xref: /qemu/block/io.c (revision 78f314cf)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41 
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44 
45 static void bdrv_parent_cb_resize(BlockDriverState *bs);
46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
47     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
48 
49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
50 {
51     BdrvChild *c, *next;
52 
53     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54         if (c == ignore) {
55             continue;
56         }
57         bdrv_parent_drained_begin_single(c);
58     }
59 }
60 
61 void bdrv_parent_drained_end_single(BdrvChild *c)
62 {
63     GLOBAL_STATE_CODE();
64 
65     assert(c->quiesced_parent);
66     c->quiesced_parent = false;
67 
68     if (c->klass->drained_end) {
69         c->klass->drained_end(c);
70     }
71 }
72 
73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
74 {
75     BdrvChild *c;
76 
77     QLIST_FOREACH(c, &bs->parents, next_parent) {
78         if (c == ignore) {
79             continue;
80         }
81         bdrv_parent_drained_end_single(c);
82     }
83 }
84 
85 bool bdrv_parent_drained_poll_single(BdrvChild *c)
86 {
87     if (c->klass->drained_poll) {
88         return c->klass->drained_poll(c);
89     }
90     return false;
91 }
92 
93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
94                                      bool ignore_bds_parents)
95 {
96     BdrvChild *c, *next;
97     bool busy = false;
98 
99     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
100         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
101             continue;
102         }
103         busy |= bdrv_parent_drained_poll_single(c);
104     }
105 
106     return busy;
107 }
108 
109 void bdrv_parent_drained_begin_single(BdrvChild *c)
110 {
111     GLOBAL_STATE_CODE();
112 
113     assert(!c->quiesced_parent);
114     c->quiesced_parent = true;
115 
116     if (c->klass->drained_begin) {
117         c->klass->drained_begin(c);
118     }
119 }
120 
121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
122 {
123     dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
124                                   src->pdiscard_alignment);
125     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
126     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
127     dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
128                                         src->max_hw_transfer);
129     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130                                  src->opt_mem_alignment);
131     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132                                  src->min_mem_alignment);
133     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134     dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
135 }
136 
137 typedef struct BdrvRefreshLimitsState {
138     BlockDriverState *bs;
139     BlockLimits old_bl;
140 } BdrvRefreshLimitsState;
141 
142 static void bdrv_refresh_limits_abort(void *opaque)
143 {
144     BdrvRefreshLimitsState *s = opaque;
145 
146     s->bs->bl = s->old_bl;
147 }
148 
149 static TransactionActionDrv bdrv_refresh_limits_drv = {
150     .abort = bdrv_refresh_limits_abort,
151     .clean = g_free,
152 };
153 
154 /* @tran is allowed to be NULL, in this case no rollback is possible. */
155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
156 {
157     ERRP_GUARD();
158     BlockDriver *drv = bs->drv;
159     BdrvChild *c;
160     bool have_limits;
161 
162     GLOBAL_STATE_CODE();
163 
164     if (tran) {
165         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
166         *s = (BdrvRefreshLimitsState) {
167             .bs = bs,
168             .old_bl = bs->bl,
169         };
170         tran_add(tran, &bdrv_refresh_limits_drv, s);
171     }
172 
173     memset(&bs->bl, 0, sizeof(bs->bl));
174 
175     if (!drv) {
176         return;
177     }
178 
179     /* Default alignment based on whether driver has byte interface */
180     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
181                                 drv->bdrv_aio_preadv ||
182                                 drv->bdrv_co_preadv_part) ? 1 : 512;
183 
184     /* Take some limits from the children as a default */
185     have_limits = false;
186     QLIST_FOREACH(c, &bs->children, next) {
187         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
188         {
189             bdrv_merge_limits(&bs->bl, &c->bs->bl);
190             have_limits = true;
191         }
192 
193         if (c->role & BDRV_CHILD_FILTERED) {
194             bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
195         }
196     }
197 
198     if (!have_limits) {
199         bs->bl.min_mem_alignment = 512;
200         bs->bl.opt_mem_alignment = qemu_real_host_page_size();
201 
202         /* Safe default since most protocols use readv()/writev()/etc */
203         bs->bl.max_iov = IOV_MAX;
204     }
205 
206     /* Then let the driver override it */
207     if (drv->bdrv_refresh_limits) {
208         drv->bdrv_refresh_limits(bs, errp);
209         if (*errp) {
210             return;
211         }
212     }
213 
214     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
215         error_setg(errp, "Driver requires too large request alignment");
216     }
217 }
218 
219 /**
220  * The copy-on-read flag is actually a reference count so multiple users may
221  * use the feature without worrying about clobbering its previous state.
222  * Copy-on-read stays enabled until all users have called to disable it.
223  */
224 void bdrv_enable_copy_on_read(BlockDriverState *bs)
225 {
226     IO_CODE();
227     qatomic_inc(&bs->copy_on_read);
228 }
229 
230 void bdrv_disable_copy_on_read(BlockDriverState *bs)
231 {
232     int old = qatomic_fetch_dec(&bs->copy_on_read);
233     IO_CODE();
234     assert(old >= 1);
235 }
236 
237 typedef struct {
238     Coroutine *co;
239     BlockDriverState *bs;
240     bool done;
241     bool begin;
242     bool poll;
243     BdrvChild *parent;
244 } BdrvCoDrainData;
245 
246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
248                      bool ignore_bds_parents)
249 {
250     GLOBAL_STATE_CODE();
251 
252     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
253         return true;
254     }
255 
256     if (qatomic_read(&bs->in_flight)) {
257         return true;
258     }
259 
260     return false;
261 }
262 
263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
264                                       BdrvChild *ignore_parent)
265 {
266     return bdrv_drain_poll(bs, ignore_parent, false);
267 }
268 
269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
270                                   bool poll);
271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
272 
273 static void bdrv_co_drain_bh_cb(void *opaque)
274 {
275     BdrvCoDrainData *data = opaque;
276     Coroutine *co = data->co;
277     BlockDriverState *bs = data->bs;
278 
279     if (bs) {
280         AioContext *ctx = bdrv_get_aio_context(bs);
281         aio_context_acquire(ctx);
282         bdrv_dec_in_flight(bs);
283         if (data->begin) {
284             bdrv_do_drained_begin(bs, data->parent, data->poll);
285         } else {
286             assert(!data->poll);
287             bdrv_do_drained_end(bs, data->parent);
288         }
289         aio_context_release(ctx);
290     } else {
291         assert(data->begin);
292         bdrv_drain_all_begin();
293     }
294 
295     data->done = true;
296     aio_co_wake(co);
297 }
298 
299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
300                                                 bool begin,
301                                                 BdrvChild *parent,
302                                                 bool poll)
303 {
304     BdrvCoDrainData data;
305     Coroutine *self = qemu_coroutine_self();
306     AioContext *ctx = bdrv_get_aio_context(bs);
307     AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
308 
309     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
310      * other coroutines run if they were queued by aio_co_enter(). */
311 
312     assert(qemu_in_coroutine());
313     data = (BdrvCoDrainData) {
314         .co = self,
315         .bs = bs,
316         .done = false,
317         .begin = begin,
318         .parent = parent,
319         .poll = poll,
320     };
321 
322     if (bs) {
323         bdrv_inc_in_flight(bs);
324     }
325 
326     /*
327      * Temporarily drop the lock across yield or we would get deadlocks.
328      * bdrv_co_drain_bh_cb() reaquires the lock as needed.
329      *
330      * When we yield below, the lock for the current context will be
331      * released, so if this is actually the lock that protects bs, don't drop
332      * it a second time.
333      */
334     if (ctx != co_ctx) {
335         aio_context_release(ctx);
336     }
337     replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
338                                      bdrv_co_drain_bh_cb, &data);
339 
340     qemu_coroutine_yield();
341     /* If we are resumed from some other event (such as an aio completion or a
342      * timer callback), it is a bug in the caller that should be fixed. */
343     assert(data.done);
344 
345     /* Reaquire the AioContext of bs if we dropped it */
346     if (ctx != co_ctx) {
347         aio_context_acquire(ctx);
348     }
349 }
350 
351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
352                                   bool poll)
353 {
354     IO_OR_GS_CODE();
355 
356     if (qemu_in_coroutine()) {
357         bdrv_co_yield_to_drain(bs, true, parent, poll);
358         return;
359     }
360 
361     GLOBAL_STATE_CODE();
362 
363     /* Stop things in parent-to-child order */
364     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
365         bdrv_parent_drained_begin(bs, parent);
366         if (bs->drv && bs->drv->bdrv_drain_begin) {
367             bs->drv->bdrv_drain_begin(bs);
368         }
369     }
370 
371     /*
372      * Wait for drained requests to finish.
373      *
374      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
375      * call is needed so things in this AioContext can make progress even
376      * though we don't return to the main AioContext loop - this automatically
377      * includes other nodes in the same AioContext and therefore all child
378      * nodes.
379      */
380     if (poll) {
381         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
382     }
383 }
384 
385 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
386 {
387     bdrv_do_drained_begin(bs, parent, false);
388 }
389 
390 void bdrv_drained_begin(BlockDriverState *bs)
391 {
392     IO_OR_GS_CODE();
393     bdrv_do_drained_begin(bs, NULL, true);
394 }
395 
396 /**
397  * This function does not poll, nor must any of its recursively called
398  * functions.
399  */
400 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
401 {
402     int old_quiesce_counter;
403 
404     IO_OR_GS_CODE();
405 
406     if (qemu_in_coroutine()) {
407         bdrv_co_yield_to_drain(bs, false, parent, false);
408         return;
409     }
410     assert(bs->quiesce_counter > 0);
411     GLOBAL_STATE_CODE();
412 
413     /* Re-enable things in child-to-parent order */
414     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
415     if (old_quiesce_counter == 1) {
416         if (bs->drv && bs->drv->bdrv_drain_end) {
417             bs->drv->bdrv_drain_end(bs);
418         }
419         bdrv_parent_drained_end(bs, parent);
420     }
421 }
422 
423 void bdrv_drained_end(BlockDriverState *bs)
424 {
425     IO_OR_GS_CODE();
426     bdrv_do_drained_end(bs, NULL);
427 }
428 
429 void bdrv_drain(BlockDriverState *bs)
430 {
431     IO_OR_GS_CODE();
432     bdrv_drained_begin(bs);
433     bdrv_drained_end(bs);
434 }
435 
436 static void bdrv_drain_assert_idle(BlockDriverState *bs)
437 {
438     BdrvChild *child, *next;
439 
440     assert(qatomic_read(&bs->in_flight) == 0);
441     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
442         bdrv_drain_assert_idle(child->bs);
443     }
444 }
445 
446 unsigned int bdrv_drain_all_count = 0;
447 
448 static bool bdrv_drain_all_poll(void)
449 {
450     BlockDriverState *bs = NULL;
451     bool result = false;
452     GLOBAL_STATE_CODE();
453 
454     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
455      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
456     while ((bs = bdrv_next_all_states(bs))) {
457         AioContext *aio_context = bdrv_get_aio_context(bs);
458         aio_context_acquire(aio_context);
459         result |= bdrv_drain_poll(bs, NULL, true);
460         aio_context_release(aio_context);
461     }
462 
463     return result;
464 }
465 
466 /*
467  * Wait for pending requests to complete across all BlockDriverStates
468  *
469  * This function does not flush data to disk, use bdrv_flush_all() for that
470  * after calling this function.
471  *
472  * This pauses all block jobs and disables external clients. It must
473  * be paired with bdrv_drain_all_end().
