xref: /qemu/hw/intc/armv7m_nvic.c (revision 9277d81f)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59 
60 static const uint8_t nvic_id[] = {
61     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63 
64 static int nvic_pending_prio(NVICState *s)
65 {
66     /* return the group priority of the current pending interrupt,
67      * or NVIC_NOEXC_PRIO if no interrupt is pending
68      */
69     return s->vectpending_prio;
70 }
71 
72 /* Return the value of the ISCR RETTOBASE bit:
73  * 1 if there is exactly one active exception
74  * 0 if there is more than one active exception
75  * UNKNOWN if there are no active exceptions (we choose 1,
76  * which matches the choice Cortex-M3 is documented as making).
77  *
78  * NB: some versions of the documentation talk about this
79  * counting "active exceptions other than the one shown by IPSR";
80  * this is only different in the obscure corner case where guest
81  * code has manually deactivated an exception and is about
82  * to fail an exception-return integrity check. The definition
83  * above is the one from the v8M ARM ARM and is also in line
84  * with the behaviour documented for the Cortex-M3.
85  */
86 static bool nvic_rettobase(NVICState *s)
87 {
88     int irq, nhand = 0;
89     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 
91     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92         if (s->vectors[irq].active ||
93             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94              s->sec_vectors[irq].active)) {
95             nhand++;
96             if (nhand == 2) {
97                 return 0;
98             }
99         }
100     }
101 
102     return 1;
103 }
104 
105 /* Return the value of the ISCR ISRPENDING bit:
106  * 1 if an external interrupt is pending
107  * 0 if no external interrupt is pending
108  */
109 static bool nvic_isrpending(NVICState *s)
110 {
111     int irq;
112 
113     /* We can shortcut if the highest priority pending interrupt
114      * happens to be external or if there is nothing pending.
115      */
116     if (s->vectpending > NVIC_FIRST_IRQ) {
117         return true;
118     }
119     if (s->vectpending == 0) {
120         return false;
121     }
122 
123     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124         if (s->vectors[irq].pending) {
125             return true;
126         }
127     }
128     return false;
129 }
130 
131 static bool exc_is_banked(int exc)
132 {
133     /* Return true if this is one of the limited set of exceptions which
134      * are banked (and thus have state in sec_vectors[])
135      */
136     return exc == ARMV7M_EXCP_HARD ||
137         exc == ARMV7M_EXCP_MEM ||
138         exc == ARMV7M_EXCP_USAGE ||
139         exc == ARMV7M_EXCP_SVC ||
140         exc == ARMV7M_EXCP_PENDSV ||
141         exc == ARMV7M_EXCP_SYSTICK;
142 }
143 
144 /* Return a mask word which clears the subpriority bits from
145  * a priority value for an M-profile exception, leaving only
146  * the group priority.
147  */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150     return ~0U << (s->prigroup[secure] + 1);
151 }
152 
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155     /* Return true if this non-banked exception targets Secure state. */
156     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157         return false;
158     }
159 
160     if (exc >= NVIC_FIRST_IRQ) {
161         return !s->itns[exc];
162     }
163 
164     /* Function shouldn't be called for banked exceptions. */
165     assert(!exc_is_banked(exc));
166 
167     switch (exc) {
168     case ARMV7M_EXCP_NMI:
169     case ARMV7M_EXCP_BUS:
170         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171     case ARMV7M_EXCP_SECURE:
172         return true;
173     case ARMV7M_EXCP_DEBUG:
174         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175         return false;
176     default:
177         /* reset, and reserved (unused) low exception numbers.
178          * We'll get called by code that loops through all the exception
179          * numbers, but it doesn't matter what we return here as these
180          * non-existent exceptions will never be pended or active.
181          */
182         return true;
183     }
184 }
185 
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188     /* Return the group priority for this exception, given its raw
189      * (group-and-subgroup) priority value and whether it is targeting
190      * secure state or not.
191      */
192     if (rawprio < 0) {
193         return rawprio;
194     }
195     rawprio &= nvic_gprio_mask(s, targets_secure);
196     /* AIRCR.PRIS causes us to squash all NS priorities into the
197      * lower half of the total range
198      */
199     if (!targets_secure &&
200         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202     }
203     return rawprio;
204 }
205 
206 /* Recompute vectpending and exception_prio for a CPU which implements
207  * the Security extension
208  */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211     int i, bank;
212     int pend_prio = NVIC_NOEXC_PRIO;
213     int active_prio = NVIC_NOEXC_PRIO;
214     int pend_irq = 0;
215     bool pending_is_s_banked = false;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             if (vec->enabled && vec->pending && prio < pend_prio) {
245                 pend_prio = prio;
246                 pend_irq = i;
247                 pending_is_s_banked = (bank == M_REG_S);
248             }
249             if (vec->active && prio < active_prio) {
250                 active_prio = prio;
251             }
252         }
253     }
254 
255     s->vectpending_is_s_banked = pending_is_s_banked;
256     s->vectpending = pend_irq;
257     s->vectpending_prio = pend_prio;
258     s->exception_prio = active_prio;
259 
260     trace_nvic_recompute_state_secure(s->vectpending,
261                                       s->vectpending_is_s_banked,
262                                       s->vectpending_prio,
263                                       s->exception_prio);
264 }
265 
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
268 {
269     int i;
270     int pend_prio = NVIC_NOEXC_PRIO;
271     int active_prio = NVIC_NOEXC_PRIO;
272     int pend_irq = 0;
273 
274     /* In theory we could write one function that handled both
275      * the "security extension present" and "not present"; however
276      * the security related changes significantly complicate the
277      * recomputation just by themselves and mixing both cases together
278      * would be even worse, so we retain a separate non-secure-only
279      * version for CPUs which don't implement the security extension.
280      */
281     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282         nvic_recompute_state_secure(s);
283         return;
284     }
285 
286     for (i = 1; i < s->num_irq; i++) {
287         VecInfo *vec = &s->vectors[i];
288 
289         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290             pend_prio = vec->prio;
291             pend_irq = i;
292         }
293         if (vec->active && vec->prio < active_prio) {
294             active_prio = vec->prio;
295         }
296     }
297 
298     if (active_prio > 0) {
299         active_prio &= nvic_gprio_mask(s, false);
300     }
301 
302     if (pend_prio > 0) {
303         pend_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     s->vectpending = pend_irq;
307     s->vectpending_prio = pend_prio;
308     s->exception_prio = active_prio;
309 
310     trace_nvic_recompute_state(s->vectpending,
311                                s->vectpending_prio,
312                                s->exception_prio);
313 }
314 
315 /* Return the current execution priority of the CPU
316  * (equivalent to the pseudocode ExecutionPriority function).
317  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318  */
319 static inline int nvic_exec_prio(NVICState *s)
320 {
321     CPUARMState *env = &s->cpu->env;
322     int running = NVIC_NOEXC_PRIO;
323 
324     if (env->v7m.basepri[M_REG_NS] > 0) {
325         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326     }
327 
328     if (env->v7m.basepri[M_REG_S] > 0) {
329         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330         if (running > basepri) {
331             running = basepri;
332         }
333     }
334 
335     if (env->v7m.primask[M_REG_NS]) {
336         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337             if (running > NVIC_NS_PRIO_LIMIT) {
338                 running = NVIC_NS_PRIO_LIMIT;
339             }
340         } else {
341             running = 0;
342         }
343     }
344 
345     if (env->v7m.primask[M_REG_S]) {
346         running = 0;
347     }
348 
349     if (env->v7m.faultmask[M_REG_NS]) {
350         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351             running = -1;
352         } else {
353             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354                 if (running > NVIC_NS_PRIO_LIMIT) {
355                     running = NVIC_NS_PRIO_LIMIT;
356                 }
357             } else {
358                 running = 0;
359             }
360         }
361     }
362 
363     if (env->v7m.faultmask[M_REG_S]) {
364         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365     }
366 
367     /* consider priority of active handler */
368     return MIN(running, s->exception_prio);
369 }
370 
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372 {
373     /* Return true if the requested execution priority is negative
374      * for the specified security state, ie that security state
375      * has an active NMI or HardFault or has set its FAULTMASK.
376      * Note that this is not the same as whether the execution
377      * priority is actually negative (for instance AIRCR.PRIS may
378      * mean we don't allow FAULTMASK_NS to actually make the execution
379      * priority negative). Compare pseudocode IsReqExcPriNeg().
