xref: /qemu/hw/intc/armv7m_nvic.c (revision 92eecfff)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "hw/sysbus.h"
17 #include "migration/vmstate.h"
18 #include "qemu/timer.h"
19 #include "hw/intc/armv7m_nvic.h"
20 #include "hw/irq.h"
21 #include "hw/qdev-properties.h"
22 #include "sysemu/runstate.h"
23 #include "target/arm/cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/memop.h"
26 #include "qemu/log.h"
27 #include "qemu/module.h"
28 #include "trace.h"
29 
30 /* IRQ number counting:
31  *
32  * the num-irq property counts the number of external IRQ lines
33  *
34  * NVICState::num_irq counts the total number of exceptions
35  * (external IRQs, the 15 internal exceptions including reset,
36  * and one for the unused exception number 0).
37  *
38  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
39  *
40  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
41  *
42  * Iterating through all exceptions should typically be done with
43  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
44  *
45  * The external qemu_irq lines are the NVIC's external IRQ lines,
46  * so line 0 is exception 16.
47  *
48  * In the terminology of the architecture manual, "interrupts" are
49  * a subcategory of exception referring to the external interrupts
50  * (which are exception numbers NVIC_FIRST_IRQ and upward).
51  * For historical reasons QEMU tends to use "interrupt" and
52  * "exception" more or less interchangeably.
53  */
54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
56 
57 /* Effective running priority of the CPU when no exception is active
58  * (higher than the highest possible priority value)
59  */
60 #define NVIC_NOEXC_PRIO 0x100
61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
62 #define NVIC_NS_PRIO_LIMIT 0x80
63 
64 static const uint8_t nvic_id[] = {
65     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
66 };
67 
68 static void signal_sysresetreq(NVICState *s)
69 {
70     if (qemu_irq_is_connected(s->sysresetreq)) {
71         qemu_irq_pulse(s->sysresetreq);
72     } else {
73         /*
74          * Default behaviour if the SoC doesn't need to wire up
75          * SYSRESETREQ (eg to a system reset controller of some kind):
76          * perform a system reset via the usual QEMU API.
77          */
78         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
79     }
80 }
81 
82 static int nvic_pending_prio(NVICState *s)
83 {
84     /* return the group priority of the current pending interrupt,
85      * or NVIC_NOEXC_PRIO if no interrupt is pending
86      */
87     return s->vectpending_prio;
88 }
89 
90 /* Return the value of the ISCR RETTOBASE bit:
91  * 1 if there is exactly one active exception
92  * 0 if there is more than one active exception
93  * UNKNOWN if there are no active exceptions (we choose 1,
94  * which matches the choice Cortex-M3 is documented as making).
95  *
96  * NB: some versions of the documentation talk about this
97  * counting "active exceptions other than the one shown by IPSR";
98  * this is only different in the obscure corner case where guest
99  * code has manually deactivated an exception and is about
100  * to fail an exception-return integrity check. The definition
101  * above is the one from the v8M ARM ARM and is also in line
102  * with the behaviour documented for the Cortex-M3.
103  */
104 static bool nvic_rettobase(NVICState *s)
105 {
106     int irq, nhand = 0;
107     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
108 
109     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
110         if (s->vectors[irq].active ||
111             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
112              s->sec_vectors[irq].active)) {
113             nhand++;
114             if (nhand == 2) {
115                 return 0;
116             }
117         }
118     }
119 
120     return 1;
121 }
122 
123 /* Return the value of the ISCR ISRPENDING bit:
124  * 1 if an external interrupt is pending
125  * 0 if no external interrupt is pending
126  */
127 static bool nvic_isrpending(NVICState *s)
128 {
129     int irq;
130 
131     /* We can shortcut if the highest priority pending interrupt
132      * happens to be external or if there is nothing pending.
133      */
134     if (s->vectpending > NVIC_FIRST_IRQ) {
135         return true;
136     }
137     if (s->vectpending == 0) {
138         return false;
139     }
140 
141     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
142         if (s->vectors[irq].pending) {
143             return true;
144         }
145     }
146     return false;
147 }
148 
149 static bool exc_is_banked(int exc)
150 {
151     /* Return true if this is one of the limited set of exceptions which
152      * are banked (and thus have state in sec_vectors[])
153      */
154     return exc == ARMV7M_EXCP_HARD ||
155         exc == ARMV7M_EXCP_MEM ||
156         exc == ARMV7M_EXCP_USAGE ||
157         exc == ARMV7M_EXCP_SVC ||
158         exc == ARMV7M_EXCP_PENDSV ||
159         exc == ARMV7M_EXCP_SYSTICK;
160 }
161 
162 /* Return a mask word which clears the subpriority bits from
163  * a priority value for an M-profile exception, leaving only
164  * the group priority.
165  */
166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
167 {
168     return ~0U << (s->prigroup[secure] + 1);
169 }
170 
171 static bool exc_targets_secure(NVICState *s, int exc)
172 {
173     /* Return true if this non-banked exception targets Secure state. */
174     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
175         return false;
176     }
177 
178     if (exc >= NVIC_FIRST_IRQ) {
179         return !s->itns[exc];
180     }
181 
182     /* Function shouldn't be called for banked exceptions. */
183     assert(!exc_is_banked(exc));
184 
185     switch (exc) {
186     case ARMV7M_EXCP_NMI:
187     case ARMV7M_EXCP_BUS:
188         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
189     case ARMV7M_EXCP_SECURE:
190         return true;
191     case ARMV7M_EXCP_DEBUG:
192         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
193         return false;
194     default:
195         /* reset, and reserved (unused) low exception numbers.
196          * We'll get called by code that loops through all the exception
197          * numbers, but it doesn't matter what we return here as these
198          * non-existent exceptions will never be pended or active.
199          */
200         return true;
201     }
202 }
203 
204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
205 {
206     /* Return the group priority for this exception, given its raw
207      * (group-and-subgroup) priority value and whether it is targeting
208      * secure state or not.
209      */
210     if (rawprio < 0) {
211         return rawprio;
212     }
213     rawprio &= nvic_gprio_mask(s, targets_secure);
214     /* AIRCR.PRIS causes us to squash all NS priorities into the
215      * lower half of the total range
216      */
217     if (!targets_secure &&
218         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
219         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
220     }
221     return rawprio;
222 }
223 
224 /* Recompute vectpending and exception_prio for a CPU which implements
225  * the Security extension
226  */
227 static void nvic_recompute_state_secure(NVICState *s)
228 {
229     int i, bank;
230     int pend_prio = NVIC_NOEXC_PRIO;
231     int active_prio = NVIC_NOEXC_PRIO;
232     int pend_irq = 0;
233     bool pending_is_s_banked = false;
234     int pend_subprio = 0;
235 
236     /* R_CQRV: precedence is by:
237      *  - lowest group priority; if both the same then
238      *  - lowest subpriority; if both the same then
239      *  - lowest exception number; if both the same (ie banked) then
240      *  - secure exception takes precedence
241      * Compare pseudocode RawExecutionPriority.
242      * Annoyingly, now we have two prigroup values (for S and NS)
243      * we can't do the loop comparison on raw priority values.
244      */
245     for (i = 1; i < s->num_irq; i++) {
246         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
247             VecInfo *vec;
248             int prio, subprio;
249             bool targets_secure;
250 
251             if (bank == M_REG_S) {
252                 if (!exc_is_banked(i)) {
253                     continue;
254                 }
255                 vec = &s->sec_vectors[i];
256                 targets_secure = true;
257             } else {
258                 vec = &s->vectors[i];
259                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
260             }
261 
262             prio = exc_group_prio(s, vec->prio, targets_secure);
263             subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
264             if (vec->enabled && vec->pending &&
265                 ((prio < pend_prio) ||
266                  (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
267                 pend_prio = prio;
268                 pend_subprio = subprio;
269                 pend_irq = i;
270                 pending_is_s_banked = (bank == M_REG_S);
271             }
272             if (vec->active && prio < active_prio) {
273                 active_prio = prio;
274             }
275         }
276     }
277 
278     s->vectpending_is_s_banked = pending_is_s_banked;
279     s->vectpending = pend_irq;
280     s->vectpending_prio = pend_prio;
281     s->exception_prio = active_prio;
282 
283     trace_nvic_recompute_state_secure(s->vectpending,
284                                       s->vectpending_is_s_banked,
285                                       s->vectpending_prio,
286                                       s->exception_prio);
287 }
288 
289 /* Recompute vectpending and exception_prio */
290 static void nvic_recompute_state(NVICState *s)
291 {
292     int i;
293     int pend_prio = NVIC_NOEXC_PRIO;
294     int active_prio = NVIC_NOEXC_PRIO;
295     int pend_irq = 0;
296 
297     /* In theory we could write one function that handled both
298      * the "security extension present" and "not present"; however
299      * the security related changes significantly complicate the
300      * recomputation just by themselves and mixing both cases together
301      * would be even worse, so we retain a separate non-secure-only
302      * version for CPUs which don't implement the security extension.
303      */
304     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
305         nvic_recompute_state_secure(s);
306         return;
307     }
308 
309     for (i = 1; i < s->num_irq; i++) {
310         VecInfo *vec = &s->vectors[i];
311 
312         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
313             pend_prio = vec->prio;
314             pend_irq = i;
315         }
316         if (vec->active && vec->prio < active_prio) {
317             active_prio = vec->prio;
318         }
319     }
320 
321     if (active_prio > 0) {
322         active_prio &= nvic_gprio_mask(s, false);
323     }
324 
325     if (pend_prio > 0) {
326         pend_prio &= nvic_gprio_mask(s, false);
327     }
328 
329     s->vectpending = pend_irq;
330     s->vectpending_prio = pend_prio;
331     s->exception_prio = active_prio;
332 
333     trace_nvic_recompute_state(s->vectpending,
334                                s->vectpending_prio,
335                                s->exception_prio);
336 }
337 
338 /* Return the current execution priority of the CPU
339  * (equivalent to the pseudocode ExecutionPriority function).
