xref: /qemu/block/io.c (revision 88095349)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41 
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44 
45 static void bdrv_parent_cb_resize(BlockDriverState *bs);
46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
47     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
48 
49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
50 {
51     BdrvChild *c, *next;
52 
53     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54         if (c == ignore) {
55             continue;
56         }
57         bdrv_parent_drained_begin_single(c);
58     }
59 }
60 
61 void bdrv_parent_drained_end_single(BdrvChild *c)
62 {
63     IO_OR_GS_CODE();
64 
65     assert(c->quiesced_parent);
66     c->quiesced_parent = false;
67 
68     if (c->klass->drained_end) {
69         c->klass->drained_end(c);
70     }
71 }
72 
73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
74 {
75     BdrvChild *c;
76 
77     QLIST_FOREACH(c, &bs->parents, next_parent) {
78         if (c == ignore) {
79             continue;
80         }
81         bdrv_parent_drained_end_single(c);
82     }
83 }
84 
85 bool bdrv_parent_drained_poll_single(BdrvChild *c)
86 {
87     if (c->klass->drained_poll) {
88         return c->klass->drained_poll(c);
89     }
90     return false;
91 }
92 
93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
94                                      bool ignore_bds_parents)
95 {
96     BdrvChild *c, *next;
97     bool busy = false;
98 
99     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
100         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
101             continue;
102         }
103         busy |= bdrv_parent_drained_poll_single(c);
104     }
105 
106     return busy;
107 }
108 
109 void bdrv_parent_drained_begin_single(BdrvChild *c)
110 {
111     IO_OR_GS_CODE();
112 
113     assert(!c->quiesced_parent);
114     c->quiesced_parent = true;
115 
116     if (c->klass->drained_begin) {
117         c->klass->drained_begin(c);
118     }
119 }
120 
121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
122 {
123     dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
124                                   src->pdiscard_alignment);
125     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
126     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
127     dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
128                                         src->max_hw_transfer);
129     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130                                  src->opt_mem_alignment);
131     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132                                  src->min_mem_alignment);
133     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134     dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
135 }
136 
137 typedef struct BdrvRefreshLimitsState {
138     BlockDriverState *bs;
139     BlockLimits old_bl;
140 } BdrvRefreshLimitsState;
141 
142 static void bdrv_refresh_limits_abort(void *opaque)
143 {
144     BdrvRefreshLimitsState *s = opaque;
145 
146     s->bs->bl = s->old_bl;
147 }
148 
149 static TransactionActionDrv bdrv_refresh_limits_drv = {
150     .abort = bdrv_refresh_limits_abort,
151     .clean = g_free,
152 };
153 
154 /* @tran is allowed to be NULL, in this case no rollback is possible. */
155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
156 {
157     ERRP_GUARD();
158     BlockDriver *drv = bs->drv;
159     BdrvChild *c;
160     bool have_limits;
161 
162     GLOBAL_STATE_CODE();
163 
164     if (tran) {
165         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
166         *s = (BdrvRefreshLimitsState) {
167             .bs = bs,
168             .old_bl = bs->bl,
169         };
170         tran_add(tran, &bdrv_refresh_limits_drv, s);
171     }
172 
173     memset(&bs->bl, 0, sizeof(bs->bl));
174 
175     if (!drv) {
176         return;
177     }
178 
179     /* Default alignment based on whether driver has byte interface */
180     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
181                                 drv->bdrv_aio_preadv ||
182                                 drv->bdrv_co_preadv_part) ? 1 : 512;
183 
184     /* Take some limits from the children as a default */
185     have_limits = false;
186     QLIST_FOREACH(c, &bs->children, next) {
187         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
188         {
189             bdrv_merge_limits(&bs->bl, &c->bs->bl);
190             have_limits = true;
191         }
192     }
193 
194     if (!have_limits) {
195         bs->bl.min_mem_alignment = 512;
196         bs->bl.opt_mem_alignment = qemu_real_host_page_size();
197 
198         /* Safe default since most protocols use readv()/writev()/etc */
199         bs->bl.max_iov = IOV_MAX;
200     }
201 
202     /* Then let the driver override it */
203     if (drv->bdrv_refresh_limits) {
204         drv->bdrv_refresh_limits(bs, errp);
205         if (*errp) {
206             return;
207         }
208     }
209 
210     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
211         error_setg(errp, "Driver requires too large request alignment");
212     }
213 }
214 
215 /**
216  * The copy-on-read flag is actually a reference count so multiple users may
217  * use the feature without worrying about clobbering its previous state.
218  * Copy-on-read stays enabled until all users have called to disable it.
219  */
220 void bdrv_enable_copy_on_read(BlockDriverState *bs)
221 {
222     IO_CODE();
223     qatomic_inc(&bs->copy_on_read);
224 }
225 
226 void bdrv_disable_copy_on_read(BlockDriverState *bs)
227 {
228     int old = qatomic_fetch_dec(&bs->copy_on_read);
229     IO_CODE();
230     assert(old >= 1);
231 }
232 
233 typedef struct {
234     Coroutine *co;
235     BlockDriverState *bs;
236     bool done;
237     bool begin;
238     bool poll;
239     BdrvChild *parent;
240 } BdrvCoDrainData;
241 
242 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
243 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
244                      bool ignore_bds_parents)
245 {
246     IO_OR_GS_CODE();
247 
248     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
249         return true;
250     }
251 
252     if (qatomic_read(&bs->in_flight)) {
253         return true;
254     }
255 
256     return false;
257 }
258 
259 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
260                                       BdrvChild *ignore_parent)
261 {
262     return bdrv_drain_poll(bs, ignore_parent, false);
263 }
264 
265 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
266                                   bool poll);
267 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
268 
269 static void bdrv_co_drain_bh_cb(void *opaque)
270 {
271     BdrvCoDrainData *data = opaque;
272     Coroutine *co = data->co;
273     BlockDriverState *bs = data->bs;
274 
275     if (bs) {
276         AioContext *ctx = bdrv_get_aio_context(bs);
277         aio_context_acquire(ctx);
278         bdrv_dec_in_flight(bs);
279         if (data->begin) {
280             bdrv_do_drained_begin(bs, data->parent, data->poll);
281         } else {
282             assert(!data->poll);
283             bdrv_do_drained_end(bs, data->parent);
284         }
285         aio_context_release(ctx);
286     } else {
287         assert(data->begin);
288         bdrv_drain_all_begin();
289     }
290 
291     data->done = true;
292     aio_co_wake(co);
293 }
294 
295 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
296                                                 bool begin,
297                                                 BdrvChild *parent,
298                                                 bool poll)
299 {
300     BdrvCoDrainData data;
301     Coroutine *self = qemu_coroutine_self();
302     AioContext *ctx = bdrv_get_aio_context(bs);
303     AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
304 
305     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
306      * other coroutines run if they were queued by aio_co_enter(). */
307 
308     assert(qemu_in_coroutine());
309     data = (BdrvCoDrainData) {
310         .co = self,
311         .bs = bs,
312         .done = false,
313         .begin = begin,
314         .parent = parent,
315         .poll = poll,
316     };
317 
318     if (bs) {
319         bdrv_inc_in_flight(bs);
320     }
321 
322     /*
323      * Temporarily drop the lock across yield or we would get deadlocks.
324      * bdrv_co_drain_bh_cb() reaquires the lock as needed.
325      *
326      * When we yield below, the lock for the current context will be
327      * released, so if this is actually the lock that protects bs, don't drop
328      * it a second time.
329      */
330     if (ctx != co_ctx) {
331         aio_context_release(ctx);
332     }
333     replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
334 
335     qemu_coroutine_yield();
336     /* If we are resumed from some other event (such as an aio completion or a
337      * timer callback), it is a bug in the caller that should be fixed. */
338     assert(data.done);
339 
340     /* Reaquire the AioContext of bs if we dropped it */
341     if (ctx != co_ctx) {
342         aio_context_acquire(ctx);
343     }
344 }
345 
346 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
347                                   bool poll)
348 {
349     IO_OR_GS_CODE();
350 
351     if (qemu_in_coroutine()) {
352         bdrv_co_yield_to_drain(bs, true, parent, poll);
353         return;
354     }
355 
356     /* Stop things in parent-to-child order */
357     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
358         aio_disable_external(bdrv_get_aio_context(bs));
359         bdrv_parent_drained_begin(bs, parent);
360         if (bs->drv && bs->drv->bdrv_drain_begin) {
361             bs->drv->bdrv_drain_begin(bs);
362         }
363     }
364 
365     /*
366      * Wait for drained requests to finish.
367      *
368      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
369      * call is needed so things in this AioContext can make progress even
370      * though we don't return to the main AioContext loop - this automatically
371      * includes other nodes in the same AioContext and therefore all child
372      * nodes.
373      */
374     if (poll) {
375         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
376     }
377 }
378 
379 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
380 {
381     bdrv_do_drained_begin(bs, parent, false);
382 }
383 
384 void bdrv_drained_begin(BlockDriverState *bs)
385 {
386     IO_OR_GS_CODE();
387     bdrv_do_drained_begin(bs, NULL, true);
388 }
389 
390 /**
391  * This function does not poll, nor must any of its recursively called
392  * functions.
393  */
394 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
395 {
396     int old_quiesce_counter;
397 
398     if (qemu_in_coroutine()) {
399         bdrv_co_yield_to_drain(bs, false, parent, false);
400         return;
401     }
402     assert(bs->quiesce_counter > 0);
403 
404     /* Re-enable things in child-to-parent order */
405     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
406     if (old_quiesce_counter == 1) {
407         if (bs->drv && bs->drv->bdrv_drain_end) {
408             bs->drv->bdrv_drain_end(bs);
409         }
410         bdrv_parent_drained_end(bs, parent);
411         aio_enable_external(bdrv_get_aio_context(bs));
412     }
413 }
414 
415 void bdrv_drained_end(BlockDriverState *bs)
416 {
417     IO_OR_GS_CODE();
418     bdrv_do_drained_end(bs, NULL);
419 }
420 
421 void bdrv_drain(BlockDriverState *bs)
422 {
423     IO_OR_GS_CODE();
424     bdrv_drained_begin(bs);
425     bdrv_drained_end(bs);
426 }
427 
428 static void bdrv_drain_assert_idle(BlockDriverState *bs)
429 {
430     BdrvChild *child, *next;
431 
432     assert(qatomic_read(&bs->in_flight) == 0);
433     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
434         bdrv_drain_assert_idle(child->bs);
435     }
436 }
437 
438 unsigned int bdrv_drain_all_count = 0;
439 
440 static bool bdrv_drain_all_poll(void)
441 {
442     BlockDriverState *bs = NULL;
443     bool result = false;
444     GLOBAL_STATE_CODE();
445 
446     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
447      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
448     while ((bs = bdrv_next_all_states(bs))) {
449         AioContext *aio_context = bdrv_get_aio_context(bs);
450         aio_context_acquire(aio_context);
451         result |= bdrv_drain_poll(bs, NULL, true);
452         aio_context_release(aio_context);
453     }
454 
455     return result;
456 }
457 
458 /*
459  * Wait for pending requests to complete across all BlockDriverStates
460  *
461  * This function does not flush data to disk, use bdrv_flush_all() for that
462  * after calling this function.
463  *
464  * This pauses all block jobs and disables external clients. It must
465  * be paired with bdrv_drain_all_end().
