xref: /qemu/hw/intc/armv7m_nvic.c (revision c3bef3b4)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "hw/sysbus.h"
16 #include "migration/vmstate.h"
17 #include "qemu/timer.h"
18 #include "hw/intc/armv7m_nvic.h"
19 #include "hw/irq.h"
20 #include "hw/qdev-properties.h"
21 #include "sysemu/runstate.h"
22 #include "target/arm/cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memop.h"
25 #include "qemu/log.h"
26 #include "qemu/module.h"
27 #include "trace.h"
28 
29 /* IRQ number counting:
30  *
31  * the num-irq property counts the number of external IRQ lines
32  *
33  * NVICState::num_irq counts the total number of exceptions
34  * (external IRQs, the 15 internal exceptions including reset,
35  * and one for the unused exception number 0).
36  *
37  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
38  *
39  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
40  *
41  * Iterating through all exceptions should typically be done with
42  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
43  *
44  * The external qemu_irq lines are the NVIC's external IRQ lines,
45  * so line 0 is exception 16.
46  *
47  * In the terminology of the architecture manual, "interrupts" are
48  * a subcategory of exception referring to the external interrupts
49  * (which are exception numbers NVIC_FIRST_IRQ and upward).
50  * For historical reasons QEMU tends to use "interrupt" and
51  * "exception" more or less interchangeably.
52  */
53 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
54 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
55 
56 /* Effective running priority of the CPU when no exception is active
57  * (higher than the highest possible priority value)
58  */
59 #define NVIC_NOEXC_PRIO 0x100
60 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
61 #define NVIC_NS_PRIO_LIMIT 0x80
62 
63 static const uint8_t nvic_id[] = {
64     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
65 };
66 
67 static void signal_sysresetreq(NVICState *s)
68 {
69     if (qemu_irq_is_connected(s->sysresetreq)) {
70         qemu_irq_pulse(s->sysresetreq);
71     } else {
72         /*
73          * Default behaviour if the SoC doesn't need to wire up
74          * SYSRESETREQ (eg to a system reset controller of some kind):
75          * perform a system reset via the usual QEMU API.
76          */
77         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
78     }
79 }
80 
81 static int nvic_pending_prio(NVICState *s)
82 {
83     /* return the group priority of the current pending interrupt,
84      * or NVIC_NOEXC_PRIO if no interrupt is pending
85      */
86     return s->vectpending_prio;
87 }
88 
89 /* Return the value of the ISCR RETTOBASE bit:
90  * 1 if there is exactly one active exception
91  * 0 if there is more than one active exception
92  * UNKNOWN if there are no active exceptions (we choose 1,
93  * which matches the choice Cortex-M3 is documented as making).
94  *
95  * NB: some versions of the documentation talk about this
96  * counting "active exceptions other than the one shown by IPSR";
97  * this is only different in the obscure corner case where guest
98  * code has manually deactivated an exception and is about
99  * to fail an exception-return integrity check. The definition
100  * above is the one from the v8M ARM ARM and is also in line
101  * with the behaviour documented for the Cortex-M3.
102  */
103 static bool nvic_rettobase(NVICState *s)
104 {
105     int irq, nhand = 0;
106     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
107 
108     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
109         if (s->vectors[irq].active ||
110             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
111              s->sec_vectors[irq].active)) {
112             nhand++;
113             if (nhand == 2) {
114                 return 0;
115             }
116         }
117     }
118 
119     return 1;
120 }
121 
122 /* Return the value of the ISCR ISRPENDING bit:
123  * 1 if an external interrupt is pending
124  * 0 if no external interrupt is pending
125  */
126 static bool nvic_isrpending(NVICState *s)
127 {
128     int irq;
129 
130     /*
131      * We can shortcut if the highest priority pending interrupt
132      * happens to be external; if not we need to check the whole
133      * vectors[] array.
134      */
135     if (s->vectpending > NVIC_FIRST_IRQ) {
136         return true;
137     }
138 
139     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
140         if (s->vectors[irq].pending) {
141             return true;
142         }
143     }
144     return false;
145 }
146 
147 static bool exc_is_banked(int exc)
148 {
149     /* Return true if this is one of the limited set of exceptions which
150      * are banked (and thus have state in sec_vectors[])
151      */
152     return exc == ARMV7M_EXCP_HARD ||
153         exc == ARMV7M_EXCP_MEM ||
154         exc == ARMV7M_EXCP_USAGE ||
155         exc == ARMV7M_EXCP_SVC ||
156         exc == ARMV7M_EXCP_PENDSV ||
157         exc == ARMV7M_EXCP_SYSTICK;
158 }
159 
160 /* Return a mask word which clears the subpriority bits from
161  * a priority value for an M-profile exception, leaving only
162  * the group priority.
163  */
164 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
165 {
166     return ~0U << (s->prigroup[secure] + 1);
167 }
168 
169 static bool exc_targets_secure(NVICState *s, int exc)
170 {
171     /* Return true if this non-banked exception targets Secure state. */
172     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
173         return false;
174     }
175 
176     if (exc >= NVIC_FIRST_IRQ) {
177         return !s->itns[exc];
178     }
179 
180     /* Function shouldn't be called for banked exceptions. */
181     assert(!exc_is_banked(exc));
182 
183     switch (exc) {
184     case ARMV7M_EXCP_NMI:
185     case ARMV7M_EXCP_BUS:
186         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
187     case ARMV7M_EXCP_SECURE:
188         return true;
189     case ARMV7M_EXCP_DEBUG:
190         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
191         return false;
192     default:
193         /* reset, and reserved (unused) low exception numbers.
194          * We'll get called by code that loops through all the exception
195          * numbers, but it doesn't matter what we return here as these
196          * non-existent exceptions will never be pended or active.
197          */
198         return true;
199     }
200 }
201 
202 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
203 {
204     /* Return the group priority for this exception, given its raw
205      * (group-and-subgroup) priority value and whether it is targeting
206      * secure state or not.
207      */
208     if (rawprio < 0) {
209         return rawprio;
210     }
211     rawprio &= nvic_gprio_mask(s, targets_secure);
212     /* AIRCR.PRIS causes us to squash all NS priorities into the
213      * lower half of the total range
214      */
215     if (!targets_secure &&
216         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
217         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
218     }
219     return rawprio;
220 }
221 
222 /* Recompute vectpending and exception_prio for a CPU which implements
223  * the Security extension
224  */
225 static void nvic_recompute_state_secure(NVICState *s)
226 {
227     int i, bank;
228     int pend_prio = NVIC_NOEXC_PRIO;
229     int active_prio = NVIC_NOEXC_PRIO;
230     int pend_irq = 0;
231     bool pending_is_s_banked = false;
232     int pend_subprio = 0;
233 
234     /* R_CQRV: precedence is by:
235      *  - lowest group priority; if both the same then
236      *  - lowest subpriority; if both the same then
237      *  - lowest exception number; if both the same (ie banked) then
238      *  - secure exception takes precedence
239      * Compare pseudocode RawExecutionPriority.
240      * Annoyingly, now we have two prigroup values (for S and NS)
241      * we can't do the loop comparison on raw priority values.
242      */
243     for (i = 1; i < s->num_irq; i++) {
244         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
245             VecInfo *vec;
246             int prio, subprio;
247             bool targets_secure;
248 
249             if (bank == M_REG_S) {
250                 if (!exc_is_banked(i)) {
251                     continue;
252                 }
253                 vec = &s->sec_vectors[i];
254                 targets_secure = true;
255             } else {
256                 vec = &s->vectors[i];
257                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
258             }
259 
260             prio = exc_group_prio(s, vec->prio, targets_secure);
261             subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
262             if (vec->enabled && vec->pending &&
263                 ((prio < pend_prio) ||
264                  (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
265                 pend_prio = prio;
266                 pend_subprio = subprio;
267                 pend_irq = i;
268                 pending_is_s_banked = (bank == M_REG_S);
269             }
270             if (vec->active && prio < active_prio) {
271                 active_prio = prio;
272             }
273         }
274     }
275 
276     s->vectpending_is_s_banked = pending_is_s_banked;
277     s->vectpending = pend_irq;
278     s->vectpending_prio = pend_prio;
279     s->exception_prio = active_prio;
280 
281     trace_nvic_recompute_state_secure(s->vectpending,
282                                       s->vectpending_is_s_banked,
283                                       s->vectpending_prio,
284                                       s->exception_prio);
285 }
286 
287 /* Recompute vectpending and exception_prio */
288 static void nvic_recompute_state(NVICState *s)
289 {
290     int i;
291     int pend_prio = NVIC_NOEXC_PRIO;
292     int active_prio = NVIC_NOEXC_PRIO;
293     int pend_irq = 0;
294 
295     /* In theory we could write one function that handled both
296      * the "security extension present" and "not present"; however
297      * the security related changes significantly complicate the
298      * recomputation just by themselves and mixing both cases together
299      * would be even worse, so we retain a separate non-secure-only
300      * version for CPUs which don't implement the security extension.