340  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
341  */
342 static inline int nvic_exec_prio(NVICState *s)
343 {
344     CPUARMState *env = &s->cpu->env;
345     int running = NVIC_NOEXC_PRIO;
346 
347     if (env->v7m.basepri[M_REG_NS] > 0) {
348         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
349     }
350 
351     if (env->v7m.basepri[M_REG_S] > 0) {
352         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
353         if (running > basepri) {
354             running = basepri;
355         }
356     }
357 
358     if (env->v7m.primask[M_REG_NS]) {
359         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
360             if (running > NVIC_NS_PRIO_LIMIT) {
361                 running = NVIC_NS_PRIO_LIMIT;
362             }
363         } else {
364             running = 0;
365         }
366     }
367 
368     if (env->v7m.primask[M_REG_S]) {
369         running = 0;
370     }
371 
372     if (env->v7m.faultmask[M_REG_NS]) {
373         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
374             running = -1;
375         } else {
376             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
377                 if (running > NVIC_NS_PRIO_LIMIT) {
378                     running = NVIC_NS_PRIO_LIMIT;
379                 }
380             } else {
381                 running = 0;
382             }
383         }
384     }
385 
386     if (env->v7m.faultmask[M_REG_S]) {
387         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
388     }
389 
390     /* consider priority of active handler */
391     return MIN(running, s->exception_prio);
392 }
393 
394 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
395 {
396     /* Return true if the requested execution priority is negative
397      * for the specified security state, ie that security state
398      * has an active NMI or HardFault or has set its FAULTMASK.
399      * Note that this is not the same as whether the execution
400      * priority is actually negative (for instance AIRCR.PRIS may
401      * mean we don't allow FAULTMASK_NS to actually make the execution
402      * priority negative). Compare pseudocode IsReqExcPriNeg().
403      */
404     NVICState *s = opaque;
405 
406     if (s->cpu->env.v7m.faultmask[secure]) {
407         return true;
408     }
409 
410     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
411         s->vectors[ARMV7M_EXCP_HARD].active) {
412         return true;
413     }
414 
415     if (s->vectors[ARMV7M_EXCP_NMI].active &&
416         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
417         return true;
418     }
419 
420     return false;
421 }
422 
423 bool armv7m_nvic_can_take_pending_exception(void *opaque)
424 {
425     NVICState *s = opaque;
426 
427     return nvic_exec_prio(s) > nvic_pending_prio(s);
428 }
429 
430 int armv7m_nvic_raw_execution_priority(void *opaque)
431 {
432     NVICState *s = opaque;
433 
434     return s->exception_prio;
435 }
436 
437 /* caller must call nvic_irq_update() after this.
438  * secure indicates the bank to use for banked exceptions (we assert if
439  * we are passed secure=true for a non-banked exception).
440  */
441 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
442 {
443     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
444     assert(irq < s->num_irq);
445 
446     prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
447 
448     if (secure) {
449         assert(exc_is_banked(irq));
450         s->sec_vectors[irq].prio = prio;
451     } else {
452         s->vectors[irq].prio = prio;
453     }
454 
455     trace_nvic_set_prio(irq, secure, prio);
456 }
457 
458 /* Return the current raw priority register value.
459  * secure indicates the bank to use for banked exceptions (we assert if
460  * we are passed secure=true for a non-banked exception).
461  */
462 static int get_prio(NVICState *s, unsigned irq, bool secure)
463 {
464     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
465     assert(irq < s->num_irq);
466 
467     if (secure) {
468         assert(exc_is_banked(irq));
469         return s->sec_vectors[irq].prio;
470     } else {
471         return s->vectors[irq].prio;
472     }
473 }
474 
475 /* Recompute state and assert irq line accordingly.
476  * Must be called after changes to:
477  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
478  *  prigroup
479  */
480 static void nvic_irq_update(NVICState *s)
481 {
482     int lvl;
483     int pend_prio;
484 
485     nvic_recompute_state(s);
486     pend_prio = nvic_pending_prio(s);
487 
488     /* Raise NVIC output if this IRQ would be taken, except that we
489      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
490      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
491      * to those CPU registers don't cause us to recalculate the NVIC
492      * pending info.
493      */
494     lvl = (pend_prio < s->exception_prio);
495     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
496     qemu_set_irq(s->excpout, lvl);
497 }
498 
499 /**
500  * armv7m_nvic_clear_pending: mark the specified exception as not pending
501  * @opaque: the NVIC
502  * @irq: the exception number to mark as not pending
503  * @secure: false for non-banked exceptions or for the nonsecure
504  * version of a banked exception, true for the secure version of a banked
505  * exception.
506  *
507  * Marks the specified exception as not pending. Note that we will assert()
508  * if @secure is true and @irq does not specify one of the fixed set
509  * of architecturally banked exceptions.
510  */
511 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
512 {
513     NVICState *s = (NVICState *)opaque;
514     VecInfo *vec;
515 
516     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
517 
518     if (secure) {
519         assert(exc_is_banked(irq));
520         vec = &s->sec_vectors[irq];
521     } else {
522         vec = &s->vectors[irq];
523     }
524     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
525     if (vec->pending) {
526         vec->pending = 0;
527         nvic_irq_update(s);
528     }
529 }
530 
531 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
532                                        bool derived)
533 {
534     /* Pend an exception, including possibly escalating it to HardFault.
535      *
536      * This function handles both "normal" pending of interrupts and
537      * exceptions, and also derived exceptions (ones which occur as
538      * a result of trying to take some other exception).
539      *
540      * If derived == true, the caller guarantees that we are part way through
541      * trying to take an exception (but have not yet called
542      * armv7m_nvic_acknowledge_irq() to make it active), and so:
543      *  - s->vectpending is the "original exception" we were trying to take
544      *  - irq is the "derived exception"
545      *  - nvic_exec_prio(s) gives the priority before exception entry
546      * Here we handle the prioritization logic which the pseudocode puts
547      * in the DerivedLateArrival() function.
548      */
549 
550     NVICState *s = (NVICState *)opaque;
551     bool banked = exc_is_banked(irq);
552     VecInfo *vec;
553     bool targets_secure;
554 
555     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
556     assert(!secure || banked);
557 
558     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
559 
560     targets_secure = banked ? secure : exc_targets_secure(s, irq);
561 
562     trace_nvic_set_pending(irq, secure, targets_secure,
563                            derived, vec->enabled, vec->prio);
564 
565     if (derived) {
566         /* Derived exceptions are always synchronous. */
567         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
568 
569         if (irq == ARMV7M_EXCP_DEBUG &&
570             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
571             /* DebugMonitorFault, but its priority is lower than the
572              * preempted exception priority: just ignore it.
573              */
574             return;
575         }
576 
577         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
578             /* If this is a terminal exception (one which means we cannot
579              * take the original exception, like a failure to read its
580              * vector table entry), then we must take the derived exception.
581              * If the derived exception can't take priority over the
582              * original exception, then we go into Lockup.
583              *
584              * For QEMU, we rely on the fact that a derived exception is
585              * terminal if and only if it's reported to us as HardFault,
586              * which saves having to have an extra argument is_terminal
587              * that we'd only use in one place.
588              */
589             cpu_abort(&s->cpu->parent_obj,
590                       "Lockup: can't take terminal derived exception "
591                       "(original exception priority %d)\n",
592                       s->vectpending_prio);
593         }
594         /* We now continue with the same code as for a normal pending
595          * exception, which will cause us to pend the derived exception.
596          * We'll then take either the original or the derived exception
597          * based on which is higher priority by the usual mechanism
598          * for selecting the highest priority pending interrupt.
599          */
600     }
601 
602     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
603         /* If a synchronous exception is pending then it may be
604          * escalated to HardFault if:
605          *  * it is equal or lower priority to current execution
606          *  * it is disabled
607          * (ie we need to take it immediately but we can't do so).
608          * Asynchronous exceptions (and interrupts) simply remain pending.
609          *
610          * For QEMU, we don't have any imprecise (asynchronous) faults,
611          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
612          * synchronous.
613          * Debug exceptions are awkward because only Debug exceptions
614          * resulting from the BKPT instruction should be escalated,
615          * but we don't currently implement any Debug exceptions other
616          * than those that result from BKPT, so we treat all debug exceptions
617          * as needing escalation.
618          *
619          * This all means we can identify whether to escalate based only on
620          * the exception number and don't (yet) need the caller to explicitly
621          * tell us whether this exception is synchronous or not.
622          */
623         int running = nvic_exec_prio(s);
624         bool escalate = false;
625 
626         if (exc_group_prio(s, vec->prio, secure) >= running) {
627             trace_nvic_escalate_prio(irq, vec->prio, running);
628             escalate = true;
629         } else if (!vec->enabled) {
630             trace_nvic_escalate_disabled(irq);
631             escalate = true;
632         }
633 
634         if (escalate) {
635 
636             /* We need to escalate this exception to a synchronous HardFault.
637              * If BFHFNMINS is set then we escalate to the banked HF for
638              * the target security state of the original exception; otherwise
639              * we take a Secure HardFault.
640              */
641             irq = ARMV7M_EXCP_HARD;
642             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
643                 (targets_secure ||
644                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
645                 vec = &s->sec_vectors[irq];
646             } else {
647                 vec = &s->vectors[irq];
648             }
649             if (running <= vec->prio) {
650                 /* We want to escalate to HardFault but we can't take the
651                  * synchronous HardFault at this point either. This is a
652                  * Lockup condition due to a guest bug. We don't model
653                  * Lockup, so report via cpu_abort() instead.
654                  */
655                 cpu_abort(&s->cpu->parent_obj,
656                           "Lockup: can't escalate %d to HardFault "
657                           "(current priority %d)\n", irq, running);
658             }
659 
660             /* HF may be banked but there is only one shared HFSR */
661             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
662         }
663     }
664 
665     if (!vec->pending) {
666         vec->pending = 1;
667         nvic_irq_update(s);
668     }
669 }
670 
671 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
672 {
673     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
674 }
675 
676 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
677 {
678     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
679 }
680 
681 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
682 {
683     /*
684      * Pend an exception during lazy FP stacking. This differs
685      * from the usual exception pending because the logic for
686      * whether we should escalate depends on the saved context
687      * in the FPCCR register, not on the current state of the CPU/NVIC.
688      */
689     NVICState *s = (NVICState *)opaque;
690     bool banked = exc_is_banked(irq);
691     VecInfo *vec;
692     bool targets_secure;
693     bool escalate = false;
694     /*
695      * We will only look at bits in fpccr if this is a banked exception
696      * (in which case 'secure' tells us whether it is the S or NS version).
697      * All the bits for the non-banked exceptions are in fpccr_s.