380      */
381     NVICState *s = opaque;
382 
383     if (s->cpu->env.v7m.faultmask[secure]) {
384         return true;
385     }
386 
387     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388         s->vectors[ARMV7M_EXCP_HARD].active) {
389         return true;
390     }
391 
392     if (s->vectors[ARMV7M_EXCP_NMI].active &&
393         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394         return true;
395     }
396 
397     return false;
398 }
399 
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
401 {
402     NVICState *s = opaque;
403 
404     return nvic_exec_prio(s) > nvic_pending_prio(s);
405 }
406 
407 int armv7m_nvic_raw_execution_priority(void *opaque)
408 {
409     NVICState *s = opaque;
410 
411     return s->exception_prio;
412 }
413 
414 /* caller must call nvic_irq_update() after this.
415  * secure indicates the bank to use for banked exceptions (we assert if
416  * we are passed secure=true for a non-banked exception).
417  */
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
419 {
420     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421     assert(irq < s->num_irq);
422 
423     if (secure) {
424         assert(exc_is_banked(irq));
425         s->sec_vectors[irq].prio = prio;
426     } else {
427         s->vectors[irq].prio = prio;
428     }
429 
430     trace_nvic_set_prio(irq, secure, prio);
431 }
432 
433 /* Return the current raw priority register value.
434  * secure indicates the bank to use for banked exceptions (we assert if
435  * we are passed secure=true for a non-banked exception).
436  */
437 static int get_prio(NVICState *s, unsigned irq, bool secure)
438 {
439     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440     assert(irq < s->num_irq);
441 
442     if (secure) {
443         assert(exc_is_banked(irq));
444         return s->sec_vectors[irq].prio;
445     } else {
446         return s->vectors[irq].prio;
447     }
448 }
449 
450 /* Recompute state and assert irq line accordingly.
451  * Must be called after changes to:
452  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
453  *  prigroup
454  */
455 static void nvic_irq_update(NVICState *s)
456 {
457     int lvl;
458     int pend_prio;
459 
460     nvic_recompute_state(s);
461     pend_prio = nvic_pending_prio(s);
462 
463     /* Raise NVIC output if this IRQ would be taken, except that we
464      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466      * to those CPU registers don't cause us to recalculate the NVIC
467      * pending info.
468      */
469     lvl = (pend_prio < s->exception_prio);
470     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471     qemu_set_irq(s->excpout, lvl);
472 }
473 
474 /**
475  * armv7m_nvic_clear_pending: mark the specified exception as not pending
476  * @opaque: the NVIC
477  * @irq: the exception number to mark as not pending
478  * @secure: false for non-banked exceptions or for the nonsecure
479  * version of a banked exception, true for the secure version of a banked
480  * exception.
481  *
482  * Marks the specified exception as not pending. Note that we will assert()
483  * if @secure is true and @irq does not specify one of the fixed set
484  * of architecturally banked exceptions.
485  */
486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
487 {
488     NVICState *s = (NVICState *)opaque;
489     VecInfo *vec;
490 
491     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
492 
493     if (secure) {
494         assert(exc_is_banked(irq));
495         vec = &s->sec_vectors[irq];
496     } else {
497         vec = &s->vectors[irq];
498     }
499     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
500     if (vec->pending) {
501         vec->pending = 0;
502         nvic_irq_update(s);
503     }
504 }
505 
506 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
507                                        bool derived)
508 {
509     /* Pend an exception, including possibly escalating it to HardFault.
510      *
511      * This function handles both "normal" pending of interrupts and
512      * exceptions, and also derived exceptions (ones which occur as
513      * a result of trying to take some other exception).
514      *
515      * If derived == true, the caller guarantees that we are part way through
516      * trying to take an exception (but have not yet called
517      * armv7m_nvic_acknowledge_irq() to make it active), and so:
518      *  - s->vectpending is the "original exception" we were trying to take
519      *  - irq is the "derived exception"
520      *  - nvic_exec_prio(s) gives the priority before exception entry
521      * Here we handle the prioritization logic which the pseudocode puts
522      * in the DerivedLateArrival() function.
523      */
524 
525     NVICState *s = (NVICState *)opaque;
526     bool banked = exc_is_banked(irq);
527     VecInfo *vec;
528 
529     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
530     assert(!secure || banked);
531 
532     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
533 
534     trace_nvic_set_pending(irq, secure, derived, vec->enabled, vec->prio);
535 
536     if (derived) {
537         /* Derived exceptions are always synchronous. */
538         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
539 
540         if (irq == ARMV7M_EXCP_DEBUG &&
541             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
542             /* DebugMonitorFault, but its priority is lower than the
543              * preempted exception priority: just ignore it.
544              */
545             return;
546         }
547 
548         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
549             /* If this is a terminal exception (one which means we cannot
550              * take the original exception, like a failure to read its
551              * vector table entry), then we must take the derived exception.
552              * If the derived exception can't take priority over the
553              * original exception, then we go into Lockup.
554              *
555              * For QEMU, we rely on the fact that a derived exception is
556              * terminal if and only if it's reported to us as HardFault,
557              * which saves having to have an extra argument is_terminal
558              * that we'd only use in one place.
559              */
560             cpu_abort(&s->cpu->parent_obj,
561                       "Lockup: can't take terminal derived exception "
562                       "(original exception priority %d)\n",
563                       s->vectpending_prio);
564         }
565         /* We now continue with the same code as for a normal pending
566          * exception, which will cause us to pend the derived exception.
567          * We'll then take either the original or the derived exception
568          * based on which is higher priority by the usual mechanism
569          * for selecting the highest priority pending interrupt.
570          */
571     }
572 
573     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
574         /* If a synchronous exception is pending then it may be
575          * escalated to HardFault if:
576          *  * it is equal or lower priority to current execution
577          *  * it is disabled
578          * (ie we need to take it immediately but we can't do so).
579          * Asynchronous exceptions (and interrupts) simply remain pending.
580          *
581          * For QEMU, we don't have any imprecise (asynchronous) faults,
582          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
583          * synchronous.
584          * Debug exceptions are awkward because only Debug exceptions
585          * resulting from the BKPT instruction should be escalated,
586          * but we don't currently implement any Debug exceptions other
587          * than those that result from BKPT, so we treat all debug exceptions
588          * as needing escalation.
589          *
590          * This all means we can identify whether to escalate based only on
591          * the exception number and don't (yet) need the caller to explicitly
592          * tell us whether this exception is synchronous or not.
593          */
594         int running = nvic_exec_prio(s);
595         bool escalate = false;
596 
597         if (exc_group_prio(s, vec->prio, secure) >= running) {
598             trace_nvic_escalate_prio(irq, vec->prio, running);
599             escalate = true;
600         } else if (!vec->enabled) {
601             trace_nvic_escalate_disabled(irq);
602             escalate = true;
603         }
604 
605         if (escalate) {
606 
607             /* We need to escalate this exception to a synchronous HardFault.
608              * If BFHFNMINS is set then we escalate to the banked HF for
609              * the target security state of the original exception; otherwise
610              * we take a Secure HardFault.
611              */
612             irq = ARMV7M_EXCP_HARD;
613             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
614                 (secure ||
615                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
616                 vec = &s->sec_vectors[irq];
617             } else {
618                 vec = &s->vectors[irq];
619             }
620             if (running <= vec->prio) {
621                 /* We want to escalate to HardFault but we can't take the
622                  * synchronous HardFault at this point either. This is a
623                  * Lockup condition due to a guest bug. We don't model
624                  * Lockup, so report via cpu_abort() instead.
