xref: /qemu/block/io.c (revision 73b49878)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41 
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44 
45 static void coroutine_fn GRAPH_RDLOCK
46 bdrv_parent_cb_resize(BlockDriverState *bs);
47 
48 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
49     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
50 
51 static void GRAPH_RDLOCK
52 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
53 {
54     BdrvChild *c, *next;
55     IO_OR_GS_CODE();
56     assert_bdrv_graph_readable();
57 
58     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
59         if (c == ignore) {
60             continue;
61         }
62         bdrv_parent_drained_begin_single(c);
63     }
64 }
65 
66 void bdrv_parent_drained_end_single(BdrvChild *c)
67 {
68     GLOBAL_STATE_CODE();
69 
70     assert(c->quiesced_parent);
71     c->quiesced_parent = false;
72 
73     if (c->klass->drained_end) {
74         c->klass->drained_end(c);
75     }
76 }
77 
78 static void GRAPH_RDLOCK
79 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
80 {
81     BdrvChild *c;
82     IO_OR_GS_CODE();
83     assert_bdrv_graph_readable();
84 
85     QLIST_FOREACH(c, &bs->parents, next_parent) {
86         if (c == ignore) {
87             continue;
88         }
89         bdrv_parent_drained_end_single(c);
90     }
91 }
92 
93 bool bdrv_parent_drained_poll_single(BdrvChild *c)
94 {
95     IO_OR_GS_CODE();
96 
97     if (c->klass->drained_poll) {
98         return c->klass->drained_poll(c);
99     }
100     return false;
101 }
102 
103 static bool GRAPH_RDLOCK
104 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
105                          bool ignore_bds_parents)
106 {
107     BdrvChild *c, *next;
108     bool busy = false;
109     IO_OR_GS_CODE();
110     assert_bdrv_graph_readable();
111 
112     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
113         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
114             continue;
115         }
116         busy |= bdrv_parent_drained_poll_single(c);
117     }
118 
119     return busy;
120 }
121 
122 void bdrv_parent_drained_begin_single(BdrvChild *c)
123 {
124     GLOBAL_STATE_CODE();
125 
126     assert(!c->quiesced_parent);
127     c->quiesced_parent = true;
128 
129     if (c->klass->drained_begin) {
130         /* called with rdlock taken, but it doesn't really need it. */
131         c->klass->drained_begin(c);
132     }
133 }
134 
135 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
136 {
137     dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
138                                   src->pdiscard_alignment);
139     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
140     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
141     dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
142                                         src->max_hw_transfer);
143     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
144                                  src->opt_mem_alignment);
145     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
146                                  src->min_mem_alignment);
147     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
148     dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
149 }
150 
151 typedef struct BdrvRefreshLimitsState {
152     BlockDriverState *bs;
153     BlockLimits old_bl;
154 } BdrvRefreshLimitsState;
155 
156 static void bdrv_refresh_limits_abort(void *opaque)
157 {
158     BdrvRefreshLimitsState *s = opaque;
159 
160     s->bs->bl = s->old_bl;
161 }
162 
163 static TransactionActionDrv bdrv_refresh_limits_drv = {
164     .abort = bdrv_refresh_limits_abort,
165     .clean = g_free,
166 };
167 
168 /* @tran is allowed to be NULL, in this case no rollback is possible. */
169 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
170 {
171     ERRP_GUARD();
172     BlockDriver *drv = bs->drv;
173     BdrvChild *c;
174     bool have_limits;
175 
176     GLOBAL_STATE_CODE();
177 
178     if (tran) {
179         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
180         *s = (BdrvRefreshLimitsState) {
181             .bs = bs,
182             .old_bl = bs->bl,
183         };
184         tran_add(tran, &bdrv_refresh_limits_drv, s);
185     }
186 
187     memset(&bs->bl, 0, sizeof(bs->bl));
188 
189     if (!drv) {
190         return;
191     }
192 
193     /* Default alignment based on whether driver has byte interface */
194     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
195                                 drv->bdrv_aio_preadv ||
196                                 drv->bdrv_co_preadv_part) ? 1 : 512;
197 
198     /* Take some limits from the children as a default */
199     have_limits = false;
200     QLIST_FOREACH(c, &bs->children, next) {
201         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
202         {
203             bdrv_merge_limits(&bs->bl, &c->bs->bl);
204             have_limits = true;
205         }
206 
207         if (c->role & BDRV_CHILD_FILTERED) {
208             bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
209         }
210     }
211 
212     if (!have_limits) {
213         bs->bl.min_mem_alignment = 512;
214         bs->bl.opt_mem_alignment = qemu_real_host_page_size();
215 
216         /* Safe default since most protocols use readv()/writev()/etc */
217         bs->bl.max_iov = IOV_MAX;
218     }
219 
220     /* Then let the driver override it */
221     if (drv->bdrv_refresh_limits) {
222         drv->bdrv_refresh_limits(bs, errp);
223         if (*errp) {
224             return;
225         }
226     }
227 
228     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
229         error_setg(errp, "Driver requires too large request alignment");
230     }
231 }
232 
233 /**
234  * The copy-on-read flag is actually a reference count so multiple users may
235  * use the feature without worrying about clobbering its previous state.
236  * Copy-on-read stays enabled until all users have called to disable it.
237  */
238 void bdrv_enable_copy_on_read(BlockDriverState *bs)
239 {
240     IO_CODE();
241     qatomic_inc(&bs->copy_on_read);
242 }
243 
244 void bdrv_disable_copy_on_read(BlockDriverState *bs)
245 {
246     int old = qatomic_fetch_dec(&bs->copy_on_read);
247     IO_CODE();
248     assert(old >= 1);
249 }
250 
251 typedef struct {
252     Coroutine *co;
253     BlockDriverState *bs;
254     bool done;
255     bool begin;
256     bool poll;
257     BdrvChild *parent;
258 } BdrvCoDrainData;
259 
260 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
261 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
262                      bool ignore_bds_parents)
263 {
264     GLOBAL_STATE_CODE();
265 
266     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
267         return true;
268     }
269 
270     if (qatomic_read(&bs->in_flight)) {
271         return true;
272     }
273 
274     return false;
275 }
276 
277 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
278                                       BdrvChild *ignore_parent)
279 {
280     GLOBAL_STATE_CODE();
281     GRAPH_RDLOCK_GUARD_MAINLOOP();
282 
283     return bdrv_drain_poll(bs, ignore_parent, false);
284 }
285 
286 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
287                                   bool poll);
288 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
289 
290 static void bdrv_co_drain_bh_cb(void *opaque)
291 {
292     BdrvCoDrainData *data = opaque;
293     Coroutine *co = data->co;
294     BlockDriverState *bs = data->bs;
295 
296     if (bs) {
297         bdrv_dec_in_flight(bs);
298         if (data->begin) {
299             bdrv_do_drained_begin(bs, data->parent, data->poll);
300         } else {
301             assert(!data->poll);
302             bdrv_do_drained_end(bs, data->parent);
303         }
304     } else {
305         assert(data->begin);
306         bdrv_drain_all_begin();
307     }
308 
309     data->done = true;
310     aio_co_wake(co);
311 }
312 
313 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
314                                                 bool begin,
315                                                 BdrvChild *parent,
316                                                 bool poll)
317 {
318     BdrvCoDrainData data;
319     Coroutine *self = qemu_coroutine_self();
320 
321     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
322      * other coroutines run if they were queued by aio_co_enter(). */
323 
324     assert(qemu_in_coroutine());
325     data = (BdrvCoDrainData) {
326         .co = self,
327         .bs = bs,
328         .done = false,
329         .begin = begin,
330         .parent = parent,
331         .poll = poll,
332     };
333 
334     if (bs) {
335         bdrv_inc_in_flight(bs);
336     }
337 
338     replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
339                                      bdrv_co_drain_bh_cb, &data);
340 
341     qemu_coroutine_yield();
342     /* If we are resumed from some other event (such as an aio completion or a
343      * timer callback), it is a bug in the caller that should be fixed. */
344     assert(data.done);
345 }
346 
347 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
348                                   bool poll)
349 {
350     IO_OR_GS_CODE();
351 
352     if (qemu_in_coroutine()) {
353         bdrv_co_yield_to_drain(bs, true, parent, poll);
354         return;
355     }
356 
357     GLOBAL_STATE_CODE();
358 
359     /* Stop things in parent-to-child order */
360     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
361         GRAPH_RDLOCK_GUARD_MAINLOOP();
362         bdrv_parent_drained_begin(bs, parent);
363         if (bs->drv && bs->drv->bdrv_drain_begin) {
364             bs->drv->bdrv_drain_begin(bs);
365         }
366     }
367 
368     /*
369      * Wait for drained requests to finish.
370      *
371      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
372      * call is needed so things in this AioContext can make progress even
373      * though we don't return to the main AioContext loop - this automatically
374      * includes other nodes in the same AioContext and therefore all child
375      * nodes.
376      */
377     if (poll) {
378         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
379     }
380 }
381 
382 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
383 {
384     bdrv_do_drained_begin(bs, parent, false);
385 }
386 
387 void coroutine_mixed_fn
388 bdrv_drained_begin(BlockDriverState *bs)
389 {
390     IO_OR_GS_CODE();
391     bdrv_do_drained_begin(bs, NULL, true);
392 }
393 
394 /**
395  * This function does not poll, nor must any of its recursively called
396  * functions.
397  */
398 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
399 {
400     int old_quiesce_counter;
401 
402     IO_OR_GS_CODE();
403 
404     if (qemu_in_coroutine()) {
405         bdrv_co_yield_to_drain(bs, false, parent, false);
406         return;
407     }
408 
409     /* At this point, we should be always running in the main loop. */
410     GLOBAL_STATE_CODE();
411     assert(bs->quiesce_counter > 0);
412     GLOBAL_STATE_CODE();
413 
414     /* Re-enable things in child-to-parent order */
415     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
416     if (old_quiesce_counter == 1) {
417         GRAPH_RDLOCK_GUARD_MAINLOOP();
418         if (bs->drv && bs->drv->bdrv_drain_end) {
419             bs->drv->bdrv_drain_end(bs);
420         }
421         bdrv_parent_drained_end(bs, parent);
422     }
423 }
424 
425 void bdrv_drained_end(BlockDriverState *bs)
426 {
427     IO_OR_GS_CODE();
428     bdrv_do_drained_end(bs, NULL);
429 }
430 
431 void bdrv_drain(BlockDriverState *bs)
432 {
433     IO_OR_GS_CODE();
434     bdrv_drained_begin(bs);
435     bdrv_drained_end(bs);
436 }
437 
438 static void bdrv_drain_assert_idle(BlockDriverState *bs)
439 {
440     BdrvChild *child, *next;
441     GLOBAL_STATE_CODE();
442     GRAPH_RDLOCK_GUARD_MAINLOOP();
443 
444     assert(qatomic_read(&bs->in_flight) == 0);
445     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
446         bdrv_drain_assert_idle(child->bs);
447     }
448 }
449 
450 unsigned int bdrv_drain_all_count = 0;
451 
452 static bool bdrv_drain_all_poll(void)
453 {
454     BlockDriverState *bs = NULL;
455     bool result = false;
456 
457     GLOBAL_STATE_CODE();
458     GRAPH_RDLOCK_GUARD_MAINLOOP();
459 
460     /*
461      * bdrv_drain_poll() can't make changes to the graph and we hold the BQL,
462      * so iterating bdrv_next_all_states() is safe.
463      */
464     while ((bs = bdrv_next_all_states(bs))) {
465         result |= bdrv_drain_poll(bs, NULL, true);
466     }
467 
468     return result;
469 }
470 
471 /*
472  * Wait for pending requests to complete across all BlockDriverStates
473  *
474  * This function does not flush data to disk, use bdrv_flush_all() for that
475  * after calling this function.
476  *
477  * This pauses all block jobs and disables external clients. It must
478  * be paired with bdrv_drain_all_end().
