <= max_transfer) {
2105         bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2106         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2107     } else {
2108         bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2109         while (bytes_remaining) {
2110             int num = MIN(bytes_remaining, max_transfer);
2111             int local_flags = flags;
2112 
2113             assert(num);
2114             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2115                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2116                 /* If FUA is going to be emulated by flush, we only
2117                  * need to flush on the last iteration */
2118                 local_flags &= ~BDRV_REQ_FUA;
2119             }
2120 
2121             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2122                                       num, qiov,
2123                                       qiov_offset + bytes - bytes_remaining,
2124                                       local_flags);
2125             if (ret < 0) {
2126                 break;
2127             }
2128             bytes_remaining -= num;
2129         }
2130     }
2131     bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2132 
2133     if (ret >= 0) {
2134         ret = 0;
2135     }
2136     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2137 
2138     return ret;
2139 }
2140 
2141 static int coroutine_fn GRAPH_RDLOCK
2142 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2143                         BdrvRequestFlags flags, BdrvTrackedRequest *req)
2144 {
2145     BlockDriverState *bs = child->bs;
2146     QEMUIOVector local_qiov;
2147     uint64_t align = bs->bl.request_alignment;
2148     int ret = 0;
2149     bool padding;
2150     BdrvRequestPadding pad;
2151 
2152     /* This flag doesn't make sense for padding or zero writes */
2153     flags &= ~BDRV_REQ_REGISTERED_BUF;
2154 
2155     padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2156     if (padding) {
2157         assert(!(flags & BDRV_REQ_NO_WAIT));
2158         bdrv_make_request_serialising(req, align);
2159 
2160         bdrv_padding_rmw_read(child, req, &pad, true);
2161 
2162         if (pad.head || pad.merge_reads) {
2163             int64_t aligned_offset = offset & ~(align - 1);
2164             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2165 
2166             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2167             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2168                                        align, &local_qiov, 0,
2169                                        flags & ~BDRV_REQ_ZERO_WRITE);
2170             if (ret < 0 || pad.merge_reads) {
2171                 /* Error or all work is done */
2172                 goto out;
2173             }
2174             offset += write_bytes - pad.head;
2175             bytes -= write_bytes - pad.head;
2176         }
2177     }
2178 
2179     assert(!bytes || (offset & (align - 1)) == 0);
2180     if (bytes >= align) {
2181         /* Write the aligned part in the middle. */
2182         int64_t aligned_bytes = bytes & ~(align - 1);
2183         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2184                                    NULL, 0, flags);
2185         if (ret < 0) {
2186             goto out;
2187         }
2188         bytes -= aligned_bytes;
2189         offset += aligned_bytes;
2190     }
2191 
2192     assert(!bytes || (offset & (align - 1)) == 0);
2193     if (bytes) {
2194         assert(align == pad.tail + bytes);
2195 
2196         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2197         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2198                                    &local_qiov, 0,
2199                                    flags & ~BDRV_REQ_ZERO_WRITE);
2200     }
2201 
2202 out:
2203     bdrv_padding_finalize(&pad);
2204 
2205     return ret;
2206 }
2207 
2208 /*
2209  * Handle a write request in coroutine context
2210  */
2211 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2212     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2213     BdrvRequestFlags flags)
2214 {
2215     IO_CODE();
2216     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2217 }
2218 
2219 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2220     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2221     BdrvRequestFlags flags)
2222 {
2223     BlockDriverState *bs = child->bs;
2224     BdrvTrackedRequest req;
2225     uint64_t align = bs->bl.request_alignment;
2226     BdrvRequestPadding pad;
2227     int ret;
2228     bool padded = false;
2229     IO_CODE();
2230 
2231     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2232 
2233     if (!bdrv_co_is_inserted(bs)) {
2234         return -ENOMEDIUM;
2235     }
2236 
2237     if (flags & BDRV_REQ_ZERO_WRITE) {
2238         ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2239     } else {
2240         ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2241     }
2242     if (ret < 0) {
2243         return ret;
2244     }
2245 
2246     /* If the request is misaligned then we can't make it efficient */
2247     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2248         !QEMU_IS_ALIGNED(offset | bytes, align))
2249     {
2250         return -ENOTSUP;
2251     }
2252 
2253     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2254         /*
2255          * Aligning zero request is nonsense. Even if driver has special meaning
2256          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2257          * it to driver due to request_alignment.
2258          *
2259          * Still, no reason to return an error if someone do unaligned
2260          * zero-length write occasionally.
2261          */
2262         return 0;
2263     }
2264 
2265     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2266         /*
2267          * Pad request for following read-modify-write cycle.
2268          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2269          * alignment only if there is no ZERO flag.
2270          */
2271         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2272                                &pad, &padded, &flags);
2273         if (ret < 0) {
2274             return ret;
2275         }
2276     }
2277 
2278     bdrv_inc_in_flight(bs);
2279     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2280 
2281     if (flags & BDRV_REQ_ZERO_WRITE) {
2282         assert(!padded);
2283         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2284         goto out;
2285     }
2286 
2287     if (padded) {
2288         /*
2289          * Request was unaligned to request_alignment and therefore
2290          * padded.  We are going to do read-modify-write, and must
2291          * serialize the request to prevent interactions of the
2292          * widened region with other transactions.