625                  */
626                 cpu_abort(&s->cpu->parent_obj,
627                           "Lockup: can't escalate %d to HardFault "
628                           "(current priority %d)\n", irq, running);
629             }
630 
631             /* HF may be banked but there is only one shared HFSR */
632             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
633         }
634     }
635 
636     if (!vec->pending) {
637         vec->pending = 1;
638         nvic_irq_update(s);
639     }
640 }
641 
642 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
643 {
644     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
645 }
646 
647 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
648 {
649     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
650 }
651 
652 /* Make pending IRQ active.  */
653 void armv7m_nvic_acknowledge_irq(void *opaque)
654 {
655     NVICState *s = (NVICState *)opaque;
656     CPUARMState *env = &s->cpu->env;
657     const int pending = s->vectpending;
658     const int running = nvic_exec_prio(s);
659     VecInfo *vec;
660 
661     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
662 
663     if (s->vectpending_is_s_banked) {
664         vec = &s->sec_vectors[pending];
665     } else {
666         vec = &s->vectors[pending];
667     }
668 
669     assert(vec->enabled);
670     assert(vec->pending);
671 
672     assert(s->vectpending_prio < running);
673 
674     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
675 
676     vec->active = 1;
677     vec->pending = 0;
678 
679     write_v7m_exception(env, s->vectpending);
680 
681     nvic_irq_update(s);
682 }
683 
684 void armv7m_nvic_get_pending_irq_info(void *opaque,
685                                       int *pirq, bool *ptargets_secure)
686 {
687     NVICState *s = (NVICState *)opaque;
688     const int pending = s->vectpending;
689     bool targets_secure;
690 
691     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
692 
693     if (s->vectpending_is_s_banked) {
694         targets_secure = true;
695     } else {
696         targets_secure = !exc_is_banked(pending) &&
697             exc_targets_secure(s, pending);
698     }
699 
700     trace_nvic_get_pending_irq_info(pending, targets_secure);
701 
702     *ptargets_secure = targets_secure;
703     *pirq = pending;
704 }
705 
706 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
707 {
708     NVICState *s = (NVICState *)opaque;
709     VecInfo *vec;
710     int ret;
711 
712     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
713 
714     if (secure && exc_is_banked(irq)) {
715         vec = &s->sec_vectors[irq];
716     } else {
717         vec = &s->vectors[irq];
718     }
719 
720     trace_nvic_complete_irq(irq, secure);
721 
722     if (!vec->active) {
723         /* Tell the caller this was an illegal exception return */
724         return -1;
725     }
726 
727     ret = nvic_rettobase(s);
728 
729     vec->active = 0;
730     if (vec->level) {
731         /* Re-pend the exception if it's still held high; only
732          * happens for extenal IRQs
733          */
734         assert(irq >= NVIC_FIRST_IRQ);
735         vec->pending = 1;
736     }
737 
738     nvic_irq_update(s);
739 
740     return ret;
741 }
742 
743 /* callback when external interrupt line is changed */
744 static void set_irq_level(void *opaque, int n, int level)
745 {
746     NVICState *s = opaque;
747     VecInfo *vec;
748 
749     n += NVIC_FIRST_IRQ;
750 
751     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
752 
753     trace_nvic_set_irq_level(n, level);
754 
755     /* The pending status of an external interrupt is
756      * latched on rising edge and exception handler return.
757      *
758      * Pulsing the IRQ will always run the handler
759      * once, and the handler will re-run until the
760      * level is low when the handler completes.
761      */
762     vec = &s->vectors[n];
763     if (level != vec->level) {
764         vec->level = level;
765         if (level) {
766             armv7m_nvic_set_pending(s, n, false);
767         }
768     }
769 }
770 
771 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
772 {
773     ARMCPU *cpu = s->cpu;
774     uint32_t val;
775 
776     switch (offset) {
777     case 4: /* Interrupt Control Type.  */
778         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
779     case 0xc: /* CPPWR */
780         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
781             goto bad_offset;
782         }
783         /* We make the IMPDEF choice that nothing can ever go into a
784          * non-retentive power state, which allows us to RAZ/WI this.
785          */
786         return 0;
787     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
788     {
789         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
790         int i;
791 
792         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
793             goto bad_offset;
794         }
795         if (!attrs.secure) {
796             return 0;
797         }
798         val = 0;
799         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
800             if (s->itns[startvec + i]) {
801                 val |= (1 << i);
802             }
803         }
804         return val;
805     }
806     case 0xd00: /* CPUID Base.  */
807         return cpu->midr;
808     case 0xd04: /* Interrupt Control State (ICSR) */
809         /* VECTACTIVE */
810         val = cpu->env.v7m.exception;
811         /* VECTPENDING */
812         val |= (s->vectpending & 0xff) << 12;
813         /* ISRPENDING - set if any external IRQ is pending */
814         if (nvic_isrpending(s)) {
815             val |= (1 << 22);
816         }
817         /* RETTOBASE - set if only one handler is active */
818         if (nvic_rettobase(s)) {
819             val |= (1 << 11);
820         }
821         if (attrs.secure) {
822             /* PENDSTSET */
823             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
824                 val |= (1 << 26);
825             }
826             /* PENDSVSET */
827             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
828                 val |= (1 << 28);
829             }
830         } else {
831             /* PENDSTSET */
832             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
833                 val |= (1 << 26);
834             }
835             /* PENDSVSET */
836             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
837                 val |= (1 << 28);
838             }
839         }
840         /* NMIPENDSET */
841         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
842             && s->vectors[ARMV7M_EXCP_NMI].pending) {
843             val |= (1 << 31);
844         }
845         /* ISRPREEMPT: RES0 when halting debug not implemented */
846         /* STTNS: RES0 for the Main Extension */
847         return val;
848     case 0xd08: /* Vector Table Offset.  */
849         return cpu->env.v7m.vecbase[attrs.secure];
850     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
851         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
852         if (attrs.secure) {
853             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
854             val |= cpu->env.v7m.aircr;
855         } else {
856             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
857                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
858                  * security isn't supported then BFHFNMINS is RAO (and
859                  * the bit in env.v7m.aircr is always set).
860                  */
861                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
862             }
863         }
864         return val;
865     case 0xd10: /* System Control.  */
866         return cpu->env.v7m.scr[attrs.secure];
867     case 0xd14: /* Configuration Control.  */
868         /* The BFHFNMIGN bit is the only non-banked bit; we
869          * keep it in the non-secure copy of the register.
870          */
871         val = cpu->env.v7m.ccr[attrs.secure];
872         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
873         return val;
874     case 0xd24: /* System Handler Control and State (SHCSR) */
875         val = 0;
876         if (attrs.secure) {
877             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
878                 val |= (1 << 0);
879             }
880             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
881                 val |= (1 << 2);
882             }
883             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
884                 val |= (1 << 3);
885             }
886             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
887                 val |= (1 << 7);
888             }
889             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
890                 val |= (1 << 10);
891             }
892             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
893                 val |= (1 << 11);
894             }
895             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
896                 val |= (1 << 12);
897             }
898             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
899                 val |= (1 << 13);
900             }
901             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
902                 val |= (1 << 15);
903             }
904             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
905                 val |= (1 << 16);
906             }
907             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
908                 val |= (1 << 18);
909             }
910             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
911                 val |= (1 << 21);
912             }
913             /* SecureFault is not banked but is always RAZ/WI to NS */
914             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
915                 val |= (1 << 4);
916             }
917             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
918                 val |= (1 << 19);
919             }
920             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
921                 val |= (1 << 20);
922             }
923         } else {
924             if (s->vectors[ARMV7M_EXCP_MEM].active) {
925                 val |= (1 << 0);
926             }
927             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
928                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
929                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
930                     val |= (1 << 2);
931                 }
932                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
933                     val |= (1 << 21);
934                 }
935             }
936             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
937                 val |= (1 << 3);
938             }
939             if (s->vectors[ARMV7M_EXCP_SVC].active) {
940                 val |= (1 << 7);
941             }
942             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
943                 val |= (1 << 10);
944             }
945             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
946                 val |= (1 << 11);
947             }
948             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
949                 val |= (1 << 12);
950             }
951             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
952                 val |= (1 << 13);
953             }
954             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
955                 val |= (1 << 15);
956             }
957             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
958                 val |= (1 << 16);
959             }
960             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
961                 val |= (1 << 18);
962             }
963         }
964         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
965             if (s->vectors[ARMV7M_EXCP_BUS].active) {
966                 val |= (1 << 1);