479  *
480  * NOTE: no new block jobs or BlockDriverStates can be created between
481  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
482  */
483 void bdrv_drain_all_begin_nopoll(void)
484 {
485     BlockDriverState *bs = NULL;
486     GLOBAL_STATE_CODE();
487 
488     /*
489      * bdrv queue is managed by record/replay,
490      * waiting for finishing the I/O requests may
491      * be infinite
492      */
493     if (replay_events_enabled()) {
494         return;
495     }
496 
497     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
498      * loop AioContext, so make sure we're in the main context. */
499     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
500     assert(bdrv_drain_all_count < INT_MAX);
501     bdrv_drain_all_count++;
502 
503     /* Quiesce all nodes, without polling in-flight requests yet. The graph
504      * cannot change during this loop. */
505     while ((bs = bdrv_next_all_states(bs))) {
506         bdrv_do_drained_begin(bs, NULL, false);
507     }
508 }
509 
510 void coroutine_mixed_fn bdrv_drain_all_begin(void)
511 {
512     BlockDriverState *bs = NULL;
513 
514     if (qemu_in_coroutine()) {
515         bdrv_co_yield_to_drain(NULL, true, NULL, true);
516         return;
517     }
518 
519     /*
520      * bdrv queue is managed by record/replay,
521      * waiting for finishing the I/O requests may
522      * be infinite
523      */
524     if (replay_events_enabled()) {
525         return;
526     }
527 
528     bdrv_drain_all_begin_nopoll();
529 
530     /* Now poll the in-flight requests */
531     AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
532 
533     while ((bs = bdrv_next_all_states(bs))) {
534         bdrv_drain_assert_idle(bs);
535     }
536 }
537 
538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
539 {
540     GLOBAL_STATE_CODE();
541 
542     g_assert(bs->quiesce_counter > 0);
543     g_assert(!bs->refcnt);
544 
545     while (bs->quiesce_counter) {
546         bdrv_do_drained_end(bs, NULL);
547     }
548 }
549 
550 void bdrv_drain_all_end(void)
551 {
552     BlockDriverState *bs = NULL;
553     GLOBAL_STATE_CODE();
554 
555     /*
556      * bdrv queue is managed by record/replay,
557      * waiting for finishing the I/O requests may
558      * be endless
559      */
560     if (replay_events_enabled()) {
561         return;
562     }
563 
564     while ((bs = bdrv_next_all_states(bs))) {
565         bdrv_do_drained_end(bs, NULL);
566     }
567 
568     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
569     assert(bdrv_drain_all_count > 0);
570     bdrv_drain_all_count--;
571 }
572 
573 void bdrv_drain_all(void)
574 {
575     GLOBAL_STATE_CODE();
576     bdrv_drain_all_begin();
577     bdrv_drain_all_end();
578 }
579 
580 /**
581  * Remove an active request from the tracked requests list
582  *
583  * This function should be called when a tracked request is completing.
584  */
585 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
586 {
587     if (req->serialising) {
588         qatomic_dec(&req->bs->serialising_in_flight);
589     }
590 
591     qemu_mutex_lock(&req->bs->reqs_lock);
592     QLIST_REMOVE(req, list);
593     qemu_mutex_unlock(&req->bs->reqs_lock);
594 
595     /*
596      * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called
597      * anymore because the request has been removed from the list, so it's safe
598      * to restart the queue outside reqs_lock to minimize the critical section.
599      */
600     qemu_co_queue_restart_all(&req->wait_queue);
601 }
602 
603 /**
604  * Add an active request to the tracked requests list
605  */
606 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
607                                                BlockDriverState *bs,
608                                                int64_t offset,
609                                                int64_t bytes,
610                                                enum BdrvTrackedRequestType type)
611 {
612     bdrv_check_request(offset, bytes, &error_abort);
613 
614     *req = (BdrvTrackedRequest){
615         .bs = bs,
616         .offset         = offset,
617         .bytes          = bytes,
618         .type           = type,
619         .co             = qemu_coroutine_self(),
620         .serialising    = false,
621         .overlap_offset = offset,
622         .overlap_bytes  = bytes,
623     };
624 
625     qemu_co_queue_init(&req->wait_queue);
626 
627     qemu_mutex_lock(&bs->reqs_lock);
628     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
629     qemu_mutex_unlock(&bs->reqs_lock);
630 }
631 
632 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
633                                      int64_t offset, int64_t bytes)
634 {
635     bdrv_check_request(offset, bytes, &error_abort);
636 
637     /*        aaaa   bbbb */
638     if (offset >= req->overlap_offset + req->overlap_bytes) {
639         return false;
640     }
641     /* bbbb   aaaa        */
642     if (req->overlap_offset >= offset + bytes) {
643         return false;
644     }
645     return true;
646 }
647 
648 /* Called with self->bs->reqs_lock held */
649 static coroutine_fn BdrvTrackedRequest *
650 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
651 {
652     BdrvTrackedRequest *req;
653 
654     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
655         if (req == self || (!req->serialising && !self->serialising)) {
656             continue;
657         }
658         if (tracked_request_overlaps(req, self->overlap_offset,
659                                      self->overlap_bytes))
660         {
661             /*
662              * Hitting this means there was a reentrant request, for
663              * example, a block driver issuing nested requests.  This must
664              * never happen since it means deadlock.
665              */
666             assert(qemu_coroutine_self() != req->co);
667 
668             /*
669              * If the request is already (indirectly) waiting for us, or
670              * will wait for us as soon as it wakes up, then just go on
671              * (instead of producing a deadlock in the former case).
672              */
673             if (!req->waiting_for) {
674                 return req;
675             }
676         }
677     }
678 
679     return NULL;
680 }
681 
682 /* Called with self->bs->reqs_lock held */
683 static void coroutine_fn
684 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
685 {
686     BdrvTrackedRequest *req;
687 
688     while ((req = bdrv_find_conflicting_request(self))) {
689         self->waiting_for = req;
690         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
691         self->waiting_for = NULL;
692     }
693 }
694 
695 /* Called with req->bs->reqs_lock held */
696 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
697                                             uint64_t align)
698 {
699     int64_t overlap_offset = req->offset & ~(align - 1);
700     int64_t overlap_bytes =
701         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
702 
703     bdrv_check_request(req->offset, req->bytes, &error_abort);
704 
705     if (!req->serialising) {
706         qatomic_inc(&req->bs->serialising_in_flight);
707         req->serialising = true;
708     }
709 
710     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
711     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
712 }
713 
714 /**
715  * Return the tracked request on @bs for the current coroutine, or
716  * NULL if there is none.
717  */
718 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
719 {
720     BdrvTrackedRequest *req;
721     Coroutine *self = qemu_coroutine_self();
722     IO_CODE();
723 
724     QLIST_FOREACH(req, &bs->tracked_requests, list) {
725         if (req->co == self) {
726             return req;
727         }
728     }
729 
730     return NULL;
731 }
732 
733 /**
734  * Round a region to subcluster (if supported) or cluster boundaries
735  */
736 void coroutine_fn GRAPH_RDLOCK
737 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
738                           int64_t *align_offset, int64_t *align_bytes)
739 {
740     BlockDriverInfo bdi;
741     IO_CODE();
742     if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) {
743         *align_offset = offset;
744         *align_bytes = bytes;
745     } else {
746         int64_t c = bdi.subcluster_size;
747         *align_offset = QEMU_ALIGN_DOWN(offset, c);
748         *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c);
749     }
750 }
751 
752 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
753 {
754     BlockDriverInfo bdi;
755     int ret;
756 
757     ret = bdrv_co_get_info(bs, &bdi);
758     if (ret < 0 || bdi.cluster_size == 0) {
759         return bs->bl.request_alignment;
760     } else {
761         return bdi.cluster_size;
762     }
763 }
764 
765 void bdrv_inc_in_flight(BlockDriverState *bs)
766 {
767     IO_CODE();
768     qatomic_inc(&bs->in_flight);
769 }
770 
771 void bdrv_wakeup(BlockDriverState *bs)
772 {
773     IO_CODE();
774     aio_wait_kick();
775 }
776 
777 void bdrv_dec_in_flight(BlockDriverState *bs)
778 {
779     IO_CODE();
780     qatomic_dec(&bs->in_flight);
781     bdrv_wakeup(bs);
782 }
783 
784 static void coroutine_fn
785 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
786 {
787     BlockDriverState *bs = self->bs;
788 
789     if (!qatomic_read(&bs->serialising_in_flight)) {
790         return;
791     }
792 
793     qemu_mutex_lock(&bs->reqs_lock);
794     bdrv_wait_serialising_requests_locked(self);
795     qemu_mutex_unlock(&bs->reqs_lock);
796 }
797 
798 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
799                                                 uint64_t align)
800 {
801     IO_CODE();
802 
803     qemu_mutex_lock(&req->bs->reqs_lock);
804 
805     tracked_request_set_serialising(req, align);
806     bdrv_wait_serialising_requests_locked(req);
807 
808     qemu_mutex_unlock(&req->bs->reqs_lock);
809 }
810 
811 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
812                             QEMUIOVector *qiov, size_t qiov_offset,
813                             Error **errp)
814 {
815     /*
816      * Check generic offset/bytes correctness
817      */
818 
819     if (offset < 0) {
820         error_setg(errp, "offset is negative: %" PRIi64, offset);
821         return -EIO;
822     }
823 
824     if (bytes < 0) {
825         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
826         return -EIO;
827     }
828 
829     if (bytes > BDRV_MAX_LENGTH) {
830         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
831                    bytes, BDRV_MAX_LENGTH);
832         return -EIO;
833     }
834 
835     if (offset > BDRV_MAX_LENGTH) {
836         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
837                    offset, BDRV_MAX_LENGTH);
838         return -EIO;
839     }
840 
841     if (offset > BDRV_MAX_LENGTH - bytes) {
842         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
843                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
844                    BDRV_MAX_LENGTH);
845         return -EIO;
846     }
847 
848     if (!qiov) {
849         return 0;
850     }
851 
852     /*
853      * Check qiov and qiov_offset
854      */
855 
856     if (qiov_offset > qiov->size) {
857         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
858                    qiov_offset, qiov->size);
859         return -EIO;
860     }
861 
862     if (bytes > qiov->size - qiov_offset) {
863         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
864                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
865         return -EIO;
866     }
867 
868     return 0;
869 }
870 
871 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
872 {
873     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
874 }
875 
876 static int bdrv_check_request32(int64_t offset, int64_t bytes,
877                                 QEMUIOVector *qiov, size_t qiov_offset)
878 {
879     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
880     if (ret < 0) {
881         return ret;
882     }
883 
884     if (bytes > BDRV_REQUEST_MAX_BYTES) {
885         return -EIO;
886     }
887 
888     return 0;
889 }
890 
891 /*
892  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
893  * The operation is sped up by checking the block status and only writing
894  * zeroes to the device if they currently do not return zeroes. Optional
895  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
896  * BDRV_REQ_FUA).
897  *
898  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
899  */
900 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
901 {
902     int ret;
903     int64_t target_size, bytes, offset = 0;
904     BlockDriverState *bs = child->bs;
905     IO_CODE();
906 
907     target_size = bdrv_getlength(bs);
908     if (target_size < 0) {
909         return target_size;
910     }
911 
912     for (;;) {
913         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
914         if (bytes <= 0) {
915             return 0;
916         }
917         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
918         if (ret < 0) {
919             return ret;
920         }
921         if (ret & BDRV_BLOCK_ZERO) {
922             offset += bytes;
923             continue;
924         }
925         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
926         if (ret < 0) {
927             return ret;
928         }
929         offset += bytes;
930     }
931 }
932 
933 /*
934  * Writes to the file and ensures that no writes are reordered across this
935  * request (acts as a barrier)
936  *
937  * Returns 0 on success, -errno in error cases.
