xref: /qemu/block/io.c (revision 2c533c54)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "qemu/cutils.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
33 
34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
35 
36 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
37                                           int64_t offset,
38                                           QEMUIOVector *qiov,
39                                           BdrvRequestFlags flags,
40                                           BlockCompletionFunc *cb,
41                                           void *opaque,
42                                           bool is_write);
43 static void coroutine_fn bdrv_co_do_rw(void *opaque);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45     int64_t offset, int count, BdrvRequestFlags flags);
46 
47 static void bdrv_parent_drained_begin(BlockDriverState *bs)
48 {
49     BdrvChild *c;
50 
51     QLIST_FOREACH(c, &bs->parents, next_parent) {
52         if (c->role->drained_begin) {
53             c->role->drained_begin(c);
54         }
55     }
56 }
57 
58 static void bdrv_parent_drained_end(BlockDriverState *bs)
59 {
60     BdrvChild *c;
61 
62     QLIST_FOREACH(c, &bs->parents, next_parent) {
63         if (c->role->drained_end) {
64             c->role->drained_end(c);
65         }
66     }
67 }
68 
69 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
70 {
71     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
72     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
73     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
74                                  src->opt_mem_alignment);
75     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
76                                  src->min_mem_alignment);
77     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
78 }
79 
80 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
81 {
82     BlockDriver *drv = bs->drv;
83     Error *local_err = NULL;
84 
85     memset(&bs->bl, 0, sizeof(bs->bl));
86 
87     if (!drv) {
88         return;
89     }
90 
91     /* Default alignment based on whether driver has byte interface */
92     bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
93 
94     /* Take some limits from the children as a default */
95     if (bs->file) {
96         bdrv_refresh_limits(bs->file->bs, &local_err);
97         if (local_err) {
98             error_propagate(errp, local_err);
99             return;
100         }
101         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
102     } else {
103         bs->bl.min_mem_alignment = 512;
104         bs->bl.opt_mem_alignment = getpagesize();
105 
106         /* Safe default since most protocols use readv()/writev()/etc */
107         bs->bl.max_iov = IOV_MAX;
108     }
109 
110     if (bs->backing) {
111         bdrv_refresh_limits(bs->backing->bs, &local_err);
112         if (local_err) {
113             error_propagate(errp, local_err);
114             return;
115         }
116         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
117     }
118 
119     /* Then let the driver override it */
120     if (drv->bdrv_refresh_limits) {
121         drv->bdrv_refresh_limits(bs, errp);
122     }
123 }
124 
125 /**
126  * The copy-on-read flag is actually a reference count so multiple users may
127  * use the feature without worrying about clobbering its previous state.
128  * Copy-on-read stays enabled until all users have called to disable it.
129  */
130 void bdrv_enable_copy_on_read(BlockDriverState *bs)
131 {
132     bs->copy_on_read++;
133 }
134 
135 void bdrv_disable_copy_on_read(BlockDriverState *bs)
136 {
137     assert(bs->copy_on_read > 0);
138     bs->copy_on_read--;
139 }
140 
141 /* Check if any requests are in-flight (including throttled requests) */
142 bool bdrv_requests_pending(BlockDriverState *bs)
143 {
144     BdrvChild *child;
145 
146     if (!QLIST_EMPTY(&bs->tracked_requests)) {
147         return true;
148     }
149 
150     QLIST_FOREACH(child, &bs->children, next) {
151         if (bdrv_requests_pending(child->bs)) {
152             return true;
153         }
154     }
155 
156     return false;
157 }
158 
159 static void bdrv_drain_recurse(BlockDriverState *bs)
160 {
161     BdrvChild *child;
162 
163     if (bs->drv && bs->drv->bdrv_drain) {
164         bs->drv->bdrv_drain(bs);
165     }
166     QLIST_FOREACH(child, &bs->children, next) {
167         bdrv_drain_recurse(child->bs);
168     }
169 }
170 
171 typedef struct {
172     Coroutine *co;
173     BlockDriverState *bs;
174     QEMUBH *bh;
175     bool done;
176 } BdrvCoDrainData;
177 
178 static void bdrv_drain_poll(BlockDriverState *bs)
179 {
180     bool busy = true;
181 
182     while (busy) {
183         /* Keep iterating */
184         busy = bdrv_requests_pending(bs);
185         busy |= aio_poll(bdrv_get_aio_context(bs), busy);
186     }
187 }
188 
189 static void bdrv_co_drain_bh_cb(void *opaque)
190 {
191     BdrvCoDrainData *data = opaque;
192     Coroutine *co = data->co;
193 
194     qemu_bh_delete(data->bh);
195     bdrv_drain_poll(data->bs);
196     data->done = true;
197     qemu_coroutine_enter(co);
198 }
199 
200 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
201 {
202     BdrvCoDrainData data;
203 
204     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
205      * other coroutines run if they were queued from
206      * qemu_co_queue_run_restart(). */
207 
208     assert(qemu_in_coroutine());
209     data = (BdrvCoDrainData) {
210         .co = qemu_coroutine_self(),
211         .bs = bs,
212         .done = false,
213         .bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_drain_bh_cb, &data),
214     };
215     qemu_bh_schedule(data.bh);
216 
217     qemu_coroutine_yield();
218     /* If we are resumed from some other event (such as an aio completion or a
219      * timer callback), it is a bug in the caller that should be fixed. */
220     assert(data.done);
221 }
222 
223 void bdrv_drained_begin(BlockDriverState *bs)
224 {
225     if (!bs->quiesce_counter++) {
226         aio_disable_external(bdrv_get_aio_context(bs));
227         bdrv_parent_drained_begin(bs);
228     }
229 
230     bdrv_io_unplugged_begin(bs);
231     bdrv_drain_recurse(bs);
232     if (qemu_in_coroutine()) {
233         bdrv_co_yield_to_drain(bs);
234     } else {
235         bdrv_drain_poll(bs);
236     }
237     bdrv_io_unplugged_end(bs);
238 }
239 
240 void bdrv_drained_end(BlockDriverState *bs)
241 {
242     assert(bs->quiesce_counter > 0);
243     if (--bs->quiesce_counter > 0) {
244         return;
245     }
246 
247     bdrv_parent_drained_end(bs);
248     aio_enable_external(bdrv_get_aio_context(bs));
249 }
250 
251 /*
252  * Wait for pending requests to complete on a single BlockDriverState subtree,
253  * and suspend block driver's internal I/O until next request arrives.
254  *
255  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
256  * AioContext.
257  *
258  * Only this BlockDriverState's AioContext is run, so in-flight requests must
259  * not depend on events in other AioContexts.  In that case, use
260  * bdrv_drain_all() instead.
261  */
262 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
263 {
264     assert(qemu_in_coroutine());
265     bdrv_drained_begin(bs);
266     bdrv_drained_end(bs);
267 }
268 
269 void bdrv_drain(BlockDriverState *bs)
270 {
271     bdrv_drained_begin(bs);
272     bdrv_drained_end(bs);
273 }
274 
275 /*
276  * Wait for pending requests to complete across all BlockDriverStates
277  *
278  * This function does not flush data to disk, use bdrv_flush_all() for that
279  * after calling this function.
280  */
281 void bdrv_drain_all(void)
282 {
283     /* Always run first iteration so any pending completion BHs run */
284     bool busy = true;
285     BlockDriverState *bs;
286     BdrvNextIterator it;
287     BlockJob *job = NULL;
288     GSList *aio_ctxs = NULL, *ctx;
289 
290     while ((job = block_job_next(job))) {
291         AioContext *aio_context = blk_get_aio_context(job->blk);
292 
293         aio_context_acquire(aio_context);
294         block_job_pause(job);
295         aio_context_release(aio_context);
296     }
297 
298     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
299         AioContext *aio_context = bdrv_get_aio_context(bs);
300 
301         aio_context_acquire(aio_context);
302         bdrv_parent_drained_begin(bs);
303         bdrv_io_unplugged_begin(bs);
304         bdrv_drain_recurse(bs);
305         aio_context_release(aio_context);
306 
307         if (!g_slist_find(aio_ctxs, aio_context)) {
308             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
309         }
310     }
311 
312     /* Note that completion of an asynchronous I/O operation can trigger any
313      * number of other I/O operations on other devices---for example a
314      * coroutine can submit an I/O request to another device in response to
315      * request completion.  Therefore we must keep looping until there was no
316      * more activity rather than simply draining each device independently.
317      */
318     while (busy) {
319         busy = false;
320 
321         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
322             AioContext *aio_context = ctx->data;
323 
324             aio_context_acquire(aio_context);
325             for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
326                 if (aio_context == bdrv_get_aio_context(bs)) {
327                     if (bdrv_requests_pending(bs)) {
328                         busy = true;
329                         aio_poll(aio_context, busy);
330                     }
331                 }
332             }
333             busy |= aio_poll(aio_context, false);
334             aio_context_release(aio_context);
335         }
336     }
337 
338     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
339         AioContext *aio_context = bdrv_get_aio_context(bs);
340 
341         aio_context_acquire(aio_context);
342         bdrv_io_unplugged_end(bs);
343         bdrv_parent_drained_end(bs);
344         aio_context_release(aio_context);
345     }
346     g_slist_free(aio_ctxs);
347 
348     job = NULL;
349     while ((job = block_job_next(job))) {
350         AioContext *aio_context = blk_get_aio_context(job->blk);
351 
352         aio_context_acquire(aio_context);
353         block_job_resume(job);
354         aio_context_release(aio_context);
355     }
356 }
357 
358 /**
359  * Remove an active request from the tracked requests list
360  *
361  * This function should be called when a tracked request is completing.