967             }
968             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
969                 val |= (1 << 14);
970             }
971             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
972                 val |= (1 << 17);
973             }
974             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
975                 s->vectors[ARMV7M_EXCP_NMI].active) {
976                 /* NMIACT is not present in v7M */
977                 val |= (1 << 5);
978             }
979         }
980 
981         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
982         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
983             val |= (1 << 8);
984         }
985         return val;
986     case 0xd2c: /* Hard Fault Status.  */
987         return cpu->env.v7m.hfsr;
988     case 0xd30: /* Debug Fault Status.  */
989         return cpu->env.v7m.dfsr;
990     case 0xd34: /* MMFAR MemManage Fault Address */
991         return cpu->env.v7m.mmfar[attrs.secure];
992     case 0xd38: /* Bus Fault Address.  */
993         return cpu->env.v7m.bfar;
994     case 0xd3c: /* Aux Fault Status.  */
995         /* TODO: Implement fault status registers.  */
996         qemu_log_mask(LOG_UNIMP,
997                       "Aux Fault status registers unimplemented\n");
998         return 0;
999     case 0xd40: /* PFR0.  */
1000         return cpu->id_pfr0;
1001     case 0xd44: /* PFR1.  */
1002         return cpu->id_pfr1;
1003     case 0xd48: /* DFR0.  */
1004         return cpu->id_dfr0;
1005     case 0xd4c: /* AFR0.  */
1006         return cpu->id_afr0;
1007     case 0xd50: /* MMFR0.  */
1008         return cpu->id_mmfr0;
1009     case 0xd54: /* MMFR1.  */
1010         return cpu->id_mmfr1;
1011     case 0xd58: /* MMFR2.  */
1012         return cpu->id_mmfr2;
1013     case 0xd5c: /* MMFR3.  */
1014         return cpu->id_mmfr3;
1015     case 0xd60: /* ISAR0.  */
1016         return cpu->id_isar0;
1017     case 0xd64: /* ISAR1.  */
1018         return cpu->id_isar1;
1019     case 0xd68: /* ISAR2.  */
1020         return cpu->id_isar2;
1021     case 0xd6c: /* ISAR3.  */
1022         return cpu->id_isar3;
1023     case 0xd70: /* ISAR4.  */
1024         return cpu->id_isar4;
1025     case 0xd74: /* ISAR5.  */
1026         return cpu->id_isar5;
1027     case 0xd78: /* CLIDR */
1028         return cpu->clidr;
1029     case 0xd7c: /* CTR */
1030         return cpu->ctr;
1031     case 0xd80: /* CSSIDR */
1032     {
1033         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1034         return cpu->ccsidr[idx];
1035     }
1036     case 0xd84: /* CSSELR */
1037         return cpu->env.v7m.csselr[attrs.secure];
1038     /* TODO: Implement debug registers.  */
1039     case 0xd90: /* MPU_TYPE */
1040         /* Unified MPU; if the MPU is not present this value is zero */
1041         return cpu->pmsav7_dregion << 8;
1042         break;
1043     case 0xd94: /* MPU_CTRL */
1044         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1045     case 0xd98: /* MPU_RNR */
1046         return cpu->env.pmsav7.rnr[attrs.secure];
1047     case 0xd9c: /* MPU_RBAR */
1048     case 0xda4: /* MPU_RBAR_A1 */
1049     case 0xdac: /* MPU_RBAR_A2 */
1050     case 0xdb4: /* MPU_RBAR_A3 */
1051     {
1052         int region = cpu->env.pmsav7.rnr[attrs.secure];
1053 
1054         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1055             /* PMSAv8M handling of the aliases is different from v7M:
1056              * aliases A1, A2, A3 override the low two bits of the region
1057              * number in MPU_RNR, and there is no 'region' field in the
1058              * RBAR register.
1059              */
1060             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1061             if (aliasno) {
1062                 region = deposit32(region, 0, 2, aliasno);
1063             }
1064             if (region >= cpu->pmsav7_dregion) {
1065                 return 0;
1066             }
1067             return cpu->env.pmsav8.rbar[attrs.secure][region];
1068         }
1069 
1070         if (region >= cpu->pmsav7_dregion) {
1071             return 0;
1072         }
1073         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1074     }
1075     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1076     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1077     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1078     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1079     {
1080         int region = cpu->env.pmsav7.rnr[attrs.secure];
1081 
1082         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1083             /* PMSAv8M handling of the aliases is different from v7M:
1084              * aliases A1, A2, A3 override the low two bits of the region
1085              * number in MPU_RNR.
1086              */
1087             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1088             if (aliasno) {
1089                 region = deposit32(region, 0, 2, aliasno);
1090             }
1091             if (region >= cpu->pmsav7_dregion) {
1092                 return 0;
1093             }
1094             return cpu->env.pmsav8.rlar[attrs.secure][region];
1095         }
1096 
1097         if (region >= cpu->pmsav7_dregion) {
1098             return 0;
1099         }
1100         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1101             (cpu->env.pmsav7.drsr[region] & 0xffff);
1102     }
1103     case 0xdc0: /* MPU_MAIR0 */
1104         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1105             goto bad_offset;
1106         }
1107         return cpu->env.pmsav8.mair0[attrs.secure];
1108     case 0xdc4: /* MPU_MAIR1 */
1109         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1110             goto bad_offset;
1111         }
1112         return cpu->env.pmsav8.mair1[attrs.secure];
1113     case 0xdd0: /* SAU_CTRL */
1114         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1115             goto bad_offset;
1116         }
1117         if (!attrs.secure) {
1118             return 0;
1119         }
1120         return cpu->env.sau.ctrl;
1121     case 0xdd4: /* SAU_TYPE */
1122         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1123             goto bad_offset;
1124         }
1125         if (!attrs.secure) {
1126             return 0;
1127         }
1128         return cpu->sau_sregion;
1129     case 0xdd8: /* SAU_RNR */
1130         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1131             goto bad_offset;
1132         }
1133         if (!attrs.secure) {
1134             return 0;
1135         }
1136         return cpu->env.sau.rnr;
1137     case 0xddc: /* SAU_RBAR */
1138     {
1139         int region = cpu->env.sau.rnr;
1140 
1141         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1142             goto bad_offset;
1143         }
1144         if (!attrs.secure) {
1145             return 0;
1146         }
1147         if (region >= cpu->sau_sregion) {
1148             return 0;
1149         }
1150         return cpu->env.sau.rbar[region];
1151     }
1152     case 0xde0: /* SAU_RLAR */
1153     {
1154         int region = cpu->env.sau.rnr;
1155 
1156         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1157             goto bad_offset;
1158         }
1159         if (!attrs.secure) {
1160             return 0;
1161         }
1162         if (region >= cpu->sau_sregion) {
1163             return 0;
1164         }
1165         return cpu->env.sau.rlar[region];
1166     }
1167     case 0xde4: /* SFSR */
1168         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1169             goto bad_offset;
1170         }
1171         if (!attrs.secure) {
1172             return 0;
1173         }
1174         return cpu->env.v7m.sfsr;
1175     case 0xde8: /* SFAR */
1176         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1177             goto bad_offset;
1178         }
1179         if (!attrs.secure) {
1180             return 0;
1181         }
1182         return cpu->env.v7m.sfar;
1183     default:
1184     bad_offset:
1185         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1186         return 0;
1187     }
1188 }
1189 
1190 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1191                         MemTxAttrs attrs)
1192 {
1193     ARMCPU *cpu = s->cpu;
1194 
1195     switch (offset) {
1196     case 0xc: /* CPPWR */
1197         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1198             goto bad_offset;
1199         }
1200         /* Make the IMPDEF choice to RAZ/WI this. */
1201         break;
1202     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1203     {
1204         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1205         int i;
1206 
1207         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1208             goto bad_offset;
1209         }
1210         if (!attrs.secure) {
1211             break;
1212         }
1213         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1214             s->itns[startvec + i] = (value >> i) & 1;
1215         }
1216         nvic_irq_update(s);
1217         break;
1218     }
1219     case 0xd04: /* Interrupt Control State (ICSR) */
1220         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1221             if (value & (1 << 31)) {
1222                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1223             } else if (value & (1 << 30) &&
1224                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1225                 /* PENDNMICLR didn't exist in v7M */
1226                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1227             }
1228         }
1229         if (value & (1 << 28)) {
1230             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1231         } else if (value & (1 << 27)) {
1232             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1233         }
1234         if (value & (1 << 26)) {
1235             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1236         } else if (value & (1 << 25)) {
1237             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1238         }
1239         break;
1240     case 0xd08: /* Vector Table Offset.  */
1241         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1242         break;
1243     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1244         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1245             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1246                 if (attrs.secure ||
1247                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1248                     qemu_irq_pulse(s->sysresetreq);
1249                 }
1250             }
1251             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1252                 qemu_log_mask(LOG_GUEST_ERROR,
1253                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1254                               "is UNPREDICTABLE\n");
1255             }
1256             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1257                 /* NB: this bit is RES0 in v8M */
1258                 qemu_log_mask(LOG_GUEST_ERROR,
1259                               "Setting VECTRESET when not in DEBUG mode "
1260                               "is UNPREDICTABLE\n");
1261             }
1262             s->prigroup[attrs.secure] = extract32(value,
1263                                                   R_V7M_AIRCR_PRIGROUP_SHIFT,
1264                                                   R_V7M_AIRCR_PRIGROUP_LENGTH);
1265             if (attrs.secure) {
1266                 /* These bits are only writable by secure */
1267                 cpu->env.v7m.aircr = value &
1268                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1269                      R_V7M_AIRCR_BFHFNMINS_MASK |
1270                      R_V7M_AIRCR_PRIS_MASK);
1271                 /* BFHFNMINS changes the priority of Secure HardFault, and
1272                  * allows a pending Non-secure HardFault to preempt (which
1273                  * we implement by marking it enabled).