938  */
939 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
940                                      int64_t bytes, const void *buf,
941                                      BdrvRequestFlags flags)
942 {
943     int ret;
944     IO_CODE();
945     assert_bdrv_graph_readable();
946 
947     ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
948     if (ret < 0) {
949         return ret;
950     }
951 
952     ret = bdrv_co_flush(child->bs);
953     if (ret < 0) {
954         return ret;
955     }
956 
957     return 0;
958 }
959 
960 typedef struct CoroutineIOCompletion {
961     Coroutine *coroutine;
962     int ret;
963 } CoroutineIOCompletion;
964 
965 static void bdrv_co_io_em_complete(void *opaque, int ret)
966 {
967     CoroutineIOCompletion *co = opaque;
968 
969     co->ret = ret;
970     aio_co_wake(co->coroutine);
971 }
972 
973 static int coroutine_fn GRAPH_RDLOCK
974 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
975                    QEMUIOVector *qiov, size_t qiov_offset, int flags)
976 {
977     BlockDriver *drv = bs->drv;
978     int64_t sector_num;
979     unsigned int nb_sectors;
980     QEMUIOVector local_qiov;
981     int ret;
982     assert_bdrv_graph_readable();
983 
984     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
985     assert(!(flags & ~bs->supported_read_flags));
986 
987     if (!drv) {
988         return -ENOMEDIUM;
989     }
990 
991     if (drv->bdrv_co_preadv_part) {
992         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
993                                         flags);
994     }
995 
996     if (qiov_offset > 0 || bytes != qiov->size) {
997         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
998         qiov = &local_qiov;
999     }
1000 
1001     if (drv->bdrv_co_preadv) {
1002         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1003         goto out;
1004     }
1005 
1006     if (drv->bdrv_aio_preadv) {
1007         BlockAIOCB *acb;
1008         CoroutineIOCompletion co = {
1009             .coroutine = qemu_coroutine_self(),
1010         };
1011 
1012         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1013                                    bdrv_co_io_em_complete, &co);
1014         if (acb == NULL) {
1015             ret = -EIO;
1016             goto out;
1017         } else {
1018             qemu_coroutine_yield();
1019             ret = co.ret;
1020             goto out;
1021         }
1022     }
1023 
1024     sector_num = offset >> BDRV_SECTOR_BITS;
1025     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1026 
1027     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1028     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1029     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1030     assert(drv->bdrv_co_readv);
1031 
1032     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1033 
1034 out:
1035     if (qiov == &local_qiov) {
1036         qemu_iovec_destroy(&local_qiov);
1037     }
1038 
1039     return ret;
1040 }
1041 
1042 static int coroutine_fn GRAPH_RDLOCK
1043 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1044                     QEMUIOVector *qiov, size_t qiov_offset,
1045                     BdrvRequestFlags flags)
1046 {
1047     BlockDriver *drv = bs->drv;
1048     bool emulate_fua = false;
1049     int64_t sector_num;
1050     unsigned int nb_sectors;
1051     QEMUIOVector local_qiov;
1052     int ret;
1053     assert_bdrv_graph_readable();
1054 
1055     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1056 
1057     if (!drv) {
1058         return -ENOMEDIUM;
1059     }
1060 
1061     if ((flags & BDRV_REQ_FUA) &&
1062         (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1063         flags &= ~BDRV_REQ_FUA;
1064         emulate_fua = true;
1065     }
1066 
1067     flags &= bs->supported_write_flags;
1068 
1069     if (drv->bdrv_co_pwritev_part) {
1070         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1071                                         flags);
1072         goto emulate_flags;
1073     }
1074 
1075     if (qiov_offset > 0 || bytes != qiov->size) {
1076         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1077         qiov = &local_qiov;
1078     }
1079 
1080     if (drv->bdrv_co_pwritev) {
1081         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1082         goto emulate_flags;
1083     }
1084 
1085     if (drv->bdrv_aio_pwritev) {
1086         BlockAIOCB *acb;
1087         CoroutineIOCompletion co = {
1088             .coroutine = qemu_coroutine_self(),
1089         };
1090 
1091         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1092                                     bdrv_co_io_em_complete, &co);
1093         if (acb == NULL) {
1094             ret = -EIO;
1095         } else {
1096             qemu_coroutine_yield();
1097             ret = co.ret;
1098         }
1099         goto emulate_flags;
1100     }
1101 
1102     sector_num = offset >> BDRV_SECTOR_BITS;
1103     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1104 
1105     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1106     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1107     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1108 
1109     assert(drv->bdrv_co_writev);
1110     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1111 
1112 emulate_flags:
1113     if (ret == 0 && emulate_fua) {
1114         ret = bdrv_co_flush(bs);
1115     }
1116 
1117     if (qiov == &local_qiov) {
1118         qemu_iovec_destroy(&local_qiov);
1119     }
1120 
1121     return ret;
1122 }
1123 
1124 static int coroutine_fn GRAPH_RDLOCK
1125 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1126                                int64_t bytes, QEMUIOVector *qiov,
1127                                size_t qiov_offset)
1128 {
1129     BlockDriver *drv = bs->drv;
1130     QEMUIOVector local_qiov;
1131     int ret;
1132     assert_bdrv_graph_readable();
1133 
1134     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1135 
1136     if (!drv) {
1137         return -ENOMEDIUM;
1138     }
1139 
1140     if (!block_driver_can_compress(drv)) {
1141         return -ENOTSUP;
1142     }
1143 
1144     if (drv->bdrv_co_pwritev_compressed_part) {
1145         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1146                                                     qiov, qiov_offset);
1147     }
1148 
1149     if (qiov_offset == 0) {
1150         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1151     }
1152 
1153     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1154     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1155     qemu_iovec_destroy(&local_qiov);
1156 
1157     return ret;
1158 }
1159 
1160 static int coroutine_fn GRAPH_RDLOCK
1161 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1162                          QEMUIOVector *qiov, size_t qiov_offset, int flags)
1163 {
1164     BlockDriverState *bs = child->bs;
1165 
1166     /* Perform I/O through a temporary buffer so that users who scribble over
1167      * their read buffer while the operation is in progress do not end up
1168      * modifying the image file.  This is critical for zero-copy guest I/O
1169      * where anything might happen inside guest memory.
1170      */
1171     void *bounce_buffer = NULL;
1172 
1173     BlockDriver *drv = bs->drv;
1174     int64_t align_offset;
1175     int64_t align_bytes;
1176     int64_t skip_bytes;
1177     int ret;
1178     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1179                                     BDRV_REQUEST_MAX_BYTES);
1180     int64_t progress = 0;
1181     bool skip_write;
1182 
1183     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1184 
1185     if (!drv) {
1186         return -ENOMEDIUM;
1187     }
1188 
1189     /*
1190      * Do not write anything when the BDS is inactive.  That is not
1191      * allowed, and it would not help.
1192      */
1193     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1194 
1195     /* FIXME We cannot require callers to have write permissions when all they
1196      * are doing is a read request. If we did things right, write permissions
1197      * would be obtained anyway, but internally by the copy-on-read code. As
1198      * long as it is implemented here rather than in a separate filter driver,
1199      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1200      * it could request permissions. Therefore we have to bypass the permission
1201      * system for the moment. */
1202     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1203 
1204     /* Cover entire cluster so no additional backing file I/O is required when
1205      * allocating cluster in the image file.  Note that this value may exceed
1206      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1207      * is one reason we loop rather than doing it all at once.
1208      */
1209     bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes);
1210     skip_bytes = offset - align_offset;
1211 
1212     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1213                                    align_offset, align_bytes);
1214 
1215     while (align_bytes) {
1216         int64_t pnum;
1217 
1218         if (skip_write) {
1219             ret = 1; /* "already allocated", so nothing will be copied */
1220             pnum = MIN(align_bytes, max_transfer);
1221         } else {
1222             ret = bdrv_co_is_allocated(bs, align_offset,
1223                                        MIN(align_bytes, max_transfer), &pnum);
1224             if (ret < 0) {
1225                 /*
1226                  * Safe to treat errors in querying allocation as if
1227                  * unallocated; we'll probably fail again soon on the
1228                  * read, but at least that will set a decent errno.
1229                  */
1230                 pnum = MIN(align_bytes, max_transfer);
1231             }
1232 
1233             /* Stop at EOF if the image ends in the middle of the cluster */
1234             if (ret == 0 && pnum == 0) {
1235                 assert(progress >= bytes);
1236                 break;
1237             }
1238 
1239             assert(skip_bytes < pnum);
1240         }
1241 
1242         if (ret <= 0) {
1243             QEMUIOVector local_qiov;
1244 
1245             /* Must copy-on-read; use the bounce buffer */
1246             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1247             if (!bounce_buffer) {
1248                 int64_t max_we_need = MAX(pnum, align_bytes - pnum);
1249                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1250                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1251 
1252                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1253                 if (!bounce_buffer) {
1254                     ret = -ENOMEM;
1255                     goto err;
1256                 }
1257             }
1258             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1259 
1260             ret = bdrv_driver_preadv(bs, align_offset, pnum,
1261                                      &local_qiov, 0, 0);
1262             if (ret < 0) {
1263                 goto err;
1264             }
1265 
1266             bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1267             if (drv->bdrv_co_pwrite_zeroes &&
1268                 buffer_is_zero(bounce_buffer, pnum)) {
1269                 /* FIXME: Should we (perhaps conditionally) be setting
1270                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1271                  * that still correctly reads as zero? */
1272                 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum,
1273                                                BDRV_REQ_WRITE_UNCHANGED);
1274             } else {
1275                 /* This does not change the data on the disk, it is not
1276                  * necessary to flush even in cache=writethrough mode.
1277                  */
1278                 ret = bdrv_driver_pwritev(bs, align_offset, pnum,
1279                                           &local_qiov, 0,
1280                                           BDRV_REQ_WRITE_UNCHANGED);
1281             }
1282 
1283             if (ret < 0) {
1284                 /* It might be okay to ignore write errors for guest
1285                  * requests.  If this is a deliberate copy-on-read
1286                  * then we don't want to ignore the error.  Simply
1287                  * report it in all cases.
1288                  */
1289                 goto err;
1290             }
1291 
1292             if (!(flags & BDRV_REQ_PREFETCH)) {
1293                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1294                                     bounce_buffer + skip_bytes,
1295                                     MIN(pnum - skip_bytes, bytes - progress));
1296             }
1297         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1298             /* Read directly into the destination */
1299             ret = bdrv_driver_preadv(bs, offset + progress,
1300                                      MIN(pnum - skip_bytes, bytes - progress),
1301                                      qiov, qiov_offset + progress, 0);
1302             if (ret < 0) {
1303                 goto err;
1304             }
1305         }
1306 
1307         align_offset += pnum;
1308         align_bytes -= pnum;
1309         progress += pnum - skip_bytes;
1310         skip_bytes = 0;
1311     }
1312     ret = 0;
1313 
1314 err:
1315     qemu_vfree(bounce_buffer);
1316     return ret;
1317 }
1318 
1319 /*
1320  * Forwards an already correctly aligned request to the BlockDriver. This
1321  * handles copy on read, zeroing after EOF, and fragmentation of large
1322  * reads; any other features must be implemented by the caller.
1323  */
1324 static int coroutine_fn GRAPH_RDLOCK
1325 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1326                     int64_t offset, int64_t bytes, int64_t align,
1327                     QEMUIOVector *qiov, size_t qiov_offset, int flags)
1328 {
1329     BlockDriverState *bs = child->bs;
1330     int64_t total_bytes, max_bytes;
1331     int ret = 0;
1332     int64_t bytes_remaining = bytes;
1333     int max_transfer;
1334 
1335     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1336     assert(is_power_of_2(align));
1337     assert((offset & (align - 1)) == 0);
1338     assert((bytes & (align - 1)) == 0);
1339     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1340     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1341                                    align);
1342 
1343     /*
1344      * TODO: We would need a per-BDS .supported_read_flags and
1345      * potential fallback support, if we ever implement any read flags
1346      * to pass through to drivers.  For now, there aren't any
1347      * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1348      */
1349     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1350                        BDRV_REQ_REGISTERED_BUF)));
1351 
1352     /* Handle Copy on Read and associated serialisation */
1353     if (flags & BDRV_REQ_COPY_ON_READ) {
1354         /* If we touch the same cluster it counts as an overlap.  This
1355          * guarantees that allocating writes will be serialized and not race
1356          * with each other for the same cluster.  For example, in copy-on-read
1357          * it ensures that the CoR read and write operations are atomic and
1358          * guest writes cannot interleave between them. */
1359         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1360     } else {
1361         bdrv_wait_serialising_requests(req);
1362     }
1363 
1364     if (flags & BDRV_REQ_COPY_ON_READ) {
1365         int64_t pnum;
1366 
1367         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1368         flags &= ~BDRV_REQ_COPY_ON_READ;
1369 
1370         ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum);
1371         if (ret < 0) {
1372             goto out;
1373         }
1374 
1375         if (!ret || pnum != bytes) {
1376             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1377                                            qiov, qiov_offset, flags);
1378             goto out;
1379         } else if (flags & BDRV_REQ_PREFETCH) {
1380             goto out;
1381         }
1382     }
1383 
1384     /* Forward the request to the BlockDriver, possibly fragmenting it */
1385     total_bytes = bdrv_co_getlength(bs);
1386     if (total_bytes < 0) {
1387         ret = total_bytes;
1388         goto out;
1389     }
1390 
1391     assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1392 
1393     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1394     if (bytes <= max_bytes && bytes <= max_transfer) {
1395         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1396         goto out;
1397     }
1398 
1399     while (bytes_remaining) {
1400         int64_t num;
1401 
1402         if (max_bytes) {
1403             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1404             assert(num);
1405 
1406             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1407                                      num, qiov,
1408                                      qiov_offset + bytes - bytes_remaining,
1409                                      flags);
1410             max_bytes -= num;
1411         } else {
1412             num = bytes_remaining;
1413             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1414                                     0, bytes_remaining);
1415         }
1416         if (ret < 0) {
1417             goto out;
1418         }
1419         bytes_remaining -= num;
1420     }
1421 
1422 out:
1423     return ret < 0 ? ret : 0;
1424 }
1425 
1426 /*
1427  * Request padding
1428  *
1429  *  |<---- align ----->|                     |<----- align ---->|
1430  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1431  *  |          |       |                     |     |            |
1432  * -*----------$-------*-------- ... --------*-----$------------*---
1433  *  |          |       |                     |     |            |
1434  *  |          offset  |                     |     end          |
1435  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1436  *  [buf   ... )                             [tail_buf          )
1437  *
1438  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1439  * is placed at the beginning of @buf and @tail at the @end.
1440  *
1441  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1442  * around tail, if tail exists.
1443  *
1444  * @merge_reads is true for small requests,
1445  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1446  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1447  *
1448  * @write is true for write requests, false for read requests.
1449  *
1450  * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1451  * merge existing vector elements into a single one.  @collapse_bounce_buf acts
1452  * as the bounce buffer in such cases.  @pre_collapse_qiov has the pre-collapse
1453  * I/O vector elements so for read requests, the data can be copied back after
1454  * the read is done.