362  */
363 static void tracked_request_end(BdrvTrackedRequest *req)
364 {
365     if (req->serialising) {
366         req->bs->serialising_in_flight--;
367     }
368 
369     QLIST_REMOVE(req, list);
370     qemu_co_queue_restart_all(&req->wait_queue);
371 }
372 
373 /**
374  * Add an active request to the tracked requests list
375  */
376 static void tracked_request_begin(BdrvTrackedRequest *req,
377                                   BlockDriverState *bs,
378                                   int64_t offset,
379                                   unsigned int bytes,
380                                   enum BdrvTrackedRequestType type)
381 {
382     *req = (BdrvTrackedRequest){
383         .bs = bs,
384         .offset         = offset,
385         .bytes          = bytes,
386         .type           = type,
387         .co             = qemu_coroutine_self(),
388         .serialising    = false,
389         .overlap_offset = offset,
390         .overlap_bytes  = bytes,
391     };
392 
393     qemu_co_queue_init(&req->wait_queue);
394 
395     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
396 }
397 
398 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
399 {
400     int64_t overlap_offset = req->offset & ~(align - 1);
401     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
402                                - overlap_offset;
403 
404     if (!req->serialising) {
405         req->bs->serialising_in_flight++;
406         req->serialising = true;
407     }
408 
409     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
410     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
411 }
412 
413 /**
414  * Round a region to cluster boundaries (sector-based)
415  */
416 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
417                                     int64_t sector_num, int nb_sectors,
418                                     int64_t *cluster_sector_num,
419                                     int *cluster_nb_sectors)
420 {
421     BlockDriverInfo bdi;
422 
423     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
424         *cluster_sector_num = sector_num;
425         *cluster_nb_sectors = nb_sectors;
426     } else {
427         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
428         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
429         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
430                                             nb_sectors, c);
431     }
432 }
433 
434 /**
435  * Round a region to cluster boundaries
436  */
437 void bdrv_round_to_clusters(BlockDriverState *bs,
438                             int64_t offset, unsigned int bytes,
439                             int64_t *cluster_offset,
440                             unsigned int *cluster_bytes)
441 {
442     BlockDriverInfo bdi;
443 
444     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
445         *cluster_offset = offset;
446         *cluster_bytes = bytes;
447     } else {
448         int64_t c = bdi.cluster_size;
449         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
450         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
451     }
452 }
453 
454 static int bdrv_get_cluster_size(BlockDriverState *bs)
455 {
456     BlockDriverInfo bdi;
457     int ret;
458 
459     ret = bdrv_get_info(bs, &bdi);
460     if (ret < 0 || bdi.cluster_size == 0) {
461         return bs->bl.request_alignment;
462     } else {
463         return bdi.cluster_size;
464     }
465 }
466 
467 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
468                                      int64_t offset, unsigned int bytes)
469 {
470     /*        aaaa   bbbb */
471     if (offset >= req->overlap_offset + req->overlap_bytes) {
472         return false;
473     }
474     /* bbbb   aaaa        */
475     if (req->overlap_offset >= offset + bytes) {
476         return false;
477     }
478     return true;
479 }
480 
481 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
482 {
483     BlockDriverState *bs = self->bs;
484     BdrvTrackedRequest *req;
485     bool retry;
486     bool waited = false;
487 
488     if (!bs->serialising_in_flight) {
489         return false;
490     }
491 
492     do {
493         retry = false;
494         QLIST_FOREACH(req, &bs->tracked_requests, list) {
495             if (req == self || (!req->serialising && !self->serialising)) {
496                 continue;
497             }
498             if (tracked_request_overlaps(req, self->overlap_offset,
499                                          self->overlap_bytes))
500             {
501                 /* Hitting this means there was a reentrant request, for
502                  * example, a block driver issuing nested requests.  This must
503                  * never happen since it means deadlock.
504                  */
505                 assert(qemu_coroutine_self() != req->co);
506 
507                 /* If the request is already (indirectly) waiting for us, or
508                  * will wait for us as soon as it wakes up, then just go on
509                  * (instead of producing a deadlock in the former case). */
510                 if (!req->waiting_for) {
511                     self->waiting_for = req;
512                     qemu_co_queue_wait(&req->wait_queue);
513                     self->waiting_for = NULL;
514                     retry = true;
515                     waited = true;
516                     break;
517                 }
518             }
519         }
520     } while (retry);
521 
522     return waited;
523 }
524 
525 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
526                                    size_t size)
527 {
528     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
529         return -EIO;
530     }
531 
532     if (!bdrv_is_inserted(bs)) {
533         return -ENOMEDIUM;
534     }
535 
536     if (offset < 0) {
537         return -EIO;
538     }
539 
540     return 0;
541 }
542 
543 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
544                               int nb_sectors)
545 {
546     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
547         return -EIO;
548     }
549 
550     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
551                                    nb_sectors * BDRV_SECTOR_SIZE);
552 }
553 
554 typedef struct RwCo {
555     BdrvChild *child;
556     int64_t offset;
557     QEMUIOVector *qiov;
558     bool is_write;
559     int ret;
560     BdrvRequestFlags flags;
561 } RwCo;
562 
563 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
564 {
565     RwCo *rwco = opaque;
566 
567     if (!rwco->is_write) {
568         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
569                                    rwco->qiov->size, rwco->qiov,
570                                    rwco->flags);
571     } else {
572         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
573                                     rwco->qiov->size, rwco->qiov,
574                                     rwco->flags);
575     }
576 }
577 
578 /*
579  * Process a vectored synchronous request using coroutines
580  */
581 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
582                         QEMUIOVector *qiov, bool is_write,
583                         BdrvRequestFlags flags)
584 {
585     Coroutine *co;
586     RwCo rwco = {
587         .child = child,
588         .offset = offset,
589         .qiov = qiov,
590         .is_write = is_write,
591         .ret = NOT_DONE,
592         .flags = flags,
593     };
594 
595     if (qemu_in_coroutine()) {
596         /* Fast-path if already in coroutine context */
597         bdrv_rw_co_entry(&rwco);
598     } else {
599         AioContext *aio_context = bdrv_get_aio_context(child->bs);
600 
601         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
602         qemu_coroutine_enter(co);
603         while (rwco.ret == NOT_DONE) {
604             aio_poll(aio_context, true);
605         }
606     }
607     return rwco.ret;
608 }
609 
610 /*
611  * Process a synchronous request using coroutines
612  */
613 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
614                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
615 {
616     QEMUIOVector qiov;
617     struct iovec iov = {
618         .iov_base = (void *)buf,
619         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
620     };
621 
622     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
623         return -EINVAL;
624     }
625 
626     qemu_iovec_init_external(&qiov, &iov, 1);
627     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
628                         &qiov, is_write, flags);
629 }
630 
631 /* return < 0 if error. See bdrv_write() for the return codes */
632 int bdrv_read(BdrvChild *child, int64_t sector_num,
633               uint8_t *buf, int nb_sectors)
634 {
635     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
636 }
637 
638 /* Return < 0 if error. Important errors are:
639   -EIO         generic I/O error (may happen for all errors)
640   -ENOMEDIUM   No media inserted.
641   -EINVAL      Invalid sector number or nb_sectors
642   -EACCES      Trying to write a read-only device
643 */
644 int bdrv_write(BdrvChild *child, int64_t sector_num,
645                const uint8_t *buf, int nb_sectors)
646 {
647     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
648 }
649 
650 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
651                        int count, BdrvRequestFlags flags)
652 {
653     QEMUIOVector qiov;
654     struct iovec iov = {
655         .iov_base = NULL,
656         .iov_len = count,
657     };
658 
659     qemu_iovec_init_external(&qiov, &iov, 1);
660     return bdrv_prwv_co(child, offset, &qiov, true,
661                         BDRV_REQ_ZERO_WRITE | flags);
662 }
663 
664 /*
665  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
666  * The operation is sped up by checking the block status and only writing
667  * zeroes to the device if they currently do not return zeroes. Optional
668  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
669  * BDRV_REQ_FUA).
670  *
671  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
672  */
673 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
674 {
675     int64_t target_sectors, ret, nb_sectors, sector_num = 0;
676     BlockDriverState *bs = child->bs;
677     BlockDriverState *file;
678     int n;
679 
680     target_sectors = bdrv_nb_sectors(bs);
681     if (target_sectors < 0) {
682         return target_sectors;
683     }
684 
685     for (;;) {
686         nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
687         if (nb_sectors <= 0) {
688             return 0;
689         }
690         ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
691         if (ret < 0) {
692             error_report("error getting block status at sector %" PRId64 ": %s",
693                          sector_num, strerror(-ret));
694             return ret;
695         }
696         if (ret & BDRV_BLOCK_ZERO) {
697             sector_num += n;
698             continue;
699         }
700         ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
701                                  n << BDRV_SECTOR_BITS, flags);
702         if (ret < 0) {
703             error_report("error writing zeroes at sector %" PRId64 ": %s",
704                          sector_num, strerror(-ret));
705             return ret;
706         }
707         sector_num += n;
708     }
709 }
710 
711 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
712 {
713     int ret;
714 
715     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
716     if (ret < 0) {
717         return ret;
718     }
719 
720     return qiov->size;
721 }
722 
723 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
724 {
725     QEMUIOVector qiov;
726     struct iovec iov = {
727         .iov_base = (void *)buf,
728         .iov_len = bytes,
729     };
730 
731     if (bytes < 0) {
732         return -EINVAL;
733     }
734 
735     qemu_iovec_init_external(&qiov, &iov, 1);
736     return bdrv_preadv(child, offset, &qiov);
737 }
738 
739 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
740 {
741     int ret;
742 
743     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
744     if (ret < 0) {
745         return ret;
746     }
747 
748     return qiov->size;
749 }
750 
751 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
752 {
753     QEMUIOVector qiov;
754     struct iovec iov = {
755         .iov_base   = (void *) buf,
756         .iov_len    = bytes,
757     };
758 
759     if (bytes < 0) {
760         return -EINVAL;
761     }
762 
763     qemu_iovec_init_external(&qiov, &iov, 1);
764     return bdrv_pwritev(child, offset, &qiov);
765 }
766 
767 /*
768  * Writes to the file and ensures that no writes are reordered across this
769  * request (acts as a barrier)
770  *
771  * Returns 0 on success, -errno in error cases.