474  *
475  * NOTE: no new block jobs or BlockDriverStates can be created between
476  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
477  */
478 void bdrv_drain_all_begin_nopoll(void)
479 {
480     BlockDriverState *bs = NULL;
481     GLOBAL_STATE_CODE();
482 
483     /*
484      * bdrv queue is managed by record/replay,
485      * waiting for finishing the I/O requests may
486      * be infinite
487      */
488     if (replay_events_enabled()) {
489         return;
490     }
491 
492     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
493      * loop AioContext, so make sure we're in the main context. */
494     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
495     assert(bdrv_drain_all_count < INT_MAX);
496     bdrv_drain_all_count++;
497 
498     /* Quiesce all nodes, without polling in-flight requests yet. The graph
499      * cannot change during this loop. */
500     while ((bs = bdrv_next_all_states(bs))) {
501         AioContext *aio_context = bdrv_get_aio_context(bs);
502 
503         aio_context_acquire(aio_context);
504         bdrv_do_drained_begin(bs, NULL, false);
505         aio_context_release(aio_context);
506     }
507 }
508 
509 void bdrv_drain_all_begin(void)
510 {
511     BlockDriverState *bs = NULL;
512 
513     if (qemu_in_coroutine()) {
514         bdrv_co_yield_to_drain(NULL, true, NULL, true);
515         return;
516     }
517 
518     /*
519      * bdrv queue is managed by record/replay,
520      * waiting for finishing the I/O requests may
521      * be infinite
522      */
523     if (replay_events_enabled()) {
524         return;
525     }
526 
527     bdrv_drain_all_begin_nopoll();
528 
529     /* Now poll the in-flight requests */
530     AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
531 
532     while ((bs = bdrv_next_all_states(bs))) {
533         bdrv_drain_assert_idle(bs);
534     }
535 }
536 
537 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
538 {
539     GLOBAL_STATE_CODE();
540 
541     g_assert(bs->quiesce_counter > 0);
542     g_assert(!bs->refcnt);
543 
544     while (bs->quiesce_counter) {
545         bdrv_do_drained_end(bs, NULL);
546     }
547 }
548 
549 void bdrv_drain_all_end(void)
550 {
551     BlockDriverState *bs = NULL;
552     GLOBAL_STATE_CODE();
553 
554     /*
555      * bdrv queue is managed by record/replay,
556      * waiting for finishing the I/O requests may
557      * be endless
558      */
559     if (replay_events_enabled()) {
560         return;
561     }
562 
563     while ((bs = bdrv_next_all_states(bs))) {
564         AioContext *aio_context = bdrv_get_aio_context(bs);
565 
566         aio_context_acquire(aio_context);
567         bdrv_do_drained_end(bs, NULL);
568         aio_context_release(aio_context);
569     }
570 
571     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
572     assert(bdrv_drain_all_count > 0);
573     bdrv_drain_all_count--;
574 }
575 
576 void bdrv_drain_all(void)
577 {
578     GLOBAL_STATE_CODE();
579     bdrv_drain_all_begin();
580     bdrv_drain_all_end();
581 }
582 
583 /**
584  * Remove an active request from the tracked requests list
585  *
586  * This function should be called when a tracked request is completing.
587  */
588 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
589 {
590     if (req->serialising) {
591         qatomic_dec(&req->bs->serialising_in_flight);
592     }
593 
594     qemu_co_mutex_lock(&req->bs->reqs_lock);
595     QLIST_REMOVE(req, list);
596     qemu_co_queue_restart_all(&req->wait_queue);
597     qemu_co_mutex_unlock(&req->bs->reqs_lock);
598 }
599 
600 /**
601  * Add an active request to the tracked requests list
602  */
603 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
604                                                BlockDriverState *bs,
605                                                int64_t offset,
606                                                int64_t bytes,
607                                                enum BdrvTrackedRequestType type)
608 {
609     bdrv_check_request(offset, bytes, &error_abort);
610 
611     *req = (BdrvTrackedRequest){
612         .bs = bs,
613         .offset         = offset,
614         .bytes          = bytes,
615         .type           = type,
616         .co             = qemu_coroutine_self(),
617         .serialising    = false,
618         .overlap_offset = offset,
619         .overlap_bytes  = bytes,
620     };
621 
622     qemu_co_queue_init(&req->wait_queue);
623 
624     qemu_co_mutex_lock(&bs->reqs_lock);
625     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
626     qemu_co_mutex_unlock(&bs->reqs_lock);
627 }
628 
629 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
630                                      int64_t offset, int64_t bytes)
631 {
632     bdrv_check_request(offset, bytes, &error_abort);
633 
634     /*        aaaa   bbbb */
635     if (offset >= req->overlap_offset + req->overlap_bytes) {
636         return false;
637     }
638     /* bbbb   aaaa        */
639     if (req->overlap_offset >= offset + bytes) {
640         return false;
641     }
642     return true;
643 }
644 
645 /* Called with self->bs->reqs_lock held */
646 static coroutine_fn BdrvTrackedRequest *
647 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
648 {
649     BdrvTrackedRequest *req;
650 
651     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
652         if (req == self || (!req->serialising && !self->serialising)) {
653             continue;
654         }
655         if (tracked_request_overlaps(req, self->overlap_offset,
656                                      self->overlap_bytes))
657         {
658             /*
659              * Hitting this means there was a reentrant request, for
660              * example, a block driver issuing nested requests.  This must
661              * never happen since it means deadlock.
662              */
663             assert(qemu_coroutine_self() != req->co);
664 
665             /*
666              * If the request is already (indirectly) waiting for us, or
667              * will wait for us as soon as it wakes up, then just go on
668              * (instead of producing a deadlock in the former case).
669              */
670             if (!req->waiting_for) {
671                 return req;
672             }
673         }
674     }
675 
676     return NULL;
677 }
678 
679 /* Called with self->bs->reqs_lock held */
680 static void coroutine_fn
681 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
682 {
683     BdrvTrackedRequest *req;
684 
685     while ((req = bdrv_find_conflicting_request(self))) {
686         self->waiting_for = req;
687         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
688         self->waiting_for = NULL;
689     }
690 }
691 
692 /* Called with req->bs->reqs_lock held */
693 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
694                                             uint64_t align)
695 {
696     int64_t overlap_offset = req->offset & ~(align - 1);
697     int64_t overlap_bytes =
698         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
699 
700     bdrv_check_request(req->offset, req->bytes, &error_abort);
701 
702     if (!req->serialising) {
703         qatomic_inc(&req->bs->serialising_in_flight);
704         req->serialising = true;
705     }
706 
707     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
708     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
709 }
710 
711 /**
712  * Return the tracked request on @bs for the current coroutine, or
713  * NULL if there is none.
714  */
715 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
716 {
717     BdrvTrackedRequest *req;
718     Coroutine *self = qemu_coroutine_self();
719     IO_CODE();
720 
721     QLIST_FOREACH(req, &bs->tracked_requests, list) {
722         if (req->co == self) {
723             return req;
724         }
725     }
726 
727     return NULL;
728 }
729 
730 /**
731  * Round a region to cluster boundaries
732  */
733 void coroutine_fn GRAPH_RDLOCK
734 bdrv_round_to_clusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
735                        int64_t *cluster_offset, int64_t *cluster_bytes)
736 {
737     BlockDriverInfo bdi;
738     IO_CODE();
739     if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
740         *cluster_offset = offset;
741         *cluster_bytes = bytes;
742     } else {
743         int64_t c = bdi.cluster_size;
744         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
745         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
746     }
747 }
748 
749 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
750 {
751     BlockDriverInfo bdi;
752     int ret;
753 
754     ret = bdrv_co_get_info(bs, &bdi);
755     if (ret < 0 || bdi.cluster_size == 0) {
756         return bs->bl.request_alignment;
757     } else {
758         return bdi.cluster_size;
759     }
760 }
761 
762 void bdrv_inc_in_flight(BlockDriverState *bs)
763 {
764     IO_CODE();
765     qatomic_inc(&bs->in_flight);
766 }
767 
768 void bdrv_wakeup(BlockDriverState *bs)
769 {
770     IO_CODE();
771     aio_wait_kick();
772 }
773 
774 void bdrv_dec_in_flight(BlockDriverState *bs)
775 {
776     IO_CODE();
777     qatomic_dec(&bs->in_flight);
778     bdrv_wakeup(bs);
779 }
780 
781 static void coroutine_fn
782 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
783 {
784     BlockDriverState *bs = self->bs;
785 
786     if (!qatomic_read(&bs->serialising_in_flight)) {
787         return;
788     }
789 
790     qemu_co_mutex_lock(&bs->reqs_lock);
791     bdrv_wait_serialising_requests_locked(self);
792     qemu_co_mutex_unlock(&bs->reqs_lock);
793 }
794 
795 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
796                                                 uint64_t align)
797 {
798     IO_CODE();
799 
800     qemu_co_mutex_lock(&req->bs->reqs_lock);
801 
802     tracked_request_set_serialising(req, align);
803     bdrv_wait_serialising_requests_locked(req);
804 
805     qemu_co_mutex_unlock(&req->bs->reqs_lock);
806 }
807 
808 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
809                             QEMUIOVector *qiov, size_t qiov_offset,
810                             Error **errp)
811 {
812     /*
813      * Check generic offset/bytes correctness
814      */
815 
816     if (offset < 0) {
817         error_setg(errp, "offset is negative: %" PRIi64, offset);
818         return -EIO;
819     }
820 
821     if (bytes < 0) {
822         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
823         return -EIO;
824     }
825 
826     if (bytes > BDRV_MAX_LENGTH) {
827         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
828                    bytes, BDRV_MAX_LENGTH);
829         return -EIO;
830     }
831 
832     if (offset > BDRV_MAX_LENGTH) {
833         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
834                    offset, BDRV_MAX_LENGTH);
835         return -EIO;
836     }
837 
838     if (offset > BDRV_MAX_LENGTH - bytes) {
839         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
840                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
841                    BDRV_MAX_LENGTH);
842         return -EIO;
843     }
844 
845     if (!qiov) {
846         return 0;
847     }
848 
849     /*
850      * Check qiov and qiov_offset
851      */
852 
853     if (qiov_offset > qiov->size) {
854         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
855                    qiov_offset, qiov->size);
856         return -EIO;
857     }
858 
859     if (bytes > qiov->size - qiov_offset) {
860         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
861                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
862         return -EIO;
863     }
864 
865     return 0;
866 }
867 
868 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
869 {
870     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
871 }
872 
873 static int bdrv_check_request32(int64_t offset, int64_t bytes,
874                                 QEMUIOVector *qiov, size_t qiov_offset)
875 {
876     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
877     if (ret < 0) {
878         return ret;
879     }
880 
881     if (bytes > BDRV_REQUEST_MAX_BYTES) {
882         return -EIO;
883     }
884 
885     return 0;
886 }
887 
888 /*
889  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
890  * The operation is sped up by checking the block status and only writing
891  * zeroes to the device if they currently do not return zeroes. Optional
892  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
893  * BDRV_REQ_FUA).
894  *
895  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
896  */
897 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
898 {
899     int ret;
900     int64_t target_size, bytes, offset = 0;
901     BlockDriverState *bs = child->bs;
902     IO_CODE();
903 
904     target_size = bdrv_getlength(bs);
905     if (target_size < 0) {
906         return target_size;
907     }
908 
909     for (;;) {
910         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
911         if (bytes <= 0) {
912             return 0;
913         }
914         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
915         if (ret < 0) {
916             return ret;
917         }
918         if (ret & BDRV_BLOCK_ZERO) {
919             offset += bytes;
920             continue;
921         }
922         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
923         if (ret < 0) {
924             return ret;
925         }
926         offset += bytes;
927     }
928 }
929 
930 /*
931  * Writes to the file and ensures that no writes are reordered across this
932  * request (acts as a barrier)
933  *
934  * Returns 0 on success, -errno in error cases.