466  *
467  * NOTE: no new block jobs or BlockDriverStates can be created between
468  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
469  */
470 void bdrv_drain_all_begin_nopoll(void)
471 {
472     BlockDriverState *bs = NULL;
473     GLOBAL_STATE_CODE();
474 
475     /*
476      * bdrv queue is managed by record/replay,
477      * waiting for finishing the I/O requests may
478      * be infinite
479      */
480     if (replay_events_enabled()) {
481         return;
482     }
483 
484     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
485      * loop AioContext, so make sure we're in the main context. */
486     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
487     assert(bdrv_drain_all_count < INT_MAX);
488     bdrv_drain_all_count++;
489 
490     /* Quiesce all nodes, without polling in-flight requests yet. The graph
491      * cannot change during this loop. */
492     while ((bs = bdrv_next_all_states(bs))) {
493         AioContext *aio_context = bdrv_get_aio_context(bs);
494 
495         aio_context_acquire(aio_context);
496         bdrv_do_drained_begin(bs, NULL, false);
497         aio_context_release(aio_context);
498     }
499 }
500 
501 void bdrv_drain_all_begin(void)
502 {
503     BlockDriverState *bs = NULL;
504 
505     if (qemu_in_coroutine()) {
506         bdrv_co_yield_to_drain(NULL, true, NULL, true);
507         return;
508     }
509 
510     /*
511      * bdrv queue is managed by record/replay,
512      * waiting for finishing the I/O requests may
513      * be infinite
514      */
515     if (replay_events_enabled()) {
516         return;
517     }
518 
519     bdrv_drain_all_begin_nopoll();
520 
521     /* Now poll the in-flight requests */
522     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
523 
524     while ((bs = bdrv_next_all_states(bs))) {
525         bdrv_drain_assert_idle(bs);
526     }
527 }
528 
529 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
530 {
531     GLOBAL_STATE_CODE();
532 
533     g_assert(bs->quiesce_counter > 0);
534     g_assert(!bs->refcnt);
535 
536     while (bs->quiesce_counter) {
537         bdrv_do_drained_end(bs, NULL);
538     }
539 }
540 
541 void bdrv_drain_all_end(void)
542 {
543     BlockDriverState *bs = NULL;
544     GLOBAL_STATE_CODE();
545 
546     /*
547      * bdrv queue is managed by record/replay,
548      * waiting for finishing the I/O requests may
549      * be endless
550      */
551     if (replay_events_enabled()) {
552         return;
553     }
554 
555     while ((bs = bdrv_next_all_states(bs))) {
556         AioContext *aio_context = bdrv_get_aio_context(bs);
557 
558         aio_context_acquire(aio_context);
559         bdrv_do_drained_end(bs, NULL);
560         aio_context_release(aio_context);
561     }
562 
563     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
564     assert(bdrv_drain_all_count > 0);
565     bdrv_drain_all_count--;
566 }
567 
568 void bdrv_drain_all(void)
569 {
570     GLOBAL_STATE_CODE();
571     bdrv_drain_all_begin();
572     bdrv_drain_all_end();
573 }
574 
575 /**
576  * Remove an active request from the tracked requests list
577  *
578  * This function should be called when a tracked request is completing.
579  */
580 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
581 {
582     if (req->serialising) {
583         qatomic_dec(&req->bs->serialising_in_flight);
584     }
585 
586     qemu_co_mutex_lock(&req->bs->reqs_lock);
587     QLIST_REMOVE(req, list);
588     qemu_co_queue_restart_all(&req->wait_queue);
589     qemu_co_mutex_unlock(&req->bs->reqs_lock);
590 }
591 
592 /**
593  * Add an active request to the tracked requests list
594  */
595 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
596                                                BlockDriverState *bs,
597                                                int64_t offset,
598                                                int64_t bytes,
599                                                enum BdrvTrackedRequestType type)
600 {
601     bdrv_check_request(offset, bytes, &error_abort);
602 
603     *req = (BdrvTrackedRequest){
604         .bs = bs,
605         .offset         = offset,
606         .bytes          = bytes,
607         .type           = type,
608         .co             = qemu_coroutine_self(),
609         .serialising    = false,
610         .overlap_offset = offset,
611         .overlap_bytes  = bytes,
612     };
613 
614     qemu_co_queue_init(&req->wait_queue);
615 
616     qemu_co_mutex_lock(&bs->reqs_lock);
617     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
618     qemu_co_mutex_unlock(&bs->reqs_lock);
619 }
620 
621 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
622                                      int64_t offset, int64_t bytes)
623 {
624     bdrv_check_request(offset, bytes, &error_abort);
625 
626     /*        aaaa   bbbb */
627     if (offset >= req->overlap_offset + req->overlap_bytes) {
628         return false;
629     }
630     /* bbbb   aaaa        */
631     if (req->overlap_offset >= offset + bytes) {
632         return false;
633     }
634     return true;
635 }
636 
637 /* Called with self->bs->reqs_lock held */
638 static coroutine_fn BdrvTrackedRequest *
639 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
640 {
641     BdrvTrackedRequest *req;
642 
643     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
644         if (req == self || (!req->serialising && !self->serialising)) {
645             continue;
646         }
647         if (tracked_request_overlaps(req, self->overlap_offset,
648                                      self->overlap_bytes))
649         {
650             /*
651              * Hitting this means there was a reentrant request, for
652              * example, a block driver issuing nested requests.  This must
653              * never happen since it means deadlock.
654              */
655             assert(qemu_coroutine_self() != req->co);
656 
657             /*
658              * If the request is already (indirectly) waiting for us, or
659              * will wait for us as soon as it wakes up, then just go on
660              * (instead of producing a deadlock in the former case).
661              */
662             if (!req->waiting_for) {
663                 return req;
664             }
665         }
666     }
667 
668     return NULL;
669 }
670 
671 /* Called with self->bs->reqs_lock held */
672 static void coroutine_fn
673 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
674 {
675     BdrvTrackedRequest *req;
676 
677     while ((req = bdrv_find_conflicting_request(self))) {
678         self->waiting_for = req;
679         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
680         self->waiting_for = NULL;
681     }
682 }
683 
684 /* Called with req->bs->reqs_lock held */
685 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
686                                             uint64_t align)
687 {
688     int64_t overlap_offset = req->offset & ~(align - 1);
689     int64_t overlap_bytes =
690         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
691 
692     bdrv_check_request(req->offset, req->bytes, &error_abort);
693 
694     if (!req->serialising) {
695         qatomic_inc(&req->bs->serialising_in_flight);
696         req->serialising = true;
697     }
698 
699     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
700     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
701 }
702 
703 /**
704  * Return the tracked request on @bs for the current coroutine, or
705  * NULL if there is none.
706  */
707 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
708 {
709     BdrvTrackedRequest *req;
710     Coroutine *self = qemu_coroutine_self();
711     IO_CODE();
712 
713     QLIST_FOREACH(req, &bs->tracked_requests, list) {
714         if (req->co == self) {
715             return req;
716         }
717     }
718 
719     return NULL;
720 }
721 
722 /**
723  * Round a region to cluster boundaries
724  */
725 void coroutine_fn bdrv_round_to_clusters(BlockDriverState *bs,
726                             int64_t offset, int64_t bytes,
727                             int64_t *cluster_offset,
728                             int64_t *cluster_bytes)
729 {
730     BlockDriverInfo bdi;
731     IO_CODE();
732     if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
733         *cluster_offset = offset;
734         *cluster_bytes = bytes;
735     } else {
736         int64_t c = bdi.cluster_size;
737         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
738         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
739     }
740 }
741 
742 static coroutine_fn int bdrv_get_cluster_size(BlockDriverState *bs)
743 {
744     BlockDriverInfo bdi;
745     int ret;
746 
747     ret = bdrv_co_get_info(bs, &bdi);
748     if (ret < 0 || bdi.cluster_size == 0) {
749         return bs->bl.request_alignment;
750     } else {
751         return bdi.cluster_size;
752     }
753 }
754 
755 void bdrv_inc_in_flight(BlockDriverState *bs)
756 {
757     IO_CODE();
758     qatomic_inc(&bs->in_flight);
759 }
760 
761 void bdrv_wakeup(BlockDriverState *bs)
762 {
763     IO_CODE();
764     aio_wait_kick();
765 }
766 
767 void bdrv_dec_in_flight(BlockDriverState *bs)
768 {
769     IO_CODE();
770     qatomic_dec(&bs->in_flight);
771     bdrv_wakeup(bs);
772 }
773 
774 static void coroutine_fn
775 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
776 {
777     BlockDriverState *bs = self->bs;
778 
779     if (!qatomic_read(&bs->serialising_in_flight)) {
780         return;
781     }
782 
783     qemu_co_mutex_lock(&bs->reqs_lock);
784     bdrv_wait_serialising_requests_locked(self);
785     qemu_co_mutex_unlock(&bs->reqs_lock);
786 }
787 
788 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
789                                                 uint64_t align)
790 {
791     IO_CODE();
792 
793     qemu_co_mutex_lock(&req->bs->reqs_lock);
794 
795     tracked_request_set_serialising(req, align);
796     bdrv_wait_serialising_requests_locked(req);
797 
798     qemu_co_mutex_unlock(&req->bs->reqs_lock);
799 }
800 
801 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
802                             QEMUIOVector *qiov, size_t qiov_offset,
803                             Error **errp)
804 {
805     /*
806      * Check generic offset/bytes correctness
807      */
808 
809     if (offset < 0) {
810         error_setg(errp, "offset is negative: %" PRIi64, offset);
811         return -EIO;
812     }
813 
814     if (bytes < 0) {
815         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
816         return -EIO;
817     }
818 
819     if (bytes > BDRV_MAX_LENGTH) {
820         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
821                    bytes, BDRV_MAX_LENGTH);
822         return -EIO;
823     }
824 
825     if (offset > BDRV_MAX_LENGTH) {
826         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
827                    offset, BDRV_MAX_LENGTH);
828         return -EIO;
829     }
830 
831     if (offset > BDRV_MAX_LENGTH - bytes) {
832         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
833                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
834                    BDRV_MAX_LENGTH);
835         return -EIO;
836     }
837 
838     if (!qiov) {
839         return 0;
840     }
841 
842     /*
843      * Check qiov and qiov_offset
844      */
845 
846     if (qiov_offset > qiov->size) {
847         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
848                    qiov_offset, qiov->size);
849         return -EIO;
850     }
851 
852     if (bytes > qiov->size - qiov_offset) {
853         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
854                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
855         return -EIO;
856     }
857 
858     return 0;
859 }
860 
861 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
862 {
863     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
864 }
865 
866 static int bdrv_check_request32(int64_t offset, int64_t bytes,
867                                 QEMUIOVector *qiov, size_t qiov_offset)
868 {
869     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
870     if (ret < 0) {
871         return ret;
872     }
873 
874     if (bytes > BDRV_REQUEST_MAX_BYTES) {
875         return -EIO;
876     }
877 
878     return 0;
879 }
880 
881 /*
882  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
883  * The operation is sped up by checking the block status and only writing
884  * zeroes to the device if they currently do not return zeroes. Optional
885  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
886  * BDRV_REQ_FUA).
887  *
888  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
889  */
890 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
891 {
892     int ret;
893     int64_t target_size, bytes, offset = 0;
894     BlockDriverState *bs = child->bs;
895     IO_CODE();
896 
897     target_size = bdrv_getlength(bs);
898     if (target_size < 0) {
899         return target_size;
900     }
901 
902     for (;;) {
903         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
904         if (bytes <= 0) {
905             return 0;
906         }
907         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
908         if (ret < 0) {
909             return ret;
910         }
911         if (ret & BDRV_BLOCK_ZERO) {
912             offset += bytes;
913             continue;
914         }
915         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
916         if (ret < 0) {
917             return ret;
918         }
919         offset += bytes;
920     }
921 }
922 
923 /*
924  * Writes to the file and ensures that no writes are reordered across this
925  * request (acts as a barrier)
926  *
927  * Returns 0 on success, -errno in error cases.