772  */
773 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
774                      const void *buf, int count)
775 {
776     int ret;
777 
778     ret = bdrv_pwrite(child, offset, buf, count);
779     if (ret < 0) {
780         return ret;
781     }
782 
783     ret = bdrv_flush(child->bs);
784     if (ret < 0) {
785         return ret;
786     }
787 
788     return 0;
789 }
790 
791 typedef struct CoroutineIOCompletion {
792     Coroutine *coroutine;
793     int ret;
794 } CoroutineIOCompletion;
795 
796 static void bdrv_co_io_em_complete(void *opaque, int ret)
797 {
798     CoroutineIOCompletion *co = opaque;
799 
800     co->ret = ret;
801     qemu_coroutine_enter(co->coroutine);
802 }
803 
804 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
805                                            uint64_t offset, uint64_t bytes,
806                                            QEMUIOVector *qiov, int flags)
807 {
808     BlockDriver *drv = bs->drv;
809     int64_t sector_num;
810     unsigned int nb_sectors;
811 
812     assert(!(flags & ~BDRV_REQ_MASK));
813 
814     if (drv->bdrv_co_preadv) {
815         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
816     }
817 
818     sector_num = offset >> BDRV_SECTOR_BITS;
819     nb_sectors = bytes >> BDRV_SECTOR_BITS;
820 
821     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
822     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
823     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
824 
825     if (drv->bdrv_co_readv) {
826         return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
827     } else {
828         BlockAIOCB *acb;
829         CoroutineIOCompletion co = {
830             .coroutine = qemu_coroutine_self(),
831         };
832 
833         acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
834                                       bdrv_co_io_em_complete, &co);
835         if (acb == NULL) {
836             return -EIO;
837         } else {
838             qemu_coroutine_yield();
839             return co.ret;
840         }
841     }
842 }
843 
844 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
845                                             uint64_t offset, uint64_t bytes,
846                                             QEMUIOVector *qiov, int flags)
847 {
848     BlockDriver *drv = bs->drv;
849     int64_t sector_num;
850     unsigned int nb_sectors;
851     int ret;
852 
853     assert(!(flags & ~BDRV_REQ_MASK));
854 
855     if (drv->bdrv_co_pwritev) {
856         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
857                                    flags & bs->supported_write_flags);
858         flags &= ~bs->supported_write_flags;
859         goto emulate_flags;
860     }
861 
862     sector_num = offset >> BDRV_SECTOR_BITS;
863     nb_sectors = bytes >> BDRV_SECTOR_BITS;
864 
865     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
866     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
867     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
868 
869     if (drv->bdrv_co_writev_flags) {
870         ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
871                                         flags & bs->supported_write_flags);
872         flags &= ~bs->supported_write_flags;
873     } else if (drv->bdrv_co_writev) {
874         assert(!bs->supported_write_flags);
875         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
876     } else {
877         BlockAIOCB *acb;
878         CoroutineIOCompletion co = {
879             .coroutine = qemu_coroutine_self(),
880         };
881 
882         acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
883                                        bdrv_co_io_em_complete, &co);
884         if (acb == NULL) {
885             ret = -EIO;
886         } else {
887             qemu_coroutine_yield();
888             ret = co.ret;
889         }
890     }
891 
892 emulate_flags:
893     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
894         ret = bdrv_co_flush(bs);
895     }
896 
897     return ret;
898 }
899 
900 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
901         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
902 {
903     /* Perform I/O through a temporary buffer so that users who scribble over
904      * their read buffer while the operation is in progress do not end up
905      * modifying the image file.  This is critical for zero-copy guest I/O
906      * where anything might happen inside guest memory.
907      */
908     void *bounce_buffer;
909 
910     BlockDriver *drv = bs->drv;
911     struct iovec iov;
912     QEMUIOVector bounce_qiov;
913     int64_t cluster_offset;
914     unsigned int cluster_bytes;
915     size_t skip_bytes;
916     int ret;
917 
918     /* Cover entire cluster so no additional backing file I/O is required when
919      * allocating cluster in the image file.
920      */
921     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
922 
923     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
924                                    cluster_offset, cluster_bytes);
925 
926     iov.iov_len = cluster_bytes;
927     iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
928     if (bounce_buffer == NULL) {
929         ret = -ENOMEM;
930         goto err;
931     }
932 
933     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
934 
935     ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
936                              &bounce_qiov, 0);
937     if (ret < 0) {
938         goto err;
939     }
940 
941     if (drv->bdrv_co_pwrite_zeroes &&
942         buffer_is_zero(bounce_buffer, iov.iov_len)) {
943         /* FIXME: Should we (perhaps conditionally) be setting
944          * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
945          * that still correctly reads as zero? */
946         ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
947     } else {
948         /* This does not change the data on the disk, it is not necessary
949          * to flush even in cache=writethrough mode.
950          */
951         ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
952                                   &bounce_qiov, 0);
953     }
954 
955     if (ret < 0) {
956         /* It might be okay to ignore write errors for guest requests.  If this
957          * is a deliberate copy-on-read then we don't want to ignore the error.
958          * Simply report it in all cases.
959          */
960         goto err;
961     }
962 
963     skip_bytes = offset - cluster_offset;
964     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
965 
966 err:
967     qemu_vfree(bounce_buffer);
968     return ret;
969 }
970 
971 /*
972  * Forwards an already correctly aligned request to the BlockDriver. This
973  * handles copy on read, zeroing after EOF, and fragmentation of large
974  * reads; any other features must be implemented by the caller.
975  */
976 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
977     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
978     int64_t align, QEMUIOVector *qiov, int flags)
979 {
980     int64_t total_bytes, max_bytes;
981     int ret = 0;
982     uint64_t bytes_remaining = bytes;
983     int max_transfer;
984 
985     assert(is_power_of_2(align));
986     assert((offset & (align - 1)) == 0);
987     assert((bytes & (align - 1)) == 0);
988     assert(!qiov || bytes == qiov->size);
989     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
990     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
991                                    align);
992 
993     /* TODO: We would need a per-BDS .supported_read_flags and
994      * potential fallback support, if we ever implement any read flags
995      * to pass through to drivers.  For now, there aren't any
996      * passthrough flags.  */
997     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
998 
999     /* Handle Copy on Read and associated serialisation */
1000     if (flags & BDRV_REQ_COPY_ON_READ) {
1001         /* If we touch the same cluster it counts as an overlap.  This
1002          * guarantees that allocating writes will be serialized and not race
1003          * with each other for the same cluster.  For example, in copy-on-read
1004          * it ensures that the CoR read and write operations are atomic and
1005          * guest writes cannot interleave between them. */
1006         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1007     }
1008 
1009     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1010         wait_serialising_requests(req);
1011     }
1012 
1013     if (flags & BDRV_REQ_COPY_ON_READ) {
1014         int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1015         int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1016         unsigned int nb_sectors = end_sector - start_sector;
1017         int pnum;
1018 
1019         ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1020         if (ret < 0) {
1021             goto out;
1022         }
1023 
1024         if (!ret || pnum != nb_sectors) {
1025             ret = bdrv_co_do_copy_on_readv(bs, offset, bytes, qiov);
1026             goto out;
1027         }
1028     }
1029 
1030     /* Forward the request to the BlockDriver, possibly fragmenting it */
1031     total_bytes = bdrv_getlength(bs);
1032     if (total_bytes < 0) {
1033         ret = total_bytes;
1034         goto out;
1035     }
1036 
1037     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1038     if (bytes <= max_bytes && bytes <= max_transfer) {
1039         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1040         goto out;
1041     }
1042 
1043     while (bytes_remaining) {
1044         int num;
1045 
1046         if (max_bytes) {
1047             QEMUIOVector local_qiov;
1048 
1049             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1050             assert(num);
1051             qemu_iovec_init(&local_qiov, qiov->niov);
1052             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1053 
1054             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1055                                      num, &local_qiov, 0);
1056             max_bytes -= num;
1057             qemu_iovec_destroy(&local_qiov);
1058         } else {
1059             num = bytes_remaining;
1060             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1061                                     bytes_remaining);
1062         }
1063         if (ret < 0) {
1064             goto out;
1065         }
1066         bytes_remaining -= num;
1067     }
1068 
1069 out:
1070     return ret < 0 ? ret : 0;
1071 }
1072 
1073 /*
1074  * Handle a read request in coroutine context
1075  */
1076 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1077     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1078     BdrvRequestFlags flags)
1079 {
1080     BlockDriverState *bs = child->bs;
1081     BlockDriver *drv = bs->drv;
1082     BdrvTrackedRequest req;
1083 
1084     uint64_t align = bs->bl.request_alignment;
1085     uint8_t *head_buf = NULL;
1086     uint8_t *tail_buf = NULL;
1087     QEMUIOVector local_qiov;
1088     bool use_local_qiov = false;
1089     int ret;
1090 
1091     if (!drv) {
1092         return -ENOMEDIUM;
1093     }
1094 
1095     ret = bdrv_check_byte_request(bs, offset, bytes);
1096     if (ret < 0) {
1097         return ret;
1098     }
1099 
1100     /* Don't do copy-on-read if we read data before write operation */
1101     if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
1102         flags |= BDRV_REQ_COPY_ON_READ;
1103     }
1104 
1105     /* Align read if necessary by padding qiov */
1106     if (offset & (align - 1)) {
1107         head_buf = qemu_blockalign(bs, align);
1108         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1109         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1110         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1111         use_local_qiov = true;
1112 
1113         bytes += offset & (align - 1);
1114         offset = offset & ~(align - 1);
1115     }
1116 
1117     if ((offset + bytes) & (align - 1)) {
1118         if (!use_local_qiov) {
1119             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1120             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1121             use_local_qiov = true;
1122         }
1123         tail_buf = qemu_blockalign(bs, align);
1124         qemu_iovec_add(&local_qiov, tail_buf,
1125                        align - ((offset + bytes) & (align - 1)));
1126 
1127         bytes = ROUND_UP(bytes, align);
1128     }
1129 
1130     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1131     ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1132                               use_local_qiov ? &local_qiov : qiov,
1133                               flags);
1134     tracked_request_end(&req);
1135 
1136     if (use_local_qiov) {
1137         qemu_iovec_destroy(&local_qiov);