2293          */
2294         assert(!(flags & BDRV_REQ_NO_WAIT));
2295         bdrv_make_request_serialising(&req, align);
2296         bdrv_padding_rmw_read(child, &req, &pad, false);
2297     }
2298 
2299     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2300                                qiov, qiov_offset, flags);
2301 
2302     bdrv_padding_finalize(&pad);
2303 
2304 out:
2305     tracked_request_end(&req);
2306     bdrv_dec_in_flight(bs);
2307 
2308     return ret;
2309 }
2310 
2311 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2312                                        int64_t bytes, BdrvRequestFlags flags)
2313 {
2314     IO_CODE();
2315     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2316     assert_bdrv_graph_readable();
2317 
2318     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2319         flags &= ~BDRV_REQ_MAY_UNMAP;
2320     }
2321 
2322     return bdrv_co_pwritev(child, offset, bytes, NULL,
2323                            BDRV_REQ_ZERO_WRITE | flags);
2324 }
2325 
2326 /*
2327  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2328  */
2329 int bdrv_flush_all(void)
2330 {
2331     BdrvNextIterator it;
2332     BlockDriverState *bs = NULL;
2333     int result = 0;
2334 
2335     GLOBAL_STATE_CODE();
2336     GRAPH_RDLOCK_GUARD_MAINLOOP();
2337 
2338     /*
2339      * bdrv queue is managed by record/replay,
2340      * creating new flush request for stopping
2341      * the VM may break the determinism
2342      */
2343     if (replay_events_enabled()) {
2344         return result;
2345     }
2346 
2347     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2348         int ret = bdrv_flush(bs);
2349         if (ret < 0 && !result) {
2350             result = ret;
2351         }
2352     }
2353 
2354     return result;
2355 }
2356 
2357 /*
2358  * Returns the allocation status of the specified sectors.
2359  * Drivers not implementing the functionality are assumed to not support
2360  * backing files, hence all their sectors are reported as allocated.
2361  *
2362  * If 'want_zero' is true, the caller is querying for mapping
2363  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2364  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2365  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2366  *
2367  * If 'offset' is beyond the end of the disk image the return value is
2368  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2369  *
2370  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2371  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2372  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2373  *
2374  * 'pnum' is set to the number of bytes (including and immediately
2375  * following the specified offset) that are easily known to be in the
2376  * same allocated/unallocated state.  Note that a second call starting
2377  * at the original offset plus returned pnum may have the same status.
2378  * The returned value is non-zero on success except at end-of-file.
2379  *
2380  * Returns negative errno on failure.  Otherwise, if the
2381  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2382  * set to the host mapping and BDS corresponding to the guest offset.
2383  */
2384 static int coroutine_fn GRAPH_RDLOCK
2385 bdrv_co_do_block_status(BlockDriverState *bs, bool want_zero,
2386                         int64_t offset, int64_t bytes,
2387                         int64_t *pnum, int64_t *map, BlockDriverState **file)
2388 {
2389     int64_t total_size;
2390     int64_t n; /* bytes */
2391     int ret;
2392     int64_t local_map = 0;
2393     BlockDriverState *local_file = NULL;
2394     int64_t aligned_offset, aligned_bytes;
2395     uint32_t align;
2396     bool has_filtered_child;
2397 
2398     assert(pnum);
2399     assert_bdrv_graph_readable();
2400     *pnum = 0;
2401     total_size = bdrv_co_getlength(bs);
2402     if (total_size < 0) {
2403         ret = total_size;
2404         goto early_out;
2405     }
2406 
2407     if (offset >= total_size) {
2408         ret = BDRV_BLOCK_EOF;
2409         goto early_out;
2410     }
2411     if (!bytes) {
2412         ret = 0;
2413         goto early_out;
2414     }
2415 
2416     n = total_size - offset;
2417     if (n < bytes) {
2418         bytes = n;
2419     }
2420 
2421     /* Must be non-NULL or bdrv_co_getlength() would have failed */
2422     assert(bs->drv);
2423     has_filtered_child = bdrv_filter_child(bs);
2424     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2425         *pnum = bytes;
2426         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2427         if (offset + bytes == total_size) {
2428             ret |= BDRV_BLOCK_EOF;
2429         }
2430         if (bs->drv->protocol_name) {
2431             ret |= BDRV_BLOCK_OFFSET_VALID;
2432             local_map = offset;
2433             local_file = bs;
2434         }
2435         goto early_out;
2436     }
2437 
2438     bdrv_inc_in_flight(bs);
2439 
2440     /* Round out to request_alignment boundaries */
2441     align = bs->bl.request_alignment;
2442     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2443     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2444 
2445     if (bs->drv->bdrv_co_block_status) {
2446         /*
2447          * Use the block-status cache only for protocol nodes: Format
2448          * drivers are generally quick to inquire the status, but protocol
2449          * drivers often need to get information from outside of qemu, so
2450          * we do not have control over the actual implementation.  There
2451          * have been cases where inquiring the status took an unreasonably
2452          * long time, and we can do nothing in qemu to fix it.
2453          * This is especially problematic for images with large data areas,
2454          * because finding the few holes in them and giving them special
2455          * treatment does not gain much performance.  Therefore, we try to
2456          * cache the last-identified data region.
2457          *
2458          * Second, limiting ourselves to protocol nodes allows us to assume
2459          * the block status for data regions to be DATA | OFFSET_VALID, and
2460          * that the host offset is the same as the guest offset.
2461          *
2462          * Note that it is possible that external writers zero parts of
2463          * the cached regions without the cache being invalidated, and so
2464          * we may report zeroes as data.  This is not catastrophic,
2465          * however, because reporting zeroes as data is fine.
2466          */
2467         if (QLIST_EMPTY(&bs->children) &&
2468             bdrv_bsc_is_data(bs, aligned_offset, pnum))
2469         {
2470             ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2471             local_file = bs;
2472             local_map = aligned_offset;
2473         } else {
2474             ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2475                                                 aligned_bytes, pnum, &local_map,
2476                                                 &local_file);
2477 
2478             /*
2479              * Note that checking QLIST_EMPTY(&bs->children) is also done when
2480              * the cache is queried above.  Technically, we do not need to check
2481              * it here; the worst that can happen is that we fill the cache for
2482              * non-protocol nodes, and then it is never used.  However, filling
2483              * the cache requires an RCU update, so double check here to avoid
2484              * such an update if possible.
2485              *
2486              * Check want_zero, because we only want to update the cache when we
2487              * have accurate information about what is zero and what is data.
2488              */
2489             if (want_zero &&
2490                 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2491                 QLIST_EMPTY(&bs->children))
2492             {
2493                 /*
2494                  * When a protocol driver reports BLOCK_OFFSET_VALID, the
2495                  * returned local_map value must be the same as the offset we
2496                  * have passed (aligned_offset), and local_bs must be the node
2497                  * itself.