301      */
302     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
303         nvic_recompute_state_secure(s);
304         return;
305     }
306 
307     for (i = 1; i < s->num_irq; i++) {
308         VecInfo *vec = &s->vectors[i];
309 
310         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
311             pend_prio = vec->prio;
312             pend_irq = i;
313         }
314         if (vec->active && vec->prio < active_prio) {
315             active_prio = vec->prio;
316         }
317     }
318 
319     if (active_prio > 0) {
320         active_prio &= nvic_gprio_mask(s, false);
321     }
322 
323     if (pend_prio > 0) {
324         pend_prio &= nvic_gprio_mask(s, false);
325     }
326 
327     s->vectpending = pend_irq;
328     s->vectpending_prio = pend_prio;
329     s->exception_prio = active_prio;
330 
331     trace_nvic_recompute_state(s->vectpending,
332                                s->vectpending_prio,
333                                s->exception_prio);
334 }
335 
336 /* Return the current execution priority of the CPU
337  * (equivalent to the pseudocode ExecutionPriority function).
338  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
339  */
340 static inline int nvic_exec_prio(NVICState *s)
341 {
342     CPUARMState *env = &s->cpu->env;
343     int running = NVIC_NOEXC_PRIO;
344 
345     if (env->v7m.basepri[M_REG_NS] > 0) {
346         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
347     }
348 
349     if (env->v7m.basepri[M_REG_S] > 0) {
350         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
351         if (running > basepri) {
352             running = basepri;
353         }
354     }
355 
356     if (env->v7m.primask[M_REG_NS]) {
357         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
358             if (running > NVIC_NS_PRIO_LIMIT) {
359                 running = NVIC_NS_PRIO_LIMIT;
360             }
361         } else {
362             running = 0;
363         }
364     }
365 
366     if (env->v7m.primask[M_REG_S]) {
367         running = 0;
368     }
369 
370     if (env->v7m.faultmask[M_REG_NS]) {
371         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
372             running = -1;
373         } else {
374             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
375                 if (running > NVIC_NS_PRIO_LIMIT) {
376                     running = NVIC_NS_PRIO_LIMIT;
377                 }
378             } else {
379                 running = 0;
380             }
381         }
382     }
383 
384     if (env->v7m.faultmask[M_REG_S]) {
385         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
386     }
387 
388     /* consider priority of active handler */
389     return MIN(running, s->exception_prio);
390 }
391 
392 bool armv7m_nvic_neg_prio_requested(NVICState *s, bool secure)
393 {
394     /* Return true if the requested execution priority is negative
395      * for the specified security state, ie that security state
396      * has an active NMI or HardFault or has set its FAULTMASK.
397      * Note that this is not the same as whether the execution
398      * priority is actually negative (for instance AIRCR.PRIS may
399      * mean we don't allow FAULTMASK_NS to actually make the execution
400      * priority negative). Compare pseudocode IsReqExcPriNeg().
401      */
402     if (s->cpu->env.v7m.faultmask[secure]) {
403         return true;
404     }
405 
406     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
407         s->vectors[ARMV7M_EXCP_HARD].active) {
408         return true;
409     }
410 
411     if (s->vectors[ARMV7M_EXCP_NMI].active &&
412         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
413         return true;
414     }
415 
416     return false;
417 }
418 
419 bool armv7m_nvic_can_take_pending_exception(NVICState *s)
420 {
421     return nvic_exec_prio(s) > nvic_pending_prio(s);
422 }
423 
424 int armv7m_nvic_raw_execution_priority(NVICState *s)
425 {
426     return s->exception_prio;
427 }
428 
429 /* caller must call nvic_irq_update() after this.
430  * secure indicates the bank to use for banked exceptions (we assert if
431  * we are passed secure=true for a non-banked exception).
432  */
433 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
434 {
435     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
436     assert(irq < s->num_irq);
437 
438     prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
439 
440     if (secure) {
441         assert(exc_is_banked(irq));
442         s->sec_vectors[irq].prio = prio;
443     } else {
444         s->vectors[irq].prio = prio;
445     }
446 
447     trace_nvic_set_prio(irq, secure, prio);
448 }
449 
450 /* Return the current raw priority register value.
451  * secure indicates the bank to use for banked exceptions (we assert if
452  * we are passed secure=true for a non-banked exception).
453  */
454 static int get_prio(NVICState *s, unsigned irq, bool secure)
455 {
456     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
457     assert(irq < s->num_irq);
458 
459     if (secure) {
460         assert(exc_is_banked(irq));
461         return s->sec_vectors[irq].prio;
462     } else {
463         return s->vectors[irq].prio;
464     }
465 }
466 
467 /* Recompute state and assert irq line accordingly.
468  * Must be called after changes to:
469  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
470  *  prigroup
471  */
472 static void nvic_irq_update(NVICState *s)
473 {
474     int lvl;
475     int pend_prio;
476 
477     nvic_recompute_state(s);
478     pend_prio = nvic_pending_prio(s);
479 
480     /* Raise NVIC output if this IRQ would be taken, except that we
481      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
482      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
483      * to those CPU registers don't cause us to recalculate the NVIC
484      * pending info.
485      */
486     lvl = (pend_prio < s->exception_prio);
487     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
488     qemu_set_irq(s->excpout, lvl);
489 }
490 
491 /**
492  * armv7m_nvic_clear_pending: mark the specified exception as not pending
493  * @opaque: the NVIC
494  * @irq: the exception number to mark as not pending
495  * @secure: false for non-banked exceptions or for the nonsecure
496  * version of a banked exception, true for the secure version of a banked
497  * exception.
498  *
499  * Marks the specified exception as not pending. Note that we will assert()
500  * if @secure is true and @irq does not specify one of the fixed set
501  * of architecturally banked exceptions.
502  */
503 static void armv7m_nvic_clear_pending(NVICState *s, int irq, bool secure)
504 {
505     VecInfo *vec;
506 
507     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
508 
509     if (secure) {
510         assert(exc_is_banked(irq));
511         vec = &s->sec_vectors[irq];
512     } else {
513         vec = &s->vectors[irq];
514     }
515     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
516     if (vec->pending) {
517         vec->pending = 0;
518         nvic_irq_update(s);
519     }
520 }
521 
522 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
523                                        bool derived)
524 {
525     /* Pend an exception, including possibly escalating it to HardFault.
526      *
527      * This function handles both "normal" pending of interrupts and
528      * exceptions, and also derived exceptions (ones which occur as
529      * a result of trying to take some other exception).
530      *
531      * If derived == true, the caller guarantees that we are part way through
532      * trying to take an exception (but have not yet called
533      * armv7m_nvic_acknowledge_irq() to make it active), and so:
534      *  - s->vectpending is the "original exception" we were trying to take
535      *  - irq is the "derived exception"
536      *  - nvic_exec_prio(s) gives the priority before exception entry
537      * Here we handle the prioritization logic which the pseudocode puts
538      * in the DerivedLateArrival() function.
539      */
540 
541     NVICState *s = (NVICState *)opaque;
542     bool banked = exc_is_banked(irq);
543     VecInfo *vec;
544     bool targets_secure;
545 
546     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
547     assert(!secure || banked);
548 
549     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
550 
551     targets_secure = banked ? secure : exc_targets_secure(s, irq);
552 
553     trace_nvic_set_pending(irq, secure, targets_secure,
554                            derived, vec->enabled, vec->prio);
555 
556     if (derived) {
557         /* Derived exceptions are always synchronous. */
558         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
559 
560         if (irq == ARMV7M_EXCP_DEBUG &&
561             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
562             /* DebugMonitorFault, but its priority is lower than the
563              * preempted exception priority: just ignore it.
564              */
565             return;
566         }
567 
568         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
569             /* If this is a terminal exception (one which means we cannot
570              * take the original exception, like a failure to read its
571              * vector table entry), then we must take the derived exception.