1138         qemu_vfree(head_buf);
1139         qemu_vfree(tail_buf);
1140     }
1141 
1142     return ret;
1143 }
1144 
1145 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1146     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1147     BdrvRequestFlags flags)
1148 {
1149     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1150         return -EINVAL;
1151     }
1152 
1153     return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1154                           nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1155 }
1156 
1157 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1158                                int nb_sectors, QEMUIOVector *qiov)
1159 {
1160     trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1161 
1162     return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1163 }
1164 
1165 /* Maximum buffer for write zeroes fallback, in bytes */
1166 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1167 
1168 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1169     int64_t offset, int count, BdrvRequestFlags flags)
1170 {
1171     BlockDriver *drv = bs->drv;
1172     QEMUIOVector qiov;
1173     struct iovec iov = {0};
1174     int ret = 0;
1175     bool need_flush = false;
1176     int head = 0;
1177     int tail = 0;
1178 
1179     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1180     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1181                         bs->bl.request_alignment);
1182 
1183     assert(is_power_of_2(alignment));
1184     head = offset & (alignment - 1);
1185     tail = (offset + count) & (alignment - 1);
1186     max_write_zeroes &= ~(alignment - 1);
1187 
1188     while (count > 0 && !ret) {
1189         int num = count;
1190 
1191         /* Align request.  Block drivers can expect the "bulk" of the request
1192          * to be aligned, and that unaligned requests do not cross cluster
1193          * boundaries.
1194          */
1195         if (head) {
1196             /* Make a small request up to the first aligned sector.  */
1197             num = MIN(count, alignment - head);
1198             head = 0;
1199         } else if (tail && num > alignment) {
1200             /* Shorten the request to the last aligned sector.  */
1201             num -= tail;
1202         }
1203 
1204         /* limit request size */
1205         if (num > max_write_zeroes) {
1206             num = max_write_zeroes;
1207         }
1208 
1209         ret = -ENOTSUP;
1210         /* First try the efficient write zeroes operation */
1211         if (drv->bdrv_co_pwrite_zeroes) {
1212             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1213                                              flags & bs->supported_zero_flags);
1214             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1215                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1216                 need_flush = true;
1217             }
1218         } else {
1219             assert(!bs->supported_zero_flags);
1220         }
1221 
1222         if (ret == -ENOTSUP) {
1223             /* Fall back to bounce buffer if write zeroes is unsupported */
1224             int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1225                                             MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1226             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1227 
1228             if ((flags & BDRV_REQ_FUA) &&
1229                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1230                 /* No need for bdrv_driver_pwrite() to do a fallback
1231                  * flush on each chunk; use just one at the end */
1232                 write_flags &= ~BDRV_REQ_FUA;
1233                 need_flush = true;
1234             }
1235             num = MIN(num, max_transfer);
1236             iov.iov_len = num;
1237             if (iov.iov_base == NULL) {
1238                 iov.iov_base = qemu_try_blockalign(bs, num);
1239                 if (iov.iov_base == NULL) {
1240                     ret = -ENOMEM;
1241                     goto fail;
1242                 }
1243                 memset(iov.iov_base, 0, num);
1244             }
1245             qemu_iovec_init_external(&qiov, &iov, 1);
1246 
1247             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1248 
1249             /* Keep bounce buffer around if it is big enough for all
1250              * all future requests.
1251              */
1252             if (num < max_transfer) {
1253                 qemu_vfree(iov.iov_base);
1254                 iov.iov_base = NULL;
1255             }
1256         }
1257 
1258         offset += num;
1259         count -= num;
1260     }
1261 
1262 fail:
1263     if (ret == 0 && need_flush) {
1264         ret = bdrv_co_flush(bs);
1265     }
1266     qemu_vfree(iov.iov_base);
1267     return ret;
1268 }
1269 
1270 /*
1271  * Forwards an already correctly aligned write request to the BlockDriver,
1272  * after possibly fragmenting it.
1273  */
1274 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1275     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1276     int64_t align, QEMUIOVector *qiov, int flags)
1277 {
1278     BlockDriver *drv = bs->drv;
1279     bool waited;
1280     int ret;
1281 
1282     int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1283     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1284     uint64_t bytes_remaining = bytes;
1285     int max_transfer;
1286 
1287     assert(is_power_of_2(align));
1288     assert((offset & (align - 1)) == 0);
1289     assert((bytes & (align - 1)) == 0);
1290     assert(!qiov || bytes == qiov->size);
1291     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1292     assert(!(flags & ~BDRV_REQ_MASK));
1293     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1294                                    align);
1295 
1296     waited = wait_serialising_requests(req);
1297     assert(!waited || !req->serialising);
1298     assert(req->overlap_offset <= offset);
1299     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1300 
1301     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1302 
1303     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1304         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1305         qemu_iovec_is_zero(qiov)) {
1306         flags |= BDRV_REQ_ZERO_WRITE;
1307         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1308             flags |= BDRV_REQ_MAY_UNMAP;
1309         }
1310     }
1311 
1312     if (ret < 0) {
1313         /* Do nothing, write notifier decided to fail this request */
1314     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1315         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1316         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1317     } else if (bytes <= max_transfer) {
1318         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1319         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1320     } else {
1321         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1322         while (bytes_remaining) {
1323             int num = MIN(bytes_remaining, max_transfer);
1324             QEMUIOVector local_qiov;
1325             int local_flags = flags;
1326 
1327             assert(num);
1328             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1329                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1330                 /* If FUA is going to be emulated by flush, we only
1331                  * need to flush on the last iteration */
1332                 local_flags &= ~BDRV_REQ_FUA;
1333             }
1334             qemu_iovec_init(&local_qiov, qiov->niov);
1335             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1336 
1337             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1338                                       num, &local_qiov, local_flags);
1339             qemu_iovec_destroy(&local_qiov);
1340             if (ret < 0) {
1341                 break;
1342             }
1343             bytes_remaining -= num;
1344         }
1345     }
1346     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1347 
1348     ++bs->write_gen;
1349     bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1350 
1351     if (bs->wr_highest_offset < offset + bytes) {
1352         bs->wr_highest_offset = offset + bytes;
1353     }
1354 
1355     if (ret >= 0) {
1356         bs->total_sectors = MAX(bs->total_sectors, end_sector);
1357         ret = 0;
1358     }
1359 
1360     return ret;
1361 }
1362 
1363 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1364                                                 int64_t offset,
1365                                                 unsigned int bytes,
1366                                                 BdrvRequestFlags flags,
1367                                                 BdrvTrackedRequest *req)
1368 {
1369     uint8_t *buf = NULL;
1370     QEMUIOVector local_qiov;
1371     struct iovec iov;
1372     uint64_t align = bs->bl.request_alignment;
1373     unsigned int head_padding_bytes, tail_padding_bytes;
1374     int ret = 0;
1375 
1376     head_padding_bytes = offset & (align - 1);
1377     tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1378 
1379 
1380     assert(flags & BDRV_REQ_ZERO_WRITE);
1381     if (head_padding_bytes || tail_padding_bytes) {
1382         buf = qemu_blockalign(bs, align);
1383         iov = (struct iovec) {
1384             .iov_base   = buf,
1385             .iov_len    = align,
1386         };
1387         qemu_iovec_init_external(&local_qiov, &iov, 1);
1388     }
1389     if (head_padding_bytes) {
1390         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1391 
1392         /* RMW the unaligned part before head. */
1393         mark_request_serialising(req, align);
1394         wait_serialising_requests(req);
1395         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1396         ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1397                                   align, &local_qiov, 0);
1398         if (ret < 0) {
1399             goto fail;
1400         }
1401         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1402 
1403         memset(buf + head_padding_bytes, 0, zero_bytes);
1404         ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1405                                    align, &local_qiov,
1406                                    flags & ~BDRV_REQ_ZERO_WRITE);
1407         if (ret < 0) {
1408             goto fail;
1409         }
1410         offset += zero_bytes;
1411         bytes -= zero_bytes;
1412     }
1413 
1414     assert(!bytes || (offset & (align - 1)) == 0);
1415     if (bytes >= align) {
1416         /* Write the aligned part in the middle. */
1417         uint64_t aligned_bytes = bytes & ~(align - 1);
1418         ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes, align,
1419                                    NULL, flags);
1420         if (ret < 0) {
1421             goto fail;
1422         }
1423         bytes -= aligned_bytes;
1424         offset += aligned_bytes;
1425     }
1426 
1427     assert(!bytes || (offset & (align - 1)) == 0);
1428     if (bytes) {
1429         assert(align == tail_padding_bytes + bytes);
1430         /* RMW the unaligned part after tail. */
1431         mark_request_serialising(req, align);
1432         wait_serialising_requests(req);
1433         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1434         ret = bdrv_aligned_preadv(bs, req, offset, align,
1435                                   align, &local_qiov, 0);
1436         if (ret < 0) {
1437             goto fail;
1438         }
1439         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1440 
1441         memset(buf, 0, bytes);
1442         ret = bdrv_aligned_pwritev(bs, req, offset, align, align,
1443                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1444     }
1445 fail:
1446     qemu_vfree(buf);
1447     return ret;
1448 
1449 }
1450 
1451 /*
1452  * Handle a write request in coroutine context
1453  */
1454 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1455     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1456     BdrvRequestFlags flags)
1457 {
1458     BlockDriverState *bs = child->bs;
1459     BdrvTrackedRequest req;
1460     uint64_t align = bs->bl.request_alignment;
1461     uint8_t *head_buf = NULL;
1462     uint8_t *tail_buf = NULL;
1463     QEMUIOVector local_qiov;
1464     bool use_local_qiov = false;
1465     int ret;
1466 
1467     if (!bs->drv) {
1468         return -ENOMEDIUM;
1469     }
1470     if (bs->read_only) {
1471         return -EPERM;
1472     }
1473     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1474 
1475     ret = bdrv_check_byte_request(bs, offset, bytes);
1476     if (ret < 0) {
1477         return ret;
1478     }
1479 
1480     /*
1481      * Align write if necessary by performing a read-modify-write cycle.
