xref: /qemu/block/io.c (revision e8b65355)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qemu/memalign.h"
36 #include "qapi/error.h"
37 #include "qemu/error-report.h"
38 #include "qemu/main-loop.h"
39 #include "sysemu/replay.h"
40 
41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
43 
44 static void bdrv_parent_cb_resize(BlockDriverState *bs);
45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
46     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
47 
48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
49                                       bool ignore_bds_parents)
50 {
51     BdrvChild *c, *next;
52 
53     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
55             continue;
56         }
57         bdrv_parent_drained_begin_single(c, false);
58     }
59 }
60 
61 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
62                                                    int *drained_end_counter)
63 {
64     assert(c->parent_quiesce_counter > 0);
65     c->parent_quiesce_counter--;
66     if (c->klass->drained_end) {
67         c->klass->drained_end(c, drained_end_counter);
68     }
69 }
70 
71 void bdrv_parent_drained_end_single(BdrvChild *c)
72 {
73     int drained_end_counter = 0;
74     IO_OR_GS_CODE();
75     bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
76     BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
77 }
78 
79 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
80                                     bool ignore_bds_parents,
81                                     int *drained_end_counter)
82 {
83     BdrvChild *c;
84 
85     QLIST_FOREACH(c, &bs->parents, next_parent) {
86         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
87             continue;
88         }
89         bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
90     }
91 }
92 
93 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
94 {
95     if (c->klass->drained_poll) {
96         return c->klass->drained_poll(c);
97     }
98     return false;
99 }
100 
101 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
102                                      bool ignore_bds_parents)
103 {
104     BdrvChild *c, *next;
105     bool busy = false;
106 
107     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
108         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
109             continue;
110         }
111         busy |= bdrv_parent_drained_poll_single(c);
112     }
113 
114     return busy;
115 }
116 
117 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
118 {
119     IO_OR_GS_CODE();
120     c->parent_quiesce_counter++;
121     if (c->klass->drained_begin) {
122         c->klass->drained_begin(c);
123     }
124     if (poll) {
125         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
126     }
127 }
128 
129 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
130 {
131     dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
132                                   src->pdiscard_alignment);
133     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
134     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
135     dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
136                                         src->max_hw_transfer);
137     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
138                                  src->opt_mem_alignment);
139     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
140                                  src->min_mem_alignment);
141     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
142     dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
143 }
144 
145 typedef struct BdrvRefreshLimitsState {
146     BlockDriverState *bs;
147     BlockLimits old_bl;
148 } BdrvRefreshLimitsState;
149 
150 static void bdrv_refresh_limits_abort(void *opaque)
151 {
152     BdrvRefreshLimitsState *s = opaque;
153 
154     s->bs->bl = s->old_bl;
155 }
156 
157 static TransactionActionDrv bdrv_refresh_limits_drv = {
158     .abort = bdrv_refresh_limits_abort,
159     .clean = g_free,
160 };
161 
162 /* @tran is allowed to be NULL, in this case no rollback is possible. */
163 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
164 {
165     ERRP_GUARD();
166     BlockDriver *drv = bs->drv;
167     BdrvChild *c;
168     bool have_limits;
169 
170     GLOBAL_STATE_CODE();
171 
172     if (tran) {
173         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
174         *s = (BdrvRefreshLimitsState) {
175             .bs = bs,
176             .old_bl = bs->bl,
177         };
178         tran_add(tran, &bdrv_refresh_limits_drv, s);
179     }
180 
181     memset(&bs->bl, 0, sizeof(bs->bl));
182 
183     if (!drv) {
184         return;
185     }
186 
187     /* Default alignment based on whether driver has byte interface */
188     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
189                                 drv->bdrv_aio_preadv ||
190                                 drv->bdrv_co_preadv_part) ? 1 : 512;
191 
192     /* Take some limits from the children as a default */
193     have_limits = false;
194     QLIST_FOREACH(c, &bs->children, next) {
195         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
196         {
197             bdrv_merge_limits(&bs->bl, &c->bs->bl);
198             have_limits = true;
199         }
200     }
201 
202     if (!have_limits) {
203         bs->bl.min_mem_alignment = 512;
204         bs->bl.opt_mem_alignment = qemu_real_host_page_size();
205 
206         /* Safe default since most protocols use readv()/writev()/etc */
207         bs->bl.max_iov = IOV_MAX;
208     }
209 
210     /* Then let the driver override it */
211     if (drv->bdrv_refresh_limits) {
212         drv->bdrv_refresh_limits(bs, errp);
213         if (*errp) {
214             return;
215         }
216     }
217 
218     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
219         error_setg(errp, "Driver requires too large request alignment");
220     }
221 }
222 
223 /**
224  * The copy-on-read flag is actually a reference count so multiple users may
225  * use the feature without worrying about clobbering its previous state.
226  * Copy-on-read stays enabled until all users have called to disable it.
227  */
228 void bdrv_enable_copy_on_read(BlockDriverState *bs)
229 {
230     IO_CODE();
231     qatomic_inc(&bs->copy_on_read);
232 }
233 
234 void bdrv_disable_copy_on_read(BlockDriverState *bs)
235 {
236     int old = qatomic_fetch_dec(&bs->copy_on_read);
237     IO_CODE();
238     assert(old >= 1);
239 }
240 
241 typedef struct {
242     Coroutine *co;
243     BlockDriverState *bs;
244     bool done;
245     bool begin;
246     bool recursive;
247     bool poll;
248     BdrvChild *parent;
249     bool ignore_bds_parents;
250     int *drained_end_counter;
251 } BdrvCoDrainData;
252 
253 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
254 {
255     BdrvCoDrainData *data = opaque;
256     BlockDriverState *bs = data->bs;
257 
258     if (data->begin) {
259         bs->drv->bdrv_co_drain_begin(bs);
260     } else {
261         bs->drv->bdrv_co_drain_end(bs);
262     }
263 
264     /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
265     qatomic_mb_set(&data->done, true);
266     if (!data->begin) {
267         qatomic_dec(data->drained_end_counter);
268     }
269     bdrv_dec_in_flight(bs);
270 
271     g_free(data);
272 }
273 
274 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
275 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
276                               int *drained_end_counter)
277 {
278     BdrvCoDrainData *data;
279 
280     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
281             (!begin && !bs->drv->bdrv_co_drain_end)) {
282         return;
283     }
284 
285     data = g_new(BdrvCoDrainData, 1);
286     *data = (BdrvCoDrainData) {
287         .bs = bs,
288         .done = false,
289         .begin = begin,
290         .drained_end_counter = drained_end_counter,
291     };
292 
293     if (!begin) {
294         qatomic_inc(drained_end_counter);
295     }
296 
297     /* Make sure the driver callback completes during the polling phase for
298      * drain_begin. */
299     bdrv_inc_in_flight(bs);
300     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
301     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
302 }
303 
304 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
305 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
306                      BdrvChild *ignore_parent, bool ignore_bds_parents)
307 {
308     BdrvChild *child, *next;
309     IO_OR_GS_CODE();
310 
311     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
312         return true;
313     }
314 
315     if (qatomic_read(&bs->in_flight)) {
316         return true;
317     }
318 
319     if (recursive) {
320         assert(!ignore_bds_parents);
321         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
322             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
323                 return true;
324             }
325         }
326     }
327 
328     return false;
329 }
330 
331 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
332                                       BdrvChild *ignore_parent)
333 {
334     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
335 }
336 
337 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
338                                   BdrvChild *parent, bool ignore_bds_parents,
339                                   bool poll);
340 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
341                                 BdrvChild *parent, bool ignore_bds_parents,
342                                 int *drained_end_counter);
343 
344 static void bdrv_co_drain_bh_cb(void *opaque)
345 {
346     BdrvCoDrainData *data = opaque;
347     Coroutine *co = data->co;
348     BlockDriverState *bs = data->bs;
349 
350     if (bs) {
351         AioContext *ctx = bdrv_get_aio_context(bs);
352         aio_context_acquire(ctx);
353         bdrv_dec_in_flight(bs);
354         if (data->begin) {
355             assert(!data->drained_end_counter);
356             bdrv_do_drained_begin(bs, data->recursive, data->parent,
357                                   data->ignore_bds_parents, data->poll);
358         } else {
359             assert(!data->poll);
360             bdrv_do_drained_end(bs, data->recursive, data->parent,
361                                 data->ignore_bds_parents,
362                                 data->drained_end_counter);
363         }
364         aio_context_release(ctx);
365     } else {
366         assert(data->begin);
367         bdrv_drain_all_begin();
368     }
369 
370     data->done = true;
371     aio_co_wake(co);
372 }
373 
374 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
375                                                 bool begin, bool recursive,
376                                                 BdrvChild *parent,
377                                                 bool ignore_bds_parents,
378                                                 bool poll,
379                                                 int *drained_end_counter)
380 {
381     BdrvCoDrainData data;
382     Coroutine *self = qemu_coroutine_self();
383     AioContext *ctx = bdrv_get_aio_context(bs);
384     AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
385 
386     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
387      * other coroutines run if they were queued by aio_co_enter(). */
388 
389     assert(qemu_in_coroutine());
390     data = (BdrvCoDrainData) {
391         .co = self,
392         .bs = bs,
393         .done = false,
394         .begin = begin,
395         .recursive = recursive,
396         .parent = parent,
397         .ignore_bds_parents = ignore_bds_parents,
398         .poll = poll,
399         .drained_end_counter = drained_end_counter,
400     };
401 
402     if (bs) {
403         bdrv_inc_in_flight(bs);
404     }
405 
406     /*
407      * Temporarily drop the lock across yield or we would get deadlocks.
408      * bdrv_co_drain_bh_cb() reaquires the lock as needed.
409      *
410      * When we yield below, the lock for the current context will be
411      * released, so if this is actually the lock that protects bs, don't drop
412      * it a second time.
413      */
414     if (ctx != co_ctx) {
415         aio_context_release(ctx);
416     }
417     replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
418 
419     qemu_coroutine_yield();
420     /* If we are resumed from some other event (such as an aio completion or a
421      * timer callback), it is a bug in the caller that should be fixed. */
422     assert(data.done);
423 
424     /* Reaquire the AioContext of bs if we dropped it */
425     if (ctx != co_ctx) {
426         aio_context_acquire(ctx);
427     }
428 }
429 
430 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
431                                    BdrvChild *parent, bool ignore_bds_parents)
432 {
433     IO_OR_GS_CODE();
434     assert(!qemu_in_coroutine());
435 
436     /* Stop things in parent-to-child order */
437     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
438         aio_disable_external(bdrv_get_aio_context(bs));
439     }
440 
441     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
442     bdrv_drain_invoke(bs, true, NULL);
443 }
444 
445 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
446                                   BdrvChild *parent, bool ignore_bds_parents,
447                                   bool poll)
448 {
449     BdrvChild *child, *next;
450 
451     if (qemu_in_coroutine()) {
452         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
453                                poll, NULL);
454         return;
455     }
456 
457     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
458 
459     if (recursive) {
460         assert(!ignore_bds_parents);
461         bs->recursive_quiesce_counter++;
462         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
463             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
464                                   false);
465         }
466     }
467 
468     /*
469      * Wait for drained requests to finish.
470      *
471      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
472      * call is needed so things in this AioContext can make progress even
473      * though we don't return to the main AioContext loop - this automatically
474      * includes other nodes in the same AioContext and therefore all child
475      * nodes.
476      */
477     if (poll) {
478         assert(!ignore_bds_parents);
479         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
480     }
481 }
482 
483 void bdrv_drained_begin(BlockDriverState *bs)
484 {
485     IO_OR_GS_CODE();
486     bdrv_do_drained_begin(bs, false, NULL, false, true);
487 }
488 
489 void bdrv_subtree_drained_begin(BlockDriverState *bs)
490 {
491     IO_OR_GS_CODE();
492     bdrv_do_drained_begin(bs, true, NULL, false, true);
493 }
494 
495 /**
496  * This function does not poll, nor must any of its recursively called
497  * functions.  The *drained_end_counter pointee will be incremented
498  * once for every background operation scheduled, and decremented once
499  * the operation settles.  Therefore, the pointer must remain valid
500  * until the pointee reaches 0.  That implies that whoever sets up the
501  * pointee has to poll until it is 0.
502  *
503  * We use atomic operations to access *drained_end_counter, because
504  * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
505  *     @bs may contain nodes in different AioContexts,
506  * (2) bdrv_drain_all_end() uses the same counter for all nodes,
507  *     regardless of which AioContext they are in.