698      */
699     uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
700     uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
701 
702     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
703     assert(!secure || banked);
704 
705     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
706 
707     targets_secure = banked ? secure : exc_targets_secure(s, irq);
708 
709     switch (irq) {
710     case ARMV7M_EXCP_DEBUG:
711         if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
712             /* Ignore DebugMonitor exception */
713             return;
714         }
715         break;
716     case ARMV7M_EXCP_MEM:
717         escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
718         break;
719     case ARMV7M_EXCP_USAGE:
720         escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
721         break;
722     case ARMV7M_EXCP_BUS:
723         escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
724         break;
725     case ARMV7M_EXCP_SECURE:
726         escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
727         break;
728     default:
729         g_assert_not_reached();
730     }
731 
732     if (escalate) {
733         /*
734          * Escalate to HardFault: faults that initially targeted Secure
735          * continue to do so, even if HF normally targets NonSecure.
736          */
737         irq = ARMV7M_EXCP_HARD;
738         if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
739             (targets_secure ||
740              !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
741             vec = &s->sec_vectors[irq];
742         } else {
743             vec = &s->vectors[irq];
744         }
745     }
746 
747     if (!vec->enabled ||
748         nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
749         if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
750             /*
751              * We want to escalate to HardFault but the context the
752              * FP state belongs to prevents the exception pre-empting.
753              */
754             cpu_abort(&s->cpu->parent_obj,
755                       "Lockup: can't escalate to HardFault during "
756                       "lazy FP register stacking\n");
757         }
758     }
759 
760     if (escalate) {
761         s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
762     }
763     if (!vec->pending) {
764         vec->pending = 1;
765         /*
766          * We do not call nvic_irq_update(), because we know our caller
767          * is going to handle causing us to take the exception by
768          * raising EXCP_LAZYFP, so raising the IRQ line would be
769          * pointless extra work. We just need to recompute the
770          * priorities so that armv7m_nvic_can_take_pending_exception()
771          * returns the right answer.
772          */
773         nvic_recompute_state(s);
774     }
775 }
776 
777 /* Make pending IRQ active.  */
778 void armv7m_nvic_acknowledge_irq(void *opaque)
779 {
780     NVICState *s = (NVICState *)opaque;
781     CPUARMState *env = &s->cpu->env;
782     const int pending = s->vectpending;
783     const int running = nvic_exec_prio(s);
784     VecInfo *vec;
785 
786     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
787 
788     if (s->vectpending_is_s_banked) {
789         vec = &s->sec_vectors[pending];
790     } else {
791         vec = &s->vectors[pending];
792     }
793 
794     assert(vec->enabled);
795     assert(vec->pending);
796 
797     assert(s->vectpending_prio < running);
798 
799     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
800 
801     vec->active = 1;
802     vec->pending = 0;
803 
804     write_v7m_exception(env, s->vectpending);
805 
806     nvic_irq_update(s);
807 }
808 
809 void armv7m_nvic_get_pending_irq_info(void *opaque,
810                                       int *pirq, bool *ptargets_secure)
811 {
812     NVICState *s = (NVICState *)opaque;
813     const int pending = s->vectpending;
814     bool targets_secure;
815 
816     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
817 
818     if (s->vectpending_is_s_banked) {
819         targets_secure = true;
820     } else {
821         targets_secure = !exc_is_banked(pending) &&
822             exc_targets_secure(s, pending);
823     }
824 
825     trace_nvic_get_pending_irq_info(pending, targets_secure);
826 
827     *ptargets_secure = targets_secure;
828     *pirq = pending;
829 }
830 
831 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
832 {
833     NVICState *s = (NVICState *)opaque;
834     VecInfo *vec = NULL;
835     int ret;
836 
837     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
838 
839     /*
840      * For negative priorities, v8M will forcibly deactivate the appropriate
841      * NMI or HardFault regardless of what interrupt we're being asked to
842      * deactivate (compare the DeActivate() pseudocode). This is a guard
843      * against software returning from NMI or HardFault with a corrupted
844      * IPSR and leaving the CPU in a negative-priority state.
845      * v7M does not do this, but simply deactivates the requested interrupt.
846      */
847     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
848         switch (armv7m_nvic_raw_execution_priority(s)) {
849         case -1:
850             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
851                 vec = &s->vectors[ARMV7M_EXCP_HARD];
852             } else {
853                 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
854             }
855             break;
856         case -2:
857             vec = &s->vectors[ARMV7M_EXCP_NMI];
858             break;
859         case -3:
860             vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
861             break;
862         default:
863             break;
864         }
865     }
866 
867     if (!vec) {
868         if (secure && exc_is_banked(irq)) {
869             vec = &s->sec_vectors[irq];
870         } else {
871             vec = &s->vectors[irq];
872         }
873     }
874 
875     trace_nvic_complete_irq(irq, secure);
876 
877     if (!vec->active) {
878         /* Tell the caller this was an illegal exception return */
879         return -1;
880     }
881 
882     /*
883      * If this is a configurable exception and it is currently
884      * targeting the opposite security state from the one we're trying
885      * to complete it for, this counts as an illegal exception return.
886      * We still need to deactivate whatever vector the logic above has
887      * selected, though, as it might not be the same as the one for the
888      * requested exception number.
889      */
890     if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
891         ret = -1;
892     } else {
893         ret = nvic_rettobase(s);
894     }
895 
896     vec->active = 0;
897     if (vec->level) {
898         /* Re-pend the exception if it's still held high; only
899          * happens for extenal IRQs
900          */
901         assert(irq >= NVIC_FIRST_IRQ);
902         vec->pending = 1;
903     }
904 
905     nvic_irq_update(s);
906 
907     return ret;
908 }
909 
910 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
911 {
912     /*
913      * Return whether an exception is "ready", i.e. it is enabled and is
914      * configured at a priority which would allow it to interrupt the
915      * current execution priority.
916      *
917      * irq and secure have the same semantics as for armv7m_nvic_set_pending():
918      * for non-banked exceptions secure is always false; for banked exceptions
919      * it indicates which of the exceptions is required.
920      */
921     NVICState *s = (NVICState *)opaque;
922     bool banked = exc_is_banked(irq);
923     VecInfo *vec;
924     int running = nvic_exec_prio(s);
925 
926     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
927     assert(!secure || banked);
928 
929     /*
930      * HardFault is an odd special case: we always check against -1,
931      * even if we're secure and HardFault has priority -3; we never
932      * need to check for enabled state.
933      */
934     if (irq == ARMV7M_EXCP_HARD) {
935         return running > -1;
936     }
937 
938     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
939 
940     return vec->enabled &&
941         exc_group_prio(s, vec->prio, secure) < running;
942 }
943 
944 /* callback when external interrupt line is changed */
945 static void set_irq_level(void *opaque, int n, int level)
946 {
947     NVICState *s = opaque;
948     VecInfo *vec;
949 
950     n += NVIC_FIRST_IRQ;
951 
952     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
953 
954     trace_nvic_set_irq_level(n, level);
955 
956     /* The pending status of an external interrupt is
957      * latched on rising edge and exception handler return.
958      *
959      * Pulsing the IRQ will always run the handler
960      * once, and the handler will re-run until the
961      * level is low when the handler completes.
962      */
963     vec = &s->vectors[n];
964     if (level != vec->level) {
965         vec->level = level;
966         if (level) {
967             armv7m_nvic_set_pending(s, n, false);
968         }
969     }
970 }
971 
972 /* callback when external NMI line is changed */
973 static void nvic_nmi_trigger(void *opaque, int n, int level)
974 {
975     NVICState *s = opaque;
976 
977     trace_nvic_set_nmi_level(level);
978 
979     /*
980      * The architecture doesn't specify whether NMI should share
981      * the normal-interrupt behaviour of being resampled on
982      * exception handler return. We choose not to, so just
983      * set NMI pending here and don't track the current level.
984      */
985     if (level) {
986         armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
987     }
988 }
989 
990 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
991 {
992     ARMCPU *cpu = s->cpu;
993     uint32_t val;
994 
995     switch (offset) {
996     case 4: /* Interrupt Control Type.  */
997         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
998             goto bad_offset;
999         }
1000         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
1001     case 0xc: /* CPPWR */
1002         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1003             goto bad_offset;
1004         }
1005         /* We make the IMPDEF choice that nothing can ever go into a
1006          * non-retentive power state, which allows us to RAZ/WI this.
1007          */
1008         return 0;
1009     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1010     {
1011         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1012         int i;
1013 
1014         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1015             goto bad_offset;
1016         }
1017         if (!attrs.secure) {
1018             return 0;
1019         }
1020         val = 0;
1021         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1022             if (s->itns[startvec + i]) {
1023                 val |= (1 << i);
1024             }
1025         }
1026         return val;
1027     }
1028     case 0xd00: /* CPUID Base.  */
1029         return cpu->midr;
1030     case 0xd04: /* Interrupt Control State (ICSR) */
1031         /* VECTACTIVE */
1032         val = cpu->env.v7m.exception;
1033         /* VECTPENDING */
1034         val |= (s->vectpending & 0xff) << 12;
1035         /* ISRPENDING - set if any external IRQ is pending */
1036         if (nvic_isrpending(s)) {
1037             val |= (1 << 22);
1038         }
1039         /* RETTOBASE - set if only one handler is active */
1040         if (nvic_rettobase(s)) {
1041             val |= (1 << 11);
1042         }
1043         if (attrs.secure) {
1044             /* PENDSTSET */
1045             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1046                 val |= (1 << 26);
1047             }
1048             /* PENDSVSET */
1049             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1050                 val |= (1 << 28);
1051             }
1052         } else {
1053             /* PENDSTSET */
1054             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1055                 val |= (1 << 26);
1056             }
1057             /* PENDSVSET */
1058             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1059                 val |= (1 << 28);
1060             }
1061         }
1062         /* NMIPENDSET */
1063         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1064             && s->vectors[ARMV7M_EXCP_NMI].pending) {
1065             val |= (1 << 31);
1066         }
1067         /* ISRPREEMPT: RES0 when halting debug not implemented */
1068         /* STTNS: RES0 for the Main Extension */
1069         return val;
1070     case 0xd08: /* Vector Table Offset.  */
1071         return cpu->env.v7m.vecbase[attrs.secure];
1072     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1073         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1074         if (attrs.secure) {
1075             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1076             val |= cpu->env.v7m.aircr;
1077         } else {
1078             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1079                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1080                  * security isn't supported then BFHFNMINS is RAO (and
1081                  * the bit in env.v7m.aircr is always set).