1482      * Pad qiov with the read parts and be sure to have a tracked request not
1483      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1484      */
1485     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1486 
1487     if (!qiov) {
1488         ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1489         goto out;
1490     }
1491 
1492     if (offset & (align - 1)) {
1493         QEMUIOVector head_qiov;
1494         struct iovec head_iov;
1495 
1496         mark_request_serialising(&req, align);
1497         wait_serialising_requests(&req);
1498 
1499         head_buf = qemu_blockalign(bs, align);
1500         head_iov = (struct iovec) {
1501             .iov_base   = head_buf,
1502             .iov_len    = align,
1503         };
1504         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1505 
1506         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1507         ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1508                                   align, &head_qiov, 0);
1509         if (ret < 0) {
1510             goto fail;
1511         }
1512         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1513 
1514         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1515         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1516         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1517         use_local_qiov = true;
1518 
1519         bytes += offset & (align - 1);
1520         offset = offset & ~(align - 1);
1521 
1522         /* We have read the tail already if the request is smaller
1523          * than one aligned block.
1524          */
1525         if (bytes < align) {
1526             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1527             bytes = align;
1528         }
1529     }
1530 
1531     if ((offset + bytes) & (align - 1)) {
1532         QEMUIOVector tail_qiov;
1533         struct iovec tail_iov;
1534         size_t tail_bytes;
1535         bool waited;
1536 
1537         mark_request_serialising(&req, align);
1538         waited = wait_serialising_requests(&req);
1539         assert(!waited || !use_local_qiov);
1540 
1541         tail_buf = qemu_blockalign(bs, align);
1542         tail_iov = (struct iovec) {
1543             .iov_base   = tail_buf,
1544             .iov_len    = align,
1545         };
1546         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1547 
1548         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1549         ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1550                                   align, &tail_qiov, 0);
1551         if (ret < 0) {
1552             goto fail;
1553         }
1554         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1555 
1556         if (!use_local_qiov) {
1557             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1558             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1559             use_local_qiov = true;
1560         }
1561 
1562         tail_bytes = (offset + bytes) & (align - 1);
1563         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1564 
1565         bytes = ROUND_UP(bytes, align);
1566     }
1567 
1568     ret = bdrv_aligned_pwritev(bs, &req, offset, bytes, align,
1569                                use_local_qiov ? &local_qiov : qiov,
1570                                flags);
1571 
1572 fail:
1573 
1574     if (use_local_qiov) {
1575         qemu_iovec_destroy(&local_qiov);
1576     }
1577     qemu_vfree(head_buf);
1578     qemu_vfree(tail_buf);
1579 out:
1580     tracked_request_end(&req);
1581     return ret;
1582 }
1583 
1584 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1585     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1586     BdrvRequestFlags flags)
1587 {
1588     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1589         return -EINVAL;
1590     }
1591 
1592     return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1593                            nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1594 }
1595 
1596 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1597     int nb_sectors, QEMUIOVector *qiov)
1598 {
1599     trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1600 
1601     return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1602 }
1603 
1604 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1605                                        int count, BdrvRequestFlags flags)
1606 {
1607     trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags);
1608 
1609     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1610         flags &= ~BDRV_REQ_MAY_UNMAP;
1611     }
1612 
1613     return bdrv_co_pwritev(child, offset, count, NULL,
1614                            BDRV_REQ_ZERO_WRITE | flags);
1615 }
1616 
1617 typedef struct BdrvCoGetBlockStatusData {
1618     BlockDriverState *bs;
1619     BlockDriverState *base;
1620     BlockDriverState **file;
1621     int64_t sector_num;
1622     int nb_sectors;
1623     int *pnum;
1624     int64_t ret;
1625     bool done;
1626 } BdrvCoGetBlockStatusData;
1627 
1628 /*
1629  * Returns the allocation status of the specified sectors.
1630  * Drivers not implementing the functionality are assumed to not support
1631  * backing files, hence all their sectors are reported as allocated.
1632  *
1633  * If 'sector_num' is beyond the end of the disk image the return value is 0
1634  * and 'pnum' is set to 0.
1635  *
1636  * 'pnum' is set to the number of sectors (including and immediately following
1637  * the specified sector) that are known to be in the same
1638  * allocated/unallocated state.
1639  *
1640  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
1641  * beyond the end of the disk image it will be clamped.
1642  *
1643  * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1644  * points to the BDS which the sector range is allocated in.
1645  */
1646 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1647                                                      int64_t sector_num,
1648                                                      int nb_sectors, int *pnum,
1649                                                      BlockDriverState **file)
1650 {
1651     int64_t total_sectors;
1652     int64_t n;
1653     int64_t ret, ret2;
1654 
1655     total_sectors = bdrv_nb_sectors(bs);
1656     if (total_sectors < 0) {
1657         return total_sectors;
1658     }
1659 
1660     if (sector_num >= total_sectors) {
1661         *pnum = 0;
1662         return 0;
1663     }
1664 
1665     n = total_sectors - sector_num;
1666     if (n < nb_sectors) {
1667         nb_sectors = n;
1668     }
1669 
1670     if (!bs->drv->bdrv_co_get_block_status) {
1671         *pnum = nb_sectors;
1672         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1673         if (bs->drv->protocol_name) {
1674             ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1675         }
1676         return ret;
1677     }
1678 
1679     *file = NULL;
1680     ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1681                                             file);
1682     if (ret < 0) {
1683         *pnum = 0;
1684         return ret;
1685     }
1686 
1687     if (ret & BDRV_BLOCK_RAW) {
1688         assert(ret & BDRV_BLOCK_OFFSET_VALID);
1689         return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1690                                      *pnum, pnum, file);
1691     }
1692 
1693     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1694         ret |= BDRV_BLOCK_ALLOCATED;
1695     } else {
1696         if (bdrv_unallocated_blocks_are_zero(bs)) {
1697             ret |= BDRV_BLOCK_ZERO;
1698         } else if (bs->backing) {
1699             BlockDriverState *bs2 = bs->backing->bs;
1700             int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1701             if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1702                 ret |= BDRV_BLOCK_ZERO;
1703             }
1704         }
1705     }
1706 
1707     if (*file && *file != bs &&
1708         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1709         (ret & BDRV_BLOCK_OFFSET_VALID)) {
1710         BlockDriverState *file2;
1711         int file_pnum;
1712 
1713         ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1714                                         *pnum, &file_pnum, &file2);
1715         if (ret2 >= 0) {
1716             /* Ignore errors.  This is just providing extra information, it
1717              * is useful but not necessary.