508  */
509 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
510                                 BdrvChild *parent, bool ignore_bds_parents,
511                                 int *drained_end_counter)
512 {
513     BdrvChild *child;
514     int old_quiesce_counter;
515 
516     assert(drained_end_counter != NULL);
517 
518     if (qemu_in_coroutine()) {
519         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
520                                false, drained_end_counter);
521         return;
522     }
523     assert(bs->quiesce_counter > 0);
524 
525     /* Re-enable things in child-to-parent order */
526     bdrv_drain_invoke(bs, false, drained_end_counter);
527     bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
528                             drained_end_counter);
529 
530     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
531     if (old_quiesce_counter == 1) {
532         aio_enable_external(bdrv_get_aio_context(bs));
533     }
534 
535     if (recursive) {
536         assert(!ignore_bds_parents);
537         bs->recursive_quiesce_counter--;
538         QLIST_FOREACH(child, &bs->children, next) {
539             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
540                                 drained_end_counter);
541         }
542     }
543 }
544 
545 void bdrv_drained_end(BlockDriverState *bs)
546 {
547     int drained_end_counter = 0;
548     IO_OR_GS_CODE();
549     bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
550     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
551 }
552 
553 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
554 {
555     IO_CODE();
556     bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
557 }
558 
559 void bdrv_subtree_drained_end(BlockDriverState *bs)
560 {
561     int drained_end_counter = 0;
562     IO_OR_GS_CODE();
563     bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
564     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
565 }
566 
567 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
568 {
569     int i;
570     IO_OR_GS_CODE();
571 
572     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
573         bdrv_do_drained_begin(child->bs, true, child, false, true);
574     }
575 }
576 
577 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
578 {
579     int drained_end_counter = 0;
580     int i;
581     IO_OR_GS_CODE();
582 
583     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
584         bdrv_do_drained_end(child->bs, true, child, false,
585                             &drained_end_counter);
586     }
587 
588     BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
589 }
590 
591 void bdrv_drain(BlockDriverState *bs)
592 {
593     IO_OR_GS_CODE();
594     bdrv_drained_begin(bs);
595     bdrv_drained_end(bs);
596 }
597 
598 static void bdrv_drain_assert_idle(BlockDriverState *bs)
599 {
600     BdrvChild *child, *next;
601 
602     assert(qatomic_read(&bs->in_flight) == 0);
603     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
604         bdrv_drain_assert_idle(child->bs);
605     }
606 }
607 
608 unsigned int bdrv_drain_all_count = 0;
609 
610 static bool bdrv_drain_all_poll(void)
611 {
612     BlockDriverState *bs = NULL;
613     bool result = false;
614     GLOBAL_STATE_CODE();
615 
616     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
617      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
618     while ((bs = bdrv_next_all_states(bs))) {
619         AioContext *aio_context = bdrv_get_aio_context(bs);
620         aio_context_acquire(aio_context);
621         result |= bdrv_drain_poll(bs, false, NULL, true);
622         aio_context_release(aio_context);
623     }
624 
625     return result;
626 }
627 
628 /*
629  * Wait for pending requests to complete across all BlockDriverStates
630  *
631  * This function does not flush data to disk, use bdrv_flush_all() for that
632  * after calling this function.
633  *
634  * This pauses all block jobs and disables external clients. It must
635  * be paired with bdrv_drain_all_end().
636  *
637  * NOTE: no new block jobs or BlockDriverStates can be created between
638  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
639  */
640 void bdrv_drain_all_begin(void)
641 {
642     BlockDriverState *bs = NULL;
643     GLOBAL_STATE_CODE();
644 
645     if (qemu_in_coroutine()) {
646         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
647         return;
648     }
649 
650     /*
651      * bdrv queue is managed by record/replay,
652      * waiting for finishing the I/O requests may
653      * be infinite
654      */
655     if (replay_events_enabled()) {
656         return;
657     }
658 
659     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
660      * loop AioContext, so make sure we're in the main context. */
661     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
662     assert(bdrv_drain_all_count < INT_MAX);
663     bdrv_drain_all_count++;
664 
665     /* Quiesce all nodes, without polling in-flight requests yet. The graph
666      * cannot change during this loop. */
667     while ((bs = bdrv_next_all_states(bs))) {
668         AioContext *aio_context = bdrv_get_aio_context(bs);
669 
670         aio_context_acquire(aio_context);
671         bdrv_do_drained_begin(bs, false, NULL, true, false);
672         aio_context_release(aio_context);
673     }
674 
675     /* Now poll the in-flight requests */
676     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
677 
678     while ((bs = bdrv_next_all_states(bs))) {
679         bdrv_drain_assert_idle(bs);
680     }
681 }
682 
683 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
684 {
685     int drained_end_counter = 0;
686     GLOBAL_STATE_CODE();
687 
688     g_assert(bs->quiesce_counter > 0);
689     g_assert(!bs->refcnt);
690 
691     while (bs->quiesce_counter) {
692         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
693     }
694     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
695 }
696 
697 void bdrv_drain_all_end(void)
698 {
699     BlockDriverState *bs = NULL;
700     int drained_end_counter = 0;
701     GLOBAL_STATE_CODE();
702 
703     /*
704      * bdrv queue is managed by record/replay,
705      * waiting for finishing the I/O requests may
706      * be endless
707      */
708     if (replay_events_enabled()) {
709         return;
710     }
711 
712     while ((bs = bdrv_next_all_states(bs))) {
713         AioContext *aio_context = bdrv_get_aio_context(bs);
714 
715         aio_context_acquire(aio_context);
716         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
717         aio_context_release(aio_context);
718     }
719 
720     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
721     AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
722 
723     assert(bdrv_drain_all_count > 0);
724     bdrv_drain_all_count--;
725 }
726 
727 void bdrv_drain_all(void)
728 {
729     GLOBAL_STATE_CODE();
730     bdrv_drain_all_begin();
731     bdrv_drain_all_end();
732 }
733 
734 /**
735  * Remove an active request from the tracked requests list
736  *
737  * This function should be called when a tracked request is completing.
738  */
739 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
740 {
741     if (req->serialising) {
742         qatomic_dec(&req->bs->serialising_in_flight);
743     }
744 
745     qemu_co_mutex_lock(&req->bs->reqs_lock);
746     QLIST_REMOVE(req, list);
747     qemu_co_queue_restart_all(&req->wait_queue);
748     qemu_co_mutex_unlock(&req->bs->reqs_lock);
749 }
750 
751 /**
752  * Add an active request to the tracked requests list
753  */
754 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
755                                                BlockDriverState *bs,
756                                                int64_t offset,
757                                                int64_t bytes,
758                                                enum BdrvTrackedRequestType type)
759 {
760     bdrv_check_request(offset, bytes, &error_abort);
761 
762     *req = (BdrvTrackedRequest){
763         .bs = bs,
764         .offset         = offset,
765         .bytes          = bytes,
766         .type           = type,
767         .co             = qemu_coroutine_self(),
768         .serialising    = false,
769         .overlap_offset = offset,
770         .overlap_bytes  = bytes,
771     };
772 
773     qemu_co_queue_init(&req->wait_queue);
774 
775     qemu_co_mutex_lock(&bs->reqs_lock);
776     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
777     qemu_co_mutex_unlock(&bs->reqs_lock);
778 }
779 
780 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
781                                      int64_t offset, int64_t bytes)
782 {
783     bdrv_check_request(offset, bytes, &error_abort);
784 
785     /*        aaaa   bbbb */
786     if (offset >= req->overlap_offset + req->overlap_bytes) {
787         return false;
788     }
789     /* bbbb   aaaa        */
790     if (req->overlap_offset >= offset + bytes) {
791         return false;
792     }
793     return true;
794 }
795 
796 /* Called with self->bs->reqs_lock held */
797 static coroutine_fn BdrvTrackedRequest *
798 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
799 {
800     BdrvTrackedRequest *req;
801 
802     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
803         if (req == self || (!req->serialising && !self->serialising)) {
804             continue;
805         }
806         if (tracked_request_overlaps(req, self->overlap_offset,
807                                      self->overlap_bytes))
808         {
809             /*
810              * Hitting this means there was a reentrant request, for
811              * example, a block driver issuing nested requests.  This must
812              * never happen since it means deadlock.
813              */
814             assert(qemu_coroutine_self() != req->co);
815 
816             /*
817              * If the request is already (indirectly) waiting for us, or
818              * will wait for us as soon as it wakes up, then just go on
819              * (instead of producing a deadlock in the former case).
820              */
821             if (!req->waiting_for) {
822                 return req;
823             }
824         }
825     }
826 
827     return NULL;
828 }
829 
830 /* Called with self->bs->reqs_lock held */
831 static void coroutine_fn
832 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
833 {
834     BdrvTrackedRequest *req;
835 
836     while ((req = bdrv_find_conflicting_request(self))) {
837         self->waiting_for = req;
838         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
839         self->waiting_for = NULL;
840     }
841 }
842 
843 /* Called with req->bs->reqs_lock held */
844 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
845                                             uint64_t align)
846 {
847     int64_t overlap_offset = req->offset & ~(align - 1);
848     int64_t overlap_bytes =
849         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
850 
851     bdrv_check_request(req->offset, req->bytes, &error_abort);
852 
853     if (!req->serialising) {
854         qatomic_inc(&req->bs->serialising_in_flight);
855         req->serialising = true;
856     }
857 
858     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
859     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
860 }
861 
862 /**
863  * Return the tracked request on @bs for the current coroutine, or
864  * NULL if there is none.
865  */
866 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
867 {
868     BdrvTrackedRequest *req;
869     Coroutine *self = qemu_coroutine_self();
870     IO_CODE();
871 
872     QLIST_FOREACH(req, &bs->tracked_requests, list) {
873         if (req->co == self) {
874             return req;
875         }
876     }
877 
878     return NULL;
879 }
880 
881 /**
882  * Round a region to cluster boundaries
883  */
884 void bdrv_round_to_clusters(BlockDriverState *bs,
885                             int64_t offset, int64_t bytes,
886                             int64_t *cluster_offset,
887                             int64_t *cluster_bytes)
888 {
889     BlockDriverInfo bdi;
890     IO_CODE();
891     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
892         *cluster_offset = offset;
893         *cluster_bytes = bytes;
894     } else {
895         int64_t c = bdi.cluster_size;
896         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
897         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
898     }
899 }
900 
901 static int bdrv_get_cluster_size(BlockDriverState *bs)
902 {
903     BlockDriverInfo bdi;
904     int ret;
905 
906     ret = bdrv_get_info(bs, &bdi);
907     if (ret < 0 || bdi.cluster_size == 0) {
908         return bs->bl.request_alignment;
909     } else {
910         return bdi.cluster_size;
911     }
912 }
913 
914 void bdrv_inc_in_flight(BlockDriverState *bs)
915 {
916     IO_CODE();
917     qatomic_inc(&bs->in_flight);
918 }
919 
920 void bdrv_wakeup(BlockDriverState *bs)
921 {
922     IO_CODE();
923     aio_wait_kick();
924 }
925 
926 void bdrv_dec_in_flight(BlockDriverState *bs)
927 {
928     IO_CODE();
929     qatomic_dec(&bs->in_flight);
930     bdrv_wakeup(bs);
931 }
932 
933 static void coroutine_fn
934 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
935 {
936     BlockDriverState *bs = self->bs;
937 
938     if (!qatomic_read(&bs->serialising_in_flight)) {
939         return;
940     }
941 
942     qemu_co_mutex_lock(&bs->reqs_lock);
943     bdrv_wait_serialising_requests_locked(self);
944     qemu_co_mutex_unlock(&bs->reqs_lock);
945 }
946 
947 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
948                                                 uint64_t align)
949 {
950     IO_CODE();
951 
952     qemu_co_mutex_lock(&req->bs->reqs_lock);
953 
954     tracked_request_set_serialising(req, align);
955     bdrv_wait_serialising_requests_locked(req);
956 
957     qemu_co_mutex_unlock(&req->bs->reqs_lock);
958 }
959 
960 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
961                             QEMUIOVector *qiov, size_t qiov_offset,
962                             Error **errp)
963 {
964     /*
965      * Check generic offset/bytes correctness
966      */
967 
968     if (offset < 0) {
969         error_setg(errp, "offset is negative: %" PRIi64, offset);
970         return -EIO;
971     }
972 
973     if (bytes < 0) {
974         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
975         return -EIO;
976     }
977 
978     if (bytes > BDRV_MAX_LENGTH) {
979         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
980                    bytes, BDRV_MAX_LENGTH);
981         return -EIO;
982     }
983 
984     if (offset > BDRV_MAX_LENGTH) {
985         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
986                    offset, BDRV_MAX_LENGTH);
987         return -EIO;
988     }
989 
990     if (offset > BDRV_MAX_LENGTH - bytes) {
991         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
992                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
993                    BDRV_MAX_LENGTH);
994         return -EIO;
995     }
996 
997     if (!qiov) {
998         return 0;
999     }
1000 
1001     /*
1002      * Check qiov and qiov_offset
1003      */
1004 
1005     if (qiov_offset > qiov->size) {
1006         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1007                    qiov_offset, qiov->size);
1008         return -EIO;
1009     }
1010 
1011     if (bytes > qiov->size - qiov_offset) {
1012         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1013                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
1014         return -EIO;
1015     }
1016 
1017     return 0;
1018 }
1019 
1020 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1021 {
1022     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1023 }
1024 
1025 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1026                                 QEMUIOVector *qiov, size_t qiov_offset)
1027 {
1028     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1029     if (ret < 0) {
1030         return ret;
1031     }
1032 
1033     if (bytes > BDRV_REQUEST_MAX_BYTES) {
1034         return -EIO;
1035     }
1036 
1037     return 0;
1038 }
1039 
1040 /*
1041  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1042  * The operation is sped up by checking the block status and only writing
1043  * zeroes to the device if they currently do not return zeroes. Optional
1044  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1045  * BDRV_REQ_FUA).