1082                  */
1083                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1084             }
1085         }
1086         return val;
1087     case 0xd10: /* System Control.  */
1088         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1089             goto bad_offset;
1090         }
1091         return cpu->env.v7m.scr[attrs.secure];
1092     case 0xd14: /* Configuration Control.  */
1093         /* The BFHFNMIGN bit is the only non-banked bit; we
1094          * keep it in the non-secure copy of the register.
1095          */
1096         val = cpu->env.v7m.ccr[attrs.secure];
1097         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1098         return val;
1099     case 0xd24: /* System Handler Control and State (SHCSR) */
1100         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1101             goto bad_offset;
1102         }
1103         val = 0;
1104         if (attrs.secure) {
1105             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1106                 val |= (1 << 0);
1107             }
1108             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1109                 val |= (1 << 2);
1110             }
1111             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1112                 val |= (1 << 3);
1113             }
1114             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1115                 val |= (1 << 7);
1116             }
1117             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1118                 val |= (1 << 10);
1119             }
1120             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1121                 val |= (1 << 11);
1122             }
1123             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1124                 val |= (1 << 12);
1125             }
1126             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1127                 val |= (1 << 13);
1128             }
1129             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1130                 val |= (1 << 15);
1131             }
1132             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1133                 val |= (1 << 16);
1134             }
1135             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1136                 val |= (1 << 18);
1137             }
1138             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1139                 val |= (1 << 21);
1140             }
1141             /* SecureFault is not banked but is always RAZ/WI to NS */
1142             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1143                 val |= (1 << 4);
1144             }
1145             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1146                 val |= (1 << 19);
1147             }
1148             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1149                 val |= (1 << 20);
1150             }
1151         } else {
1152             if (s->vectors[ARMV7M_EXCP_MEM].active) {
1153                 val |= (1 << 0);
1154             }
1155             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1156                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1157                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1158                     val |= (1 << 2);
1159                 }
1160                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1161                     val |= (1 << 21);
1162                 }
1163             }
1164             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1165                 val |= (1 << 3);
1166             }
1167             if (s->vectors[ARMV7M_EXCP_SVC].active) {
1168                 val |= (1 << 7);
1169             }
1170             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1171                 val |= (1 << 10);
1172             }
1173             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1174                 val |= (1 << 11);
1175             }
1176             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1177                 val |= (1 << 12);
1178             }
1179             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1180                 val |= (1 << 13);
1181             }
1182             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1183                 val |= (1 << 15);
1184             }
1185             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1186                 val |= (1 << 16);
1187             }
1188             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1189                 val |= (1 << 18);
1190             }
1191         }
1192         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1193             if (s->vectors[ARMV7M_EXCP_BUS].active) {
1194                 val |= (1 << 1);
1195             }
1196             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1197                 val |= (1 << 14);
1198             }
1199             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1200                 val |= (1 << 17);
1201             }
1202             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1203                 s->vectors[ARMV7M_EXCP_NMI].active) {
1204                 /* NMIACT is not present in v7M */
1205                 val |= (1 << 5);
1206             }
1207         }
1208 
1209         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1210         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1211             val |= (1 << 8);
1212         }
1213         return val;
1214     case 0xd2c: /* Hard Fault Status.  */
1215         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1216             goto bad_offset;
1217         }
1218         return cpu->env.v7m.hfsr;
1219     case 0xd30: /* Debug Fault Status.  */
1220         return cpu->env.v7m.dfsr;
1221     case 0xd34: /* MMFAR MemManage Fault Address */
1222         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1223             goto bad_offset;
1224         }
1225         return cpu->env.v7m.mmfar[attrs.secure];
1226     case 0xd38: /* Bus Fault Address.  */
1227         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1228             goto bad_offset;
1229         }
1230         if (!attrs.secure &&
1231             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1232             return 0;
1233         }
1234         return cpu->env.v7m.bfar;
1235     case 0xd3c: /* Aux Fault Status.  */
1236         /* TODO: Implement fault status registers.  */
1237         qemu_log_mask(LOG_UNIMP,
1238                       "Aux Fault status registers unimplemented\n");
1239         return 0;
1240     case 0xd40: /* PFR0.  */
1241         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1242             goto bad_offset;
1243         }
1244         return cpu->isar.id_pfr0;
1245     case 0xd44: /* PFR1.  */
1246         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1247             goto bad_offset;
1248         }
1249         return cpu->isar.id_pfr1;
1250     case 0xd48: /* DFR0.  */
1251         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1252             goto bad_offset;
1253         }
1254         return cpu->isar.id_dfr0;
1255     case 0xd4c: /* AFR0.  */
1256         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1257             goto bad_offset;
1258         }
1259         return cpu->id_afr0;
1260     case 0xd50: /* MMFR0.  */
1261         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1262             goto bad_offset;
1263         }
1264         return cpu->isar.id_mmfr0;
1265     case 0xd54: /* MMFR1.  */
1266         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1267             goto bad_offset;
1268         }
1269         return cpu->isar.id_mmfr1;
1270     case 0xd58: /* MMFR2.  */
1271         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1272             goto bad_offset;
1273         }
1274         return cpu->isar.id_mmfr2;
1275     case 0xd5c: /* MMFR3.  */
1276         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1277             goto bad_offset;
1278         }
1279         return cpu->isar.id_mmfr3;
1280     case 0xd60: /* ISAR0.  */
1281         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1282             goto bad_offset;
1283         }
1284         return cpu->isar.id_isar0;
1285     case 0xd64: /* ISAR1.  */
1286         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1287             goto bad_offset;
1288         }
1289         return cpu->isar.id_isar1;
1290     case 0xd68: /* ISAR2.  */
1291         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1292             goto bad_offset;
1293         }
1294         return cpu->isar.id_isar2;
1295     case 0xd6c: /* ISAR3.  */
1296         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1297             goto bad_offset;
1298         }
1299         return cpu->isar.id_isar3;
1300     case 0xd70: /* ISAR4.  */
1301         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1302             goto bad_offset;
1303         }
1304         return cpu->isar.id_isar4;
1305     case 0xd74: /* ISAR5.  */
1306         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1307             goto bad_offset;
1308         }
1309         return cpu->isar.id_isar5;
1310     case 0xd78: /* CLIDR */
1311         return cpu->clidr;
1312     case 0xd7c: /* CTR */
1313         return cpu->ctr;
1314     case 0xd80: /* CSSIDR */
1315     {
1316         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1317         return cpu->ccsidr[idx];
1318     }
1319     case 0xd84: /* CSSELR */
1320         return cpu->env.v7m.csselr[attrs.secure];
1321     case 0xd88: /* CPACR */
1322         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1323             return 0;
1324         }
1325         return cpu->env.v7m.cpacr[attrs.secure];
1326     case 0xd8c: /* NSACR */
1327         if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1328             return 0;
1329         }
1330         return cpu->env.v7m.nsacr;
1331     /* TODO: Implement debug registers.  */
1332     case 0xd90: /* MPU_TYPE */
1333         /* Unified MPU; if the MPU is not present this value is zero */
1334         return cpu->pmsav7_dregion << 8;
1335     case 0xd94: /* MPU_CTRL */
1336         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1337     case 0xd98: /* MPU_RNR */
1338         return cpu->env.pmsav7.rnr[attrs.secure];
1339     case 0xd9c: /* MPU_RBAR */
1340     case 0xda4: /* MPU_RBAR_A1 */
1341     case 0xdac: /* MPU_RBAR_A2 */
1342     case 0xdb4: /* MPU_RBAR_A3 */
1343     {
1344         int region = cpu->env.pmsav7.rnr[attrs.secure];
1345 
1346         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1347             /* PMSAv8M handling of the aliases is different from v7M:
1348              * aliases A1, A2, A3 override the low two bits of the region
1349              * number in MPU_RNR, and there is no 'region' field in the
1350              * RBAR register.
1351              */
1352             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1353             if (aliasno) {
1354                 region = deposit32(region, 0, 2, aliasno);
1355             }
1356             if (region >= cpu->pmsav7_dregion) {
1357                 return 0;
1358             }
1359             return cpu->env.pmsav8.rbar[attrs.secure][region];
1360         }
1361 
1362         if (region >= cpu->pmsav7_dregion) {
1363             return 0;
1364         }
1365         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1366     }
1367     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1368     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1369     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1370     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1371     {
1372         int region = cpu->env.pmsav7.rnr[attrs.secure];
1373 
1374         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1375             /* PMSAv8M handling of the aliases is different from v7M:
1376              * aliases A1, A2, A3 override the low two bits of the region
1377              * number in MPU_RNR.
1378              */
1379             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1380             if (aliasno) {
1381                 region = deposit32(region, 0, 2, aliasno);
1382             }
1383             if (region >= cpu->pmsav7_dregion) {
1384                 return 0;
1385             }
1386             return cpu->env.pmsav8.rlar[attrs.secure][region];
1387         }
1388 
1389         if (region >= cpu->pmsav7_dregion) {
1390             return 0;
1391         }
1392         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1393             (cpu->env.pmsav7.drsr[region] & 0xffff);
1394     }
1395     case 0xdc0: /* MPU_MAIR0 */
1396         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1397             goto bad_offset;
1398         }
1399         return cpu->env.pmsav8.mair0[attrs.secure];
1400     case 0xdc4: /* MPU_MAIR1 */
1401         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1402             goto bad_offset;
1403         }
1404         return cpu->env.pmsav8.mair1[attrs.secure];
1405     case 0xdd0: /* SAU_CTRL */
1406         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1407             goto bad_offset;
1408         }
1409         if (!attrs.secure) {
1410             return 0;
1411         }
1412         return cpu->env.sau.ctrl;
1413     case 0xdd4: /* SAU_TYPE */
1414         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1415             goto bad_offset;
1416         }
1417         if (!attrs.secure) {
1418             return 0;
1419         }
1420         return cpu->sau_sregion;
1421     case 0xdd8: /* SAU_RNR */
1422         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1423             goto bad_offset;
1424         }
1425         if (!attrs.secure) {
1426             return 0;
1427         }
1428         return cpu->env.sau.rnr;
1429     case 0xddc: /* SAU_RBAR */
1430     {
1431         int region = cpu->env.sau.rnr;
1432 
1433         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1434             goto bad_offset;
1435         }
1436         if (!attrs.secure) {
1437             return 0;
1438         }
1439         if (region >= cpu->sau_sregion) {
1440             return 0;
1441         }
1442         return cpu->env.sau.rbar[region];
1443     }
1444     case 0xde0: /* SAU_RLAR */
1445     {
1446         int region = cpu->env.sau.rnr;
1447 
1448         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1449             goto bad_offset;
1450         }
1451         if (!attrs.secure) {
1452             return 0;
1453         }
1454         if (region >= cpu->sau_sregion) {
1455             return 0;
1456         }
1457         return cpu->env.sau.rlar[region];
1458     }
1459     case 0xde4: /* SFSR */
1460         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1461             goto bad_offset;
1462         }
1463         if (!attrs.secure) {
1464             return 0;
1465         }
1466         return cpu->env.v7m.sfsr;
1467     case 0xde8: /* SFAR */
1468         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1469             goto bad_offset;
1470         }
1471         if (!attrs.secure) {
1472             return 0;
1473         }
1474         return cpu->env.v7m.sfar;
1475     case 0xf34: /* FPCCR */
1476         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1477             return 0;
1478         }
1479         if (attrs.secure) {
1480             return cpu->env.v7m.fpccr[M_REG_S];
1481         } else {
1482             /*
1483              * NS can read LSPEN, CLRONRET and MONRDY. It can read
1484              * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1485              * other non-banked bits RAZ.