1718              */
1719             if (!file_pnum) {
1720                 /* !file_pnum indicates an offset at or beyond the EOF; it is
1721                  * perfectly valid for the format block driver to point to such
1722                  * offsets, so catch it and mark everything as zero */
1723                 ret |= BDRV_BLOCK_ZERO;
1724             } else {
1725                 /* Limit request to the range reported by the protocol driver */
1726                 *pnum = file_pnum;
1727                 ret |= (ret2 & BDRV_BLOCK_ZERO);
1728             }
1729         }
1730     }
1731 
1732     return ret;
1733 }
1734 
1735 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1736         BlockDriverState *base,
1737         int64_t sector_num,
1738         int nb_sectors,
1739         int *pnum,
1740         BlockDriverState **file)
1741 {
1742     BlockDriverState *p;
1743     int64_t ret = 0;
1744 
1745     assert(bs != base);
1746     for (p = bs; p != base; p = backing_bs(p)) {
1747         ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1748         if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1749             break;
1750         }
1751         /* [sector_num, pnum] unallocated on this layer, which could be only
1752          * the first part of [sector_num, nb_sectors].  */
1753         nb_sectors = MIN(nb_sectors, *pnum);
1754     }
1755     return ret;
1756 }
1757 
1758 /* Coroutine wrapper for bdrv_get_block_status_above() */
1759 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1760 {
1761     BdrvCoGetBlockStatusData *data = opaque;
1762 
1763     data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1764                                                data->sector_num,
1765                                                data->nb_sectors,
1766                                                data->pnum,
1767                                                data->file);
1768     data->done = true;
1769 }
1770 
1771 /*
1772  * Synchronous wrapper around bdrv_co_get_block_status_above().
1773  *
1774  * See bdrv_co_get_block_status_above() for details.
1775  */
1776 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1777                                     BlockDriverState *base,
1778                                     int64_t sector_num,
1779                                     int nb_sectors, int *pnum,
1780                                     BlockDriverState **file)
1781 {
1782     Coroutine *co;
1783     BdrvCoGetBlockStatusData data = {
1784         .bs = bs,
1785         .base = base,
1786         .file = file,
1787         .sector_num = sector_num,
1788         .nb_sectors = nb_sectors,
1789         .pnum = pnum,
1790         .done = false,
1791     };
1792 
1793     if (qemu_in_coroutine()) {
1794         /* Fast-path if already in coroutine context */
1795         bdrv_get_block_status_above_co_entry(&data);
1796     } else {
1797         AioContext *aio_context = bdrv_get_aio_context(bs);
1798 
1799         co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1800                                    &data);
1801         qemu_coroutine_enter(co);
1802         while (!data.done) {
1803             aio_poll(aio_context, true);
1804         }
1805     }
1806     return data.ret;
1807 }
1808 
1809 int64_t bdrv_get_block_status(BlockDriverState *bs,
1810                               int64_t sector_num,
1811                               int nb_sectors, int *pnum,
1812                               BlockDriverState **file)
1813 {
1814     return bdrv_get_block_status_above(bs, backing_bs(bs),
1815                                        sector_num, nb_sectors, pnum, file);
1816 }
1817 
1818 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1819                                    int nb_sectors, int *pnum)
1820 {
1821     BlockDriverState *file;
1822     int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1823                                         &file);
1824     if (ret < 0) {
1825         return ret;
1826     }
1827     return !!(ret & BDRV_BLOCK_ALLOCATED);
1828 }
1829 
1830 /*
1831  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1832  *
1833  * Return true if the given sector is allocated in any image between
1834  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
1835  * sector is allocated in any image of the chain.  Return false otherwise.
1836  *
1837  * 'pnum' is set to the number of sectors (including and immediately following
1838  *  the specified sector) that are known to be in the same
1839  *  allocated/unallocated state.
1840  *
1841  */
1842 int bdrv_is_allocated_above(BlockDriverState *top,
1843                             BlockDriverState *base,
1844                             int64_t sector_num,
1845                             int nb_sectors, int *pnum)
1846 {
1847     BlockDriverState *intermediate;
1848     int ret, n = nb_sectors;
1849 
1850     intermediate = top;
1851     while (intermediate && intermediate != base) {
1852         int pnum_inter;
1853         ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1854                                 &pnum_inter);
1855         if (ret < 0) {
1856             return ret;
1857         } else if (ret) {
1858             *pnum = pnum_inter;
1859             return 1;
1860         }
1861 
1862         /*
1863          * [sector_num, nb_sectors] is unallocated on top but intermediate
1864          * might have
1865          *
1866          * [sector_num+x, nr_sectors] allocated.
1867          */
1868         if (n > pnum_inter &&
1869             (intermediate == top ||
1870              sector_num + pnum_inter < intermediate->total_sectors)) {
1871             n = pnum_inter;
1872         }
1873 
1874         intermediate = backing_bs(intermediate);
1875     }
1876 
1877     *pnum = n;
1878     return 0;
1879 }
1880 
1881 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1882                           const uint8_t *buf, int nb_sectors)
1883 {
1884     BlockDriver *drv = bs->drv;
1885     int ret;
1886 
1887     if (!drv) {
1888         return -ENOMEDIUM;
1889     }
1890     if (!drv->bdrv_write_compressed) {
1891         return -ENOTSUP;
1892     }
1893     ret = bdrv_check_request(bs, sector_num, nb_sectors);
1894     if (ret < 0) {
1895         return ret;
1896     }
1897 
1898     assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1899 
1900     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1901 }
1902 
1903 typedef struct BdrvVmstateCo {
1904     BlockDriverState    *bs;
1905     QEMUIOVector        *qiov;
1906     int64_t             pos;
1907     bool                is_read;
1908     int                 ret;
1909 } BdrvVmstateCo;
1910 
1911 static int coroutine_fn
1912 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1913                    bool is_read)
1914 {
1915     BlockDriver *drv = bs->drv;
1916 
1917     if (!drv) {
1918         return -ENOMEDIUM;
1919     } else if (drv->bdrv_load_vmstate) {
1920         return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos)
1921                        : drv->bdrv_save_vmstate(bs, qiov, pos);
1922     } else if (bs->file) {
1923         return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
1924     }
1925 
1926     return -ENOTSUP;
1927 }
1928 
1929 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
1930 {
1931     BdrvVmstateCo *co = opaque;
1932     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
1933 }
1934 
1935 static inline int
1936 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1937                 bool is_read)
1938 {
1939     if (qemu_in_coroutine()) {
1940         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
1941     } else {
1942         BdrvVmstateCo data = {
1943             .bs         = bs,
1944             .qiov       = qiov,
1945             .pos        = pos,
1946             .is_read    = is_read,
1947             .ret        = -EINPROGRESS,
1948         };
1949         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
1950 
1951         qemu_coroutine_enter(co);
1952         while (data.ret == -EINPROGRESS) {
1953             aio_poll(bdrv_get_aio_context(bs), true);
1954         }
1955         return data.ret;
1956     }
1957 }
1958 
1959 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1960                       int64_t pos, int size)
1961 {
1962     QEMUIOVector qiov;
1963     struct iovec iov = {
1964         .iov_base   = (void *) buf,
1965         .iov_len    = size,
1966     };
1967     int ret;
1968 
1969     qemu_iovec_init_external(&qiov, &iov, 1);
1970 
1971     ret = bdrv_writev_vmstate(bs, &qiov, pos);
1972     if (ret < 0) {
1973         return ret;
1974     }
1975 
1976     return size;
1977 }
1978 
1979 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1980 {
1981     return bdrv_rw_vmstate(bs, qiov, pos, false);
1982 }
1983 
1984 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1985                       int64_t pos, int size)
1986 {
1987     QEMUIOVector qiov;
1988     struct iovec iov = {
1989         .iov_base   = buf,
1990         .iov_len    = size,
1991     };
1992     int ret;
1993 
1994     qemu_iovec_init_external(&qiov, &iov, 1);
1995     ret = bdrv_readv_vmstate(bs, &qiov, pos);
1996     if (ret < 0) {
1997         return ret;
1998     }
1999 
2000     return size;
2001 }
2002 
2003 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2004 {
2005     return bdrv_rw_vmstate(bs, qiov, pos, true);
2006 }
2007 
2008 /**************************************************************/
2009 /* async I/Os */
2010 
2011 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num,
2012                            QEMUIOVector *qiov, int nb_sectors,
2013                            BlockCompletionFunc *cb, void *opaque)
2014 {
2015     trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque);
2016 
2017     assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2018     return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2019                                   0, cb, opaque, false);
2020 }
2021 
2022 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num,
2023                             QEMUIOVector *qiov, int nb_sectors,
2024                             BlockCompletionFunc *cb, void *opaque)
2025 {
2026     trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque);
2027 
2028     assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2029     return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2030                                   0, cb, opaque, true);
2031 }
2032 
2033 void bdrv_aio_cancel(BlockAIOCB *acb)
2034 {
2035     qemu_aio_ref(acb);
2036     bdrv_aio_cancel_async(acb);
2037     while (acb->refcnt > 1) {
2038         if (acb->aiocb_info->get_aio_context) {
2039             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2040         } else if (acb->bs) {
2041             aio_poll(bdrv_get_aio_context(acb->bs), true);
2042         } else {
2043             abort();
2044         }
2045     }
2046     qemu_aio_unref(acb);
2047 }
2048 
2049 /* Async version of aio cancel. The caller is not blocked if the acb implements
2050  * cancel_async, otherwise we do nothing and let the request normally complete.