928  */
929 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
930                                      int64_t bytes, const void *buf,
931                                      BdrvRequestFlags flags)
932 {
933     int ret;
934     IO_CODE();
935 
936     assume_graph_lock(); /* FIXME */
937 
938     ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
939     if (ret < 0) {
940         return ret;
941     }
942 
943     ret = bdrv_co_flush(child->bs);
944     if (ret < 0) {
945         return ret;
946     }
947 
948     return 0;
949 }
950 
951 typedef struct CoroutineIOCompletion {
952     Coroutine *coroutine;
953     int ret;
954 } CoroutineIOCompletion;
955 
956 static void bdrv_co_io_em_complete(void *opaque, int ret)
957 {
958     CoroutineIOCompletion *co = opaque;
959 
960     co->ret = ret;
961     aio_co_wake(co->coroutine);
962 }
963 
964 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
965                                            int64_t offset, int64_t bytes,
966                                            QEMUIOVector *qiov,
967                                            size_t qiov_offset, int flags)
968 {
969     BlockDriver *drv = bs->drv;
970     int64_t sector_num;
971     unsigned int nb_sectors;
972     QEMUIOVector local_qiov;
973     int ret;
974 
975     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
976     assert(!(flags & ~bs->supported_read_flags));
977 
978     if (!drv) {
979         return -ENOMEDIUM;
980     }
981 
982     if (drv->bdrv_co_preadv_part) {
983         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
984                                         flags);
985     }
986 
987     if (qiov_offset > 0 || bytes != qiov->size) {
988         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
989         qiov = &local_qiov;
990     }
991 
992     if (drv->bdrv_co_preadv) {
993         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
994         goto out;
995     }
996 
997     if (drv->bdrv_aio_preadv) {
998         BlockAIOCB *acb;
999         CoroutineIOCompletion co = {
1000             .coroutine = qemu_coroutine_self(),
1001         };
1002 
1003         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1004                                    bdrv_co_io_em_complete, &co);
1005         if (acb == NULL) {
1006             ret = -EIO;
1007             goto out;
1008         } else {
1009             qemu_coroutine_yield();
1010             ret = co.ret;
1011             goto out;
1012         }
1013     }
1014 
1015     sector_num = offset >> BDRV_SECTOR_BITS;
1016     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1017 
1018     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1019     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1020     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1021     assert(drv->bdrv_co_readv);
1022 
1023     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1024 
1025 out:
1026     if (qiov == &local_qiov) {
1027         qemu_iovec_destroy(&local_qiov);
1028     }
1029 
1030     return ret;
1031 }
1032 
1033 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1034                                             int64_t offset, int64_t bytes,
1035                                             QEMUIOVector *qiov,
1036                                             size_t qiov_offset,
1037                                             BdrvRequestFlags flags)
1038 {
1039     BlockDriver *drv = bs->drv;
1040     bool emulate_fua = false;
1041     int64_t sector_num;
1042     unsigned int nb_sectors;
1043     QEMUIOVector local_qiov;
1044     int ret;
1045 
1046     assume_graph_lock(); /* FIXME */
1047 
1048     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1049 
1050     if (!drv) {
1051         return -ENOMEDIUM;
1052     }
1053 
1054     if ((flags & BDRV_REQ_FUA) &&
1055         (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1056         flags &= ~BDRV_REQ_FUA;
1057         emulate_fua = true;
1058     }
1059 
1060     flags &= bs->supported_write_flags;
1061 
1062     if (drv->bdrv_co_pwritev_part) {
1063         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1064                                         flags);
1065         goto emulate_flags;
1066     }
1067 
1068     if (qiov_offset > 0 || bytes != qiov->size) {
1069         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1070         qiov = &local_qiov;
1071     }
1072 
1073     if (drv->bdrv_co_pwritev) {
1074         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1075         goto emulate_flags;
1076     }
1077 
1078     if (drv->bdrv_aio_pwritev) {
1079         BlockAIOCB *acb;
1080         CoroutineIOCompletion co = {
1081             .coroutine = qemu_coroutine_self(),
1082         };
1083 
1084         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1085                                     bdrv_co_io_em_complete, &co);
1086         if (acb == NULL) {
1087             ret = -EIO;
1088         } else {
1089             qemu_coroutine_yield();
1090             ret = co.ret;
1091         }
1092         goto emulate_flags;
1093     }
1094 
1095     sector_num = offset >> BDRV_SECTOR_BITS;
1096     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1097 
1098     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1099     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1100     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1101 
1102     assert(drv->bdrv_co_writev);
1103     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1104 
1105 emulate_flags:
1106     if (ret == 0 && emulate_fua) {
1107         ret = bdrv_co_flush(bs);
1108     }
1109 
1110     if (qiov == &local_qiov) {
1111         qemu_iovec_destroy(&local_qiov);
1112     }
1113 
1114     return ret;
1115 }
1116 
1117 static int coroutine_fn
1118 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1119                                int64_t bytes, QEMUIOVector *qiov,
1120                                size_t qiov_offset)
1121 {
1122     BlockDriver *drv = bs->drv;
1123     QEMUIOVector local_qiov;
1124     int ret;
1125 
1126     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1127 
1128     if (!drv) {
1129         return -ENOMEDIUM;
1130     }
1131 
1132     if (!block_driver_can_compress(drv)) {
1133         return -ENOTSUP;
1134     }
1135 
1136     if (drv->bdrv_co_pwritev_compressed_part) {
1137         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1138                                                     qiov, qiov_offset);
1139     }
1140 
1141     if (qiov_offset == 0) {
1142         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1143     }
1144 
1145     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1146     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1147     qemu_iovec_destroy(&local_qiov);
1148 
1149     return ret;
1150 }
1151 
1152 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1153         int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1154         size_t qiov_offset, int flags)
1155 {
1156     BlockDriverState *bs = child->bs;
1157 
1158     /* Perform I/O through a temporary buffer so that users who scribble over
1159      * their read buffer while the operation is in progress do not end up
1160      * modifying the image file.  This is critical for zero-copy guest I/O
1161      * where anything might happen inside guest memory.
1162      */
1163     void *bounce_buffer = NULL;
1164 
1165     BlockDriver *drv = bs->drv;
1166     int64_t cluster_offset;
1167     int64_t cluster_bytes;
1168     int64_t skip_bytes;
1169     int ret;
1170     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1171                                     BDRV_REQUEST_MAX_BYTES);
1172     int64_t progress = 0;
1173     bool skip_write;
1174 
1175     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1176 
1177     if (!drv) {
1178         return -ENOMEDIUM;
1179     }
1180 
1181     /*
1182      * Do not write anything when the BDS is inactive.  That is not
1183      * allowed, and it would not help.
1184      */
1185     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1186 
1187     /* FIXME We cannot require callers to have write permissions when all they
1188      * are doing is a read request. If we did things right, write permissions
1189      * would be obtained anyway, but internally by the copy-on-read code. As
1190      * long as it is implemented here rather than in a separate filter driver,
1191      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1192      * it could request permissions. Therefore we have to bypass the permission
1193      * system for the moment. */
1194     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1195 
1196     /* Cover entire cluster so no additional backing file I/O is required when
1197      * allocating cluster in the image file.  Note that this value may exceed
1198      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1199      * is one reason we loop rather than doing it all at once.
1200      */
1201     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1202     skip_bytes = offset - cluster_offset;
1203 
1204     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1205                                    cluster_offset, cluster_bytes);
1206 
1207     while (cluster_bytes) {
1208         int64_t pnum;
1209 
1210         if (skip_write) {
1211             ret = 1; /* "already allocated", so nothing will be copied */
1212             pnum = MIN(cluster_bytes, max_transfer);
1213         } else {
1214             ret = bdrv_is_allocated(bs, cluster_offset,
1215                                     MIN(cluster_bytes, max_transfer), &pnum);
1216             if (ret < 0) {
1217                 /*
1218                  * Safe to treat errors in querying allocation as if
1219                  * unallocated; we'll probably fail again soon on the
1220                  * read, but at least that will set a decent errno.
1221                  */
1222                 pnum = MIN(cluster_bytes, max_transfer);
1223             }
1224 
1225             /* Stop at EOF if the image ends in the middle of the cluster */
1226             if (ret == 0 && pnum == 0) {
1227                 assert(progress >= bytes);
1228                 break;
1229             }
1230 
1231             assert(skip_bytes < pnum);
1232         }
1233 
1234         if (ret <= 0) {
1235             QEMUIOVector local_qiov;
1236 
1237             /* Must copy-on-read; use the bounce buffer */
1238             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1239             if (!bounce_buffer) {
1240                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1241                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1242                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1243 
1244                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1245                 if (!bounce_buffer) {
1246                     ret = -ENOMEM;
1247                     goto err;
1248                 }
1249             }
1250             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1251 
1252             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1253                                      &local_qiov, 0, 0);
1254             if (ret < 0) {
1255                 goto err;
1256             }
1257 
1258             bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1259             if (drv->bdrv_co_pwrite_zeroes &&
1260                 buffer_is_zero(bounce_buffer, pnum)) {
1261                 /* FIXME: Should we (perhaps conditionally) be setting
1262                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1263                  * that still correctly reads as zero? */
1264                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1265                                                BDRV_REQ_WRITE_UNCHANGED);
1266             } else {
1267                 /* This does not change the data on the disk, it is not
1268                  * necessary to flush even in cache=writethrough mode.
1269                  */
1270                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1271                                           &local_qiov, 0,
1272                                           BDRV_REQ_WRITE_UNCHANGED);
1273             }
1274 
1275             if (ret < 0) {
1276                 /* It might be okay to ignore write errors for guest
1277                  * requests.  If this is a deliberate copy-on-read
1278                  * then we don't want to ignore the error.  Simply
1279                  * report it in all cases.
1280                  */
1281                 goto err;
1282             }
1283 
1284             if (!(flags & BDRV_REQ_PREFETCH)) {
1285                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1286                                     bounce_buffer + skip_bytes,
1287                                     MIN(pnum - skip_bytes, bytes - progress));
1288             }
1289         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1290             /* Read directly into the destination */
1291             ret = bdrv_driver_preadv(bs, offset + progress,
1292                                      MIN(pnum - skip_bytes, bytes - progress),
1293                                      qiov, qiov_offset + progress, 0);
1294             if (ret < 0) {
1295                 goto err;
1296             }
1297         }
1298 
1299         cluster_offset += pnum;
1300         cluster_bytes -= pnum;
1301         progress += pnum - skip_bytes;
1302         skip_bytes = 0;
1303     }
1304     ret = 0;
1305 
1306 err:
1307     qemu_vfree(bounce_buffer);
1308     return ret;
1309 }
1310 
1311 /*
1312  * Forwards an already correctly aligned request to the BlockDriver. This
1313  * handles copy on read, zeroing after EOF, and fragmentation of large
1314  * reads; any other features must be implemented by the caller.
1315  */
1316 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1317     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1318     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1319 {
1320     BlockDriverState *bs = child->bs;
1321     int64_t total_bytes, max_bytes;
1322     int ret = 0;
1323     int64_t bytes_remaining = bytes;
1324     int max_transfer;
1325 
1326     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1327     assert(is_power_of_2(align));
1328     assert((offset & (align - 1)) == 0);
1329     assert((bytes & (align - 1)) == 0);
1330     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1331     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1332                                    align);
1333 
1334     /*
1335      * TODO: We would need a per-BDS .supported_read_flags and
1336      * potential fallback support, if we ever implement any read flags
1337      * to pass through to drivers.  For now, there aren't any
1338      * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1339      */
1340     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1341                        BDRV_REQ_REGISTERED_BUF)));
1342 
1343     /* Handle Copy on Read and associated serialisation */
1344     if (flags & BDRV_REQ_COPY_ON_READ) {
1345         /* If we touch the same cluster it counts as an overlap.  This
1346          * guarantees that allocating writes will be serialized and not race
1347          * with each other for the same cluster.  For example, in copy-on-read
1348          * it ensures that the CoR read and write operations are atomic and
1349          * guest writes cannot interleave between them. */
1350         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1351     } else {
1352         bdrv_wait_serialising_requests(req);
1353     }
1354 
1355     if (flags & BDRV_REQ_COPY_ON_READ) {
1356         int64_t pnum;
1357 
1358         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1359         flags &= ~BDRV_REQ_COPY_ON_READ;
1360 
1361         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1362         if (ret < 0) {
1363             goto out;
1364         }
1365 
1366         if (!ret || pnum != bytes) {
1367             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1368                                            qiov, qiov_offset, flags);
1369             goto out;
1370         } else if (flags & BDRV_REQ_PREFETCH) {
1371             goto out;
1372         }
1373     }
1374 
1375     /* Forward the request to the BlockDriver, possibly fragmenting it */
1376     total_bytes = bdrv_getlength(bs);
1377     if (total_bytes < 0) {
1378         ret = total_bytes;
1379         goto out;
1380     }
1381 
1382     assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1383 
1384     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1385     if (bytes <= max_bytes && bytes <= max_transfer) {
1386         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1387         goto out;
1388     }
1389 
1390     while (bytes_remaining) {
1391         int64_t num;
1392 
1393         if (max_bytes) {
1394             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1395             assert(num);
1396 
1397             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1398                                      num, qiov,
1399                                      qiov_offset + bytes - bytes_remaining,
1400                                      flags);
1401             max_bytes -= num;
1402         } else {
1403             num = bytes_remaining;
1404             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1405                                     0, bytes_remaining);
1406         }
1407         if (ret < 0) {
1408             goto out;
1409         }
1410         bytes_remaining -= num;
1411     }
1412 
1413 out:
1414     return ret < 0 ? ret : 0;
1415 }
1416 
1417 /*
1418  * Request padding
1419  *
1420  *  |<---- align ----->|                     |<----- align ---->|
1421  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1422  *  |          |       |                     |     |            |
1423  * -*----------$-------*-------- ... --------*-----$------------*---
1424  *  |          |       |                     |     |            |
1425  *  |          offset  |                     |     end          |
1426  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1427  *  [buf   ... )                             [tail_buf          )
1428  *
1429  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1430  * is placed at the beginning of @buf and @tail at the @end.