1046  *
1047  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1048  */
1049 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1050 {
1051     int ret;
1052     int64_t target_size, bytes, offset = 0;
1053     BlockDriverState *bs = child->bs;
1054     IO_CODE();
1055 
1056     target_size = bdrv_getlength(bs);
1057     if (target_size < 0) {
1058         return target_size;
1059     }
1060 
1061     for (;;) {
1062         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1063         if (bytes <= 0) {
1064             return 0;
1065         }
1066         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1067         if (ret < 0) {
1068             return ret;
1069         }
1070         if (ret & BDRV_BLOCK_ZERO) {
1071             offset += bytes;
1072             continue;
1073         }
1074         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1075         if (ret < 0) {
1076             return ret;
1077         }
1078         offset += bytes;
1079     }
1080 }
1081 
1082 /*
1083  * Writes to the file and ensures that no writes are reordered across this
1084  * request (acts as a barrier)
1085  *
1086  * Returns 0 on success, -errno in error cases.
1087  */
1088 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
1089                                      int64_t bytes, const void *buf,
1090                                      BdrvRequestFlags flags)
1091 {
1092     int ret;
1093     IO_CODE();
1094 
1095     ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
1096     if (ret < 0) {
1097         return ret;
1098     }
1099 
1100     ret = bdrv_co_flush(child->bs);
1101     if (ret < 0) {
1102         return ret;
1103     }
1104 
1105     return 0;
1106 }
1107 
1108 typedef struct CoroutineIOCompletion {
1109     Coroutine *coroutine;
1110     int ret;
1111 } CoroutineIOCompletion;
1112 
1113 static void bdrv_co_io_em_complete(void *opaque, int ret)
1114 {
1115     CoroutineIOCompletion *co = opaque;
1116 
1117     co->ret = ret;
1118     aio_co_wake(co->coroutine);
1119 }
1120 
1121 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1122                                            int64_t offset, int64_t bytes,
1123                                            QEMUIOVector *qiov,
1124                                            size_t qiov_offset, int flags)
1125 {
1126     BlockDriver *drv = bs->drv;
1127     int64_t sector_num;
1128     unsigned int nb_sectors;
1129     QEMUIOVector local_qiov;
1130     int ret;
1131 
1132     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1133     assert(!(flags & ~bs->supported_read_flags));
1134 
1135     if (!drv) {
1136         return -ENOMEDIUM;
1137     }
1138 
1139     if (drv->bdrv_co_preadv_part) {
1140         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1141                                         flags);
1142     }
1143 
1144     if (qiov_offset > 0 || bytes != qiov->size) {
1145         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1146         qiov = &local_qiov;
1147     }
1148 
1149     if (drv->bdrv_co_preadv) {
1150         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1151         goto out;
1152     }
1153 
1154     if (drv->bdrv_aio_preadv) {
1155         BlockAIOCB *acb;
1156         CoroutineIOCompletion co = {
1157             .coroutine = qemu_coroutine_self(),
1158         };
1159 
1160         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1161                                    bdrv_co_io_em_complete, &co);
1162         if (acb == NULL) {
1163             ret = -EIO;
1164             goto out;
1165         } else {
1166             qemu_coroutine_yield();
1167             ret = co.ret;
1168             goto out;
1169         }
1170     }
1171 
1172     sector_num = offset >> BDRV_SECTOR_BITS;
1173     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1174 
1175     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1176     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1177     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1178     assert(drv->bdrv_co_readv);
1179 
1180     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1181 
1182 out:
1183     if (qiov == &local_qiov) {
1184         qemu_iovec_destroy(&local_qiov);
1185     }
1186 
1187     return ret;
1188 }
1189 
1190 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1191                                             int64_t offset, int64_t bytes,
1192                                             QEMUIOVector *qiov,
1193                                             size_t qiov_offset,
1194                                             BdrvRequestFlags flags)
1195 {
1196     BlockDriver *drv = bs->drv;
1197     bool emulate_fua = false;
1198     int64_t sector_num;
1199     unsigned int nb_sectors;
1200     QEMUIOVector local_qiov;
1201     int ret;
1202 
1203     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1204 
1205     if (!drv) {
1206         return -ENOMEDIUM;
1207     }
1208 
1209     if ((flags & BDRV_REQ_FUA) &&
1210         (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1211         flags &= ~BDRV_REQ_FUA;
1212         emulate_fua = true;
1213     }
1214 
1215     flags &= bs->supported_write_flags;
1216 
1217     if (drv->bdrv_co_pwritev_part) {
1218         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1219                                         flags);
1220         goto emulate_flags;
1221     }
1222 
1223     if (qiov_offset > 0 || bytes != qiov->size) {
1224         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1225         qiov = &local_qiov;
1226     }
1227 
1228     if (drv->bdrv_co_pwritev) {
1229         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1230         goto emulate_flags;
1231     }
1232 
1233     if (drv->bdrv_aio_pwritev) {
1234         BlockAIOCB *acb;
1235         CoroutineIOCompletion co = {
1236             .coroutine = qemu_coroutine_self(),
1237         };
1238 
1239         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1240                                     bdrv_co_io_em_complete, &co);
1241         if (acb == NULL) {
1242             ret = -EIO;
1243         } else {
1244             qemu_coroutine_yield();
1245             ret = co.ret;
1246         }
1247         goto emulate_flags;
1248     }
1249 
1250     sector_num = offset >> BDRV_SECTOR_BITS;
1251     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1252 
1253     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1254     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1255     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1256 
1257     assert(drv->bdrv_co_writev);
1258     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1259 
1260 emulate_flags:
1261     if (ret == 0 && emulate_fua) {
1262         ret = bdrv_co_flush(bs);
1263     }
1264 
1265     if (qiov == &local_qiov) {
1266         qemu_iovec_destroy(&local_qiov);
1267     }
1268 
1269     return ret;
1270 }
1271 
1272 static int coroutine_fn
1273 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1274                                int64_t bytes, QEMUIOVector *qiov,
1275                                size_t qiov_offset)
1276 {
1277     BlockDriver *drv = bs->drv;
1278     QEMUIOVector local_qiov;
1279     int ret;
1280 
1281     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1282 
1283     if (!drv) {
1284         return -ENOMEDIUM;
1285     }
1286 
1287     if (!block_driver_can_compress(drv)) {
1288         return -ENOTSUP;
1289     }
1290 
1291     if (drv->bdrv_co_pwritev_compressed_part) {
1292         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1293                                                     qiov, qiov_offset);
1294     }
1295 
1296     if (qiov_offset == 0) {
1297         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1298     }
1299 
1300     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1301     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1302     qemu_iovec_destroy(&local_qiov);
1303 
1304     return ret;
1305 }
1306 
1307 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1308         int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1309         size_t qiov_offset, int flags)
1310 {
1311     BlockDriverState *bs = child->bs;
1312 
1313     /* Perform I/O through a temporary buffer so that users who scribble over
1314      * their read buffer while the operation is in progress do not end up
1315      * modifying the image file.  This is critical for zero-copy guest I/O
1316      * where anything might happen inside guest memory.
1317      */
1318     void *bounce_buffer = NULL;
1319 
1320     BlockDriver *drv = bs->drv;
1321     int64_t cluster_offset;
1322     int64_t cluster_bytes;
1323     int64_t skip_bytes;
1324     int ret;
1325     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1326                                     BDRV_REQUEST_MAX_BYTES);
1327     int64_t progress = 0;
1328     bool skip_write;
1329 
1330     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1331 
1332     if (!drv) {
1333         return -ENOMEDIUM;
1334     }
1335 
1336     /*
1337      * Do not write anything when the BDS is inactive.  That is not
1338      * allowed, and it would not help.
1339      */
1340     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1341 
1342     /* FIXME We cannot require callers to have write permissions when all they
1343      * are doing is a read request. If we did things right, write permissions
1344      * would be obtained anyway, but internally by the copy-on-read code. As
1345      * long as it is implemented here rather than in a separate filter driver,
1346      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1347      * it could request permissions. Therefore we have to bypass the permission
1348      * system for the moment. */
1349     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1350 
1351     /* Cover entire cluster so no additional backing file I/O is required when
1352      * allocating cluster in the image file.  Note that this value may exceed
1353      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1354      * is one reason we loop rather than doing it all at once.
1355      */
1356     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1357     skip_bytes = offset - cluster_offset;
1358 
1359     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1360                                    cluster_offset, cluster_bytes);
1361 
1362     while (cluster_bytes) {
1363         int64_t pnum;
1364 
1365         if (skip_write) {
1366             ret = 1; /* "already allocated", so nothing will be copied */
1367             pnum = MIN(cluster_bytes, max_transfer);
1368         } else {
1369             ret = bdrv_is_allocated(bs, cluster_offset,
1370                                     MIN(cluster_bytes, max_transfer), &pnum);
1371             if (ret < 0) {
1372                 /*
1373                  * Safe to treat errors in querying allocation as if
1374                  * unallocated; we'll probably fail again soon on the
1375                  * read, but at least that will set a decent errno.
1376                  */
1377                 pnum = MIN(cluster_bytes, max_transfer);
1378             }
1379 
1380             /* Stop at EOF if the image ends in the middle of the cluster */
1381             if (ret == 0 && pnum == 0) {
1382                 assert(progress >= bytes);
1383                 break;
1384             }
1385 
1386             assert(skip_bytes < pnum);
1387         }
1388 
1389         if (ret <= 0) {
1390             QEMUIOVector local_qiov;
1391 
1392             /* Must copy-on-read; use the bounce buffer */
1393             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1394             if (!bounce_buffer) {
1395                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1396                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1397                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1398 
1399                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1400                 if (!bounce_buffer) {
1401                     ret = -ENOMEM;
1402                     goto err;
1403                 }
1404             }
1405             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1406 
1407             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1408                                      &local_qiov, 0, 0);
1409             if (ret < 0) {
1410                 goto err;
1411             }
1412 
1413             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1414             if (drv->bdrv_co_pwrite_zeroes &&
1415                 buffer_is_zero(bounce_buffer, pnum)) {
1416                 /* FIXME: Should we (perhaps conditionally) be setting
1417                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1418                  * that still correctly reads as zero? */
1419                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1420                                                BDRV_REQ_WRITE_UNCHANGED);
1421             } else {
1422                 /* This does not change the data on the disk, it is not
1423                  * necessary to flush even in cache=writethrough mode.
1424                  */
1425                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1426                                           &local_qiov, 0,
1427                                           BDRV_REQ_WRITE_UNCHANGED);
1428             }
1429 
1430             if (ret < 0) {
1431                 /* It might be okay to ignore write errors for guest
1432                  * requests.  If this is a deliberate copy-on-read
1433                  * then we don't want to ignore the error.  Simply
1434                  * report it in all cases.
1435                  */
1436                 goto err;
1437             }
1438 
1439             if (!(flags & BDRV_REQ_PREFETCH)) {
1440                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1441                                     bounce_buffer + skip_bytes,
1442                                     MIN(pnum - skip_bytes, bytes - progress));
1443             }
1444         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1445             /* Read directly into the destination */
1446             ret = bdrv_driver_preadv(bs, offset + progress,
1447                                      MIN(pnum - skip_bytes, bytes - progress),
1448                                      qiov, qiov_offset + progress, 0);
1449             if (ret < 0) {
1450                 goto err;
1451             }
1452         }
1453 
1454         cluster_offset += pnum;
1455         cluster_bytes -= pnum;
1456         progress += pnum - skip_bytes;
1457         skip_bytes = 0;
1458     }
1459     ret = 0;
1460 
1461 err:
1462     qemu_vfree(bounce_buffer);
1463     return ret;
1464 }
1465 
1466 /*
1467  * Forwards an already correctly aligned request to the BlockDriver. This
1468  * handles copy on read, zeroing after EOF, and fragmentation of large
1469  * reads; any other features must be implemented by the caller.