935  */
936 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
937                                      int64_t bytes, const void *buf,
938                                      BdrvRequestFlags flags)
939 {
940     int ret;
941     IO_CODE();
942     assert_bdrv_graph_readable();
943 
944     ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
945     if (ret < 0) {
946         return ret;
947     }
948 
949     ret = bdrv_co_flush(child->bs);
950     if (ret < 0) {
951         return ret;
952     }
953 
954     return 0;
955 }
956 
957 typedef struct CoroutineIOCompletion {
958     Coroutine *coroutine;
959     int ret;
960 } CoroutineIOCompletion;
961 
962 static void bdrv_co_io_em_complete(void *opaque, int ret)
963 {
964     CoroutineIOCompletion *co = opaque;
965 
966     co->ret = ret;
967     aio_co_wake(co->coroutine);
968 }
969 
970 static int coroutine_fn GRAPH_RDLOCK
971 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
972                    QEMUIOVector *qiov, size_t qiov_offset, int flags)
973 {
974     BlockDriver *drv = bs->drv;
975     int64_t sector_num;
976     unsigned int nb_sectors;
977     QEMUIOVector local_qiov;
978     int ret;
979     assert_bdrv_graph_readable();
980 
981     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
982     assert(!(flags & ~bs->supported_read_flags));
983 
984     if (!drv) {
985         return -ENOMEDIUM;
986     }
987 
988     if (drv->bdrv_co_preadv_part) {
989         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
990                                         flags);
991     }
992 
993     if (qiov_offset > 0 || bytes != qiov->size) {
994         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
995         qiov = &local_qiov;
996     }
997 
998     if (drv->bdrv_co_preadv) {
999         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1000         goto out;
1001     }
1002 
1003     if (drv->bdrv_aio_preadv) {
1004         BlockAIOCB *acb;
1005         CoroutineIOCompletion co = {
1006             .coroutine = qemu_coroutine_self(),
1007         };
1008 
1009         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1010                                    bdrv_co_io_em_complete, &co);
1011         if (acb == NULL) {
1012             ret = -EIO;
1013             goto out;
1014         } else {
1015             qemu_coroutine_yield();
1016             ret = co.ret;
1017             goto out;
1018         }
1019     }
1020 
1021     sector_num = offset >> BDRV_SECTOR_BITS;
1022     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1023 
1024     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1025     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1026     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1027     assert(drv->bdrv_co_readv);
1028 
1029     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1030 
1031 out:
1032     if (qiov == &local_qiov) {
1033         qemu_iovec_destroy(&local_qiov);
1034     }
1035 
1036     return ret;
1037 }
1038 
1039 static int coroutine_fn GRAPH_RDLOCK
1040 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1041                     QEMUIOVector *qiov, size_t qiov_offset,
1042                     BdrvRequestFlags flags)
1043 {
1044     BlockDriver *drv = bs->drv;
1045     bool emulate_fua = false;
1046     int64_t sector_num;
1047     unsigned int nb_sectors;
1048     QEMUIOVector local_qiov;
1049     int ret;
1050     assert_bdrv_graph_readable();
1051 
1052     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1053 
1054     if (!drv) {
1055         return -ENOMEDIUM;
1056     }
1057 
1058     if ((flags & BDRV_REQ_FUA) &&
1059         (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1060         flags &= ~BDRV_REQ_FUA;
1061         emulate_fua = true;
1062     }
1063 
1064     flags &= bs->supported_write_flags;
1065 
1066     if (drv->bdrv_co_pwritev_part) {
1067         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1068                                         flags);
1069         goto emulate_flags;
1070     }
1071 
1072     if (qiov_offset > 0 || bytes != qiov->size) {
1073         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1074         qiov = &local_qiov;
1075     }
1076 
1077     if (drv->bdrv_co_pwritev) {
1078         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1079         goto emulate_flags;
1080     }
1081 
1082     if (drv->bdrv_aio_pwritev) {
1083         BlockAIOCB *acb;
1084         CoroutineIOCompletion co = {
1085             .coroutine = qemu_coroutine_self(),
1086         };
1087 
1088         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1089                                     bdrv_co_io_em_complete, &co);
1090         if (acb == NULL) {
1091             ret = -EIO;
1092         } else {
1093             qemu_coroutine_yield();
1094             ret = co.ret;
1095         }
1096         goto emulate_flags;
1097     }
1098 
1099     sector_num = offset >> BDRV_SECTOR_BITS;
1100     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1101 
1102     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1103     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1104     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1105 
1106     assert(drv->bdrv_co_writev);
1107     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1108 
1109 emulate_flags:
1110     if (ret == 0 && emulate_fua) {
1111         ret = bdrv_co_flush(bs);
1112     }
1113 
1114     if (qiov == &local_qiov) {
1115         qemu_iovec_destroy(&local_qiov);
1116     }
1117 
1118     return ret;
1119 }
1120 
1121 static int coroutine_fn GRAPH_RDLOCK
1122 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1123                                int64_t bytes, QEMUIOVector *qiov,
1124                                size_t qiov_offset)
1125 {
1126     BlockDriver *drv = bs->drv;
1127     QEMUIOVector local_qiov;
1128     int ret;
1129     assert_bdrv_graph_readable();
1130 
1131     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1132 
1133     if (!drv) {
1134         return -ENOMEDIUM;
1135     }
1136 
1137     if (!block_driver_can_compress(drv)) {
1138         return -ENOTSUP;
1139     }
1140 
1141     if (drv->bdrv_co_pwritev_compressed_part) {
1142         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1143                                                     qiov, qiov_offset);
1144     }
1145 
1146     if (qiov_offset == 0) {
1147         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1148     }
1149 
1150     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1151     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1152     qemu_iovec_destroy(&local_qiov);
1153 
1154     return ret;
1155 }
1156 
1157 static int coroutine_fn GRAPH_RDLOCK
1158 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1159                          QEMUIOVector *qiov, size_t qiov_offset, int flags)
1160 {
1161     BlockDriverState *bs = child->bs;
1162 
1163     /* Perform I/O through a temporary buffer so that users who scribble over
1164      * their read buffer while the operation is in progress do not end up
1165      * modifying the image file.  This is critical for zero-copy guest I/O
1166      * where anything might happen inside guest memory.
1167      */
1168     void *bounce_buffer = NULL;
1169 
1170     BlockDriver *drv = bs->drv;
1171     int64_t cluster_offset;
1172     int64_t cluster_bytes;
1173     int64_t skip_bytes;
1174     int ret;
1175     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1176                                     BDRV_REQUEST_MAX_BYTES);
1177     int64_t progress = 0;
1178     bool skip_write;
1179 
1180     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1181 
1182     if (!drv) {
1183         return -ENOMEDIUM;
1184     }
1185 
1186     /*
1187      * Do not write anything when the BDS is inactive.  That is not
1188      * allowed, and it would not help.
1189      */
1190     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1191 
1192     /* FIXME We cannot require callers to have write permissions when all they
1193      * are doing is a read request. If we did things right, write permissions
1194      * would be obtained anyway, but internally by the copy-on-read code. As
1195      * long as it is implemented here rather than in a separate filter driver,
1196      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1197      * it could request permissions. Therefore we have to bypass the permission
1198      * system for the moment. */
1199     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1200 
1201     /* Cover entire cluster so no additional backing file I/O is required when
1202      * allocating cluster in the image file.  Note that this value may exceed
1203      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1204      * is one reason we loop rather than doing it all at once.
1205      */
1206     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1207     skip_bytes = offset - cluster_offset;
1208 
1209     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1210                                    cluster_offset, cluster_bytes);
1211 
1212     while (cluster_bytes) {
1213         int64_t pnum;
1214 
1215         if (skip_write) {
1216             ret = 1; /* "already allocated", so nothing will be copied */
1217             pnum = MIN(cluster_bytes, max_transfer);
1218         } else {
1219             ret = bdrv_is_allocated(bs, cluster_offset,
1220                                     MIN(cluster_bytes, max_transfer), &pnum);
1221             if (ret < 0) {
1222                 /*
1223                  * Safe to treat errors in querying allocation as if
1224                  * unallocated; we'll probably fail again soon on the
1225                  * read, but at least that will set a decent errno.
1226                  */
1227                 pnum = MIN(cluster_bytes, max_transfer);
1228             }
1229 
1230             /* Stop at EOF if the image ends in the middle of the cluster */
1231             if (ret == 0 && pnum == 0) {
1232                 assert(progress >= bytes);
1233                 break;
1234             }
1235 
1236             assert(skip_bytes < pnum);
1237         }
1238 
1239         if (ret <= 0) {
1240             QEMUIOVector local_qiov;
1241 
1242             /* Must copy-on-read; use the bounce buffer */
1243             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1244             if (!bounce_buffer) {
1245                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1246                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1247                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1248 
1249                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1250                 if (!bounce_buffer) {
1251                     ret = -ENOMEM;
1252                     goto err;
1253                 }
1254             }
1255             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1256 
1257             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1258                                      &local_qiov, 0, 0);
1259             if (ret < 0) {
1260                 goto err;
1261             }
1262 
1263             bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1264             if (drv->bdrv_co_pwrite_zeroes &&
1265                 buffer_is_zero(bounce_buffer, pnum)) {
1266                 /* FIXME: Should we (perhaps conditionally) be setting
1267                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1268                  * that still correctly reads as zero? */
1269                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1270                                                BDRV_REQ_WRITE_UNCHANGED);
1271             } else {
1272                 /* This does not change the data on the disk, it is not
1273                  * necessary to flush even in cache=writethrough mode.
1274                  */
1275                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1276                                           &local_qiov, 0,
1277                                           BDRV_REQ_WRITE_UNCHANGED);
1278             }
1279 
1280             if (ret < 0) {
1281                 /* It might be okay to ignore write errors for guest
1282                  * requests.  If this is a deliberate copy-on-read
1283                  * then we don't want to ignore the error.  Simply
1284                  * report it in all cases.
1285                  */
1286                 goto err;
1287             }
1288 
1289             if (!(flags & BDRV_REQ_PREFETCH)) {
1290                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1291                                     bounce_buffer + skip_bytes,
1292                                     MIN(pnum - skip_bytes, bytes - progress));
1293             }
1294         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1295             /* Read directly into the destination */
1296             ret = bdrv_driver_preadv(bs, offset + progress,
1297                                      MIN(pnum - skip_bytes, bytes - progress),
1298                                      qiov, qiov_offset + progress, 0);
1299             if (ret < 0) {
1300                 goto err;
1301             }
1302         }
1303 
1304         cluster_offset += pnum;
1305         cluster_bytes -= pnum;
1306         progress += pnum - skip_bytes;
1307         skip_bytes = 0;
1308     }
1309     ret = 0;
1310 
1311 err:
1312     qemu_vfree(bounce_buffer);
1313     return ret;
1314 }
1315 
1316 /*
1317  * Forwards an already correctly aligned request to the BlockDriver. This
1318  * handles copy on read, zeroing after EOF, and fragmentation of large
1319  * reads; any other features must be implemented by the caller.
1320  */
1321 static int coroutine_fn GRAPH_RDLOCK
1322 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1323                     int64_t offset, int64_t bytes, int64_t align,
1324                     QEMUIOVector *qiov, size_t qiov_offset, int flags)
1325 {
1326     BlockDriverState *bs = child->bs;
1327     int64_t total_bytes, max_bytes;
1328     int ret = 0;
1329     int64_t bytes_remaining = bytes;
1330     int max_transfer;
1331 
1332     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1333     assert(is_power_of_2(align));
1334     assert((offset & (align - 1)) == 0);
1335     assert((bytes & (align - 1)) == 0);
1336     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1337     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1338                                    align);
1339 
1340     /*
1341      * TODO: We would need a per-BDS .supported_read_flags and
1342      * potential fallback support, if we ever implement any read flags
1343      * to pass through to drivers.  For now, there aren't any
1344      * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1345      */
1346     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1347                        BDRV_REQ_REGISTERED_BUF)));
1348 
1349     /* Handle Copy on Read and associated serialisation */
1350     if (flags & BDRV_REQ_COPY_ON_READ) {
1351         /* If we touch the same cluster it counts as an overlap.  This
1352          * guarantees that allocating writes will be serialized and not race
1353          * with each other for the same cluster.  For example, in copy-on-read
1354          * it ensures that the CoR read and write operations are atomic and
1355          * guest writes cannot interleave between them. */
1356         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1357     } else {
1358         bdrv_wait_serialising_requests(req);
1359     }
1360 
1361     if (flags & BDRV_REQ_COPY_ON_READ) {
1362         int64_t pnum;
1363 
1364         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1365         flags &= ~BDRV_REQ_COPY_ON_READ;
1366 
1367         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1368         if (ret < 0) {
1369             goto out;
1370         }
1371 
1372         if (!ret || pnum != bytes) {
1373             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1374                                            qiov, qiov_offset, flags);
1375             goto out;
1376         } else if (flags & BDRV_REQ_PREFETCH) {
1377             goto out;
1378         }
1379     }
1380 
1381     /* Forward the request to the BlockDriver, possibly fragmenting it */
1382     total_bytes = bdrv_getlength(bs);
1383     if (total_bytes < 0) {
1384         ret = total_bytes;
1385         goto out;
1386     }
1387 
1388     assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1389 
1390     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1391     if (bytes <= max_bytes && bytes <= max_transfer) {
1392         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1393         goto out;
1394     }
1395 
1396     while (bytes_remaining) {
1397         int64_t num;
1398 
1399         if (max_bytes) {
1400             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1401             assert(num);
1402 
1403             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1404                                      num, qiov,
1405                                      qiov_offset + bytes - bytes_remaining,
1406                                      flags);
1407             max_bytes -= num;
1408         } else {
1409             num = bytes_remaining;
1410             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1411                                     0, bytes_remaining);
1412         }
1413         if (ret < 0) {
1414             goto out;
1415         }
1416         bytes_remaining -= num;
1417     }
1418 
1419 out:
1420     return ret < 0 ? ret : 0;
1421 }
1422 
1423 /*
1424  * Request padding
1425  *
1426  *  |<---- align ----->|                     |<----- align ---->|
1427  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1428  *  |          |       |                     |     |            |
1429  * -*----------$-------*-------- ... --------*-----$------------*---
1430  *  |          |       |                     |     |            |
1431  *  |          offset  |                     |     end          |
1432  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1433  *  [buf   ... )                             [tail_buf          )
1434  *
1435  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1436  * is placed at the beginning of @buf and @tail at the @end.
1437  *
1438  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1439  * around tail, if tail exists.