2498                  * Assert this, because we follow this rule when reading from
2499                  * the cache (see the `local_file = bs` and
2500                  * `local_map = aligned_offset` assignments above), and the
2501                  * result the cache delivers must be the same as the driver
2502                  * would deliver.
2503                  */
2504                 assert(local_file == bs);
2505                 assert(local_map == aligned_offset);
2506                 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2507             }
2508         }
2509     } else {
2510         /* Default code for filters */
2511 
2512         local_file = bdrv_filter_bs(bs);
2513         assert(local_file);
2514 
2515         *pnum = aligned_bytes;
2516         local_map = aligned_offset;
2517         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2518     }
2519     if (ret < 0) {
2520         *pnum = 0;
2521         goto out;
2522     }
2523 
2524     /*
2525      * The driver's result must be a non-zero multiple of request_alignment.
2526      * Clamp pnum and adjust map to original request.
2527      */
2528     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2529            align > offset - aligned_offset);
2530     if (ret & BDRV_BLOCK_RECURSE) {
2531         assert(ret & BDRV_BLOCK_DATA);
2532         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2533         assert(!(ret & BDRV_BLOCK_ZERO));
2534     }
2535 
2536     *pnum -= offset - aligned_offset;
2537     if (*pnum > bytes) {
2538         *pnum = bytes;
2539     }
2540     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2541         local_map += offset - aligned_offset;
2542     }
2543 
2544     if (ret & BDRV_BLOCK_RAW) {
2545         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2546         ret = bdrv_co_do_block_status(local_file, want_zero, local_map,
2547                                       *pnum, pnum, &local_map, &local_file);
2548         goto out;
2549     }
2550 
2551     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2552         ret |= BDRV_BLOCK_ALLOCATED;
2553     } else if (bs->drv->supports_backing) {
2554         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2555 
2556         if (!cow_bs) {
2557             ret |= BDRV_BLOCK_ZERO;
2558         } else if (want_zero) {
2559             int64_t size2 = bdrv_co_getlength(cow_bs);
2560 
2561             if (size2 >= 0 && offset >= size2) {
2562                 ret |= BDRV_BLOCK_ZERO;
2563             }
2564         }
2565     }
2566 
2567     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2568         local_file && local_file != bs &&
2569         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2570         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2571         int64_t file_pnum;
2572         int ret2;
2573 
2574         ret2 = bdrv_co_do_block_status(local_file, want_zero, local_map,
2575                                        *pnum, &file_pnum, NULL, NULL);
2576         if (ret2 >= 0) {
2577             /* Ignore errors.  This is just providing extra information, it
2578              * is useful but not necessary.
2579              */
2580             if (ret2 & BDRV_BLOCK_EOF &&
2581                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2582                 /*
2583                  * It is valid for the format block driver to read
2584                  * beyond the end of the underlying file's current
2585                  * size; such areas read as zero.
2586                  */
2587                 ret |= BDRV_BLOCK_ZERO;
2588             } else {
2589                 /* Limit request to the range reported by the protocol driver */
2590                 *pnum = file_pnum;
2591                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2592             }
2593         }
2594 
2595         /*
2596          * Now that the recursive search was done, clear the flag. Otherwise,
2597          * with more complicated block graphs like snapshot-access ->
2598          * copy-before-write -> qcow2, where the return value will be propagated
2599          * further up to a parent bdrv_co_do_block_status() call, both the
2600          * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is
2601          * not allowed.
2602          */
2603         ret &= ~BDRV_BLOCK_RECURSE;
2604     }
2605 
2606 out:
2607     bdrv_dec_in_flight(bs);
2608     if (ret >= 0 && offset + *pnum == total_size) {
2609         ret |= BDRV_BLOCK_EOF;
2610     }
2611 early_out:
2612     if (file) {
2613         *file = local_file;
2614     }
2615     if (map) {
2616         *map = local_map;
2617     }
2618     return ret;
2619 }
2620 
2621 int coroutine_fn
2622 bdrv_co_common_block_status_above(BlockDriverState *bs,
2623                                   BlockDriverState *base,
2624                                   bool include_base,
2625                                   bool want_zero,
2626                                   int64_t offset,
2627                                   int64_t bytes,
2628                                   int64_t *pnum,
2629                                   int64_t *map,
2630                                   BlockDriverState **file,
2631                                   int *depth)
2632 {
2633     int ret;
2634     BlockDriverState *p;
2635     int64_t eof = 0;
2636     int dummy;
2637     IO_CODE();
2638 
2639     assert(!include_base || base); /* Can't include NULL base */
2640     assert_bdrv_graph_readable();
2641 
2642     if (!depth) {
2643         depth = &dummy;
2644     }
2645     *depth = 0;
2646 
2647     if (!include_base && bs == base) {
2648         *pnum = bytes;
2649         return 0;
2650     }
2651 
2652     ret = bdrv_co_do_block_status(bs, want_zero, offset, bytes, pnum,
2653                                   map, file);
2654     ++*depth;
2655     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2656         return ret;
2657     }
2658 
2659     if (ret & BDRV_BLOCK_EOF) {
2660         eof = offset + *pnum;
2661     }
2662 
2663     assert(*pnum <= bytes);
2664     bytes = *pnum;
2665 
2666     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2667          p = bdrv_filter_or_cow_bs(p))
2668     {
2669         ret = bdrv_co_do_block_status(p, want_zero, offset, bytes, pnum,
2670                                       map, file);
2671         ++*depth;
2672         if (ret < 0) {
2673             return ret;
2674         }
2675         if (*pnum == 0) {
2676             /*
2677              * The top layer deferred to this layer, and because this layer is
2678              * short, any zeroes that we synthesize beyond EOF behave as if they
2679              * were allocated at this layer.
2680              *
2681              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2682              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2683              * below.
2684              */
2685             assert(ret & BDRV_BLOCK_EOF);
2686             *pnum = bytes;
2687             if (file) {
2688                 *file = p;
2689             }
2690             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2691             break;
2692         }
2693         if (ret & BDRV_BLOCK_ALLOCATED) {
2694             /*
2695              * We've found the node and the status, we must break.