1486              * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1487              */
1488             uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1489             uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1490                 R_V7M_FPCCR_CLRONRET_MASK |
1491                 R_V7M_FPCCR_MONRDY_MASK;
1492 
1493             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1494                 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1495             }
1496 
1497             value &= mask;
1498 
1499             value |= cpu->env.v7m.fpccr[M_REG_NS];
1500             return value;
1501         }
1502     case 0xf38: /* FPCAR */
1503         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1504             return 0;
1505         }
1506         return cpu->env.v7m.fpcar[attrs.secure];
1507     case 0xf3c: /* FPDSCR */
1508         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1509             return 0;
1510         }
1511         return cpu->env.v7m.fpdscr[attrs.secure];
1512     case 0xf40: /* MVFR0 */
1513         return cpu->isar.mvfr0;
1514     case 0xf44: /* MVFR1 */
1515         return cpu->isar.mvfr1;
1516     case 0xf48: /* MVFR2 */
1517         return cpu->isar.mvfr2;
1518     default:
1519     bad_offset:
1520         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1521         return 0;
1522     }
1523 }
1524 
1525 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1526                         MemTxAttrs attrs)
1527 {
1528     ARMCPU *cpu = s->cpu;
1529 
1530     switch (offset) {
1531     case 0xc: /* CPPWR */
1532         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1533             goto bad_offset;
1534         }
1535         /* Make the IMPDEF choice to RAZ/WI this. */
1536         break;
1537     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1538     {
1539         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1540         int i;
1541 
1542         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1543             goto bad_offset;
1544         }
1545         if (!attrs.secure) {
1546             break;
1547         }
1548         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1549             s->itns[startvec + i] = (value >> i) & 1;
1550         }
1551         nvic_irq_update(s);
1552         break;
1553     }
1554     case 0xd04: /* Interrupt Control State (ICSR) */
1555         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1556             if (value & (1 << 31)) {
1557                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1558             } else if (value & (1 << 30) &&
1559                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1560                 /* PENDNMICLR didn't exist in v7M */
1561                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1562             }
1563         }
1564         if (value & (1 << 28)) {
1565             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1566         } else if (value & (1 << 27)) {
1567             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1568         }
1569         if (value & (1 << 26)) {
1570             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1571         } else if (value & (1 << 25)) {
1572             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1573         }
1574         break;
1575     case 0xd08: /* Vector Table Offset.  */
1576         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1577         break;
1578     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1579         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1580             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1581                 if (attrs.secure ||
1582                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1583                     signal_sysresetreq(s);
1584                 }
1585             }
1586             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1587                 qemu_log_mask(LOG_GUEST_ERROR,
1588                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1589                               "is UNPREDICTABLE\n");
1590             }
1591             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1592                 /* NB: this bit is RES0 in v8M */
1593                 qemu_log_mask(LOG_GUEST_ERROR,
1594                               "Setting VECTRESET when not in DEBUG mode "
1595                               "is UNPREDICTABLE\n");
1596             }
1597             if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1598                 s->prigroup[attrs.secure] =
1599                     extract32(value,
1600                               R_V7M_AIRCR_PRIGROUP_SHIFT,
1601                               R_V7M_AIRCR_PRIGROUP_LENGTH);
1602             }
1603             if (attrs.secure) {
1604                 /* These bits are only writable by secure */
1605                 cpu->env.v7m.aircr = value &
1606                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1607                      R_V7M_AIRCR_BFHFNMINS_MASK |
1608                      R_V7M_AIRCR_PRIS_MASK);
1609                 /* BFHFNMINS changes the priority of Secure HardFault, and
1610                  * allows a pending Non-secure HardFault to preempt (which
1611                  * we implement by marking it enabled).
1612                  */
1613                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1614                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1615                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1616                 } else {
1617                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1618                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1619                 }
1620             }
1621             nvic_irq_update(s);
1622         }
1623         break;
1624     case 0xd10: /* System Control.  */
1625         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1626             goto bad_offset;
1627         }
1628         /* We don't implement deep-sleep so these bits are RAZ/WI.
1629          * The other bits in the register are banked.
1630          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1631          * is architecturally permitted.
1632          */
1633         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1634         cpu->env.v7m.scr[attrs.secure] = value;
1635         break;
1636     case 0xd14: /* Configuration Control.  */
1637         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1638             goto bad_offset;
1639         }
1640 
1641         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1642         value &= (R_V7M_CCR_STKALIGN_MASK |
1643                   R_V7M_CCR_BFHFNMIGN_MASK |
1644                   R_V7M_CCR_DIV_0_TRP_MASK |
1645                   R_V7M_CCR_UNALIGN_TRP_MASK |
1646                   R_V7M_CCR_USERSETMPEND_MASK |
1647                   R_V7M_CCR_NONBASETHRDENA_MASK);
1648 
1649         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1650             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1651             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1652                 | R_V7M_CCR_STKALIGN_MASK;
1653         }
1654         if (attrs.secure) {
1655             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1656             cpu->env.v7m.ccr[M_REG_NS] =
1657                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1658                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1659             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1660         }
1661 
1662         cpu->env.v7m.ccr[attrs.secure] = value;
1663         break;
1664     case 0xd24: /* System Handler Control and State (SHCSR) */
1665         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1666             goto bad_offset;
1667         }
1668         if (attrs.secure) {
1669             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1670             /* Secure HardFault active bit cannot be written */
1671             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1672             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1673             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1674                 (value & (1 << 10)) != 0;
1675             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1676                 (value & (1 << 11)) != 0;
1677             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1678                 (value & (1 << 12)) != 0;
1679             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1680             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1681             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1682             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1683             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1684                 (value & (1 << 18)) != 0;
1685             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1686             /* SecureFault not banked, but RAZ/WI to NS */
1687             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1688             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1689             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1690         } else {
1691             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1692             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1693                 /* HARDFAULTPENDED is not present in v7M */
1694                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1695             }
1696             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1697             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1698             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1699             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1700             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1701             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1702             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1703             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1704             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1705         }
1706         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1707             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1708             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1709             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1710         }
1711         /* NMIACT can only be written if the write is of a zero, with
1712          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1713          */
1714         if (!attrs.secure && cpu->env.v7m.secure &&
1715             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1716             (value & (1 << 5)) == 0) {
1717             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1718         }
1719         /* HARDFAULTACT can only be written if the write is of a zero
1720          * to the non-secure HardFault state by the CPU in secure state.
1721          * The only case where we can be targeting the non-secure HF state
1722          * when in secure state is if this is a write via the NS alias
1723          * and BFHFNMINS is 1.
1724          */
1725         if (!attrs.secure && cpu->env.v7m.secure &&
1726             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1727             (value & (1 << 2)) == 0) {
1728             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1729         }
1730 
1731         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1732         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1733         nvic_irq_update(s);
1734         break;
1735     case 0xd2c: /* Hard Fault Status.  */
1736         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1737             goto bad_offset;
1738         }
1739         cpu->env.v7m.hfsr &= ~value; /* W1C */
1740         break;
1741     case 0xd30: /* Debug Fault Status.  */
1742         cpu->env.v7m.dfsr &= ~value; /* W1C */
1743         break;
1744     case 0xd34: /* Mem Manage Address.  */
1745         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1746             goto bad_offset;
1747         }
1748         cpu->env.v7m.mmfar[attrs.secure] = value;
1749         return;
1750     case 0xd38: /* Bus Fault Address.  */
1751         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1752             goto bad_offset;
1753         }
1754         if (!attrs.secure &&
1755             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1756             return;
1757         }
1758         cpu->env.v7m.bfar = value;
1759         return;
1760     case 0xd3c: /* Aux Fault Status.  */
1761         qemu_log_mask(LOG_UNIMP,
1762                       "NVIC: Aux fault status registers unimplemented\n");
1763         break;
1764     case 0xd84: /* CSSELR */
1765         if (!arm_v7m_csselr_razwi(cpu)) {
1766             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1767         }
1768         break;
1769     case 0xd88: /* CPACR */
1770         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1771             /* We implement only the Floating Point extension's CP10/CP11 */
1772             cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1773         }
1774         break;
1775     case 0xd8c: /* NSACR */
1776         if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1777             /* We implement only the Floating Point extension's CP10/CP11 */
1778             cpu->env.v7m.nsacr = value & (3 << 10);
1779         }
1780         break;
1781     case 0xd90: /* MPU_TYPE */
1782         return; /* RO */
1783     case 0xd94: /* MPU_CTRL */
1784         if ((value &
1785              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1786             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1787             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1788                           "UNPREDICTABLE\n");
1789         }
1790         cpu->env.v7m.mpu_ctrl[attrs.secure]
1791             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1792                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1793                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1794         tlb_flush(CPU(cpu));
1795         break;
1796     case 0xd98: /* MPU_RNR */
1797         if (value >= cpu->pmsav7_dregion) {
1798             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1799                           PRIu32 "/%" PRIu32 "\n",
1800                           value, cpu->pmsav7_dregion);
1801         } else {
1802             cpu->env.pmsav7.rnr[attrs.secure] = value;
1803         }
1804         break;
1805     case 0xd9c: /* MPU_RBAR */
1806     case 0xda4: /* MPU_RBAR_A1 */
1807     case 0xdac: /* MPU_RBAR_A2 */
1808     case 0xdb4: /* MPU_RBAR_A3 */
1809     {
1810         int region;
1811 
1812         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1813             /* PMSAv8M handling of the aliases is different from v7M:
1814              * aliases A1, A2, A3 override the low two bits of the region
1815              * number in MPU_RNR, and there is no 'region' field in the
1816              * RBAR register.