1455  */
1456 typedef struct BdrvRequestPadding {
1457     uint8_t *buf;
1458     size_t buf_len;
1459     uint8_t *tail_buf;
1460     size_t head;
1461     size_t tail;
1462     bool merge_reads;
1463     bool write;
1464     QEMUIOVector local_qiov;
1465 
1466     uint8_t *collapse_bounce_buf;
1467     size_t collapse_len;
1468     QEMUIOVector pre_collapse_qiov;
1469 } BdrvRequestPadding;
1470 
1471 static bool bdrv_init_padding(BlockDriverState *bs,
1472                               int64_t offset, int64_t bytes,
1473                               bool write,
1474                               BdrvRequestPadding *pad)
1475 {
1476     int64_t align = bs->bl.request_alignment;
1477     int64_t sum;
1478 
1479     bdrv_check_request(offset, bytes, &error_abort);
1480     assert(align <= INT_MAX); /* documented in block/block_int.h */
1481     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1482 
1483     memset(pad, 0, sizeof(*pad));
1484 
1485     pad->head = offset & (align - 1);
1486     pad->tail = ((offset + bytes) & (align - 1));
1487     if (pad->tail) {
1488         pad->tail = align - pad->tail;
1489     }
1490 
1491     if (!pad->head && !pad->tail) {
1492         return false;
1493     }
1494 
1495     assert(bytes); /* Nothing good in aligning zero-length requests */
1496 
1497     sum = pad->head + bytes + pad->tail;
1498     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1499     pad->buf = qemu_blockalign(bs, pad->buf_len);
1500     pad->merge_reads = sum == pad->buf_len;
1501     if (pad->tail) {
1502         pad->tail_buf = pad->buf + pad->buf_len - align;
1503     }
1504 
1505     pad->write = write;
1506 
1507     return true;
1508 }
1509 
1510 static int coroutine_fn GRAPH_RDLOCK
1511 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1512                       BdrvRequestPadding *pad, bool zero_middle)
1513 {
1514     QEMUIOVector local_qiov;
1515     BlockDriverState *bs = child->bs;
1516     uint64_t align = bs->bl.request_alignment;
1517     int ret;
1518 
1519     assert(req->serialising && pad->buf);
1520 
1521     if (pad->head || pad->merge_reads) {
1522         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1523 
1524         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1525 
1526         if (pad->head) {
1527             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1528         }
1529         if (pad->merge_reads && pad->tail) {
1530             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1531         }
1532         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1533                                   align, &local_qiov, 0, 0);
1534         if (ret < 0) {
1535             return ret;
1536         }
1537         if (pad->head) {
1538             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1539         }
1540         if (pad->merge_reads && pad->tail) {
1541             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1542         }
1543 
1544         if (pad->merge_reads) {
1545             goto zero_mem;
1546         }
1547     }
1548 
1549     if (pad->tail) {
1550         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1551 
1552         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1553         ret = bdrv_aligned_preadv(
1554                 child, req,
1555                 req->overlap_offset + req->overlap_bytes - align,
1556                 align, align, &local_qiov, 0, 0);
1557         if (ret < 0) {
1558             return ret;
1559         }
1560         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1561     }
1562 
1563 zero_mem:
1564     if (zero_middle) {
1565         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1566     }
1567 
1568     return 0;
1569 }
1570 
1571 /**
1572  * Free *pad's associated buffers, and perform any necessary finalization steps.
1573  */
1574 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1575 {
1576     if (pad->collapse_bounce_buf) {
1577         if (!pad->write) {
1578             /*
1579              * If padding required elements in the vector to be collapsed into a
1580              * bounce buffer, copy the bounce buffer content back
1581              */
1582             qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1583                                 pad->collapse_bounce_buf, pad->collapse_len);
1584         }
1585         qemu_vfree(pad->collapse_bounce_buf);
1586         qemu_iovec_destroy(&pad->pre_collapse_qiov);
1587     }
1588     if (pad->buf) {
1589         qemu_vfree(pad->buf);
1590         qemu_iovec_destroy(&pad->local_qiov);
1591     }
1592     memset(pad, 0, sizeof(*pad));
1593 }
1594 
1595 /*
1596  * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1597  * ensuring that the resulting vector will not exceed IOV_MAX elements.
1598  *
1599  * To ensure this, when necessary, the first two or three elements of @iov are
1600  * merged into pad->collapse_bounce_buf and replaced by a reference to that
1601  * bounce buffer in pad->local_qiov.
1602  *
1603  * After performing a read request, the data from the bounce buffer must be
1604  * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1605  */
1606 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1607                                    BdrvRequestPadding *pad,
1608                                    struct iovec *iov, int niov,
1609                                    size_t iov_offset, size_t bytes)
1610 {
1611     int padded_niov, surplus_count, collapse_count;
1612 
1613     /* Assert this invariant */
1614     assert(niov <= IOV_MAX);
1615 
1616     /*
1617      * Cannot pad if resulting length would exceed SIZE_MAX.  Returning an error
1618      * to the guest is not ideal, but there is little else we can do.  At least
1619      * this will practically never happen on 64-bit systems.
1620      */
1621     if (SIZE_MAX - pad->head < bytes ||
1622         SIZE_MAX - pad->head - bytes < pad->tail)
1623     {
1624         return -EINVAL;
1625     }
1626 
1627     /* Length of the resulting IOV if we just concatenated everything */
1628     padded_niov = !!pad->head + niov + !!pad->tail;
1629 
1630     qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1631 
1632     if (pad->head) {
1633         qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1634     }
1635 
1636     /*
1637      * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1638      * Instead, merge the first two or three elements of @iov to reduce the
1639      * number of vector elements as necessary.
1640      */
1641     if (padded_niov > IOV_MAX) {
1642         /*
1643          * Only head and tail can have lead to the number of entries exceeding
1644          * IOV_MAX, so we can exceed it by the head and tail at most.  We need
1645          * to reduce the number of elements by `surplus_count`, so we merge that
1646          * many elements plus one into one element.
1647          */
1648         surplus_count = padded_niov - IOV_MAX;
1649         assert(surplus_count <= !!pad->head + !!pad->tail);
1650         collapse_count = surplus_count + 1;
1651 
1652         /*
1653          * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1654          * advance `iov` (and associated variables) by those elements.
1655          */
1656         qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1657         qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1658                               collapse_count, iov_offset, SIZE_MAX);
1659         iov += collapse_count;
1660         iov_offset = 0;
1661         niov -= collapse_count;
1662         bytes -= pad->pre_collapse_qiov.size;
1663 
1664         /*
1665          * Construct the bounce buffer to match the length of the to-collapse
1666          * vector elements, and for write requests, initialize it with the data
1667          * from those elements.  Then add it to `pad->local_qiov`.
1668          */
1669         pad->collapse_len = pad->pre_collapse_qiov.size;
1670         pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1671         if (pad->write) {
1672             qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1673                               pad->collapse_bounce_buf, pad->collapse_len);
1674         }
1675         qemu_iovec_add(&pad->local_qiov,
1676                        pad->collapse_bounce_buf, pad->collapse_len);
1677     }
1678 
1679     qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1680 
1681     if (pad->tail) {
1682         qemu_iovec_add(&pad->local_qiov,
1683                        pad->buf + pad->buf_len - pad->tail, pad->tail);
1684     }
1685 
1686     assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1687     return 0;
1688 }
1689 
1690 /*
1691  * bdrv_pad_request
1692  *
1693  * Exchange request parameters with padded request if needed. Don't include RMW
1694  * read of padding, bdrv_padding_rmw_read() should be called separately if
1695  * needed.
1696  *
1697  * @write is true for write requests, false for read requests.
1698  *
1699  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1700  *  - on function start they represent original request
1701  *  - on failure or when padding is not needed they are unchanged
1702  *  - on success when padding is needed they represent padded request
1703  */
1704 static int bdrv_pad_request(BlockDriverState *bs,
1705                             QEMUIOVector **qiov, size_t *qiov_offset,
1706                             int64_t *offset, int64_t *bytes,
1707                             bool write,
1708                             BdrvRequestPadding *pad, bool *padded,
1709                             BdrvRequestFlags *flags)
1710 {
1711     int ret;
1712     struct iovec *sliced_iov;
1713     int sliced_niov;
1714     size_t sliced_head, sliced_tail;
1715 
1716     /* Should have been checked by the caller already */
1717     ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1718     if (ret < 0) {
1719         return ret;
1720     }
1721 
1722     if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1723         if (padded) {
1724             *padded = false;
1725         }
1726         return 0;
1727     }
1728 
1729     sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1730                                   &sliced_head, &sliced_tail,
1731                                   &sliced_niov);
1732 
1733     /* Guaranteed by bdrv_check_request32() */
1734     assert(*bytes <= SIZE_MAX);
1735     ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1736                                   sliced_head, *bytes);
1737     if (ret < 0) {
1738         bdrv_padding_finalize(pad);
1739         return ret;
1740     }
1741     *bytes += pad->head + pad->tail;
1742     *offset -= pad->head;
1743     *qiov = &pad->local_qiov;
1744     *qiov_offset = 0;
1745     if (padded) {
1746         *padded = true;
1747     }
1748     if (flags) {
1749         /* Can't use optimization hint with bounce buffer */
1750         *flags &= ~BDRV_REQ_REGISTERED_BUF;
1751     }
1752 
1753     return 0;
1754 }
1755 
1756 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1757     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1758     BdrvRequestFlags flags)
1759 {
1760     IO_CODE();
1761     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1762 }
1763 
1764 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1765     int64_t offset, int64_t bytes,
1766     QEMUIOVector *qiov, size_t qiov_offset,
1767     BdrvRequestFlags flags)
1768 {
1769     BlockDriverState *bs = child->bs;
1770     BdrvTrackedRequest req;
1771     BdrvRequestPadding pad;
1772     int ret;
1773     IO_CODE();
1774 
1775     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1776 
1777     if (!bdrv_co_is_inserted(bs)) {
1778         return -ENOMEDIUM;
1779     }
1780 
1781     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1782     if (ret < 0) {
1783         return ret;
1784     }
1785 
1786     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1787         /*
1788          * Aligning zero request is nonsense. Even if driver has special meaning
1789          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1790          * it to driver due to request_alignment.
1791          *
1792          * Still, no reason to return an error if someone do unaligned
1793          * zero-length read occasionally.
1794          */
1795         return 0;
1796     }
1797 
1798     bdrv_inc_in_flight(bs);
1799 
1800     /* Don't do copy-on-read if we read data before write operation */
1801     if (qatomic_read(&bs->copy_on_read)) {
1802         flags |= BDRV_REQ_COPY_ON_READ;
1803     }
1804 
1805     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1806                            &pad, NULL, &flags);
1807     if (ret < 0) {
1808         goto fail;
1809     }
1810 
1811     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1812     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1813                               bs->bl.request_alignment,
1814                               qiov, qiov_offset, flags);
1815     tracked_request_end(&req);
1816     bdrv_padding_finalize(&pad);
1817 
1818 fail:
1819     bdrv_dec_in_flight(bs);
1820 
1821     return ret;
1822 }
1823 
1824 static int coroutine_fn GRAPH_RDLOCK
1825 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1826                          BdrvRequestFlags flags)
1827 {
1828     BlockDriver *drv = bs->drv;
1829     QEMUIOVector qiov;
1830     void *buf = NULL;
1831     int ret = 0;
1832     bool need_flush = false;
1833     int head = 0;
1834     int tail = 0;
1835 
1836     int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1837                                             INT64_MAX);
1838     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1839                         bs->bl.request_alignment);
1840     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1841 
1842     assert_bdrv_graph_readable();
1843     bdrv_check_request(offset, bytes, &error_abort);
1844 
1845     if (!drv) {
1846         return -ENOMEDIUM;
1847     }
1848 
1849     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1850         return -ENOTSUP;
1851     }
1852 
1853     /* By definition there is no user buffer so this flag doesn't make sense */
1854     if (flags & BDRV_REQ_REGISTERED_BUF) {
1855         return -EINVAL;
1856     }
1857 
1858     /* Invalidate the cached block-status data range if this write overlaps */
1859     bdrv_bsc_invalidate_range(bs, offset, bytes);
1860 
1861     assert(alignment % bs->bl.request_alignment == 0);
1862     head = offset % alignment;
1863     tail = (offset + bytes) % alignment;
1864     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1865     assert(max_write_zeroes >= bs->bl.request_alignment);
1866 
1867     while (bytes > 0 && !ret) {
1868         int64_t num = bytes;
1869 
1870         /* Align request.  Block drivers can expect the "bulk" of the request
1871          * to be aligned, and that unaligned requests do not cross cluster
1872          * boundaries.
1873          */
1874         if (head) {
1875             /* Make a small request up to the first aligned sector. For
1876              * convenience, limit this request to max_transfer even if
1877              * we don't need to fall back to writes.  */
1878             num = MIN(MIN(bytes, max_transfer), alignment - head);
1879             head = (head + num) % alignment;
1880             assert(num < max_write_zeroes);
1881         } else if (tail && num > alignment) {
1882             /* Shorten the request to the last aligned sector.  */
1883             num -= tail;
1884         }
1885 
1886         /* limit request size */
1887         if (num > max_write_zeroes) {
1888             num = max_write_zeroes;
1889         }
1890 
1891         ret = -ENOTSUP;
1892         /* First try the efficient write zeroes operation */
1893         if (drv->bdrv_co_pwrite_zeroes) {
1894             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1895                                              flags & bs->supported_zero_flags);
1896             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1897                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1898                 need_flush = true;
1899             }
1900         } else {
1901             assert(!bs->supported_zero_flags);
1902         }
1903 
1904         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1905             /* Fall back to bounce buffer if write zeroes is unsupported */
1906             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1907 
1908             if ((flags & BDRV_REQ_FUA) &&
1909                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1910                 /* No need for bdrv_driver_pwrite() to do a fallback
1911                  * flush on each chunk; use just one at the end */
1912                 write_flags &= ~BDRV_REQ_FUA;
1913                 need_flush = true;
1914             }
1915             num = MIN(num, max_transfer);
1916             if (buf == NULL) {
1917                 buf = qemu_try_blockalign0(bs, num);
1918                 if (buf == NULL) {
1919                     ret = -ENOMEM;
1920                     goto fail;
1921                 }
1922             }
1923             qemu_iovec_init_buf(&qiov, buf, num);
1924 
1925             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1926 
1927             /* Keep bounce buffer around if it is big enough for all
1928              * all future requests.
