xref: /qemu/block/io.c (revision 8ac65578)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40 
41 static void bdrv_parent_cb_resize(BlockDriverState *bs);
42 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
43     int64_t offset, int bytes, BdrvRequestFlags flags);
44 
45 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
46                                bool ignore_bds_parents)
47 {
48     BdrvChild *c, *next;
49 
50     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
51         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
52             continue;
53         }
54         bdrv_parent_drained_begin_single(c, false);
55     }
56 }
57 
58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
59                              bool ignore_bds_parents)
60 {
61     BdrvChild *c, *next;
62 
63     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
64         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
65             continue;
66         }
67         if (c->role->drained_end) {
68             c->role->drained_end(c);
69         }
70     }
71 }
72 
73 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
74 {
75     if (c->role->drained_poll) {
76         return c->role->drained_poll(c);
77     }
78     return false;
79 }
80 
81 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
82                                      bool ignore_bds_parents)
83 {
84     BdrvChild *c, *next;
85     bool busy = false;
86 
87     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
88         if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
89             continue;
90         }
91         busy |= bdrv_parent_drained_poll_single(c);
92     }
93 
94     return busy;
95 }
96 
97 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
98 {
99     if (c->role->drained_begin) {
100         c->role->drained_begin(c);
101     }
102     if (poll) {
103         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
104     }
105 }
106 
107 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
108 {
109     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
110     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
111     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
112                                  src->opt_mem_alignment);
113     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
114                                  src->min_mem_alignment);
115     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
116 }
117 
118 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
119 {
120     BlockDriver *drv = bs->drv;
121     Error *local_err = NULL;
122 
123     memset(&bs->bl, 0, sizeof(bs->bl));
124 
125     if (!drv) {
126         return;
127     }
128 
129     /* Default alignment based on whether driver has byte interface */
130     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
131                                 drv->bdrv_aio_preadv) ? 1 : 512;
132 
133     /* Take some limits from the children as a default */
134     if (bs->file) {
135         bdrv_refresh_limits(bs->file->bs, &local_err);
136         if (local_err) {
137             error_propagate(errp, local_err);
138             return;
139         }
140         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
141     } else {
142         bs->bl.min_mem_alignment = 512;
143         bs->bl.opt_mem_alignment = getpagesize();
144 
145         /* Safe default since most protocols use readv()/writev()/etc */
146         bs->bl.max_iov = IOV_MAX;
147     }
148 
149     if (bs->backing) {
150         bdrv_refresh_limits(bs->backing->bs, &local_err);
151         if (local_err) {
152             error_propagate(errp, local_err);
153             return;
154         }
155         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
156     }
157 
158     /* Then let the driver override it */
159     if (drv->bdrv_refresh_limits) {
160         drv->bdrv_refresh_limits(bs, errp);
161     }
162 }
163 
164 /**
165  * The copy-on-read flag is actually a reference count so multiple users may
166  * use the feature without worrying about clobbering its previous state.
167  * Copy-on-read stays enabled until all users have called to disable it.
168  */
169 void bdrv_enable_copy_on_read(BlockDriverState *bs)
170 {
171     atomic_inc(&bs->copy_on_read);
172 }
173 
174 void bdrv_disable_copy_on_read(BlockDriverState *bs)
175 {
176     int old = atomic_fetch_dec(&bs->copy_on_read);
177     assert(old >= 1);
178 }
179 
180 typedef struct {
181     Coroutine *co;
182     BlockDriverState *bs;
183     bool done;
184     bool begin;
185     bool recursive;
186     bool poll;
187     BdrvChild *parent;
188     bool ignore_bds_parents;
189 } BdrvCoDrainData;
190 
191 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
192 {
193     BdrvCoDrainData *data = opaque;
194     BlockDriverState *bs = data->bs;
195 
196     if (data->begin) {
197         bs->drv->bdrv_co_drain_begin(bs);
198     } else {
199         bs->drv->bdrv_co_drain_end(bs);
200     }
201 
202     /* Set data->done before reading bs->wakeup.  */
203     atomic_mb_set(&data->done, true);
204     bdrv_dec_in_flight(bs);
205 
206     if (data->begin) {
207         g_free(data);
208     }
209 }
210 
211 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
212 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin)
213 {
214     BdrvCoDrainData *data;
215 
216     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
217             (!begin && !bs->drv->bdrv_co_drain_end)) {
218         return;
219     }
220 
221     data = g_new(BdrvCoDrainData, 1);
222     *data = (BdrvCoDrainData) {
223         .bs = bs,
224         .done = false,
225         .begin = begin
226     };
227 
228     /* Make sure the driver callback completes during the polling phase for
229      * drain_begin. */
230     bdrv_inc_in_flight(bs);
231     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
232     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
233 
234     if (!begin) {
235         BDRV_POLL_WHILE(bs, !data->done);
236         g_free(data);
237     }
238 }
239 
240 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
241 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
242                      BdrvChild *ignore_parent, bool ignore_bds_parents)
243 {
244     BdrvChild *child, *next;
245 
246     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
247         return true;
248     }
249 
250     if (atomic_read(&bs->in_flight)) {
251         return true;
252     }
253 
254     if (recursive) {
255         assert(!ignore_bds_parents);
256         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
257             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
258                 return true;
259             }
260         }
261     }
262 
263     return false;
264 }
265 
266 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
267                                       BdrvChild *ignore_parent)
268 {
269     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
270 }
271 
272 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
273                                   BdrvChild *parent, bool ignore_bds_parents,
274                                   bool poll);
275 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
276                                 BdrvChild *parent, bool ignore_bds_parents);
277 
278 static void bdrv_co_drain_bh_cb(void *opaque)
279 {
280     BdrvCoDrainData *data = opaque;
281     Coroutine *co = data->co;
282     BlockDriverState *bs = data->bs;
283 
284     if (bs) {
285         AioContext *ctx = bdrv_get_aio_context(bs);
286         AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
287 
288         /*
289          * When the coroutine yielded, the lock for its home context was
290          * released, so we need to re-acquire it here. If it explicitly
291          * acquired a different context, the lock is still held and we don't
292          * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
293          */
294         if (ctx == co_ctx) {
295             aio_context_acquire(ctx);
296         }
297         bdrv_dec_in_flight(bs);
298         if (data->begin) {
299             bdrv_do_drained_begin(bs, data->recursive, data->parent,
300                                   data->ignore_bds_parents, data->poll);
301         } else {
302             bdrv_do_drained_end(bs, data->recursive, data->parent,
303                                 data->ignore_bds_parents);
304         }
305         if (ctx == co_ctx) {
306             aio_context_release(ctx);
307         }
308     } else {
309         assert(data->begin);
310         bdrv_drain_all_begin();
311     }
312 
313     data->done = true;
314     aio_co_wake(co);
315 }
316 
317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
318                                                 bool begin, bool recursive,
319                                                 BdrvChild *parent,
320                                                 bool ignore_bds_parents,
321                                                 bool poll)
322 {
323     BdrvCoDrainData data;
324 
325     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
326      * other coroutines run if they were queued by aio_co_enter(). */
327 
328     assert(qemu_in_coroutine());
329     data = (BdrvCoDrainData) {
330         .co = qemu_coroutine_self(),
331         .bs = bs,
332         .done = false,
333         .begin = begin,
334         .recursive = recursive,
335         .parent = parent,
336         .ignore_bds_parents = ignore_bds_parents,
337         .poll = poll,
338     };
339     if (bs) {
340         bdrv_inc_in_flight(bs);
341     }
342     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
343                             bdrv_co_drain_bh_cb, &data);
344 
345     qemu_coroutine_yield();
346     /* If we are resumed from some other event (such as an aio completion or a
347      * timer callback), it is a bug in the caller that should be fixed. */
348     assert(data.done);
349 }
350 
351 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
352                                    BdrvChild *parent, bool ignore_bds_parents)
353 {
354     assert(!qemu_in_coroutine());
355 
356     /* Stop things in parent-to-child order */
357     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
358         aio_disable_external(bdrv_get_aio_context(bs));
359     }
360 
361     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
362     bdrv_drain_invoke(bs, true);
363 }
364 
365 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
366                                   BdrvChild *parent, bool ignore_bds_parents,
367                                   bool poll)
368 {
369     BdrvChild *child, *next;
370 
371     if (qemu_in_coroutine()) {
372         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
373                                poll);
374         return;
375     }
376 
377     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
378 
379     if (recursive) {
380         assert(!ignore_bds_parents);
381         bs->recursive_quiesce_counter++;
382         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
383             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
384                                   false);
385         }
386     }
387 
388     /*
389      * Wait for drained requests to finish.
390      *
391      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
392      * call is needed so things in this AioContext can make progress even
393      * though we don't return to the main AioContext loop - this automatically
394      * includes other nodes in the same AioContext and therefore all child
395      * nodes.
396      */
397     if (poll) {
398         assert(!ignore_bds_parents);
399         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
400     }
401 }
402 
403 void bdrv_drained_begin(BlockDriverState *bs)
404 {
405     bdrv_do_drained_begin(bs, false, NULL, false, true);
406 }
407 
408 void bdrv_subtree_drained_begin(BlockDriverState *bs)
409 {
410     bdrv_do_drained_begin(bs, true, NULL, false, true);
411 }
412 
413 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
414                                 BdrvChild *parent, bool ignore_bds_parents)
415 {
416     BdrvChild *child, *next;
417     int old_quiesce_counter;
418 
419     if (qemu_in_coroutine()) {
420         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
421                                false);
422         return;
423     }
424     assert(bs->quiesce_counter > 0);
425     old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
426 
427     /* Re-enable things in child-to-parent order */
428     bdrv_drain_invoke(bs, false);
429     bdrv_parent_drained_end(bs, parent, ignore_bds_parents);
430     if (old_quiesce_counter == 1) {
431         aio_enable_external(bdrv_get_aio_context(bs));
432     }
433 
434     if (recursive) {
435         assert(!ignore_bds_parents);
436         bs->recursive_quiesce_counter--;
437         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
438             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents);
439         }
440     }
441 }
442 
443 void bdrv_drained_end(BlockDriverState *bs)
444 {
445     bdrv_do_drained_end(bs, false, NULL, false);
446 }
447 
448 void bdrv_subtree_drained_end(BlockDriverState *bs)
449 {
450     bdrv_do_drained_end(bs, true, NULL, false);
451 }
452 
453 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
454 {
455     int i;
456 
457     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
458         bdrv_do_drained_begin(child->bs, true, child, false, true);
459     }
460 }
461 
462 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
463 {
464     int i;
465 
466     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
467         bdrv_do_drained_end(child->bs, true, child, false);
468     }
469 }
470 
471 /*
472  * Wait for pending requests to complete on a single BlockDriverState subtree,
473  * and suspend block driver's internal I/O until next request arrives.
474  *
475  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
476  * AioContext.