1817              */
1818             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1819 
1820             region = cpu->env.pmsav7.rnr[attrs.secure];
1821             if (aliasno) {
1822                 region = deposit32(region, 0, 2, aliasno);
1823             }
1824             if (region >= cpu->pmsav7_dregion) {
1825                 return;
1826             }
1827             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1828             tlb_flush(CPU(cpu));
1829             return;
1830         }
1831 
1832         if (value & (1 << 4)) {
1833             /* VALID bit means use the region number specified in this
1834              * value and also update MPU_RNR.REGION with that value.
1835              */
1836             region = extract32(value, 0, 4);
1837             if (region >= cpu->pmsav7_dregion) {
1838                 qemu_log_mask(LOG_GUEST_ERROR,
1839                               "MPU region out of range %u/%" PRIu32 "\n",
1840                               region, cpu->pmsav7_dregion);
1841                 return;
1842             }
1843             cpu->env.pmsav7.rnr[attrs.secure] = region;
1844         } else {
1845             region = cpu->env.pmsav7.rnr[attrs.secure];
1846         }
1847 
1848         if (region >= cpu->pmsav7_dregion) {
1849             return;
1850         }
1851 
1852         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1853         tlb_flush(CPU(cpu));
1854         break;
1855     }
1856     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1857     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1858     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1859     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1860     {
1861         int region = cpu->env.pmsav7.rnr[attrs.secure];
1862 
1863         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1864             /* PMSAv8M handling of the aliases is different from v7M:
1865              * aliases A1, A2, A3 override the low two bits of the region
1866              * number in MPU_RNR.
1867              */
1868             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1869 
1870             region = cpu->env.pmsav7.rnr[attrs.secure];
1871             if (aliasno) {
1872                 region = deposit32(region, 0, 2, aliasno);
1873             }
1874             if (region >= cpu->pmsav7_dregion) {
1875                 return;
1876             }
1877             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1878             tlb_flush(CPU(cpu));
1879             return;
1880         }
1881 
1882         if (region >= cpu->pmsav7_dregion) {
1883             return;
1884         }
1885 
1886         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1887         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1888         tlb_flush(CPU(cpu));
1889         break;
1890     }
1891     case 0xdc0: /* MPU_MAIR0 */
1892         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1893             goto bad_offset;
1894         }
1895         if (cpu->pmsav7_dregion) {
1896             /* Register is RES0 if no MPU regions are implemented */
1897             cpu->env.pmsav8.mair0[attrs.secure] = value;
1898         }
1899         /* We don't need to do anything else because memory attributes
1900          * only affect cacheability, and we don't implement caching.
1901          */
1902         break;
1903     case 0xdc4: /* MPU_MAIR1 */
1904         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1905             goto bad_offset;
1906         }
1907         if (cpu->pmsav7_dregion) {
1908             /* Register is RES0 if no MPU regions are implemented */
1909             cpu->env.pmsav8.mair1[attrs.secure] = value;
1910         }
1911         /* We don't need to do anything else because memory attributes
1912          * only affect cacheability, and we don't implement caching.
1913          */
1914         break;
1915     case 0xdd0: /* SAU_CTRL */
1916         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1917             goto bad_offset;
1918         }
1919         if (!attrs.secure) {
1920             return;
1921         }
1922         cpu->env.sau.ctrl = value & 3;
1923         break;
1924     case 0xdd4: /* SAU_TYPE */
1925         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1926             goto bad_offset;
1927         }
1928         break;
1929     case 0xdd8: /* SAU_RNR */
1930         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1931             goto bad_offset;
1932         }
1933         if (!attrs.secure) {
1934             return;
1935         }
1936         if (value >= cpu->sau_sregion) {
1937             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1938                           PRIu32 "/%" PRIu32 "\n",
1939                           value, cpu->sau_sregion);
1940         } else {
1941             cpu->env.sau.rnr = value;
1942         }
1943         break;
1944     case 0xddc: /* SAU_RBAR */
1945     {
1946         int region = cpu->env.sau.rnr;
1947 
1948         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1949             goto bad_offset;
1950         }
1951         if (!attrs.secure) {
1952             return;
1953         }
1954         if (region >= cpu->sau_sregion) {
1955             return;
1956         }
1957         cpu->env.sau.rbar[region] = value & ~0x1f;
1958         tlb_flush(CPU(cpu));
1959         break;
1960     }
1961     case 0xde0: /* SAU_RLAR */
1962     {
1963         int region = cpu->env.sau.rnr;
1964 
1965         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1966             goto bad_offset;
1967         }
1968         if (!attrs.secure) {
1969             return;
1970         }
1971         if (region >= cpu->sau_sregion) {
1972             return;
1973         }
1974         cpu->env.sau.rlar[region] = value & ~0x1c;
1975         tlb_flush(CPU(cpu));
1976         break;
1977     }
1978     case 0xde4: /* SFSR */
1979         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1980             goto bad_offset;
1981         }
1982         if (!attrs.secure) {
1983             return;
1984         }
1985         cpu->env.v7m.sfsr &= ~value; /* W1C */
1986         break;
1987     case 0xde8: /* SFAR */
1988         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1989             goto bad_offset;
1990         }
1991         if (!attrs.secure) {
1992             return;
1993         }
1994         cpu->env.v7m.sfsr = value;
1995         break;
1996     case 0xf00: /* Software Triggered Interrupt Register */
1997     {
1998         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1999 
2000         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
2001             goto bad_offset;
2002         }
2003 
2004         if (excnum < s->num_irq) {
2005             armv7m_nvic_set_pending(s, excnum, false);
2006         }
2007         break;
2008     }
2009     case 0xf34: /* FPCCR */
2010         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2011             /* Not all bits here are banked. */
2012             uint32_t fpccr_s;
2013 
2014             if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2015                 /* Don't allow setting of bits not present in v7M */
2016                 value &= (R_V7M_FPCCR_LSPACT_MASK |
2017                           R_V7M_FPCCR_USER_MASK |
2018                           R_V7M_FPCCR_THREAD_MASK |
2019                           R_V7M_FPCCR_HFRDY_MASK |
2020                           R_V7M_FPCCR_MMRDY_MASK |
2021                           R_V7M_FPCCR_BFRDY_MASK |
2022                           R_V7M_FPCCR_MONRDY_MASK |
2023                           R_V7M_FPCCR_LSPEN_MASK |
2024                           R_V7M_FPCCR_ASPEN_MASK);
2025             }
2026             value &= ~R_V7M_FPCCR_RES0_MASK;
2027 
2028             if (!attrs.secure) {
2029                 /* Some non-banked bits are configurably writable by NS */
2030                 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
2031                 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
2032                     uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
2033                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
2034                 }
2035                 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
2036                     uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
2037                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
2038                 }
2039                 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2040                     uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2041                     uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2042                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2043                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2044                 }
2045                 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2046                 {
2047                     uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2048                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2049                 }
2050 
2051                 /*
2052                  * All other non-banked bits are RAZ/WI from NS; write
2053                  * just the banked bits to fpccr[M_REG_NS].
2054                  */
2055                 value &= R_V7M_FPCCR_BANKED_MASK;
2056                 cpu->env.v7m.fpccr[M_REG_NS] = value;
2057             } else {
2058                 fpccr_s = value;
2059             }
2060             cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2061         }
2062         break;
2063     case 0xf38: /* FPCAR */
2064         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2065             value &= ~7;
2066             cpu->env.v7m.fpcar[attrs.secure] = value;
2067         }
2068         break;
2069     case 0xf3c: /* FPDSCR */
2070         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2071             value &= 0x07c00000;
2072             cpu->env.v7m.fpdscr[attrs.secure] = value;
2073         }
2074         break;
2075     case 0xf50: /* ICIALLU */
2076     case 0xf58: /* ICIMVAU */
2077     case 0xf5c: /* DCIMVAC */
2078     case 0xf60: /* DCISW */
2079     case 0xf64: /* DCCMVAU */
2080     case 0xf68: /* DCCMVAC */
2081     case 0xf6c: /* DCCSW */
2082     case 0xf70: /* DCCIMVAC */
2083     case 0xf74: /* DCCISW */
2084     case 0xf78: /* BPIALL */
2085         /* Cache and branch predictor maintenance: for QEMU these always NOP */
2086         break;
2087     default:
2088     bad_offset:
2089         qemu_log_mask(LOG_GUEST_ERROR,
2090                       "NVIC: Bad write offset 0x%x\n", offset);
2091     }
2092 }
2093 
2094 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2095 {
2096     /* Return true if unprivileged access to this register is permitted. */
2097     switch (offset) {
2098     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2099         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2100          * controls access even though the CPU is in Secure state (I_QDKX).
2101          */
2102         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2103     default:
2104         /* All other user accesses cause a BusFault unconditionally */
2105         return false;
2106     }
2107 }
2108 
2109 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2110 {
2111     /* Behaviour for the SHPR register field for this exception:
2112      * return M_REG_NS to use the nonsecure vector (including for
2113      * non-banked exceptions), M_REG_S for the secure version of
2114      * a banked exception, and -1 if this field should RAZ/WI.