1929              */
1930             if (num < max_transfer) {
1931                 qemu_vfree(buf);
1932                 buf = NULL;
1933             }
1934         }
1935 
1936         offset += num;
1937         bytes -= num;
1938     }
1939 
1940 fail:
1941     if (ret == 0 && need_flush) {
1942         ret = bdrv_co_flush(bs);
1943     }
1944     qemu_vfree(buf);
1945     return ret;
1946 }
1947 
1948 static inline int coroutine_fn GRAPH_RDLOCK
1949 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1950                           BdrvTrackedRequest *req, int flags)
1951 {
1952     BlockDriverState *bs = child->bs;
1953 
1954     bdrv_check_request(offset, bytes, &error_abort);
1955 
1956     if (bdrv_is_read_only(bs)) {
1957         return -EPERM;
1958     }
1959 
1960     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1961     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1962     assert(!(flags & ~BDRV_REQ_MASK));
1963     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1964 
1965     if (flags & BDRV_REQ_SERIALISING) {
1966         QEMU_LOCK_GUARD(&bs->reqs_lock);
1967 
1968         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1969 
1970         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1971             return -EBUSY;
1972         }
1973 
1974         bdrv_wait_serialising_requests_locked(req);
1975     } else {
1976         bdrv_wait_serialising_requests(req);
1977     }
1978 
1979     assert(req->overlap_offset <= offset);
1980     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1981     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1982            child->perm & BLK_PERM_RESIZE);
1983 
1984     switch (req->type) {
1985     case BDRV_TRACKED_WRITE:
1986     case BDRV_TRACKED_DISCARD:
1987         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1988             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1989         } else {
1990             assert(child->perm & BLK_PERM_WRITE);
1991         }
1992         bdrv_write_threshold_check_write(bs, offset, bytes);
1993         return 0;
1994     case BDRV_TRACKED_TRUNCATE:
1995         assert(child->perm & BLK_PERM_RESIZE);
1996         return 0;
1997     default:
1998         abort();
1999     }
2000 }
2001 
2002 static inline void coroutine_fn GRAPH_RDLOCK
2003 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2004                          BdrvTrackedRequest *req, int ret)
2005 {
2006     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2007     BlockDriverState *bs = child->bs;
2008 
2009     bdrv_check_request(offset, bytes, &error_abort);
2010 
2011     qatomic_inc(&bs->write_gen);
2012 
2013     /*
2014      * Discard cannot extend the image, but in error handling cases, such as
2015      * when reverting a qcow2 cluster allocation, the discarded range can pass
2016      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2017      * here. Instead, just skip it, since semantically a discard request
2018      * beyond EOF cannot expand the image anyway.
2019      */
2020     if (ret == 0 &&
2021         (req->type == BDRV_TRACKED_TRUNCATE ||
2022          end_sector > bs->total_sectors) &&
2023         req->type != BDRV_TRACKED_DISCARD) {
2024         bs->total_sectors = end_sector;
2025         bdrv_parent_cb_resize(bs);
2026         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2027     }
2028     if (req->bytes) {
2029         switch (req->type) {
2030         case BDRV_TRACKED_WRITE:
2031             stat64_max(&bs->wr_highest_offset, offset + bytes);
2032             /* fall through, to set dirty bits */
2033         case BDRV_TRACKED_DISCARD:
2034             bdrv_set_dirty(bs, offset, bytes);
2035             break;
2036         default:
2037             break;
2038         }
2039     }
2040 }
2041 
2042 /*
2043  * Forwards an already correctly aligned write request to the BlockDriver,
2044  * after possibly fragmenting it.
2045  */
2046 static int coroutine_fn GRAPH_RDLOCK
2047 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2048                      int64_t offset, int64_t bytes, int64_t align,
2049                      QEMUIOVector *qiov, size_t qiov_offset,
2050                      BdrvRequestFlags flags)
2051 {
2052     BlockDriverState *bs = child->bs;
2053     BlockDriver *drv = bs->drv;
2054     int ret;
2055 
2056     int64_t bytes_remaining = bytes;
2057     int max_transfer;
2058 
2059     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2060 
2061     if (!drv) {
2062         return -ENOMEDIUM;
2063     }
2064 
2065     if (bdrv_has_readonly_bitmaps(bs)) {
2066         return -EPERM;
2067     }
2068 
2069     assert(is_power_of_2(align));
2070     assert((offset & (align - 1)) == 0);
2071     assert((bytes & (align - 1)) == 0);
2072     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2073                                    align);
2074 
2075     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2076 
2077     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2078         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2079         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2080         flags |= BDRV_REQ_ZERO_WRITE;
2081         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2082             flags |= BDRV_REQ_MAY_UNMAP;
2083         }
2084 
2085         /* Can't use optimization hint with bufferless zero write */
2086         flags &= ~BDRV_REQ_REGISTERED_BUF;
2087     }
2088 
2089     if (ret < 0) {
2090         /* Do nothing, write notifier decided to fail this request */
2091     } else if (flags & BDRV_REQ_ZERO_WRITE) {
2092         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2093         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2094     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2095         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2096                                              qiov, qiov_offset);
2097     } else if (bytes <= max_transfer) {
2098         bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2099         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2100     } else {
2101         bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2102         while (bytes_remaining) {
2103             int num = MIN(bytes_remaining, max_transfer);
2104             int local_flags = flags;
2105 
2106             assert(num);
2107             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2108                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2109                 /* If FUA is going to be emulated by flush, we only
2110                  * need to flush on the last iteration */
2111                 local_flags &= ~BDRV_REQ_FUA;
2112             }
2113 
2114             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2115                                       num, qiov,
2116                                       qiov_offset + bytes - bytes_remaining,
2117                                       local_flags);
2118             if (ret < 0) {
2119                 break;
2120             }
2121             bytes_remaining -= num;
2122         }
2123     }
2124     bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2125 
2126     if (ret >= 0) {
2127         ret = 0;
2128     }
2129     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2130 
2131     return ret;
2132 }
2133 
2134 static int coroutine_fn GRAPH_RDLOCK
2135 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2136                         BdrvRequestFlags flags, BdrvTrackedRequest *req)
2137 {
2138     BlockDriverState *bs = child->bs;
2139     QEMUIOVector local_qiov;
2140     uint64_t align = bs->bl.request_alignment;
2141     int ret = 0;
2142     bool padding;
2143     BdrvRequestPadding pad;
2144 
2145     /* This flag doesn't make sense for padding or zero writes */
2146     flags &= ~BDRV_REQ_REGISTERED_BUF;
2147 
2148     padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2149     if (padding) {
2150         assert(!(flags & BDRV_REQ_NO_WAIT));
2151         bdrv_make_request_serialising(req, align);
2152 
2153         bdrv_padding_rmw_read(child, req, &pad, true);
2154 
2155         if (pad.head || pad.merge_reads) {
2156             int64_t aligned_offset = offset & ~(align - 1);
2157             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2158 
2159             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2160             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2161                                        align, &local_qiov, 0,
2162                                        flags & ~BDRV_REQ_ZERO_WRITE);
2163             if (ret < 0 || pad.merge_reads) {
2164                 /* Error or all work is done */
2165                 goto out;
2166             }
2167             offset += write_bytes - pad.head;
2168             bytes -= write_bytes - pad.head;
2169         }
2170     }
2171 
2172     assert(!bytes || (offset & (align - 1)) == 0);
2173     if (bytes >= align) {
2174         /* Write the aligned part in the middle. */
2175         int64_t aligned_bytes = bytes & ~(align - 1);
2176         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2177                                    NULL, 0, flags);
2178         if (ret < 0) {
2179             goto out;
2180         }
2181         bytes -= aligned_bytes;
2182         offset += aligned_bytes;
2183     }
2184 
2185     assert(!bytes || (offset & (align - 1)) == 0);
2186     if (bytes) {
2187         assert(align == pad.tail + bytes);
2188 
2189         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2190         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2191                                    &local_qiov, 0,
2192                                    flags & ~BDRV_REQ_ZERO_WRITE);
2193     }
2194 
2195 out:
2196     bdrv_padding_finalize(&pad);
2197 
2198     return ret;
2199 }
2200 
2201 /*
2202  * Handle a write request in coroutine context
2203  */
2204 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2205     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2206     BdrvRequestFlags flags)
2207 {
2208     IO_CODE();
2209     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2210 }
2211 
2212 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2213     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2214     BdrvRequestFlags flags)
2215 {
2216     BlockDriverState *bs = child->bs;
2217     BdrvTrackedRequest req;
2218     uint64_t align = bs->bl.request_alignment;
2219     BdrvRequestPadding pad;
2220     int ret;
2221     bool padded = false;
2222     IO_CODE();
2223 
2224     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2225 
2226     if (!bdrv_co_is_inserted(bs)) {
2227         return -ENOMEDIUM;
2228     }
2229 
2230     if (flags & BDRV_REQ_ZERO_WRITE) {
2231         ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2232     } else {
2233         ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2234     }
2235     if (ret < 0) {
2236         return ret;
2237     }
2238 
2239     /* If the request is misaligned then we can't make it efficient */
2240     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2241         !QEMU_IS_ALIGNED(offset | bytes, align))
2242     {
2243         return -ENOTSUP;
2244     }
2245 
2246     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2247         /*
2248          * Aligning zero request is nonsense. Even if driver has special meaning
2249          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2250          * it to driver due to request_alignment.
2251          *
2252          * Still, no reason to return an error if someone do unaligned
2253          * zero-length write occasionally.
2254          */
2255         return 0;
2256     }
2257 
2258     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2259         /*
2260          * Pad request for following read-modify-write cycle.
2261          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2262          * alignment only if there is no ZERO flag.
2263          */
2264         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2265                                &pad, &padded, &flags);
2266         if (ret < 0) {
2267             return ret;
2268         }
2269     }
2270 
2271     bdrv_inc_in_flight(bs);
2272     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2273 
2274     if (flags & BDRV_REQ_ZERO_WRITE) {
2275         assert(!padded);
2276         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2277         goto out;
2278     }
2279 
2280     if (padded) {
2281         /*
2282          * Request was unaligned to request_alignment and therefore
2283          * padded.  We are going to do read-modify-write, and must
2284          * serialize the request to prevent interactions of the
2285          * widened region with other transactions.
2286          */
2287         assert(!(flags & BDRV_REQ_NO_WAIT));
2288         bdrv_make_request_serialising(&req, align);
2289         bdrv_padding_rmw_read(child, &req, &pad, false);
2290     }
2291 
2292     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2293                                qiov, qiov_offset, flags);
2294 
2295     bdrv_padding_finalize(&pad);
2296 
2297 out:
2298     tracked_request_end(&req);
2299     bdrv_dec_in_flight(bs);
2300 
2301     return ret;
2302 }
2303 
2304 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2305                                        int64_t bytes, BdrvRequestFlags flags)
2306 {
2307     IO_CODE();
2308     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2309     assert_bdrv_graph_readable();
2310 
2311     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2312         flags &= ~BDRV_REQ_MAY_UNMAP;
2313     }
2314 
2315     return bdrv_co_pwritev(child, offset, bytes, NULL,
2316                            BDRV_REQ_ZERO_WRITE | flags);
2317 }
2318 
2319 /*
2320  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2321  */
2322 int bdrv_flush_all(void)
2323 {
2324     BdrvNextIterator it;
2325     BlockDriverState *bs = NULL;
2326     int result = 0;
2327 
2328     GLOBAL_STATE_CODE();
2329     GRAPH_RDLOCK_GUARD_MAINLOOP();
2330 
2331     /*
2332      * bdrv queue is managed by record/replay,
2333      * creating new flush request for stopping
2334      * the VM may break the determinism
2335      */
2336     if (replay_events_enabled()) {
2337         return result;
2338     }
2339 
2340     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2341         int ret = bdrv_flush(bs);
2342         if (ret < 0 && !result) {
2343             result = ret;
2344         }
2345     }
2346 
2347     return result;
2348 }
2349 
2350 /*
2351  * Returns the allocation status of the specified sectors.
2352  * Drivers not implementing the functionality are assumed to not support
2353  * backing files, hence all their sectors are reported as allocated.
2354  *
2355  * If 'want_zero' is true, the caller is querying for mapping
2356  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2357  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2358  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2359  *
2360  * If 'offset' is beyond the end of the disk image the return value is
2361  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2362  *
2363  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2364  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2365  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2366  *
2367  * 'pnum' is set to the number of bytes (including and immediately
2368  * following the specified offset) that are easily known to be in the
2369  * same allocated/unallocated state.  Note that a second call starting
2370  * at the original offset plus returned pnum may have the same status.
2371  * The returned value is non-zero on success except at end-of-file.
2372  *
2373  * Returns negative errno on failure.  Otherwise, if the
2374  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2375  * set to the host mapping and BDS corresponding to the guest offset.