2696              *
2697              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2698              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2699              * below.
2700              */
2701             ret &= ~BDRV_BLOCK_EOF;
2702             break;
2703         }
2704 
2705         if (p == base) {
2706             assert(include_base);
2707             break;
2708         }
2709 
2710         /*
2711          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2712          * let's continue the diving.
2713          */
2714         assert(*pnum <= bytes);
2715         bytes = *pnum;
2716     }
2717 
2718     if (offset + *pnum == eof) {
2719         ret |= BDRV_BLOCK_EOF;
2720     }
2721 
2722     return ret;
2723 }
2724 
2725 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2726                                             BlockDriverState *base,
2727                                             int64_t offset, int64_t bytes,
2728                                             int64_t *pnum, int64_t *map,
2729                                             BlockDriverState **file)
2730 {
2731     IO_CODE();
2732     return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2733                                              bytes, pnum, map, file, NULL);
2734 }
2735 
2736 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset,
2737                                       int64_t bytes, int64_t *pnum,
2738                                       int64_t *map, BlockDriverState **file)
2739 {
2740     IO_CODE();
2741     return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2742                                       offset, bytes, pnum, map, file);
2743 }
2744 
2745 /*
2746  * Check @bs (and its backing chain) to see if the range defined
2747  * by @offset and @bytes is known to read as zeroes.
2748  * Return 1 if that is the case, 0 otherwise and -errno on error.
2749  * This test is meant to be fast rather than accurate so returning 0
2750  * does not guarantee non-zero data.
2751  */
2752 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2753                                       int64_t bytes)
2754 {
2755     int ret;
2756     int64_t pnum = bytes;
2757     IO_CODE();
2758 
2759     if (!bytes) {
2760         return 1;
2761     }
2762 
2763     ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2764                                             bytes, &pnum, NULL, NULL, NULL);
2765 
2766     if (ret < 0) {
2767         return ret;
2768     }
2769 
2770     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2771 }
2772 
2773 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2774                                       int64_t bytes, int64_t *pnum)
2775 {
2776     int ret;
2777     int64_t dummy;
2778     IO_CODE();
2779 
2780     ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2781                                             bytes, pnum ? pnum : &dummy, NULL,
2782                                             NULL, NULL);
2783     if (ret < 0) {
2784         return ret;
2785     }
2786     return !!(ret & BDRV_BLOCK_ALLOCATED);
2787 }
2788 
2789 /*
2790  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2791  *
2792  * Return a positive depth if (a prefix of) the given range is allocated
2793  * in any image between BASE and TOP (BASE is only included if include_base
2794  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2795  * BASE can be NULL to check if the given offset is allocated in any
2796  * image of the chain.  Return 0 otherwise, or negative errno on
2797  * failure.
2798  *
2799  * 'pnum' is set to the number of bytes (including and immediately
2800  * following the specified offset) that are known to be in the same
2801  * allocated/unallocated state.  Note that a subsequent call starting
2802  * at 'offset + *pnum' may return the same allocation status (in other
2803  * words, the result is not necessarily the maximum possible range);
2804  * but 'pnum' will only be 0 when end of file is reached.
2805  */
2806 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs,
2807                                             BlockDriverState *base,
2808                                             bool include_base, int64_t offset,
2809                                             int64_t bytes, int64_t *pnum)
2810 {
2811     int depth;
2812     int ret;
2813     IO_CODE();
2814 
2815     ret = bdrv_co_common_block_status_above(bs, base, include_base, false,
2816                                             offset, bytes, pnum, NULL, NULL,
2817                                             &depth);
2818     if (ret < 0) {
2819         return ret;
2820     }
2821 
2822     if (ret & BDRV_BLOCK_ALLOCATED) {
2823         return depth;
2824     }
2825     return 0;
2826 }
2827 
2828 int coroutine_fn
2829 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2830 {
2831     BlockDriver *drv = bs->drv;
2832     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2833     int ret;
2834     IO_CODE();
2835     assert_bdrv_graph_readable();
2836 
2837     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2838     if (ret < 0) {
2839         return ret;
2840     }
2841 
2842     if (!drv) {
2843         return -ENOMEDIUM;
2844     }
2845 
2846     bdrv_inc_in_flight(bs);
2847 
2848     if (drv->bdrv_co_load_vmstate) {
2849         ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2850     } else if (child_bs) {
2851         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2852     } else {
2853         ret = -ENOTSUP;
2854     }
2855 
2856     bdrv_dec_in_flight(bs);
2857 
2858     return ret;
2859 }
2860 
2861 int coroutine_fn
2862 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2863 {
2864     BlockDriver *drv = bs->drv;
2865     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2866     int ret;
2867     IO_CODE();
2868     assert_bdrv_graph_readable();
2869 
2870     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2871     if (ret < 0) {
2872         return ret;
2873     }
2874 
2875     if (!drv) {
2876         return -ENOMEDIUM;
2877     }
2878 
2879     bdrv_inc_in_flight(bs);
2880 
2881     if (drv->bdrv_co_save_vmstate) {
2882         ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2883     } else if (child_bs) {
2884         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2885     } else {
2886         ret = -ENOTSUP;
2887     }
2888 
2889     bdrv_dec_in_flight(bs);
2890 
2891     return ret;
2892 }
2893 
2894 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2895                       int64_t pos, int size)
2896 {
2897     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2898     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2899     IO_CODE();
2900 
2901     return ret < 0 ? ret : size;
2902 }
2903 
2904 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2905                       int64_t pos, int size)
2906 {
2907     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2908     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2909     IO_CODE();
2910 
2911     return ret < 0 ? ret : size;
2912 }
2913 
2914 /**************************************************************/
2915 /* async I/Os */
2916 
2917 /**
2918  * Synchronously cancels an acb. Must be called with the BQL held and the acb
2919  * must be processed with the BQL held too (IOThreads are not allowed).
2920  *
2921  * Use bdrv_aio_cancel_async() instead when possible.