572              * If the derived exception can't take priority over the
573              * original exception, then we go into Lockup.
574              *
575              * For QEMU, we rely on the fact that a derived exception is
576              * terminal if and only if it's reported to us as HardFault,
577              * which saves having to have an extra argument is_terminal
578              * that we'd only use in one place.
579              */
580             cpu_abort(&s->cpu->parent_obj,
581                       "Lockup: can't take terminal derived exception "
582                       "(original exception priority %d)\n",
583                       s->vectpending_prio);
584         }
585         /* We now continue with the same code as for a normal pending
586          * exception, which will cause us to pend the derived exception.
587          * We'll then take either the original or the derived exception
588          * based on which is higher priority by the usual mechanism
589          * for selecting the highest priority pending interrupt.
590          */
591     }
592 
593     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
594         /* If a synchronous exception is pending then it may be
595          * escalated to HardFault if:
596          *  * it is equal or lower priority to current execution
597          *  * it is disabled
598          * (ie we need to take it immediately but we can't do so).
599          * Asynchronous exceptions (and interrupts) simply remain pending.
600          *
601          * For QEMU, we don't have any imprecise (asynchronous) faults,
602          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
603          * synchronous.
604          * Debug exceptions are awkward because only Debug exceptions
605          * resulting from the BKPT instruction should be escalated,
606          * but we don't currently implement any Debug exceptions other
607          * than those that result from BKPT, so we treat all debug exceptions
608          * as needing escalation.
609          *
610          * This all means we can identify whether to escalate based only on
611          * the exception number and don't (yet) need the caller to explicitly
612          * tell us whether this exception is synchronous or not.
613          */
614         int running = nvic_exec_prio(s);
615         bool escalate = false;
616 
617         if (exc_group_prio(s, vec->prio, secure) >= running) {
618             trace_nvic_escalate_prio(irq, vec->prio, running);
619             escalate = true;
620         } else if (!vec->enabled) {
621             trace_nvic_escalate_disabled(irq);
622             escalate = true;
623         }
624 
625         if (escalate) {
626 
627             /* We need to escalate this exception to a synchronous HardFault.
628              * If BFHFNMINS is set then we escalate to the banked HF for
629              * the target security state of the original exception; otherwise
630              * we take a Secure HardFault.
631              */
632             irq = ARMV7M_EXCP_HARD;
633             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
634                 (targets_secure ||
635                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
636                 vec = &s->sec_vectors[irq];
637             } else {
638                 vec = &s->vectors[irq];
639             }
640             if (running <= vec->prio) {
641                 /* We want to escalate to HardFault but we can't take the
642                  * synchronous HardFault at this point either. This is a
643                  * Lockup condition due to a guest bug. We don't model
644                  * Lockup, so report via cpu_abort() instead.
645                  */
646                 cpu_abort(&s->cpu->parent_obj,
647                           "Lockup: can't escalate %d to HardFault "
648                           "(current priority %d)\n", irq, running);
649             }
650 
651             /* HF may be banked but there is only one shared HFSR */
652             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
653         }
654     }
655 
656     if (!vec->pending) {
657         vec->pending = 1;
658         nvic_irq_update(s);
659     }
660 }
661 
662 void armv7m_nvic_set_pending(NVICState *s, int irq, bool secure)
663 {
664     do_armv7m_nvic_set_pending(s, irq, secure, false);
665 }
666 
667 void armv7m_nvic_set_pending_derived(NVICState *s, int irq, bool secure)
668 {
669     do_armv7m_nvic_set_pending(s, irq, secure, true);
670 }
671 
672 void armv7m_nvic_set_pending_lazyfp(NVICState *s, int irq, bool secure)
673 {
674     /*
675      * Pend an exception during lazy FP stacking. This differs
676      * from the usual exception pending because the logic for
677      * whether we should escalate depends on the saved context
678      * in the FPCCR register, not on the current state of the CPU/NVIC.
679      */
680     bool banked = exc_is_banked(irq);
681     VecInfo *vec;
682     bool targets_secure;
683     bool escalate = false;
684     /*
685      * We will only look at bits in fpccr if this is a banked exception
686      * (in which case 'secure' tells us whether it is the S or NS version).
687      * All the bits for the non-banked exceptions are in fpccr_s.
688      */
689     uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
690     uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
691 
692     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
693     assert(!secure || banked);
694 
695     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
696 
697     targets_secure = banked ? secure : exc_targets_secure(s, irq);
698 
699     switch (irq) {
700     case ARMV7M_EXCP_DEBUG:
701         if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
702             /* Ignore DebugMonitor exception */
703             return;
704         }
705         break;
706     case ARMV7M_EXCP_MEM:
707         escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
708         break;
709     case ARMV7M_EXCP_USAGE:
710         escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
711         break;
712     case ARMV7M_EXCP_BUS:
713         escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
714         break;
715     case ARMV7M_EXCP_SECURE:
716         escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
717         break;
718     default:
719         g_assert_not_reached();
720     }
721 
722     if (escalate) {
723         /*
724          * Escalate to HardFault: faults that initially targeted Secure
725          * continue to do so, even if HF normally targets NonSecure.
726          */
727         irq = ARMV7M_EXCP_HARD;
728         if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
729             (targets_secure ||
730              !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
731             vec = &s->sec_vectors[irq];
732         } else {
733             vec = &s->vectors[irq];
734         }
735     }
736 
737     if (!vec->enabled ||
738         nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
739         if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
740             /*
741              * We want to escalate to HardFault but the context the
742              * FP state belongs to prevents the exception pre-empting.
743              */
744             cpu_abort(&s->cpu->parent_obj,
745                       "Lockup: can't escalate to HardFault during "
746                       "lazy FP register stacking\n");
747         }
748     }
749 
750     if (escalate) {
751         s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
752     }
753     if (!vec->pending) {
754         vec->pending = 1;
755         /*
756          * We do not call nvic_irq_update(), because we know our caller
757          * is going to handle causing us to take the exception by
758          * raising EXCP_LAZYFP, so raising the IRQ line would be
759          * pointless extra work. We just need to recompute the
760          * priorities so that armv7m_nvic_can_take_pending_exception()
761          * returns the right answer.
762          */
763         nvic_recompute_state(s);
764     }
765 }
766 
767 /* Make pending IRQ active.  */
768 void armv7m_nvic_acknowledge_irq(NVICState *s)
769 {
770     CPUARMState *env = &s->cpu->env;
771     const int pending = s->vectpending;
772     const int running = nvic_exec_prio(s);
773     VecInfo *vec;
774 
775     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
776 
777     if (s->vectpending_is_s_banked) {
778         vec = &s->sec_vectors[pending];
779     } else {
780         vec = &s->vectors[pending];
781     }
782 
783     assert(vec->enabled);
784     assert(vec->pending);
785 
786     assert(s->vectpending_prio < running);
787 
788     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
789 
790     vec->active = 1;
791     vec->pending = 0;
792 
793     write_v7m_exception(env, s->vectpending);
794 
795     nvic_irq_update(s);
796 }
797 
798 static bool vectpending_targets_secure(NVICState *s)
799 {
800     /* Return true if s->vectpending targets Secure state */
801     if (s->vectpending_is_s_banked) {
802         return true;
803     }
804     return !exc_is_banked(s->vectpending) &&
805         exc_targets_secure(s, s->vectpending);
806 }
807 
808 void armv7m_nvic_get_pending_irq_info(NVICState *s,
809                                       int *pirq, bool *ptargets_secure)
810 {
811     const int pending = s->vectpending;
812     bool targets_secure;
813 
814     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
815 
816     targets_secure = vectpending_targets_secure(s);
817 
818     trace_nvic_get_pending_irq_info(pending, targets_secure);
819 
820     *ptargets_secure = targets_secure;
821     *pirq = pending;
822 }
823 
824 int armv7m_nvic_complete_irq(NVICState *s, int irq, bool secure)
825 {
826     VecInfo *vec = NULL;
827     int ret = 0;
828 
829     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
830 
831     trace_nvic_complete_irq(irq, secure);
832 
833     if (secure && exc_is_banked(irq)) {
834         vec = &s->sec_vectors[irq];
835     } else {
836         vec = &s->vectors[irq];
837     }
838 
839     /*
840      * Identify illegal exception return cases. We can't immediately
841      * return at this point because we still need to deactivate
842      * (either this exception or NMI/HardFault) first.
843      */
844     if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
845         /*
846          * Return from a configurable exception targeting the opposite
847          * security state from the one we're trying to complete it for.