2376  */
2377 static int coroutine_fn GRAPH_RDLOCK
2378 bdrv_co_do_block_status(BlockDriverState *bs, bool want_zero,
2379                         int64_t offset, int64_t bytes,
2380                         int64_t *pnum, int64_t *map, BlockDriverState **file)
2381 {
2382     int64_t total_size;
2383     int64_t n; /* bytes */
2384     int ret;
2385     int64_t local_map = 0;
2386     BlockDriverState *local_file = NULL;
2387     int64_t aligned_offset, aligned_bytes;
2388     uint32_t align;
2389     bool has_filtered_child;
2390 
2391     assert(pnum);
2392     assert_bdrv_graph_readable();
2393     *pnum = 0;
2394     total_size = bdrv_co_getlength(bs);
2395     if (total_size < 0) {
2396         ret = total_size;
2397         goto early_out;
2398     }
2399 
2400     if (offset >= total_size) {
2401         ret = BDRV_BLOCK_EOF;
2402         goto early_out;
2403     }
2404     if (!bytes) {
2405         ret = 0;
2406         goto early_out;
2407     }
2408 
2409     n = total_size - offset;
2410     if (n < bytes) {
2411         bytes = n;
2412     }
2413 
2414     /* Must be non-NULL or bdrv_co_getlength() would have failed */
2415     assert(bs->drv);
2416     has_filtered_child = bdrv_filter_child(bs);
2417     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2418         *pnum = bytes;
2419         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2420         if (offset + bytes == total_size) {
2421             ret |= BDRV_BLOCK_EOF;
2422         }
2423         if (bs->drv->protocol_name) {
2424             ret |= BDRV_BLOCK_OFFSET_VALID;
2425             local_map = offset;
2426             local_file = bs;
2427         }
2428         goto early_out;
2429     }
2430 
2431     bdrv_inc_in_flight(bs);
2432 
2433     /* Round out to request_alignment boundaries */
2434     align = bs->bl.request_alignment;
2435     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2436     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2437 
2438     if (bs->drv->bdrv_co_block_status) {
2439         /*
2440          * Use the block-status cache only for protocol nodes: Format
2441          * drivers are generally quick to inquire the status, but protocol
2442          * drivers often need to get information from outside of qemu, so
2443          * we do not have control over the actual implementation.  There
2444          * have been cases where inquiring the status took an unreasonably
2445          * long time, and we can do nothing in qemu to fix it.
2446          * This is especially problematic for images with large data areas,
2447          * because finding the few holes in them and giving them special
2448          * treatment does not gain much performance.  Therefore, we try to
2449          * cache the last-identified data region.
2450          *
2451          * Second, limiting ourselves to protocol nodes allows us to assume
2452          * the block status for data regions to be DATA | OFFSET_VALID, and
2453          * that the host offset is the same as the guest offset.
2454          *
2455          * Note that it is possible that external writers zero parts of
2456          * the cached regions without the cache being invalidated, and so
2457          * we may report zeroes as data.  This is not catastrophic,
2458          * however, because reporting zeroes as data is fine.
2459          */
2460         if (QLIST_EMPTY(&bs->children) &&
2461             bdrv_bsc_is_data(bs, aligned_offset, pnum))
2462         {
2463             ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2464             local_file = bs;
2465             local_map = aligned_offset;
2466         } else {
2467             ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2468                                                 aligned_bytes, pnum, &local_map,
2469                                                 &local_file);
2470 
2471             /*
2472              * Note that checking QLIST_EMPTY(&bs->children) is also done when
2473              * the cache is queried above.  Technically, we do not need to check
2474              * it here; the worst that can happen is that we fill the cache for
2475              * non-protocol nodes, and then it is never used.  However, filling
2476              * the cache requires an RCU update, so double check here to avoid
2477              * such an update if possible.
2478              *
2479              * Check want_zero, because we only want to update the cache when we
2480              * have accurate information about what is zero and what is data.
2481              */
2482             if (want_zero &&
2483                 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2484                 QLIST_EMPTY(&bs->children))
2485             {
2486                 /*
2487                  * When a protocol driver reports BLOCK_OFFSET_VALID, the
2488                  * returned local_map value must be the same as the offset we
2489                  * have passed (aligned_offset), and local_bs must be the node
2490                  * itself.
2491                  * Assert this, because we follow this rule when reading from
2492                  * the cache (see the `local_file = bs` and
2493                  * `local_map = aligned_offset` assignments above), and the
2494                  * result the cache delivers must be the same as the driver
2495                  * would deliver.
2496                  */
2497                 assert(local_file == bs);
2498                 assert(local_map == aligned_offset);
2499                 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2500             }
2501         }
2502     } else {
2503         /* Default code for filters */
2504 
2505         local_file = bdrv_filter_bs(bs);
2506         assert(local_file);
2507 
2508         *pnum = aligned_bytes;
2509         local_map = aligned_offset;
2510         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2511     }
2512     if (ret < 0) {
2513         *pnum = 0;
2514         goto out;
2515     }
2516 
2517     /*
2518      * The driver's result must be a non-zero multiple of request_alignment.
2519      * Clamp pnum and adjust map to original request.
2520      */
2521     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2522            align > offset - aligned_offset);
2523     if (ret & BDRV_BLOCK_RECURSE) {
2524         assert(ret & BDRV_BLOCK_DATA);
2525         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2526         assert(!(ret & BDRV_BLOCK_ZERO));
2527     }
2528 
2529     *pnum -= offset - aligned_offset;
2530     if (*pnum > bytes) {
2531         *pnum = bytes;
2532     }
2533     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2534         local_map += offset - aligned_offset;
2535     }
2536 
2537     if (ret & BDRV_BLOCK_RAW) {
2538         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2539         ret = bdrv_co_do_block_status(local_file, want_zero, local_map,
2540                                       *pnum, pnum, &local_map, &local_file);
2541         goto out;
2542     }
2543 
2544     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2545         ret |= BDRV_BLOCK_ALLOCATED;
2546     } else if (bs->drv->supports_backing) {
2547         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2548 
2549         if (!cow_bs) {
2550             ret |= BDRV_BLOCK_ZERO;
2551         } else if (want_zero) {
2552             int64_t size2 = bdrv_co_getlength(cow_bs);
2553 
2554             if (size2 >= 0 && offset >= size2) {
2555                 ret |= BDRV_BLOCK_ZERO;
2556             }
2557         }
2558     }
2559 
2560     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2561         local_file && local_file != bs &&
2562         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2563         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2564         int64_t file_pnum;
2565         int ret2;
2566 
2567         ret2 = bdrv_co_do_block_status(local_file, want_zero, local_map,
2568                                        *pnum, &file_pnum, NULL, NULL);
2569         if (ret2 >= 0) {
2570             /* Ignore errors.  This is just providing extra information, it
2571              * is useful but not necessary.
2572              */
2573             if (ret2 & BDRV_BLOCK_EOF &&
2574                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2575                 /*
2576                  * It is valid for the format block driver to read
2577                  * beyond the end of the underlying file's current
2578                  * size; such areas read as zero.
2579                  */
2580                 ret |= BDRV_BLOCK_ZERO;
2581             } else {
2582                 /* Limit request to the range reported by the protocol driver */
2583                 *pnum = file_pnum;
2584                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2585             }
2586         }
2587 
2588         /*
2589          * Now that the recursive search was done, clear the flag. Otherwise,
2590          * with more complicated block graphs like snapshot-access ->
2591          * copy-before-write -> qcow2, where the return value will be propagated
2592          * further up to a parent bdrv_co_do_block_status() call, both the
2593          * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is
2594          * not allowed.
2595          */
2596         ret &= ~BDRV_BLOCK_RECURSE;
2597     }
2598 
2599 out:
2600     bdrv_dec_in_flight(bs);
2601     if (ret >= 0 && offset + *pnum == total_size) {
2602         ret |= BDRV_BLOCK_EOF;
2603     }
2604 early_out:
2605     if (file) {
2606         *file = local_file;
2607     }
2608     if (map) {
2609         *map = local_map;
2610     }
2611     return ret;
2612 }
2613 
2614 int coroutine_fn
2615 bdrv_co_common_block_status_above(BlockDriverState *bs,
2616                                   BlockDriverState *base,
2617                                   bool include_base,
2618                                   bool want_zero,
2619                                   int64_t offset,
2620                                   int64_t bytes,
2621                                   int64_t *pnum,
2622                                   int64_t *map,
2623                                   BlockDriverState **file,
2624                                   int *depth)
2625 {
2626     int ret;
2627     BlockDriverState *p;
2628     int64_t eof = 0;
2629     int dummy;
2630     IO_CODE();
2631 
2632     assert(!include_base || base); /* Can't include NULL base */
2633     assert_bdrv_graph_readable();
2634 
2635     if (!depth) {
2636         depth = &dummy;
2637     }
2638     *depth = 0;
2639 
2640     if (!include_base && bs == base) {
2641         *pnum = bytes;
2642         return 0;
2643     }
2644 
2645     ret = bdrv_co_do_block_status(bs, want_zero, offset, bytes, pnum,
2646                                   map, file);
2647     ++*depth;
2648     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2649         return ret;
2650     }
2651 
2652     if (ret & BDRV_BLOCK_EOF) {
2653         eof = offset + *pnum;
2654     }
2655 
2656     assert(*pnum <= bytes);
2657     bytes = *pnum;
2658 
2659     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2660          p = bdrv_filter_or_cow_bs(p))
2661     {
2662         ret = bdrv_co_do_block_status(p, want_zero, offset, bytes, pnum,
2663                                       map, file);
2664         ++*depth;
2665         if (ret < 0) {
2666             return ret;
2667         }
2668         if (*pnum == 0) {
2669             /*
2670              * The top layer deferred to this layer, and because this layer is
2671              * short, any zeroes that we synthesize beyond EOF behave as if they
2672              * were allocated at this layer.
2673              *
2674              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2675              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2676              * below.
2677              */
2678             assert(ret & BDRV_BLOCK_EOF);
2679             *pnum = bytes;
2680             if (file) {
2681                 *file = p;
2682             }
2683             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2684             break;
2685         }
2686         if (ret & BDRV_BLOCK_ALLOCATED) {
2687             /*
2688              * We've found the node and the status, we must break.
2689              *
2690              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2691              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2692              * below.
2693              */
2694             ret &= ~BDRV_BLOCK_EOF;
2695             break;
2696         }
2697 
2698         if (p == base) {
2699             assert(include_base);
2700             break;
2701         }
2702 
2703         /*
2704          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2705          * let's continue the diving.
2706          */
2707         assert(*pnum <= bytes);
2708         bytes = *pnum;
2709     }
2710 
2711     if (offset + *pnum == eof) {
2712         ret |= BDRV_BLOCK_EOF;
2713     }
2714 
2715     return ret;
2716 }
2717 
2718 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2719                                             BlockDriverState *base,
2720                                             int64_t offset, int64_t bytes,
2721                                             int64_t *pnum, int64_t *map,
2722                                             BlockDriverState **file)
2723 {
2724     IO_CODE();
2725     return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2726                                              bytes, pnum, map, file, NULL);
2727 }
2728 
2729 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset,
2730                                       int64_t bytes, int64_t *pnum,
2731                                       int64_t *map, BlockDriverState **file)
2732 {
2733     IO_CODE();
2734     return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2735                                       offset, bytes, pnum, map, file);
2736 }
2737 
2738 /*
2739  * Check @bs (and its backing chain) to see if the range defined
2740  * by @offset and @bytes is known to read as zeroes.
2741  * Return 1 if that is the case, 0 otherwise and -errno on error.
2742  * This test is meant to be fast rather than accurate so returning 0
2743  * does not guarantee non-zero data.
2744  */
2745 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2746                                       int64_t bytes)
2747 {
2748     int ret;
2749     int64_t pnum = bytes;
2750     IO_CODE();
2751 
2752     if (!bytes) {
2753         return 1;
2754     }
2755 
2756     ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2757                                             bytes, &pnum, NULL, NULL, NULL);
2758 
2759     if (ret < 0) {
2760         return ret;
2761     }
2762 
2763     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2764 }
2765 
2766 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2767                                       int64_t bytes, int64_t *pnum)
2768 {
2769     int ret;
2770     int64_t dummy;
2771     IO_CODE();
2772 
2773     ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2774                                             bytes, pnum ? pnum : &dummy, NULL,
2775                                             NULL, NULL);
2776     if (ret < 0) {
2777         return ret;
2778     }
2779     return !!(ret & BDRV_BLOCK_ALLOCATED);
2780 }
2781 
2782 /*
2783  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2784  *
2785  * Return a positive depth if (a prefix of) the given range is allocated
2786  * in any image between BASE and TOP (BASE is only included if include_base
2787  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2788  * BASE can be NULL to check if the given offset is allocated in any
2789  * image of the chain.  Return 0 otherwise, or negative errno on
2790  * failure.
2791  *
2792  * 'pnum' is set to the number of bytes (including and immediately
2793  * following the specified offset) that are known to be in the same
2794  * allocated/unallocated state.  Note that a subsequent call starting
2795  * at 'offset + *pnum' may return the same allocation status (in other
2796  * words, the result is not necessarily the maximum possible range);
2797  * but 'pnum' will only be 0 when end of file is reached.