2922  */
2923 void bdrv_aio_cancel(BlockAIOCB *acb)
2924 {
2925     GLOBAL_STATE_CODE();
2926     qemu_aio_ref(acb);
2927     bdrv_aio_cancel_async(acb);
2928     AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1);
2929     qemu_aio_unref(acb);
2930 }
2931 
2932 /* Async version of aio cancel. The caller is not blocked if the acb implements
2933  * cancel_async, otherwise we do nothing and let the request normally complete.
2934  * In either case the completion callback must be called. */
2935 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2936 {
2937     IO_CODE();
2938     if (acb->aiocb_info->cancel_async) {
2939         acb->aiocb_info->cancel_async(acb);
2940     }
2941 }
2942 
2943 /**************************************************************/
2944 /* Coroutine block device emulation */
2945 
2946 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2947 {
2948     BdrvChild *primary_child = bdrv_primary_child(bs);
2949     BdrvChild *child;
2950     int current_gen;
2951     int ret = 0;
2952     IO_CODE();
2953 
2954     assert_bdrv_graph_readable();
2955     bdrv_inc_in_flight(bs);
2956 
2957     if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2958         bdrv_is_sg(bs)) {
2959         goto early_exit;
2960     }
2961 
2962     qemu_mutex_lock(&bs->reqs_lock);
2963     current_gen = qatomic_read(&bs->write_gen);
2964 
2965     /* Wait until any previous flushes are completed */
2966     while (bs->active_flush_req) {
2967         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2968     }
2969 
2970     /* Flushes reach this point in nondecreasing current_gen order.  */
2971     bs->active_flush_req = true;
2972     qemu_mutex_unlock(&bs->reqs_lock);
2973 
2974     /* Write back all layers by calling one driver function */
2975     if (bs->drv->bdrv_co_flush) {
2976         ret = bs->drv->bdrv_co_flush(bs);
2977         goto out;
2978     }
2979 
2980     /* Write back cached data to the OS even with cache=unsafe */
2981     BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2982     if (bs->drv->bdrv_co_flush_to_os) {
2983         ret = bs->drv->bdrv_co_flush_to_os(bs);
2984         if (ret < 0) {
2985             goto out;
2986         }
2987     }
2988 
2989     /* But don't actually force it to the disk with cache=unsafe */
2990     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2991         goto flush_children;
2992     }
2993 
2994     /* Check if we really need to flush anything */
2995     if (bs->flushed_gen == current_gen) {
2996         goto flush_children;
2997     }
2998 
2999     BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3000     if (!bs->drv) {
3001         /* bs->drv->bdrv_co_flush() might have ejected the BDS
3002          * (even in case of apparent success) */
3003         ret = -ENOMEDIUM;
3004         goto out;
3005     }
3006     if (bs->drv->bdrv_co_flush_to_disk) {
3007         ret = bs->drv->bdrv_co_flush_to_disk(bs);
3008     } else if (bs->drv->bdrv_aio_flush) {
3009         BlockAIOCB *acb;
3010         CoroutineIOCompletion co = {
3011             .coroutine = qemu_coroutine_self(),
3012         };
3013 
3014         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3015         if (acb == NULL) {
3016             ret = -EIO;
3017         } else {
3018             qemu_coroutine_yield();
3019             ret = co.ret;
3020         }
3021     } else {
3022         /*
3023          * Some block drivers always operate in either writethrough or unsafe
3024          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3025          * know how the server works (because the behaviour is hardcoded or
3026          * depends on server-side configuration), so we can't ensure that
3027          * everything is safe on disk. Returning an error doesn't work because
3028          * that would break guests even if the server operates in writethrough
3029          * mode.
3030          *
3031          * Let's hope the user knows what he's doing.
3032          */
3033         ret = 0;
3034     }
3035 
3036     if (ret < 0) {
3037         goto out;
3038     }
3039 
3040     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
3041      * in the case of cache=unsafe, so there are no useless flushes.
3042      */
3043 flush_children:
3044     ret = 0;
3045     QLIST_FOREACH(child, &bs->children, next) {
3046         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3047             int this_child_ret = bdrv_co_flush(child->bs);
3048             if (!ret) {
3049                 ret = this_child_ret;
3050             }
3051         }
3052     }
3053 
3054 out:
3055     /* Notify any pending flushes that we have completed */
3056     if (ret == 0) {
3057         bs->flushed_gen = current_gen;
3058     }
3059 
3060     qemu_mutex_lock(&bs->reqs_lock);
3061     bs->active_flush_req = false;
3062     /* Return value is ignored - it's ok if wait queue is empty */
3063     qemu_co_queue_next(&bs->flush_queue);
3064     qemu_mutex_unlock(&bs->reqs_lock);
3065 
3066 early_exit:
3067     bdrv_dec_in_flight(bs);
3068     return ret;
3069 }
3070 
3071 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3072                                   int64_t bytes)
3073 {
3074     BdrvTrackedRequest req;
3075     int ret;
3076     int64_t max_pdiscard;
3077     int head, tail, align;
3078     BlockDriverState *bs = child->bs;
3079     IO_CODE();
3080     assert_bdrv_graph_readable();
3081 
3082     if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3083         return -ENOMEDIUM;
3084     }
3085 
3086     if (bdrv_has_readonly_bitmaps(bs)) {
3087         return -EPERM;
3088     }
3089 
3090     ret = bdrv_check_request(offset, bytes, NULL);
3091     if (ret < 0) {
3092         return ret;
3093     }
3094 
3095     /* Do nothing if disabled.  */
3096     if (!(bs->open_flags & BDRV_O_UNMAP)) {
3097         return 0;
3098     }
3099 
3100     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3101         return 0;
3102     }
3103 
3104     /* Invalidate the cached block-status data range if this discard overlaps */
3105     bdrv_bsc_invalidate_range(bs, offset, bytes);
3106 
3107     /* Discard is advisory, but some devices track and coalesce
3108      * unaligned requests, so we must pass everything down rather than
3109      * round here.  Still, most devices will just silently ignore
3110      * unaligned requests (by returning -ENOTSUP), so we must fragment
3111      * the request accordingly.  */
3112     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3113     assert(align % bs->bl.request_alignment == 0);
3114     head = offset % align;
3115     tail = (offset + bytes) % align;
3116 
3117     bdrv_inc_in_flight(bs);
3118     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3119 
3120     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3121     if (ret < 0) {
3122         goto out;
3123     }
3124 
3125     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3126                                    align);