1274                  */
1275                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1276                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1277                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1278                 } else {
1279                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1280                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1281                 }
1282             }
1283             nvic_irq_update(s);
1284         }
1285         break;
1286     case 0xd10: /* System Control.  */
1287         /* We don't implement deep-sleep so these bits are RAZ/WI.
1288          * The other bits in the register are banked.
1289          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1290          * is architecturally permitted.
1291          */
1292         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1293         cpu->env.v7m.scr[attrs.secure] = value;
1294         break;
1295     case 0xd14: /* Configuration Control.  */
1296         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1297         value &= (R_V7M_CCR_STKALIGN_MASK |
1298                   R_V7M_CCR_BFHFNMIGN_MASK |
1299                   R_V7M_CCR_DIV_0_TRP_MASK |
1300                   R_V7M_CCR_UNALIGN_TRP_MASK |
1301                   R_V7M_CCR_USERSETMPEND_MASK |
1302                   R_V7M_CCR_NONBASETHRDENA_MASK);
1303 
1304         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1305             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1306             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1307                 | R_V7M_CCR_STKALIGN_MASK;
1308         }
1309         if (attrs.secure) {
1310             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1311             cpu->env.v7m.ccr[M_REG_NS] =
1312                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1313                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1314             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1315         }
1316 
1317         cpu->env.v7m.ccr[attrs.secure] = value;
1318         break;
1319     case 0xd24: /* System Handler Control and State (SHCSR) */
1320         if (attrs.secure) {
1321             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1322             /* Secure HardFault active bit cannot be written */
1323             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1324             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1325             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1326                 (value & (1 << 10)) != 0;
1327             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1328                 (value & (1 << 11)) != 0;
1329             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1330                 (value & (1 << 12)) != 0;
1331             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1332             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1333             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1334             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1335             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1336                 (value & (1 << 18)) != 0;
1337             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1338             /* SecureFault not banked, but RAZ/WI to NS */
1339             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1340             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1341             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1342         } else {
1343             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1344             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1345                 /* HARDFAULTPENDED is not present in v7M */
1346                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1347             }
1348             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1349             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1350             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1351             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1352             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1353             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1354             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1355             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1356             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1357         }
1358         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1359             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1360             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1361             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1362         }
1363         /* NMIACT can only be written if the write is of a zero, with
1364          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1365          */
1366         if (!attrs.secure && cpu->env.v7m.secure &&
1367             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1368             (value & (1 << 5)) == 0) {
1369             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1370         }
1371         /* HARDFAULTACT can only be written if the write is of a zero
1372          * to the non-secure HardFault state by the CPU in secure state.
1373          * The only case where we can be targeting the non-secure HF state
1374          * when in secure state is if this is a write via the NS alias
1375          * and BFHFNMINS is 1.
1376          */
1377         if (!attrs.secure && cpu->env.v7m.secure &&
1378             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1379             (value & (1 << 2)) == 0) {
1380             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1381         }
1382 
1383         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1384         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1385         nvic_irq_update(s);
1386         break;
1387     case 0xd2c: /* Hard Fault Status.  */
1388         cpu->env.v7m.hfsr &= ~value; /* W1C */
1389         break;
1390     case 0xd30: /* Debug Fault Status.  */
1391         cpu->env.v7m.dfsr &= ~value; /* W1C */
1392         break;
1393     case 0xd34: /* Mem Manage Address.  */
1394         cpu->env.v7m.mmfar[attrs.secure] = value;
1395         return;
1396     case 0xd38: /* Bus Fault Address.  */
1397         cpu->env.v7m.bfar = value;
1398         return;
1399     case 0xd3c: /* Aux Fault Status.  */
1400         qemu_log_mask(LOG_UNIMP,
1401                       "NVIC: Aux fault status registers unimplemented\n");
1402         break;
1403     case 0xd84: /* CSSELR */
1404         if (!arm_v7m_csselr_razwi(cpu)) {
1405             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1406         }
1407         break;
1408     case 0xd90: /* MPU_TYPE */
1409         return; /* RO */
1410     case 0xd94: /* MPU_CTRL */
1411         if ((value &
1412              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1413             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1414             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1415                           "UNPREDICTABLE\n");
1416         }
1417         cpu->env.v7m.mpu_ctrl[attrs.secure]
1418             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1419                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1420                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1421         tlb_flush(CPU(cpu));
1422         break;
1423     case 0xd98: /* MPU_RNR */
1424         if (value >= cpu->pmsav7_dregion) {
1425             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1426                           PRIu32 "/%" PRIu32 "\n",
1427                           value, cpu->pmsav7_dregion);
1428         } else {
1429             cpu->env.pmsav7.rnr[attrs.secure] = value;
1430         }
1431         break;
1432     case 0xd9c: /* MPU_RBAR */
1433     case 0xda4: /* MPU_RBAR_A1 */
1434     case 0xdac: /* MPU_RBAR_A2 */
1435     case 0xdb4: /* MPU_RBAR_A3 */
1436     {
1437         int region;
1438 
1439         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1440             /* PMSAv8M handling of the aliases is different from v7M:
1441              * aliases A1, A2, A3 override the low two bits of the region
1442              * number in MPU_RNR, and there is no 'region' field in the
1443              * RBAR register.
1444              */
1445             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1446 
1447             region = cpu->env.pmsav7.rnr[attrs.secure];
1448             if (aliasno) {
1449                 region = deposit32(region, 0, 2, aliasno);
1450             }
1451             if (region >= cpu->pmsav7_dregion) {
1452                 return;
1453             }
1454             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1455             tlb_flush(CPU(cpu));
1456             return;
1457         }
1458 
1459         if (value & (1 << 4)) {
1460             /* VALID bit means use the region number specified in this
1461              * value and also update MPU_RNR.REGION with that value.
1462              */
1463             region = extract32(value, 0, 4);
1464             if (region >= cpu->pmsav7_dregion) {
1465                 qemu_log_mask(LOG_GUEST_ERROR,
1466                               "MPU region out of range %u/%" PRIu32 "\n",
1467                               region, cpu->pmsav7_dregion);
1468                 return;
1469             }
1470             cpu->env.pmsav7.rnr[attrs.secure] = region;
1471         } else {
1472             region = cpu->env.pmsav7.rnr[attrs.secure];
1473         }
1474 
1475         if (region >= cpu->pmsav7_dregion) {
1476             return;
1477         }
1478 
1479         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1480         tlb_flush(CPU(cpu));
1481         break;
1482     }
1483     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1484     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1485     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1486     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1487     {
1488         int region = cpu->env.pmsav7.rnr[attrs.secure];
1489 
1490         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1491             /* PMSAv8M handling of the aliases is different from v7M:
1492              * aliases A1, A2, A3 override the low two bits of the region
1493              * number in MPU_RNR.
1494              */
1495             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1496 
1497             region = cpu->env.pmsav7.rnr[attrs.secure];
1498             if (aliasno) {
1499                 region = deposit32(region, 0, 2, aliasno);
1500             }
1501             if (region >= cpu->pmsav7_dregion) {
1502                 return;
1503             }
1504             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1505             tlb_flush(CPU(cpu));
1506             return;
1507         }
1508 
1509         if (region >= cpu->pmsav7_dregion) {
1510             return;
1511         }
1512 
1513         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1514         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1515         tlb_flush(CPU(cpu));
1516         break;
1517     }
1518     case 0xdc0: /* MPU_MAIR0 */
1519         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1520             goto bad_offset;
1521         }
1522         if (cpu->pmsav7_dregion) {
1523             /* Register is RES0 if no MPU regions are implemented */
1524             cpu->env.pmsav8.mair0[attrs.secure] = value;
1525         }
1526         /* We don't need to do anything else because memory attributes
1527          * only affect cacheability, and we don't implement caching.