1440  *
1441  * @merge_reads is true for small requests,
1442  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1443  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1444  */
1445 typedef struct BdrvRequestPadding {
1446     uint8_t *buf;
1447     size_t buf_len;
1448     uint8_t *tail_buf;
1449     size_t head;
1450     size_t tail;
1451     bool merge_reads;
1452     QEMUIOVector local_qiov;
1453 } BdrvRequestPadding;
1454 
1455 static bool bdrv_init_padding(BlockDriverState *bs,
1456                               int64_t offset, int64_t bytes,
1457                               BdrvRequestPadding *pad)
1458 {
1459     int64_t align = bs->bl.request_alignment;
1460     int64_t sum;
1461 
1462     bdrv_check_request(offset, bytes, &error_abort);
1463     assert(align <= INT_MAX); /* documented in block/block_int.h */
1464     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1465 
1466     memset(pad, 0, sizeof(*pad));
1467 
1468     pad->head = offset & (align - 1);
1469     pad->tail = ((offset + bytes) & (align - 1));
1470     if (pad->tail) {
1471         pad->tail = align - pad->tail;
1472     }
1473 
1474     if (!pad->head && !pad->tail) {
1475         return false;
1476     }
1477 
1478     assert(bytes); /* Nothing good in aligning zero-length requests */
1479 
1480     sum = pad->head + bytes + pad->tail;
1481     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1482     pad->buf = qemu_blockalign(bs, pad->buf_len);
1483     pad->merge_reads = sum == pad->buf_len;
1484     if (pad->tail) {
1485         pad->tail_buf = pad->buf + pad->buf_len - align;
1486     }
1487 
1488     return true;
1489 }
1490 
1491 static int coroutine_fn GRAPH_RDLOCK
1492 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1493                       BdrvRequestPadding *pad, bool zero_middle)
1494 {
1495     QEMUIOVector local_qiov;
1496     BlockDriverState *bs = child->bs;
1497     uint64_t align = bs->bl.request_alignment;
1498     int ret;
1499 
1500     assert(req->serialising && pad->buf);
1501 
1502     if (pad->head || pad->merge_reads) {
1503         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1504 
1505         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1506 
1507         if (pad->head) {
1508             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1509         }
1510         if (pad->merge_reads && pad->tail) {
1511             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1512         }
1513         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1514                                   align, &local_qiov, 0, 0);
1515         if (ret < 0) {
1516             return ret;
1517         }
1518         if (pad->head) {
1519             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1520         }
1521         if (pad->merge_reads && pad->tail) {
1522             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1523         }
1524 
1525         if (pad->merge_reads) {
1526             goto zero_mem;
1527         }
1528     }
1529 
1530     if (pad->tail) {
1531         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1532 
1533         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1534         ret = bdrv_aligned_preadv(
1535                 child, req,
1536                 req->overlap_offset + req->overlap_bytes - align,
1537                 align, align, &local_qiov, 0, 0);
1538         if (ret < 0) {
1539             return ret;
1540         }
1541         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1542     }
1543 
1544 zero_mem:
1545     if (zero_middle) {
1546         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1547     }
1548 
1549     return 0;
1550 }
1551 
1552 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1553 {
1554     if (pad->buf) {
1555         qemu_vfree(pad->buf);
1556         qemu_iovec_destroy(&pad->local_qiov);
1557     }
1558     memset(pad, 0, sizeof(*pad));
1559 }
1560 
1561 /*
1562  * bdrv_pad_request
1563  *
1564  * Exchange request parameters with padded request if needed. Don't include RMW
1565  * read of padding, bdrv_padding_rmw_read() should be called separately if
1566  * needed.
1567  *
1568  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1569  *  - on function start they represent original request
1570  *  - on failure or when padding is not needed they are unchanged
1571  *  - on success when padding is needed they represent padded request
1572  */
1573 static int bdrv_pad_request(BlockDriverState *bs,
1574                             QEMUIOVector **qiov, size_t *qiov_offset,
1575                             int64_t *offset, int64_t *bytes,
1576                             BdrvRequestPadding *pad, bool *padded,
1577                             BdrvRequestFlags *flags)
1578 {
1579     int ret;
1580 
1581     bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1582 
1583     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1584         if (padded) {
1585             *padded = false;
1586         }
1587         return 0;
1588     }
1589 
1590     ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1591                                    *qiov, *qiov_offset, *bytes,
1592                                    pad->buf + pad->buf_len - pad->tail,
1593                                    pad->tail);
1594     if (ret < 0) {
1595         bdrv_padding_destroy(pad);
1596         return ret;
1597     }
1598     *bytes += pad->head + pad->tail;
1599     *offset -= pad->head;
1600     *qiov = &pad->local_qiov;
1601     *qiov_offset = 0;
1602     if (padded) {
1603         *padded = true;
1604     }
1605     if (flags) {
1606         /* Can't use optimization hint with bounce buffer */
1607         *flags &= ~BDRV_REQ_REGISTERED_BUF;
1608     }
1609 
1610     return 0;
1611 }
1612 
1613 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1614     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1615     BdrvRequestFlags flags)
1616 {
1617     IO_CODE();
1618     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1619 }
1620 
1621 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1622     int64_t offset, int64_t bytes,
1623     QEMUIOVector *qiov, size_t qiov_offset,
1624     BdrvRequestFlags flags)
1625 {
1626     BlockDriverState *bs = child->bs;
1627     BdrvTrackedRequest req;
1628     BdrvRequestPadding pad;
1629     int ret;
1630     IO_CODE();
1631 
1632     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1633 
1634     if (!bdrv_co_is_inserted(bs)) {
1635         return -ENOMEDIUM;
1636     }
1637 
1638     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1639     if (ret < 0) {
1640         return ret;
1641     }
1642 
1643     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1644         /*
1645          * Aligning zero request is nonsense. Even if driver has special meaning
1646          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1647          * it to driver due to request_alignment.
1648          *
1649          * Still, no reason to return an error if someone do unaligned
1650          * zero-length read occasionally.
1651          */
1652         return 0;
1653     }
1654 
1655     bdrv_inc_in_flight(bs);
1656 
1657     /* Don't do copy-on-read if we read data before write operation */
1658     if (qatomic_read(&bs->copy_on_read)) {
1659         flags |= BDRV_REQ_COPY_ON_READ;
1660     }
1661 
1662     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1663                            NULL, &flags);
1664     if (ret < 0) {
1665         goto fail;
1666     }
1667 
1668     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1669     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1670                               bs->bl.request_alignment,
1671                               qiov, qiov_offset, flags);
1672     tracked_request_end(&req);
1673     bdrv_padding_destroy(&pad);
1674 
1675 fail:
1676     bdrv_dec_in_flight(bs);
1677 
1678     return ret;
1679 }
1680 
1681 static int coroutine_fn GRAPH_RDLOCK
1682 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1683                          BdrvRequestFlags flags)
1684 {
1685     BlockDriver *drv = bs->drv;
1686     QEMUIOVector qiov;
1687     void *buf = NULL;
1688     int ret = 0;
1689     bool need_flush = false;
1690     int head = 0;
1691     int tail = 0;
1692 
1693     int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1694                                             INT64_MAX);
1695     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1696                         bs->bl.request_alignment);
1697     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1698 
1699     assert_bdrv_graph_readable();
1700     bdrv_check_request(offset, bytes, &error_abort);
1701 
1702     if (!drv) {
1703         return -ENOMEDIUM;
1704     }
1705 
1706     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1707         return -ENOTSUP;
1708     }
1709 
1710     /* By definition there is no user buffer so this flag doesn't make sense */
1711     if (flags & BDRV_REQ_REGISTERED_BUF) {
1712         return -EINVAL;
1713     }
1714 
1715     /* Invalidate the cached block-status data range if this write overlaps */
1716     bdrv_bsc_invalidate_range(bs, offset, bytes);
1717 
1718     assert(alignment % bs->bl.request_alignment == 0);
1719     head = offset % alignment;
1720     tail = (offset + bytes) % alignment;
1721     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1722     assert(max_write_zeroes >= bs->bl.request_alignment);
1723 
1724     while (bytes > 0 && !ret) {
1725         int64_t num = bytes;
1726 
1727         /* Align request.  Block drivers can expect the "bulk" of the request
1728          * to be aligned, and that unaligned requests do not cross cluster
1729          * boundaries.
1730          */
1731         if (head) {
1732             /* Make a small request up to the first aligned sector. For
1733              * convenience, limit this request to max_transfer even if
1734              * we don't need to fall back to writes.  */
1735             num = MIN(MIN(bytes, max_transfer), alignment - head);
1736             head = (head + num) % alignment;
1737             assert(num < max_write_zeroes);
1738         } else if (tail && num > alignment) {
1739             /* Shorten the request to the last aligned sector.  */
1740             num -= tail;
1741         }
1742 
1743         /* limit request size */
1744         if (num > max_write_zeroes) {
1745             num = max_write_zeroes;
1746         }
1747 
1748         ret = -ENOTSUP;
1749         /* First try the efficient write zeroes operation */
1750         if (drv->bdrv_co_pwrite_zeroes) {
1751             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1752                                              flags & bs->supported_zero_flags);
1753             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1754                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1755                 need_flush = true;
1756             }
1757         } else {
1758             assert(!bs->supported_zero_flags);
1759         }
1760 
1761         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1762             /* Fall back to bounce buffer if write zeroes is unsupported */
1763             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1764 
1765             if ((flags & BDRV_REQ_FUA) &&
1766                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1767                 /* No need for bdrv_driver_pwrite() to do a fallback
1768                  * flush on each chunk; use just one at the end */
1769                 write_flags &= ~BDRV_REQ_FUA;
1770                 need_flush = true;
1771             }
1772             num = MIN(num, max_transfer);
1773             if (buf == NULL) {
1774                 buf = qemu_try_blockalign0(bs, num);
1775                 if (buf == NULL) {
1776                     ret = -ENOMEM;
1777                     goto fail;
1778                 }
1779             }
1780             qemu_iovec_init_buf(&qiov, buf, num);
1781 
1782             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1783 
1784             /* Keep bounce buffer around if it is big enough for all
1785              * all future requests.
1786              */
1787             if (num < max_transfer) {
1788                 qemu_vfree(buf);
1789                 buf = NULL;
1790             }
1791         }
1792 
1793         offset += num;
1794         bytes -= num;
1795     }
1796 
1797 fail:
1798     if (ret == 0 && need_flush) {
1799         ret = bdrv_co_flush(bs);
1800     }
1801     qemu_vfree(buf);
1802     return ret;
1803 }
1804 
1805 static inline int coroutine_fn GRAPH_RDLOCK
1806 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1807                           BdrvTrackedRequest *req, int flags)
1808 {
1809     BlockDriverState *bs = child->bs;
1810 
1811     bdrv_check_request(offset, bytes, &error_abort);
1812 
1813     if (bdrv_is_read_only(bs)) {
1814         return -EPERM;
1815     }
1816 
1817     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1818     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1819     assert(!(flags & ~BDRV_REQ_MASK));
1820     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1821 
1822     if (flags & BDRV_REQ_SERIALISING) {
1823         QEMU_LOCK_GUARD(&bs->reqs_lock);
1824 
1825         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1826 
1827         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1828             return -EBUSY;
1829         }
1830 
1831         bdrv_wait_serialising_requests_locked(req);
1832     } else {
1833         bdrv_wait_serialising_requests(req);
1834     }
1835 
1836     assert(req->overlap_offset <= offset);
1837     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1838     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1839            child->perm & BLK_PERM_RESIZE);
1840 
1841     switch (req->type) {
1842     case BDRV_TRACKED_WRITE:
1843     case BDRV_TRACKED_DISCARD:
1844         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1845             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1846         } else {
1847             assert(child->perm & BLK_PERM_WRITE);
1848         }
1849         bdrv_write_threshold_check_write(bs, offset, bytes);
1850         return 0;
1851     case BDRV_TRACKED_TRUNCATE:
1852         assert(child->perm & BLK_PERM_RESIZE);
1853         return 0;
1854     default:
1855         abort();
1856     }
1857 }
1858 
1859 static inline void coroutine_fn
1860 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
1861                          BdrvTrackedRequest *req, int ret)
1862 {
1863     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1864     BlockDriverState *bs = child->bs;
1865 
1866     bdrv_check_request(offset, bytes, &error_abort);
1867 
1868     qatomic_inc(&bs->write_gen);
1869 
1870     /*
1871      * Discard cannot extend the image, but in error handling cases, such as
1872      * when reverting a qcow2 cluster allocation, the discarded range can pass
1873      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1874      * here. Instead, just skip it, since semantically a discard request
1875      * beyond EOF cannot expand the image anyway.
1876      */
1877     if (ret == 0 &&
1878         (req->type == BDRV_TRACKED_TRUNCATE ||
1879          end_sector > bs->total_sectors) &&
1880         req->type != BDRV_TRACKED_DISCARD) {
1881         bs->total_sectors = end_sector;
1882         bdrv_parent_cb_resize(bs);
1883         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1884     }
1885     if (req->bytes) {
1886         switch (req->type) {
1887         case BDRV_TRACKED_WRITE:
1888             stat64_max(&bs->wr_highest_offset, offset + bytes);
1889             /* fall through, to set dirty bits */
1890         case BDRV_TRACKED_DISCARD:
1891             bdrv_set_dirty(bs, offset, bytes);
1892             break;
1893         default:
1894             break;
1895         }
1896     }
1897 }
1898 
1899 /*
1900  * Forwards an already correctly aligned write request to the BlockDriver,
1901  * after possibly fragmenting it.