477  */
478 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
479 {
480     assert(qemu_in_coroutine());
481     bdrv_drained_begin(bs);
482     bdrv_drained_end(bs);
483 }
484 
485 void bdrv_drain(BlockDriverState *bs)
486 {
487     bdrv_drained_begin(bs);
488     bdrv_drained_end(bs);
489 }
490 
491 static void bdrv_drain_assert_idle(BlockDriverState *bs)
492 {
493     BdrvChild *child, *next;
494 
495     assert(atomic_read(&bs->in_flight) == 0);
496     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
497         bdrv_drain_assert_idle(child->bs);
498     }
499 }
500 
501 unsigned int bdrv_drain_all_count = 0;
502 
503 static bool bdrv_drain_all_poll(void)
504 {
505     BlockDriverState *bs = NULL;
506     bool result = false;
507 
508     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
509      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
510     while ((bs = bdrv_next_all_states(bs))) {
511         AioContext *aio_context = bdrv_get_aio_context(bs);
512         aio_context_acquire(aio_context);
513         result |= bdrv_drain_poll(bs, false, NULL, true);
514         aio_context_release(aio_context);
515     }
516 
517     return result;
518 }
519 
520 /*
521  * Wait for pending requests to complete across all BlockDriverStates
522  *
523  * This function does not flush data to disk, use bdrv_flush_all() for that
524  * after calling this function.
525  *
526  * This pauses all block jobs and disables external clients. It must
527  * be paired with bdrv_drain_all_end().
528  *
529  * NOTE: no new block jobs or BlockDriverStates can be created between
530  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
531  */
532 void bdrv_drain_all_begin(void)
533 {
534     BlockDriverState *bs = NULL;
535 
536     if (qemu_in_coroutine()) {
537         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true);
538         return;
539     }
540 
541     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
542      * loop AioContext, so make sure we're in the main context. */
543     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
544     assert(bdrv_drain_all_count < INT_MAX);
545     bdrv_drain_all_count++;
546 
547     /* Quiesce all nodes, without polling in-flight requests yet. The graph
548      * cannot change during this loop. */
549     while ((bs = bdrv_next_all_states(bs))) {
550         AioContext *aio_context = bdrv_get_aio_context(bs);
551 
552         aio_context_acquire(aio_context);
553         bdrv_do_drained_begin(bs, false, NULL, true, false);
554         aio_context_release(aio_context);
555     }
556 
557     /* Now poll the in-flight requests */
558     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
559 
560     while ((bs = bdrv_next_all_states(bs))) {
561         bdrv_drain_assert_idle(bs);
562     }
563 }
564 
565 void bdrv_drain_all_end(void)
566 {
567     BlockDriverState *bs = NULL;
568 
569     while ((bs = bdrv_next_all_states(bs))) {
570         AioContext *aio_context = bdrv_get_aio_context(bs);
571 
572         aio_context_acquire(aio_context);
573         bdrv_do_drained_end(bs, false, NULL, true);
574         aio_context_release(aio_context);
575     }
576 
577     assert(bdrv_drain_all_count > 0);
578     bdrv_drain_all_count--;
579 }
580 
581 void bdrv_drain_all(void)
582 {
583     bdrv_drain_all_begin();
584     bdrv_drain_all_end();
585 }
586 
587 /**
588  * Remove an active request from the tracked requests list
589  *
590  * This function should be called when a tracked request is completing.
591  */
592 static void tracked_request_end(BdrvTrackedRequest *req)
593 {
594     if (req->serialising) {
595         atomic_dec(&req->bs->serialising_in_flight);
596     }
597 
598     qemu_co_mutex_lock(&req->bs->reqs_lock);
599     QLIST_REMOVE(req, list);
600     qemu_co_queue_restart_all(&req->wait_queue);
601     qemu_co_mutex_unlock(&req->bs->reqs_lock);
602 }
603 
604 /**
605  * Add an active request to the tracked requests list
606  */
607 static void tracked_request_begin(BdrvTrackedRequest *req,
608                                   BlockDriverState *bs,
609                                   int64_t offset,
610                                   uint64_t bytes,
611                                   enum BdrvTrackedRequestType type)
612 {
613     assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
614 
615     *req = (BdrvTrackedRequest){
616         .bs = bs,
617         .offset         = offset,
618         .bytes          = bytes,
619         .type           = type,
620         .co             = qemu_coroutine_self(),
621         .serialising    = false,
622         .overlap_offset = offset,
623         .overlap_bytes  = bytes,
624     };
625 
626     qemu_co_queue_init(&req->wait_queue);
627 
628     qemu_co_mutex_lock(&bs->reqs_lock);
629     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
630     qemu_co_mutex_unlock(&bs->reqs_lock);
631 }
632 
633 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
634 {
635     int64_t overlap_offset = req->offset & ~(align - 1);
636     uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
637                                - overlap_offset;
638 
639     if (!req->serialising) {
640         atomic_inc(&req->bs->serialising_in_flight);
641         req->serialising = true;
642     }
643 
644     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
645     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
646 }
647 
648 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
649 {
650     /*
651      * If the request is serialising, overlap_offset and overlap_bytes are set,
652      * so we can check if the request is aligned. Otherwise, don't care and
653      * return false.
654      */
655 
656     return req->serialising && (req->offset == req->overlap_offset) &&
657            (req->bytes == req->overlap_bytes);
658 }
659 
660 /**
661  * Round a region to cluster boundaries
662  */
663 void bdrv_round_to_clusters(BlockDriverState *bs,
664                             int64_t offset, int64_t bytes,
665                             int64_t *cluster_offset,
666                             int64_t *cluster_bytes)
667 {
668     BlockDriverInfo bdi;
669 
670     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
671         *cluster_offset = offset;
672         *cluster_bytes = bytes;
673     } else {
674         int64_t c = bdi.cluster_size;
675         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
676         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
677     }
678 }
679 
680 static int bdrv_get_cluster_size(BlockDriverState *bs)
681 {
682     BlockDriverInfo bdi;
683     int ret;
684 
685     ret = bdrv_get_info(bs, &bdi);
686     if (ret < 0 || bdi.cluster_size == 0) {
687         return bs->bl.request_alignment;
688     } else {
689         return bdi.cluster_size;
690     }
691 }
692 
693 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
694                                      int64_t offset, uint64_t bytes)
695 {
696     /*        aaaa   bbbb */
697     if (offset >= req->overlap_offset + req->overlap_bytes) {
698         return false;
699     }
700     /* bbbb   aaaa        */
701     if (req->overlap_offset >= offset + bytes) {
702         return false;
703     }
704     return true;
705 }
706 
707 void bdrv_inc_in_flight(BlockDriverState *bs)
708 {
709     atomic_inc(&bs->in_flight);
710 }
711 
712 void bdrv_wakeup(BlockDriverState *bs)
713 {
714     aio_wait_kick();
715 }
716 
717 void bdrv_dec_in_flight(BlockDriverState *bs)
718 {
719     atomic_dec(&bs->in_flight);
720     bdrv_wakeup(bs);
721 }
722 
723 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
724 {
725     BlockDriverState *bs = self->bs;
726     BdrvTrackedRequest *req;
727     bool retry;
728     bool waited = false;
729 
730     if (!atomic_read(&bs->serialising_in_flight)) {
731         return false;
732     }
733 
734     do {
735         retry = false;
736         qemu_co_mutex_lock(&bs->reqs_lock);
737         QLIST_FOREACH(req, &bs->tracked_requests, list) {
738             if (req == self || (!req->serialising && !self->serialising)) {
739                 continue;
740             }
741             if (tracked_request_overlaps(req, self->overlap_offset,
742                                          self->overlap_bytes))
743             {
744                 /* Hitting this means there was a reentrant request, for
745                  * example, a block driver issuing nested requests.  This must
746                  * never happen since it means deadlock.
747                  */
748                 assert(qemu_coroutine_self() != req->co);
749 
750                 /* If the request is already (indirectly) waiting for us, or
751                  * will wait for us as soon as it wakes up, then just go on
752                  * (instead of producing a deadlock in the former case). */
753                 if (!req->waiting_for) {
754                     self->waiting_for = req;
755                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
756                     self->waiting_for = NULL;
757                     retry = true;
758                     waited = true;
759                     break;
760                 }
761             }
762         }
763         qemu_co_mutex_unlock(&bs->reqs_lock);
764     } while (retry);
765 
766     return waited;
767 }
768 
769 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
770                                    size_t size)
771 {
772     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
773         return -EIO;
774     }
775 
776     if (!bdrv_is_inserted(bs)) {
777         return -ENOMEDIUM;
778     }
779 
780     if (offset < 0) {
781         return -EIO;
782     }
783 
784     return 0;
785 }
786 
787 typedef struct RwCo {
788     BdrvChild *child;
789     int64_t offset;
790     QEMUIOVector *qiov;
791     bool is_write;
792     int ret;
793     BdrvRequestFlags flags;
794 } RwCo;
795 
796 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
797 {
798     RwCo *rwco = opaque;
799 
800     if (!rwco->is_write) {
801         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
802                                    rwco->qiov->size, rwco->qiov,
803                                    rwco->flags);
804     } else {
805         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
806                                     rwco->qiov->size, rwco->qiov,
807                                     rwco->flags);
808     }
809     aio_wait_kick();
810 }
811 
812 /*
813  * Process a vectored synchronous request using coroutines
814  */
815 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
816                         QEMUIOVector *qiov, bool is_write,
817                         BdrvRequestFlags flags)
818 {
819     Coroutine *co;
820     RwCo rwco = {
821         .child = child,
822         .offset = offset,
823         .qiov = qiov,
824         .is_write = is_write,
825         .ret = NOT_DONE,
826         .flags = flags,
827     };
828 
829     if (qemu_in_coroutine()) {
830         /* Fast-path if already in coroutine context */
831         bdrv_rw_co_entry(&rwco);
832     } else {
833         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
834         bdrv_coroutine_enter(child->bs, co);
835         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
836     }
837     return rwco.ret;
838 }
839 
840 /*
841  * Process a synchronous request using coroutines
842  */
843 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
844                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
845 {
846     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf,
847                                             nb_sectors * BDRV_SECTOR_SIZE);
848 
849     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
850         return -EINVAL;
851     }
852 
853     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
854                         &qiov, is_write, flags);
855 }
856 
857 /* return < 0 if error. See bdrv_write() for the return codes */
858 int bdrv_read(BdrvChild *child, int64_t sector_num,
859               uint8_t *buf, int nb_sectors)
860 {
861     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
862 }
863 
864 /* Return < 0 if error. Important errors are:
865   -EIO         generic I/O error (may happen for all errors)
866   -ENOMEDIUM   No media inserted.
867   -EINVAL      Invalid sector number or nb_sectors
868   -EACCES      Trying to write a read-only device
869 */
870 int bdrv_write(BdrvChild *child, int64_t sector_num,
871                const uint8_t *buf, int nb_sectors)
872 {
873     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
874 }
875 
876 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
877                        int bytes, BdrvRequestFlags flags)
878 {
879     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
880 
881     return bdrv_prwv_co(child, offset, &qiov, true,
882                         BDRV_REQ_ZERO_WRITE | flags);
883 }
884 
885 /*
886  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
887  * The operation is sped up by checking the block status and only writing
888  * zeroes to the device if they currently do not return zeroes. Optional
889  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
890  * BDRV_REQ_FUA).