1528          */
1529         break;
1530     case 0xdc4: /* MPU_MAIR1 */
1531         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1532             goto bad_offset;
1533         }
1534         if (cpu->pmsav7_dregion) {
1535             /* Register is RES0 if no MPU regions are implemented */
1536             cpu->env.pmsav8.mair1[attrs.secure] = value;
1537         }
1538         /* We don't need to do anything else because memory attributes
1539          * only affect cacheability, and we don't implement caching.
1540          */
1541         break;
1542     case 0xdd0: /* SAU_CTRL */
1543         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1544             goto bad_offset;
1545         }
1546         if (!attrs.secure) {
1547             return;
1548         }
1549         cpu->env.sau.ctrl = value & 3;
1550         break;
1551     case 0xdd4: /* SAU_TYPE */
1552         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1553             goto bad_offset;
1554         }
1555         break;
1556     case 0xdd8: /* SAU_RNR */
1557         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1558             goto bad_offset;
1559         }
1560         if (!attrs.secure) {
1561             return;
1562         }
1563         if (value >= cpu->sau_sregion) {
1564             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1565                           PRIu32 "/%" PRIu32 "\n",
1566                           value, cpu->sau_sregion);
1567         } else {
1568             cpu->env.sau.rnr = value;
1569         }
1570         break;
1571     case 0xddc: /* SAU_RBAR */
1572     {
1573         int region = cpu->env.sau.rnr;
1574 
1575         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1576             goto bad_offset;
1577         }
1578         if (!attrs.secure) {
1579             return;
1580         }
1581         if (region >= cpu->sau_sregion) {
1582             return;
1583         }
1584         cpu->env.sau.rbar[region] = value & ~0x1f;
1585         tlb_flush(CPU(cpu));
1586         break;
1587     }
1588     case 0xde0: /* SAU_RLAR */
1589     {
1590         int region = cpu->env.sau.rnr;
1591 
1592         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1593             goto bad_offset;
1594         }
1595         if (!attrs.secure) {
1596             return;
1597         }
1598         if (region >= cpu->sau_sregion) {
1599             return;
1600         }
1601         cpu->env.sau.rlar[region] = value & ~0x1c;
1602         tlb_flush(CPU(cpu));
1603         break;
1604     }
1605     case 0xde4: /* SFSR */
1606         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1607             goto bad_offset;
1608         }
1609         if (!attrs.secure) {
1610             return;
1611         }
1612         cpu->env.v7m.sfsr &= ~value; /* W1C */
1613         break;
1614     case 0xde8: /* SFAR */
1615         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1616             goto bad_offset;
1617         }
1618         if (!attrs.secure) {
1619             return;
1620         }
1621         cpu->env.v7m.sfsr = value;
1622         break;
1623     case 0xf00: /* Software Triggered Interrupt Register */
1624     {
1625         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1626         if (excnum < s->num_irq) {
1627             armv7m_nvic_set_pending(s, excnum, false);
1628         }
1629         break;
1630     }
1631     case 0xf50: /* ICIALLU */
1632     case 0xf58: /* ICIMVAU */
1633     case 0xf5c: /* DCIMVAC */
1634     case 0xf60: /* DCISW */
1635     case 0xf64: /* DCCMVAU */
1636     case 0xf68: /* DCCMVAC */
1637     case 0xf6c: /* DCCSW */
1638     case 0xf70: /* DCCIMVAC */
1639     case 0xf74: /* DCCISW */
1640     case 0xf78: /* BPIALL */
1641         /* Cache and branch predictor maintenance: for QEMU these always NOP */
1642         break;
1643     default:
1644     bad_offset:
1645         qemu_log_mask(LOG_GUEST_ERROR,
1646                       "NVIC: Bad write offset 0x%x\n", offset);
1647     }
1648 }
1649 
1650 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1651 {
1652     /* Return true if unprivileged access to this register is permitted. */
1653     switch (offset) {
1654     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1655         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1656          * controls access even though the CPU is in Secure state (I_QDKX).
1657          */
1658         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1659     default:
1660         /* All other user accesses cause a BusFault unconditionally */
1661         return false;
1662     }
1663 }
1664 
1665 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1666 {
1667     /* Behaviour for the SHPR register field for this exception:
1668      * return M_REG_NS to use the nonsecure vector (including for
1669      * non-banked exceptions), M_REG_S for the secure version of
1670      * a banked exception, and -1 if this field should RAZ/WI.
1671      */
1672     switch (exc) {
1673     case ARMV7M_EXCP_MEM:
1674     case ARMV7M_EXCP_USAGE:
1675     case ARMV7M_EXCP_SVC:
1676     case ARMV7M_EXCP_PENDSV:
1677     case ARMV7M_EXCP_SYSTICK:
1678         /* Banked exceptions */
1679         return attrs.secure;
1680     case ARMV7M_EXCP_BUS:
1681         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1682         if (!attrs.secure &&
1683             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1684             return -1;
1685         }
1686         return M_REG_NS;
1687     case ARMV7M_EXCP_SECURE:
1688         /* Not banked, RAZ/WI from nonsecure */
1689         if (!attrs.secure) {
1690             return -1;
1691         }
1692         return M_REG_NS;
1693     case ARMV7M_EXCP_DEBUG:
1694         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1695         return M_REG_NS;
1696     case 8 ... 10:
1697     case 13:
1698         /* RES0 */
1699         return -1;
1700     default:
1701         /* Not reachable due to decode of SHPR register addresses */
1702         g_assert_not_reached();
1703     }
1704 }
1705 
1706 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1707                                     uint64_t *data, unsigned size,
1708                                     MemTxAttrs attrs)
1709 {
1710     NVICState *s = (NVICState *)opaque;
1711     uint32_t offset = addr;
1712     unsigned i, startvec, end;
1713     uint32_t val;
1714 
1715     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1716         /* Generate BusFault for unprivileged accesses */
1717         return MEMTX_ERROR;
1718     }
1719 
1720     switch (offset) {
1721     /* reads of set and clear both return the status */
1722     case 0x100 ... 0x13f: /* NVIC Set enable */
1723         offset += 0x80;
1724         /* fall through */
1725     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1726         val = 0;
1727         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
1728 
1729         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1730             if (s->vectors[startvec + i].enabled &&
1731                 (attrs.secure || s->itns[startvec + i])) {
1732                 val |= (1 << i);
1733             }
1734         }
1735         break;
1736     case 0x200 ... 0x23f: /* NVIC Set pend */
1737         offset += 0x80;
1738         /* fall through */
1739     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1740         val = 0;
1741         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1742         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1743             if (s->vectors[startvec + i].pending &&
1744                 (attrs.secure || s->itns[startvec + i])) {
1745                 val |= (1 << i);
1746             }
1747         }
1748         break;
1749     case 0x300 ... 0x33f: /* NVIC Active */
1750         val = 0;
1751         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
1752 
1753         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1754             if (s->vectors[startvec + i].active &&
1755                 (attrs.secure || s->itns[startvec + i])) {
1756                 val |= (1 << i);
1757             }
1758         }
1759         break;
1760     case 0x400 ... 0x5ef: /* NVIC Priority */
1761         val = 0;
1762         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1763 
1764         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1765             if (attrs.secure || s->itns[startvec + i]) {
1766                 val |= s->vectors[startvec + i].prio << (8 * i);
1767             }
1768         }
1769         break;
1770     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1771         val = 0;
1772         for (i = 0; i < size; i++) {
1773             unsigned hdlidx = (offset - 0xd14) + i;
1774             int sbank = shpr_bank(s, hdlidx, attrs);
1775 
1776             if (sbank < 0) {
1777                 continue;
1778             }
1779             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1780         }
1781         break;
1782     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1783         /* The BFSR bits [15:8] are shared between security states
1784          * and we store them in the NS copy
1785          */
1786         val = s->cpu->env.v7m.cfsr[attrs.secure];
1787         val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1788         val = extract32(val, (offset - 0xd28) * 8, size * 8);
1789         break;