1902  */
1903 static int coroutine_fn GRAPH_RDLOCK
1904 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
1905                      int64_t offset, int64_t bytes, int64_t align,
1906                      QEMUIOVector *qiov, size_t qiov_offset,
1907                      BdrvRequestFlags flags)
1908 {
1909     BlockDriverState *bs = child->bs;
1910     BlockDriver *drv = bs->drv;
1911     int ret;
1912 
1913     int64_t bytes_remaining = bytes;
1914     int max_transfer;
1915 
1916     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1917 
1918     if (!drv) {
1919         return -ENOMEDIUM;
1920     }
1921 
1922     if (bdrv_has_readonly_bitmaps(bs)) {
1923         return -EPERM;
1924     }
1925 
1926     assert(is_power_of_2(align));
1927     assert((offset & (align - 1)) == 0);
1928     assert((bytes & (align - 1)) == 0);
1929     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1930                                    align);
1931 
1932     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1933 
1934     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1935         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1936         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1937         flags |= BDRV_REQ_ZERO_WRITE;
1938         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1939             flags |= BDRV_REQ_MAY_UNMAP;
1940         }
1941 
1942         /* Can't use optimization hint with bufferless zero write */
1943         flags &= ~BDRV_REQ_REGISTERED_BUF;
1944     }
1945 
1946     if (ret < 0) {
1947         /* Do nothing, write notifier decided to fail this request */
1948     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1949         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1950         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1951     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1952         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1953                                              qiov, qiov_offset);
1954     } else if (bytes <= max_transfer) {
1955         bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
1956         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1957     } else {
1958         bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
1959         while (bytes_remaining) {
1960             int num = MIN(bytes_remaining, max_transfer);
1961             int local_flags = flags;
1962 
1963             assert(num);
1964             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1965                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1966                 /* If FUA is going to be emulated by flush, we only
1967                  * need to flush on the last iteration */
1968                 local_flags &= ~BDRV_REQ_FUA;
1969             }
1970 
1971             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1972                                       num, qiov,
1973                                       qiov_offset + bytes - bytes_remaining,
1974                                       local_flags);
1975             if (ret < 0) {
1976                 break;
1977             }
1978             bytes_remaining -= num;
1979         }
1980     }
1981     bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
1982 
1983     if (ret >= 0) {
1984         ret = 0;
1985     }
1986     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1987 
1988     return ret;
1989 }
1990 
1991 static int coroutine_fn GRAPH_RDLOCK
1992 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
1993                         BdrvRequestFlags flags, BdrvTrackedRequest *req)
1994 {
1995     BlockDriverState *bs = child->bs;
1996     QEMUIOVector local_qiov;
1997     uint64_t align = bs->bl.request_alignment;
1998     int ret = 0;
1999     bool padding;
2000     BdrvRequestPadding pad;
2001 
2002     /* This flag doesn't make sense for padding or zero writes */
2003     flags &= ~BDRV_REQ_REGISTERED_BUF;
2004 
2005     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2006     if (padding) {
2007         assert(!(flags & BDRV_REQ_NO_WAIT));
2008         bdrv_make_request_serialising(req, align);
2009 
2010         bdrv_padding_rmw_read(child, req, &pad, true);
2011 
2012         if (pad.head || pad.merge_reads) {
2013             int64_t aligned_offset = offset & ~(align - 1);
2014             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2015 
2016             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2017             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2018                                        align, &local_qiov, 0,
2019                                        flags & ~BDRV_REQ_ZERO_WRITE);
2020             if (ret < 0 || pad.merge_reads) {
2021                 /* Error or all work is done */
2022                 goto out;
2023             }
2024             offset += write_bytes - pad.head;
2025             bytes -= write_bytes - pad.head;
2026         }
2027     }
2028 
2029     assert(!bytes || (offset & (align - 1)) == 0);
2030     if (bytes >= align) {
2031         /* Write the aligned part in the middle. */
2032         int64_t aligned_bytes = bytes & ~(align - 1);
2033         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2034                                    NULL, 0, flags);
2035         if (ret < 0) {
2036             goto out;
2037         }
2038         bytes -= aligned_bytes;
2039         offset += aligned_bytes;
2040     }
2041 
2042     assert(!bytes || (offset & (align - 1)) == 0);
2043     if (bytes) {
2044         assert(align == pad.tail + bytes);
2045 
2046         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2047         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2048                                    &local_qiov, 0,
2049                                    flags & ~BDRV_REQ_ZERO_WRITE);
2050     }
2051 
2052 out:
2053     bdrv_padding_destroy(&pad);
2054 
2055     return ret;
2056 }
2057 
2058 /*
2059  * Handle a write request in coroutine context
2060  */
2061 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2062     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2063     BdrvRequestFlags flags)
2064 {
2065     IO_CODE();
2066     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2067 }
2068 
2069 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2070     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2071     BdrvRequestFlags flags)
2072 {
2073     BlockDriverState *bs = child->bs;
2074     BdrvTrackedRequest req;
2075     uint64_t align = bs->bl.request_alignment;
2076     BdrvRequestPadding pad;
2077     int ret;
2078     bool padded = false;
2079     IO_CODE();
2080 
2081     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2082 
2083     if (!bdrv_co_is_inserted(bs)) {
2084         return -ENOMEDIUM;
2085     }
2086 
2087     if (flags & BDRV_REQ_ZERO_WRITE) {
2088         ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2089     } else {
2090         ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2091     }
2092     if (ret < 0) {
2093         return ret;
2094     }
2095 
2096     /* If the request is misaligned then we can't make it efficient */
2097     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2098         !QEMU_IS_ALIGNED(offset | bytes, align))
2099     {
2100         return -ENOTSUP;
2101     }
2102 
2103     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2104         /*
2105          * Aligning zero request is nonsense. Even if driver has special meaning
2106          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2107          * it to driver due to request_alignment.
2108          *
2109          * Still, no reason to return an error if someone do unaligned
2110          * zero-length write occasionally.
2111          */
2112         return 0;
2113     }
2114 
2115     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2116         /*
2117          * Pad request for following read-modify-write cycle.
2118          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2119          * alignment only if there is no ZERO flag.
2120          */
2121         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2122                                &padded, &flags);
2123         if (ret < 0) {
2124             return ret;
2125         }
2126     }
2127 
2128     bdrv_inc_in_flight(bs);
2129     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2130 
2131     if (flags & BDRV_REQ_ZERO_WRITE) {
2132         assert(!padded);
2133         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2134         goto out;
2135     }
2136 
2137     if (padded) {
2138         /*
2139          * Request was unaligned to request_alignment and therefore
2140          * padded.  We are going to do read-modify-write, and must
2141          * serialize the request to prevent interactions of the
2142          * widened region with other transactions.
2143          */
2144         assert(!(flags & BDRV_REQ_NO_WAIT));
2145         bdrv_make_request_serialising(&req, align);
2146         bdrv_padding_rmw_read(child, &req, &pad, false);
2147     }
2148 
2149     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2150                                qiov, qiov_offset, flags);
2151 
2152     bdrv_padding_destroy(&pad);
2153 
2154 out:
2155     tracked_request_end(&req);
2156     bdrv_dec_in_flight(bs);
2157 
2158     return ret;
2159 }
2160 
2161 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2162                                        int64_t bytes, BdrvRequestFlags flags)
2163 {
2164     IO_CODE();
2165     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2166     assert_bdrv_graph_readable();
2167 
2168     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2169         flags &= ~BDRV_REQ_MAY_UNMAP;
2170     }
2171 
2172     return bdrv_co_pwritev(child, offset, bytes, NULL,
2173                            BDRV_REQ_ZERO_WRITE | flags);
2174 }
2175 
2176 /*
2177  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2178  */
2179 int bdrv_flush_all(void)
2180 {
2181     BdrvNextIterator it;
2182     BlockDriverState *bs = NULL;
2183     int result = 0;
2184 
2185     GLOBAL_STATE_CODE();
2186 
2187     /*
2188      * bdrv queue is managed by record/replay,
2189      * creating new flush request for stopping
2190      * the VM may break the determinism
2191      */
2192     if (replay_events_enabled()) {
2193         return result;
2194     }
2195 
2196     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2197         AioContext *aio_context = bdrv_get_aio_context(bs);
2198         int ret;
2199 
2200         aio_context_acquire(aio_context);
2201         ret = bdrv_flush(bs);
2202         if (ret < 0 && !result) {
2203             result = ret;
2204         }
2205         aio_context_release(aio_context);
2206     }
2207 
2208     return result;
2209 }
2210 
2211 /*
2212  * Returns the allocation status of the specified sectors.
2213  * Drivers not implementing the functionality are assumed to not support
2214  * backing files, hence all their sectors are reported as allocated.
2215  *
2216  * If 'want_zero' is true, the caller is querying for mapping
2217  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2218  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2219  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2220  *
2221  * If 'offset' is beyond the end of the disk image the return value is
2222  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2223  *
2224  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2225  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2226  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2227  *
2228  * 'pnum' is set to the number of bytes (including and immediately
2229  * following the specified offset) that are easily known to be in the
2230  * same allocated/unallocated state.  Note that a second call starting
2231  * at the original offset plus returned pnum may have the same status.
2232  * The returned value is non-zero on success except at end-of-file.
2233  *
2234  * Returns negative errno on failure.  Otherwise, if the
2235  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2236  * set to the host mapping and BDS corresponding to the guest offset.
2237  */
2238 static int coroutine_fn GRAPH_RDLOCK
2239 bdrv_co_block_status(BlockDriverState *bs, bool want_zero,
2240                      int64_t offset, int64_t bytes,
2241                      int64_t *pnum, int64_t *map, BlockDriverState **file)
2242 {
2243     int64_t total_size;
2244     int64_t n; /* bytes */
2245     int ret;
2246     int64_t local_map = 0;
2247     BlockDriverState *local_file = NULL;
2248     int64_t aligned_offset, aligned_bytes;
2249     uint32_t align;
2250     bool has_filtered_child;
2251 
2252     assert(pnum);
2253     assert_bdrv_graph_readable();
2254     *pnum = 0;
2255     total_size = bdrv_getlength(bs);
2256     if (total_size < 0) {
2257         ret = total_size;
2258         goto early_out;
2259     }
2260 
2261     if (offset >= total_size) {
2262         ret = BDRV_BLOCK_EOF;
2263         goto early_out;
2264     }
2265     if (!bytes) {
2266         ret = 0;
2267         goto early_out;
2268     }
2269 
2270     n = total_size - offset;
2271     if (n < bytes) {
2272         bytes = n;
2273     }
2274 
2275     /* Must be non-NULL or bdrv_getlength() would have failed */
2276     assert(bs->drv);
2277     has_filtered_child = bdrv_filter_child(bs);
2278     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2279         *pnum = bytes;
2280         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2281         if (offset + bytes == total_size) {
2282             ret |= BDRV_BLOCK_EOF;
2283         }
2284         if (bs->drv->protocol_name) {
2285             ret |= BDRV_BLOCK_OFFSET_VALID;
2286             local_map = offset;
2287             local_file = bs;
2288         }
2289         goto early_out;
2290     }
2291 
2292     bdrv_inc_in_flight(bs);
2293 
2294     /* Round out to request_alignment boundaries */
2295     align = bs->bl.request_alignment;
2296     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2297     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2298 
2299     if (bs->drv->bdrv_co_block_status) {
2300         /*
2301          * Use the block-status cache only for protocol nodes: Format
2302          * drivers are generally quick to inquire the status, but protocol
2303          * drivers often need to get information from outside of qemu, so
2304          * we do not have control over the actual implementation.  There
2305          * have been cases where inquiring the status took an unreasonably
2306          * long time, and we can do nothing in qemu to fix it.
2307          * This is especially problematic for images with large data areas,
2308          * because finding the few holes in them and giving them special
2309          * treatment does not gain much performance.  Therefore, we try to
2310          * cache the last-identified data region.
2311          *
2312          * Second, limiting ourselves to protocol nodes allows us to assume
2313          * the block status for data regions to be DATA | OFFSET_VALID, and
2314          * that the host offset is the same as the guest offset.
2315          *
2316          * Note that it is possible that external writers zero parts of
2317          * the cached regions without the cache being invalidated, and so
2318          * we may report zeroes as data.  This is not catastrophic,
2319          * however, because reporting zeroes as data is fine.