2051  * In either case the completion callback must be called. */
2052 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2053 {
2054     if (acb->aiocb_info->cancel_async) {
2055         acb->aiocb_info->cancel_async(acb);
2056     }
2057 }
2058 
2059 /**************************************************************/
2060 /* async block device emulation */
2061 
2062 typedef struct BlockRequest {
2063     union {
2064         /* Used during read, write, trim */
2065         struct {
2066             int64_t offset;
2067             int bytes;
2068             int flags;
2069             QEMUIOVector *qiov;
2070         };
2071         /* Used during ioctl */
2072         struct {
2073             int req;
2074             void *buf;
2075         };
2076     };
2077     BlockCompletionFunc *cb;
2078     void *opaque;
2079 
2080     int error;
2081 } BlockRequest;
2082 
2083 typedef struct BlockAIOCBCoroutine {
2084     BlockAIOCB common;
2085     BdrvChild *child;
2086     BlockRequest req;
2087     bool is_write;
2088     bool need_bh;
2089     bool *done;
2090     QEMUBH* bh;
2091 } BlockAIOCBCoroutine;
2092 
2093 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2094     .aiocb_size         = sizeof(BlockAIOCBCoroutine),
2095 };
2096 
2097 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2098 {
2099     if (!acb->need_bh) {
2100         acb->common.cb(acb->common.opaque, acb->req.error);
2101         qemu_aio_unref(acb);
2102     }
2103 }
2104 
2105 static void bdrv_co_em_bh(void *opaque)
2106 {
2107     BlockAIOCBCoroutine *acb = opaque;
2108 
2109     assert(!acb->need_bh);
2110     qemu_bh_delete(acb->bh);
2111     bdrv_co_complete(acb);
2112 }
2113 
2114 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2115 {
2116     acb->need_bh = false;
2117     if (acb->req.error != -EINPROGRESS) {
2118         BlockDriverState *bs = acb->common.bs;
2119 
2120         acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2121         qemu_bh_schedule(acb->bh);
2122     }
2123 }
2124 
2125 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2126 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2127 {
2128     BlockAIOCBCoroutine *acb = opaque;
2129 
2130     if (!acb->is_write) {
2131         acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset,
2132             acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2133     } else {
2134         acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset,
2135             acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2136     }
2137 
2138     bdrv_co_complete(acb);
2139 }
2140 
2141 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
2142                                           int64_t offset,
2143                                           QEMUIOVector *qiov,
2144                                           BdrvRequestFlags flags,
2145                                           BlockCompletionFunc *cb,
2146                                           void *opaque,
2147                                           bool is_write)
2148 {
2149     Coroutine *co;
2150     BlockAIOCBCoroutine *acb;
2151 
2152     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque);
2153     acb->child = child;
2154     acb->need_bh = true;
2155     acb->req.error = -EINPROGRESS;
2156     acb->req.offset = offset;
2157     acb->req.qiov = qiov;
2158     acb->req.flags = flags;
2159     acb->is_write = is_write;
2160 
2161     co = qemu_coroutine_create(bdrv_co_do_rw, acb);
2162     qemu_coroutine_enter(co);
2163 
2164     bdrv_co_maybe_schedule_bh(acb);
2165     return &acb->common;
2166 }
2167 
2168 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2169 {
2170     BlockAIOCBCoroutine *acb = opaque;
2171     BlockDriverState *bs = acb->common.bs;
2172 
2173     acb->req.error = bdrv_co_flush(bs);
2174     bdrv_co_complete(acb);
2175 }
2176 
2177 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2178         BlockCompletionFunc *cb, void *opaque)
2179 {
2180     trace_bdrv_aio_flush(bs, opaque);
2181 
2182     Coroutine *co;
2183     BlockAIOCBCoroutine *acb;
2184 
2185     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2186     acb->need_bh = true;
2187     acb->req.error = -EINPROGRESS;
2188 
2189     co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb);
2190     qemu_coroutine_enter(co);
2191 
2192     bdrv_co_maybe_schedule_bh(acb);
2193     return &acb->common;
2194 }
2195 
2196 static void coroutine_fn bdrv_aio_pdiscard_co_entry(void *opaque)
2197 {
2198     BlockAIOCBCoroutine *acb = opaque;
2199     BlockDriverState *bs = acb->common.bs;
2200 
2201     acb->req.error = bdrv_co_pdiscard(bs, acb->req.offset, acb->req.bytes);
2202     bdrv_co_complete(acb);
2203 }
2204 
2205 BlockAIOCB *bdrv_aio_pdiscard(BlockDriverState *bs, int64_t offset, int count,
2206                               BlockCompletionFunc *cb, void *opaque)
2207 {
2208     Coroutine *co;
2209     BlockAIOCBCoroutine *acb;
2210 
2211     trace_bdrv_aio_pdiscard(bs, offset, count, opaque);
2212 
2213     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2214     acb->need_bh = true;
2215     acb->req.error = -EINPROGRESS;
2216     acb->req.offset = offset;
2217     acb->req.bytes = count;
2218     co = qemu_coroutine_create(bdrv_aio_pdiscard_co_entry, acb);
2219     qemu_coroutine_enter(co);
2220 
2221     bdrv_co_maybe_schedule_bh(acb);
2222     return &acb->common;
2223 }
2224 
2225 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2226                    BlockCompletionFunc *cb, void *opaque)
2227 {
2228     BlockAIOCB *acb;
2229 
2230     acb = g_malloc(aiocb_info->aiocb_size);
2231     acb->aiocb_info = aiocb_info;
2232     acb->bs = bs;
2233     acb->cb = cb;
2234     acb->opaque = opaque;
2235     acb->refcnt = 1;
2236     return acb;
2237 }
2238 
2239 void qemu_aio_ref(void *p)
2240 {
2241     BlockAIOCB *acb = p;
2242     acb->refcnt++;
2243 }
2244 
2245 void qemu_aio_unref(void *p)
2246 {
2247     BlockAIOCB *acb = p;
2248     assert(acb->refcnt > 0);
2249     if (--acb->refcnt == 0) {
2250         g_free(acb);
2251     }
2252 }
2253 
2254 /**************************************************************/
2255 /* Coroutine block device emulation */
2256 
2257 typedef struct FlushCo {
2258     BlockDriverState *bs;
2259     int ret;
2260 } FlushCo;
2261 
2262 
2263 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2264 {
2265     FlushCo *rwco = opaque;
2266 
2267     rwco->ret = bdrv_co_flush(rwco->bs);
2268 }
2269 
2270 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2271 {
2272     int ret;
2273     BdrvTrackedRequest req;
2274 
2275     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2276         bdrv_is_sg(bs)) {
2277         return 0;
2278     }
2279 
2280     tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2281 
2282     int current_gen = bs->write_gen;
2283 
2284     /* Wait until any previous flushes are completed */
2285     while (bs->flush_started_gen != bs->flushed_gen) {
2286         qemu_co_queue_wait(&bs->flush_queue);
2287     }
2288 
2289     bs->flush_started_gen = current_gen;
2290 
2291     /* Write back all layers by calling one driver function */
2292     if (bs->drv->bdrv_co_flush) {
2293         ret = bs->drv->bdrv_co_flush(bs);
2294         goto out;
2295     }
2296 
2297     /* Write back cached data to the OS even with cache=unsafe */
2298     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2299     if (bs->drv->bdrv_co_flush_to_os) {
2300         ret = bs->drv->bdrv_co_flush_to_os(bs);
2301         if (ret < 0) {
2302             goto out;
2303         }
2304     }
2305 
2306     /* But don't actually force it to the disk with cache=unsafe */
2307     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2308         goto flush_parent;
2309     }
2310 
2311     /* Check if we really need to flush anything */
2312     if (bs->flushed_gen == current_gen) {
2313         goto flush_parent;
2314     }
2315 
2316     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2317     if (bs->drv->bdrv_co_flush_to_disk) {
2318         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2319     } else if (bs->drv->bdrv_aio_flush) {
2320         BlockAIOCB *acb;
2321         CoroutineIOCompletion co = {
2322             .coroutine = qemu_coroutine_self(),
2323         };
2324 
2325         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2326         if (acb == NULL) {
2327             ret = -EIO;
2328         } else {
2329             qemu_coroutine_yield();
2330             ret = co.ret;
2331         }
2332     } else {
2333         /*
2334          * Some block drivers always operate in either writethrough or unsafe
2335          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2336          * know how the server works (because the behaviour is hardcoded or
2337          * depends on server-side configuration), so we can't ensure that
2338          * everything is safe on disk. Returning an error doesn't work because
2339          * that would break guests even if the server operates in writethrough
2340          * mode.
2341          *
2342          * Let's hope the user knows what he's doing.
2343          */
2344         ret = 0;
2345     }
2346 
2347     if (ret < 0) {
2348         goto out;
2349     }
2350 
2351     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2352      * in the case of cache=unsafe, so there are no useless flushes.