1431  *
1432  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1433  * around tail, if tail exists.
1434  *
1435  * @merge_reads is true for small requests,
1436  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1437  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1438  */
1439 typedef struct BdrvRequestPadding {
1440     uint8_t *buf;
1441     size_t buf_len;
1442     uint8_t *tail_buf;
1443     size_t head;
1444     size_t tail;
1445     bool merge_reads;
1446     QEMUIOVector local_qiov;
1447 } BdrvRequestPadding;
1448 
1449 static bool bdrv_init_padding(BlockDriverState *bs,
1450                               int64_t offset, int64_t bytes,
1451                               BdrvRequestPadding *pad)
1452 {
1453     int64_t align = bs->bl.request_alignment;
1454     int64_t sum;
1455 
1456     bdrv_check_request(offset, bytes, &error_abort);
1457     assert(align <= INT_MAX); /* documented in block/block_int.h */
1458     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1459 
1460     memset(pad, 0, sizeof(*pad));
1461 
1462     pad->head = offset & (align - 1);
1463     pad->tail = ((offset + bytes) & (align - 1));
1464     if (pad->tail) {
1465         pad->tail = align - pad->tail;
1466     }
1467 
1468     if (!pad->head && !pad->tail) {
1469         return false;
1470     }
1471 
1472     assert(bytes); /* Nothing good in aligning zero-length requests */
1473 
1474     sum = pad->head + bytes + pad->tail;
1475     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1476     pad->buf = qemu_blockalign(bs, pad->buf_len);
1477     pad->merge_reads = sum == pad->buf_len;
1478     if (pad->tail) {
1479         pad->tail_buf = pad->buf + pad->buf_len - align;
1480     }
1481 
1482     return true;
1483 }
1484 
1485 static coroutine_fn int bdrv_padding_rmw_read(BdrvChild *child,
1486                                               BdrvTrackedRequest *req,
1487                                               BdrvRequestPadding *pad,
1488                                               bool zero_middle)
1489 {
1490     QEMUIOVector local_qiov;
1491     BlockDriverState *bs = child->bs;
1492     uint64_t align = bs->bl.request_alignment;
1493     int ret;
1494 
1495     assert(req->serialising && pad->buf);
1496 
1497     if (pad->head || pad->merge_reads) {
1498         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1499 
1500         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1501 
1502         if (pad->head) {
1503             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1504         }
1505         if (pad->merge_reads && pad->tail) {
1506             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1507         }
1508         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1509                                   align, &local_qiov, 0, 0);
1510         if (ret < 0) {
1511             return ret;
1512         }
1513         if (pad->head) {
1514             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1515         }
1516         if (pad->merge_reads && pad->tail) {
1517             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1518         }
1519 
1520         if (pad->merge_reads) {
1521             goto zero_mem;
1522         }
1523     }
1524 
1525     if (pad->tail) {
1526         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1527 
1528         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1529         ret = bdrv_aligned_preadv(
1530                 child, req,
1531                 req->overlap_offset + req->overlap_bytes - align,
1532                 align, align, &local_qiov, 0, 0);
1533         if (ret < 0) {
1534             return ret;
1535         }
1536         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1537     }
1538 
1539 zero_mem:
1540     if (zero_middle) {
1541         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1542     }
1543 
1544     return 0;
1545 }
1546 
1547 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1548 {
1549     if (pad->buf) {
1550         qemu_vfree(pad->buf);
1551         qemu_iovec_destroy(&pad->local_qiov);
1552     }
1553     memset(pad, 0, sizeof(*pad));
1554 }
1555 
1556 /*
1557  * bdrv_pad_request
1558  *
1559  * Exchange request parameters with padded request if needed. Don't include RMW
1560  * read of padding, bdrv_padding_rmw_read() should be called separately if
1561  * needed.
1562  *
1563  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1564  *  - on function start they represent original request
1565  *  - on failure or when padding is not needed they are unchanged
1566  *  - on success when padding is needed they represent padded request
1567  */
1568 static int bdrv_pad_request(BlockDriverState *bs,
1569                             QEMUIOVector **qiov, size_t *qiov_offset,
1570                             int64_t *offset, int64_t *bytes,
1571                             BdrvRequestPadding *pad, bool *padded,
1572                             BdrvRequestFlags *flags)
1573 {
1574     int ret;
1575 
1576     bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1577 
1578     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1579         if (padded) {
1580             *padded = false;
1581         }
1582         return 0;
1583     }
1584 
1585     ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1586                                    *qiov, *qiov_offset, *bytes,
1587                                    pad->buf + pad->buf_len - pad->tail,
1588                                    pad->tail);
1589     if (ret < 0) {
1590         bdrv_padding_destroy(pad);
1591         return ret;
1592     }
1593     *bytes += pad->head + pad->tail;
1594     *offset -= pad->head;
1595     *qiov = &pad->local_qiov;
1596     *qiov_offset = 0;
1597     if (padded) {
1598         *padded = true;
1599     }
1600     if (flags) {
1601         /* Can't use optimization hint with bounce buffer */
1602         *flags &= ~BDRV_REQ_REGISTERED_BUF;
1603     }
1604 
1605     return 0;
1606 }
1607 
1608 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1609     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1610     BdrvRequestFlags flags)
1611 {
1612     IO_CODE();
1613     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1614 }
1615 
1616 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1617     int64_t offset, int64_t bytes,
1618     QEMUIOVector *qiov, size_t qiov_offset,
1619     BdrvRequestFlags flags)
1620 {
1621     BlockDriverState *bs = child->bs;
1622     BdrvTrackedRequest req;
1623     BdrvRequestPadding pad;
1624     int ret;
1625     IO_CODE();
1626 
1627     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1628 
1629     if (!bdrv_co_is_inserted(bs)) {
1630         return -ENOMEDIUM;
1631     }
1632 
1633     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1634     if (ret < 0) {
1635         return ret;
1636     }
1637 
1638     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1639         /*
1640          * Aligning zero request is nonsense. Even if driver has special meaning
1641          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1642          * it to driver due to request_alignment.
1643          *
1644          * Still, no reason to return an error if someone do unaligned
1645          * zero-length read occasionally.
1646          */
1647         return 0;
1648     }
1649 
1650     bdrv_inc_in_flight(bs);
1651 
1652     /* Don't do copy-on-read if we read data before write operation */
1653     if (qatomic_read(&bs->copy_on_read)) {
1654         flags |= BDRV_REQ_COPY_ON_READ;
1655     }
1656 
1657     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1658                            NULL, &flags);
1659     if (ret < 0) {
1660         goto fail;
1661     }
1662 
1663     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1664     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1665                               bs->bl.request_alignment,
1666                               qiov, qiov_offset, flags);
1667     tracked_request_end(&req);
1668     bdrv_padding_destroy(&pad);
1669 
1670 fail:
1671     bdrv_dec_in_flight(bs);
1672 
1673     return ret;
1674 }
1675 
1676 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1677     int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1678 {
1679     BlockDriver *drv = bs->drv;
1680     QEMUIOVector qiov;
1681     void *buf = NULL;
1682     int ret = 0;
1683     bool need_flush = false;
1684     int head = 0;
1685     int tail = 0;
1686 
1687     assume_graph_lock(); /* FIXME */
1688 
1689     int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1690                                             INT64_MAX);
1691     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1692                         bs->bl.request_alignment);
1693     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1694 
1695     bdrv_check_request(offset, bytes, &error_abort);
1696 
1697     if (!drv) {
1698         return -ENOMEDIUM;
1699     }
1700 
1701     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1702         return -ENOTSUP;
1703     }
1704 
1705     /* By definition there is no user buffer so this flag doesn't make sense */
1706     if (flags & BDRV_REQ_REGISTERED_BUF) {
1707         return -EINVAL;
1708     }
1709 
1710     /* Invalidate the cached block-status data range if this write overlaps */
1711     bdrv_bsc_invalidate_range(bs, offset, bytes);
1712 
1713     assert(alignment % bs->bl.request_alignment == 0);
1714     head = offset % alignment;
1715     tail = (offset + bytes) % alignment;
1716     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1717     assert(max_write_zeroes >= bs->bl.request_alignment);
1718 
1719     while (bytes > 0 && !ret) {
1720         int64_t num = bytes;
1721 
1722         /* Align request.  Block drivers can expect the "bulk" of the request
1723          * to be aligned, and that unaligned requests do not cross cluster
1724          * boundaries.
1725          */
1726         if (head) {
1727             /* Make a small request up to the first aligned sector. For
1728              * convenience, limit this request to max_transfer even if
1729              * we don't need to fall back to writes.  */
1730             num = MIN(MIN(bytes, max_transfer), alignment - head);
1731             head = (head + num) % alignment;
1732             assert(num < max_write_zeroes);
1733         } else if (tail && num > alignment) {
1734             /* Shorten the request to the last aligned sector.  */
1735             num -= tail;
1736         }
1737 
1738         /* limit request size */
1739         if (num > max_write_zeroes) {
1740             num = max_write_zeroes;
1741         }
1742 
1743         ret = -ENOTSUP;
1744         /* First try the efficient write zeroes operation */
1745         if (drv->bdrv_co_pwrite_zeroes) {
1746             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1747                                              flags & bs->supported_zero_flags);
1748             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1749                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1750                 need_flush = true;
1751             }
1752         } else {
1753             assert(!bs->supported_zero_flags);
1754         }
1755 
1756         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1757             /* Fall back to bounce buffer if write zeroes is unsupported */
1758             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1759 
1760             if ((flags & BDRV_REQ_FUA) &&
1761                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1762                 /* No need for bdrv_driver_pwrite() to do a fallback
1763                  * flush on each chunk; use just one at the end */
1764                 write_flags &= ~BDRV_REQ_FUA;
1765                 need_flush = true;
1766             }
1767             num = MIN(num, max_transfer);
1768             if (buf == NULL) {
1769                 buf = qemu_try_blockalign0(bs, num);
1770                 if (buf == NULL) {
1771                     ret = -ENOMEM;
1772                     goto fail;
1773                 }
1774             }
1775             qemu_iovec_init_buf(&qiov, buf, num);
1776 
1777             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1778 
1779             /* Keep bounce buffer around if it is big enough for all
1780              * all future requests.
1781              */
1782             if (num < max_transfer) {
1783                 qemu_vfree(buf);
1784                 buf = NULL;
1785             }
1786         }
1787 
1788         offset += num;
1789         bytes -= num;
1790     }
1791 
1792 fail:
1793     if (ret == 0 && need_flush) {
1794         ret = bdrv_co_flush(bs);
1795     }
1796     qemu_vfree(buf);
1797     return ret;
1798 }
1799 
1800 static inline int coroutine_fn
1801 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1802                           BdrvTrackedRequest *req, int flags)
1803 {
1804     BlockDriverState *bs = child->bs;
1805 
1806     bdrv_check_request(offset, bytes, &error_abort);
1807 
1808     if (bdrv_is_read_only(bs)) {
1809         return -EPERM;
1810     }
1811 
1812     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1813     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1814     assert(!(flags & ~BDRV_REQ_MASK));
1815     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1816 
1817     if (flags & BDRV_REQ_SERIALISING) {
1818         QEMU_LOCK_GUARD(&bs->reqs_lock);
1819 
1820         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1821 
1822         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1823             return -EBUSY;
1824         }
1825 
1826         bdrv_wait_serialising_requests_locked(req);
1827     } else {
1828         bdrv_wait_serialising_requests(req);
1829     }
1830 
1831     assert(req->overlap_offset <= offset);
1832     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1833     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1834            child->perm & BLK_PERM_RESIZE);
1835 
1836     switch (req->type) {
1837     case BDRV_TRACKED_WRITE:
1838     case BDRV_TRACKED_DISCARD:
1839         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1840             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1841         } else {
1842             assert(child->perm & BLK_PERM_WRITE);
1843         }
1844         bdrv_write_threshold_check_write(bs, offset, bytes);
1845         return 0;
1846     case BDRV_TRACKED_TRUNCATE:
1847         assert(child->perm & BLK_PERM_RESIZE);
1848         return 0;
1849     default:
1850         abort();
1851     }
1852 }
1853 
1854 static inline void coroutine_fn
1855 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
1856                          BdrvTrackedRequest *req, int ret)
1857 {
1858     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1859     BlockDriverState *bs = child->bs;
1860 
1861     bdrv_check_request(offset, bytes, &error_abort);
1862 
1863     qatomic_inc(&bs->write_gen);
1864 
1865     /*
1866      * Discard cannot extend the image, but in error handling cases, such as
1867      * when reverting a qcow2 cluster allocation, the discarded range can pass
1868      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1869      * here. Instead, just skip it, since semantically a discard request
1870      * beyond EOF cannot expand the image anyway.