2320          */
2321         if (QLIST_EMPTY(&bs->children) &&
2322             bdrv_bsc_is_data(bs, aligned_offset, pnum))
2323         {
2324             ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2325             local_file = bs;
2326             local_map = aligned_offset;
2327         } else {
2328             ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2329                                                 aligned_bytes, pnum, &local_map,
2330                                                 &local_file);
2331 
2332             /*
2333              * Note that checking QLIST_EMPTY(&bs->children) is also done when
2334              * the cache is queried above.  Technically, we do not need to check
2335              * it here; the worst that can happen is that we fill the cache for
2336              * non-protocol nodes, and then it is never used.  However, filling
2337              * the cache requires an RCU update, so double check here to avoid
2338              * such an update if possible.
2339              *
2340              * Check want_zero, because we only want to update the cache when we
2341              * have accurate information about what is zero and what is data.
2342              */
2343             if (want_zero &&
2344                 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2345                 QLIST_EMPTY(&bs->children))
2346             {
2347                 /*
2348                  * When a protocol driver reports BLOCK_OFFSET_VALID, the
2349                  * returned local_map value must be the same as the offset we
2350                  * have passed (aligned_offset), and local_bs must be the node
2351                  * itself.
2352                  * Assert this, because we follow this rule when reading from
2353                  * the cache (see the `local_file = bs` and
2354                  * `local_map = aligned_offset` assignments above), and the
2355                  * result the cache delivers must be the same as the driver
2356                  * would deliver.
2357                  */
2358                 assert(local_file == bs);
2359                 assert(local_map == aligned_offset);
2360                 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2361             }
2362         }
2363     } else {
2364         /* Default code for filters */
2365 
2366         local_file = bdrv_filter_bs(bs);
2367         assert(local_file);
2368 
2369         *pnum = aligned_bytes;
2370         local_map = aligned_offset;
2371         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2372     }
2373     if (ret < 0) {
2374         *pnum = 0;
2375         goto out;
2376     }
2377 
2378     /*
2379      * The driver's result must be a non-zero multiple of request_alignment.
2380      * Clamp pnum and adjust map to original request.
2381      */
2382     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2383            align > offset - aligned_offset);
2384     if (ret & BDRV_BLOCK_RECURSE) {
2385         assert(ret & BDRV_BLOCK_DATA);
2386         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2387         assert(!(ret & BDRV_BLOCK_ZERO));
2388     }
2389 
2390     *pnum -= offset - aligned_offset;
2391     if (*pnum > bytes) {
2392         *pnum = bytes;
2393     }
2394     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2395         local_map += offset - aligned_offset;
2396     }
2397 
2398     if (ret & BDRV_BLOCK_RAW) {
2399         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2400         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2401                                    *pnum, pnum, &local_map, &local_file);
2402         goto out;
2403     }
2404 
2405     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2406         ret |= BDRV_BLOCK_ALLOCATED;
2407     } else if (bs->drv->supports_backing) {
2408         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2409 
2410         if (!cow_bs) {
2411             ret |= BDRV_BLOCK_ZERO;
2412         } else if (want_zero) {
2413             int64_t size2 = bdrv_getlength(cow_bs);
2414 
2415             if (size2 >= 0 && offset >= size2) {
2416                 ret |= BDRV_BLOCK_ZERO;
2417             }
2418         }
2419     }
2420 
2421     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2422         local_file && local_file != bs &&
2423         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2424         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2425         int64_t file_pnum;
2426         int ret2;
2427 
2428         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2429                                     *pnum, &file_pnum, NULL, NULL);
2430         if (ret2 >= 0) {
2431             /* Ignore errors.  This is just providing extra information, it
2432              * is useful but not necessary.
2433              */
2434             if (ret2 & BDRV_BLOCK_EOF &&
2435                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2436                 /*
2437                  * It is valid for the format block driver to read
2438                  * beyond the end of the underlying file's current
2439                  * size; such areas read as zero.
2440                  */
2441                 ret |= BDRV_BLOCK_ZERO;
2442             } else {
2443                 /* Limit request to the range reported by the protocol driver */
2444                 *pnum = file_pnum;
2445                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2446             }
2447         }
2448     }
2449 
2450 out:
2451     bdrv_dec_in_flight(bs);
2452     if (ret >= 0 && offset + *pnum == total_size) {
2453         ret |= BDRV_BLOCK_EOF;
2454     }
2455 early_out:
2456     if (file) {
2457         *file = local_file;
2458     }
2459     if (map) {
2460         *map = local_map;
2461     }
2462     return ret;
2463 }
2464 
2465 int coroutine_fn
2466 bdrv_co_common_block_status_above(BlockDriverState *bs,
2467                                   BlockDriverState *base,
2468                                   bool include_base,
2469                                   bool want_zero,
2470                                   int64_t offset,
2471                                   int64_t bytes,
2472                                   int64_t *pnum,
2473                                   int64_t *map,
2474                                   BlockDriverState **file,
2475                                   int *depth)
2476 {
2477     int ret;
2478     BlockDriverState *p;
2479     int64_t eof = 0;
2480     int dummy;
2481     IO_CODE();
2482 
2483     assert(!include_base || base); /* Can't include NULL base */
2484     assert_bdrv_graph_readable();
2485 
2486     if (!depth) {
2487         depth = &dummy;
2488     }
2489     *depth = 0;
2490 
2491     if (!include_base && bs == base) {
2492         *pnum = bytes;
2493         return 0;
2494     }
2495 
2496     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2497     ++*depth;
2498     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2499         return ret;
2500     }
2501 
2502     if (ret & BDRV_BLOCK_EOF) {
2503         eof = offset + *pnum;
2504     }
2505 
2506     assert(*pnum <= bytes);
2507     bytes = *pnum;
2508 
2509     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2510          p = bdrv_filter_or_cow_bs(p))
2511     {
2512         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2513                                    file);
2514         ++*depth;
2515         if (ret < 0) {
2516             return ret;
2517         }
2518         if (*pnum == 0) {
2519             /*
2520              * The top layer deferred to this layer, and because this layer is
2521              * short, any zeroes that we synthesize beyond EOF behave as if they
2522              * were allocated at this layer.
2523              *
2524              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2525              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2526              * below.
2527              */
2528             assert(ret & BDRV_BLOCK_EOF);
2529             *pnum = bytes;
2530             if (file) {
2531                 *file = p;
2532             }
2533             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2534             break;
2535         }
2536         if (ret & BDRV_BLOCK_ALLOCATED) {
2537             /*
2538              * We've found the node and the status, we must break.
2539              *
2540              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2541              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2542              * below.
2543              */
2544             ret &= ~BDRV_BLOCK_EOF;
2545             break;
2546         }
2547 
2548         if (p == base) {
2549             assert(include_base);
2550             break;
2551         }
2552 
2553         /*
2554          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2555          * let's continue the diving.
2556          */
2557         assert(*pnum <= bytes);
2558         bytes = *pnum;
2559     }
2560 
2561     if (offset + *pnum == eof) {
2562         ret |= BDRV_BLOCK_EOF;
2563     }
2564 
2565     return ret;
2566 }
2567 
2568 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2569                                             BlockDriverState *base,
2570                                             int64_t offset, int64_t bytes,
2571                                             int64_t *pnum, int64_t *map,
2572                                             BlockDriverState **file)
2573 {
2574     IO_CODE();
2575     return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2576                                              bytes, pnum, map, file, NULL);
2577 }
2578 
2579 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2580                             int64_t offset, int64_t bytes, int64_t *pnum,
2581                             int64_t *map, BlockDriverState **file)
2582 {
2583     IO_CODE();
2584     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2585                                           pnum, map, file, NULL);
2586 }
2587 
2588 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2589                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2590 {
2591     IO_CODE();
2592     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2593                                    offset, bytes, pnum, map, file);
2594 }
2595 
2596 /*
2597  * Check @bs (and its backing chain) to see if the range defined
2598  * by @offset and @bytes is known to read as zeroes.
2599  * Return 1 if that is the case, 0 otherwise and -errno on error.
2600  * This test is meant to be fast rather than accurate so returning 0
2601  * does not guarantee non-zero data.
2602  */
2603 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2604                                       int64_t bytes)
2605 {
2606     int ret;
2607     int64_t pnum = bytes;
2608     IO_CODE();
2609 
2610     if (!bytes) {
2611         return 1;
2612     }
2613 
2614     ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2615                                             bytes, &pnum, NULL, NULL, NULL);
2616 
2617     if (ret < 0) {
2618         return ret;
2619     }
2620 
2621     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2622 }
2623 
2624 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2625                                       int64_t bytes, int64_t *pnum)
2626 {
2627     int ret;
2628     int64_t dummy;
2629     IO_CODE();
2630 
2631     ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2632                                             bytes, pnum ? pnum : &dummy, NULL,
2633                                             NULL, NULL);
2634     if (ret < 0) {
2635         return ret;
2636     }
2637     return !!(ret & BDRV_BLOCK_ALLOCATED);
2638 }
2639 
2640 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2641                       int64_t *pnum)
2642 {
2643     int ret;
2644     int64_t dummy;
2645     IO_CODE();
2646 
2647     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2648                                          bytes, pnum ? pnum : &dummy, NULL,
2649                                          NULL, NULL);
2650     if (ret < 0) {
2651         return ret;
2652     }
2653     return !!(ret & BDRV_BLOCK_ALLOCATED);
2654 }
2655 
2656 /* See bdrv_is_allocated_above for documentation */
2657 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2658                                             BlockDriverState *base,
2659                                             bool include_base, int64_t offset,
2660                                             int64_t bytes, int64_t *pnum)
2661 {
2662     int depth;
2663     int ret;
2664     IO_CODE();
2665 
2666     ret = bdrv_co_common_block_status_above(top, base, include_base, false,
2667                                             offset, bytes, pnum, NULL, NULL,
2668                                             &depth);
2669     if (ret < 0) {
2670         return ret;
2671     }
2672 
2673     if (ret & BDRV_BLOCK_ALLOCATED) {
2674         return depth;
2675     }
2676     return 0;
2677 }
2678 
2679 /*
2680  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2681  *
2682  * Return a positive depth if (a prefix of) the given range is allocated
2683  * in any image between BASE and TOP (BASE is only included if include_base
2684  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2685  * BASE can be NULL to check if the given offset is allocated in any
2686  * image of the chain.  Return 0 otherwise, or negative errno on
2687  * failure.
2688  *
2689  * 'pnum' is set to the number of bytes (including and immediately
2690  * following the specified offset) that are known to be in the same
2691  * allocated/unallocated state.  Note that a subsequent call starting
2692  * at 'offset + *pnum' may return the same allocation status (in other
2693  * words, the result is not necessarily the maximum possible range);
2694  * but 'pnum' will only be 0 when end of file is reached.
2695  */
2696 int bdrv_is_allocated_above(BlockDriverState *top,
2697                             BlockDriverState *base,
2698                             bool include_base, int64_t offset,
2699                             int64_t bytes, int64_t *pnum)
2700 {
2701     int depth;
2702     int ret;
2703     IO_CODE();
2704 
2705     ret = bdrv_common_block_status_above(top, base, include_base, false,
2706                                          offset, bytes, pnum, NULL, NULL,
2707                                          &depth);
2708     if (ret < 0) {
2709         return ret;
2710     }
2711 
2712     if (ret & BDRV_BLOCK_ALLOCATED) {
2713         return depth;
2714     }
2715     return 0;
2716 }
2717 
2718 int coroutine_fn
2719 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2720 {
2721     BlockDriver *drv = bs->drv;
2722     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2723     int ret;
2724     IO_CODE();
2725     assert_bdrv_graph_readable();
2726 
2727     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2728     if (ret < 0) {
2729         return ret;
2730     }
2731 
2732     if (!drv) {
2733         return -ENOMEDIUM;
2734     }
2735 
2736     bdrv_inc_in_flight(bs);
2737 
2738     if (drv->bdrv_co_load_vmstate) {
2739         ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2740     } else if (child_bs) {
2741         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2742     } else {
2743         ret = -ENOTSUP;
2744     }
2745 
2746     bdrv_dec_in_flight(bs);
2747 
2748     return ret;
2749 }
2750 
2751 int coroutine_fn
2752 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2753 {
2754     BlockDriver *drv = bs->drv;
2755     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2756     int ret;
2757     IO_CODE();
2758     assert_bdrv_graph_readable();
2759 
2760     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2761     if (ret < 0) {
2762         return ret;
2763     }
2764 
2765     if (!drv) {
2766         return -ENOMEDIUM;
2767     }
2768 
2769     bdrv_inc_in_flight(bs);
2770 
2771     if (drv->bdrv_co_save_vmstate) {
2772         ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2773     } else if (child_bs) {
2774         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2775     } else {
2776         ret = -ENOTSUP;
2777     }
2778 
2779     bdrv_dec_in_flight(bs);
2780 
2781     return ret;
2782 }
2783 
2784 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2785                       int64_t pos, int size)
2786 {
2787     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2788     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2789     IO_CODE();
2790 
2791     return ret < 0 ? ret : size;
2792 }
2793 
2794 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2795                       int64_t pos, int size)
2796 {
2797     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2798     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2799     IO_CODE();
2800 
2801     return ret < 0 ? ret : size;
2802 }
2803 
2804 /**************************************************************/
2805 /* async I/Os */
2806 
2807 void bdrv_aio_cancel(BlockAIOCB *acb)
2808 {
2809     IO_CODE();
2810     qemu_aio_ref(acb);
2811     bdrv_aio_cancel_async(acb);
2812     while (acb->refcnt > 1) {
2813         if (acb->aiocb_info->get_aio_context) {
2814             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2815         } else if (acb->bs) {
2816             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2817              * assert that we're not using an I/O thread.  Thread-safe
2818              * code should use bdrv_aio_cancel_async exclusively.