1470  */
1471 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1472     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1473     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1474 {
1475     BlockDriverState *bs = child->bs;
1476     int64_t total_bytes, max_bytes;
1477     int ret = 0;
1478     int64_t bytes_remaining = bytes;
1479     int max_transfer;
1480 
1481     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1482     assert(is_power_of_2(align));
1483     assert((offset & (align - 1)) == 0);
1484     assert((bytes & (align - 1)) == 0);
1485     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1486     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1487                                    align);
1488 
1489     /*
1490      * TODO: We would need a per-BDS .supported_read_flags and
1491      * potential fallback support, if we ever implement any read flags
1492      * to pass through to drivers.  For now, there aren't any
1493      * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1494      */
1495     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1496                        BDRV_REQ_REGISTERED_BUF)));
1497 
1498     /* Handle Copy on Read and associated serialisation */
1499     if (flags & BDRV_REQ_COPY_ON_READ) {
1500         /* If we touch the same cluster it counts as an overlap.  This
1501          * guarantees that allocating writes will be serialized and not race
1502          * with each other for the same cluster.  For example, in copy-on-read
1503          * it ensures that the CoR read and write operations are atomic and
1504          * guest writes cannot interleave between them. */
1505         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1506     } else {
1507         bdrv_wait_serialising_requests(req);
1508     }
1509 
1510     if (flags & BDRV_REQ_COPY_ON_READ) {
1511         int64_t pnum;
1512 
1513         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1514         flags &= ~BDRV_REQ_COPY_ON_READ;
1515 
1516         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1517         if (ret < 0) {
1518             goto out;
1519         }
1520 
1521         if (!ret || pnum != bytes) {
1522             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1523                                            qiov, qiov_offset, flags);
1524             goto out;
1525         } else if (flags & BDRV_REQ_PREFETCH) {
1526             goto out;
1527         }
1528     }
1529 
1530     /* Forward the request to the BlockDriver, possibly fragmenting it */
1531     total_bytes = bdrv_getlength(bs);
1532     if (total_bytes < 0) {
1533         ret = total_bytes;
1534         goto out;
1535     }
1536 
1537     assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1538 
1539     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1540     if (bytes <= max_bytes && bytes <= max_transfer) {
1541         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1542         goto out;
1543     }
1544 
1545     while (bytes_remaining) {
1546         int64_t num;
1547 
1548         if (max_bytes) {
1549             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1550             assert(num);
1551 
1552             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1553                                      num, qiov,
1554                                      qiov_offset + bytes - bytes_remaining,
1555                                      flags);
1556             max_bytes -= num;
1557         } else {
1558             num = bytes_remaining;
1559             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1560                                     0, bytes_remaining);
1561         }
1562         if (ret < 0) {
1563             goto out;
1564         }
1565         bytes_remaining -= num;
1566     }
1567 
1568 out:
1569     return ret < 0 ? ret : 0;
1570 }
1571 
1572 /*
1573  * Request padding
1574  *
1575  *  |<---- align ----->|                     |<----- align ---->|
1576  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1577  *  |          |       |                     |     |            |
1578  * -*----------$-------*-------- ... --------*-----$------------*---
1579  *  |          |       |                     |     |            |
1580  *  |          offset  |                     |     end          |
1581  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1582  *  [buf   ... )                             [tail_buf          )
1583  *
1584  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1585  * is placed at the beginning of @buf and @tail at the @end.
1586  *
1587  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1588  * around tail, if tail exists.
1589  *
1590  * @merge_reads is true for small requests,
1591  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1592  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1593  */
1594 typedef struct BdrvRequestPadding {
1595     uint8_t *buf;
1596     size_t buf_len;
1597     uint8_t *tail_buf;
1598     size_t head;
1599     size_t tail;
1600     bool merge_reads;
1601     QEMUIOVector local_qiov;
1602 } BdrvRequestPadding;
1603 
1604 static bool bdrv_init_padding(BlockDriverState *bs,
1605                               int64_t offset, int64_t bytes,
1606                               BdrvRequestPadding *pad)
1607 {
1608     int64_t align = bs->bl.request_alignment;
1609     int64_t sum;
1610 
1611     bdrv_check_request(offset, bytes, &error_abort);
1612     assert(align <= INT_MAX); /* documented in block/block_int.h */
1613     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1614 
1615     memset(pad, 0, sizeof(*pad));
1616 
1617     pad->head = offset & (align - 1);
1618     pad->tail = ((offset + bytes) & (align - 1));
1619     if (pad->tail) {
1620         pad->tail = align - pad->tail;
1621     }
1622 
1623     if (!pad->head && !pad->tail) {
1624         return false;
1625     }
1626 
1627     assert(bytes); /* Nothing good in aligning zero-length requests */
1628 
1629     sum = pad->head + bytes + pad->tail;
1630     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1631     pad->buf = qemu_blockalign(bs, pad->buf_len);
1632     pad->merge_reads = sum == pad->buf_len;
1633     if (pad->tail) {
1634         pad->tail_buf = pad->buf + pad->buf_len - align;
1635     }
1636 
1637     return true;
1638 }
1639 
1640 static coroutine_fn int bdrv_padding_rmw_read(BdrvChild *child,
1641                                               BdrvTrackedRequest *req,
1642                                               BdrvRequestPadding *pad,
1643                                               bool zero_middle)
1644 {
1645     QEMUIOVector local_qiov;
1646     BlockDriverState *bs = child->bs;
1647     uint64_t align = bs->bl.request_alignment;
1648     int ret;
1649 
1650     assert(req->serialising && pad->buf);
1651 
1652     if (pad->head || pad->merge_reads) {
1653         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1654 
1655         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1656 
1657         if (pad->head) {
1658             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1659         }
1660         if (pad->merge_reads && pad->tail) {
1661             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1662         }
1663         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1664                                   align, &local_qiov, 0, 0);
1665         if (ret < 0) {
1666             return ret;
1667         }
1668         if (pad->head) {
1669             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1670         }
1671         if (pad->merge_reads && pad->tail) {
1672             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1673         }
1674 
1675         if (pad->merge_reads) {
1676             goto zero_mem;
1677         }
1678     }
1679 
1680     if (pad->tail) {
1681         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1682 
1683         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1684         ret = bdrv_aligned_preadv(
1685                 child, req,
1686                 req->overlap_offset + req->overlap_bytes - align,
1687                 align, align, &local_qiov, 0, 0);
1688         if (ret < 0) {
1689             return ret;
1690         }
1691         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1692     }
1693 
1694 zero_mem:
1695     if (zero_middle) {
1696         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1697     }
1698 
1699     return 0;
1700 }
1701 
1702 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1703 {
1704     if (pad->buf) {
1705         qemu_vfree(pad->buf);
1706         qemu_iovec_destroy(&pad->local_qiov);
1707     }
1708     memset(pad, 0, sizeof(*pad));
1709 }
1710 
1711 /*
1712  * bdrv_pad_request
1713  *
1714  * Exchange request parameters with padded request if needed. Don't include RMW
1715  * read of padding, bdrv_padding_rmw_read() should be called separately if
1716  * needed.
1717  *
1718  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1719  *  - on function start they represent original request
1720  *  - on failure or when padding is not needed they are unchanged
1721  *  - on success when padding is needed they represent padded request
1722  */
1723 static int bdrv_pad_request(BlockDriverState *bs,
1724                             QEMUIOVector **qiov, size_t *qiov_offset,
1725                             int64_t *offset, int64_t *bytes,
1726                             BdrvRequestPadding *pad, bool *padded,
1727                             BdrvRequestFlags *flags)
1728 {
1729     int ret;
1730 
1731     bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1732 
1733     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1734         if (padded) {
1735             *padded = false;
1736         }
1737         return 0;
1738     }
1739 
1740     ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1741                                    *qiov, *qiov_offset, *bytes,
1742                                    pad->buf + pad->buf_len - pad->tail,
1743                                    pad->tail);
1744     if (ret < 0) {
1745         bdrv_padding_destroy(pad);
1746         return ret;
1747     }
1748     *bytes += pad->head + pad->tail;
1749     *offset -= pad->head;
1750     *qiov = &pad->local_qiov;
1751     *qiov_offset = 0;
1752     if (padded) {
1753         *padded = true;
1754     }
1755     if (flags) {
1756         /* Can't use optimization hint with bounce buffer */
1757         *flags &= ~BDRV_REQ_REGISTERED_BUF;
1758     }
1759 
1760     return 0;
1761 }
1762 
1763 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1764     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1765     BdrvRequestFlags flags)
1766 {
1767     IO_CODE();
1768     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1769 }
1770 
1771 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1772     int64_t offset, int64_t bytes,
1773     QEMUIOVector *qiov, size_t qiov_offset,
1774     BdrvRequestFlags flags)
1775 {
1776     BlockDriverState *bs = child->bs;
1777     BdrvTrackedRequest req;
1778     BdrvRequestPadding pad;
1779     int ret;
1780     IO_CODE();
1781 
1782     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1783 
1784     if (!bdrv_is_inserted(bs)) {
1785         return -ENOMEDIUM;
1786     }
1787 
1788     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1789     if (ret < 0) {
1790         return ret;
1791     }
1792 
1793     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1794         /*
1795          * Aligning zero request is nonsense. Even if driver has special meaning
1796          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1797          * it to driver due to request_alignment.
1798          *
1799          * Still, no reason to return an error if someone do unaligned
1800          * zero-length read occasionally.
1801          */
1802         return 0;
1803     }
1804 
1805     bdrv_inc_in_flight(bs);
1806 
1807     /* Don't do copy-on-read if we read data before write operation */
1808     if (qatomic_read(&bs->copy_on_read)) {
1809         flags |= BDRV_REQ_COPY_ON_READ;
1810     }
1811 
1812     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1813                            NULL, &flags);
1814     if (ret < 0) {
1815         goto fail;
1816     }
1817 
1818     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1819     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1820                               bs->bl.request_alignment,
1821                               qiov, qiov_offset, flags);
1822     tracked_request_end(&req);
1823     bdrv_padding_destroy(&pad);
1824 
1825 fail:
1826     bdrv_dec_in_flight(bs);
1827 
1828     return ret;
1829 }
1830 
1831 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1832     int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1833 {
1834     BlockDriver *drv = bs->drv;
1835     QEMUIOVector qiov;
1836     void *buf = NULL;
1837     int ret = 0;
1838     bool need_flush = false;
1839     int head = 0;
1840     int tail = 0;
1841 
1842     int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1843                                             INT64_MAX);
1844     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1845                         bs->bl.request_alignment);
1846     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1847 
1848     bdrv_check_request(offset, bytes, &error_abort);
1849 
1850     if (!drv) {
1851         return -ENOMEDIUM;
1852     }
1853 
1854     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1855         return -ENOTSUP;
1856     }
1857 
1858     /* By definition there is no user buffer so this flag doesn't make sense */
1859     if (flags & BDRV_REQ_REGISTERED_BUF) {
1860         return -EINVAL;
1861     }
1862 
1863     /* Invalidate the cached block-status data range if this write overlaps */
1864     bdrv_bsc_invalidate_range(bs, offset, bytes);
1865 
1866     assert(alignment % bs->bl.request_alignment == 0);
1867     head = offset % alignment;
1868     tail = (offset + bytes) % alignment;
1869     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1870     assert(max_write_zeroes >= bs->bl.request_alignment);
1871 
1872     while (bytes > 0 && !ret) {
1873         int64_t num = bytes;
1874 
1875         /* Align request.  Block drivers can expect the "bulk" of the request
1876          * to be aligned, and that unaligned requests do not cross cluster
1877          * boundaries.