3127     assert(max_pdiscard >= bs->bl.request_alignment);
3128 
3129     while (bytes > 0) {
3130         int64_t num = bytes;
3131 
3132         if (head) {
3133             /* Make small requests to get to alignment boundaries. */
3134             num = MIN(bytes, align - head);
3135             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3136                 num %= bs->bl.request_alignment;
3137             }
3138             head = (head + num) % align;
3139             assert(num < max_pdiscard);
3140         } else if (tail) {
3141             if (num > align) {
3142                 /* Shorten the request to the last aligned cluster.  */
3143                 num -= tail;
3144             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3145                        tail > bs->bl.request_alignment) {
3146                 tail %= bs->bl.request_alignment;
3147                 num -= tail;
3148             }
3149         }
3150         /* limit request size */
3151         if (num > max_pdiscard) {
3152             num = max_pdiscard;
3153         }
3154 
3155         if (!bs->drv) {
3156             ret = -ENOMEDIUM;
3157             goto out;
3158         }
3159         if (bs->drv->bdrv_co_pdiscard) {
3160             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3161         } else {
3162             BlockAIOCB *acb;
3163             CoroutineIOCompletion co = {
3164                 .coroutine = qemu_coroutine_self(),
3165             };
3166 
3167             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3168                                              bdrv_co_io_em_complete, &co);
3169             if (acb == NULL) {
3170                 ret = -EIO;
3171                 goto out;
3172             } else {
3173                 qemu_coroutine_yield();
3174                 ret = co.ret;
3175             }
3176         }
3177         if (ret && ret != -ENOTSUP) {
3178             goto out;
3179         }
3180 
3181         offset += num;
3182         bytes -= num;
3183     }
3184     ret = 0;
3185 out:
3186     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3187     tracked_request_end(&req);
3188     bdrv_dec_in_flight(bs);
3189     return ret;
3190 }
3191 
3192 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3193 {
3194     BlockDriver *drv = bs->drv;
3195     CoroutineIOCompletion co = {
3196         .coroutine = qemu_coroutine_self(),
3197     };
3198     BlockAIOCB *acb;
3199     IO_CODE();
3200     assert_bdrv_graph_readable();
3201 
3202     bdrv_inc_in_flight(bs);
3203     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3204         co.ret = -ENOTSUP;
3205         goto out;
3206     }
3207 
3208     if (drv->bdrv_co_ioctl) {
3209         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3210     } else {
3211         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3212         if (!acb) {
3213             co.ret = -ENOTSUP;
3214             goto out;
3215         }
3216         qemu_coroutine_yield();
3217     }
3218 out:
3219     bdrv_dec_in_flight(bs);
3220     return co.ret;
3221 }
3222 
3223 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3224                         unsigned int *nr_zones,
3225                         BlockZoneDescriptor *zones)
3226 {
3227     BlockDriver *drv = bs->drv;
3228     CoroutineIOCompletion co = {
3229             .coroutine = qemu_coroutine_self(),
3230     };
3231     IO_CODE();
3232 
3233     bdrv_inc_in_flight(bs);
3234     if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3235         co.ret = -ENOTSUP;
3236         goto out;
3237     }
3238     co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3239 out:
3240     bdrv_dec_in_flight(bs);
3241     return co.ret;
3242 }
3243 
3244 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3245         int64_t offset, int64_t len)
3246 {
3247     BlockDriver *drv = bs->drv;
3248     CoroutineIOCompletion co = {
3249             .coroutine = qemu_coroutine_self(),
3250     };
3251     IO_CODE();
3252 
3253     bdrv_inc_in_flight(bs);
3254     if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3255         co.ret = -ENOTSUP;
3256         goto out;
3257     }
3258     co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3259 out:
3260     bdrv_dec_in_flight(bs);
3261     return co.ret;
3262 }
3263 
3264 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3265                         QEMUIOVector *qiov,
3266                         BdrvRequestFlags flags)
3267 {
3268     int ret;
3269     BlockDriver *drv = bs->drv;
3270     CoroutineIOCompletion co = {
3271             .coroutine = qemu_coroutine_self(),
3272     };
3273     IO_CODE();
3274 
3275     ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3276     if (ret < 0) {
3277         return ret;
3278     }
3279 
3280     bdrv_inc_in_flight(bs);
3281     if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3282         co.ret = -ENOTSUP;
3283         goto out;
3284     }
3285     co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3286 out:
3287     bdrv_dec_in_flight(bs);
3288     return co.ret;
3289 }
3290 
3291 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3292 {
3293     IO_CODE();
3294     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3295 }
3296 
3297 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3298 {
3299     IO_CODE();
3300     return memset(qemu_blockalign(bs, size), 0, size);
3301 }
3302 
3303 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3304 {
3305     size_t align = bdrv_opt_mem_align(bs);
3306     IO_CODE();
3307 
3308     /* Ensure that NULL is never returned on success */
3309     assert(align > 0);
3310     if (size == 0) {
3311         size = align;
3312     }
3313 
3314     return qemu_try_memalign(align, size);
3315 }
3316 
3317 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3318 {
3319     void *mem = qemu_try_blockalign(bs, size);
3320     IO_CODE();
3321 
3322     if (mem) {
3323         memset(mem, 0, size);
3324     }
3325 
3326     return mem;
3327 }
3328 
3329 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3330 static void GRAPH_RDLOCK
3331 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3332                            BdrvChild *final_child)
3333 {
3334     BdrvChild *child;
3335 
3336     GLOBAL_STATE_CODE();
3337     assert_bdrv_graph_readable();
3338 
3339     QLIST_FOREACH(child, &bs->children, next) {
3340         if (child == final_child) {
3341             break;
3342         }
3343 
3344         bdrv_unregister_buf(child->bs, host, size);
3345     }
3346 
3347     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3348         bs->drv->bdrv_unregister_buf(bs, host, size);
3349     }
3350 }
3351 
3352 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3353                        Error **errp)
3354 {
3355     BdrvChild *child;
3356 
3357     GLOBAL_STATE_CODE();
3358     GRAPH_RDLOCK_GUARD_MAINLOOP();
3359 