2115      */
2116     switch (exc) {
2117     case ARMV7M_EXCP_MEM:
2118     case ARMV7M_EXCP_USAGE:
2119     case ARMV7M_EXCP_SVC:
2120     case ARMV7M_EXCP_PENDSV:
2121     case ARMV7M_EXCP_SYSTICK:
2122         /* Banked exceptions */
2123         return attrs.secure;
2124     case ARMV7M_EXCP_BUS:
2125         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2126         if (!attrs.secure &&
2127             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2128             return -1;
2129         }
2130         return M_REG_NS;
2131     case ARMV7M_EXCP_SECURE:
2132         /* Not banked, RAZ/WI from nonsecure */
2133         if (!attrs.secure) {
2134             return -1;
2135         }
2136         return M_REG_NS;
2137     case ARMV7M_EXCP_DEBUG:
2138         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2139         return M_REG_NS;
2140     case 8 ... 10:
2141     case 13:
2142         /* RES0 */
2143         return -1;
2144     default:
2145         /* Not reachable due to decode of SHPR register addresses */
2146         g_assert_not_reached();
2147     }
2148 }
2149 
2150 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2151                                     uint64_t *data, unsigned size,
2152                                     MemTxAttrs attrs)
2153 {
2154     NVICState *s = (NVICState *)opaque;
2155     uint32_t offset = addr;
2156     unsigned i, startvec, end;
2157     uint32_t val;
2158 
2159     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2160         /* Generate BusFault for unprivileged accesses */
2161         return MEMTX_ERROR;
2162     }
2163 
2164     switch (offset) {
2165     /* reads of set and clear both return the status */
2166     case 0x100 ... 0x13f: /* NVIC Set enable */
2167         offset += 0x80;
2168         /* fall through */
2169     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2170         val = 0;
2171         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2172 
2173         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2174             if (s->vectors[startvec + i].enabled &&
2175                 (attrs.secure || s->itns[startvec + i])) {
2176                 val |= (1 << i);
2177             }
2178         }
2179         break;
2180     case 0x200 ... 0x23f: /* NVIC Set pend */
2181         offset += 0x80;
2182         /* fall through */
2183     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2184         val = 0;
2185         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2186         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2187             if (s->vectors[startvec + i].pending &&
2188                 (attrs.secure || s->itns[startvec + i])) {
2189                 val |= (1 << i);
2190             }
2191         }
2192         break;
2193     case 0x300 ... 0x33f: /* NVIC Active */
2194         val = 0;
2195 
2196         if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2197             break;
2198         }
2199 
2200         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2201 
2202         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2203             if (s->vectors[startvec + i].active &&
2204                 (attrs.secure || s->itns[startvec + i])) {
2205                 val |= (1 << i);
2206             }
2207         }
2208         break;
2209     case 0x400 ... 0x5ef: /* NVIC Priority */
2210         val = 0;
2211         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2212 
2213         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2214             if (attrs.secure || s->itns[startvec + i]) {
2215                 val |= s->vectors[startvec + i].prio << (8 * i);
2216             }
2217         }
2218         break;
2219     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2220         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2221             val = 0;
2222             break;
2223         }
2224         /* fall through */
2225     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2226         val = 0;
2227         for (i = 0; i < size; i++) {
2228             unsigned hdlidx = (offset - 0xd14) + i;
2229             int sbank = shpr_bank(s, hdlidx, attrs);
2230 
2231             if (sbank < 0) {
2232                 continue;
2233             }
2234             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2235         }
2236         break;
2237     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2238         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2239             val = 0;
2240             break;
2241         };
2242         /*
2243          * The BFSR bits [15:8] are shared between security states
2244          * and we store them in the NS copy. They are RAZ/WI for
2245          * NS code if AIRCR.BFHFNMINS is 0.
2246          */
2247         val = s->cpu->env.v7m.cfsr[attrs.secure];
2248         if (!attrs.secure &&
2249             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2250             val &= ~R_V7M_CFSR_BFSR_MASK;
2251         } else {
2252             val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2253         }
2254         val = extract32(val, (offset - 0xd28) * 8, size * 8);
2255         break;
2256     case 0xfe0 ... 0xfff: /* ID.  */
2257         if (offset & 3) {
2258             val = 0;
2259         } else {
2260             val = nvic_id[(offset - 0xfe0) >> 2];
2261         }
2262         break;
2263     default:
2264         if (size == 4) {
2265             val = nvic_readl(s, offset, attrs);
2266         } else {
2267             qemu_log_mask(LOG_GUEST_ERROR,
2268                           "NVIC: Bad read of size %d at offset 0x%x\n",
2269                           size, offset);
2270             val = 0;
2271         }
2272     }
2273 
2274     trace_nvic_sysreg_read(addr, val, size);
2275     *data = val;
2276     return MEMTX_OK;
2277 }
2278 
2279 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2280                                      uint64_t value, unsigned size,
2281                                      MemTxAttrs attrs)
2282 {
2283     NVICState *s = (NVICState *)opaque;
2284     uint32_t offset = addr;
2285     unsigned i, startvec, end;
2286     unsigned setval = 0;
2287 
2288     trace_nvic_sysreg_write(addr, value, size);
2289 
2290     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2291         /* Generate BusFault for unprivileged accesses */
2292         return MEMTX_ERROR;
2293     }
2294 
2295     switch (offset) {
2296     case 0x100 ... 0x13f: /* NVIC Set enable */
2297         offset += 0x80;
2298         setval = 1;
2299         /* fall through */
2300     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2301         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2302 
2303         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2304             if (value & (1 << i) &&
2305                 (attrs.secure || s->itns[startvec + i])) {
2306                 s->vectors[startvec + i].enabled = setval;
2307             }
2308         }
2309         nvic_irq_update(s);
2310         goto exit_ok;
2311     case 0x200 ... 0x23f: /* NVIC Set pend */
2312         /* the special logic in armv7m_nvic_set_pending()
2313          * is not needed since IRQs are never escalated
2314          */
2315         offset += 0x80;
2316         setval = 1;
2317         /* fall through */
2318     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2319         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2320 
2321         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2322             if (value & (1 << i) &&
2323                 (attrs.secure || s->itns[startvec + i])) {
2324                 s->vectors[startvec + i].pending = setval;
2325             }
2326         }
2327         nvic_irq_update(s);
2328         goto exit_ok;
2329     case 0x300 ... 0x33f: /* NVIC Active */
2330         goto exit_ok; /* R/O */
2331     case 0x400 ... 0x5ef: /* NVIC Priority */
2332         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2333 
2334         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2335             if (attrs.secure || s->itns[startvec + i]) {
2336                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2337             }
2338         }
2339         nvic_irq_update(s);
2340         goto exit_ok;
2341     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2342         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2343             goto exit_ok;
2344         }
2345         /* fall through */
2346     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2347         for (i = 0; i < size; i++) {
2348             unsigned hdlidx = (offset - 0xd14) + i;
2349             int newprio = extract32(value, i * 8, 8);
2350             int sbank = shpr_bank(s, hdlidx, attrs);
2351 
2352             if (sbank < 0) {
2353                 continue;
2354             }
2355             set_prio(s, hdlidx, sbank, newprio);
2356         }
2357         nvic_irq_update(s);
2358         goto exit_ok;
2359     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2360         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2361             goto exit_ok;
2362         }
2363         /* All bits are W1C, so construct 32 bit value with 0s in
2364          * the parts not written by the access size
2365          */
2366         value <<= ((offset - 0xd28) * 8);
2367 
2368         if (!attrs.secure &&
2369             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2370             /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2371             value &= ~R_V7M_CFSR_BFSR_MASK;
2372         }
2373 
2374         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2375         if (attrs.secure) {
2376             /* The BFSR bits [15:8] are shared between security states
2377              * and we store them in the NS copy.
2378              */
2379             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2380         }
2381         goto exit_ok;
2382     }
2383     if (size == 4) {
2384         nvic_writel(s, offset, value, attrs);
2385         goto exit_ok;
2386     }
2387     qemu_log_mask(LOG_GUEST_ERROR,
2388                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2389     /* This is UNPREDICTABLE; treat as RAZ/WI */
2390 
2391  exit_ok:
2392     /* Ensure any changes made are reflected in the cached hflags.  */
2393     arm_rebuild_hflags(&s->cpu->env);
2394     return MEMTX_OK;
2395 }
2396 
2397 static const MemoryRegionOps nvic_sysreg_ops = {
2398     .read_with_attrs = nvic_sysreg_read,
2399     .write_with_attrs = nvic_sysreg_write,
2400     .endianness = DEVICE_NATIVE_ENDIAN,
2401 };
2402 
2403 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2404                                         uint64_t value, unsigned size,
2405                                         MemTxAttrs attrs)
2406 {
2407     MemoryRegion *mr = opaque;
2408 
2409     if (attrs.secure) {
2410         /* S accesses to the alias act like NS accesses to the real region */
2411         attrs.secure = 0;
2412         return memory_region_dispatch_write(mr, addr, value,
2413                                             size_memop(size) | MO_TE, attrs);
2414     } else {
2415         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2416         if (attrs.user) {
2417             return MEMTX_ERROR;
2418         }
2419         return MEMTX_OK;
2420     }
2421 }
2422 
2423 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2424                                        uint64_t *data, unsigned size,
2425                                        MemTxAttrs attrs)
2426 {
2427     MemoryRegion *mr = opaque;
2428 
2429     if (attrs.secure) {
2430         /* S accesses to the alias act like NS accesses to the real region */
2431         attrs.secure = 0;
2432         return memory_region_dispatch_read(mr, addr, data,
2433                                            size_memop(size) | MO_TE, attrs);
2434     } else {
2435         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2436         if (attrs.user) {
2437             return MEMTX_ERROR;
2438         }
2439         *data = 0;
2440         return MEMTX_OK;
2441     }
2442 }
2443 
2444 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2445     .read_with_attrs = nvic_sysreg_ns_read,
2446     .write_with_attrs = nvic_sysreg_ns_write,
2447     .endianness = DEVICE_NATIVE_ENDIAN,
2448 };
2449 
2450 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2451                                       uint64_t value, unsigned size,
2452                                       MemTxAttrs attrs)
2453 {
2454     NVICState *s = opaque;
2455     MemoryRegion *mr;
2456 
2457     /* Direct the access to the correct systick */
2458     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2459     return memory_region_dispatch_write(mr, addr, value,
2460                                         size_memop(size) | MO_TE, attrs);
2461 }
2462 
2463 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2464                                      uint64_t *data, unsigned size,
2465                                      MemTxAttrs attrs)
2466 {
2467     NVICState *s = opaque;
2468     MemoryRegion *mr;
2469 
2470     /* Direct the access to the correct systick */
2471     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2472     return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
2473                                        attrs);
2474 }
2475 
2476 static const MemoryRegionOps nvic_systick_ops = {
2477     .read_with_attrs = nvic_systick_read,
2478     .write_with_attrs = nvic_systick_write,
2479     .endianness = DEVICE_NATIVE_ENDIAN,
2480 };
2481 
2482 static int nvic_post_load(void *opaque, int version_id)
2483 {
2484     NVICState *s = opaque;
2485     unsigned i;
2486     int resetprio;
2487 
2488     /* Check for out of range priority settings */
2489     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2490 
2491     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2492         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2493         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2494         return 1;
2495     }
2496     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2497         if (s->vectors[i].prio & ~0xff) {
2498             return 1;
2499         }
2500     }
2501 
2502     nvic_recompute_state(s);
2503 
2504     return 0;
2505 }
2506 
2507 static const VMStateDescription vmstate_VecInfo = {
2508     .name = "armv7m_nvic_info",
2509     .version_id = 1,
2510     .minimum_version_id = 1,
2511     .fields = (VMStateField[]) {
2512         VMSTATE_INT16(prio, VecInfo),
2513         VMSTATE_UINT8(enabled, VecInfo),
2514         VMSTATE_UINT8(pending, VecInfo),
2515         VMSTATE_UINT8(active, VecInfo),
2516         VMSTATE_UINT8(level, VecInfo),
2517         VMSTATE_END_OF_LIST()
2518     }
2519 };
2520 
2521 static bool nvic_security_needed(void *opaque)
2522 {
2523     NVICState *s = opaque;
2524 
2525     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2526 }
2527 
2528 static int nvic_security_post_load(void *opaque, int version_id)
2529 {
2530     NVICState *s = opaque;
2531     int i;
2532 
2533     /* Check for out of range priority settings */
2534     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2535         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2536         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2537          * if the CPU state has been migrated yet; a mismatch won't
2538          * cause the emulation to blow up, though.