891  *
892  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
893  */
894 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
895 {
896     int ret;
897     int64_t target_size, bytes, offset = 0;
898     BlockDriverState *bs = child->bs;
899 
900     target_size = bdrv_getlength(bs);
901     if (target_size < 0) {
902         return target_size;
903     }
904 
905     for (;;) {
906         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
907         if (bytes <= 0) {
908             return 0;
909         }
910         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
911         if (ret < 0) {
912             return ret;
913         }
914         if (ret & BDRV_BLOCK_ZERO) {
915             offset += bytes;
916             continue;
917         }
918         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
919         if (ret < 0) {
920             return ret;
921         }
922         offset += bytes;
923     }
924 }
925 
926 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
927 {
928     int ret;
929 
930     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
931     if (ret < 0) {
932         return ret;
933     }
934 
935     return qiov->size;
936 }
937 
938 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
939 {
940     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
941 
942     if (bytes < 0) {
943         return -EINVAL;
944     }
945 
946     return bdrv_preadv(child, offset, &qiov);
947 }
948 
949 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
950 {
951     int ret;
952 
953     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
954     if (ret < 0) {
955         return ret;
956     }
957 
958     return qiov->size;
959 }
960 
961 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
962 {
963     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
964 
965     if (bytes < 0) {
966         return -EINVAL;
967     }
968 
969     return bdrv_pwritev(child, offset, &qiov);
970 }
971 
972 /*
973  * Writes to the file and ensures that no writes are reordered across this
974  * request (acts as a barrier)
975  *
976  * Returns 0 on success, -errno in error cases.
977  */
978 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
979                      const void *buf, int count)
980 {
981     int ret;
982 
983     ret = bdrv_pwrite(child, offset, buf, count);
984     if (ret < 0) {
985         return ret;
986     }
987 
988     ret = bdrv_flush(child->bs);
989     if (ret < 0) {
990         return ret;
991     }
992 
993     return 0;
994 }
995 
996 typedef struct CoroutineIOCompletion {
997     Coroutine *coroutine;
998     int ret;
999 } CoroutineIOCompletion;
1000 
1001 static void bdrv_co_io_em_complete(void *opaque, int ret)
1002 {
1003     CoroutineIOCompletion *co = opaque;
1004 
1005     co->ret = ret;
1006     aio_co_wake(co->coroutine);
1007 }
1008 
1009 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1010                                            uint64_t offset, uint64_t bytes,
1011                                            QEMUIOVector *qiov, int flags)
1012 {
1013     BlockDriver *drv = bs->drv;
1014     int64_t sector_num;
1015     unsigned int nb_sectors;
1016 
1017     assert(!(flags & ~BDRV_REQ_MASK));
1018     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1019 
1020     if (!drv) {
1021         return -ENOMEDIUM;
1022     }
1023 
1024     if (drv->bdrv_co_preadv) {
1025         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1026     }
1027 
1028     if (drv->bdrv_aio_preadv) {
1029         BlockAIOCB *acb;
1030         CoroutineIOCompletion co = {
1031             .coroutine = qemu_coroutine_self(),
1032         };
1033 
1034         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1035                                    bdrv_co_io_em_complete, &co);
1036         if (acb == NULL) {
1037             return -EIO;
1038         } else {
1039             qemu_coroutine_yield();
1040             return co.ret;
1041         }
1042     }
1043 
1044     sector_num = offset >> BDRV_SECTOR_BITS;
1045     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1046 
1047     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1048     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1049     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1050     assert(drv->bdrv_co_readv);
1051 
1052     return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1053 }
1054 
1055 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1056                                             uint64_t offset, uint64_t bytes,
1057                                             QEMUIOVector *qiov, int flags)
1058 {
1059     BlockDriver *drv = bs->drv;
1060     int64_t sector_num;
1061     unsigned int nb_sectors;
1062     int ret;
1063 
1064     assert(!(flags & ~BDRV_REQ_MASK));
1065     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1066 
1067     if (!drv) {
1068         return -ENOMEDIUM;
1069     }
1070 
1071     if (drv->bdrv_co_pwritev) {
1072         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1073                                    flags & bs->supported_write_flags);
1074         flags &= ~bs->supported_write_flags;
1075         goto emulate_flags;
1076     }
1077 
1078     if (drv->bdrv_aio_pwritev) {
1079         BlockAIOCB *acb;
1080         CoroutineIOCompletion co = {
1081             .coroutine = qemu_coroutine_self(),
1082         };
1083 
1084         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1085                                     flags & bs->supported_write_flags,
1086                                     bdrv_co_io_em_complete, &co);
1087         flags &= ~bs->supported_write_flags;
1088         if (acb == NULL) {
1089             ret = -EIO;
1090         } else {
1091             qemu_coroutine_yield();
1092             ret = co.ret;
1093         }
1094         goto emulate_flags;
1095     }
1096 
1097     sector_num = offset >> BDRV_SECTOR_BITS;
1098     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1099 
1100     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1101     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1102     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1103 
1104     assert(drv->bdrv_co_writev);
1105     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1106                               flags & bs->supported_write_flags);
1107     flags &= ~bs->supported_write_flags;
1108 
1109 emulate_flags:
1110     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1111         ret = bdrv_co_flush(bs);
1112     }
1113 
1114     return ret;
1115 }
1116 
1117 static int coroutine_fn
1118 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1119                                uint64_t bytes, QEMUIOVector *qiov)
1120 {
1121     BlockDriver *drv = bs->drv;
1122 
1123     if (!drv) {
1124         return -ENOMEDIUM;
1125     }
1126 
1127     if (!drv->bdrv_co_pwritev_compressed) {
1128         return -ENOTSUP;
1129     }
1130 
1131     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1132 }
1133 
1134 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1135         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1136 {
1137     BlockDriverState *bs = child->bs;
1138 
1139     /* Perform I/O through a temporary buffer so that users who scribble over
1140      * their read buffer while the operation is in progress do not end up
1141      * modifying the image file.  This is critical for zero-copy guest I/O
1142      * where anything might happen inside guest memory.
1143      */
1144     void *bounce_buffer;
1145 
1146     BlockDriver *drv = bs->drv;
1147     QEMUIOVector local_qiov;
1148     int64_t cluster_offset;
1149     int64_t cluster_bytes;
1150     size_t skip_bytes;
1151     int ret;
1152     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1153                                     BDRV_REQUEST_MAX_BYTES);
1154     unsigned int progress = 0;
1155 
1156     if (!drv) {
1157         return -ENOMEDIUM;
1158     }
1159 
1160     /* FIXME We cannot require callers to have write permissions when all they
1161      * are doing is a read request. If we did things right, write permissions
1162      * would be obtained anyway, but internally by the copy-on-read code. As
1163      * long as it is implemented here rather than in a separate filter driver,
1164      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1165      * it could request permissions. Therefore we have to bypass the permission
1166      * system for the moment. */
1167     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1168 
1169     /* Cover entire cluster so no additional backing file I/O is required when
1170      * allocating cluster in the image file.  Note that this value may exceed
1171      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1172      * is one reason we loop rather than doing it all at once.
1173      */
1174     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1175     skip_bytes = offset - cluster_offset;
1176 
1177     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1178                                    cluster_offset, cluster_bytes);
1179 
1180     bounce_buffer = qemu_try_blockalign(bs,
1181                                         MIN(MIN(max_transfer, cluster_bytes),
1182                                             MAX_BOUNCE_BUFFER));
1183     if (bounce_buffer == NULL) {
1184         ret = -ENOMEM;
1185         goto err;
1186     }
1187 
1188     while (cluster_bytes) {
1189         int64_t pnum;
1190 
1191         ret = bdrv_is_allocated(bs, cluster_offset,
1192                                 MIN(cluster_bytes, max_transfer), &pnum);
1193         if (ret < 0) {
1194             /* Safe to treat errors in querying allocation as if
1195              * unallocated; we'll probably fail again soon on the
1196              * read, but at least that will set a decent errno.
1197              */
1198             pnum = MIN(cluster_bytes, max_transfer);
1199         }
1200 
1201         /* Stop at EOF if the image ends in the middle of the cluster */
1202         if (ret == 0 && pnum == 0) {
1203             assert(progress >= bytes);
1204             break;
1205         }
1206 
1207         assert(skip_bytes < pnum);
1208 
1209         if (ret <= 0) {
1210             /* Must copy-on-read; use the bounce buffer */
1211             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1212             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1213 
1214             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1215                                      &local_qiov, 0);
1216             if (ret < 0) {
1217                 goto err;
1218             }
1219 
1220             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1221             if (drv->bdrv_co_pwrite_zeroes &&
1222                 buffer_is_zero(bounce_buffer, pnum)) {
1223                 /* FIXME: Should we (perhaps conditionally) be setting
1224                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1225                  * that still correctly reads as zero? */
1226                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1227                                                BDRV_REQ_WRITE_UNCHANGED);
1228             } else {
1229                 /* This does not change the data on the disk, it is not
1230                  * necessary to flush even in cache=writethrough mode.
1231                  */
1232                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1233                                           &local_qiov,
1234                                           BDRV_REQ_WRITE_UNCHANGED);
1235             }
1236 
1237             if (ret < 0) {
1238                 /* It might be okay to ignore write errors for guest
1239                  * requests.  If this is a deliberate copy-on-read
1240                  * then we don't want to ignore the error.  Simply
1241                  * report it in all cases.
1242                  */
1243                 goto err;
1244             }
1245 
1246             qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1247                                 pnum - skip_bytes);
1248         } else {
1249             /* Read directly into the destination */
1250             qemu_iovec_init(&local_qiov, qiov->niov);
1251             qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1252             ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1253                                      &local_qiov, 0);
1254             qemu_iovec_destroy(&local_qiov);
1255             if (ret < 0) {
1256                 goto err;
1257             }
1258         }
1259 
1260         cluster_offset += pnum;
1261         cluster_bytes -= pnum;
1262         progress += pnum - skip_bytes;
1263         skip_bytes = 0;
1264     }
1265     ret = 0;
1266 
1267 err:
1268     qemu_vfree(bounce_buffer);
1269     return ret;
1270 }
1271 
1272 /*
1273  * Forwards an already correctly aligned request to the BlockDriver. This
1274  * handles copy on read, zeroing after EOF, and fragmentation of large
1275  * reads; any other features must be implemented by the caller.