1790     case 0xfe0 ... 0xfff: /* ID.  */
1791         if (offset & 3) {
1792             val = 0;
1793         } else {
1794             val = nvic_id[(offset - 0xfe0) >> 2];
1795         }
1796         break;
1797     default:
1798         if (size == 4) {
1799             val = nvic_readl(s, offset, attrs);
1800         } else {
1801             qemu_log_mask(LOG_GUEST_ERROR,
1802                           "NVIC: Bad read of size %d at offset 0x%x\n",
1803                           size, offset);
1804             val = 0;
1805         }
1806     }
1807 
1808     trace_nvic_sysreg_read(addr, val, size);
1809     *data = val;
1810     return MEMTX_OK;
1811 }
1812 
1813 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1814                                      uint64_t value, unsigned size,
1815                                      MemTxAttrs attrs)
1816 {
1817     NVICState *s = (NVICState *)opaque;
1818     uint32_t offset = addr;
1819     unsigned i, startvec, end;
1820     unsigned setval = 0;
1821 
1822     trace_nvic_sysreg_write(addr, value, size);
1823 
1824     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1825         /* Generate BusFault for unprivileged accesses */
1826         return MEMTX_ERROR;
1827     }
1828 
1829     switch (offset) {
1830     case 0x100 ... 0x13f: /* NVIC Set enable */
1831         offset += 0x80;
1832         setval = 1;
1833         /* fall through */
1834     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1835         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1836 
1837         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1838             if (value & (1 << i) &&
1839                 (attrs.secure || s->itns[startvec + i])) {
1840                 s->vectors[startvec + i].enabled = setval;
1841             }
1842         }
1843         nvic_irq_update(s);
1844         return MEMTX_OK;
1845     case 0x200 ... 0x23f: /* NVIC Set pend */
1846         /* the special logic in armv7m_nvic_set_pending()
1847          * is not needed since IRQs are never escalated
1848          */
1849         offset += 0x80;
1850         setval = 1;
1851         /* fall through */
1852     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1853         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1854 
1855         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1856             if (value & (1 << i) &&
1857                 (attrs.secure || s->itns[startvec + i])) {
1858                 s->vectors[startvec + i].pending = setval;
1859             }
1860         }
1861         nvic_irq_update(s);
1862         return MEMTX_OK;
1863     case 0x300 ... 0x33f: /* NVIC Active */
1864         return MEMTX_OK; /* R/O */
1865     case 0x400 ... 0x5ef: /* NVIC Priority */
1866         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1867 
1868         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1869             if (attrs.secure || s->itns[startvec + i]) {
1870                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1871             }
1872         }
1873         nvic_irq_update(s);
1874         return MEMTX_OK;
1875     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1876         for (i = 0; i < size; i++) {
1877             unsigned hdlidx = (offset - 0xd14) + i;
1878             int newprio = extract32(value, i * 8, 8);
1879             int sbank = shpr_bank(s, hdlidx, attrs);
1880 
1881             if (sbank < 0) {
1882                 continue;
1883             }
1884             set_prio(s, hdlidx, sbank, newprio);
1885         }
1886         nvic_irq_update(s);
1887         return MEMTX_OK;
1888     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1889         /* All bits are W1C, so construct 32 bit value with 0s in
1890          * the parts not written by the access size
1891          */
1892         value <<= ((offset - 0xd28) * 8);
1893 
1894         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1895         if (attrs.secure) {
1896             /* The BFSR bits [15:8] are shared between security states
1897              * and we store them in the NS copy.
1898              */
1899             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1900         }
1901         return MEMTX_OK;
1902     }
1903     if (size == 4) {
1904         nvic_writel(s, offset, value, attrs);
1905         return MEMTX_OK;
1906     }
1907     qemu_log_mask(LOG_GUEST_ERROR,
1908                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1909     /* This is UNPREDICTABLE; treat as RAZ/WI */
1910     return MEMTX_OK;
1911 }
1912 
1913 static const MemoryRegionOps nvic_sysreg_ops = {
1914     .read_with_attrs = nvic_sysreg_read,
1915     .write_with_attrs = nvic_sysreg_write,
1916     .endianness = DEVICE_NATIVE_ENDIAN,
1917 };
1918 
1919 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1920                                         uint64_t value, unsigned size,
1921                                         MemTxAttrs attrs)
1922 {
1923     MemoryRegion *mr = opaque;
1924 
1925     if (attrs.secure) {
1926         /* S accesses to the alias act like NS accesses to the real region */
1927         attrs.secure = 0;
1928         return memory_region_dispatch_write(mr, addr, value, size, attrs);
1929     } else {
1930         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1931         if (attrs.user) {
1932             return MEMTX_ERROR;
1933         }
1934         return MEMTX_OK;
1935     }
1936 }
1937 
1938 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1939                                        uint64_t *data, unsigned size,
1940                                        MemTxAttrs attrs)
1941 {
1942     MemoryRegion *mr = opaque;
1943 
1944     if (attrs.secure) {
1945         /* S accesses to the alias act like NS accesses to the real region */
1946         attrs.secure = 0;
1947         return memory_region_dispatch_read(mr, addr, data, size, attrs);
1948     } else {
1949         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1950         if (attrs.user) {
1951             return MEMTX_ERROR;
1952         }
1953         *data = 0;
1954         return MEMTX_OK;
1955     }
1956 }
1957 
1958 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1959     .read_with_attrs = nvic_sysreg_ns_read,
1960     .write_with_attrs = nvic_sysreg_ns_write,
1961     .endianness = DEVICE_NATIVE_ENDIAN,
1962 };
1963 
1964 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
1965                                       uint64_t value, unsigned size,
1966                                       MemTxAttrs attrs)
1967 {
1968     NVICState *s = opaque;
1969     MemoryRegion *mr;
1970 
1971     /* Direct the access to the correct systick */
1972     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1973     return memory_region_dispatch_write(mr, addr, value, size, attrs);
1974 }
1975 
1976 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
1977                                      uint64_t *data, unsigned size,
1978                                      MemTxAttrs attrs)
1979 {
1980     NVICState *s = opaque;
1981     MemoryRegion *mr;
1982 
1983     /* Direct the access to the correct systick */
1984     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1985     return memory_region_dispatch_read(mr, addr, data, size, attrs);
1986 }
1987 
1988 static const MemoryRegionOps nvic_systick_ops = {
1989     .read_with_attrs = nvic_systick_read,
1990     .write_with_attrs = nvic_systick_write,
1991     .endianness = DEVICE_NATIVE_ENDIAN,
1992 };
1993 
1994 static int nvic_post_load(void *opaque, int version_id)
1995 {
1996     NVICState *s = opaque;
1997     unsigned i;
1998     int resetprio;
1999 
2000     /* Check for out of range priority settings */
2001     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2002 
2003     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2004         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2005         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2006         return 1;
2007     }
2008     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2009         if (s->vectors[i].prio & ~0xff) {
2010             return 1;
2011         }
2012     }
2013 
2014     nvic_recompute_state(s);
2015 
2016     return 0;
2017 }
2018 
2019 static const VMStateDescription vmstate_VecInfo = {
2020     .name = "armv7m_nvic_info",
2021     .version_id = 1,
2022     .minimum_version_id = 1,
2023     .fields = (VMStateField[]) {
2024         VMSTATE_INT16(prio, VecInfo),
2025         VMSTATE_UINT8(enabled, VecInfo),
2026         VMSTATE_UINT8(pending, VecInfo),
2027         VMSTATE_UINT8(active, VecInfo),
2028         VMSTATE_UINT8(level, VecInfo),
2029         VMSTATE_END_OF_LIST()
2030     }
2031 };
2032 
2033 static bool nvic_security_needed(void *opaque)
2034 {
2035     NVICState *s = opaque;
2036 
2037     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2038 }
2039 
2040 static int nvic_security_post_load(void *opaque, int version_id)
2041 {
2042     NVICState *s = opaque;
2043     int i;
2044 
2045     /* Check for out of range priority settings */
2046     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2047         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2048         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2049          * if the CPU state has been migrated yet; a mismatch won't
2050          * cause the emulation to blow up, though.