1871      */
1872     if (ret == 0 &&
1873         (req->type == BDRV_TRACKED_TRUNCATE ||
1874          end_sector > bs->total_sectors) &&
1875         req->type != BDRV_TRACKED_DISCARD) {
1876         bs->total_sectors = end_sector;
1877         bdrv_parent_cb_resize(bs);
1878         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1879     }
1880     if (req->bytes) {
1881         switch (req->type) {
1882         case BDRV_TRACKED_WRITE:
1883             stat64_max(&bs->wr_highest_offset, offset + bytes);
1884             /* fall through, to set dirty bits */
1885         case BDRV_TRACKED_DISCARD:
1886             bdrv_set_dirty(bs, offset, bytes);
1887             break;
1888         default:
1889             break;
1890         }
1891     }
1892 }
1893 
1894 /*
1895  * Forwards an already correctly aligned write request to the BlockDriver,
1896  * after possibly fragmenting it.
1897  */
1898 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1899     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1900     int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
1901     BdrvRequestFlags flags)
1902 {
1903     BlockDriverState *bs = child->bs;
1904     BlockDriver *drv = bs->drv;
1905     int ret;
1906 
1907     int64_t bytes_remaining = bytes;
1908     int max_transfer;
1909 
1910     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1911 
1912     if (!drv) {
1913         return -ENOMEDIUM;
1914     }
1915 
1916     if (bdrv_has_readonly_bitmaps(bs)) {
1917         return -EPERM;
1918     }
1919 
1920     assert(is_power_of_2(align));
1921     assert((offset & (align - 1)) == 0);
1922     assert((bytes & (align - 1)) == 0);
1923     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1924                                    align);
1925 
1926     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1927 
1928     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1929         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1930         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1931         flags |= BDRV_REQ_ZERO_WRITE;
1932         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1933             flags |= BDRV_REQ_MAY_UNMAP;
1934         }
1935 
1936         /* Can't use optimization hint with bufferless zero write */
1937         flags &= ~BDRV_REQ_REGISTERED_BUF;
1938     }
1939 
1940     if (ret < 0) {
1941         /* Do nothing, write notifier decided to fail this request */
1942     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1943         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1944         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1945     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1946         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1947                                              qiov, qiov_offset);
1948     } else if (bytes <= max_transfer) {
1949         bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
1950         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1951     } else {
1952         bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
1953         while (bytes_remaining) {
1954             int num = MIN(bytes_remaining, max_transfer);
1955             int local_flags = flags;
1956 
1957             assert(num);
1958             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1959                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1960                 /* If FUA is going to be emulated by flush, we only
1961                  * need to flush on the last iteration */
1962                 local_flags &= ~BDRV_REQ_FUA;
1963             }
1964 
1965             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1966                                       num, qiov,
1967                                       qiov_offset + bytes - bytes_remaining,
1968                                       local_flags);
1969             if (ret < 0) {
1970                 break;
1971             }
1972             bytes_remaining -= num;
1973         }
1974     }
1975     bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
1976 
1977     if (ret >= 0) {
1978         ret = 0;
1979     }
1980     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1981 
1982     return ret;
1983 }
1984 
1985 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1986                                                 int64_t offset,
1987                                                 int64_t bytes,
1988                                                 BdrvRequestFlags flags,
1989                                                 BdrvTrackedRequest *req)
1990 {
1991     BlockDriverState *bs = child->bs;
1992     QEMUIOVector local_qiov;
1993     uint64_t align = bs->bl.request_alignment;
1994     int ret = 0;
1995     bool padding;
1996     BdrvRequestPadding pad;
1997 
1998     /* This flag doesn't make sense for padding or zero writes */
1999     flags &= ~BDRV_REQ_REGISTERED_BUF;
2000 
2001     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2002     if (padding) {
2003         assert(!(flags & BDRV_REQ_NO_WAIT));
2004         bdrv_make_request_serialising(req, align);
2005 
2006         bdrv_padding_rmw_read(child, req, &pad, true);
2007 
2008         if (pad.head || pad.merge_reads) {
2009             int64_t aligned_offset = offset & ~(align - 1);
2010             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2011 
2012             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2013             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2014                                        align, &local_qiov, 0,
2015                                        flags & ~BDRV_REQ_ZERO_WRITE);
2016             if (ret < 0 || pad.merge_reads) {
2017                 /* Error or all work is done */
2018                 goto out;
2019             }
2020             offset += write_bytes - pad.head;
2021             bytes -= write_bytes - pad.head;
2022         }
2023     }
2024 
2025     assert(!bytes || (offset & (align - 1)) == 0);
2026     if (bytes >= align) {
2027         /* Write the aligned part in the middle. */
2028         int64_t aligned_bytes = bytes & ~(align - 1);
2029         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2030                                    NULL, 0, flags);
2031         if (ret < 0) {
2032             goto out;
2033         }
2034         bytes -= aligned_bytes;
2035         offset += aligned_bytes;
2036     }
2037 
2038     assert(!bytes || (offset & (align - 1)) == 0);
2039     if (bytes) {
2040         assert(align == pad.tail + bytes);
2041 
2042         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2043         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2044                                    &local_qiov, 0,
2045                                    flags & ~BDRV_REQ_ZERO_WRITE);
2046     }
2047 
2048 out:
2049     bdrv_padding_destroy(&pad);
2050 
2051     return ret;
2052 }
2053 
2054 /*
2055  * Handle a write request in coroutine context
2056  */
2057 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2058     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2059     BdrvRequestFlags flags)
2060 {
2061     IO_CODE();
2062     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2063 }
2064 
2065 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2066     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2067     BdrvRequestFlags flags)
2068 {
2069     BlockDriverState *bs = child->bs;
2070     BdrvTrackedRequest req;
2071     uint64_t align = bs->bl.request_alignment;
2072     BdrvRequestPadding pad;
2073     int ret;
2074     bool padded = false;
2075     IO_CODE();
2076 
2077     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2078 
2079     if (!bdrv_co_is_inserted(bs)) {
2080         return -ENOMEDIUM;
2081     }
2082 
2083     if (flags & BDRV_REQ_ZERO_WRITE) {
2084         ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2085     } else {
2086         ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2087     }
2088     if (ret < 0) {
2089         return ret;
2090     }
2091 
2092     /* If the request is misaligned then we can't make it efficient */
2093     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2094         !QEMU_IS_ALIGNED(offset | bytes, align))
2095     {
2096         return -ENOTSUP;
2097     }
2098 
2099     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2100         /*
2101          * Aligning zero request is nonsense. Even if driver has special meaning
2102          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2103          * it to driver due to request_alignment.
2104          *
2105          * Still, no reason to return an error if someone do unaligned
2106          * zero-length write occasionally.
2107          */
2108         return 0;
2109     }
2110 
2111     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2112         /*
2113          * Pad request for following read-modify-write cycle.
2114          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2115          * alignment only if there is no ZERO flag.
2116          */
2117         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2118                                &padded, &flags);
2119         if (ret < 0) {
2120             return ret;
2121         }
2122     }
2123 
2124     bdrv_inc_in_flight(bs);
2125     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2126 
2127     if (flags & BDRV_REQ_ZERO_WRITE) {
2128         assert(!padded);
2129         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2130         goto out;
2131     }
2132 
2133     if (padded) {
2134         /*
2135          * Request was unaligned to request_alignment and therefore
2136          * padded.  We are going to do read-modify-write, and must
2137          * serialize the request to prevent interactions of the
2138          * widened region with other transactions.
2139          */
2140         assert(!(flags & BDRV_REQ_NO_WAIT));
2141         bdrv_make_request_serialising(&req, align);
2142         bdrv_padding_rmw_read(child, &req, &pad, false);
2143     }
2144 
2145     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2146                                qiov, qiov_offset, flags);
2147 
2148     bdrv_padding_destroy(&pad);
2149 
2150 out:
2151     tracked_request_end(&req);
2152     bdrv_dec_in_flight(bs);
2153 
2154     return ret;
2155 }
2156 
2157 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2158                                        int64_t bytes, BdrvRequestFlags flags)
2159 {
2160     IO_CODE();
2161     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2162 
2163     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2164         flags &= ~BDRV_REQ_MAY_UNMAP;
2165     }
2166 
2167     return bdrv_co_pwritev(child, offset, bytes, NULL,
2168                            BDRV_REQ_ZERO_WRITE | flags);
2169 }
2170 
2171 /*
2172  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2173  */
2174 int bdrv_flush_all(void)
2175 {
2176     BdrvNextIterator it;
2177     BlockDriverState *bs = NULL;
2178     int result = 0;
2179 
2180     GLOBAL_STATE_CODE();
2181 
2182     /*
2183      * bdrv queue is managed by record/replay,
2184      * creating new flush request for stopping
2185      * the VM may break the determinism
2186      */
2187     if (replay_events_enabled()) {
2188         return result;
2189     }
2190 
2191     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2192         AioContext *aio_context = bdrv_get_aio_context(bs);
2193         int ret;
2194 
2195         aio_context_acquire(aio_context);
2196         ret = bdrv_flush(bs);
2197         if (ret < 0 && !result) {
2198             result = ret;
2199         }
2200         aio_context_release(aio_context);
2201     }
2202 
2203     return result;
2204 }
2205 
2206 /*
2207  * Returns the allocation status of the specified sectors.
2208  * Drivers not implementing the functionality are assumed to not support
2209  * backing files, hence all their sectors are reported as allocated.
2210  *
2211  * If 'want_zero' is true, the caller is querying for mapping
2212  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2213  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2214  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2215  *
2216  * If 'offset' is beyond the end of the disk image the return value is
2217  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2218  *
2219  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2220  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2221  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2222  *
2223  * 'pnum' is set to the number of bytes (including and immediately
2224  * following the specified offset) that are easily known to be in the
2225  * same allocated/unallocated state.  Note that a second call starting
2226  * at the original offset plus returned pnum may have the same status.
2227  * The returned value is non-zero on success except at end-of-file.
2228  *
2229  * Returns negative errno on failure.  Otherwise, if the
2230  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2231  * set to the host mapping and BDS corresponding to the guest offset.
2232  */
2233 static int coroutine_fn GRAPH_RDLOCK
2234 bdrv_co_block_status(BlockDriverState *bs, bool want_zero,
2235                      int64_t offset, int64_t bytes,
2236                      int64_t *pnum, int64_t *map, BlockDriverState **file)
2237 {
2238     int64_t total_size;
2239     int64_t n; /* bytes */
2240     int ret;
2241     int64_t local_map = 0;
2242     BlockDriverState *local_file = NULL;
2243     int64_t aligned_offset, aligned_bytes;
2244     uint32_t align;
2245     bool has_filtered_child;
2246 
2247     assert(pnum);
2248     assert_bdrv_graph_readable();
2249     *pnum = 0;
2250     total_size = bdrv_getlength(bs);
2251     if (total_size < 0) {
2252         ret = total_size;
2253         goto early_out;
2254     }
2255 
2256     if (offset >= total_size) {
2257         ret = BDRV_BLOCK_EOF;
2258         goto early_out;
2259     }
2260     if (!bytes) {
2261         ret = 0;
2262         goto early_out;
2263     }
2264 
2265     n = total_size - offset;
2266     if (n < bytes) {
2267         bytes = n;
2268     }
2269 
2270     /* Must be non-NULL or bdrv_getlength() would have failed */
2271     assert(bs->drv);
2272     has_filtered_child = bdrv_filter_child(bs);
2273     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2274         *pnum = bytes;
2275         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2276         if (offset + bytes == total_size) {
2277             ret |= BDRV_BLOCK_EOF;
2278         }
2279         if (bs->drv->protocol_name) {
2280             ret |= BDRV_BLOCK_OFFSET_VALID;
2281             local_map = offset;
2282             local_file = bs;
2283         }
2284         goto early_out;
2285     }
2286 
2287     bdrv_inc_in_flight(bs);
2288 
2289     /* Round out to request_alignment boundaries */
2290     align = bs->bl.request_alignment;
2291     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2292     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2293 
2294     if (bs->drv->bdrv_co_block_status) {
2295         /*
2296          * Use the block-status cache only for protocol nodes: Format
2297          * drivers are generally quick to inquire the status, but protocol
2298          * drivers often need to get information from outside of qemu, so
2299          * we do not have control over the actual implementation.  There
2300          * have been cases where inquiring the status took an unreasonably
2301          * long time, and we can do nothing in qemu to fix it.