1276  */
1277 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1278     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1279     int64_t align, QEMUIOVector *qiov, int flags)
1280 {
1281     BlockDriverState *bs = child->bs;
1282     int64_t total_bytes, max_bytes;
1283     int ret = 0;
1284     uint64_t bytes_remaining = bytes;
1285     int max_transfer;
1286 
1287     assert(is_power_of_2(align));
1288     assert((offset & (align - 1)) == 0);
1289     assert((bytes & (align - 1)) == 0);
1290     assert(!qiov || bytes == qiov->size);
1291     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1292     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1293                                    align);
1294 
1295     /* TODO: We would need a per-BDS .supported_read_flags and
1296      * potential fallback support, if we ever implement any read flags
1297      * to pass through to drivers.  For now, there aren't any
1298      * passthrough flags.  */
1299     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1300 
1301     /* Handle Copy on Read and associated serialisation */
1302     if (flags & BDRV_REQ_COPY_ON_READ) {
1303         /* If we touch the same cluster it counts as an overlap.  This
1304          * guarantees that allocating writes will be serialized and not race
1305          * with each other for the same cluster.  For example, in copy-on-read
1306          * it ensures that the CoR read and write operations are atomic and
1307          * guest writes cannot interleave between them. */
1308         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1309     }
1310 
1311     /* BDRV_REQ_SERIALISING is only for write operation */
1312     assert(!(flags & BDRV_REQ_SERIALISING));
1313 
1314     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1315         wait_serialising_requests(req);
1316     }
1317 
1318     if (flags & BDRV_REQ_COPY_ON_READ) {
1319         int64_t pnum;
1320 
1321         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1322         if (ret < 0) {
1323             goto out;
1324         }
1325 
1326         if (!ret || pnum != bytes) {
1327             ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1328             goto out;
1329         }
1330     }
1331 
1332     /* Forward the request to the BlockDriver, possibly fragmenting it */
1333     total_bytes = bdrv_getlength(bs);
1334     if (total_bytes < 0) {
1335         ret = total_bytes;
1336         goto out;
1337     }
1338 
1339     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1340     if (bytes <= max_bytes && bytes <= max_transfer) {
1341         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1342         goto out;
1343     }
1344 
1345     while (bytes_remaining) {
1346         int num;
1347 
1348         if (max_bytes) {
1349             QEMUIOVector local_qiov;
1350 
1351             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1352             assert(num);
1353             qemu_iovec_init(&local_qiov, qiov->niov);
1354             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1355 
1356             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1357                                      num, &local_qiov, 0);
1358             max_bytes -= num;
1359             qemu_iovec_destroy(&local_qiov);
1360         } else {
1361             num = bytes_remaining;
1362             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1363                                     bytes_remaining);
1364         }
1365         if (ret < 0) {
1366             goto out;
1367         }
1368         bytes_remaining -= num;
1369     }
1370 
1371 out:
1372     return ret < 0 ? ret : 0;
1373 }
1374 
1375 /*
1376  * Handle a read request in coroutine context
1377  */
1378 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1379     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1380     BdrvRequestFlags flags)
1381 {
1382     BlockDriverState *bs = child->bs;
1383     BlockDriver *drv = bs->drv;
1384     BdrvTrackedRequest req;
1385 
1386     uint64_t align = bs->bl.request_alignment;
1387     uint8_t *head_buf = NULL;
1388     uint8_t *tail_buf = NULL;
1389     QEMUIOVector local_qiov;
1390     bool use_local_qiov = false;
1391     int ret;
1392 
1393     trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1394 
1395     if (!drv) {
1396         return -ENOMEDIUM;
1397     }
1398 
1399     ret = bdrv_check_byte_request(bs, offset, bytes);
1400     if (ret < 0) {
1401         return ret;
1402     }
1403 
1404     bdrv_inc_in_flight(bs);
1405 
1406     /* Don't do copy-on-read if we read data before write operation */
1407     if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1408         flags |= BDRV_REQ_COPY_ON_READ;
1409     }
1410 
1411     /* Align read if necessary by padding qiov */
1412     if (offset & (align - 1)) {
1413         head_buf = qemu_blockalign(bs, align);
1414         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1415         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1416         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1417         use_local_qiov = true;
1418 
1419         bytes += offset & (align - 1);
1420         offset = offset & ~(align - 1);
1421     }
1422 
1423     if ((offset + bytes) & (align - 1)) {
1424         if (!use_local_qiov) {
1425             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1426             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1427             use_local_qiov = true;
1428         }
1429         tail_buf = qemu_blockalign(bs, align);
1430         qemu_iovec_add(&local_qiov, tail_buf,
1431                        align - ((offset + bytes) & (align - 1)));
1432 
1433         bytes = ROUND_UP(bytes, align);
1434     }
1435 
1436     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1437     ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1438                               use_local_qiov ? &local_qiov : qiov,
1439                               flags);
1440     tracked_request_end(&req);
1441     bdrv_dec_in_flight(bs);
1442 
1443     if (use_local_qiov) {
1444         qemu_iovec_destroy(&local_qiov);
1445         qemu_vfree(head_buf);
1446         qemu_vfree(tail_buf);
1447     }
1448 
1449     return ret;
1450 }
1451 
1452 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1453     int64_t offset, int bytes, BdrvRequestFlags flags)
1454 {
1455     BlockDriver *drv = bs->drv;
1456     QEMUIOVector qiov;
1457     void *buf = NULL;
1458     int ret = 0;
1459     bool need_flush = false;
1460     int head = 0;
1461     int tail = 0;
1462 
1463     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1464     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1465                         bs->bl.request_alignment);
1466     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1467 
1468     if (!drv) {
1469         return -ENOMEDIUM;
1470     }
1471 
1472     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1473         return -ENOTSUP;
1474     }
1475 
1476     assert(alignment % bs->bl.request_alignment == 0);
1477     head = offset % alignment;
1478     tail = (offset + bytes) % alignment;
1479     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1480     assert(max_write_zeroes >= bs->bl.request_alignment);
1481 
1482     while (bytes > 0 && !ret) {
1483         int num = bytes;
1484 
1485         /* Align request.  Block drivers can expect the "bulk" of the request
1486          * to be aligned, and that unaligned requests do not cross cluster
1487          * boundaries.
1488          */
1489         if (head) {
1490             /* Make a small request up to the first aligned sector. For
1491              * convenience, limit this request to max_transfer even if
1492              * we don't need to fall back to writes.  */
1493             num = MIN(MIN(bytes, max_transfer), alignment - head);
1494             head = (head + num) % alignment;
1495             assert(num < max_write_zeroes);
1496         } else if (tail && num > alignment) {
1497             /* Shorten the request to the last aligned sector.  */
1498             num -= tail;
1499         }
1500 
1501         /* limit request size */
1502         if (num > max_write_zeroes) {
1503             num = max_write_zeroes;
1504         }
1505 
1506         ret = -ENOTSUP;
1507         /* First try the efficient write zeroes operation */
1508         if (drv->bdrv_co_pwrite_zeroes) {
1509             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1510                                              flags & bs->supported_zero_flags);
1511             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1512                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1513                 need_flush = true;
1514             }
1515         } else {
1516             assert(!bs->supported_zero_flags);
1517         }
1518 
1519         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1520             /* Fall back to bounce buffer if write zeroes is unsupported */
1521             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1522 
1523             if ((flags & BDRV_REQ_FUA) &&
1524                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1525                 /* No need for bdrv_driver_pwrite() to do a fallback
1526                  * flush on each chunk; use just one at the end */
1527                 write_flags &= ~BDRV_REQ_FUA;
1528                 need_flush = true;
1529             }
1530             num = MIN(num, max_transfer);
1531             if (buf == NULL) {
1532                 buf = qemu_try_blockalign0(bs, num);
1533                 if (buf == NULL) {
1534                     ret = -ENOMEM;
1535                     goto fail;
1536                 }
1537             }
1538             qemu_iovec_init_buf(&qiov, buf, num);
1539 
1540             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1541 
1542             /* Keep bounce buffer around if it is big enough for all
1543              * all future requests.
1544              */
1545             if (num < max_transfer) {
1546                 qemu_vfree(buf);
1547                 buf = NULL;
1548             }
1549         }
1550 
1551         offset += num;
1552         bytes -= num;
1553     }
1554 
1555 fail:
1556     if (ret == 0 && need_flush) {
1557         ret = bdrv_co_flush(bs);
1558     }
1559     qemu_vfree(buf);
1560     return ret;
1561 }
1562 
1563 static inline int coroutine_fn
1564 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1565                           BdrvTrackedRequest *req, int flags)
1566 {
1567     BlockDriverState *bs = child->bs;
1568     bool waited;
1569     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1570 
1571     if (bs->read_only) {
1572         return -EPERM;
1573     }
1574 
1575     /* BDRV_REQ_NO_SERIALISING is only for read operation */
1576     assert(!(flags & BDRV_REQ_NO_SERIALISING));
1577     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1578     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1579     assert(!(flags & ~BDRV_REQ_MASK));
1580 
1581     if (flags & BDRV_REQ_SERIALISING) {
1582         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1583     }
1584 
1585     waited = wait_serialising_requests(req);
1586 
1587     assert(!waited || !req->serialising ||
1588            is_request_serialising_and_aligned(req));
1589     assert(req->overlap_offset <= offset);
1590     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1591     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1592 
1593     switch (req->type) {
1594     case BDRV_TRACKED_WRITE:
1595     case BDRV_TRACKED_DISCARD:
1596         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1597             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1598         } else {
1599             assert(child->perm & BLK_PERM_WRITE);
1600         }
1601         return notifier_with_return_list_notify(&bs->before_write_notifiers,
1602                                                 req);
1603     case BDRV_TRACKED_TRUNCATE:
1604         assert(child->perm & BLK_PERM_RESIZE);
1605         return 0;
1606     default:
1607         abort();
1608     }
1609 }
1610 
1611 static inline void coroutine_fn
1612 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1613                          BdrvTrackedRequest *req, int ret)
1614 {
1615     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1616     BlockDriverState *bs = child->bs;
1617 
1618     atomic_inc(&bs->write_gen);
1619 
1620     /*
1621      * Discard cannot extend the image, but in error handling cases, such as
1622      * when reverting a qcow2 cluster allocation, the discarded range can pass
1623      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1624      * here. Instead, just skip it, since semantically a discard request
1625      * beyond EOF cannot expand the image anyway.
1626      */
1627     if (ret == 0 &&
1628         (req->type == BDRV_TRACKED_TRUNCATE ||
1629          end_sector > bs->total_sectors) &&
1630         req->type != BDRV_TRACKED_DISCARD) {
1631         bs->total_sectors = end_sector;
1632         bdrv_parent_cb_resize(bs);
1633         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1634     }
1635     if (req->bytes) {
1636         switch (req->type) {
1637         case BDRV_TRACKED_WRITE:
1638             stat64_max(&bs->wr_highest_offset, offset + bytes);
1639             /* fall through, to set dirty bits */
1640         case BDRV_TRACKED_DISCARD:
1641             bdrv_set_dirty(bs, offset, bytes);
1642             break;
1643         default:
1644             break;
1645         }
1646     }
1647 }
1648 
1649 /*
1650  * Forwards an already correctly aligned write request to the BlockDriver,
1651  * after possibly fragmenting it.