2051          */
2052         return 1;
2053     }
2054     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2055         if (s->sec_vectors[i].prio & ~0xff) {
2056             return 1;
2057         }
2058     }
2059     return 0;
2060 }
2061 
2062 static const VMStateDescription vmstate_nvic_security = {
2063     .name = "nvic/m-security",
2064     .version_id = 1,
2065     .minimum_version_id = 1,
2066     .needed = nvic_security_needed,
2067     .post_load = &nvic_security_post_load,
2068     .fields = (VMStateField[]) {
2069         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2070                              vmstate_VecInfo, VecInfo),
2071         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2072         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2073         VMSTATE_END_OF_LIST()
2074     }
2075 };
2076 
2077 static const VMStateDescription vmstate_nvic = {
2078     .name = "armv7m_nvic",
2079     .version_id = 4,
2080     .minimum_version_id = 4,
2081     .post_load = &nvic_post_load,
2082     .fields = (VMStateField[]) {
2083         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2084                              vmstate_VecInfo, VecInfo),
2085         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2086         VMSTATE_END_OF_LIST()
2087     },
2088     .subsections = (const VMStateDescription*[]) {
2089         &vmstate_nvic_security,
2090         NULL
2091     }
2092 };
2093 
2094 static Property props_nvic[] = {
2095     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2096     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2097     DEFINE_PROP_END_OF_LIST()
2098 };
2099 
2100 static void armv7m_nvic_reset(DeviceState *dev)
2101 {
2102     int resetprio;
2103     NVICState *s = NVIC(dev);
2104 
2105     memset(s->vectors, 0, sizeof(s->vectors));
2106     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2107     s->prigroup[M_REG_NS] = 0;
2108     s->prigroup[M_REG_S] = 0;
2109 
2110     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2111     /* MEM, BUS, and USAGE are enabled through
2112      * the System Handler Control register
2113      */
2114     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2115     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2116     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2117     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2118 
2119     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2120     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2121     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2122     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2123 
2124     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2125         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2126         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2127         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2128         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2129 
2130         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2131         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2132         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2133         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2134     } else {
2135         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2136     }
2137 
2138     /* Strictly speaking the reset handler should be enabled.
2139      * However, we don't simulate soft resets through the NVIC,
2140      * and the reset vector should never be pended.
2141      * So we leave it disabled to catch logic errors.
2142      */
2143 
2144     s->exception_prio = NVIC_NOEXC_PRIO;
2145     s->vectpending = 0;
2146     s->vectpending_is_s_banked = false;
2147     s->vectpending_prio = NVIC_NOEXC_PRIO;
2148 
2149     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2150         memset(s->itns, 0, sizeof(s->itns));
2151     } else {
2152         /* This state is constant and not guest accessible in a non-security
2153          * NVIC; we set the bits to true to avoid having to do a feature
2154          * bit check in the NVIC enable/pend/etc register accessors.
2155          */
2156         int i;
2157 
2158         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2159             s->itns[i] = true;
2160         }
2161     }
2162 }
2163 
2164 static void nvic_systick_trigger(void *opaque, int n, int level)
2165 {
2166     NVICState *s = opaque;
2167 
2168     if (level) {
2169         /* SysTick just asked us to pend its exception.
2170          * (This is different from an external interrupt line's
2171          * behaviour.)
2172          * n == 0 : NonSecure systick
2173          * n == 1 : Secure systick
2174          */
2175         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2176     }
2177 }
2178 
2179 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2180 {
2181     NVICState *s = NVIC(dev);
2182     Error *err = NULL;
2183     int regionlen;
2184 
2185     s->cpu = ARM_CPU(qemu_get_cpu(0));
2186 
2187     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2188         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2189         return;
2190     }
2191 
2192     if (s->num_irq > NVIC_MAX_IRQ) {
2193         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2194         return;
2195     }
2196 
2197     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2198 
2199     /* include space for internal exception vectors */
2200     s->num_irq += NVIC_FIRST_IRQ;
2201 
2202     object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2203                              "realized", &err);
2204     if (err != NULL) {
2205         error_propagate(errp, err);
2206         return;
2207     }
2208     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2209                        qdev_get_gpio_in_named(dev, "systick-trigger",
2210                                               M_REG_NS));
2211 
2212     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2213         /* We couldn't init the secure systick device in instance_init
2214          * as we didn't know then if the CPU had the security extensions;
2215          * so we have to do it here.
2216          */
2217         object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2218                           TYPE_SYSTICK);
2219         qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2220 
2221         object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2222                                  "realized", &err);
2223         if (err != NULL) {
2224             error_propagate(errp, err);
2225             return;
2226         }
2227         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2228                            qdev_get_gpio_in_named(dev, "systick-trigger",
2229                                                   M_REG_S));
2230     }
2231 
2232     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2233      * and looks like this:
2234      *  0x004 - ICTR
2235      *  0x010 - 0xff - systick
2236      *  0x100..0x7ec - NVIC
2237      *  0x7f0..0xcff - Reserved
2238      *  0xd00..0xd3c - SCS registers
2239      *  0xd40..0xeff - Reserved or Not implemented
2240      *  0xf00 - STIR
2241      *
2242      * Some registers within this space are banked between security states.
2243      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2244      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2245      * to the main SCS range, and non-secure accesses (including when
2246      * the security extension is not implemented) are RAZ/WI.
2247      * Note that both the main SCS range and the alias range are defined
2248      * to be exempt from memory attribution (R_BLJT) and so the memory
2249      * transaction attribute always matches the current CPU security
2250      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2251      * wrappers we change attrs.secure to indicate the NS access; so
2252      * generally code determining which banked register to use should
2253      * use attrs.secure; code determining actual behaviour of the system
2254      * should use env->v7m.secure.
2255      */
2256     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2257     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2258     /* The system register region goes at the bottom of the priority
2259      * stack as it covers the whole page.
2260      */
2261     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2262                           "nvic_sysregs", 0x1000);
2263     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2264 
2265     memory_region_init_io(&s->systickmem, OBJECT(s),
2266                           &nvic_systick_ops, s,
2267                           "nvic_systick", 0xe0);
2268 
2269     memory_region_add_subregion_overlap(&s->container, 0x10,
2270                                         &s->systickmem, 1);
2271 
2272     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2273         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2274                               &nvic_sysreg_ns_ops, &s->sysregmem,
2275                               "nvic_sysregs_ns", 0x1000);
2276         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2277         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2278                               &nvic_sysreg_ns_ops, &s->systickmem,
2279                               "nvic_systick_ns", 0xe0);
2280         memory_region_add_subregion_overlap(&s->container, 0x20010,
2281                                             &s->systick_ns_mem, 1);
2282     }
2283 
2284     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2285 }
2286 
2287 static void armv7m_nvic_instance_init(Object *obj)
2288 {
2289     /* We have a different default value for the num-irq property
2290      * than our superclass. This function runs after qdev init
2291      * has set the defaults from the Property array and before
2292      * any user-specified property setting, so just modify the
2293      * value in the GICState struct.
2294      */
2295     DeviceState *dev = DEVICE(obj);
2296     NVICState *nvic = NVIC(obj);
2297     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2298 
2299     object_initialize(&nvic->systick[M_REG_NS],
2300                       sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2301     qdev_set_parent_bus(DEVICE(&nvic->systick[M_REG_NS]), sysbus_get_default());
2302     /* We can't initialize the secure systick here, as we don't know
2303      * yet if we need it.
2304      */
2305 
2306     sysbus_init_irq(sbd, &nvic->excpout);
2307     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2308     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2309                             M_REG_NUM_BANKS);
2310 }
2311 
2312 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2313 {
2314     DeviceClass *dc = DEVICE_CLASS(klass);
2315 
2316     dc->vmsd  = &vmstate_nvic;
2317     dc->props = props_nvic;
2318     dc->reset = armv7m_nvic_reset;
2319     dc->realize = armv7m_nvic_realize;
2320 }
2321 
2322 static const TypeInfo armv7m_nvic_info = {
2323     .name          = TYPE_NVIC,
2324     .parent        = TYPE_SYS_BUS_DEVICE,
2325     .instance_init = armv7m_nvic_instance_init,
2326     .instance_size = sizeof(NVICState),
2327     .class_init    = armv7m_nvic_class_init,
2328     .class_size    = sizeof(SysBusDeviceClass),
2329 };
2330 
2331 static void armv7m_nvic_register_types(void)
2332 {
2333     type_register_static(&armv7m_nvic_info);
2334 }
2335 
2336 type_init(armv7m_nvic_register_types)
2337