2302          * This is especially problematic for images with large data areas,
2303          * because finding the few holes in them and giving them special
2304          * treatment does not gain much performance.  Therefore, we try to
2305          * cache the last-identified data region.
2306          *
2307          * Second, limiting ourselves to protocol nodes allows us to assume
2308          * the block status for data regions to be DATA | OFFSET_VALID, and
2309          * that the host offset is the same as the guest offset.
2310          *
2311          * Note that it is possible that external writers zero parts of
2312          * the cached regions without the cache being invalidated, and so
2313          * we may report zeroes as data.  This is not catastrophic,
2314          * however, because reporting zeroes as data is fine.
2315          */
2316         if (QLIST_EMPTY(&bs->children) &&
2317             bdrv_bsc_is_data(bs, aligned_offset, pnum))
2318         {
2319             ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2320             local_file = bs;
2321             local_map = aligned_offset;
2322         } else {
2323             ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2324                                                 aligned_bytes, pnum, &local_map,
2325                                                 &local_file);
2326 
2327             /*
2328              * Note that checking QLIST_EMPTY(&bs->children) is also done when
2329              * the cache is queried above.  Technically, we do not need to check
2330              * it here; the worst that can happen is that we fill the cache for
2331              * non-protocol nodes, and then it is never used.  However, filling
2332              * the cache requires an RCU update, so double check here to avoid
2333              * such an update if possible.
2334              *
2335              * Check want_zero, because we only want to update the cache when we
2336              * have accurate information about what is zero and what is data.
2337              */
2338             if (want_zero &&
2339                 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2340                 QLIST_EMPTY(&bs->children))
2341             {
2342                 /*
2343                  * When a protocol driver reports BLOCK_OFFSET_VALID, the
2344                  * returned local_map value must be the same as the offset we
2345                  * have passed (aligned_offset), and local_bs must be the node
2346                  * itself.
2347                  * Assert this, because we follow this rule when reading from
2348                  * the cache (see the `local_file = bs` and
2349                  * `local_map = aligned_offset` assignments above), and the
2350                  * result the cache delivers must be the same as the driver
2351                  * would deliver.
2352                  */
2353                 assert(local_file == bs);
2354                 assert(local_map == aligned_offset);
2355                 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2356             }
2357         }
2358     } else {
2359         /* Default code for filters */
2360 
2361         local_file = bdrv_filter_bs(bs);
2362         assert(local_file);
2363 
2364         *pnum = aligned_bytes;
2365         local_map = aligned_offset;
2366         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2367     }
2368     if (ret < 0) {
2369         *pnum = 0;
2370         goto out;
2371     }
2372 
2373     /*
2374      * The driver's result must be a non-zero multiple of request_alignment.
2375      * Clamp pnum and adjust map to original request.
2376      */
2377     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2378            align > offset - aligned_offset);
2379     if (ret & BDRV_BLOCK_RECURSE) {
2380         assert(ret & BDRV_BLOCK_DATA);
2381         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2382         assert(!(ret & BDRV_BLOCK_ZERO));
2383     }
2384 
2385     *pnum -= offset - aligned_offset;
2386     if (*pnum > bytes) {
2387         *pnum = bytes;
2388     }
2389     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2390         local_map += offset - aligned_offset;
2391     }
2392 
2393     if (ret & BDRV_BLOCK_RAW) {
2394         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2395         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2396                                    *pnum, pnum, &local_map, &local_file);
2397         goto out;
2398     }
2399 
2400     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2401         ret |= BDRV_BLOCK_ALLOCATED;
2402     } else if (bs->drv->supports_backing) {
2403         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2404 
2405         if (!cow_bs) {
2406             ret |= BDRV_BLOCK_ZERO;
2407         } else if (want_zero) {
2408             int64_t size2 = bdrv_getlength(cow_bs);
2409 
2410             if (size2 >= 0 && offset >= size2) {
2411                 ret |= BDRV_BLOCK_ZERO;
2412             }
2413         }
2414     }
2415 
2416     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2417         local_file && local_file != bs &&
2418         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2419         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2420         int64_t file_pnum;
2421         int ret2;
2422 
2423         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2424                                     *pnum, &file_pnum, NULL, NULL);
2425         if (ret2 >= 0) {
2426             /* Ignore errors.  This is just providing extra information, it
2427              * is useful but not necessary.
2428              */
2429             if (ret2 & BDRV_BLOCK_EOF &&
2430                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2431                 /*
2432                  * It is valid for the format block driver to read
2433                  * beyond the end of the underlying file's current
2434                  * size; such areas read as zero.
2435                  */
2436                 ret |= BDRV_BLOCK_ZERO;
2437             } else {
2438                 /* Limit request to the range reported by the protocol driver */
2439                 *pnum = file_pnum;
2440                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2441             }
2442         }
2443     }
2444 
2445 out:
2446     bdrv_dec_in_flight(bs);
2447     if (ret >= 0 && offset + *pnum == total_size) {
2448         ret |= BDRV_BLOCK_EOF;
2449     }
2450 early_out:
2451     if (file) {
2452         *file = local_file;
2453     }
2454     if (map) {
2455         *map = local_map;
2456     }
2457     return ret;
2458 }
2459 
2460 int coroutine_fn
2461 bdrv_co_common_block_status_above(BlockDriverState *bs,
2462                                   BlockDriverState *base,
2463                                   bool include_base,
2464                                   bool want_zero,
2465                                   int64_t offset,
2466                                   int64_t bytes,
2467                                   int64_t *pnum,
2468                                   int64_t *map,
2469                                   BlockDriverState **file,
2470                                   int *depth)
2471 {
2472     int ret;
2473     BlockDriverState *p;
2474     int64_t eof = 0;
2475     int dummy;
2476     IO_CODE();
2477 
2478     assert(!include_base || base); /* Can't include NULL base */
2479     assert_bdrv_graph_readable();
2480 
2481     if (!depth) {
2482         depth = &dummy;
2483     }
2484     *depth = 0;
2485 
2486     if (!include_base && bs == base) {
2487         *pnum = bytes;
2488         return 0;
2489     }
2490 
2491     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2492     ++*depth;
2493     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2494         return ret;
2495     }
2496 
2497     if (ret & BDRV_BLOCK_EOF) {
2498         eof = offset + *pnum;
2499     }
2500 
2501     assert(*pnum <= bytes);
2502     bytes = *pnum;
2503 
2504     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2505          p = bdrv_filter_or_cow_bs(p))
2506     {
2507         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2508                                    file);
2509         ++*depth;
2510         if (ret < 0) {
2511             return ret;
2512         }
2513         if (*pnum == 0) {
2514             /*
2515              * The top layer deferred to this layer, and because this layer is
2516              * short, any zeroes that we synthesize beyond EOF behave as if they
2517              * were allocated at this layer.
2518              *
2519              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2520              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2521              * below.
2522              */
2523             assert(ret & BDRV_BLOCK_EOF);
2524             *pnum = bytes;
2525             if (file) {
2526                 *file = p;
2527             }
2528             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2529             break;
2530         }
2531         if (ret & BDRV_BLOCK_ALLOCATED) {
2532             /*
2533              * We've found the node and the status, we must break.
2534              *
2535              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2536              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2537              * below.
2538              */
2539             ret &= ~BDRV_BLOCK_EOF;
2540             break;
2541         }
2542 
2543         if (p == base) {
2544             assert(include_base);
2545             break;
2546         }
2547 
2548         /*
2549          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2550          * let's continue the diving.
2551          */
2552         assert(*pnum <= bytes);
2553         bytes = *pnum;
2554     }
2555 
2556     if (offset + *pnum == eof) {
2557         ret |= BDRV_BLOCK_EOF;
2558     }
2559 
2560     return ret;
2561 }
2562 
2563 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2564                                             BlockDriverState *base,
2565                                             int64_t offset, int64_t bytes,
2566                                             int64_t *pnum, int64_t *map,
2567                                             BlockDriverState **file)
2568 {
2569     IO_CODE();
2570     return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2571                                              bytes, pnum, map, file, NULL);
2572 }
2573 
2574 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2575                             int64_t offset, int64_t bytes, int64_t *pnum,
2576                             int64_t *map, BlockDriverState **file)
2577 {
2578     IO_CODE();
2579     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2580                                           pnum, map, file, NULL);
2581 }
2582 
2583 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2584                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2585 {
2586     IO_CODE();
2587     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2588                                    offset, bytes, pnum, map, file);
2589 }
2590 
2591 /*
2592  * Check @bs (and its backing chain) to see if the range defined
2593  * by @offset and @bytes is known to read as zeroes.
2594  * Return 1 if that is the case, 0 otherwise and -errno on error.
2595  * This test is meant to be fast rather than accurate so returning 0
2596  * does not guarantee non-zero data.
2597  */
2598 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2599                                       int64_t bytes)
2600 {
2601     int ret;
2602     int64_t pnum = bytes;
2603     IO_CODE();
2604 
2605     assume_graph_lock(); /* FIXME */
2606 
2607     if (!bytes) {
2608         return 1;
2609     }
2610 
2611     ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2612                                             bytes, &pnum, NULL, NULL, NULL);
2613 
2614     if (ret < 0) {
2615         return ret;
2616     }
2617 
2618     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2619 }
2620 
2621 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2622                                       int64_t bytes, int64_t *pnum)
2623 {
2624     int ret;
2625     int64_t dummy;
2626     IO_CODE();
2627 
2628     ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2629                                             bytes, pnum ? pnum : &dummy, NULL,
2630                                             NULL, NULL);
2631     if (ret < 0) {
2632         return ret;
2633     }
2634     return !!(ret & BDRV_BLOCK_ALLOCATED);
2635 }
2636 
2637 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2638                       int64_t *pnum)
2639 {
2640     int ret;
2641     int64_t dummy;
2642     IO_CODE();
2643 
2644     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2645                                          bytes, pnum ? pnum : &dummy, NULL,
2646                                          NULL, NULL);
2647     if (ret < 0) {
2648         return ret;
2649     }
2650     return !!(ret & BDRV_BLOCK_ALLOCATED);
2651 }
2652 
2653 /* See bdrv_is_allocated_above for documentation */
2654 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2655                                             BlockDriverState *base,
2656                                             bool include_base, int64_t offset,
2657                                             int64_t bytes, int64_t *pnum)
2658 {
2659     int depth;
2660     int ret;
2661     IO_CODE();
2662 
2663     ret = bdrv_co_common_block_status_above(top, base, include_base, false,
2664                                             offset, bytes, pnum, NULL, NULL,
2665                                             &depth);
2666     if (ret < 0) {
2667         return ret;
2668     }
2669 
2670     if (ret & BDRV_BLOCK_ALLOCATED) {
2671         return depth;
2672     }
2673     return 0;
2674 }
2675 
2676 /*
2677  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2678  *
2679  * Return a positive depth if (a prefix of) the given range is allocated
2680  * in any image between BASE and TOP (BASE is only included if include_base
2681  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2682  * BASE can be NULL to check if the given offset is allocated in any
2683  * image of the chain.  Return 0 otherwise, or negative errno on
2684  * failure.
2685  *
2686  * 'pnum' is set to the number of bytes (including and immediately
2687  * following the specified offset) that are known to be in the same
2688  * allocated/unallocated state.  Note that a subsequent call starting
2689  * at 'offset + *pnum' may return the same allocation status (in other
2690  * words, the result is not necessarily the maximum possible range);
2691  * but 'pnum' will only be 0 when end of file is reached.