1652  */
1653 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1654     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1655     int64_t align, QEMUIOVector *qiov, int flags)
1656 {
1657     BlockDriverState *bs = child->bs;
1658     BlockDriver *drv = bs->drv;
1659     int ret;
1660 
1661     uint64_t bytes_remaining = bytes;
1662     int max_transfer;
1663 
1664     if (!drv) {
1665         return -ENOMEDIUM;
1666     }
1667 
1668     if (bdrv_has_readonly_bitmaps(bs)) {
1669         return -EPERM;
1670     }
1671 
1672     assert(is_power_of_2(align));
1673     assert((offset & (align - 1)) == 0);
1674     assert((bytes & (align - 1)) == 0);
1675     assert(!qiov || bytes == qiov->size);
1676     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1677                                    align);
1678 
1679     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1680 
1681     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1682         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1683         qemu_iovec_is_zero(qiov)) {
1684         flags |= BDRV_REQ_ZERO_WRITE;
1685         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1686             flags |= BDRV_REQ_MAY_UNMAP;
1687         }
1688     }
1689 
1690     if (ret < 0) {
1691         /* Do nothing, write notifier decided to fail this request */
1692     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1693         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1694         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1695     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1696         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1697     } else if (bytes <= max_transfer) {
1698         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1699         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1700     } else {
1701         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1702         while (bytes_remaining) {
1703             int num = MIN(bytes_remaining, max_transfer);
1704             QEMUIOVector local_qiov;
1705             int local_flags = flags;
1706 
1707             assert(num);
1708             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1709                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1710                 /* If FUA is going to be emulated by flush, we only
1711                  * need to flush on the last iteration */
1712                 local_flags &= ~BDRV_REQ_FUA;
1713             }
1714             qemu_iovec_init(&local_qiov, qiov->niov);
1715             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1716 
1717             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1718                                       num, &local_qiov, local_flags);
1719             qemu_iovec_destroy(&local_qiov);
1720             if (ret < 0) {
1721                 break;
1722             }
1723             bytes_remaining -= num;
1724         }
1725     }
1726     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1727 
1728     if (ret >= 0) {
1729         ret = 0;
1730     }
1731     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1732 
1733     return ret;
1734 }
1735 
1736 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1737                                                 int64_t offset,
1738                                                 unsigned int bytes,
1739                                                 BdrvRequestFlags flags,
1740                                                 BdrvTrackedRequest *req)
1741 {
1742     BlockDriverState *bs = child->bs;
1743     uint8_t *buf = NULL;
1744     QEMUIOVector local_qiov;
1745     uint64_t align = bs->bl.request_alignment;
1746     unsigned int head_padding_bytes, tail_padding_bytes;
1747     int ret = 0;
1748 
1749     head_padding_bytes = offset & (align - 1);
1750     tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1751 
1752 
1753     assert(flags & BDRV_REQ_ZERO_WRITE);
1754     if (head_padding_bytes || tail_padding_bytes) {
1755         buf = qemu_blockalign(bs, align);
1756         qemu_iovec_init_buf(&local_qiov, buf, align);
1757     }
1758     if (head_padding_bytes) {
1759         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1760 
1761         /* RMW the unaligned part before head. */
1762         mark_request_serialising(req, align);
1763         wait_serialising_requests(req);
1764         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1765         ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1766                                   align, &local_qiov, 0);
1767         if (ret < 0) {
1768             goto fail;
1769         }
1770         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1771 
1772         memset(buf + head_padding_bytes, 0, zero_bytes);
1773         ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1774                                    align, &local_qiov,
1775                                    flags & ~BDRV_REQ_ZERO_WRITE);
1776         if (ret < 0) {
1777             goto fail;
1778         }
1779         offset += zero_bytes;
1780         bytes -= zero_bytes;
1781     }
1782 
1783     assert(!bytes || (offset & (align - 1)) == 0);
1784     if (bytes >= align) {
1785         /* Write the aligned part in the middle. */
1786         uint64_t aligned_bytes = bytes & ~(align - 1);
1787         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1788                                    NULL, flags);
1789         if (ret < 0) {
1790             goto fail;
1791         }
1792         bytes -= aligned_bytes;
1793         offset += aligned_bytes;
1794     }
1795 
1796     assert(!bytes || (offset & (align - 1)) == 0);
1797     if (bytes) {
1798         assert(align == tail_padding_bytes + bytes);
1799         /* RMW the unaligned part after tail. */
1800         mark_request_serialising(req, align);
1801         wait_serialising_requests(req);
1802         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1803         ret = bdrv_aligned_preadv(child, req, offset, align,
1804                                   align, &local_qiov, 0);
1805         if (ret < 0) {
1806             goto fail;
1807         }
1808         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1809 
1810         memset(buf, 0, bytes);
1811         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1812                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1813     }
1814 fail:
1815     qemu_vfree(buf);
1816     return ret;
1817 
1818 }
1819 
1820 /*
1821  * Handle a write request in coroutine context
1822  */
1823 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1824     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1825     BdrvRequestFlags flags)
1826 {
1827     BlockDriverState *bs = child->bs;
1828     BdrvTrackedRequest req;
1829     uint64_t align = bs->bl.request_alignment;
1830     uint8_t *head_buf = NULL;
1831     uint8_t *tail_buf = NULL;
1832     QEMUIOVector local_qiov;
1833     bool use_local_qiov = false;
1834     int ret;
1835 
1836     trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1837 
1838     if (!bs->drv) {
1839         return -ENOMEDIUM;
1840     }
1841 
1842     ret = bdrv_check_byte_request(bs, offset, bytes);
1843     if (ret < 0) {
1844         return ret;
1845     }
1846 
1847     bdrv_inc_in_flight(bs);
1848     /*
1849      * Align write if necessary by performing a read-modify-write cycle.
1850      * Pad qiov with the read parts and be sure to have a tracked request not
1851      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1852      */
1853     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1854 
1855     if (flags & BDRV_REQ_ZERO_WRITE) {
1856         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1857         goto out;
1858     }
1859 
1860     if (offset & (align - 1)) {
1861         QEMUIOVector head_qiov;
1862 
1863         mark_request_serialising(&req, align);
1864         wait_serialising_requests(&req);
1865 
1866         head_buf = qemu_blockalign(bs, align);
1867         qemu_iovec_init_buf(&head_qiov, head_buf, align);
1868 
1869         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1870         ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1871                                   align, &head_qiov, 0);
1872         if (ret < 0) {
1873             goto fail;
1874         }
1875         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1876 
1877         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1878         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1879         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1880         use_local_qiov = true;
1881 
1882         bytes += offset & (align - 1);
1883         offset = offset & ~(align - 1);
1884 
1885         /* We have read the tail already if the request is smaller
1886          * than one aligned block.
1887          */
1888         if (bytes < align) {
1889             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1890             bytes = align;
1891         }
1892     }
1893 
1894     if ((offset + bytes) & (align - 1)) {
1895         QEMUIOVector tail_qiov;
1896         size_t tail_bytes;
1897         bool waited;
1898 
1899         mark_request_serialising(&req, align);
1900         waited = wait_serialising_requests(&req);
1901         assert(!waited || !use_local_qiov);
1902 
1903         tail_buf = qemu_blockalign(bs, align);
1904         qemu_iovec_init_buf(&tail_qiov, tail_buf, align);
1905 
1906         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1907         ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1908                                   align, align, &tail_qiov, 0);
1909         if (ret < 0) {
1910             goto fail;
1911         }
1912         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1913 
1914         if (!use_local_qiov) {
1915             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1916             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1917             use_local_qiov = true;
1918         }
1919 
1920         tail_bytes = (offset + bytes) & (align - 1);
1921         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1922 
1923         bytes = ROUND_UP(bytes, align);
1924     }
1925 
1926     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1927                                use_local_qiov ? &local_qiov : qiov,
1928                                flags);
1929 
1930 fail:
1931 
1932     if (use_local_qiov) {
1933         qemu_iovec_destroy(&local_qiov);
1934     }
1935     qemu_vfree(head_buf);
1936     qemu_vfree(tail_buf);
1937 out:
1938     tracked_request_end(&req);
1939     bdrv_dec_in_flight(bs);
1940     return ret;
1941 }
1942 
1943 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1944                                        int bytes, BdrvRequestFlags flags)
1945 {
1946     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1947 
1948     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1949         flags &= ~BDRV_REQ_MAY_UNMAP;
1950     }
1951 
1952     return bdrv_co_pwritev(child, offset, bytes, NULL,
1953                            BDRV_REQ_ZERO_WRITE | flags);
1954 }
1955 
1956 /*
1957  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1958  */
1959 int bdrv_flush_all(void)
1960 {
1961     BdrvNextIterator it;
1962     BlockDriverState *bs = NULL;
1963     int result = 0;
1964 
1965     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1966         AioContext *aio_context = bdrv_get_aio_context(bs);
1967         int ret;
1968 
1969         aio_context_acquire(aio_context);
1970         ret = bdrv_flush(bs);
1971         if (ret < 0 && !result) {
1972             result = ret;
1973         }
1974         aio_context_release(aio_context);
1975     }
1976 
1977     return result;
1978 }
1979 
1980 
1981 typedef struct BdrvCoBlockStatusData {
1982     BlockDriverState *bs;
1983     BlockDriverState *base;
1984     bool want_zero;
1985     int64_t offset;
1986     int64_t bytes;
1987     int64_t *pnum;
1988     int64_t *map;
1989     BlockDriverState **file;
1990     int ret;
1991     bool done;
1992 } BdrvCoBlockStatusData;
1993 
1994 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
1995                                                 bool want_zero,
1996                                                 int64_t offset,
1997                                                 int64_t bytes,
1998                                                 int64_t *pnum,
1999                                                 int64_t *map,
2000                                                 BlockDriverState **file)
2001 {
2002     assert(bs->file && bs->file->bs);
2003     *pnum = bytes;
2004     *map = offset;
2005     *file = bs->file->bs;
2006     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2007 }
2008 
2009 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2010                                                    bool want_zero,
2011                                                    int64_t offset,
2012                                                    int64_t bytes,
2013                                                    int64_t *pnum,
2014                                                    int64_t *map,
2015                                                    BlockDriverState **file)
2016 {
2017     assert(bs->backing && bs->backing->bs);
2018     *pnum = bytes;
2019     *map = offset;
2020     *file = bs->backing->bs;
2021     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2022 }
2023 
2024 /*
2025  * Returns the allocation status of the specified sectors.
2026  * Drivers not implementing the functionality are assumed to not support
2027  * backing files, hence all their sectors are reported as allocated.
2028  *
2029  * If 'want_zero' is true, the caller is querying for mapping
2030  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2031  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2032  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2033  *
2034  * If 'offset' is beyond the end of the disk image the return value is
2035  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2036  *
2037  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2038  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2039  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2040  *
2041  * 'pnum' is set to the number of bytes (including and immediately
2042  * following the specified offset) that are easily known to be in the
2043  * same allocated/unallocated state.  Note that a second call starting
2044  * at the original offset plus returned pnum may have the same status.