2819              */
2820             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2821             aio_poll(bdrv_get_aio_context(acb->bs), true);
2822         } else {
2823             abort();
2824         }
2825     }
2826     qemu_aio_unref(acb);
2827 }
2828 
2829 /* Async version of aio cancel. The caller is not blocked if the acb implements
2830  * cancel_async, otherwise we do nothing and let the request normally complete.
2831  * In either case the completion callback must be called. */
2832 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2833 {
2834     IO_CODE();
2835     if (acb->aiocb_info->cancel_async) {
2836         acb->aiocb_info->cancel_async(acb);
2837     }
2838 }
2839 
2840 /**************************************************************/
2841 /* Coroutine block device emulation */
2842 
2843 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2844 {
2845     BdrvChild *primary_child = bdrv_primary_child(bs);
2846     BdrvChild *child;
2847     int current_gen;
2848     int ret = 0;
2849     IO_CODE();
2850 
2851     assert_bdrv_graph_readable();
2852     bdrv_inc_in_flight(bs);
2853 
2854     if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2855         bdrv_is_sg(bs)) {
2856         goto early_exit;
2857     }
2858 
2859     qemu_co_mutex_lock(&bs->reqs_lock);
2860     current_gen = qatomic_read(&bs->write_gen);
2861 
2862     /* Wait until any previous flushes are completed */
2863     while (bs->active_flush_req) {
2864         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2865     }
2866 
2867     /* Flushes reach this point in nondecreasing current_gen order.  */
2868     bs->active_flush_req = true;
2869     qemu_co_mutex_unlock(&bs->reqs_lock);
2870 
2871     /* Write back all layers by calling one driver function */
2872     if (bs->drv->bdrv_co_flush) {
2873         ret = bs->drv->bdrv_co_flush(bs);
2874         goto out;
2875     }
2876 
2877     /* Write back cached data to the OS even with cache=unsafe */
2878     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2879     if (bs->drv->bdrv_co_flush_to_os) {
2880         ret = bs->drv->bdrv_co_flush_to_os(bs);
2881         if (ret < 0) {
2882             goto out;
2883         }
2884     }
2885 
2886     /* But don't actually force it to the disk with cache=unsafe */
2887     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2888         goto flush_children;
2889     }
2890 
2891     /* Check if we really need to flush anything */
2892     if (bs->flushed_gen == current_gen) {
2893         goto flush_children;
2894     }
2895 
2896     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2897     if (!bs->drv) {
2898         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2899          * (even in case of apparent success) */
2900         ret = -ENOMEDIUM;
2901         goto out;
2902     }
2903     if (bs->drv->bdrv_co_flush_to_disk) {
2904         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2905     } else if (bs->drv->bdrv_aio_flush) {
2906         BlockAIOCB *acb;
2907         CoroutineIOCompletion co = {
2908             .coroutine = qemu_coroutine_self(),
2909         };
2910 
2911         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2912         if (acb == NULL) {
2913             ret = -EIO;
2914         } else {
2915             qemu_coroutine_yield();
2916             ret = co.ret;
2917         }
2918     } else {
2919         /*
2920          * Some block drivers always operate in either writethrough or unsafe
2921          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2922          * know how the server works (because the behaviour is hardcoded or
2923          * depends on server-side configuration), so we can't ensure that
2924          * everything is safe on disk. Returning an error doesn't work because
2925          * that would break guests even if the server operates in writethrough
2926          * mode.
2927          *
2928          * Let's hope the user knows what he's doing.
2929          */
2930         ret = 0;
2931     }
2932 
2933     if (ret < 0) {
2934         goto out;
2935     }
2936 
2937     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2938      * in the case of cache=unsafe, so there are no useless flushes.
2939      */
2940 flush_children:
2941     ret = 0;
2942     QLIST_FOREACH(child, &bs->children, next) {
2943         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2944             int this_child_ret = bdrv_co_flush(child->bs);
2945             if (!ret) {
2946                 ret = this_child_ret;
2947             }
2948         }
2949     }
2950 
2951 out:
2952     /* Notify any pending flushes that we have completed */
2953     if (ret == 0) {
2954         bs->flushed_gen = current_gen;
2955     }
2956 
2957     qemu_co_mutex_lock(&bs->reqs_lock);
2958     bs->active_flush_req = false;
2959     /* Return value is ignored - it's ok if wait queue is empty */
2960     qemu_co_queue_next(&bs->flush_queue);
2961     qemu_co_mutex_unlock(&bs->reqs_lock);
2962 
2963 early_exit:
2964     bdrv_dec_in_flight(bs);
2965     return ret;
2966 }
2967 
2968 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2969                                   int64_t bytes)
2970 {
2971     BdrvTrackedRequest req;
2972     int ret;
2973     int64_t max_pdiscard;
2974     int head, tail, align;
2975     BlockDriverState *bs = child->bs;
2976     IO_CODE();
2977     assert_bdrv_graph_readable();
2978 
2979     if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
2980         return -ENOMEDIUM;
2981     }
2982 
2983     if (bdrv_has_readonly_bitmaps(bs)) {
2984         return -EPERM;
2985     }
2986 
2987     ret = bdrv_check_request(offset, bytes, NULL);
2988     if (ret < 0) {
2989         return ret;
2990     }
2991 
2992     /* Do nothing if disabled.  */
2993     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2994         return 0;
2995     }
2996 
2997     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2998         return 0;
2999     }
3000 
3001     /* Invalidate the cached block-status data range if this discard overlaps */
3002     bdrv_bsc_invalidate_range(bs, offset, bytes);
3003 
3004     /* Discard is advisory, but some devices track and coalesce
3005      * unaligned requests, so we must pass everything down rather than
3006      * round here.  Still, most devices will just silently ignore
3007      * unaligned requests (by returning -ENOTSUP), so we must fragment
3008      * the request accordingly.  */
3009     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3010     assert(align % bs->bl.request_alignment == 0);
3011     head = offset % align;
3012     tail = (offset + bytes) % align;
3013 
3014     bdrv_inc_in_flight(bs);
3015     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3016 
3017     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3018     if (ret < 0) {
3019         goto out;
3020     }
3021 
3022     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3023                                    align);
3024     assert(max_pdiscard >= bs->bl.request_alignment);
3025 
3026     while (bytes > 0) {
3027         int64_t num = bytes;
3028 
3029         if (head) {
3030             /* Make small requests to get to alignment boundaries. */
3031             num = MIN(bytes, align - head);
3032             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3033                 num %= bs->bl.request_alignment;
3034             }
3035             head = (head + num) % align;
3036             assert(num < max_pdiscard);
3037         } else if (tail) {
3038             if (num > align) {
3039                 /* Shorten the request to the last aligned cluster.  */
3040                 num -= tail;
3041             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3042                        tail > bs->bl.request_alignment) {
3043                 tail %= bs->bl.request_alignment;
3044                 num -= tail;
3045             }
3046         }
3047         /* limit request size */
3048         if (num > max_pdiscard) {
3049             num = max_pdiscard;
3050         }
3051 
3052         if (!bs->drv) {
3053             ret = -ENOMEDIUM;
3054             goto out;
3055         }
3056         if (bs->drv->bdrv_co_pdiscard) {
3057             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3058         } else {
3059             BlockAIOCB *acb;
3060             CoroutineIOCompletion co = {
3061                 .coroutine = qemu_coroutine_self(),
3062             };
3063 
3064             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3065                                              bdrv_co_io_em_complete, &co);
3066             if (acb == NULL) {
3067                 ret = -EIO;
3068                 goto out;
3069             } else {
3070                 qemu_coroutine_yield();
3071                 ret = co.ret;
3072             }
3073         }
3074         if (ret && ret != -ENOTSUP) {
3075             goto out;
3076         }
3077 
3078         offset += num;
3079         bytes -= num;
3080     }
3081     ret = 0;
3082 out:
3083     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3084     tracked_request_end(&req);
3085     bdrv_dec_in_flight(bs);
3086     return ret;
3087 }
3088 
3089 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3090 {
3091     BlockDriver *drv = bs->drv;
3092     CoroutineIOCompletion co = {
3093         .coroutine = qemu_coroutine_self(),
3094     };
3095     BlockAIOCB *acb;
3096     IO_CODE();
3097     assert_bdrv_graph_readable();
3098 
3099     bdrv_inc_in_flight(bs);
3100     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3101         co.ret = -ENOTSUP;
3102         goto out;
3103     }
3104 
3105     if (drv->bdrv_co_ioctl) {
3106         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3107     } else {
3108         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3109         if (!acb) {
3110             co.ret = -ENOTSUP;
3111             goto out;
3112         }
3113         qemu_coroutine_yield();
3114     }
3115 out:
3116     bdrv_dec_in_flight(bs);
3117     return co.ret;
3118 }
3119 
3120 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3121                         unsigned int *nr_zones,
3122                         BlockZoneDescriptor *zones)
3123 {
3124     BlockDriver *drv = bs->drv;
3125     CoroutineIOCompletion co = {
3126             .coroutine = qemu_coroutine_self(),
3127     };
3128     IO_CODE();
3129 
3130     bdrv_inc_in_flight(bs);
3131     if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3132         co.ret = -ENOTSUP;
3133         goto out;
3134     }
3135     co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3136 out:
3137     bdrv_dec_in_flight(bs);
3138     return co.ret;
3139 }
3140 
3141 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3142         int64_t offset, int64_t len)
3143 {
3144     BlockDriver *drv = bs->drv;
3145     CoroutineIOCompletion co = {
3146             .coroutine = qemu_coroutine_self(),
3147     };
3148     IO_CODE();
3149 
3150     bdrv_inc_in_flight(bs);
3151     if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3152         co.ret = -ENOTSUP;
3153         goto out;
3154     }
3155     co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3156 out:
3157     bdrv_dec_in_flight(bs);
3158     return co.ret;
3159 }
3160 
3161 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3162                         QEMUIOVector *qiov,
3163                         BdrvRequestFlags flags)
3164 {
3165     int ret;
3166     BlockDriver *drv = bs->drv;
3167     CoroutineIOCompletion co = {
3168             .coroutine = qemu_coroutine_self(),
3169     };
3170     IO_CODE();
3171 
3172     ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3173     if (ret < 0) {
3174         return ret;
3175     }
3176 
3177     bdrv_inc_in_flight(bs);
3178     if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3179         co.ret = -ENOTSUP;
3180         goto out;
3181     }
3182     co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3183 out:
3184     bdrv_dec_in_flight(bs);
3185     return co.ret;
3186 }
3187 
3188 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3189 {
3190     IO_CODE();
3191     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3192 }
3193 
3194 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3195 {
3196     IO_CODE();
3197     return memset(qemu_blockalign(bs, size), 0, size);
3198 }
3199 
3200 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3201 {
3202     size_t align = bdrv_opt_mem_align(bs);
3203     IO_CODE();
3204 
3205     /* Ensure that NULL is never returned on success */
3206     assert(align > 0);
3207     if (size == 0) {
3208         size = align;
3209     }
3210 
3211     return qemu_try_memalign(align, size);
3212 }
3213 
3214 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3215 {
3216     void *mem = qemu_try_blockalign(bs, size);
3217     IO_CODE();
3218 
3219     if (mem) {
3220         memset(mem, 0, size);
3221     }
3222 
3223     return mem;
3224 }
3225 
3226 void coroutine_fn bdrv_co_io_plug(BlockDriverState *bs)
3227 {
3228     BdrvChild *child;
3229     IO_CODE();
3230     assert_bdrv_graph_readable();
3231 
3232     QLIST_FOREACH(child, &bs->children, next) {
3233         bdrv_co_io_plug(child->bs);
3234     }
3235 
3236     if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3237         BlockDriver *drv = bs->drv;
3238         if (drv && drv->bdrv_co_io_plug) {
3239             drv->bdrv_co_io_plug(bs);
3240         }
3241     }
3242 }
3243 
3244 void coroutine_fn bdrv_co_io_unplug(BlockDriverState *bs)
3245 {
3246     BdrvChild *child;
3247     IO_CODE();
3248     assert_bdrv_graph_readable();
3249 
3250     assert(bs->io_plugged);
3251     if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3252         BlockDriver *drv = bs->drv;
3253         if (drv && drv->bdrv_co_io_unplug) {
3254             drv->bdrv_co_io_unplug(bs);
3255         }
3256     }
3257 
3258     QLIST_FOREACH(child, &bs->children, next) {
3259         bdrv_co_io_unplug(child->bs);
3260     }
3261 }
3262 
3263 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3264 static void GRAPH_RDLOCK
3265 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3266                            BdrvChild *final_child)
3267 {
3268     BdrvChild *child;