848          * Clear vec because it's not really the VecInfo for this
849          * (irq, secstate) so we mustn't deactivate it.
850          */
851         ret = -1;
852         vec = NULL;
853     } else if (!vec->active) {
854         /* Return from an inactive interrupt */
855         ret = -1;
856     } else {
857         /* Legal return, we will return the RETTOBASE bit value to the caller */
858         ret = nvic_rettobase(s);
859     }
860 
861     /*
862      * For negative priorities, v8M will forcibly deactivate the appropriate
863      * NMI or HardFault regardless of what interrupt we're being asked to
864      * deactivate (compare the DeActivate() pseudocode). This is a guard
865      * against software returning from NMI or HardFault with a corrupted
866      * IPSR and leaving the CPU in a negative-priority state.
867      * v7M does not do this, but simply deactivates the requested interrupt.
868      */
869     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
870         switch (armv7m_nvic_raw_execution_priority(s)) {
871         case -1:
872             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
873                 vec = &s->vectors[ARMV7M_EXCP_HARD];
874             } else {
875                 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
876             }
877             break;
878         case -2:
879             vec = &s->vectors[ARMV7M_EXCP_NMI];
880             break;
881         case -3:
882             vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
883             break;
884         default:
885             break;
886         }
887     }
888 
889     if (!vec) {
890         return ret;
891     }
892 
893     vec->active = 0;
894     if (vec->level) {
895         /* Re-pend the exception if it's still held high; only
896          * happens for extenal IRQs
897          */
898         assert(irq >= NVIC_FIRST_IRQ);
899         vec->pending = 1;
900     }
901 
902     nvic_irq_update(s);
903 
904     return ret;
905 }
906 
907 bool armv7m_nvic_get_ready_status(NVICState *s, int irq, bool secure)
908 {
909     /*
910      * Return whether an exception is "ready", i.e. it is enabled and is
911      * configured at a priority which would allow it to interrupt the
912      * current execution priority.
913      *
914      * irq and secure have the same semantics as for armv7m_nvic_set_pending():
915      * for non-banked exceptions secure is always false; for banked exceptions
916      * it indicates which of the exceptions is required.
917      */
918     bool banked = exc_is_banked(irq);
919     VecInfo *vec;
920     int running = nvic_exec_prio(s);
921 
922     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
923     assert(!secure || banked);
924 
925     /*
926      * HardFault is an odd special case: we always check against -1,
927      * even if we're secure and HardFault has priority -3; we never
928      * need to check for enabled state.
929      */
930     if (irq == ARMV7M_EXCP_HARD) {
931         return running > -1;
932     }
933 
934     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
935 
936     return vec->enabled &&
937         exc_group_prio(s, vec->prio, secure) < running;
938 }
939 
940 /* callback when external interrupt line is changed */
941 static void set_irq_level(void *opaque, int n, int level)
942 {
943     NVICState *s = opaque;
944     VecInfo *vec;
945 
946     n += NVIC_FIRST_IRQ;
947 
948     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
949 
950     trace_nvic_set_irq_level(n, level);
951 
952     /* The pending status of an external interrupt is
953      * latched on rising edge and exception handler return.
954      *
955      * Pulsing the IRQ will always run the handler
956      * once, and the handler will re-run until the
957      * level is low when the handler completes.
958      */
959     vec = &s->vectors[n];
960     if (level != vec->level) {
961         vec->level = level;
962         if (level) {
963             armv7m_nvic_set_pending(s, n, false);
964         }
965     }
966 }
967 
968 /* callback when external NMI line is changed */
969 static void nvic_nmi_trigger(void *opaque, int n, int level)
970 {
971     NVICState *s = opaque;
972 
973     trace_nvic_set_nmi_level(level);
974 
975     /*
976      * The architecture doesn't specify whether NMI should share
977      * the normal-interrupt behaviour of being resampled on
978      * exception handler return. We choose not to, so just
979      * set NMI pending here and don't track the current level.
980      */
981     if (level) {
982         armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
983     }
984 }
985 
986 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
987 {
988     ARMCPU *cpu = s->cpu;
989     uint32_t val;
990 
991     switch (offset) {
992     case 4: /* Interrupt Control Type.  */
993         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
994             goto bad_offset;
995         }
996         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
997     case 0xc: /* CPPWR */
998         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
999             goto bad_offset;
1000         }
1001         /* We make the IMPDEF choice that nothing can ever go into a
1002          * non-retentive power state, which allows us to RAZ/WI this.
1003          */
1004         return 0;
1005     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1006     {
1007         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1008         int i;
1009 
1010         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1011             goto bad_offset;
1012         }
1013         if (!attrs.secure) {
1014             return 0;
1015         }
1016         val = 0;
1017         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1018             if (s->itns[startvec + i]) {
1019                 val |= (1 << i);
1020             }
1021         }
1022         return val;
1023     }
1024     case 0xcfc:
1025         if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
1026             goto bad_offset;
1027         }
1028         return cpu->revidr;
1029     case 0xd00: /* CPUID Base.  */
1030         return cpu->midr;
1031     case 0xd04: /* Interrupt Control State (ICSR) */
1032         /* VECTACTIVE */
1033         val = cpu->env.v7m.exception;
1034         /* VECTPENDING */
1035         if (s->vectpending) {
1036             /*
1037              * From v8.1M VECTPENDING must read as 1 if accessed as
1038              * NonSecure and the highest priority pending and enabled
1039              * exception targets Secure.
1040              */
1041             int vp = s->vectpending;
1042             if (!attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_V8_1M) &&
1043                 vectpending_targets_secure(s)) {
1044                 vp = 1;
1045             }
1046             val |= (vp & 0x1ff) << 12;
1047         }
1048         /* ISRPENDING - set if any external IRQ is pending */
1049         if (nvic_isrpending(s)) {
1050             val |= (1 << 22);
1051         }
1052         /* RETTOBASE - set if only one handler is active */
1053         if (nvic_rettobase(s)) {
1054             val |= (1 << 11);
1055         }
1056         if (attrs.secure) {
1057             /* PENDSTSET */
1058             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1059                 val |= (1 << 26);
1060             }
1061             /* PENDSVSET */
1062             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1063                 val |= (1 << 28);
1064             }
1065         } else {
1066             /* PENDSTSET */
1067             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1068                 val |= (1 << 26);
1069             }
1070             /* PENDSVSET */
1071             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1072                 val |= (1 << 28);
1073             }
1074         }
1075         /* NMIPENDSET */
1076         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1077             && s->vectors[ARMV7M_EXCP_NMI].pending) {
1078             val |= (1 << 31);
1079         }
1080         /* ISRPREEMPT: RES0 when halting debug not implemented */
1081         /* STTNS: RES0 for the Main Extension */
1082         return val;
1083     case 0xd08: /* Vector Table Offset.  */
1084         return cpu->env.v7m.vecbase[attrs.secure];
1085     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1086         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1087         if (attrs.secure) {
1088             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1089             val |= cpu->env.v7m.aircr;
1090         } else {
1091             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1092                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1093                  * security isn't supported then BFHFNMINS is RAO (and
1094                  * the bit in env.v7m.aircr is always set).