2045  * The returned value is non-zero on success except at end-of-file.
2046  *
2047  * Returns negative errno on failure.  Otherwise, if the
2048  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2049  * set to the host mapping and BDS corresponding to the guest offset.
2050  */
2051 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2052                                              bool want_zero,
2053                                              int64_t offset, int64_t bytes,
2054                                              int64_t *pnum, int64_t *map,
2055                                              BlockDriverState **file)
2056 {
2057     int64_t total_size;
2058     int64_t n; /* bytes */
2059     int ret;
2060     int64_t local_map = 0;
2061     BlockDriverState *local_file = NULL;
2062     int64_t aligned_offset, aligned_bytes;
2063     uint32_t align;
2064 
2065     assert(pnum);
2066     *pnum = 0;
2067     total_size = bdrv_getlength(bs);
2068     if (total_size < 0) {
2069         ret = total_size;
2070         goto early_out;
2071     }
2072 
2073     if (offset >= total_size) {
2074         ret = BDRV_BLOCK_EOF;
2075         goto early_out;
2076     }
2077     if (!bytes) {
2078         ret = 0;
2079         goto early_out;
2080     }
2081 
2082     n = total_size - offset;
2083     if (n < bytes) {
2084         bytes = n;
2085     }
2086 
2087     /* Must be non-NULL or bdrv_getlength() would have failed */
2088     assert(bs->drv);
2089     if (!bs->drv->bdrv_co_block_status) {
2090         *pnum = bytes;
2091         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2092         if (offset + bytes == total_size) {
2093             ret |= BDRV_BLOCK_EOF;
2094         }
2095         if (bs->drv->protocol_name) {
2096             ret |= BDRV_BLOCK_OFFSET_VALID;
2097             local_map = offset;
2098             local_file = bs;
2099         }
2100         goto early_out;
2101     }
2102 
2103     bdrv_inc_in_flight(bs);
2104 
2105     /* Round out to request_alignment boundaries */
2106     align = bs->bl.request_alignment;
2107     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2108     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2109 
2110     ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2111                                         aligned_bytes, pnum, &local_map,
2112                                         &local_file);
2113     if (ret < 0) {
2114         *pnum = 0;
2115         goto out;
2116     }
2117 
2118     /*
2119      * The driver's result must be a non-zero multiple of request_alignment.
2120      * Clamp pnum and adjust map to original request.
2121      */
2122     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2123            align > offset - aligned_offset);
2124     *pnum -= offset - aligned_offset;
2125     if (*pnum > bytes) {
2126         *pnum = bytes;
2127     }
2128     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2129         local_map += offset - aligned_offset;
2130     }
2131 
2132     if (ret & BDRV_BLOCK_RAW) {
2133         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2134         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2135                                    *pnum, pnum, &local_map, &local_file);
2136         goto out;
2137     }
2138 
2139     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2140         ret |= BDRV_BLOCK_ALLOCATED;
2141     } else if (want_zero) {
2142         if (bdrv_unallocated_blocks_are_zero(bs)) {
2143             ret |= BDRV_BLOCK_ZERO;
2144         } else if (bs->backing) {
2145             BlockDriverState *bs2 = bs->backing->bs;
2146             int64_t size2 = bdrv_getlength(bs2);
2147 
2148             if (size2 >= 0 && offset >= size2) {
2149                 ret |= BDRV_BLOCK_ZERO;
2150             }
2151         }
2152     }
2153 
2154     if (want_zero && local_file && local_file != bs &&
2155         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2156         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2157         int64_t file_pnum;
2158         int ret2;
2159 
2160         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2161                                     *pnum, &file_pnum, NULL, NULL);
2162         if (ret2 >= 0) {
2163             /* Ignore errors.  This is just providing extra information, it
2164              * is useful but not necessary.
2165              */
2166             if (ret2 & BDRV_BLOCK_EOF &&
2167                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2168                 /*
2169                  * It is valid for the format block driver to read
2170                  * beyond the end of the underlying file's current
2171                  * size; such areas read as zero.
2172                  */
2173                 ret |= BDRV_BLOCK_ZERO;
2174             } else {
2175                 /* Limit request to the range reported by the protocol driver */
2176                 *pnum = file_pnum;
2177                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2178             }
2179         }
2180     }
2181 
2182 out:
2183     bdrv_dec_in_flight(bs);
2184     if (ret >= 0 && offset + *pnum == total_size) {
2185         ret |= BDRV_BLOCK_EOF;
2186     }
2187 early_out:
2188     if (file) {
2189         *file = local_file;
2190     }
2191     if (map) {
2192         *map = local_map;
2193     }
2194     return ret;
2195 }
2196 
2197 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2198                                                    BlockDriverState *base,
2199                                                    bool want_zero,
2200                                                    int64_t offset,
2201                                                    int64_t bytes,
2202                                                    int64_t *pnum,
2203                                                    int64_t *map,
2204                                                    BlockDriverState **file)
2205 {
2206     BlockDriverState *p;
2207     int ret = 0;
2208     bool first = true;
2209 
2210     assert(bs != base);
2211     for (p = bs; p != base; p = backing_bs(p)) {
2212         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2213                                    file);
2214         if (ret < 0) {
2215             break;
2216         }
2217         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2218             /*
2219              * Reading beyond the end of the file continues to read
2220              * zeroes, but we can only widen the result to the
2221              * unallocated length we learned from an earlier
2222              * iteration.
2223              */
2224             *pnum = bytes;
2225         }
2226         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2227             break;
2228         }
2229         /* [offset, pnum] unallocated on this layer, which could be only
2230          * the first part of [offset, bytes].  */
2231         bytes = MIN(bytes, *pnum);
2232         first = false;
2233     }
2234     return ret;
2235 }
2236 
2237 /* Coroutine wrapper for bdrv_block_status_above() */
2238 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2239 {
2240     BdrvCoBlockStatusData *data = opaque;
2241 
2242     data->ret = bdrv_co_block_status_above(data->bs, data->base,
2243                                            data->want_zero,
2244                                            data->offset, data->bytes,
2245                                            data->pnum, data->map, data->file);
2246     data->done = true;
2247     aio_wait_kick();
2248 }
2249 
2250 /*
2251  * Synchronous wrapper around bdrv_co_block_status_above().
2252  *
2253  * See bdrv_co_block_status_above() for details.
2254  */
2255 static int bdrv_common_block_status_above(BlockDriverState *bs,
2256                                           BlockDriverState *base,
2257                                           bool want_zero, int64_t offset,
2258                                           int64_t bytes, int64_t *pnum,
2259                                           int64_t *map,
2260                                           BlockDriverState **file)
2261 {
2262     Coroutine *co;
2263     BdrvCoBlockStatusData data = {
2264         .bs = bs,
2265         .base = base,
2266         .want_zero = want_zero,
2267         .offset = offset,
2268         .bytes = bytes,
2269         .pnum = pnum,
2270         .map = map,
2271         .file = file,
2272         .done = false,
2273     };
2274 
2275     if (qemu_in_coroutine()) {
2276         /* Fast-path if already in coroutine context */
2277         bdrv_block_status_above_co_entry(&data);
2278     } else {
2279         co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2280         bdrv_coroutine_enter(bs, co);
2281         BDRV_POLL_WHILE(bs, !data.done);
2282     }
2283     return data.ret;
2284 }
2285 
2286 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2287                             int64_t offset, int64_t bytes, int64_t *pnum,
2288                             int64_t *map, BlockDriverState **file)
2289 {
2290     return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2291                                           pnum, map, file);
2292 }
2293 
2294 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2295                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2296 {
2297     return bdrv_block_status_above(bs, backing_bs(bs),
2298                                    offset, bytes, pnum, map, file);
2299 }
2300 
2301 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2302                                    int64_t bytes, int64_t *pnum)
2303 {
2304     int ret;
2305     int64_t dummy;
2306 
2307     ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2308                                          bytes, pnum ? pnum : &dummy, NULL,
2309                                          NULL);
2310     if (ret < 0) {
2311         return ret;
2312     }
2313     return !!(ret & BDRV_BLOCK_ALLOCATED);
2314 }
2315 
2316 /*
2317  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2318  *
2319  * Return true if (a prefix of) the given range is allocated in any image
2320  * between BASE and TOP (inclusive).  BASE can be NULL to check if the given
2321  * offset is allocated in any image of the chain.  Return false otherwise,
2322  * or negative errno on failure.
2323  *
2324  * 'pnum' is set to the number of bytes (including and immediately
2325  * following the specified offset) that are known to be in the same
2326  * allocated/unallocated state.  Note that a subsequent call starting
2327  * at 'offset + *pnum' may return the same allocation status (in other
2328  * words, the result is not necessarily the maximum possible range);
2329  * but 'pnum' will only be 0 when end of file is reached.
2330  *
2331  */
2332 int bdrv_is_allocated_above(BlockDriverState *top,
2333                             BlockDriverState *base,
2334                             int64_t offset, int64_t bytes, int64_t *pnum)
2335 {
2336     BlockDriverState *intermediate;
2337     int ret;
2338     int64_t n = bytes;
2339 
2340     intermediate = top;
2341     while (intermediate && intermediate != base) {
2342         int64_t pnum_inter;
2343         int64_t size_inter;
2344 
2345         ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2346         if (ret < 0) {
2347             return ret;
2348         }
2349         if (ret) {
2350             *pnum = pnum_inter;
2351             return 1;
2352         }
2353 
2354         size_inter = bdrv_getlength(intermediate);
2355         if (size_inter < 0) {
2356             return size_inter;
2357         }
2358         if (n > pnum_inter &&
2359             (intermediate == top || offset + pnum_inter < size_inter)) {
2360             n = pnum_inter;
2361         }
2362 
2363         intermediate = backing_bs(intermediate);
2364     }
2365 
2366     *pnum = n;
2367     return 0;
2368 }
2369 
2370 typedef struct BdrvVmstateCo {
2371     BlockDriverState    *bs;
2372     QEMUIOVector        *qiov;
2373     int64_t             pos;
2374     bool                is_read;
2375     int                 ret;
2376 } BdrvVmstateCo;
2377 
2378 static int coroutine_fn
2379 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2380                    bool is_read)
2381 {
2382     BlockDriver *drv = bs->drv;
2383     int ret = -ENOTSUP;
2384 
2385     bdrv_inc_in_flight(bs);
2386 
2387     if (!drv) {
2388         ret = -ENOMEDIUM;
2389     } else if (drv->bdrv_load_vmstate) {
2390         if (is_read) {
2391             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2392         } else {
2393             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2394         }
2395     } else if (bs->file) {
2396         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2397     }
2398 
2399     bdrv_dec_in_flight(bs);
2400     return ret;
2401 }
2402 
2403 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2404 {
2405     BdrvVmstateCo *co = opaque;
2406     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2407     aio_wait_kick();
2408 }
2409 
2410 static inline int
2411 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2412                 bool is_read)
2413 {
2414     if (qemu_in_coroutine()) {
2415         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2416     } else {
2417         BdrvVmstateCo data = {
2418             .bs         = bs,
2419             .qiov       = qiov,
2420             .pos        = pos,
2421             .is_read    = is_read,
2422             .ret        = -EINPROGRESS,
2423         };
2424         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2425 
2426         bdrv_coroutine_enter(bs, co);
2427         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2428         return data.ret;
2429     }
2430 }
2431 
2432 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2433                       int64_t pos, int size)
2434 {
2435     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2436     int ret;
2437 
2438     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2439     if (ret < 0) {
2440         return ret;
2441     }
2442 
2443     return size;
2444 }
2445 
2446 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2447 {
2448     return bdrv_rw_vmstate(bs, qiov, pos, false);
2449 }
2450 
2451 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2452                       int64_t pos, int size)
2453 {
2454     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2455     int ret;
2456 
2457     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2458     if (ret < 0) {
2459         return ret;
2460     }
2461 
2462     return size;
2463 }
2464 
2465 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2466 {
2467     return bdrv_rw_vmstate(bs, qiov, pos, true);
2468 }
2469 
2470 /**************************************************************/
2471 /* async I/Os */
2472 
2473 void bdrv_aio_cancel(BlockAIOCB *acb)
2474 {
2475     qemu_aio_ref(acb);
2476     bdrv_aio_cancel_async(acb);
2477     while (acb->refcnt > 1) {
2478         if (acb->aiocb_info->get_aio_context) {
2479             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2480         } else if (acb->bs) {
2481             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2482              * assert that we're not using an I/O thread.  Thread-safe
2483              * code should use bdrv_aio_cancel_async exclusively.