2539          */
2540         return 1;
2541     }
2542     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2543         if (s->sec_vectors[i].prio & ~0xff) {
2544             return 1;
2545         }
2546     }
2547     return 0;
2548 }
2549 
2550 static const VMStateDescription vmstate_nvic_security = {
2551     .name = "armv7m_nvic/m-security",
2552     .version_id = 1,
2553     .minimum_version_id = 1,
2554     .needed = nvic_security_needed,
2555     .post_load = &nvic_security_post_load,
2556     .fields = (VMStateField[]) {
2557         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2558                              vmstate_VecInfo, VecInfo),
2559         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2560         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2561         VMSTATE_END_OF_LIST()
2562     }
2563 };
2564 
2565 static const VMStateDescription vmstate_nvic = {
2566     .name = "armv7m_nvic",
2567     .version_id = 4,
2568     .minimum_version_id = 4,
2569     .post_load = &nvic_post_load,
2570     .fields = (VMStateField[]) {
2571         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2572                              vmstate_VecInfo, VecInfo),
2573         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2574         VMSTATE_END_OF_LIST()
2575     },
2576     .subsections = (const VMStateDescription*[]) {
2577         &vmstate_nvic_security,
2578         NULL
2579     }
2580 };
2581 
2582 static Property props_nvic[] = {
2583     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2584     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2585     DEFINE_PROP_END_OF_LIST()
2586 };
2587 
2588 static void armv7m_nvic_reset(DeviceState *dev)
2589 {
2590     int resetprio;
2591     NVICState *s = NVIC(dev);
2592 
2593     memset(s->vectors, 0, sizeof(s->vectors));
2594     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2595     s->prigroup[M_REG_NS] = 0;
2596     s->prigroup[M_REG_S] = 0;
2597 
2598     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2599     /* MEM, BUS, and USAGE are enabled through
2600      * the System Handler Control register
2601      */
2602     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2603     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2604     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2605 
2606     /* DebugMonitor is enabled via DEMCR.MON_EN */
2607     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2608 
2609     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2610     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2611     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2612     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2613 
2614     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2615         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2616         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2617         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2618         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2619 
2620         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2621         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2622         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2623         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2624     } else {
2625         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2626     }
2627 
2628     /* Strictly speaking the reset handler should be enabled.
2629      * However, we don't simulate soft resets through the NVIC,
2630      * and the reset vector should never be pended.
2631      * So we leave it disabled to catch logic errors.
2632      */
2633 
2634     s->exception_prio = NVIC_NOEXC_PRIO;
2635     s->vectpending = 0;
2636     s->vectpending_is_s_banked = false;
2637     s->vectpending_prio = NVIC_NOEXC_PRIO;
2638 
2639     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2640         memset(s->itns, 0, sizeof(s->itns));
2641     } else {
2642         /* This state is constant and not guest accessible in a non-security
2643          * NVIC; we set the bits to true to avoid having to do a feature
2644          * bit check in the NVIC enable/pend/etc register accessors.
2645          */
2646         int i;
2647 
2648         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2649             s->itns[i] = true;
2650         }
2651     }
2652 
2653     /*
2654      * We updated state that affects the CPU's MMUidx and thus its hflags;
2655      * and we can't guarantee that we run before the CPU reset function.
2656      */
2657     arm_rebuild_hflags(&s->cpu->env);
2658 }
2659 
2660 static void nvic_systick_trigger(void *opaque, int n, int level)
2661 {
2662     NVICState *s = opaque;
2663 
2664     if (level) {
2665         /* SysTick just asked us to pend its exception.
2666          * (This is different from an external interrupt line's
2667          * behaviour.)
2668          * n == 0 : NonSecure systick
2669          * n == 1 : Secure systick
2670          */
2671         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2672     }
2673 }
2674 
2675 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2676 {
2677     NVICState *s = NVIC(dev);
2678     int regionlen;
2679 
2680     /* The armv7m container object will have set our CPU pointer */
2681     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2682         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2683         return;
2684     }
2685 
2686     if (s->num_irq > NVIC_MAX_IRQ) {
2687         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2688         return;
2689     }
2690 
2691     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2692 
2693     /* include space for internal exception vectors */
2694     s->num_irq += NVIC_FIRST_IRQ;
2695 
2696     s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2697 
2698     if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
2699         return;
2700     }
2701     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2702                        qdev_get_gpio_in_named(dev, "systick-trigger",
2703                                               M_REG_NS));
2704 
2705     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2706         /* We couldn't init the secure systick device in instance_init
2707          * as we didn't know then if the CPU had the security extensions;
2708          * so we have to do it here.
2709          */
2710         object_initialize_child(OBJECT(dev), "systick-reg-s",
2711                                 &s->systick[M_REG_S], TYPE_SYSTICK);
2712 
2713         if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
2714             return;
2715         }
2716         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2717                            qdev_get_gpio_in_named(dev, "systick-trigger",
2718                                                   M_REG_S));
2719     }
2720 
2721     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2722      * and looks like this:
2723      *  0x004 - ICTR
2724      *  0x010 - 0xff - systick
2725      *  0x100..0x7ec - NVIC
2726      *  0x7f0..0xcff - Reserved
2727      *  0xd00..0xd3c - SCS registers
2728      *  0xd40..0xeff - Reserved or Not implemented
2729      *  0xf00 - STIR
2730      *
2731      * Some registers within this space are banked between security states.
2732      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2733      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2734      * to the main SCS range, and non-secure accesses (including when
2735      * the security extension is not implemented) are RAZ/WI.
2736      * Note that both the main SCS range and the alias range are defined
2737      * to be exempt from memory attribution (R_BLJT) and so the memory
2738      * transaction attribute always matches the current CPU security
2739      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2740      * wrappers we change attrs.secure to indicate the NS access; so
2741      * generally code determining which banked register to use should
2742      * use attrs.secure; code determining actual behaviour of the system
2743      * should use env->v7m.secure.
2744      */
2745     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2746     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2747     /* The system register region goes at the bottom of the priority
2748      * stack as it covers the whole page.
2749      */
2750     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2751                           "nvic_sysregs", 0x1000);
2752     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2753 
2754     memory_region_init_io(&s->systickmem, OBJECT(s),
2755                           &nvic_systick_ops, s,
2756                           "nvic_systick", 0xe0);
2757 
2758     memory_region_add_subregion_overlap(&s->container, 0x10,
2759                                         &s->systickmem, 1);
2760 
2761     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2762         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2763                               &nvic_sysreg_ns_ops, &s->sysregmem,
2764                               "nvic_sysregs_ns", 0x1000);
2765         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2766         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2767                               &nvic_sysreg_ns_ops, &s->systickmem,
2768                               "nvic_systick_ns", 0xe0);
2769         memory_region_add_subregion_overlap(&s->container, 0x20010,
2770                                             &s->systick_ns_mem, 1);
2771     }
2772 
2773     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2774 }
2775 
2776 static void armv7m_nvic_instance_init(Object *obj)
2777 {
2778     /* We have a different default value for the num-irq property
2779      * than our superclass. This function runs after qdev init
2780      * has set the defaults from the Property array and before
2781      * any user-specified property setting, so just modify the
2782      * value in the GICState struct.
2783      */
2784     DeviceState *dev = DEVICE(obj);
2785     NVICState *nvic = NVIC(obj);
2786     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2787 
2788     object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2789                             TYPE_SYSTICK);
2790     /* We can't initialize the secure systick here, as we don't know
2791      * yet if we need it.
2792      */
2793 
2794     sysbus_init_irq(sbd, &nvic->excpout);
2795     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2796     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2797                             M_REG_NUM_BANKS);
2798     qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2799 }
2800 
2801 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2802 {
2803     DeviceClass *dc = DEVICE_CLASS(klass);
2804 
2805     dc->vmsd  = &vmstate_nvic;
2806     device_class_set_props(dc, props_nvic);
2807     dc->reset = armv7m_nvic_reset;
2808     dc->realize = armv7m_nvic_realize;
2809 }
2810 
2811 static const TypeInfo armv7m_nvic_info = {
2812     .name          = TYPE_NVIC,
2813     .parent        = TYPE_SYS_BUS_DEVICE,
2814     .instance_init = armv7m_nvic_instance_init,
2815     .instance_size = sizeof(NVICState),
2816     .class_init    = armv7m_nvic_class_init,
2817     .class_size    = sizeof(SysBusDeviceClass),
2818 };
2819 
2820 static void armv7m_nvic_register_types(void)
2821 {
2822     type_register_static(&armv7m_nvic_info);
2823 }
2824 
2825 type_init(armv7m_nvic_register_types)
2826