1878          */
1879         if (head) {
1880             /* Make a small request up to the first aligned sector. For
1881              * convenience, limit this request to max_transfer even if
1882              * we don't need to fall back to writes.  */
1883             num = MIN(MIN(bytes, max_transfer), alignment - head);
1884             head = (head + num) % alignment;
1885             assert(num < max_write_zeroes);
1886         } else if (tail && num > alignment) {
1887             /* Shorten the request to the last aligned sector.  */
1888             num -= tail;
1889         }
1890 
1891         /* limit request size */
1892         if (num > max_write_zeroes) {
1893             num = max_write_zeroes;
1894         }
1895 
1896         ret = -ENOTSUP;
1897         /* First try the efficient write zeroes operation */
1898         if (drv->bdrv_co_pwrite_zeroes) {
1899             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1900                                              flags & bs->supported_zero_flags);
1901             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1902                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1903                 need_flush = true;
1904             }
1905         } else {
1906             assert(!bs->supported_zero_flags);
1907         }
1908 
1909         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1910             /* Fall back to bounce buffer if write zeroes is unsupported */
1911             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1912 
1913             if ((flags & BDRV_REQ_FUA) &&
1914                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1915                 /* No need for bdrv_driver_pwrite() to do a fallback
1916                  * flush on each chunk; use just one at the end */
1917                 write_flags &= ~BDRV_REQ_FUA;
1918                 need_flush = true;
1919             }
1920             num = MIN(num, max_transfer);
1921             if (buf == NULL) {
1922                 buf = qemu_try_blockalign0(bs, num);
1923                 if (buf == NULL) {
1924                     ret = -ENOMEM;
1925                     goto fail;
1926                 }
1927             }
1928             qemu_iovec_init_buf(&qiov, buf, num);
1929 
1930             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1931 
1932             /* Keep bounce buffer around if it is big enough for all
1933              * all future requests.
1934              */
1935             if (num < max_transfer) {
1936                 qemu_vfree(buf);
1937                 buf = NULL;
1938             }
1939         }
1940 
1941         offset += num;
1942         bytes -= num;
1943     }
1944 
1945 fail:
1946     if (ret == 0 && need_flush) {
1947         ret = bdrv_co_flush(bs);
1948     }
1949     qemu_vfree(buf);
1950     return ret;
1951 }
1952 
1953 static inline int coroutine_fn
1954 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1955                           BdrvTrackedRequest *req, int flags)
1956 {
1957     BlockDriverState *bs = child->bs;
1958 
1959     bdrv_check_request(offset, bytes, &error_abort);
1960 
1961     if (bdrv_is_read_only(bs)) {
1962         return -EPERM;
1963     }
1964 
1965     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1966     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1967     assert(!(flags & ~BDRV_REQ_MASK));
1968     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1969 
1970     if (flags & BDRV_REQ_SERIALISING) {
1971         QEMU_LOCK_GUARD(&bs->reqs_lock);
1972 
1973         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1974 
1975         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1976             return -EBUSY;
1977         }
1978 
1979         bdrv_wait_serialising_requests_locked(req);
1980     } else {
1981         bdrv_wait_serialising_requests(req);
1982     }
1983 
1984     assert(req->overlap_offset <= offset);
1985     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1986     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1987            child->perm & BLK_PERM_RESIZE);
1988 
1989     switch (req->type) {
1990     case BDRV_TRACKED_WRITE:
1991     case BDRV_TRACKED_DISCARD:
1992         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1993             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1994         } else {
1995             assert(child->perm & BLK_PERM_WRITE);
1996         }
1997         bdrv_write_threshold_check_write(bs, offset, bytes);
1998         return 0;
1999     case BDRV_TRACKED_TRUNCATE:
2000         assert(child->perm & BLK_PERM_RESIZE);
2001         return 0;
2002     default:
2003         abort();
2004     }
2005 }
2006 
2007 static inline void coroutine_fn
2008 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2009                          BdrvTrackedRequest *req, int ret)
2010 {
2011     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2012     BlockDriverState *bs = child->bs;
2013 
2014     bdrv_check_request(offset, bytes, &error_abort);
2015 
2016     qatomic_inc(&bs->write_gen);
2017 
2018     /*
2019      * Discard cannot extend the image, but in error handling cases, such as
2020      * when reverting a qcow2 cluster allocation, the discarded range can pass
2021      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2022      * here. Instead, just skip it, since semantically a discard request
2023      * beyond EOF cannot expand the image anyway.
2024      */
2025     if (ret == 0 &&
2026         (req->type == BDRV_TRACKED_TRUNCATE ||
2027          end_sector > bs->total_sectors) &&
2028         req->type != BDRV_TRACKED_DISCARD) {
2029         bs->total_sectors = end_sector;
2030         bdrv_parent_cb_resize(bs);
2031         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2032     }
2033     if (req->bytes) {
2034         switch (req->type) {
2035         case BDRV_TRACKED_WRITE:
2036             stat64_max(&bs->wr_highest_offset, offset + bytes);
2037             /* fall through, to set dirty bits */
2038         case BDRV_TRACKED_DISCARD:
2039             bdrv_set_dirty(bs, offset, bytes);
2040             break;
2041         default:
2042             break;
2043         }
2044     }
2045 }
2046 
2047 /*
2048  * Forwards an already correctly aligned write request to the BlockDriver,
2049  * after possibly fragmenting it.
2050  */
2051 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2052     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2053     int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
2054     BdrvRequestFlags flags)
2055 {
2056     BlockDriverState *bs = child->bs;
2057     BlockDriver *drv = bs->drv;
2058     int ret;
2059 
2060     int64_t bytes_remaining = bytes;
2061     int max_transfer;
2062 
2063     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2064 
2065     if (!drv) {
2066         return -ENOMEDIUM;
2067     }
2068 
2069     if (bdrv_has_readonly_bitmaps(bs)) {
2070         return -EPERM;
2071     }
2072 
2073     assert(is_power_of_2(align));
2074     assert((offset & (align - 1)) == 0);
2075     assert((bytes & (align - 1)) == 0);
2076     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2077                                    align);
2078 
2079     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2080 
2081     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2082         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2083         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2084         flags |= BDRV_REQ_ZERO_WRITE;
2085         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2086             flags |= BDRV_REQ_MAY_UNMAP;
2087         }
2088     }
2089 
2090     if (ret < 0) {
2091         /* Do nothing, write notifier decided to fail this request */
2092     } else if (flags & BDRV_REQ_ZERO_WRITE) {
2093         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2094         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2095     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2096         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2097                                              qiov, qiov_offset);
2098     } else if (bytes <= max_transfer) {
2099         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2100         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2101     } else {
2102         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2103         while (bytes_remaining) {
2104             int num = MIN(bytes_remaining, max_transfer);
2105             int local_flags = flags;
2106 
2107             assert(num);
2108             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2109                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2110                 /* If FUA is going to be emulated by flush, we only
2111                  * need to flush on the last iteration */
2112                 local_flags &= ~BDRV_REQ_FUA;
2113             }
2114 
2115             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2116                                       num, qiov,
2117                                       qiov_offset + bytes - bytes_remaining,
2118                                       local_flags);
2119             if (ret < 0) {
2120                 break;
2121             }
2122             bytes_remaining -= num;
2123         }
2124     }
2125     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2126 
2127     if (ret >= 0) {
2128         ret = 0;
2129     }
2130     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2131 
2132     return ret;
2133 }
2134 
2135 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2136                                                 int64_t offset,
2137                                                 int64_t bytes,
2138                                                 BdrvRequestFlags flags,
2139                                                 BdrvTrackedRequest *req)
2140 {
2141     BlockDriverState *bs = child->bs;
2142     QEMUIOVector local_qiov;
2143     uint64_t align = bs->bl.request_alignment;
2144     int ret = 0;
2145     bool padding;
2146     BdrvRequestPadding pad;
2147 
2148     /* This flag doesn't make sense for padding or zero writes */
2149     flags &= ~BDRV_REQ_REGISTERED_BUF;
2150 
2151     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2152     if (padding) {
2153         assert(!(flags & BDRV_REQ_NO_WAIT));
2154         bdrv_make_request_serialising(req, align);
2155 
2156         bdrv_padding_rmw_read(child, req, &pad, true);
2157 
2158         if (pad.head || pad.merge_reads) {
2159             int64_t aligned_offset = offset & ~(align - 1);
2160             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2161 
2162             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2163             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2164                                        align, &local_qiov, 0,
2165                                        flags & ~BDRV_REQ_ZERO_WRITE);
2166             if (ret < 0 || pad.merge_reads) {
2167                 /* Error or all work is done */
2168                 goto out;
2169             }
2170             offset += write_bytes - pad.head;
2171             bytes -= write_bytes - pad.head;
2172         }
2173     }
2174 
2175     assert(!bytes || (offset & (align - 1)) == 0);
2176     if (bytes >= align) {
2177         /* Write the aligned part in the middle. */
2178         int64_t aligned_bytes = bytes & ~(align - 1);
2179         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2180                                    NULL, 0, flags);
2181         if (ret < 0) {
2182             goto out;
2183         }
2184         bytes -= aligned_bytes;
2185         offset += aligned_bytes;
2186     }
2187 
2188     assert(!bytes || (offset & (align - 1)) == 0);
2189     if (bytes) {
2190         assert(align == pad.tail + bytes);
2191 
2192         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2193         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2194                                    &local_qiov, 0,
2195                                    flags & ~BDRV_REQ_ZERO_WRITE);
2196     }
2197 
2198 out:
2199     bdrv_padding_destroy(&pad);
2200 
2201     return ret;
2202 }
2203 
2204 /*
2205  * Handle a write request in coroutine context
2206  */
2207 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2208     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2209     BdrvRequestFlags flags)
2210 {
2211     IO_CODE();
2212     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2213 }
2214 
2215 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2216     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2217     BdrvRequestFlags flags)
2218 {
2219     BlockDriverState *bs = child->bs;
2220     BdrvTrackedRequest req;
2221     uint64_t align = bs->bl.request_alignment;
2222     BdrvRequestPadding pad;
2223     int ret;
2224     bool padded = false;
2225     IO_CODE();
2226 
2227     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2228 
2229     if (!bdrv_is_inserted(bs)) {
2230         return -ENOMEDIUM;
2231     }
2232 
2233     if (flags & BDRV_REQ_ZERO_WRITE) {
2234         ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2235     } else {
2236         ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2237     }
2238     if (ret < 0) {
2239         return ret;
2240     }
2241 
2242     /* If the request is misaligned then we can't make it efficient */
2243     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2244         !QEMU_IS_ALIGNED(offset | bytes, align))
2245     {
2246         return -ENOTSUP;
2247     }
2248 
2249     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2250         /*
2251          * Aligning zero request is nonsense. Even if driver has special meaning
2252          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2253          * it to driver due to request_alignment.
2254          *
2255          * Still, no reason to return an error if someone do unaligned
2256          * zero-length write occasionally.
2257          */
2258         return 0;
2259     }
2260 
2261     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2262         /*
2263          * Pad request for following read-modify-write cycle.
2264          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2265          * alignment only if there is no ZERO flag.
2266          */
2267         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2268                                &padded, &flags);
2269         if (ret < 0) {
2270             return ret;
2271         }
2272     }
2273 
2274     bdrv_inc_in_flight(bs);
2275     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2276 
2277     if (flags & BDRV_REQ_ZERO_WRITE) {
2278         assert(!padded);
2279         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2280         goto out;
2281     }
2282 
2283     if (padded) {
2284         /*
2285          * Request was unaligned to request_alignment and therefore
2286          * padded.  We are going to do read-modify-write, and must
2287          * serialize the request to prevent interactions of the
2288          * widened region with other transactions.
2289          */
2290         assert(!(flags & BDRV_REQ_NO_WAIT));
2291         bdrv_make_request_serialising(&req, align);
2292         bdrv_padding_rmw_read(child, &req, &pad, false);
2293     }
2294 
2295     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2296                                qiov, qiov_offset, flags);
2297 
2298     bdrv_padding_destroy(&pad);
2299 
2300 out:
2301     tracked_request_end(&req);
2302     bdrv_dec_in_flight(bs);
2303 
2304     return ret;
2305 }
2306 
2307 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2308                                        int64_t bytes, BdrvRequestFlags flags)
2309 {
2310     IO_CODE();
2311     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2312 
2313     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2314         flags &= ~BDRV_REQ_MAY_UNMAP;
2315     }
2316 
2317     return bdrv_co_pwritev(child, offset, bytes, NULL,
2318                            BDRV_REQ_ZERO_WRITE | flags);
2319 }
2320 
2321 /*
2322  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2323  */
2324 int bdrv_flush_all(void)
2325 {
2326     BdrvNextIterator it;
2327     BlockDriverState *bs = NULL;
2328     int result = 0;
2329 
2330     GLOBAL_STATE_CODE();
2331 
2332     /*
2333      * bdrv queue is managed by record/replay,
2334      * creating new flush request for stopping
2335      * the VM may break the determinism
2336      */
2337     if (replay_events_enabled()) {
2338         return result;
2339     }
2340 
2341     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2342         AioContext *aio_context = bdrv_get_aio_context(bs);
2343         int ret;
2344 
2345         aio_context_acquire(aio_context);
2346         ret = bdrv_flush(bs);
2347         if (ret < 0 && !result) {
2348             result = ret;
2349         }
2350         aio_context_release(aio_context);
2351     }
2352 
2353     return result;
2354 }
2355 
2356 /*
2357  * Returns the allocation status of the specified sectors.