1095                  */
1096                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1097             }
1098         }
1099         return val;
1100     case 0xd10: /* System Control.  */
1101         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1102             goto bad_offset;
1103         }
1104         return cpu->env.v7m.scr[attrs.secure];
1105     case 0xd14: /* Configuration Control.  */
1106         /*
1107          * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register)
1108          * and TRD (stored in the S copy of the register)
1109          */
1110         val = cpu->env.v7m.ccr[attrs.secure];
1111         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1112         /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */
1113         if (!attrs.secure) {
1114             if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1115                 val &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1116             }
1117         }
1118         return val;
1119     case 0xd24: /* System Handler Control and State (SHCSR) */
1120         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1121             goto bad_offset;
1122         }
1123         val = 0;
1124         if (attrs.secure) {
1125             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1126                 val |= (1 << 0);
1127             }
1128             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1129                 val |= (1 << 2);
1130             }
1131             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1132                 val |= (1 << 3);
1133             }
1134             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1135                 val |= (1 << 7);
1136             }
1137             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1138                 val |= (1 << 10);
1139             }
1140             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1141                 val |= (1 << 11);
1142             }
1143             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1144                 val |= (1 << 12);
1145             }
1146             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1147                 val |= (1 << 13);
1148             }
1149             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1150                 val |= (1 << 15);
1151             }
1152             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1153                 val |= (1 << 16);
1154             }
1155             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1156                 val |= (1 << 18);
1157             }
1158             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1159                 val |= (1 << 21);
1160             }
1161             /* SecureFault is not banked but is always RAZ/WI to NS */
1162             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1163                 val |= (1 << 4);
1164             }
1165             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1166                 val |= (1 << 19);
1167             }
1168             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1169                 val |= (1 << 20);
1170             }
1171         } else {
1172             if (s->vectors[ARMV7M_EXCP_MEM].active) {
1173                 val |= (1 << 0);
1174             }
1175             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1176                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1177                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1178                     val |= (1 << 2);
1179                 }
1180                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1181                     val |= (1 << 21);
1182                 }
1183             }
1184             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1185                 val |= (1 << 3);
1186             }
1187             if (s->vectors[ARMV7M_EXCP_SVC].active) {
1188                 val |= (1 << 7);
1189             }
1190             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1191                 val |= (1 << 10);
1192             }
1193             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1194                 val |= (1 << 11);
1195             }
1196             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1197                 val |= (1 << 12);
1198             }
1199             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1200                 val |= (1 << 13);
1201             }
1202             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1203                 val |= (1 << 15);
1204             }
1205             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1206                 val |= (1 << 16);
1207             }
1208             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1209                 val |= (1 << 18);
1210             }
1211         }
1212         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1213             if (s->vectors[ARMV7M_EXCP_BUS].active) {
1214                 val |= (1 << 1);
1215             }
1216             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1217                 val |= (1 << 14);
1218             }
1219             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1220                 val |= (1 << 17);
1221             }
1222             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1223                 s->vectors[ARMV7M_EXCP_NMI].active) {
1224                 /* NMIACT is not present in v7M */
1225                 val |= (1 << 5);
1226             }
1227         }
1228 
1229         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1230         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1231             val |= (1 << 8);
1232         }
1233         return val;
1234     case 0xd2c: /* Hard Fault Status.  */
1235         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1236             goto bad_offset;
1237         }
1238         return cpu->env.v7m.hfsr;
1239     case 0xd30: /* Debug Fault Status.  */
1240         return cpu->env.v7m.dfsr;
1241     case 0xd34: /* MMFAR MemManage Fault Address */
1242         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1243             goto bad_offset;
1244         }
1245         return cpu->env.v7m.mmfar[attrs.secure];
1246     case 0xd38: /* Bus Fault Address.  */
1247         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1248             goto bad_offset;
1249         }
1250         if (!attrs.secure &&
1251             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1252             return 0;
1253         }
1254         return cpu->env.v7m.bfar;
1255     case 0xd3c: /* Aux Fault Status.  */
1256         /* TODO: Implement fault status registers.  */
1257         qemu_log_mask(LOG_UNIMP,
1258                       "Aux Fault status registers unimplemented\n");
1259         return 0;
1260     case 0xd40: /* PFR0.  */
1261         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1262             goto bad_offset;
1263         }
1264         return cpu->isar.id_pfr0;
1265     case 0xd44: /* PFR1.  */
1266         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1267             goto bad_offset;
1268         }
1269         return cpu->isar.id_pfr1;
1270     case 0xd48: /* DFR0.  */
1271         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1272             goto bad_offset;
1273         }
1274         return cpu->isar.id_dfr0;
1275     case 0xd4c: /* AFR0.  */
1276         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1277             goto bad_offset;
1278         }
1279         return cpu->id_afr0;
1280     case 0xd50: /* MMFR0.  */
1281         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1282             goto bad_offset;
1283         }
1284         return cpu->isar.id_mmfr0;
1285     case 0xd54: /* MMFR1.  */
1286         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1287             goto bad_offset;
1288         }
1289         return cpu->isar.id_mmfr1;
1290     case 0xd58: /* MMFR2.  */
1291         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1292             goto bad_offset;
1293         }
1294         return cpu->isar.id_mmfr2;
1295     case 0xd5c: /* MMFR3.  */
1296         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1297             goto bad_offset;
1298         }
1299         return cpu->isar.id_mmfr3;
1300     case 0xd60: /* ISAR0.  */
1301         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1302             goto bad_offset;
1303         }
1304         return cpu->isar.id_isar0;
1305     case 0xd64: /* ISAR1.  */
1306         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1307             goto bad_offset;
1308         }
1309         return cpu->isar.id_isar1;
1310     case 0xd68: /* ISAR2.  */
1311         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1312             goto bad_offset;
1313         }
1314         return cpu->isar.id_isar2;
1315     case 0xd6c: /* ISAR3.  */
1316         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1317             goto bad_offset;
1318         }
1319         return cpu->isar.id_isar3;
1320     case 0xd70: /* ISAR4.  */
1321         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1322             goto bad_offset;
1323         }
1324         return cpu->isar.id_isar4;
1325     case 0xd74: /* ISAR5.  */
1326         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1327             goto bad_offset;
1328         }
1329         return cpu->isar.id_isar5;
1330     case 0xd78: /* CLIDR */
1331         return cpu->clidr;
1332     case 0xd7c: /* CTR */
1333         return cpu->ctr;
1334     case 0xd80: /* CSSIDR */
1335     {
1336         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1337         return cpu->ccsidr[idx];
1338     }
1339     case 0xd84: /* CSSELR */
1340         return cpu->env.v7m.csselr[attrs.secure];
1341     case 0xd88: /* CPACR */
1342         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1343             return 0;
1344         }
1345         return cpu->env.v7m.cpacr[attrs.secure];
1346     case 0xd8c: /* NSACR */
1347         if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1348             return 0;
1349         }
1350         return cpu->env.v7m.nsacr;
1351     /* TODO: Implement debug registers.  */
1352     case 0xd90: /* MPU_TYPE */
1353         /* Unified MPU; if the MPU is not present this value is zero */
1354         return cpu->pmsav7_dregion << 8;
1355     case 0xd94: /* MPU_CTRL */
1356         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1357     case 0xd98: /* MPU_RNR */
1358         return cpu->env.pmsav7.rnr[attrs.secure];
1359     case 0xd9c: /* MPU_RBAR */
1360     case 0xda4: /* MPU_RBAR_A1 */
1361     case 0xdac: /* MPU_RBAR_A2 */
1362     case 0xdb4: /* MPU_RBAR_A3 */
1363     {
1364         int region = cpu->env.pmsav7.rnr[attrs.secure];
1365 
1366         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1367             /* PMSAv8M handling of the aliases is different from v7M:
1368              * aliases A1, A2, A3 override the low two bits of the region
1369              * number in MPU_RNR, and there is no 'region' field in the
1370              * RBAR register.
1371              */
1372             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1373             if (aliasno) {
1374                 region = deposit32(region, 0, 2, aliasno);
1375             }
1376             if (region >= cpu->pmsav7_dregion) {
1377                 return 0;
1378             }
1379             return cpu->env.pmsav8.rbar[attrs.secure][region];
1380         }
1381 
1382         if (region >= cpu->pmsav7_dregion) {
1383             return 0;
1384         }
1385         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1386     }
1387     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1388     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1389     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1390     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1391     {
1392         int region = cpu->env.pmsav7.rnr[attrs.secure];
1393 
1394         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1395             /* PMSAv8M handling of the aliases is different from v7M:
1396              * aliases A1, A2, A3 override the low two bits of the region
1397              * number in MPU_RNR.