3360     if (bs->drv && bs->drv->bdrv_register_buf) {
3361         if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3362             return false;
3363         }
3364     }
3365     QLIST_FOREACH(child, &bs->children, next) {
3366         if (!bdrv_register_buf(child->bs, host, size, errp)) {
3367             bdrv_register_buf_rollback(bs, host, size, child);
3368             return false;
3369         }
3370     }
3371     return true;
3372 }
3373 
3374 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3375 {
3376     BdrvChild *child;
3377 
3378     GLOBAL_STATE_CODE();
3379     GRAPH_RDLOCK_GUARD_MAINLOOP();
3380 
3381     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3382         bs->drv->bdrv_unregister_buf(bs, host, size);
3383     }
3384     QLIST_FOREACH(child, &bs->children, next) {
3385         bdrv_unregister_buf(child->bs, host, size);
3386     }
3387 }
3388 
3389 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3390         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3391         int64_t dst_offset, int64_t bytes,
3392         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3393         bool recurse_src)
3394 {
3395     BdrvTrackedRequest req;
3396     int ret;
3397     assert_bdrv_graph_readable();
3398 
3399     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3400     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3401     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3402     assert(!(read_flags & BDRV_REQ_NO_WAIT));
3403     assert(!(write_flags & BDRV_REQ_NO_WAIT));
3404 
3405     if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3406         return -ENOMEDIUM;
3407     }
3408     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3409     if (ret) {
3410         return ret;
3411     }
3412     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3413         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3414     }
3415 
3416     if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3417         return -ENOMEDIUM;
3418     }
3419     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3420     if (ret) {
3421         return ret;
3422     }
3423 
3424     if (!src->bs->drv->bdrv_co_copy_range_from
3425         || !dst->bs->drv->bdrv_co_copy_range_to
3426         || src->bs->encrypted || dst->bs->encrypted) {
3427         return -ENOTSUP;
3428     }
3429 
3430     if (recurse_src) {
3431         bdrv_inc_in_flight(src->bs);
3432         tracked_request_begin(&req, src->bs, src_offset, bytes,
3433                               BDRV_TRACKED_READ);
3434 
3435         /* BDRV_REQ_SERIALISING is only for write operation */
3436         assert(!(read_flags & BDRV_REQ_SERIALISING));
3437         bdrv_wait_serialising_requests(&req);
3438 
3439         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3440                                                     src, src_offset,
3441                                                     dst, dst_offset,
3442                                                     bytes,
3443                                                     read_flags, write_flags);
3444 
3445         tracked_request_end(&req);
3446         bdrv_dec_in_flight(src->bs);
3447     } else {
3448         bdrv_inc_in_flight(dst->bs);
3449         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3450                               BDRV_TRACKED_WRITE);
3451         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3452                                         write_flags);
3453         if (!ret) {
3454             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3455                                                       src, src_offset,
3456                                                       dst, dst_offset,
3457                                                       bytes,
3458                                                       read_flags, write_flags);
3459         }
3460         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3461         tracked_request_end(&req);
3462         bdrv_dec_in_flight(dst->bs);
3463     }
3464 
3465     return ret;
3466 }
3467 
3468 /* Copy range from @src to @dst.
3469  *
3470  * See the comment of bdrv_co_copy_range for the parameter and return value
3471  * semantics. */
3472 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3473                                          BdrvChild *dst, int64_t dst_offset,
3474                                          int64_t bytes,
3475                                          BdrvRequestFlags read_flags,
3476                                          BdrvRequestFlags write_flags)
3477 {
3478     IO_CODE();
3479     assert_bdrv_graph_readable();
3480     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3481                                   read_flags, write_flags);
3482     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3483                                        bytes, read_flags, write_flags, true);
3484 }
3485 
3486 /* Copy range from @src to @dst.
3487  *
3488  * See the comment of bdrv_co_copy_range for the parameter and return value
3489  * semantics. */
3490 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3491                                        BdrvChild *dst, int64_t dst_offset,
3492                                        int64_t bytes,
3493                                        BdrvRequestFlags read_flags,
3494                                        BdrvRequestFlags write_flags)
3495 {
3496     IO_CODE();
3497     assert_bdrv_graph_readable();
3498     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3499                                 read_flags, write_flags);
3500     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3501                                        bytes, read_flags, write_flags, false);
3502 }
3503 
3504 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3505                                     BdrvChild *dst, int64_t dst_offset,
3506                                     int64_t bytes, BdrvRequestFlags read_flags,
3507                                     BdrvRequestFlags write_flags)
3508 {
3509     IO_CODE();
3510     assert_bdrv_graph_readable();
3511 
3512     return bdrv_co_copy_range_from(src, src_offset,
3513                                    dst, dst_offset,
3514                                    bytes, read_flags, write_flags);
3515 }
3516 
3517 static void coroutine_fn GRAPH_RDLOCK
3518 bdrv_parent_cb_resize(BlockDriverState *bs)
3519 {
3520     BdrvChild *c;
3521 
3522     assert_bdrv_graph_readable();
3523 
3524     QLIST_FOREACH(c, &bs->parents, next_parent) {
3525         if (c->klass->resize) {
3526             c->klass->resize(c);
3527         }
3528     }
3529 }
3530 
3531 /**
3532  * Truncate file to 'offset' bytes (needed only for file protocols)
3533  *
3534  * If 'exact' is true, the file must be resized to exactly the given
3535  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3536  * 'offset' bytes in length.