2692  */
2693 int bdrv_is_allocated_above(BlockDriverState *top,
2694                             BlockDriverState *base,
2695                             bool include_base, int64_t offset,
2696                             int64_t bytes, int64_t *pnum)
2697 {
2698     int depth;
2699     int ret;
2700     IO_CODE();
2701 
2702     ret = bdrv_common_block_status_above(top, base, include_base, false,
2703                                          offset, bytes, pnum, NULL, NULL,
2704                                          &depth);
2705     if (ret < 0) {
2706         return ret;
2707     }
2708 
2709     if (ret & BDRV_BLOCK_ALLOCATED) {
2710         return depth;
2711     }
2712     return 0;
2713 }
2714 
2715 int coroutine_fn
2716 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2717 {
2718     BlockDriver *drv = bs->drv;
2719     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2720     int ret;
2721     IO_CODE();
2722     assert_bdrv_graph_readable();
2723 
2724     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2725     if (ret < 0) {
2726         return ret;
2727     }
2728 
2729     if (!drv) {
2730         return -ENOMEDIUM;
2731     }
2732 
2733     bdrv_inc_in_flight(bs);
2734 
2735     if (drv->bdrv_co_load_vmstate) {
2736         ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2737     } else if (child_bs) {
2738         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2739     } else {
2740         ret = -ENOTSUP;
2741     }
2742 
2743     bdrv_dec_in_flight(bs);
2744 
2745     return ret;
2746 }
2747 
2748 int coroutine_fn
2749 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2750 {
2751     BlockDriver *drv = bs->drv;
2752     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2753     int ret;
2754     IO_CODE();
2755     assert_bdrv_graph_readable();
2756 
2757     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2758     if (ret < 0) {
2759         return ret;
2760     }
2761 
2762     if (!drv) {
2763         return -ENOMEDIUM;
2764     }
2765 
2766     bdrv_inc_in_flight(bs);
2767 
2768     if (drv->bdrv_co_save_vmstate) {
2769         ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2770     } else if (child_bs) {
2771         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2772     } else {
2773         ret = -ENOTSUP;
2774     }
2775 
2776     bdrv_dec_in_flight(bs);
2777 
2778     return ret;
2779 }
2780 
2781 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2782                       int64_t pos, int size)
2783 {
2784     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2785     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2786     IO_CODE();
2787 
2788     return ret < 0 ? ret : size;
2789 }
2790 
2791 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2792                       int64_t pos, int size)
2793 {
2794     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2795     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2796     IO_CODE();
2797 
2798     return ret < 0 ? ret : size;
2799 }
2800 
2801 /**************************************************************/
2802 /* async I/Os */
2803 
2804 void bdrv_aio_cancel(BlockAIOCB *acb)
2805 {
2806     IO_CODE();
2807     qemu_aio_ref(acb);
2808     bdrv_aio_cancel_async(acb);
2809     while (acb->refcnt > 1) {
2810         if (acb->aiocb_info->get_aio_context) {
2811             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2812         } else if (acb->bs) {
2813             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2814              * assert that we're not using an I/O thread.  Thread-safe
2815              * code should use bdrv_aio_cancel_async exclusively.
2816              */
2817             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2818             aio_poll(bdrv_get_aio_context(acb->bs), true);
2819         } else {
2820             abort();
2821         }
2822     }
2823     qemu_aio_unref(acb);
2824 }
2825 
2826 /* Async version of aio cancel. The caller is not blocked if the acb implements
2827  * cancel_async, otherwise we do nothing and let the request normally complete.
2828  * In either case the completion callback must be called. */
2829 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2830 {
2831     IO_CODE();
2832     if (acb->aiocb_info->cancel_async) {
2833         acb->aiocb_info->cancel_async(acb);
2834     }
2835 }
2836 
2837 /**************************************************************/
2838 /* Coroutine block device emulation */
2839 
2840 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2841 {
2842     BdrvChild *primary_child = bdrv_primary_child(bs);
2843     BdrvChild *child;
2844     int current_gen;
2845     int ret = 0;
2846     IO_CODE();
2847 
2848     assert_bdrv_graph_readable();
2849     bdrv_inc_in_flight(bs);
2850 
2851     if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2852         bdrv_is_sg(bs)) {
2853         goto early_exit;
2854     }
2855 
2856     qemu_co_mutex_lock(&bs->reqs_lock);
2857     current_gen = qatomic_read(&bs->write_gen);
2858 
2859     /* Wait until any previous flushes are completed */
2860     while (bs->active_flush_req) {
2861         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2862     }
2863 
2864     /* Flushes reach this point in nondecreasing current_gen order.  */
2865     bs->active_flush_req = true;
2866     qemu_co_mutex_unlock(&bs->reqs_lock);
2867 
2868     /* Write back all layers by calling one driver function */
2869     if (bs->drv->bdrv_co_flush) {
2870         ret = bs->drv->bdrv_co_flush(bs);
2871         goto out;
2872     }
2873 
2874     /* Write back cached data to the OS even with cache=unsafe */
2875     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2876     if (bs->drv->bdrv_co_flush_to_os) {
2877         ret = bs->drv->bdrv_co_flush_to_os(bs);
2878         if (ret < 0) {
2879             goto out;
2880         }
2881     }
2882 
2883     /* But don't actually force it to the disk with cache=unsafe */
2884     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2885         goto flush_children;
2886     }
2887 
2888     /* Check if we really need to flush anything */
2889     if (bs->flushed_gen == current_gen) {
2890         goto flush_children;
2891     }
2892 
2893     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2894     if (!bs->drv) {
2895         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2896          * (even in case of apparent success) */
2897         ret = -ENOMEDIUM;
2898         goto out;
2899     }
2900     if (bs->drv->bdrv_co_flush_to_disk) {
2901         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2902     } else if (bs->drv->bdrv_aio_flush) {
2903         BlockAIOCB *acb;
2904         CoroutineIOCompletion co = {
2905             .coroutine = qemu_coroutine_self(),
2906         };
2907 
2908         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2909         if (acb == NULL) {
2910             ret = -EIO;
2911         } else {
2912             qemu_coroutine_yield();
2913             ret = co.ret;
2914         }
2915     } else {
2916         /*
2917          * Some block drivers always operate in either writethrough or unsafe
2918          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2919          * know how the server works (because the behaviour is hardcoded or
2920          * depends on server-side configuration), so we can't ensure that
2921          * everything is safe on disk. Returning an error doesn't work because
2922          * that would break guests even if the server operates in writethrough
2923          * mode.
2924          *
2925          * Let's hope the user knows what he's doing.
2926          */
2927         ret = 0;
2928     }
2929 
2930     if (ret < 0) {
2931         goto out;
2932     }
2933 
2934     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2935      * in the case of cache=unsafe, so there are no useless flushes.
2936      */
2937 flush_children:
2938     ret = 0;
2939     QLIST_FOREACH(child, &bs->children, next) {
2940         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2941             int this_child_ret = bdrv_co_flush(child->bs);
2942             if (!ret) {
2943                 ret = this_child_ret;
2944             }
2945         }
2946     }
2947 
2948 out:
2949     /* Notify any pending flushes that we have completed */
2950     if (ret == 0) {
2951         bs->flushed_gen = current_gen;
2952     }
2953 
2954     qemu_co_mutex_lock(&bs->reqs_lock);
2955     bs->active_flush_req = false;
2956     /* Return value is ignored - it's ok if wait queue is empty */
2957     qemu_co_queue_next(&bs->flush_queue);
2958     qemu_co_mutex_unlock(&bs->reqs_lock);
2959 
2960 early_exit:
2961     bdrv_dec_in_flight(bs);
2962     return ret;
2963 }
2964 
2965 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2966                                   int64_t bytes)
2967 {
2968     BdrvTrackedRequest req;
2969     int ret;
2970     int64_t max_pdiscard;
2971     int head, tail, align;
2972     BlockDriverState *bs = child->bs;
2973     IO_CODE();
2974 
2975     if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
2976         return -ENOMEDIUM;
2977     }
2978 
2979     if (bdrv_has_readonly_bitmaps(bs)) {
2980         return -EPERM;
2981     }
2982 
2983     ret = bdrv_check_request(offset, bytes, NULL);
2984     if (ret < 0) {
2985         return ret;
2986     }
2987 
2988     /* Do nothing if disabled.  */
2989     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2990         return 0;
2991     }
2992 
2993     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2994         return 0;
2995     }
2996 
2997     /* Invalidate the cached block-status data range if this discard overlaps */
2998     bdrv_bsc_invalidate_range(bs, offset, bytes);
2999 
3000     /* Discard is advisory, but some devices track and coalesce
3001      * unaligned requests, so we must pass everything down rather than
3002      * round here.  Still, most devices will just silently ignore
3003      * unaligned requests (by returning -ENOTSUP), so we must fragment
3004      * the request accordingly.  */
3005     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3006     assert(align % bs->bl.request_alignment == 0);
3007     head = offset % align;
3008     tail = (offset + bytes) % align;
3009 
3010     bdrv_inc_in_flight(bs);
3011     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3012 
3013     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3014     if (ret < 0) {
3015         goto out;
3016     }
3017 
3018     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3019                                    align);
3020     assert(max_pdiscard >= bs->bl.request_alignment);
3021 
3022     while (bytes > 0) {
3023         int64_t num = bytes;
3024 
3025         if (head) {
3026             /* Make small requests to get to alignment boundaries. */
3027             num = MIN(bytes, align - head);
3028             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3029                 num %= bs->bl.request_alignment;
3030             }
3031             head = (head + num) % align;
3032             assert(num < max_pdiscard);
3033         } else if (tail) {
3034             if (num > align) {
3035                 /* Shorten the request to the last aligned cluster.  */
3036                 num -= tail;
3037             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3038                        tail > bs->bl.request_alignment) {
3039                 tail %= bs->bl.request_alignment;
3040                 num -= tail;
3041             }
3042         }
3043         /* limit request size */
3044         if (num > max_pdiscard) {
3045             num = max_pdiscard;
3046         }
3047 
3048         if (!bs->drv) {
3049             ret = -ENOMEDIUM;
3050             goto out;
3051         }
3052         if (bs->drv->bdrv_co_pdiscard) {
3053             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3054         } else {
3055             BlockAIOCB *acb;
3056             CoroutineIOCompletion co = {
3057                 .coroutine = qemu_coroutine_self(),
3058             };
3059 
3060             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3061                                              bdrv_co_io_em_complete, &co);
3062             if (acb == NULL) {
3063                 ret = -EIO;
3064                 goto out;
3065             } else {
3066                 qemu_coroutine_yield();
3067                 ret = co.ret;
3068             }
3069         }
3070         if (ret && ret != -ENOTSUP) {
3071             goto out;
3072         }
3073 
3074         offset += num;
3075         bytes -= num;
3076     }
3077     ret = 0;
3078 out:
3079     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3080     tracked_request_end(&req);
3081     bdrv_dec_in_flight(bs);
3082     return ret;
3083 }
3084 
3085 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3086 {
3087     BlockDriver *drv = bs->drv;
3088     CoroutineIOCompletion co = {
3089         .coroutine = qemu_coroutine_self(),
3090     };
3091     BlockAIOCB *acb;
3092     IO_CODE();
3093     assert_bdrv_graph_readable();
3094 
3095     bdrv_inc_in_flight(bs);
3096     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3097         co.ret = -ENOTSUP;
3098         goto out;
3099     }
3100 
3101     if (drv->bdrv_co_ioctl) {
3102         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3103     } else {
3104         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3105         if (!acb) {
3106             co.ret = -ENOTSUP;
3107             goto out;
3108         }
3109         qemu_coroutine_yield();
3110     }
3111 out:
3112     bdrv_dec_in_flight(bs);
3113     return co.ret;
3114 }
3115 
3116 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3117 {
3118     IO_CODE();
3119     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3120 }
3121 
3122 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3123 {
3124     IO_CODE();
3125     return memset(qemu_blockalign(bs, size), 0, size);
3126 }
3127 
3128 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3129 {
3130     size_t align = bdrv_opt_mem_align(bs);
3131     IO_CODE();
3132 
3133     /* Ensure that NULL is never returned on success */
3134     assert(align > 0);
3135     if (size == 0) {
3136         size = align;
3137     }
3138 
3139     return qemu_try_memalign(align, size);
3140 }
3141 
3142 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3143 {
3144     void *mem = qemu_try_blockalign(bs, size);
3145     IO_CODE();
3146 
3147     if (mem) {
3148         memset(mem, 0, size);
3149     }
3150 
3151     return mem;
3152 }
3153 
3154 void coroutine_fn bdrv_co_io_plug(BlockDriverState *bs)
3155 {
3156     BdrvChild *child;
3157     IO_CODE();
3158 
3159     QLIST_FOREACH(child, &bs->children, next) {
3160         bdrv_co_io_plug(child->bs);
3161     }
3162 