2484              */
2485             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2486             aio_poll(bdrv_get_aio_context(acb->bs), true);
2487         } else {
2488             abort();
2489         }
2490     }
2491     qemu_aio_unref(acb);
2492 }
2493 
2494 /* Async version of aio cancel. The caller is not blocked if the acb implements
2495  * cancel_async, otherwise we do nothing and let the request normally complete.
2496  * In either case the completion callback must be called. */
2497 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2498 {
2499     if (acb->aiocb_info->cancel_async) {
2500         acb->aiocb_info->cancel_async(acb);
2501     }
2502 }
2503 
2504 /**************************************************************/
2505 /* Coroutine block device emulation */
2506 
2507 typedef struct FlushCo {
2508     BlockDriverState *bs;
2509     int ret;
2510 } FlushCo;
2511 
2512 
2513 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2514 {
2515     FlushCo *rwco = opaque;
2516 
2517     rwco->ret = bdrv_co_flush(rwco->bs);
2518     aio_wait_kick();
2519 }
2520 
2521 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2522 {
2523     int current_gen;
2524     int ret = 0;
2525 
2526     bdrv_inc_in_flight(bs);
2527 
2528     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2529         bdrv_is_sg(bs)) {
2530         goto early_exit;
2531     }
2532 
2533     qemu_co_mutex_lock(&bs->reqs_lock);
2534     current_gen = atomic_read(&bs->write_gen);
2535 
2536     /* Wait until any previous flushes are completed */
2537     while (bs->active_flush_req) {
2538         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2539     }
2540 
2541     /* Flushes reach this point in nondecreasing current_gen order.  */
2542     bs->active_flush_req = true;
2543     qemu_co_mutex_unlock(&bs->reqs_lock);
2544 
2545     /* Write back all layers by calling one driver function */
2546     if (bs->drv->bdrv_co_flush) {
2547         ret = bs->drv->bdrv_co_flush(bs);
2548         goto out;
2549     }
2550 
2551     /* Write back cached data to the OS even with cache=unsafe */
2552     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2553     if (bs->drv->bdrv_co_flush_to_os) {
2554         ret = bs->drv->bdrv_co_flush_to_os(bs);
2555         if (ret < 0) {
2556             goto out;
2557         }
2558     }
2559 
2560     /* But don't actually force it to the disk with cache=unsafe */
2561     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2562         goto flush_parent;
2563     }
2564 
2565     /* Check if we really need to flush anything */
2566     if (bs->flushed_gen == current_gen) {
2567         goto flush_parent;
2568     }
2569 
2570     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2571     if (!bs->drv) {
2572         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2573          * (even in case of apparent success) */
2574         ret = -ENOMEDIUM;
2575         goto out;
2576     }
2577     if (bs->drv->bdrv_co_flush_to_disk) {
2578         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2579     } else if (bs->drv->bdrv_aio_flush) {
2580         BlockAIOCB *acb;
2581         CoroutineIOCompletion co = {
2582             .coroutine = qemu_coroutine_self(),
2583         };
2584 
2585         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2586         if (acb == NULL) {
2587             ret = -EIO;
2588         } else {
2589             qemu_coroutine_yield();
2590             ret = co.ret;
2591         }
2592     } else {
2593         /*
2594          * Some block drivers always operate in either writethrough or unsafe
2595          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2596          * know how the server works (because the behaviour is hardcoded or
2597          * depends on server-side configuration), so we can't ensure that
2598          * everything is safe on disk. Returning an error doesn't work because
2599          * that would break guests even if the server operates in writethrough
2600          * mode.
2601          *
2602          * Let's hope the user knows what he's doing.
2603          */
2604         ret = 0;
2605     }
2606 
2607     if (ret < 0) {
2608         goto out;
2609     }
2610 
2611     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2612      * in the case of cache=unsafe, so there are no useless flushes.
2613      */
2614 flush_parent:
2615     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2616 out:
2617     /* Notify any pending flushes that we have completed */
2618     if (ret == 0) {
2619         bs->flushed_gen = current_gen;
2620     }
2621 
2622     qemu_co_mutex_lock(&bs->reqs_lock);
2623     bs->active_flush_req = false;
2624     /* Return value is ignored - it's ok if wait queue is empty */
2625     qemu_co_queue_next(&bs->flush_queue);
2626     qemu_co_mutex_unlock(&bs->reqs_lock);
2627 
2628 early_exit:
2629     bdrv_dec_in_flight(bs);
2630     return ret;
2631 }
2632 
2633 int bdrv_flush(BlockDriverState *bs)
2634 {
2635     Coroutine *co;
2636     FlushCo flush_co = {
2637         .bs = bs,
2638         .ret = NOT_DONE,
2639     };
2640 
2641     if (qemu_in_coroutine()) {
2642         /* Fast-path if already in coroutine context */
2643         bdrv_flush_co_entry(&flush_co);
2644     } else {
2645         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2646         bdrv_coroutine_enter(bs, co);
2647         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2648     }
2649 
2650     return flush_co.ret;
2651 }
2652 
2653 typedef struct DiscardCo {
2654     BdrvChild *child;
2655     int64_t offset;
2656     int bytes;
2657     int ret;
2658 } DiscardCo;
2659 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2660 {
2661     DiscardCo *rwco = opaque;
2662 
2663     rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2664     aio_wait_kick();
2665 }
2666 
2667 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2668 {
2669     BdrvTrackedRequest req;
2670     int max_pdiscard, ret;
2671     int head, tail, align;
2672     BlockDriverState *bs = child->bs;
2673 
2674     if (!bs || !bs->drv) {
2675         return -ENOMEDIUM;
2676     }
2677 
2678     if (bdrv_has_readonly_bitmaps(bs)) {
2679         return -EPERM;
2680     }
2681 
2682     ret = bdrv_check_byte_request(bs, offset, bytes);
2683     if (ret < 0) {
2684         return ret;
2685     }
2686 
2687     /* Do nothing if disabled.  */
2688     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2689         return 0;
2690     }
2691 
2692     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2693         return 0;
2694     }
2695 
2696     /* Discard is advisory, but some devices track and coalesce
2697      * unaligned requests, so we must pass everything down rather than
2698      * round here.  Still, most devices will just silently ignore
2699      * unaligned requests (by returning -ENOTSUP), so we must fragment
2700      * the request accordingly.  */
2701     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2702     assert(align % bs->bl.request_alignment == 0);
2703     head = offset % align;
2704     tail = (offset + bytes) % align;
2705 
2706     bdrv_inc_in_flight(bs);
2707     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2708 
2709     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2710     if (ret < 0) {
2711         goto out;
2712     }
2713 
2714     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2715                                    align);
2716     assert(max_pdiscard >= bs->bl.request_alignment);
2717 
2718     while (bytes > 0) {
2719         int num = bytes;
2720 
2721         if (head) {
2722             /* Make small requests to get to alignment boundaries. */
2723             num = MIN(bytes, align - head);
2724             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2725                 num %= bs->bl.request_alignment;
2726             }
2727             head = (head + num) % align;
2728             assert(num < max_pdiscard);
2729         } else if (tail) {
2730             if (num > align) {
2731                 /* Shorten the request to the last aligned cluster.  */
2732                 num -= tail;
2733             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2734                        tail > bs->bl.request_alignment) {
2735                 tail %= bs->bl.request_alignment;
2736                 num -= tail;
2737             }
2738         }
2739         /* limit request size */
2740         if (num > max_pdiscard) {
2741             num = max_pdiscard;
2742         }
2743 
2744         if (!bs->drv) {
2745             ret = -ENOMEDIUM;
2746             goto out;
2747         }
2748         if (bs->drv->bdrv_co_pdiscard) {
2749             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2750         } else {
2751             BlockAIOCB *acb;
2752             CoroutineIOCompletion co = {
2753                 .coroutine = qemu_coroutine_self(),
2754             };
2755 
2756             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2757                                              bdrv_co_io_em_complete, &co);
2758             if (acb == NULL) {
2759                 ret = -EIO;
2760                 goto out;
2761             } else {
2762                 qemu_coroutine_yield();
2763                 ret = co.ret;
2764             }
2765         }
2766         if (ret && ret != -ENOTSUP) {
2767             goto out;
2768         }
2769 
2770         offset += num;
2771         bytes -= num;
2772     }
2773     ret = 0;
2774 out:
2775     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2776     tracked_request_end(&req);
2777     bdrv_dec_in_flight(bs);
2778     return ret;
2779 }
2780 
2781 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2782 {
2783     Coroutine *co;
2784     DiscardCo rwco = {
2785         .child = child,
2786         .offset = offset,
2787         .bytes = bytes,
2788         .ret = NOT_DONE,
2789     };
2790 
2791     if (qemu_in_coroutine()) {
2792         /* Fast-path if already in coroutine context */
2793         bdrv_pdiscard_co_entry(&rwco);
2794     } else {
2795         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2796         bdrv_coroutine_enter(child->bs, co);
2797         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
2798     }
2799 
2800     return rwco.ret;
2801 }
2802 
2803 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2804 {
2805     BlockDriver *drv = bs->drv;
2806     CoroutineIOCompletion co = {
2807         .coroutine = qemu_coroutine_self(),
2808     };
2809     BlockAIOCB *acb;
2810 
2811     bdrv_inc_in_flight(bs);
2812     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2813         co.ret = -ENOTSUP;
2814         goto out;
2815     }
2816 
2817     if (drv->bdrv_co_ioctl) {
2818         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2819     } else {
2820         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2821         if (!acb) {
2822             co.ret = -ENOTSUP;
2823             goto out;
2824         }
2825         qemu_coroutine_yield();
2826     }
2827 out:
2828     bdrv_dec_in_flight(bs);
2829     return co.ret;
2830 }
2831 
2832 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2833 {
2834     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2835 }
2836 
2837 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2838 {
2839     return memset(qemu_blockalign(bs, size), 0, size);
2840 }
2841 
2842 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2843 {
2844     size_t align = bdrv_opt_mem_align(bs);
2845 
2846     /* Ensure that NULL is never returned on success */
2847     assert(align > 0);
2848     if (size == 0) {
2849         size = align;
2850     }
2851 
2852     return qemu_try_memalign(align, size);
2853 }
2854 
2855 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2856 {
2857     void *mem = qemu_try_blockalign(bs, size);
2858 
2859     if (mem) {
2860         memset(mem, 0, size);
2861     }
2862 
2863     return mem;
2864 }
2865 
2866 /*
2867  * Check if all memory in this vector is sector aligned.