2798  */
2799 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs,
2800                                             BlockDriverState *base,
2801                                             bool include_base, int64_t offset,
2802                                             int64_t bytes, int64_t *pnum)
2803 {
2804     int depth;
2805     int ret;
2806     IO_CODE();
2807 
2808     ret = bdrv_co_common_block_status_above(bs, base, include_base, false,
2809                                             offset, bytes, pnum, NULL, NULL,
2810                                             &depth);
2811     if (ret < 0) {
2812         return ret;
2813     }
2814 
2815     if (ret & BDRV_BLOCK_ALLOCATED) {
2816         return depth;
2817     }
2818     return 0;
2819 }
2820 
2821 int coroutine_fn
2822 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2823 {
2824     BlockDriver *drv = bs->drv;
2825     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2826     int ret;
2827     IO_CODE();
2828     assert_bdrv_graph_readable();
2829 
2830     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2831     if (ret < 0) {
2832         return ret;
2833     }
2834 
2835     if (!drv) {
2836         return -ENOMEDIUM;
2837     }
2838 
2839     bdrv_inc_in_flight(bs);
2840 
2841     if (drv->bdrv_co_load_vmstate) {
2842         ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2843     } else if (child_bs) {
2844         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2845     } else {
2846         ret = -ENOTSUP;
2847     }
2848 
2849     bdrv_dec_in_flight(bs);
2850 
2851     return ret;
2852 }
2853 
2854 int coroutine_fn
2855 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2856 {
2857     BlockDriver *drv = bs->drv;
2858     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2859     int ret;
2860     IO_CODE();
2861     assert_bdrv_graph_readable();
2862 
2863     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2864     if (ret < 0) {
2865         return ret;
2866     }
2867 
2868     if (!drv) {
2869         return -ENOMEDIUM;
2870     }
2871 
2872     bdrv_inc_in_flight(bs);
2873 
2874     if (drv->bdrv_co_save_vmstate) {
2875         ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2876     } else if (child_bs) {
2877         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2878     } else {
2879         ret = -ENOTSUP;
2880     }
2881 
2882     bdrv_dec_in_flight(bs);
2883 
2884     return ret;
2885 }
2886 
2887 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2888                       int64_t pos, int size)
2889 {
2890     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2891     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2892     IO_CODE();
2893 
2894     return ret < 0 ? ret : size;
2895 }
2896 
2897 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2898                       int64_t pos, int size)
2899 {
2900     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2901     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2902     IO_CODE();
2903 
2904     return ret < 0 ? ret : size;
2905 }
2906 
2907 /**************************************************************/
2908 /* async I/Os */
2909 
2910 /**
2911  * Synchronously cancels an acb. Must be called with the BQL held and the acb
2912  * must be processed with the BQL held too (IOThreads are not allowed).
2913  *
2914  * Use bdrv_aio_cancel_async() instead when possible.
2915  */
2916 void bdrv_aio_cancel(BlockAIOCB *acb)
2917 {
2918     GLOBAL_STATE_CODE();
2919     qemu_aio_ref(acb);
2920     bdrv_aio_cancel_async(acb);
2921     AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1);
2922     qemu_aio_unref(acb);
2923 }
2924 
2925 /* Async version of aio cancel. The caller is not blocked if the acb implements
2926  * cancel_async, otherwise we do nothing and let the request normally complete.
2927  * In either case the completion callback must be called. */
2928 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2929 {
2930     IO_CODE();
2931     if (acb->aiocb_info->cancel_async) {
2932         acb->aiocb_info->cancel_async(acb);
2933     }
2934 }
2935 
2936 /**************************************************************/
2937 /* Coroutine block device emulation */
2938 
2939 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2940 {
2941     BdrvChild *primary_child = bdrv_primary_child(bs);
2942     BdrvChild *child;
2943     int current_gen;
2944     int ret = 0;
2945     IO_CODE();
2946 
2947     assert_bdrv_graph_readable();
2948     bdrv_inc_in_flight(bs);
2949 
2950     if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2951         bdrv_is_sg(bs)) {
2952         goto early_exit;
2953     }
2954 
2955     qemu_mutex_lock(&bs->reqs_lock);
2956     current_gen = qatomic_read(&bs->write_gen);
2957 
2958     /* Wait until any previous flushes are completed */
2959     while (bs->active_flush_req) {
2960         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2961     }
2962 
2963     /* Flushes reach this point in nondecreasing current_gen order.  */
2964     bs->active_flush_req = true;
2965     qemu_mutex_unlock(&bs->reqs_lock);
2966 
2967     /* Write back all layers by calling one driver function */
2968     if (bs->drv->bdrv_co_flush) {
2969         ret = bs->drv->bdrv_co_flush(bs);
2970         goto out;
2971     }
2972 
2973     /* Write back cached data to the OS even with cache=unsafe */
2974     BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2975     if (bs->drv->bdrv_co_flush_to_os) {
2976         ret = bs->drv->bdrv_co_flush_to_os(bs);
2977         if (ret < 0) {
2978             goto out;
2979         }
2980     }
2981 
2982     /* But don't actually force it to the disk with cache=unsafe */
2983     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2984         goto flush_children;
2985     }
2986 
2987     /* Check if we really need to flush anything */
2988     if (bs->flushed_gen == current_gen) {
2989         goto flush_children;
2990     }
2991 
2992     BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2993     if (!bs->drv) {
2994         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2995          * (even in case of apparent success) */
2996         ret = -ENOMEDIUM;
2997         goto out;
2998     }
2999     if (bs->drv->bdrv_co_flush_to_disk) {
3000         ret = bs->drv->bdrv_co_flush_to_disk(bs);
3001     } else if (bs->drv->bdrv_aio_flush) {
3002         BlockAIOCB *acb;
3003         CoroutineIOCompletion co = {
3004             .coroutine = qemu_coroutine_self(),
3005         };
3006 
3007         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3008         if (acb == NULL) {
3009             ret = -EIO;
3010         } else {
3011             qemu_coroutine_yield();
3012             ret = co.ret;
3013         }
3014     } else {
3015         /*
3016          * Some block drivers always operate in either writethrough or unsafe
3017          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3018          * know how the server works (because the behaviour is hardcoded or
3019          * depends on server-side configuration), so we can't ensure that
3020          * everything is safe on disk. Returning an error doesn't work because
3021          * that would break guests even if the server operates in writethrough
3022          * mode.
3023          *
3024          * Let's hope the user knows what he's doing.
3025          */
3026         ret = 0;
3027     }
3028 
3029     if (ret < 0) {
3030         goto out;
3031     }
3032 
3033     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
3034      * in the case of cache=unsafe, so there are no useless flushes.
3035      */
3036 flush_children:
3037     ret = 0;
3038     QLIST_FOREACH(child, &bs->children, next) {
3039         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3040             int this_child_ret = bdrv_co_flush(child->bs);
3041             if (!ret) {
3042                 ret = this_child_ret;
3043             }
3044         }
3045     }
3046 
3047 out:
3048     /* Notify any pending flushes that we have completed */
3049     if (ret == 0) {
3050         bs->flushed_gen = current_gen;
3051     }
3052 
3053     qemu_mutex_lock(&bs->reqs_lock);
3054     bs->active_flush_req = false;
3055     /* Return value is ignored - it's ok if wait queue is empty */
3056     qemu_co_queue_next(&bs->flush_queue);
3057     qemu_mutex_unlock(&bs->reqs_lock);
3058 
3059 early_exit:
3060     bdrv_dec_in_flight(bs);
3061     return ret;
3062 }
3063 
3064 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3065                                   int64_t bytes)
3066 {
3067     BdrvTrackedRequest req;
3068     int ret;
3069     int64_t max_pdiscard;
3070     int head, tail, align;
3071     BlockDriverState *bs = child->bs;
3072     IO_CODE();
3073     assert_bdrv_graph_readable();
3074 
3075     if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3076         return -ENOMEDIUM;
3077     }
3078 
3079     if (bdrv_has_readonly_bitmaps(bs)) {
3080         return -EPERM;
3081     }
3082 
3083     ret = bdrv_check_request(offset, bytes, NULL);
3084     if (ret < 0) {
3085         return ret;
3086     }
3087 
3088     /* Do nothing if disabled.  */
3089     if (!(bs->open_flags & BDRV_O_UNMAP)) {
3090         return 0;
3091     }
3092 
3093     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3094         return 0;
3095     }
3096 
3097     /* Invalidate the cached block-status data range if this discard overlaps */
3098     bdrv_bsc_invalidate_range(bs, offset, bytes);
3099 
3100     /* Discard is advisory, but some devices track and coalesce
3101      * unaligned requests, so we must pass everything down rather than
3102      * round here.  Still, most devices will just silently ignore
3103      * unaligned requests (by returning -ENOTSUP), so we must fragment
3104      * the request accordingly.  */
3105     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3106     assert(align % bs->bl.request_alignment == 0);
3107     head = offset % align;
3108     tail = (offset + bytes) % align;
3109 
3110     bdrv_inc_in_flight(bs);
3111     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3112 
3113     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3114     if (ret < 0) {
3115         goto out;
3116     }
3117 
3118     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3119                                    align);
3120     assert(max_pdiscard >= bs->bl.request_alignment);
3121 
3122     while (bytes > 0) {
3123         int64_t num = bytes;
3124 
3125         if (head) {
3126             /* Make small requests to get to alignment boundaries. */
3127             num = MIN(bytes, align - head);
3128             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3129                 num %= bs->bl.request_alignment;
3130             }
3131             head = (head + num) % align;
3132             assert(num < max_pdiscard);
3133         } else if (tail) {
3134             if (num > align) {
3135                 /* Shorten the request to the last aligned cluster.  */
3136                 num -= tail;
3137             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3138                        tail > bs->bl.request_alignment) {
3139                 tail %= bs->bl.request_alignment;
3140                 num -= tail;
3141             }
3142         }
3143         /* limit request size */
3144         if (num > max_pdiscard) {
3145             num = max_pdiscard;
3146         }
3147 
3148         if (!bs->drv) {
3149             ret = -ENOMEDIUM;
3150             goto out;
3151         }
3152         if (bs->drv->bdrv_co_pdiscard) {
3153             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3154         } else {
3155             BlockAIOCB *acb;
3156             CoroutineIOCompletion co = {
3157                 .coroutine = qemu_coroutine_self(),
3158             };
3159 
3160             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3161                                              bdrv_co_io_em_complete, &co);
3162             if (acb == NULL) {
3163                 ret = -EIO;
3164                 goto out;
3165             } else {
3166                 qemu_coroutine_yield();
3167                 ret = co.ret;
3168             }
3169         }
3170         if (ret && ret != -ENOTSUP) {
3171             goto out;
3172         }
3173 
3174         offset += num;
3175         bytes -= num;
3176     }
3177     ret = 0;
3178 out:
3179     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3180     tracked_request_end(&req);
3181     bdrv_dec_in_flight(bs);
3182     return ret;
3183 }
3184 
3185 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3186 {
3187     BlockDriver *drv = bs->drv;
3188     CoroutineIOCompletion co = {
3189         .coroutine = qemu_coroutine_self(),
3190     };
3191     BlockAIOCB *acb;
3192     IO_CODE();
3193     assert_bdrv_graph_readable();
3194 
3195     bdrv_inc_in_flight(bs);
3196     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3197         co.ret = -ENOTSUP;
3198         goto out;
3199     }
3200 
3201     if (drv->bdrv_co_ioctl) {
3202         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3203     } else {
3204         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3205         if (!acb) {
3206             co.ret = -ENOTSUP;
3207             goto out;
3208         }
3209         qemu_coroutine_yield();
3210     }
3211 out:
3212     bdrv_dec_in_flight(bs);
3213     return co.ret;
3214 }
3215 
3216 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3217                         unsigned int *nr_zones,
3218                         BlockZoneDescriptor *zones)
3219 {
3220     BlockDriver *drv = bs->drv;
3221     CoroutineIOCompletion co = {
3222             .coroutine = qemu_coroutine_self(),
3223     };
3224     IO_CODE();
3225 
3226     bdrv_inc_in_flight(bs);
3227     if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3228         co.ret = -ENOTSUP;
3229         goto out;
3230     }
3231     co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3232 out:
3233     bdrv_dec_in_flight(bs);
3234     return co.ret;
3235 }
3236 
3237 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3238         int64_t offset, int64_t len)
3239 {
3240     BlockDriver *drv = bs->drv;
3241     CoroutineIOCompletion co = {
3242             .coroutine = qemu_coroutine_self(),
3243     };
3244     IO_CODE();
3245 
3246     bdrv_inc_in_flight(bs);
3247     if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3248         co.ret = -ENOTSUP;
3249         goto out;
3250     }
3251     co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3252 out:
3253     bdrv_dec_in_flight(bs);
3254     return co.ret;
3255 }
3256 
3257 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3258                         QEMUIOVector *qiov,
3259                         BdrvRequestFlags flags)
3260 {
3261     int ret;
3262     BlockDriver *drv = bs->drv;
3263     CoroutineIOCompletion co = {
3264             .coroutine = qemu_coroutine_self(),
3265     };
3266     IO_CODE();
3267 
3268     ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3269     if (ret < 0) {
3270         return ret;
3271     }
3272 
3273     bdrv_inc_in_flight(bs);
3274     if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3275         co.ret = -ENOTSUP;
3276         goto out;
3277     }
3278     co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3279 out:
3280     bdrv_dec_in_flight(bs);
3281     return co.ret;
3282 }
3283 
3284 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3285 {