3163     if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3164         BlockDriver *drv = bs->drv;
3165         if (drv && drv->bdrv_co_io_plug) {
3166             drv->bdrv_co_io_plug(bs);
3167         }
3168     }
3169 }
3170 
3171 void coroutine_fn bdrv_co_io_unplug(BlockDriverState *bs)
3172 {
3173     BdrvChild *child;
3174     IO_CODE();
3175 
3176     assert(bs->io_plugged);
3177     if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3178         BlockDriver *drv = bs->drv;
3179         if (drv && drv->bdrv_co_io_unplug) {
3180             drv->bdrv_co_io_unplug(bs);
3181         }
3182     }
3183 
3184     QLIST_FOREACH(child, &bs->children, next) {
3185         bdrv_co_io_unplug(child->bs);
3186     }
3187 }
3188 
3189 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3190 static void bdrv_register_buf_rollback(BlockDriverState *bs,
3191                                        void *host,
3192                                        size_t size,
3193                                        BdrvChild *final_child)
3194 {
3195     BdrvChild *child;
3196 
3197     QLIST_FOREACH(child, &bs->children, next) {
3198         if (child == final_child) {
3199             break;
3200         }
3201 
3202         bdrv_unregister_buf(child->bs, host, size);
3203     }
3204 
3205     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3206         bs->drv->bdrv_unregister_buf(bs, host, size);
3207     }
3208 }
3209 
3210 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3211                        Error **errp)
3212 {
3213     BdrvChild *child;
3214 
3215     GLOBAL_STATE_CODE();
3216     if (bs->drv && bs->drv->bdrv_register_buf) {
3217         if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3218             return false;
3219         }
3220     }
3221     QLIST_FOREACH(child, &bs->children, next) {
3222         if (!bdrv_register_buf(child->bs, host, size, errp)) {
3223             bdrv_register_buf_rollback(bs, host, size, child);
3224             return false;
3225         }
3226     }
3227     return true;
3228 }
3229 
3230 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3231 {
3232     BdrvChild *child;
3233 
3234     GLOBAL_STATE_CODE();
3235     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3236         bs->drv->bdrv_unregister_buf(bs, host, size);
3237     }
3238     QLIST_FOREACH(child, &bs->children, next) {
3239         bdrv_unregister_buf(child->bs, host, size);
3240     }
3241 }
3242 
3243 static int coroutine_fn bdrv_co_copy_range_internal(
3244         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3245         int64_t dst_offset, int64_t bytes,
3246         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3247         bool recurse_src)
3248 {
3249     BdrvTrackedRequest req;
3250     int ret;
3251 
3252     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3253     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3254     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3255     assert(!(read_flags & BDRV_REQ_NO_WAIT));
3256     assert(!(write_flags & BDRV_REQ_NO_WAIT));
3257 
3258     if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3259         return -ENOMEDIUM;
3260     }
3261     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3262     if (ret) {
3263         return ret;
3264     }
3265     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3266         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3267     }
3268 
3269     if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3270         return -ENOMEDIUM;
3271     }
3272     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3273     if (ret) {
3274         return ret;
3275     }
3276 
3277     if (!src->bs->drv->bdrv_co_copy_range_from
3278         || !dst->bs->drv->bdrv_co_copy_range_to
3279         || src->bs->encrypted || dst->bs->encrypted) {
3280         return -ENOTSUP;
3281     }
3282 
3283     if (recurse_src) {
3284         bdrv_inc_in_flight(src->bs);
3285         tracked_request_begin(&req, src->bs, src_offset, bytes,
3286                               BDRV_TRACKED_READ);
3287 
3288         /* BDRV_REQ_SERIALISING is only for write operation */
3289         assert(!(read_flags & BDRV_REQ_SERIALISING));
3290         bdrv_wait_serialising_requests(&req);
3291 
3292         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3293                                                     src, src_offset,
3294                                                     dst, dst_offset,
3295                                                     bytes,
3296                                                     read_flags, write_flags);
3297 
3298         tracked_request_end(&req);
3299         bdrv_dec_in_flight(src->bs);
3300     } else {
3301         bdrv_inc_in_flight(dst->bs);
3302         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3303                               BDRV_TRACKED_WRITE);
3304         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3305                                         write_flags);
3306         if (!ret) {
3307             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3308                                                       src, src_offset,
3309                                                       dst, dst_offset,
3310                                                       bytes,
3311                                                       read_flags, write_flags);
3312         }
3313         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3314         tracked_request_end(&req);
3315         bdrv_dec_in_flight(dst->bs);
3316     }
3317 
3318     return ret;
3319 }
3320 
3321 /* Copy range from @src to @dst.
3322  *
3323  * See the comment of bdrv_co_copy_range for the parameter and return value
3324  * semantics. */
3325 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3326                                          BdrvChild *dst, int64_t dst_offset,
3327                                          int64_t bytes,
3328                                          BdrvRequestFlags read_flags,
3329                                          BdrvRequestFlags write_flags)
3330 {
3331     IO_CODE();
3332     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3333                                   read_flags, write_flags);
3334     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3335                                        bytes, read_flags, write_flags, true);
3336 }
3337 
3338 /* Copy range from @src to @dst.
3339  *
3340  * See the comment of bdrv_co_copy_range for the parameter and return value
3341  * semantics. */
3342 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3343                                        BdrvChild *dst, int64_t dst_offset,
3344                                        int64_t bytes,
3345                                        BdrvRequestFlags read_flags,
3346                                        BdrvRequestFlags write_flags)
3347 {
3348     IO_CODE();
3349     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3350                                 read_flags, write_flags);
3351     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3352                                        bytes, read_flags, write_flags, false);
3353 }
3354 
3355 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3356                                     BdrvChild *dst, int64_t dst_offset,
3357                                     int64_t bytes, BdrvRequestFlags read_flags,
3358                                     BdrvRequestFlags write_flags)
3359 {
3360     IO_CODE();
3361     return bdrv_co_copy_range_from(src, src_offset,
3362                                    dst, dst_offset,
3363                                    bytes, read_flags, write_flags);
3364 }
3365 
3366 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3367 {
3368     BdrvChild *c;
3369     QLIST_FOREACH(c, &bs->parents, next_parent) {
3370         if (c->klass->resize) {
3371             c->klass->resize(c);
3372         }
3373     }
3374 }
3375 
3376 /**
3377  * Truncate file to 'offset' bytes (needed only for file protocols)
3378  *
3379  * If 'exact' is true, the file must be resized to exactly the given
3380  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3381  * 'offset' bytes in length.
3382  */
3383 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3384                                   PreallocMode prealloc, BdrvRequestFlags flags,
3385                                   Error **errp)
3386 {
3387     BlockDriverState *bs = child->bs;
3388     BdrvChild *filtered, *backing;
3389     BlockDriver *drv = bs->drv;
3390     BdrvTrackedRequest req;
3391     int64_t old_size, new_bytes;
3392     int ret;
3393     IO_CODE();
3394     assert_bdrv_graph_readable();
3395 
3396     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3397     if (!drv) {
3398         error_setg(errp, "No medium inserted");
3399         return -ENOMEDIUM;
3400     }
3401     if (offset < 0) {
3402         error_setg(errp, "Image size cannot be negative");
3403         return -EINVAL;
3404     }
3405 
3406     ret = bdrv_check_request(offset, 0, errp);
3407     if (ret < 0) {
3408         return ret;
3409     }
3410 
3411     old_size = bdrv_getlength(bs);
3412     if (old_size < 0) {
3413         error_setg_errno(errp, -old_size, "Failed to get old image size");
3414         return old_size;
3415     }
3416 
3417     if (bdrv_is_read_only(bs)) {
3418         error_setg(errp, "Image is read-only");
3419         return -EACCES;
3420     }
3421 
3422     if (offset > old_size) {
3423         new_bytes = offset - old_size;
3424     } else {
3425         new_bytes = 0;
3426     }
3427 
3428     bdrv_inc_in_flight(bs);
3429     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3430                           BDRV_TRACKED_TRUNCATE);
3431 
3432     /* If we are growing the image and potentially using preallocation for the
3433      * new area, we need to make sure that no write requests are made to it
3434      * concurrently or they might be overwritten by preallocation. */
3435     if (new_bytes) {
3436         bdrv_make_request_serialising(&req, 1);
3437     }
3438     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3439                                     0);
3440     if (ret < 0) {
3441         error_setg_errno(errp, -ret,
3442                          "Failed to prepare request for truncation");
3443         goto out;
3444     }
3445 
3446     filtered = bdrv_filter_child(bs);
3447     backing = bdrv_cow_child(bs);
3448 
3449     /*
3450      * If the image has a backing file that is large enough that it would
3451      * provide data for the new area, we cannot leave it unallocated because
3452      * then the backing file content would become visible. Instead, zero-fill
3453      * the new area.
3454      *
3455      * Note that if the image has a backing file, but was opened without the
3456      * backing file, taking care of keeping things consistent with that backing
3457      * file is the user's responsibility.
3458      */
3459     if (new_bytes && backing) {
3460         int64_t backing_len;
3461 
3462         backing_len = bdrv_co_getlength(backing->bs);
3463         if (backing_len < 0) {
3464             ret = backing_len;
3465             error_setg_errno(errp, -ret, "Could not get backing file size");
3466             goto out;
3467         }
3468 
3469         if (backing_len > old_size) {
3470             flags |= BDRV_REQ_ZERO_WRITE;
3471         }
3472     }
3473 
3474     if (drv->bdrv_co_truncate) {
3475         if (flags & ~bs->supported_truncate_flags) {
3476             error_setg(errp, "Block driver does not support requested flags");
3477             ret = -ENOTSUP;
3478             goto out;
3479         }
3480         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3481     } else if (filtered) {
3482         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3483     } else {
3484         error_setg(errp, "Image format driver does not support resize");
3485         ret = -ENOTSUP;
3486         goto out;
3487     }
3488     if (ret < 0) {
3489         goto out;
3490     }
3491 
3492     ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3493     if (ret < 0) {
3494         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3495     } else {
3496         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3497     }
3498     /*
3499      * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3500      * failed, but the latter doesn't affect how we should finish the request.
3501      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3502      */
3503     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3504 
3505 out:
3506     tracked_request_end(&req);
3507     bdrv_dec_in_flight(bs);
3508 
3509     return ret;
3510 }
3511 
3512 void bdrv_cancel_in_flight(BlockDriverState *bs)
3513 {
3514     GLOBAL_STATE_CODE();
3515     if (!bs || !bs->drv) {
3516         return;
3517     }
3518 
3519     if (bs->drv->bdrv_cancel_in_flight) {
3520         bs->drv->bdrv_cancel_in_flight(bs);
3521     }
3522 }
3523 
3524 int coroutine_fn
3525 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3526                         QEMUIOVector *qiov, size_t qiov_offset)
3527 {
3528     BlockDriverState *bs = child->bs;
3529     BlockDriver *drv = bs->drv;
3530     int ret;
3531     IO_CODE();
3532 
3533     if (!drv) {
3534         return -ENOMEDIUM;
3535     }
3536 
3537     if (!drv->bdrv_co_preadv_snapshot) {
3538         return -ENOTSUP;
3539     }
3540 
3541     bdrv_inc_in_flight(bs);
3542     ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3543     bdrv_dec_in_flight(bs);
3544 
3545     return ret;
3546 }
3547 
3548 int coroutine_fn
3549 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3550                               bool want_zero, int64_t offset, int64_t bytes,
3551                               int64_t *pnum, int64_t *map,
3552                               BlockDriverState **file)
3553 {
3554     BlockDriver *drv = bs->drv;
3555     int ret;
3556     IO_CODE();
3557 
3558     if (!drv) {
3559         return -ENOMEDIUM;
3560     }
3561 
3562     if (!drv->bdrv_co_snapshot_block_status) {
3563         return -ENOTSUP;
3564     }
3565 
3566     bdrv_inc_in_flight(bs);
3567     ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3568                                              pnum, map, file);
3569     bdrv_dec_in_flight(bs);
3570 
3571     return ret;
3572 }
3573 
3574 int coroutine_fn
3575 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3576 {
3577     BlockDriver *drv = bs->drv;
3578     int ret;
3579     IO_CODE();
3580 
3581     if (!drv) {
3582         return -ENOMEDIUM;
3583     }
3584 
3585     if (!drv->bdrv_co_pdiscard_snapshot) {
3586         return -ENOTSUP;
3587     }
3588 
3589     bdrv_inc_in_flight(bs);
3590     ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3591     bdrv_dec_in_flight(bs);
3592 
3593     return ret;
3594 }
3595