3269 
3270     GLOBAL_STATE_CODE();
3271     assert_bdrv_graph_readable();
3272 
3273     QLIST_FOREACH(child, &bs->children, next) {
3274         if (child == final_child) {
3275             break;
3276         }
3277 
3278         bdrv_unregister_buf(child->bs, host, size);
3279     }
3280 
3281     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3282         bs->drv->bdrv_unregister_buf(bs, host, size);
3283     }
3284 }
3285 
3286 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3287                        Error **errp)
3288 {
3289     BdrvChild *child;
3290 
3291     GLOBAL_STATE_CODE();
3292     GRAPH_RDLOCK_GUARD_MAINLOOP();
3293 
3294     if (bs->drv && bs->drv->bdrv_register_buf) {
3295         if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3296             return false;
3297         }
3298     }
3299     QLIST_FOREACH(child, &bs->children, next) {
3300         if (!bdrv_register_buf(child->bs, host, size, errp)) {
3301             bdrv_register_buf_rollback(bs, host, size, child);
3302             return false;
3303         }
3304     }
3305     return true;
3306 }
3307 
3308 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3309 {
3310     BdrvChild *child;
3311 
3312     GLOBAL_STATE_CODE();
3313     GRAPH_RDLOCK_GUARD_MAINLOOP();
3314 
3315     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3316         bs->drv->bdrv_unregister_buf(bs, host, size);
3317     }
3318     QLIST_FOREACH(child, &bs->children, next) {
3319         bdrv_unregister_buf(child->bs, host, size);
3320     }
3321 }
3322 
3323 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3324         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3325         int64_t dst_offset, int64_t bytes,
3326         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3327         bool recurse_src)
3328 {
3329     BdrvTrackedRequest req;
3330     int ret;
3331     assert_bdrv_graph_readable();
3332 
3333     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3334     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3335     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3336     assert(!(read_flags & BDRV_REQ_NO_WAIT));
3337     assert(!(write_flags & BDRV_REQ_NO_WAIT));
3338 
3339     if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3340         return -ENOMEDIUM;
3341     }
3342     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3343     if (ret) {
3344         return ret;
3345     }
3346     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3347         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3348     }
3349 
3350     if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3351         return -ENOMEDIUM;
3352     }
3353     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3354     if (ret) {
3355         return ret;
3356     }
3357 
3358     if (!src->bs->drv->bdrv_co_copy_range_from
3359         || !dst->bs->drv->bdrv_co_copy_range_to
3360         || src->bs->encrypted || dst->bs->encrypted) {
3361         return -ENOTSUP;
3362     }
3363 
3364     if (recurse_src) {
3365         bdrv_inc_in_flight(src->bs);
3366         tracked_request_begin(&req, src->bs, src_offset, bytes,
3367                               BDRV_TRACKED_READ);
3368 
3369         /* BDRV_REQ_SERIALISING is only for write operation */
3370         assert(!(read_flags & BDRV_REQ_SERIALISING));
3371         bdrv_wait_serialising_requests(&req);
3372 
3373         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3374                                                     src, src_offset,
3375                                                     dst, dst_offset,
3376                                                     bytes,
3377                                                     read_flags, write_flags);
3378 
3379         tracked_request_end(&req);
3380         bdrv_dec_in_flight(src->bs);
3381     } else {
3382         bdrv_inc_in_flight(dst->bs);
3383         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3384                               BDRV_TRACKED_WRITE);
3385         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3386                                         write_flags);
3387         if (!ret) {
3388             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3389                                                       src, src_offset,
3390                                                       dst, dst_offset,
3391                                                       bytes,
3392                                                       read_flags, write_flags);
3393         }
3394         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3395         tracked_request_end(&req);
3396         bdrv_dec_in_flight(dst->bs);
3397     }
3398 
3399     return ret;
3400 }
3401 
3402 /* Copy range from @src to @dst.
3403  *
3404  * See the comment of bdrv_co_copy_range for the parameter and return value
3405  * semantics. */
3406 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3407                                          BdrvChild *dst, int64_t dst_offset,
3408                                          int64_t bytes,
3409                                          BdrvRequestFlags read_flags,
3410                                          BdrvRequestFlags write_flags)
3411 {
3412     IO_CODE();
3413     assert_bdrv_graph_readable();
3414     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3415                                   read_flags, write_flags);
3416     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3417                                        bytes, read_flags, write_flags, true);
3418 }
3419 
3420 /* Copy range from @src to @dst.
3421  *
3422  * See the comment of bdrv_co_copy_range for the parameter and return value
3423  * semantics. */
3424 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3425                                        BdrvChild *dst, int64_t dst_offset,
3426                                        int64_t bytes,
3427                                        BdrvRequestFlags read_flags,
3428                                        BdrvRequestFlags write_flags)
3429 {
3430     IO_CODE();
3431     assert_bdrv_graph_readable();
3432     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3433                                 read_flags, write_flags);
3434     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3435                                        bytes, read_flags, write_flags, false);
3436 }
3437 
3438 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3439                                     BdrvChild *dst, int64_t dst_offset,
3440                                     int64_t bytes, BdrvRequestFlags read_flags,
3441                                     BdrvRequestFlags write_flags)
3442 {
3443     IO_CODE();
3444     assert_bdrv_graph_readable();
3445 
3446     return bdrv_co_copy_range_from(src, src_offset,
3447                                    dst, dst_offset,
3448                                    bytes, read_flags, write_flags);
3449 }
3450 
3451 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3452 {
3453     BdrvChild *c;
3454     QLIST_FOREACH(c, &bs->parents, next_parent) {
3455         if (c->klass->resize) {
3456             c->klass->resize(c);
3457         }
3458     }
3459 }
3460 
3461 /**
3462  * Truncate file to 'offset' bytes (needed only for file protocols)
3463  *
3464  * If 'exact' is true, the file must be resized to exactly the given
3465  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3466  * 'offset' bytes in length.
3467  */
3468 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3469                                   PreallocMode prealloc, BdrvRequestFlags flags,
3470                                   Error **errp)
3471 {
3472     BlockDriverState *bs = child->bs;
3473     BdrvChild *filtered, *backing;
3474     BlockDriver *drv = bs->drv;
3475     BdrvTrackedRequest req;
3476     int64_t old_size, new_bytes;
3477     int ret;
3478     IO_CODE();
3479     assert_bdrv_graph_readable();
3480 
3481     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3482     if (!drv) {
3483         error_setg(errp, "No medium inserted");
3484         return -ENOMEDIUM;
3485     }
3486     if (offset < 0) {
3487         error_setg(errp, "Image size cannot be negative");
3488         return -EINVAL;
3489     }
3490 
3491     ret = bdrv_check_request(offset, 0, errp);
3492     if (ret < 0) {
3493         return ret;
3494     }
3495 
3496     old_size = bdrv_getlength(bs);
3497     if (old_size < 0) {
3498         error_setg_errno(errp, -old_size, "Failed to get old image size");
3499         return old_size;
3500     }
3501 
3502     if (bdrv_is_read_only(bs)) {
3503         error_setg(errp, "Image is read-only");
3504         return -EACCES;
3505     }
3506 
3507     if (offset > old_size) {
3508         new_bytes = offset - old_size;
3509     } else {
3510         new_bytes = 0;
3511     }
3512 
3513     bdrv_inc_in_flight(bs);
3514     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3515                           BDRV_TRACKED_TRUNCATE);
3516 
3517     /* If we are growing the image and potentially using preallocation for the
3518      * new area, we need to make sure that no write requests are made to it
3519      * concurrently or they might be overwritten by preallocation. */
3520     if (new_bytes) {
3521         bdrv_make_request_serialising(&req, 1);
3522     }
3523     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3524                                     0);
3525     if (ret < 0) {
3526         error_setg_errno(errp, -ret,
3527                          "Failed to prepare request for truncation");
3528         goto out;
3529     }
3530 
3531     filtered = bdrv_filter_child(bs);
3532     backing = bdrv_cow_child(bs);
3533 
3534     /*
3535      * If the image has a backing file that is large enough that it would
3536      * provide data for the new area, we cannot leave it unallocated because
3537      * then the backing file content would become visible. Instead, zero-fill
3538      * the new area.
3539      *
3540      * Note that if the image has a backing file, but was opened without the
3541      * backing file, taking care of keeping things consistent with that backing
3542      * file is the user's responsibility.
3543      */
3544     if (new_bytes && backing) {
3545         int64_t backing_len;
3546 
3547         backing_len = bdrv_co_getlength(backing->bs);
3548         if (backing_len < 0) {
3549             ret = backing_len;
3550             error_setg_errno(errp, -ret, "Could not get backing file size");
3551             goto out;
3552         }
3553 
3554         if (backing_len > old_size) {
3555             flags |= BDRV_REQ_ZERO_WRITE;
3556         }
3557     }
3558 
3559     if (drv->bdrv_co_truncate) {
3560         if (flags & ~bs->supported_truncate_flags) {
3561             error_setg(errp, "Block driver does not support requested flags");
3562             ret = -ENOTSUP;
3563             goto out;
3564         }
3565         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3566     } else if (filtered) {
3567         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3568     } else {
3569         error_setg(errp, "Image format driver does not support resize");
3570         ret = -ENOTSUP;
3571         goto out;
3572     }
3573     if (ret < 0) {
3574         goto out;
3575     }
3576 
3577     ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3578     if (ret < 0) {
3579         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3580     } else {
3581         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3582     }
3583     /*
3584      * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3585      * failed, but the latter doesn't affect how we should finish the request.
3586      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3587      */
3588     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3589 
3590 out:
3591     tracked_request_end(&req);
3592     bdrv_dec_in_flight(bs);
3593 
3594     return ret;
3595 }
3596 
3597 void bdrv_cancel_in_flight(BlockDriverState *bs)
3598 {
3599     GLOBAL_STATE_CODE();
3600     if (!bs || !bs->drv) {
3601         return;
3602     }
3603 
3604     if (bs->drv->bdrv_cancel_in_flight) {
3605         bs->drv->bdrv_cancel_in_flight(bs);
3606     }
3607 }
3608 
3609 int coroutine_fn
3610 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3611                         QEMUIOVector *qiov, size_t qiov_offset)
3612 {
3613     BlockDriverState *bs = child->bs;
3614     BlockDriver *drv = bs->drv;
3615     int ret;
3616     IO_CODE();
3617     assert_bdrv_graph_readable();
3618 
3619     if (!drv) {
3620         return -ENOMEDIUM;
3621     }
3622 
3623     if (!drv->bdrv_co_preadv_snapshot) {
3624         return -ENOTSUP;
3625     }
3626 
3627     bdrv_inc_in_flight(bs);
3628     ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3629     bdrv_dec_in_flight(bs);
3630 
3631     return ret;
3632 }
3633 
3634 int coroutine_fn
3635 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3636                               bool want_zero, int64_t offset, int64_t bytes,
3637                               int64_t *pnum, int64_t *map,
3638                               BlockDriverState **file)
3639 {
3640     BlockDriver *drv = bs->drv;
3641     int ret;
3642     IO_CODE();
3643     assert_bdrv_graph_readable();
3644 
3645     if (!drv) {
3646         return -ENOMEDIUM;
3647     }
3648 
3649     if (!drv->bdrv_co_snapshot_block_status) {
3650         return -ENOTSUP;
3651     }
3652 
3653     bdrv_inc_in_flight(bs);
3654     ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3655                                              pnum, map, file);
3656     bdrv_dec_in_flight(bs);
3657 
3658     return ret;
3659 }
3660 
3661 int coroutine_fn
3662 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3663 {
3664     BlockDriver *drv = bs->drv;
3665     int ret;
3666     IO_CODE();
3667     assert_bdrv_graph_readable();
3668 
3669     if (!drv) {
3670         return -ENOMEDIUM;
3671     }
3672 
3673     if (!drv->bdrv_co_pdiscard_snapshot) {
3674         return -ENOTSUP;
3675     }
3676 
3677     bdrv_inc_in_flight(bs);
3678     ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3679     bdrv_dec_in_flight(bs);
3680 
3681     return ret;
3682 }
3683