2358  * Drivers not implementing the functionality are assumed to not support
2359  * backing files, hence all their sectors are reported as allocated.
2360  *
2361  * If 'want_zero' is true, the caller is querying for mapping
2362  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2363  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2364  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2365  *
2366  * If 'offset' is beyond the end of the disk image the return value is
2367  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2368  *
2369  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2370  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2371  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2372  *
2373  * 'pnum' is set to the number of bytes (including and immediately
2374  * following the specified offset) that are easily known to be in the
2375  * same allocated/unallocated state.  Note that a second call starting
2376  * at the original offset plus returned pnum may have the same status.
2377  * The returned value is non-zero on success except at end-of-file.
2378  *
2379  * Returns negative errno on failure.  Otherwise, if the
2380  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2381  * set to the host mapping and BDS corresponding to the guest offset.
2382  */
2383 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2384                                              bool want_zero,
2385                                              int64_t offset, int64_t bytes,
2386                                              int64_t *pnum, int64_t *map,
2387                                              BlockDriverState **file)
2388 {
2389     int64_t total_size;
2390     int64_t n; /* bytes */
2391     int ret;
2392     int64_t local_map = 0;
2393     BlockDriverState *local_file = NULL;
2394     int64_t aligned_offset, aligned_bytes;
2395     uint32_t align;
2396     bool has_filtered_child;
2397 
2398     assert(pnum);
2399     *pnum = 0;
2400     total_size = bdrv_getlength(bs);
2401     if (total_size < 0) {
2402         ret = total_size;
2403         goto early_out;
2404     }
2405 
2406     if (offset >= total_size) {
2407         ret = BDRV_BLOCK_EOF;
2408         goto early_out;
2409     }
2410     if (!bytes) {
2411         ret = 0;
2412         goto early_out;
2413     }
2414 
2415     n = total_size - offset;
2416     if (n < bytes) {
2417         bytes = n;
2418     }
2419 
2420     /* Must be non-NULL or bdrv_getlength() would have failed */
2421     assert(bs->drv);
2422     has_filtered_child = bdrv_filter_child(bs);
2423     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2424         *pnum = bytes;
2425         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2426         if (offset + bytes == total_size) {
2427             ret |= BDRV_BLOCK_EOF;
2428         }
2429         if (bs->drv->protocol_name) {
2430             ret |= BDRV_BLOCK_OFFSET_VALID;
2431             local_map = offset;
2432             local_file = bs;
2433         }
2434         goto early_out;
2435     }
2436 
2437     bdrv_inc_in_flight(bs);
2438 
2439     /* Round out to request_alignment boundaries */
2440     align = bs->bl.request_alignment;
2441     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2442     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2443 
2444     if (bs->drv->bdrv_co_block_status) {
2445         /*
2446          * Use the block-status cache only for protocol nodes: Format
2447          * drivers are generally quick to inquire the status, but protocol
2448          * drivers often need to get information from outside of qemu, so
2449          * we do not have control over the actual implementation.  There
2450          * have been cases where inquiring the status took an unreasonably
2451          * long time, and we can do nothing in qemu to fix it.
2452          * This is especially problematic for images with large data areas,
2453          * because finding the few holes in them and giving them special
2454          * treatment does not gain much performance.  Therefore, we try to
2455          * cache the last-identified data region.
2456          *
2457          * Second, limiting ourselves to protocol nodes allows us to assume
2458          * the block status for data regions to be DATA | OFFSET_VALID, and
2459          * that the host offset is the same as the guest offset.
2460          *
2461          * Note that it is possible that external writers zero parts of
2462          * the cached regions without the cache being invalidated, and so
2463          * we may report zeroes as data.  This is not catastrophic,
2464          * however, because reporting zeroes as data is fine.
2465          */
2466         if (QLIST_EMPTY(&bs->children) &&
2467             bdrv_bsc_is_data(bs, aligned_offset, pnum))
2468         {
2469             ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2470             local_file = bs;
2471             local_map = aligned_offset;
2472         } else {
2473             ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2474                                                 aligned_bytes, pnum, &local_map,
2475                                                 &local_file);
2476 
2477             /*
2478              * Note that checking QLIST_EMPTY(&bs->children) is also done when
2479              * the cache is queried above.  Technically, we do not need to check
2480              * it here; the worst that can happen is that we fill the cache for
2481              * non-protocol nodes, and then it is never used.  However, filling
2482              * the cache requires an RCU update, so double check here to avoid
2483              * such an update if possible.
2484              *
2485              * Check want_zero, because we only want to update the cache when we
2486              * have accurate information about what is zero and what is data.
2487              */
2488             if (want_zero &&
2489                 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2490                 QLIST_EMPTY(&bs->children))
2491             {
2492                 /*
2493                  * When a protocol driver reports BLOCK_OFFSET_VALID, the
2494                  * returned local_map value must be the same as the offset we
2495                  * have passed (aligned_offset), and local_bs must be the node
2496                  * itself.
2497                  * Assert this, because we follow this rule when reading from
2498                  * the cache (see the `local_file = bs` and
2499                  * `local_map = aligned_offset` assignments above), and the
2500                  * result the cache delivers must be the same as the driver
2501                  * would deliver.
2502                  */
2503                 assert(local_file == bs);
2504                 assert(local_map == aligned_offset);
2505                 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2506             }
2507         }
2508     } else {
2509         /* Default code for filters */
2510 
2511         local_file = bdrv_filter_bs(bs);
2512         assert(local_file);
2513 
2514         *pnum = aligned_bytes;
2515         local_map = aligned_offset;
2516         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2517     }
2518     if (ret < 0) {
2519         *pnum = 0;
2520         goto out;
2521     }
2522 
2523     /*
2524      * The driver's result must be a non-zero multiple of request_alignment.
2525      * Clamp pnum and adjust map to original request.
2526      */
2527     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2528            align > offset - aligned_offset);
2529     if (ret & BDRV_BLOCK_RECURSE) {
2530         assert(ret & BDRV_BLOCK_DATA);
2531         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2532         assert(!(ret & BDRV_BLOCK_ZERO));
2533     }
2534 
2535     *pnum -= offset - aligned_offset;
2536     if (*pnum > bytes) {
2537         *pnum = bytes;
2538     }
2539     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2540         local_map += offset - aligned_offset;
2541     }
2542 
2543     if (ret & BDRV_BLOCK_RAW) {
2544         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2545         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2546                                    *pnum, pnum, &local_map, &local_file);
2547         goto out;
2548     }
2549 
2550     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2551         ret |= BDRV_BLOCK_ALLOCATED;
2552     } else if (bs->drv->supports_backing) {
2553         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2554 
2555         if (!cow_bs) {
2556             ret |= BDRV_BLOCK_ZERO;
2557         } else if (want_zero) {
2558             int64_t size2 = bdrv_getlength(cow_bs);
2559 
2560             if (size2 >= 0 && offset >= size2) {
2561                 ret |= BDRV_BLOCK_ZERO;
2562             }
2563         }
2564     }
2565 
2566     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2567         local_file && local_file != bs &&
2568         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2569         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2570         int64_t file_pnum;
2571         int ret2;
2572 
2573         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2574                                     *pnum, &file_pnum, NULL, NULL);
2575         if (ret2 >= 0) {
2576             /* Ignore errors.  This is just providing extra information, it
2577              * is useful but not necessary.
2578              */
2579             if (ret2 & BDRV_BLOCK_EOF &&
2580                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2581                 /*
2582                  * It is valid for the format block driver to read
2583                  * beyond the end of the underlying file's current
2584                  * size; such areas read as zero.
2585                  */
2586                 ret |= BDRV_BLOCK_ZERO;
2587             } else {
2588                 /* Limit request to the range reported by the protocol driver */
2589                 *pnum = file_pnum;
2590                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2591             }
2592         }
2593     }
2594 
2595 out:
2596     bdrv_dec_in_flight(bs);
2597     if (ret >= 0 && offset + *pnum == total_size) {
2598         ret |= BDRV_BLOCK_EOF;
2599     }
2600 early_out:
2601     if (file) {
2602         *file = local_file;
2603     }
2604     if (map) {
2605         *map = local_map;
2606     }
2607     return ret;
2608 }
2609 
2610 int coroutine_fn
2611 bdrv_co_common_block_status_above(BlockDriverState *bs,
2612                                   BlockDriverState *base,
2613                                   bool include_base,
2614                                   bool want_zero,
2615                                   int64_t offset,
2616                                   int64_t bytes,
2617                                   int64_t *pnum,
2618                                   int64_t *map,
2619                                   BlockDriverState **file,
2620                                   int *depth)
2621 {
2622     int ret;
2623     BlockDriverState *p;
2624     int64_t eof = 0;
2625     int dummy;
2626     IO_CODE();
2627 
2628     assert(!include_base || base); /* Can't include NULL base */
2629 
2630     if (!depth) {
2631         depth = &dummy;
2632     }
2633     *depth = 0;
2634 
2635     if (!include_base && bs == base) {
2636         *pnum = bytes;
2637         return 0;
2638     }
2639 
2640     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2641     ++*depth;
2642     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2643         return ret;
2644     }
2645 
2646     if (ret & BDRV_BLOCK_EOF) {
2647         eof = offset + *pnum;
2648     }
2649 
2650     assert(*pnum <= bytes);
2651     bytes = *pnum;
2652 
2653     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2654          p = bdrv_filter_or_cow_bs(p))
2655     {
2656         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2657                                    file);
2658         ++*depth;
2659         if (ret < 0) {
2660             return ret;
2661         }
2662         if (*pnum == 0) {
2663             /*
2664              * The top layer deferred to this layer, and because this layer is
2665              * short, any zeroes that we synthesize beyond EOF behave as if they
2666              * were allocated at this layer.
2667              *
2668              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2669              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2670              * below.
2671              */
2672             assert(ret & BDRV_BLOCK_EOF);
2673             *pnum = bytes;
2674             if (file) {
2675                 *file = p;
2676             }
2677             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2678             break;
2679         }
2680         if (ret & BDRV_BLOCK_ALLOCATED) {
2681             /*
2682              * We've found the node and the status, we must break.
2683              *
2684              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2685              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2686              * below.
2687              */
2688             ret &= ~BDRV_BLOCK_EOF;
2689             break;
2690         }
2691 
2692         if (p == base) {
2693             assert(include_base);
2694             break;
2695         }
2696 
2697         /*
2698          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2699          * let's continue the diving.
2700          */
2701         assert(*pnum <= bytes);
2702         bytes = *pnum;
2703     }
2704 
2705     if (offset + *pnum == eof) {
2706         ret |= BDRV_BLOCK_EOF;
2707     }
2708 
2709     return ret;
2710 }
2711 
2712 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2713                             int64_t offset, int64_t bytes, int64_t *pnum,
2714                             int64_t *map, BlockDriverState **file)
2715 {
2716     IO_CODE();
2717     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2718                                           pnum, map, file, NULL);
2719 }
2720 
2721 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2722                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2723 {
2724     IO_CODE();
2725     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2726                                    offset, bytes, pnum, map, file);
2727 }
2728 
2729 /*
2730  * Check @bs (and its backing chain) to see if the range defined
2731  * by @offset and @bytes is known to read as zeroes.
2732  * Return 1 if that is the case, 0 otherwise and -errno on error.
2733  * This test is meant to be fast rather than accurate so returning 0
2734  * does not guarantee non-zero data.
2735  */
2736 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2737                                       int64_t bytes)
2738 {
2739     int ret;
2740     int64_t pnum = bytes;
2741     IO_CODE();
2742 
2743     if (!bytes) {
2744         return 1;
2745     }
2746 
2747     ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2748                                          bytes, &pnum, NULL, NULL, NULL);
2749 
2750     if (ret < 0) {
2751         return ret;
2752     }
2753 
2754     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2755 }
2756 
2757 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2758                                    int64_t bytes, int64_t *pnum)
2759 {
2760     int ret;
2761     int64_t dummy;
2762     IO_CODE();
2763 
2764     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2765                                          bytes, pnum ? pnum : &dummy, NULL,
2766                                          NULL, NULL);
2767     if (ret < 0) {
2768         return ret;
2769     }
2770     return !!(ret & BDRV_BLOCK_ALLOCATED);
2771 }
2772 
2773 /*
2774  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2775  *
2776  * Return a positive depth if (a prefix of) the given range is allocated
2777  * in any image between BASE and TOP (BASE is only included if include_base
2778  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2779  * BASE can be NULL to check if the given offset is allocated in any
2780  * image of the chain.  Return 0 otherwise, or negative errno on
2781  * failure.