2353      */
2354 flush_parent:
2355     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2356 out:
2357     /* Notify any pending flushes that we have completed */
2358     bs->flushed_gen = current_gen;
2359     qemu_co_queue_restart_all(&bs->flush_queue);
2360 
2361     tracked_request_end(&req);
2362     return ret;
2363 }
2364 
2365 int bdrv_flush(BlockDriverState *bs)
2366 {
2367     Coroutine *co;
2368     FlushCo flush_co = {
2369         .bs = bs,
2370         .ret = NOT_DONE,
2371     };
2372 
2373     if (qemu_in_coroutine()) {
2374         /* Fast-path if already in coroutine context */
2375         bdrv_flush_co_entry(&flush_co);
2376     } else {
2377         AioContext *aio_context = bdrv_get_aio_context(bs);
2378 
2379         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2380         qemu_coroutine_enter(co);
2381         while (flush_co.ret == NOT_DONE) {
2382             aio_poll(aio_context, true);
2383         }
2384     }
2385 
2386     return flush_co.ret;
2387 }
2388 
2389 typedef struct DiscardCo {
2390     BlockDriverState *bs;
2391     int64_t offset;
2392     int count;
2393     int ret;
2394 } DiscardCo;
2395 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2396 {
2397     DiscardCo *rwco = opaque;
2398 
2399     rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count);
2400 }
2401 
2402 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2403                                   int count)
2404 {
2405     BdrvTrackedRequest req;
2406     int max_pdiscard, ret;
2407     int head, align;
2408 
2409     if (!bs->drv) {
2410         return -ENOMEDIUM;
2411     }
2412 
2413     ret = bdrv_check_byte_request(bs, offset, count);
2414     if (ret < 0) {
2415         return ret;
2416     } else if (bs->read_only) {
2417         return -EPERM;
2418     }
2419     assert(!(bs->open_flags & BDRV_O_INACTIVE));
2420 
2421     /* Do nothing if disabled.  */
2422     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2423         return 0;
2424     }
2425 
2426     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2427         return 0;
2428     }
2429 
2430     /* Discard is advisory, so ignore any unaligned head or tail */
2431     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2432     assert(is_power_of_2(align));
2433     head = MIN(count, -offset & (align - 1));
2434     if (head) {
2435         count -= head;
2436         offset += head;
2437     }
2438     count = QEMU_ALIGN_DOWN(count, align);
2439     if (!count) {
2440         return 0;
2441     }
2442 
2443     tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD);
2444 
2445     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2446     if (ret < 0) {
2447         goto out;
2448     }
2449 
2450     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2451                                    align);
2452 
2453     while (count > 0) {
2454         int ret;
2455         int num = MIN(count, max_pdiscard);
2456 
2457         if (bs->drv->bdrv_co_pdiscard) {
2458             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2459         } else {
2460             BlockAIOCB *acb;
2461             CoroutineIOCompletion co = {
2462                 .coroutine = qemu_coroutine_self(),
2463             };
2464 
2465             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2466                                              bdrv_co_io_em_complete, &co);
2467             if (acb == NULL) {
2468                 ret = -EIO;
2469                 goto out;
2470             } else {
2471                 qemu_coroutine_yield();
2472                 ret = co.ret;
2473             }
2474         }
2475         if (ret && ret != -ENOTSUP) {
2476             goto out;
2477         }
2478 
2479         offset += num;
2480         count -= num;
2481     }
2482     ret = 0;
2483 out:
2484     ++bs->write_gen;
2485     bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2486                    req.bytes >> BDRV_SECTOR_BITS);
2487     tracked_request_end(&req);
2488     return ret;
2489 }
2490 
2491 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count)
2492 {
2493     Coroutine *co;
2494     DiscardCo rwco = {
2495         .bs = bs,
2496         .offset = offset,
2497         .count = count,
2498         .ret = NOT_DONE,
2499     };
2500 
2501     if (qemu_in_coroutine()) {
2502         /* Fast-path if already in coroutine context */
2503         bdrv_pdiscard_co_entry(&rwco);
2504     } else {
2505         AioContext *aio_context = bdrv_get_aio_context(bs);
2506 
2507         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2508         qemu_coroutine_enter(co);
2509         while (rwco.ret == NOT_DONE) {
2510             aio_poll(aio_context, true);
2511         }
2512     }
2513 
2514     return rwco.ret;
2515 }
2516 
2517 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2518 {
2519     BlockDriver *drv = bs->drv;
2520     BdrvTrackedRequest tracked_req;
2521     CoroutineIOCompletion co = {
2522         .coroutine = qemu_coroutine_self(),
2523     };
2524     BlockAIOCB *acb;
2525 
2526     tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2527     if (!drv || !drv->bdrv_aio_ioctl) {
2528         co.ret = -ENOTSUP;
2529         goto out;
2530     }
2531 
2532     acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2533     if (!acb) {
2534         co.ret = -ENOTSUP;
2535         goto out;
2536     }
2537     qemu_coroutine_yield();
2538 out:
2539     tracked_request_end(&tracked_req);
2540     return co.ret;
2541 }
2542 
2543 typedef struct {
2544     BlockDriverState *bs;
2545     int req;
2546     void *buf;
2547     int ret;
2548 } BdrvIoctlCoData;
2549 
2550 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2551 {
2552     BdrvIoctlCoData *data = opaque;
2553     data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2554 }
2555 
2556 /* needed for generic scsi interface */
2557 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2558 {
2559     BdrvIoctlCoData data = {
2560         .bs = bs,
2561         .req = req,
2562         .buf = buf,
2563         .ret = -EINPROGRESS,
2564     };
2565 
2566     if (qemu_in_coroutine()) {
2567         /* Fast-path if already in coroutine context */
2568         bdrv_co_ioctl_entry(&data);
2569     } else {
2570         Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry, &data);
2571 
2572         qemu_coroutine_enter(co);
2573         while (data.ret == -EINPROGRESS) {
2574             aio_poll(bdrv_get_aio_context(bs), true);
2575         }
2576     }
2577     return data.ret;
2578 }
2579 
2580 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2581 {
2582     BlockAIOCBCoroutine *acb = opaque;
2583     acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2584                                       acb->req.req, acb->req.buf);
2585     bdrv_co_complete(acb);
2586 }
2587 
2588 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2589         unsigned long int req, void *buf,
2590         BlockCompletionFunc *cb, void *opaque)
2591 {
2592     BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2593                                             bs, cb, opaque);
2594     Coroutine *co;
2595 
2596     acb->need_bh = true;
2597     acb->req.error = -EINPROGRESS;
2598     acb->req.req = req;
2599     acb->req.buf = buf;
2600     co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry, acb);
2601     qemu_coroutine_enter(co);
2602 
2603     bdrv_co_maybe_schedule_bh(acb);
2604     return &acb->common;
2605 }
2606 
2607 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2608 {
2609     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2610 }
2611 
2612 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2613 {
2614     return memset(qemu_blockalign(bs, size), 0, size);
2615 }
2616 
2617 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2618 {
2619     size_t align = bdrv_opt_mem_align(bs);
2620 
2621     /* Ensure that NULL is never returned on success */
2622     assert(align > 0);
2623     if (size == 0) {
2624         size = align;
2625     }
2626 
2627     return qemu_try_memalign(align, size);
2628 }
2629 
2630 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2631 {
2632     void *mem = qemu_try_blockalign(bs, size);
2633 
2634     if (mem) {
2635         memset(mem, 0, size);
2636     }
2637 
2638     return mem;
2639 }
2640 
2641 /*
2642  * Check if all memory in this vector is sector aligned.
2643  */
2644 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2645 {
2646     int i;
2647     size_t alignment = bdrv_min_mem_align(bs);
2648 
2649     for (i = 0; i < qiov->niov; i++) {
2650         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2651             return false;
2652         }
2653         if (qiov->iov[i].iov_len % alignment) {
2654             return false;
2655         }
2656     }
2657 
2658     return true;
2659 }
2660 
2661 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2662                                     NotifierWithReturn *notifier)
2663 {
2664     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2665 }
2666 
2667 void bdrv_io_plug(BlockDriverState *bs)
2668 {
2669     BdrvChild *child;
2670 
2671     QLIST_FOREACH(child, &bs->children, next) {
2672         bdrv_io_plug(child->bs);
2673     }
2674 
2675     if (bs->io_plugged++ == 0 && bs->io_plug_disabled == 0) {
2676         BlockDriver *drv = bs->drv;
2677         if (drv && drv->bdrv_io_plug) {
2678             drv->bdrv_io_plug(bs);
2679         }
2680     }
2681 }
2682 
2683 void bdrv_io_unplug(BlockDriverState *bs)
2684 {
2685     BdrvChild *child;
2686 
2687     assert(bs->io_plugged);
2688     if (--bs->io_plugged == 0 && bs->io_plug_disabled == 0) {
2689         BlockDriver *drv = bs->drv;
2690         if (drv && drv->bdrv_io_unplug) {
2691             drv->bdrv_io_unplug(bs);
2692         }
2693     }
2694 
2695     QLIST_FOREACH(child, &bs->children, next) {
2696         bdrv_io_unplug(child->bs);
2697     }
2698 }
2699 
2700 void bdrv_io_unplugged_begin(BlockDriverState *bs)
2701 {
2702     BdrvChild *child;
2703 
2704     if (bs->io_plug_disabled++ == 0 && bs->io_plugged > 0) {
2705         BlockDriver *drv = bs->drv;
2706         if (drv && drv->bdrv_io_unplug) {
2707             drv->bdrv_io_unplug(bs);
2708         }
2709     }
2710 
2711     QLIST_FOREACH(child, &bs->children, next) {
2712         bdrv_io_unplugged_begin(child->bs);
2713     }
2714 }
2715 
2716 void bdrv_io_unplugged_end(BlockDriverState *bs)
2717 {
2718     BdrvChild *child;
2719 
2720     assert(bs->io_plug_disabled);
2721     QLIST_FOREACH(child, &bs->children, next) {
2722         bdrv_io_unplugged_end(child->bs);
2723     }
2724 
2725     if (--bs->io_plug_disabled == 0 && bs->io_plugged > 0) {
2726         BlockDriver *drv = bs->drv;
2727         if (drv && drv->bdrv_io_plug) {
2728             drv->bdrv_io_plug(bs);
2729         }
2730     }
2731 }
2732