2868  */
2869 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2870 {
2871     int i;
2872     size_t alignment = bdrv_min_mem_align(bs);
2873 
2874     for (i = 0; i < qiov->niov; i++) {
2875         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2876             return false;
2877         }
2878         if (qiov->iov[i].iov_len % alignment) {
2879             return false;
2880         }
2881     }
2882 
2883     return true;
2884 }
2885 
2886 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2887                                     NotifierWithReturn *notifier)
2888 {
2889     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2890 }
2891 
2892 void bdrv_io_plug(BlockDriverState *bs)
2893 {
2894     BdrvChild *child;
2895 
2896     QLIST_FOREACH(child, &bs->children, next) {
2897         bdrv_io_plug(child->bs);
2898     }
2899 
2900     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2901         BlockDriver *drv = bs->drv;
2902         if (drv && drv->bdrv_io_plug) {
2903             drv->bdrv_io_plug(bs);
2904         }
2905     }
2906 }
2907 
2908 void bdrv_io_unplug(BlockDriverState *bs)
2909 {
2910     BdrvChild *child;
2911 
2912     assert(bs->io_plugged);
2913     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2914         BlockDriver *drv = bs->drv;
2915         if (drv && drv->bdrv_io_unplug) {
2916             drv->bdrv_io_unplug(bs);
2917         }
2918     }
2919 
2920     QLIST_FOREACH(child, &bs->children, next) {
2921         bdrv_io_unplug(child->bs);
2922     }
2923 }
2924 
2925 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2926 {
2927     BdrvChild *child;
2928 
2929     if (bs->drv && bs->drv->bdrv_register_buf) {
2930         bs->drv->bdrv_register_buf(bs, host, size);
2931     }
2932     QLIST_FOREACH(child, &bs->children, next) {
2933         bdrv_register_buf(child->bs, host, size);
2934     }
2935 }
2936 
2937 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2938 {
2939     BdrvChild *child;
2940 
2941     if (bs->drv && bs->drv->bdrv_unregister_buf) {
2942         bs->drv->bdrv_unregister_buf(bs, host);
2943     }
2944     QLIST_FOREACH(child, &bs->children, next) {
2945         bdrv_unregister_buf(child->bs, host);
2946     }
2947 }
2948 
2949 static int coroutine_fn bdrv_co_copy_range_internal(
2950         BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
2951         uint64_t dst_offset, uint64_t bytes,
2952         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
2953         bool recurse_src)
2954 {
2955     BdrvTrackedRequest req;
2956     int ret;
2957 
2958     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
2959     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
2960     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
2961 
2962     if (!dst || !dst->bs) {
2963         return -ENOMEDIUM;
2964     }
2965     ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
2966     if (ret) {
2967         return ret;
2968     }
2969     if (write_flags & BDRV_REQ_ZERO_WRITE) {
2970         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
2971     }
2972 
2973     if (!src || !src->bs) {
2974         return -ENOMEDIUM;
2975     }
2976     ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
2977     if (ret) {
2978         return ret;
2979     }
2980 
2981     if (!src->bs->drv->bdrv_co_copy_range_from
2982         || !dst->bs->drv->bdrv_co_copy_range_to
2983         || src->bs->encrypted || dst->bs->encrypted) {
2984         return -ENOTSUP;
2985     }
2986 
2987     if (recurse_src) {
2988         bdrv_inc_in_flight(src->bs);
2989         tracked_request_begin(&req, src->bs, src_offset, bytes,
2990                               BDRV_TRACKED_READ);
2991 
2992         /* BDRV_REQ_SERIALISING is only for write operation */
2993         assert(!(read_flags & BDRV_REQ_SERIALISING));
2994         if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
2995             wait_serialising_requests(&req);
2996         }
2997 
2998         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
2999                                                     src, src_offset,
3000                                                     dst, dst_offset,
3001                                                     bytes,
3002                                                     read_flags, write_flags);
3003 
3004         tracked_request_end(&req);
3005         bdrv_dec_in_flight(src->bs);
3006     } else {
3007         bdrv_inc_in_flight(dst->bs);
3008         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3009                               BDRV_TRACKED_WRITE);
3010         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3011                                         write_flags);
3012         if (!ret) {
3013             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3014                                                       src, src_offset,
3015                                                       dst, dst_offset,
3016                                                       bytes,
3017                                                       read_flags, write_flags);
3018         }
3019         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3020         tracked_request_end(&req);
3021         bdrv_dec_in_flight(dst->bs);
3022     }
3023 
3024     return ret;
3025 }
3026 
3027 /* Copy range from @src to @dst.
3028  *
3029  * See the comment of bdrv_co_copy_range for the parameter and return value
3030  * semantics. */
3031 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3032                                          BdrvChild *dst, uint64_t dst_offset,
3033                                          uint64_t bytes,
3034                                          BdrvRequestFlags read_flags,
3035                                          BdrvRequestFlags write_flags)
3036 {
3037     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3038                                   read_flags, write_flags);
3039     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3040                                        bytes, read_flags, write_flags, true);
3041 }
3042 
3043 /* Copy range from @src to @dst.
3044  *
3045  * See the comment of bdrv_co_copy_range for the parameter and return value
3046  * semantics. */
3047 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3048                                        BdrvChild *dst, uint64_t dst_offset,
3049                                        uint64_t bytes,
3050                                        BdrvRequestFlags read_flags,
3051                                        BdrvRequestFlags write_flags)
3052 {
3053     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3054                                 read_flags, write_flags);
3055     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3056                                        bytes, read_flags, write_flags, false);
3057 }
3058 
3059 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3060                                     BdrvChild *dst, uint64_t dst_offset,
3061                                     uint64_t bytes, BdrvRequestFlags read_flags,
3062                                     BdrvRequestFlags write_flags)
3063 {
3064     return bdrv_co_copy_range_from(src, src_offset,
3065                                    dst, dst_offset,
3066                                    bytes, read_flags, write_flags);
3067 }
3068 
3069 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3070 {
3071     BdrvChild *c;
3072     QLIST_FOREACH(c, &bs->parents, next_parent) {
3073         if (c->role->resize) {
3074             c->role->resize(c);
3075         }
3076     }
3077 }
3078 
3079 /**
3080  * Truncate file to 'offset' bytes (needed only for file protocols)
3081  */
3082 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
3083                                   PreallocMode prealloc, Error **errp)
3084 {
3085     BlockDriverState *bs = child->bs;
3086     BlockDriver *drv = bs->drv;
3087     BdrvTrackedRequest req;
3088     int64_t old_size, new_bytes;
3089     int ret;
3090 
3091 
3092     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3093     if (!drv) {
3094         error_setg(errp, "No medium inserted");
3095         return -ENOMEDIUM;
3096     }
3097     if (offset < 0) {
3098         error_setg(errp, "Image size cannot be negative");
3099         return -EINVAL;
3100     }
3101 
3102     old_size = bdrv_getlength(bs);
3103     if (old_size < 0) {
3104         error_setg_errno(errp, -old_size, "Failed to get old image size");
3105         return old_size;
3106     }
3107 
3108     if (offset > old_size) {
3109         new_bytes = offset - old_size;
3110     } else {
3111         new_bytes = 0;
3112     }
3113 
3114     bdrv_inc_in_flight(bs);
3115     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3116                           BDRV_TRACKED_TRUNCATE);
3117 
3118     /* If we are growing the image and potentially using preallocation for the
3119      * new area, we need to make sure that no write requests are made to it
3120      * concurrently or they might be overwritten by preallocation. */
3121     if (new_bytes) {
3122         mark_request_serialising(&req, 1);
3123     }
3124     if (bs->read_only) {
3125         error_setg(errp, "Image is read-only");
3126         ret = -EACCES;
3127         goto out;
3128     }
3129     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3130                                     0);
3131     if (ret < 0) {
3132         error_setg_errno(errp, -ret,
3133                          "Failed to prepare request for truncation");
3134         goto out;
3135     }
3136 
3137     if (!drv->bdrv_co_truncate) {
3138         if (bs->file && drv->is_filter) {
3139             ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
3140             goto out;
3141         }
3142         error_setg(errp, "Image format driver does not support resize");
3143         ret = -ENOTSUP;
3144         goto out;
3145     }
3146 
3147     ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
3148     if (ret < 0) {
3149         goto out;
3150     }
3151     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3152     if (ret < 0) {
3153         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3154     } else {
3155         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3156     }
3157     /* It's possible that truncation succeeded but refresh_total_sectors
3158      * failed, but the latter doesn't affect how we should finish the request.
3159      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3160     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3161 
3162 out:
3163     tracked_request_end(&req);
3164     bdrv_dec_in_flight(bs);
3165 
3166     return ret;
3167 }
3168 
3169 typedef struct TruncateCo {
3170     BdrvChild *child;
3171     int64_t offset;
3172     PreallocMode prealloc;
3173     Error **errp;
3174     int ret;
3175 } TruncateCo;
3176 
3177 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3178 {
3179     TruncateCo *tco = opaque;
3180     tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
3181                                 tco->errp);
3182     aio_wait_kick();
3183 }
3184 
3185 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
3186                   Error **errp)
3187 {
3188     Coroutine *co;
3189     TruncateCo tco = {
3190         .child      = child,
3191         .offset     = offset,
3192         .prealloc   = prealloc,
3193         .errp       = errp,
3194         .ret        = NOT_DONE,
3195     };
3196 
3197     if (qemu_in_coroutine()) {
3198         /* Fast-path if already in coroutine context */
3199         bdrv_truncate_co_entry(&tco);
3200     } else {
3201         co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3202         bdrv_coroutine_enter(child->bs, co);
3203         BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3204     }
3205 
3206     return tco.ret;
3207 }
3208