2782  *
2783  * 'pnum' is set to the number of bytes (including and immediately
2784  * following the specified offset) that are known to be in the same
2785  * allocated/unallocated state.  Note that a subsequent call starting
2786  * at 'offset + *pnum' may return the same allocation status (in other
2787  * words, the result is not necessarily the maximum possible range);
2788  * but 'pnum' will only be 0 when end of file is reached.
2789  */
2790 int bdrv_is_allocated_above(BlockDriverState *top,
2791                             BlockDriverState *base,
2792                             bool include_base, int64_t offset,
2793                             int64_t bytes, int64_t *pnum)
2794 {
2795     int depth;
2796     int ret = bdrv_common_block_status_above(top, base, include_base, false,
2797                                              offset, bytes, pnum, NULL, NULL,
2798                                              &depth);
2799     IO_CODE();
2800     if (ret < 0) {
2801         return ret;
2802     }
2803 
2804     if (ret & BDRV_BLOCK_ALLOCATED) {
2805         return depth;
2806     }
2807     return 0;
2808 }
2809 
2810 int coroutine_fn
2811 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2812 {
2813     BlockDriver *drv = bs->drv;
2814     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2815     int ret;
2816     IO_CODE();
2817 
2818     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2819     if (ret < 0) {
2820         return ret;
2821     }
2822 
2823     if (!drv) {
2824         return -ENOMEDIUM;
2825     }
2826 
2827     bdrv_inc_in_flight(bs);
2828 
2829     if (drv->bdrv_load_vmstate) {
2830         ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2831     } else if (child_bs) {
2832         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2833     } else {
2834         ret = -ENOTSUP;
2835     }
2836 
2837     bdrv_dec_in_flight(bs);
2838 
2839     return ret;
2840 }
2841 
2842 int coroutine_fn
2843 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2844 {
2845     BlockDriver *drv = bs->drv;
2846     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2847     int ret;
2848     IO_CODE();
2849 
2850     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2851     if (ret < 0) {
2852         return ret;
2853     }
2854 
2855     if (!drv) {
2856         return -ENOMEDIUM;
2857     }
2858 
2859     bdrv_inc_in_flight(bs);
2860 
2861     if (drv->bdrv_save_vmstate) {
2862         ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2863     } else if (child_bs) {
2864         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2865     } else {
2866         ret = -ENOTSUP;
2867     }
2868 
2869     bdrv_dec_in_flight(bs);
2870 
2871     return ret;
2872 }
2873 
2874 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2875                       int64_t pos, int size)
2876 {
2877     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2878     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2879     IO_CODE();
2880 
2881     return ret < 0 ? ret : size;
2882 }
2883 
2884 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2885                       int64_t pos, int size)
2886 {
2887     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2888     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2889     IO_CODE();
2890 
2891     return ret < 0 ? ret : size;
2892 }
2893 
2894 /**************************************************************/
2895 /* async I/Os */
2896 
2897 void bdrv_aio_cancel(BlockAIOCB *acb)
2898 {
2899     IO_CODE();
2900     qemu_aio_ref(acb);
2901     bdrv_aio_cancel_async(acb);
2902     while (acb->refcnt > 1) {
2903         if (acb->aiocb_info->get_aio_context) {
2904             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2905         } else if (acb->bs) {
2906             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2907              * assert that we're not using an I/O thread.  Thread-safe
2908              * code should use bdrv_aio_cancel_async exclusively.
2909              */
2910             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2911             aio_poll(bdrv_get_aio_context(acb->bs), true);
2912         } else {
2913             abort();
2914         }
2915     }
2916     qemu_aio_unref(acb);
2917 }
2918 
2919 /* Async version of aio cancel. The caller is not blocked if the acb implements
2920  * cancel_async, otherwise we do nothing and let the request normally complete.
2921  * In either case the completion callback must be called. */
2922 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2923 {
2924     IO_CODE();
2925     if (acb->aiocb_info->cancel_async) {
2926         acb->aiocb_info->cancel_async(acb);
2927     }
2928 }
2929 
2930 /**************************************************************/
2931 /* Coroutine block device emulation */
2932 
2933 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2934 {
2935     BdrvChild *primary_child = bdrv_primary_child(bs);
2936     BdrvChild *child;
2937     int current_gen;
2938     int ret = 0;
2939     IO_CODE();
2940 
2941     bdrv_inc_in_flight(bs);
2942 
2943     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2944         bdrv_is_sg(bs)) {
2945         goto early_exit;
2946     }
2947 
2948     qemu_co_mutex_lock(&bs->reqs_lock);
2949     current_gen = qatomic_read(&bs->write_gen);
2950 
2951     /* Wait until any previous flushes are completed */
2952     while (bs->active_flush_req) {
2953         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2954     }
2955 
2956     /* Flushes reach this point in nondecreasing current_gen order.  */
2957     bs->active_flush_req = true;
2958     qemu_co_mutex_unlock(&bs->reqs_lock);
2959 
2960     /* Write back all layers by calling one driver function */
2961     if (bs->drv->bdrv_co_flush) {
2962         ret = bs->drv->bdrv_co_flush(bs);
2963         goto out;
2964     }
2965 
2966     /* Write back cached data to the OS even with cache=unsafe */
2967     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2968     if (bs->drv->bdrv_co_flush_to_os) {
2969         ret = bs->drv->bdrv_co_flush_to_os(bs);
2970         if (ret < 0) {
2971             goto out;
2972         }
2973     }
2974 
2975     /* But don't actually force it to the disk with cache=unsafe */
2976     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2977         goto flush_children;
2978     }
2979 
2980     /* Check if we really need to flush anything */
2981     if (bs->flushed_gen == current_gen) {
2982         goto flush_children;
2983     }
2984 
2985     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2986     if (!bs->drv) {
2987         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2988          * (even in case of apparent success) */
2989         ret = -ENOMEDIUM;
2990         goto out;
2991     }
2992     if (bs->drv->bdrv_co_flush_to_disk) {
2993         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2994     } else if (bs->drv->bdrv_aio_flush) {
2995         BlockAIOCB *acb;
2996         CoroutineIOCompletion co = {
2997             .coroutine = qemu_coroutine_self(),
2998         };
2999 
3000         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3001         if (acb == NULL) {
3002             ret = -EIO;
3003         } else {
3004             qemu_coroutine_yield();
3005             ret = co.ret;
3006         }
3007     } else {
3008         /*
3009          * Some block drivers always operate in either writethrough or unsafe
3010          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3011          * know how the server works (because the behaviour is hardcoded or
3012          * depends on server-side configuration), so we can't ensure that
3013          * everything is safe on disk. Returning an error doesn't work because
3014          * that would break guests even if the server operates in writethrough
3015          * mode.
3016          *
3017          * Let's hope the user knows what he's doing.
3018          */
3019         ret = 0;
3020     }
3021 
3022     if (ret < 0) {
3023         goto out;
3024     }
3025 
3026     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
3027      * in the case of cache=unsafe, so there are no useless flushes.
3028      */
3029 flush_children:
3030     ret = 0;
3031     QLIST_FOREACH(child, &bs->children, next) {
3032         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3033             int this_child_ret = bdrv_co_flush(child->bs);
3034             if (!ret) {
3035                 ret = this_child_ret;
3036             }
3037         }
3038     }
3039 
3040 out:
3041     /* Notify any pending flushes that we have completed */
3042     if (ret == 0) {
3043         bs->flushed_gen = current_gen;
3044     }
3045 
3046     qemu_co_mutex_lock(&bs->reqs_lock);
3047     bs->active_flush_req = false;
3048     /* Return value is ignored - it's ok if wait queue is empty */
3049     qemu_co_queue_next(&bs->flush_queue);
3050     qemu_co_mutex_unlock(&bs->reqs_lock);
3051 
3052 early_exit:
3053     bdrv_dec_in_flight(bs);
3054     return ret;
3055 }
3056 
3057 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3058                                   int64_t bytes)
3059 {
3060     BdrvTrackedRequest req;
3061     int ret;
3062     int64_t max_pdiscard;
3063     int head, tail, align;
3064     BlockDriverState *bs = child->bs;
3065     IO_CODE();
3066 
3067     if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
3068         return -ENOMEDIUM;
3069     }
3070 
3071     if (bdrv_has_readonly_bitmaps(bs)) {
3072         return -EPERM;
3073     }
3074 
3075     ret = bdrv_check_request(offset, bytes, NULL);
3076     if (ret < 0) {
3077         return ret;
3078     }
3079 
3080     /* Do nothing if disabled.  */
3081     if (!(bs->open_flags & BDRV_O_UNMAP)) {
3082         return 0;
3083     }
3084 
3085     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3086         return 0;
3087     }
3088 
3089     /* Invalidate the cached block-status data range if this discard overlaps */
3090     bdrv_bsc_invalidate_range(bs, offset, bytes);
3091 
3092     /* Discard is advisory, but some devices track and coalesce
3093      * unaligned requests, so we must pass everything down rather than
3094      * round here.  Still, most devices will just silently ignore
3095      * unaligned requests (by returning -ENOTSUP), so we must fragment
3096      * the request accordingly.  */
3097     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3098     assert(align % bs->bl.request_alignment == 0);
3099     head = offset % align;
3100     tail = (offset + bytes) % align;
3101 
3102     bdrv_inc_in_flight(bs);
3103     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3104 
3105     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3106     if (ret < 0) {
3107         goto out;
3108     }
3109 
3110     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3111                                    align);
3112     assert(max_pdiscard >= bs->bl.request_alignment);
3113 
3114     while (bytes > 0) {
3115         int64_t num = bytes;
3116 
3117         if (head) {
3118             /* Make small requests to get to alignment boundaries. */
3119             num = MIN(bytes, align - head);
3120             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3121                 num %= bs->bl.request_alignment;
3122             }
3123             head = (head + num) % align;
3124             assert(num < max_pdiscard);
3125         } else if (tail) {
3126             if (num > align) {
3127                 /* Shorten the request to the last aligned cluster.  */
3128                 num -= tail;
3129             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3130                        tail > bs->bl.request_alignment) {
3131                 tail %= bs->bl.request_alignment;
3132                 num -= tail;
3133             }
3134         }
3135         /* limit request size */
3136         if (num > max_pdiscard) {
3137             num = max_pdiscard;
3138         }
3139 
3140         if (!bs->drv) {
3141             ret = -ENOMEDIUM;
3142             goto out;
3143         }
3144         if (bs->drv->bdrv_co_pdiscard) {
3145             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3146         } else {
3147             BlockAIOCB *acb;
3148             CoroutineIOCompletion co = {
3149                 .coroutine = qemu_coroutine_self(),
3150             };
3151 
3152             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3153                                              bdrv_co_io_em_complete, &co);
3154             if (acb == NULL) {
3155                 ret = -EIO;
3156                 goto out;
3157             } else {
3158                 qemu_coroutine_yield();
3159                 ret = co.ret;
3160             }
3161         }
3162         if (ret && ret != -ENOTSUP) {
3163             goto out;
3164         }
3165 
3166         offset += num;
3167         bytes -= num;
3168     }
3169     ret = 0;
3170 out:
3171     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3172     tracked_request_end(&req);
3173     bdrv_dec_in_flight(bs);
3174     return ret;
3175 }
3176 
3177 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3178 {
3179     BlockDriver *drv = bs->drv;
3180     CoroutineIOCompletion co = {
3181         .coroutine = qemu_coroutine_self(),
3182     };
3183     BlockAIOCB *acb;
3184     IO_CODE();
3185 
3186     bdrv_inc_in_flight(bs);
3187     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3188         co.ret = -ENOTSUP;
3189         goto out;
3190     }
3191 
3192     if (drv->bdrv_co_ioctl) {
3193         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3194     } else {
3195         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3196         if (!acb) {
3197             co.ret = -ENOTSUP;
3198             goto out;
3199         }
3200         qemu_coroutine_yield();
3201     }
3202 out:
3203     bdrv_dec_in_flight(bs);
3204     return co.ret;
3205 }
3206 
3207 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3208 {
3209     IO_CODE();
3210     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3211 }
3212 
3213 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3214 {
3215     IO_CODE();
3216     return memset(qemu_blockalign(bs, size), 0, size);
3217 }
3218 
3219 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3220 {
3221     size_t align = bdrv_opt_mem_align(bs);
3222     IO_CODE();
3223 
3224     /* Ensure that NULL is never returned on success */
3225     assert(align > 0);