1398              */
1399             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1400             if (aliasno) {
1401                 region = deposit32(region, 0, 2, aliasno);
1402             }
1403             if (region >= cpu->pmsav7_dregion) {
1404                 return 0;
1405             }
1406             return cpu->env.pmsav8.rlar[attrs.secure][region];
1407         }
1408 
1409         if (region >= cpu->pmsav7_dregion) {
1410             return 0;
1411         }
1412         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1413             (cpu->env.pmsav7.drsr[region] & 0xffff);
1414     }
1415     case 0xdc0: /* MPU_MAIR0 */
1416         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1417             goto bad_offset;
1418         }
1419         return cpu->env.pmsav8.mair0[attrs.secure];
1420     case 0xdc4: /* MPU_MAIR1 */
1421         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1422             goto bad_offset;
1423         }
1424         return cpu->env.pmsav8.mair1[attrs.secure];
1425     case 0xdd0: /* SAU_CTRL */
1426         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1427             goto bad_offset;
1428         }
1429         if (!attrs.secure) {
1430             return 0;
1431         }
1432         return cpu->env.sau.ctrl;
1433     case 0xdd4: /* SAU_TYPE */
1434         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1435             goto bad_offset;
1436         }
1437         if (!attrs.secure) {
1438             return 0;
1439         }
1440         return cpu->sau_sregion;
1441     case 0xdd8: /* SAU_RNR */
1442         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1443             goto bad_offset;
1444         }
1445         if (!attrs.secure) {
1446             return 0;
1447         }
1448         return cpu->env.sau.rnr;
1449     case 0xddc: /* SAU_RBAR */
1450     {
1451         int region = cpu->env.sau.rnr;
1452 
1453         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1454             goto bad_offset;
1455         }
1456         if (!attrs.secure) {
1457             return 0;
1458         }
1459         if (region >= cpu->sau_sregion) {
1460             return 0;
1461         }
1462         return cpu->env.sau.rbar[region];
1463     }
1464     case 0xde0: /* SAU_RLAR */
1465     {
1466         int region = cpu->env.sau.rnr;
1467 
1468         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1469             goto bad_offset;
1470         }
1471         if (!attrs.secure) {
1472             return 0;
1473         }
1474         if (region >= cpu->sau_sregion) {
1475             return 0;
1476         }
1477         return cpu->env.sau.rlar[region];
1478     }
1479     case 0xde4: /* SFSR */
1480         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1481             goto bad_offset;
1482         }
1483         if (!attrs.secure) {
1484             return 0;
1485         }
1486         return cpu->env.v7m.sfsr;
1487     case 0xde8: /* SFAR */
1488         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1489             goto bad_offset;
1490         }
1491         if (!attrs.secure) {
1492             return 0;
1493         }
1494         return cpu->env.v7m.sfar;
1495     case 0xf04: /* RFSR */
1496         if (!cpu_isar_feature(aa32_ras, cpu)) {
1497             goto bad_offset;
1498         }
1499         /* We provide minimal-RAS only: RFSR is RAZ/WI */
1500         return 0;
1501     case 0xf34: /* FPCCR */
1502         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1503             return 0;
1504         }
1505         if (attrs.secure) {
1506             return cpu->env.v7m.fpccr[M_REG_S];
1507         } else {
1508             /*
1509              * NS can read LSPEN, CLRONRET and MONRDY. It can read
1510              * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1511              * other non-banked bits RAZ.
1512              * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1513              */
1514             uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1515             uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1516                 R_V7M_FPCCR_CLRONRET_MASK |
1517                 R_V7M_FPCCR_MONRDY_MASK;
1518 
1519             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1520                 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1521             }
1522 
1523             value &= mask;
1524 
1525             value |= cpu->env.v7m.fpccr[M_REG_NS];
1526             return value;
1527         }
1528     case 0xf38: /* FPCAR */
1529         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1530             return 0;
1531         }
1532         return cpu->env.v7m.fpcar[attrs.secure];
1533     case 0xf3c: /* FPDSCR */
1534         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1535             return 0;
1536         }
1537         return cpu->env.v7m.fpdscr[attrs.secure];
1538     case 0xf40: /* MVFR0 */
1539         return cpu->isar.mvfr0;
1540     case 0xf44: /* MVFR1 */
1541         return cpu->isar.mvfr1;
1542     case 0xf48: /* MVFR2 */
1543         return cpu->isar.mvfr2;
1544     default:
1545     bad_offset:
1546         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1547         return 0;
1548     }
1549 }
1550 
1551 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1552                         MemTxAttrs attrs)
1553 {
1554     ARMCPU *cpu = s->cpu;
1555 
1556     switch (offset) {
1557     case 0xc: /* CPPWR */
1558         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1559             goto bad_offset;
1560         }
1561         /* Make the IMPDEF choice to RAZ/WI this. */
1562         break;
1563     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1564     {
1565         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1566         int i;
1567 
1568         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1569             goto bad_offset;
1570         }
1571         if (!attrs.secure) {
1572             break;
1573         }
1574         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1575             s->itns[startvec + i] = (value >> i) & 1;
1576         }
1577         nvic_irq_update(s);
1578         break;
1579     }
1580     case 0xd04: /* Interrupt Control State (ICSR) */
1581         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1582             if (value & (1 << 31)) {
1583                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1584             } else if (value & (1 << 30) &&
1585                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1586                 /* PENDNMICLR didn't exist in v7M */
1587                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1588             }
1589         }
1590         if (value & (1 << 28)) {
1591             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1592         } else if (value & (1 << 27)) {
1593             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1594         }
1595         if (value & (1 << 26)) {
1596             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1597         } else if (value & (1 << 25)) {
1598             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1599         }
1600         break;
1601     case 0xd08: /* Vector Table Offset.  */
1602         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1603         break;
1604     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1605         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1606             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1607                 if (attrs.secure ||
1608                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1609                     signal_sysresetreq(s);
1610                 }
1611             }
1612             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1613                 qemu_log_mask(LOG_GUEST_ERROR,
1614                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1615                               "is UNPREDICTABLE\n");
1616             }
1617             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1618                 /* NB: this bit is RES0 in v8M */
1619                 qemu_log_mask(LOG_GUEST_ERROR,
1620                               "Setting VECTRESET when not in DEBUG mode "
1621                               "is UNPREDICTABLE\n");
1622             }
1623             if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1624                 s->prigroup[attrs.secure] =
1625                     extract32(value,
1626                               R_V7M_AIRCR_PRIGROUP_SHIFT,
1627                               R_V7M_AIRCR_PRIGROUP_LENGTH);
1628             }
1629             /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */
1630             if (attrs.secure) {
1631                 /* These bits are only writable by secure */
1632                 cpu->env.v7m.aircr = value &
1633                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1634                      R_V7M_AIRCR_BFHFNMINS_MASK |
1635                      R_V7M_AIRCR_PRIS_MASK);
1636                 /* BFHFNMINS changes the priority of Secure HardFault, and
1637                  * allows a pending Non-secure HardFault to preempt (which
1638                  * we implement by marking it enabled).
1639                  */
1640                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1641                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1642                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1643                 } else {
1644                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1645                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1646                 }
1647             }
1648             nvic_irq_update(s);
1649         }
1650         break;
1651     case 0xd10: /* System Control.  */
1652         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1653             goto bad_offset;
1654         }
1655         /* We don't implement deep-sleep so these bits are RAZ/WI.
1656          * The other bits in the register are banked.
1657          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1658          * is architecturally permitted.
1659          */
1660         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1661         cpu->env.v7m.scr[attrs.secure] = value;
1662         break;
1663     case 0xd14: /* Configuration Control.  */
1664     {
1665         uint32_t mask;
1666 
1667         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1668             goto bad_offset;
1669         }
1670 
1671         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1672         mask = R_V7M_CCR_STKALIGN_MASK |
1673             R_V7M_CCR_BFHFNMIGN_MASK |
1674             R_V7M_CCR_DIV_0_TRP_MASK |
1675             R_V7M_CCR_UNALIGN_TRP_MASK |
1676             R_V7M_CCR_USERSETMPEND_MASK |
1677             R_V7M_CCR_NONBASETHRDENA_MASK;
1678         if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) {
1679             /* TRD is always RAZ/WI from NS */
1680             mask |= R_V7M_CCR_TRD_MASK;
1681         }
1682         value &= mask;
1683 
1684         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1685             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1686             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1687                 | R_V7M_CCR_STKALIGN_MASK;
1688         }
1689         if (attrs.secure) {
1690             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1691             cpu->env.v7m.ccr[M_REG_NS] =
1692                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1693                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1694             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1695         } else {
1696             /*
1697              * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so
1698              * preserve the state currently in the NS element of the array
1699              */
1700             if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1701                 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1702                 value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1703             }
1704         }
1705 
1706         cpu->env.v7m.ccr[attrs.secure] = value;
1707         break;
1708     }
1709     case 0xd24: /* System Handler Control and State (SHCSR) */
1710         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1711             goto bad_offset;
1712         }
1713         if (attrs.secure) {
1714             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1715             /* Secure HardFault active bit cannot be written */
1716             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1717             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1718             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1719                 (value & (1 << 10)) != 0;
1720             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1721                 (value & (1 << 11)) != 0;
1722             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1723                 (value & (1 << 12)) != 0;
1724             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1725             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1726             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1727             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1728             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1729                 (value & (1 << 18)) != 0;
1730             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1731             /* SecureFault not banked, but RAZ/WI to NS */
1732             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1733             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1734             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1735         } else {
1736             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1737             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1738                 /* HARDFAULTPENDED is not present in v7M */
1739                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1740             }
1741             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1742             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1743             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1744             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1745             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1746             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1747             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1748             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1749             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1750         }
1751         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1752             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1753             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1754             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1755         }
1756         /* NMIACT can only be written if the write is of a zero, with
1757          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1758          */
1759         if (!attrs.secure && cpu->env.v7m.secure &&
1760             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1761             (value & (1 << 5)) == 0) {
1762             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1763         }
1764         /* HARDFAULTACT can only be written if the write is of a zero
1765          * to the non-secure HardFault state by the CPU in secure state.