3286     IO_CODE();
3287     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3288 }
3289 
3290 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3291 {
3292     IO_CODE();
3293     return memset(qemu_blockalign(bs, size), 0, size);
3294 }
3295 
3296 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3297 {
3298     size_t align = bdrv_opt_mem_align(bs);
3299     IO_CODE();
3300 
3301     /* Ensure that NULL is never returned on success */
3302     assert(align > 0);
3303     if (size == 0) {
3304         size = align;
3305     }
3306 
3307     return qemu_try_memalign(align, size);
3308 }
3309 
3310 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3311 {
3312     void *mem = qemu_try_blockalign(bs, size);
3313     IO_CODE();
3314 
3315     if (mem) {
3316         memset(mem, 0, size);
3317     }
3318 
3319     return mem;
3320 }
3321 
3322 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3323 static void GRAPH_RDLOCK
3324 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3325                            BdrvChild *final_child)
3326 {
3327     BdrvChild *child;
3328 
3329     GLOBAL_STATE_CODE();
3330     assert_bdrv_graph_readable();
3331 
3332     QLIST_FOREACH(child, &bs->children, next) {
3333         if (child == final_child) {
3334             break;
3335         }
3336 
3337         bdrv_unregister_buf(child->bs, host, size);
3338     }
3339 
3340     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3341         bs->drv->bdrv_unregister_buf(bs, host, size);
3342     }
3343 }
3344 
3345 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3346                        Error **errp)
3347 {
3348     BdrvChild *child;
3349 
3350     GLOBAL_STATE_CODE();
3351     GRAPH_RDLOCK_GUARD_MAINLOOP();
3352 
3353     if (bs->drv && bs->drv->bdrv_register_buf) {
3354         if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3355             return false;
3356         }
3357     }
3358     QLIST_FOREACH(child, &bs->children, next) {
3359         if (!bdrv_register_buf(child->bs, host, size, errp)) {
3360             bdrv_register_buf_rollback(bs, host, size, child);
3361             return false;
3362         }
3363     }
3364     return true;
3365 }
3366 
3367 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3368 {
3369     BdrvChild *child;
3370 
3371     GLOBAL_STATE_CODE();
3372     GRAPH_RDLOCK_GUARD_MAINLOOP();
3373 
3374     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3375         bs->drv->bdrv_unregister_buf(bs, host, size);
3376     }
3377     QLIST_FOREACH(child, &bs->children, next) {
3378         bdrv_unregister_buf(child->bs, host, size);
3379     }
3380 }
3381 
3382 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3383         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3384         int64_t dst_offset, int64_t bytes,
3385         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3386         bool recurse_src)
3387 {
3388     BdrvTrackedRequest req;
3389     int ret;
3390     assert_bdrv_graph_readable();
3391 
3392     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3393     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3394     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3395     assert(!(read_flags & BDRV_REQ_NO_WAIT));
3396     assert(!(write_flags & BDRV_REQ_NO_WAIT));
3397 
3398     if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3399         return -ENOMEDIUM;
3400     }
3401     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3402     if (ret) {
3403         return ret;
3404     }
3405     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3406         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3407     }
3408 
3409     if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3410         return -ENOMEDIUM;
3411     }
3412     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3413     if (ret) {
3414         return ret;
3415     }
3416 
3417     if (!src->bs->drv->bdrv_co_copy_range_from
3418         || !dst->bs->drv->bdrv_co_copy_range_to
3419         || src->bs->encrypted || dst->bs->encrypted) {
3420         return -ENOTSUP;
3421     }
3422 
3423     if (recurse_src) {
3424         bdrv_inc_in_flight(src->bs);
3425         tracked_request_begin(&req, src->bs, src_offset, bytes,
3426                               BDRV_TRACKED_READ);
3427 
3428         /* BDRV_REQ_SERIALISING is only for write operation */
3429         assert(!(read_flags & BDRV_REQ_SERIALISING));
3430         bdrv_wait_serialising_requests(&req);
3431 
3432         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3433                                                     src, src_offset,
3434                                                     dst, dst_offset,
3435                                                     bytes,
3436                                                     read_flags, write_flags);
3437 
3438         tracked_request_end(&req);
3439         bdrv_dec_in_flight(src->bs);
3440     } else {
3441         bdrv_inc_in_flight(dst->bs);
3442         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3443                               BDRV_TRACKED_WRITE);
3444         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3445                                         write_flags);
3446         if (!ret) {
3447             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3448                                                       src, src_offset,
3449                                                       dst, dst_offset,
3450                                                       bytes,
3451                                                       read_flags, write_flags);
3452         }
3453         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3454         tracked_request_end(&req);
3455         bdrv_dec_in_flight(dst->bs);
3456     }
3457 
3458     return ret;
3459 }
3460 
3461 /* Copy range from @src to @dst.
3462  *
3463  * See the comment of bdrv_co_copy_range for the parameter and return value
3464  * semantics. */
3465 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3466                                          BdrvChild *dst, int64_t dst_offset,
3467                                          int64_t bytes,
3468                                          BdrvRequestFlags read_flags,
3469                                          BdrvRequestFlags write_flags)
3470 {
3471     IO_CODE();
3472     assert_bdrv_graph_readable();
3473     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3474                                   read_flags, write_flags);
3475     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3476                                        bytes, read_flags, write_flags, true);
3477 }
3478 
3479 /* Copy range from @src to @dst.
3480  *
3481  * See the comment of bdrv_co_copy_range for the parameter and return value
3482  * semantics. */
3483 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3484                                        BdrvChild *dst, int64_t dst_offset,
3485                                        int64_t bytes,
3486                                        BdrvRequestFlags read_flags,
3487                                        BdrvRequestFlags write_flags)
3488 {
3489     IO_CODE();
3490     assert_bdrv_graph_readable();
3491     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3492                                 read_flags, write_flags);
3493     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3494                                        bytes, read_flags, write_flags, false);
3495 }
3496 
3497 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3498                                     BdrvChild *dst, int64_t dst_offset,
3499                                     int64_t bytes, BdrvRequestFlags read_flags,
3500                                     BdrvRequestFlags write_flags)
3501 {
3502     IO_CODE();
3503     assert_bdrv_graph_readable();
3504 
3505     return bdrv_co_copy_range_from(src, src_offset,
3506                                    dst, dst_offset,
3507                                    bytes, read_flags, write_flags);
3508 }
3509 
3510 static void coroutine_fn GRAPH_RDLOCK
3511 bdrv_parent_cb_resize(BlockDriverState *bs)
3512 {
3513     BdrvChild *c;
3514 
3515     assert_bdrv_graph_readable();
3516 
3517     QLIST_FOREACH(c, &bs->parents, next_parent) {
3518         if (c->klass->resize) {
3519             c->klass->resize(c);
3520         }
3521     }
3522 }
3523 
3524 /**
3525  * Truncate file to 'offset' bytes (needed only for file protocols)
3526  *
3527  * If 'exact' is true, the file must be resized to exactly the given
3528  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3529  * 'offset' bytes in length.
3530  */
3531 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3532                                   PreallocMode prealloc, BdrvRequestFlags flags,
3533                                   Error **errp)
3534 {
3535     BlockDriverState *bs = child->bs;
3536     BdrvChild *filtered, *backing;
3537     BlockDriver *drv = bs->drv;
3538     BdrvTrackedRequest req;
3539     int64_t old_size, new_bytes;
3540     int ret;
3541     IO_CODE();
3542     assert_bdrv_graph_readable();
3543 
3544     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3545     if (!drv) {
3546         error_setg(errp, "No medium inserted");
3547         return -ENOMEDIUM;
3548     }
3549     if (offset < 0) {
3550         error_setg(errp, "Image size cannot be negative");
3551         return -EINVAL;
3552     }
3553 
3554     ret = bdrv_check_request(offset, 0, errp);
3555     if (ret < 0) {
3556         return ret;
3557     }
3558 
3559     old_size = bdrv_co_getlength(bs);
3560     if (old_size < 0) {
3561         error_setg_errno(errp, -old_size, "Failed to get old image size");
3562         return old_size;
3563     }
3564 
3565     if (bdrv_is_read_only(bs)) {
3566         error_setg(errp, "Image is read-only");
3567         return -EACCES;
3568     }
3569 
3570     if (offset > old_size) {
3571         new_bytes = offset - old_size;
3572     } else {
3573         new_bytes = 0;
3574     }
3575 
3576     bdrv_inc_in_flight(bs);
3577     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3578                           BDRV_TRACKED_TRUNCATE);
3579 
3580     /* If we are growing the image and potentially using preallocation for the
3581      * new area, we need to make sure that no write requests are made to it
3582      * concurrently or they might be overwritten by preallocation. */
3583     if (new_bytes) {
3584         bdrv_make_request_serialising(&req, 1);
3585     }
3586     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3587                                     0);
3588     if (ret < 0) {
3589         error_setg_errno(errp, -ret,
3590                          "Failed to prepare request for truncation");
3591         goto out;
3592     }
3593 
3594     filtered = bdrv_filter_child(bs);
3595     backing = bdrv_cow_child(bs);
3596 
3597     /*
3598      * If the image has a backing file that is large enough that it would
3599      * provide data for the new area, we cannot leave it unallocated because
3600      * then the backing file content would become visible. Instead, zero-fill
3601      * the new area.
3602      *
3603      * Note that if the image has a backing file, but was opened without the
3604      * backing file, taking care of keeping things consistent with that backing
3605      * file is the user's responsibility.
3606      */
3607     if (new_bytes && backing) {
3608         int64_t backing_len;
3609 
3610         backing_len = bdrv_co_getlength(backing->bs);
3611         if (backing_len < 0) {
3612             ret = backing_len;
3613             error_setg_errno(errp, -ret, "Could not get backing file size");
3614             goto out;
3615         }
3616 
3617         if (backing_len > old_size) {
3618             flags |= BDRV_REQ_ZERO_WRITE;
3619         }
3620     }
3621 
3622     if (drv->bdrv_co_truncate) {
3623         if (flags & ~bs->supported_truncate_flags) {
3624             error_setg(errp, "Block driver does not support requested flags");
3625             ret = -ENOTSUP;
3626             goto out;
3627         }
3628         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3629     } else if (filtered) {
3630         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3631     } else {
3632         error_setg(errp, "Image format driver does not support resize");
3633         ret = -ENOTSUP;
3634         goto out;
3635     }
3636     if (ret < 0) {
3637         goto out;
3638     }
3639 
3640     ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3641     if (ret < 0) {
3642         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3643     } else {
3644         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3645     }
3646     /*
3647      * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3648      * failed, but the latter doesn't affect how we should finish the request.
3649      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3650      */
3651     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3652 
3653 out:
3654     tracked_request_end(&req);
3655     bdrv_dec_in_flight(bs);
3656 
3657     return ret;
3658 }
3659 
3660 void bdrv_cancel_in_flight(BlockDriverState *bs)
3661 {
3662     GLOBAL_STATE_CODE();
3663     GRAPH_RDLOCK_GUARD_MAINLOOP();
3664 
3665     if (!bs || !bs->drv) {
3666         return;
3667     }
3668 
3669     if (bs->drv->bdrv_cancel_in_flight) {
3670         bs->drv->bdrv_cancel_in_flight(bs);
3671     }
3672 }
3673 
3674 int coroutine_fn
3675 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3676                         QEMUIOVector *qiov, size_t qiov_offset)
3677 {
3678     BlockDriverState *bs = child->bs;
3679     BlockDriver *drv = bs->drv;
3680     int ret;
3681     IO_CODE();
3682     assert_bdrv_graph_readable();
3683 
3684     if (!drv) {
3685         return -ENOMEDIUM;
3686     }
3687 
3688     if (!drv->bdrv_co_preadv_snapshot) {
3689         return -ENOTSUP;
3690     }
3691 
3692     bdrv_inc_in_flight(bs);
3693     ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3694     bdrv_dec_in_flight(bs);
3695 
3696     return ret;
3697 }
3698 
3699 int coroutine_fn
3700 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3701                               bool want_zero, int64_t offset, int64_t bytes,
3702                               int64_t *pnum, int64_t *map,
3703                               BlockDriverState **file)
3704 {
3705     BlockDriver *drv = bs->drv;
3706     int ret;
3707     IO_CODE();
3708     assert_bdrv_graph_readable();
3709 
3710     if (!drv) {
3711         return -ENOMEDIUM;
3712     }
3713 
3714     if (!drv->bdrv_co_snapshot_block_status) {
3715         return -ENOTSUP;
3716     }
3717 
3718     bdrv_inc_in_flight(bs);
3719     ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3720                                              pnum, map, file);
3721     bdrv_dec_in_flight(bs);
3722 
3723     return ret;
3724 }
3725 
3726 int coroutine_fn
3727 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3728 {
3729     BlockDriver *drv = bs->drv;
3730     int ret;
3731     IO_CODE();
3732     assert_bdrv_graph_readable();
3733 
3734     if (!drv) {
3735         return -ENOMEDIUM;
3736     }
3737 
3738     if (!drv->bdrv_co_pdiscard_snapshot) {
3739         return -ENOTSUP;
3740     }
3741 
3742     bdrv_inc_in_flight(bs);
3743     ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3744     bdrv_dec_in_flight(bs);
3745 
3746     return ret;
3747 }
3748