3537  */
3538 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3539                                   PreallocMode prealloc, BdrvRequestFlags flags,
3540                                   Error **errp)
3541 {
3542     BlockDriverState *bs = child->bs;
3543     BdrvChild *filtered, *backing;
3544     BlockDriver *drv = bs->drv;
3545     BdrvTrackedRequest req;
3546     int64_t old_size, new_bytes;
3547     int ret;
3548     IO_CODE();
3549     assert_bdrv_graph_readable();
3550 
3551     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3552     if (!drv) {
3553         error_setg(errp, "No medium inserted");
3554         return -ENOMEDIUM;
3555     }
3556     if (offset < 0) {
3557         error_setg(errp, "Image size cannot be negative");
3558         return -EINVAL;
3559     }
3560 
3561     ret = bdrv_check_request(offset, 0, errp);
3562     if (ret < 0) {
3563         return ret;
3564     }
3565 
3566     old_size = bdrv_co_getlength(bs);
3567     if (old_size < 0) {
3568         error_setg_errno(errp, -old_size, "Failed to get old image size");
3569         return old_size;
3570     }
3571 
3572     if (bdrv_is_read_only(bs)) {
3573         error_setg(errp, "Image is read-only");
3574         return -EACCES;
3575     }
3576 
3577     if (offset > old_size) {
3578         new_bytes = offset - old_size;
3579     } else {
3580         new_bytes = 0;
3581     }
3582 
3583     bdrv_inc_in_flight(bs);
3584     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3585                           BDRV_TRACKED_TRUNCATE);
3586 
3587     /* If we are growing the image and potentially using preallocation for the
3588      * new area, we need to make sure that no write requests are made to it
3589      * concurrently or they might be overwritten by preallocation. */
3590     if (new_bytes) {
3591         bdrv_make_request_serialising(&req, 1);
3592     }
3593     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3594                                     0);
3595     if (ret < 0) {
3596         error_setg_errno(errp, -ret,
3597                          "Failed to prepare request for truncation");
3598         goto out;
3599     }
3600 
3601     filtered = bdrv_filter_child(bs);
3602     backing = bdrv_cow_child(bs);
3603 
3604     /*
3605      * If the image has a backing file that is large enough that it would
3606      * provide data for the new area, we cannot leave it unallocated because
3607      * then the backing file content would become visible. Instead, zero-fill
3608      * the new area.
3609      *
3610      * Note that if the image has a backing file, but was opened without the
3611      * backing file, taking care of keeping things consistent with that backing
3612      * file is the user's responsibility.
3613      */
3614     if (new_bytes && backing) {
3615         int64_t backing_len;
3616 
3617         backing_len = bdrv_co_getlength(backing->bs);
3618         if (backing_len < 0) {
3619             ret = backing_len;
3620             error_setg_errno(errp, -ret, "Could not get backing file size");
3621             goto out;
3622         }
3623 
3624         if (backing_len > old_size) {
3625             flags |= BDRV_REQ_ZERO_WRITE;
3626         }
3627     }
3628 
3629     if (drv->bdrv_co_truncate) {
3630         if (flags & ~bs->supported_truncate_flags) {
3631             error_setg(errp, "Block driver does not support requested flags");
3632             ret = -ENOTSUP;
3633             goto out;
3634         }
3635         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3636     } else if (filtered) {
3637         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3638     } else {
3639         error_setg(errp, "Image format driver does not support resize");
3640         ret = -ENOTSUP;
3641         goto out;
3642     }
3643     if (ret < 0) {
3644         goto out;
3645     }
3646 
3647     ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3648     if (ret < 0) {
3649         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3650     } else {
3651         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3652     }
3653     /*
3654      * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3655      * failed, but the latter doesn't affect how we should finish the request.
3656      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3657      */
3658     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3659 
3660 out:
3661     tracked_request_end(&req);
3662     bdrv_dec_in_flight(bs);
3663 
3664     return ret;
3665 }
3666 
3667 void bdrv_cancel_in_flight(BlockDriverState *bs)
3668 {
3669     GLOBAL_STATE_CODE();
3670     GRAPH_RDLOCK_GUARD_MAINLOOP();
3671 
3672     if (!bs || !bs->drv) {
3673         return;
3674     }
3675 
3676     if (bs->drv->bdrv_cancel_in_flight) {
3677         bs->drv->bdrv_cancel_in_flight(bs);
3678     }
3679 }
3680 
3681 int coroutine_fn
3682 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3683                         QEMUIOVector *qiov, size_t qiov_offset)
3684 {
3685     BlockDriverState *bs = child->bs;
3686     BlockDriver *drv = bs->drv;
3687     int ret;
3688     IO_CODE();
3689     assert_bdrv_graph_readable();
3690 
3691     if (!drv) {
3692         return -ENOMEDIUM;
3693     }
3694 
3695     if (!drv->bdrv_co_preadv_snapshot) {
3696         return -ENOTSUP;
3697     }
3698 
3699     bdrv_inc_in_flight(bs);
3700     ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3701     bdrv_dec_in_flight(bs);
3702 
3703     return ret;
3704 }
3705 
3706 int coroutine_fn
3707 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3708                               bool want_zero, int64_t offset, int64_t bytes,
3709                               int64_t *pnum, int64_t *map,
3710                               BlockDriverState **file)
3711 {
3712     BlockDriver *drv = bs->drv;
3713     int ret;
3714     IO_CODE();
3715     assert_bdrv_graph_readable();
3716 
3717     if (!drv) {
3718         return -ENOMEDIUM;
3719     }
3720 
3721     if (!drv->bdrv_co_snapshot_block_status) {
3722         return -ENOTSUP;
3723     }
3724 
3725     bdrv_inc_in_flight(bs);
3726     ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3727                                              pnum, map, file);
3728     bdrv_dec_in_flight(bs);
3729 
3730     return ret;
3731 }
3732 
3733 int coroutine_fn
3734 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3735 {
3736     BlockDriver *drv = bs->drv;
3737     int ret;
3738     IO_CODE();
3739     assert_bdrv_graph_readable();
3740 
3741     if (!drv) {
3742         return -ENOMEDIUM;
3743     }
3744 
3745     if (!drv->bdrv_co_pdiscard_snapshot) {
3746         return -ENOTSUP;
3747     }
3748 
3749     bdrv_inc_in_flight(bs);
3750     ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3751     bdrv_dec_in_flight(bs);
3752 
3753     return ret;
3754 }
3755