1766          * The only case where we can be targeting the non-secure HF state
1767          * when in secure state is if this is a write via the NS alias
1768          * and BFHFNMINS is 1.
1769          */
1770         if (!attrs.secure && cpu->env.v7m.secure &&
1771             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1772             (value & (1 << 2)) == 0) {
1773             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1774         }
1775 
1776         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1777         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1778         nvic_irq_update(s);
1779         break;
1780     case 0xd2c: /* Hard Fault Status.  */
1781         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1782             goto bad_offset;
1783         }
1784         cpu->env.v7m.hfsr &= ~value; /* W1C */
1785         break;
1786     case 0xd30: /* Debug Fault Status.  */
1787         cpu->env.v7m.dfsr &= ~value; /* W1C */
1788         break;
1789     case 0xd34: /* Mem Manage Address.  */
1790         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1791             goto bad_offset;
1792         }
1793         cpu->env.v7m.mmfar[attrs.secure] = value;
1794         return;
1795     case 0xd38: /* Bus Fault Address.  */
1796         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1797             goto bad_offset;
1798         }
1799         if (!attrs.secure &&
1800             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1801             return;
1802         }
1803         cpu->env.v7m.bfar = value;
1804         return;
1805     case 0xd3c: /* Aux Fault Status.  */
1806         qemu_log_mask(LOG_UNIMP,
1807                       "NVIC: Aux fault status registers unimplemented\n");
1808         break;
1809     case 0xd84: /* CSSELR */
1810         if (!arm_v7m_csselr_razwi(cpu)) {
1811             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1812         }
1813         break;
1814     case 0xd88: /* CPACR */
1815         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1816             /* We implement only the Floating Point extension's CP10/CP11 */
1817             cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1818         }
1819         break;
1820     case 0xd8c: /* NSACR */
1821         if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1822             /* We implement only the Floating Point extension's CP10/CP11 */
1823             cpu->env.v7m.nsacr = value & (3 << 10);
1824         }
1825         break;
1826     case 0xd90: /* MPU_TYPE */
1827         return; /* RO */
1828     case 0xd94: /* MPU_CTRL */
1829         if ((value &
1830              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1831             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1832             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1833                           "UNPREDICTABLE\n");
1834         }
1835         cpu->env.v7m.mpu_ctrl[attrs.secure]
1836             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1837                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1838                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1839         tlb_flush(CPU(cpu));
1840         break;
1841     case 0xd98: /* MPU_RNR */
1842         if (value >= cpu->pmsav7_dregion) {
1843             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1844                           PRIu32 "/%" PRIu32 "\n",
1845                           value, cpu->pmsav7_dregion);
1846         } else {
1847             cpu->env.pmsav7.rnr[attrs.secure] = value;
1848         }
1849         break;
1850     case 0xd9c: /* MPU_RBAR */
1851     case 0xda4: /* MPU_RBAR_A1 */
1852     case 0xdac: /* MPU_RBAR_A2 */
1853     case 0xdb4: /* MPU_RBAR_A3 */
1854     {
1855         int region;
1856 
1857         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1858             /* PMSAv8M handling of the aliases is different from v7M:
1859              * aliases A1, A2, A3 override the low two bits of the region
1860              * number in MPU_RNR, and there is no 'region' field in the
1861              * RBAR register.
1862              */
1863             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1864 
1865             region = cpu->env.pmsav7.rnr[attrs.secure];
1866             if (aliasno) {
1867                 region = deposit32(region, 0, 2, aliasno);
1868             }
1869             if (region >= cpu->pmsav7_dregion) {
1870                 return;
1871             }
1872             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1873             tlb_flush(CPU(cpu));
1874             return;
1875         }
1876 
1877         if (value & (1 << 4)) {
1878             /* VALID bit means use the region number specified in this
1879              * value and also update MPU_RNR.REGION with that value.
1880              */
1881             region = extract32(value, 0, 4);
1882             if (region >= cpu->pmsav7_dregion) {
1883                 qemu_log_mask(LOG_GUEST_ERROR,
1884                               "MPU region out of range %u/%" PRIu32 "\n",
1885                               region, cpu->pmsav7_dregion);
1886                 return;
1887             }
1888             cpu->env.pmsav7.rnr[attrs.secure] = region;
1889         } else {
1890             region = cpu->env.pmsav7.rnr[attrs.secure];
1891         }
1892 
1893         if (region >= cpu->pmsav7_dregion) {
1894             return;
1895         }
1896 
1897         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1898         tlb_flush(CPU(cpu));
1899         break;
1900     }
1901     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1902     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1903     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1904     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1905     {
1906         int region = cpu->env.pmsav7.rnr[attrs.secure];
1907 
1908         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1909             /* PMSAv8M handling of the aliases is different from v7M:
1910              * aliases A1, A2, A3 override the low two bits of the region
1911              * number in MPU_RNR.
1912              */
1913             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1914 
1915             region = cpu->env.pmsav7.rnr[attrs.secure];
1916             if (aliasno) {
1917                 region = deposit32(region, 0, 2, aliasno);
1918             }
1919             if (region >= cpu->pmsav7_dregion) {
1920                 return;
1921             }
1922             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1923             tlb_flush(CPU(cpu));
1924             return;
1925         }
1926 
1927         if (region >= cpu->pmsav7_dregion) {
1928             return;
1929         }
1930 
1931         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1932         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1933         tlb_flush(CPU(cpu));
1934         break;
1935     }
1936     case 0xdc0: /* MPU_MAIR0 */
1937         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1938             goto bad_offset;
1939         }
1940         if (cpu->pmsav7_dregion) {
1941             /* Register is RES0 if no MPU regions are implemented */
1942             cpu->env.pmsav8.mair0[attrs.secure] = value;
1943         }
1944         /* We don't need to do anything else because memory attributes
1945          * only affect cacheability, and we don't implement caching.
1946          */
1947         break;
1948     case 0xdc4: /* MPU_MAIR1 */
1949         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1950             goto bad_offset;
1951         }
1952         if (cpu->pmsav7_dregion) {
1953             /* Register is RES0 if no MPU regions are implemented */
1954             cpu->env.pmsav8.mair1[attrs.secure] = value;
1955         }
1956         /* We don't need to do anything else because memory attributes
1957          * only affect cacheability, and we don't implement caching.