3226     if (size == 0) {
3227         size = align;
3228     }
3229 
3230     return qemu_try_memalign(align, size);
3231 }
3232 
3233 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3234 {
3235     void *mem = qemu_try_blockalign(bs, size);
3236     IO_CODE();
3237 
3238     if (mem) {
3239         memset(mem, 0, size);
3240     }
3241 
3242     return mem;
3243 }
3244 
3245 void bdrv_io_plug(BlockDriverState *bs)
3246 {
3247     BdrvChild *child;
3248     IO_CODE();
3249 
3250     QLIST_FOREACH(child, &bs->children, next) {
3251         bdrv_io_plug(child->bs);
3252     }
3253 
3254     if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3255         BlockDriver *drv = bs->drv;
3256         if (drv && drv->bdrv_io_plug) {
3257             drv->bdrv_io_plug(bs);
3258         }
3259     }
3260 }
3261 
3262 void bdrv_io_unplug(BlockDriverState *bs)
3263 {
3264     BdrvChild *child;
3265     IO_CODE();
3266 
3267     assert(bs->io_plugged);
3268     if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3269         BlockDriver *drv = bs->drv;
3270         if (drv && drv->bdrv_io_unplug) {
3271             drv->bdrv_io_unplug(bs);
3272         }
3273     }
3274 
3275     QLIST_FOREACH(child, &bs->children, next) {
3276         bdrv_io_unplug(child->bs);
3277     }
3278 }
3279 
3280 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3281 {
3282     BdrvChild *child;
3283 
3284     GLOBAL_STATE_CODE();
3285     if (bs->drv && bs->drv->bdrv_register_buf) {
3286         bs->drv->bdrv_register_buf(bs, host, size);
3287     }
3288     QLIST_FOREACH(child, &bs->children, next) {
3289         bdrv_register_buf(child->bs, host, size);
3290     }
3291 }
3292 
3293 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3294 {
3295     BdrvChild *child;
3296 
3297     GLOBAL_STATE_CODE();
3298     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3299         bs->drv->bdrv_unregister_buf(bs, host, size);
3300     }
3301     QLIST_FOREACH(child, &bs->children, next) {
3302         bdrv_unregister_buf(child->bs, host, size);
3303     }
3304 }
3305 
3306 static int coroutine_fn bdrv_co_copy_range_internal(
3307         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3308         int64_t dst_offset, int64_t bytes,
3309         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3310         bool recurse_src)
3311 {
3312     BdrvTrackedRequest req;
3313     int ret;
3314 
3315     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3316     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3317     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3318     assert(!(read_flags & BDRV_REQ_NO_WAIT));
3319     assert(!(write_flags & BDRV_REQ_NO_WAIT));
3320 
3321     if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3322         return -ENOMEDIUM;
3323     }
3324     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3325     if (ret) {
3326         return ret;
3327     }
3328     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3329         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3330     }
3331 
3332     if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3333         return -ENOMEDIUM;
3334     }
3335     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3336     if (ret) {
3337         return ret;
3338     }
3339 
3340     if (!src->bs->drv->bdrv_co_copy_range_from
3341         || !dst->bs->drv->bdrv_co_copy_range_to
3342         || src->bs->encrypted || dst->bs->encrypted) {
3343         return -ENOTSUP;
3344     }
3345 
3346     if (recurse_src) {
3347         bdrv_inc_in_flight(src->bs);
3348         tracked_request_begin(&req, src->bs, src_offset, bytes,
3349                               BDRV_TRACKED_READ);
3350 
3351         /* BDRV_REQ_SERIALISING is only for write operation */
3352         assert(!(read_flags & BDRV_REQ_SERIALISING));
3353         bdrv_wait_serialising_requests(&req);
3354 
3355         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3356                                                     src, src_offset,
3357                                                     dst, dst_offset,
3358                                                     bytes,
3359                                                     read_flags, write_flags);
3360 
3361         tracked_request_end(&req);
3362         bdrv_dec_in_flight(src->bs);
3363     } else {
3364         bdrv_inc_in_flight(dst->bs);
3365         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3366                               BDRV_TRACKED_WRITE);
3367         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3368                                         write_flags);
3369         if (!ret) {
3370             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3371                                                       src, src_offset,
3372                                                       dst, dst_offset,
3373                                                       bytes,
3374                                                       read_flags, write_flags);
3375         }
3376         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3377         tracked_request_end(&req);
3378         bdrv_dec_in_flight(dst->bs);
3379     }
3380 
3381     return ret;
3382 }
3383 
3384 /* Copy range from @src to @dst.
3385  *
3386  * See the comment of bdrv_co_copy_range for the parameter and return value
3387  * semantics. */
3388 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3389                                          BdrvChild *dst, int64_t dst_offset,
3390                                          int64_t bytes,
3391                                          BdrvRequestFlags read_flags,
3392                                          BdrvRequestFlags write_flags)
3393 {
3394     IO_CODE();
3395     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3396                                   read_flags, write_flags);
3397     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3398                                        bytes, read_flags, write_flags, true);
3399 }
3400 
3401 /* Copy range from @src to @dst.
3402  *
3403  * See the comment of bdrv_co_copy_range for the parameter and return value
3404  * semantics. */
3405 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3406                                        BdrvChild *dst, int64_t dst_offset,
3407                                        int64_t bytes,
3408                                        BdrvRequestFlags read_flags,
3409                                        BdrvRequestFlags write_flags)
3410 {
3411     IO_CODE();
3412     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3413                                 read_flags, write_flags);
3414     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3415                                        bytes, read_flags, write_flags, false);
3416 }
3417 
3418 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3419                                     BdrvChild *dst, int64_t dst_offset,
3420                                     int64_t bytes, BdrvRequestFlags read_flags,
3421                                     BdrvRequestFlags write_flags)
3422 {
3423     IO_CODE();
3424     return bdrv_co_copy_range_from(src, src_offset,
3425                                    dst, dst_offset,
3426                                    bytes, read_flags, write_flags);
3427 }
3428 
3429 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3430 {
3431     BdrvChild *c;
3432     QLIST_FOREACH(c, &bs->parents, next_parent) {
3433         if (c->klass->resize) {
3434             c->klass->resize(c);
3435         }
3436     }
3437 }
3438 
3439 /**
3440  * Truncate file to 'offset' bytes (needed only for file protocols)
3441  *
3442  * If 'exact' is true, the file must be resized to exactly the given
3443  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3444  * 'offset' bytes in length.
3445  */
3446 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3447                                   PreallocMode prealloc, BdrvRequestFlags flags,
3448                                   Error **errp)
3449 {
3450     BlockDriverState *bs = child->bs;
3451     BdrvChild *filtered, *backing;
3452     BlockDriver *drv = bs->drv;
3453     BdrvTrackedRequest req;
3454     int64_t old_size, new_bytes;
3455     int ret;
3456     IO_CODE();
3457 
3458     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3459     if (!drv) {
3460         error_setg(errp, "No medium inserted");
3461         return -ENOMEDIUM;
3462     }
3463     if (offset < 0) {
3464         error_setg(errp, "Image size cannot be negative");
3465         return -EINVAL;
3466     }
3467 
3468     ret = bdrv_check_request(offset, 0, errp);
3469     if (ret < 0) {
3470         return ret;
3471     }
3472 
3473     old_size = bdrv_getlength(bs);
3474     if (old_size < 0) {
3475         error_setg_errno(errp, -old_size, "Failed to get old image size");
3476         return old_size;
3477     }
3478 
3479     if (bdrv_is_read_only(bs)) {
3480         error_setg(errp, "Image is read-only");
3481         return -EACCES;
3482     }
3483 
3484     if (offset > old_size) {
3485         new_bytes = offset - old_size;
3486     } else {
3487         new_bytes = 0;
3488     }
3489 
3490     bdrv_inc_in_flight(bs);
3491     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3492                           BDRV_TRACKED_TRUNCATE);
3493 
3494     /* If we are growing the image and potentially using preallocation for the
3495      * new area, we need to make sure that no write requests are made to it
3496      * concurrently or they might be overwritten by preallocation. */
3497     if (new_bytes) {
3498         bdrv_make_request_serialising(&req, 1);
3499     }
3500     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3501                                     0);
3502     if (ret < 0) {
3503         error_setg_errno(errp, -ret,
3504                          "Failed to prepare request for truncation");
3505         goto out;
3506     }
3507 
3508     filtered = bdrv_filter_child(bs);
3509     backing = bdrv_cow_child(bs);
3510 
3511     /*
3512      * If the image has a backing file that is large enough that it would
3513      * provide data for the new area, we cannot leave it unallocated because
3514      * then the backing file content would become visible. Instead, zero-fill
3515      * the new area.
3516      *
3517      * Note that if the image has a backing file, but was opened without the
3518      * backing file, taking care of keeping things consistent with that backing
3519      * file is the user's responsibility.
3520      */
3521     if (new_bytes && backing) {
3522         int64_t backing_len;
3523 
3524         backing_len = bdrv_getlength(backing->bs);
3525         if (backing_len < 0) {
3526             ret = backing_len;
3527             error_setg_errno(errp, -ret, "Could not get backing file size");
3528             goto out;
3529         }
3530 
3531         if (backing_len > old_size) {
3532             flags |= BDRV_REQ_ZERO_WRITE;
3533         }
3534     }
3535 
3536     if (drv->bdrv_co_truncate) {
3537         if (flags & ~bs->supported_truncate_flags) {
3538             error_setg(errp, "Block driver does not support requested flags");
3539             ret = -ENOTSUP;
3540             goto out;
3541         }
3542         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3543     } else if (filtered) {
3544         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3545     } else {
3546         error_setg(errp, "Image format driver does not support resize");
3547         ret = -ENOTSUP;
3548         goto out;
3549     }
3550     if (ret < 0) {
3551         goto out;
3552     }
3553 
3554     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3555     if (ret < 0) {
3556         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3557     } else {
3558         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3559     }
3560     /* It's possible that truncation succeeded but refresh_total_sectors
3561      * failed, but the latter doesn't affect how we should finish the request.
3562      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3563     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3564 
3565 out:
3566     tracked_request_end(&req);
3567     bdrv_dec_in_flight(bs);
3568 
3569     return ret;
3570 }
3571 
3572 void bdrv_cancel_in_flight(BlockDriverState *bs)
3573 {
3574     GLOBAL_STATE_CODE();
3575     if (!bs || !bs->drv) {
3576         return;
3577     }
3578 
3579     if (bs->drv->bdrv_cancel_in_flight) {
3580         bs->drv->bdrv_cancel_in_flight(bs);
3581     }
3582 }
3583 
3584 int coroutine_fn
3585 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3586                         QEMUIOVector *qiov, size_t qiov_offset)
3587 {
3588     BlockDriverState *bs = child->bs;
3589     BlockDriver *drv = bs->drv;
3590     int ret;
3591     IO_CODE();
3592 
3593     if (!drv) {
3594         return -ENOMEDIUM;
3595     }
3596 
3597     if (!drv->bdrv_co_preadv_snapshot) {
3598         return -ENOTSUP;
3599     }
3600 
3601     bdrv_inc_in_flight(bs);
3602     ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3603     bdrv_dec_in_flight(bs);
3604 
3605     return ret;
3606 }
3607 
3608 int coroutine_fn
3609 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3610                               bool want_zero, int64_t offset, int64_t bytes,
3611                               int64_t *pnum, int64_t *map,
3612                               BlockDriverState **file)
3613 {
3614     BlockDriver *drv = bs->drv;
3615     int ret;
3616     IO_CODE();
3617 
3618     if (!drv) {
3619         return -ENOMEDIUM;
3620     }
3621 
3622     if (!drv->bdrv_co_snapshot_block_status) {
3623         return -ENOTSUP;
3624     }
3625 
3626     bdrv_inc_in_flight(bs);
3627     ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3628                                              pnum, map, file);
3629     bdrv_dec_in_flight(bs);
3630 
3631     return ret;
3632 }
3633 
3634 int coroutine_fn
3635 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3636 {
3637     BlockDriver *drv = bs->drv;
3638     int ret;
3639     IO_CODE();
3640 
3641     if (!drv) {
3642         return -ENOMEDIUM;
3643     }
3644 
3645     if (!drv->bdrv_co_pdiscard_snapshot) {
3646         return -ENOTSUP;
3647     }
3648 
3649     bdrv_inc_in_flight(bs);
3650     ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3651     bdrv_dec_in_flight(bs);
3652 
3653     return ret;
3654 }
3655