1958          */
1959         break;
1960     case 0xdd0: /* SAU_CTRL */
1961         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1962             goto bad_offset;
1963         }
1964         if (!attrs.secure) {
1965             return;
1966         }
1967         cpu->env.sau.ctrl = value & 3;
1968         break;
1969     case 0xdd4: /* SAU_TYPE */
1970         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1971             goto bad_offset;
1972         }
1973         break;
1974     case 0xdd8: /* SAU_RNR */
1975         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1976             goto bad_offset;
1977         }
1978         if (!attrs.secure) {
1979             return;
1980         }
1981         if (value >= cpu->sau_sregion) {
1982             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1983                           PRIu32 "/%" PRIu32 "\n",
1984                           value, cpu->sau_sregion);
1985         } else {
1986             cpu->env.sau.rnr = value;
1987         }
1988         break;
1989     case 0xddc: /* SAU_RBAR */
1990     {
1991         int region = cpu->env.sau.rnr;
1992 
1993         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1994             goto bad_offset;
1995         }
1996         if (!attrs.secure) {
1997             return;
1998         }
1999         if (region >= cpu->sau_sregion) {
2000             return;
2001         }
2002         cpu->env.sau.rbar[region] = value & ~0x1f;
2003         tlb_flush(CPU(cpu));
2004         break;
2005     }
2006     case 0xde0: /* SAU_RLAR */
2007     {
2008         int region = cpu->env.sau.rnr;
2009 
2010         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2011             goto bad_offset;
2012         }
2013         if (!attrs.secure) {
2014             return;
2015         }
2016         if (region >= cpu->sau_sregion) {
2017             return;
2018         }
2019         cpu->env.sau.rlar[region] = value & ~0x1c;
2020         tlb_flush(CPU(cpu));
2021         break;
2022     }
2023     case 0xde4: /* SFSR */
2024         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2025             goto bad_offset;
2026         }
2027         if (!attrs.secure) {
2028             return;
2029         }
2030         cpu->env.v7m.sfsr &= ~value; /* W1C */
2031         break;
2032     case 0xde8: /* SFAR */
2033         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2034             goto bad_offset;
2035         }
2036         if (!attrs.secure) {
2037             return;
2038         }
2039         cpu->env.v7m.sfsr = value;
2040         break;
2041     case 0xf00: /* Software Triggered Interrupt Register */
2042     {
2043         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
2044 
2045         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
2046             goto bad_offset;
2047         }
2048 
2049         if (excnum < s->num_irq) {
2050             armv7m_nvic_set_pending(s, excnum, false);
2051         }
2052         break;
2053     }
2054     case 0xf04: /* RFSR */
2055         if (!cpu_isar_feature(aa32_ras, cpu)) {
2056             goto bad_offset;
2057         }
2058         /* We provide minimal-RAS only: RFSR is RAZ/WI */
2059         break;
2060     case 0xf34: /* FPCCR */
2061         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2062             /* Not all bits here are banked. */
2063             uint32_t fpccr_s;
2064 
2065             if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2066                 /* Don't allow setting of bits not present in v7M */
2067                 value &= (R_V7M_FPCCR_LSPACT_MASK |
2068                           R_V7M_FPCCR_USER_MASK |
2069                           R_V7M_FPCCR_THREAD_MASK |
2070                           R_V7M_FPCCR_HFRDY_MASK |
2071                           R_V7M_FPCCR_MMRDY_MASK |
2072                           R_V7M_FPCCR_BFRDY_MASK |
2073                           R_V7M_FPCCR_MONRDY_MASK |
2074                           R_V7M_FPCCR_LSPEN_MASK |
2075                           R_V7M_FPCCR_ASPEN_MASK);
2076             }
2077             value &= ~R_V7M_FPCCR_RES0_MASK;
2078 
2079             if (!attrs.secure) {
2080                 /* Some non-banked bits are configurably writable by NS */
2081                 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
2082                 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
2083                     uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
2084                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
2085                 }
2086                 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
2087                     uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
2088                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
2089                 }
2090                 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2091                     uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2092                     uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2093                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2094                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2095                 }
2096                 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2097                 {
2098                     uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2099                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2100                 }
2101 
2102                 /*
2103                  * All other non-banked bits are RAZ/WI from NS; write
2104                  * just the banked bits to fpccr[M_REG_NS].
2105                  */
2106                 value &= R_V7M_FPCCR_BANKED_MASK;
2107                 cpu->env.v7m.fpccr[M_REG_NS] = value;
2108             } else {
2109                 fpccr_s = value;
2110             }
2111             cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2112         }
2113         break;
2114     case 0xf38: /* FPCAR */
2115         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2116             value &= ~7;
2117             cpu->env.v7m.fpcar[attrs.secure] = value;
2118         }
2119         break;
2120     case 0xf3c: /* FPDSCR */
2121         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2122             uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
2123             if (cpu_isar_feature(any_fp16, cpu)) {
2124                 mask |= FPCR_FZ16;
2125             }
2126             value &= mask;
2127             if (cpu_isar_feature(aa32_lob, cpu)) {
2128                 value |= 4 << FPCR_LTPSIZE_SHIFT;
2129             }
2130             cpu->env.v7m.fpdscr[attrs.secure] = value;
2131         }
2132         break;
2133     case 0xf50: /* ICIALLU */
2134     case 0xf58: /* ICIMVAU */
2135     case 0xf5c: /* DCIMVAC */
2136     case 0xf60: /* DCISW */
2137     case 0xf64: /* DCCMVAU */
2138     case 0xf68: /* DCCMVAC */
2139     case 0xf6c: /* DCCSW */
2140     case 0xf70: /* DCCIMVAC */
2141     case 0xf74: /* DCCISW */
2142     case 0xf78: /* BPIALL */
2143         /* Cache and branch predictor maintenance: for QEMU these always NOP */
2144         break;
2145     default:
2146     bad_offset:
2147         qemu_log_mask(LOG_GUEST_ERROR,
2148                       "NVIC: Bad write offset 0x%x\n", offset);
2149     }
2150 }
2151 
2152 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2153 {
2154     /* Return true if unprivileged access to this register is permitted. */
2155     switch (offset) {
2156     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2157         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2158          * controls access even though the CPU is in Secure state (I_QDKX).
2159          */
2160         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2161     default:
2162         /* All other user accesses cause a BusFault unconditionally */
2163         return false;
2164     }
2165 }
2166 
2167 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2168 {
2169     /* Behaviour for the SHPR register field for this exception:
2170      * return M_REG_NS to use the nonsecure vector (including for
2171      * non-banked exceptions), M_REG_S for the secure version of
2172      * a banked exception, and -1 if this field should RAZ/WI.
2173      */
2174     switch (exc) {
2175     case ARMV7M_EXCP_MEM:
2176     case ARMV7M_EXCP_USAGE:
2177     case ARMV7M_EXCP_SVC:
2178     case ARMV7M_EXCP_PENDSV:
2179     case ARMV7M_EXCP_SYSTICK:
2180         /* Banked exceptions */
2181         return attrs.secure;
2182     case ARMV7M_EXCP_BUS:
2183         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2184         if (!attrs.secure &&
2185             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2186             return -1;
2187         }
2188         return M_REG_NS;
2189     case ARMV7M_EXCP_SECURE:
2190         /* Not banked, RAZ/WI from nonsecure */
2191         if (!attrs.secure) {
2192             return -1;
2193         }
2194         return M_REG_NS;
2195     case ARMV7M_EXCP_DEBUG:
2196         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2197         return M_REG_NS;
2198     case 8 ... 10:
2199     case 13:
2200         /* RES0 */
2201         return -1;
2202     default:
2203         /* Not reachable due to decode of SHPR register addresses */
2204         g_assert_not_reached();
2205     }
2206 }
2207 
2208 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2209                                     uint64_t *data, unsigned size,
2210                                     MemTxAttrs attrs)
2211 {
2212     NVICState *s = (NVICState *)opaque;
2213     uint32_t offset = addr;
2214     unsigned i, startvec, end;
2215     uint32_t val;
2216 
2217     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2218         /* Generate BusFault for unprivileged accesses */
2219         return MEMTX_ERROR;
2220     }
2221 
2222     switch (offset) {
2223     /* reads of set and clear both return the status */
2224     case 0x100 ... 0x13f: /* NVIC Set enable */
2225         offset += 0x80;
2226         /* fall through */
2227     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2228         val = 0;
2229         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2230 
2231         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2232             if (s->vectors[startvec + i].enabled &&
2233                 (attrs.secure || s->itns[startvec + i])) {
2234                 val |= (1 << i);
2235             }
2236         }
2237         break;
2238     case 0x200 ... 0x23f: /* NVIC Set pend */
2239         offset += 0x80;
2240         /* fall through */
2241     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2242         val = 0;
2243         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2244         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2245             if (s->vectors[startvec + i].pending &&
2246                 (attrs.secure || s->itns[startvec + i])) {
2247                 val |= (1 << i);
2248             }
2249         }
2250         break;
2251     case 0x300 ... 0x33f: /* NVIC Active */
2252         val = 0;
2253 
2254         if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2255             break;
2256         }
2257 
2258         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2259 
2260         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2261             if (s->vectors[startvec + i].active &&
2262                 (attrs.secure || s->itns[startvec + i])) {
2263                 val |= (1 << i);
2264             }
2265         }
2266         break;
2267     case 0x400 ... 0x5ef: /* NVIC Priority */
2268         val = 0;
2269         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2270 
2271         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2272             if (attrs.secure || s->itns[startvec + i]) {
2273                 val |= s->vectors[startvec + i].prio << (8 * i);
2274             }
2275         }
2276         break;
2277     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2278         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2279             val = 0;
2280             break;
2281         }
2282         /* fall through */
2283     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2284         val = 0;
2285         for (i = 0; i < size; i++) {
2286             unsigned hdlidx = (offset - 0xd14) + i;
2287             int sbank = shpr_bank(s, hdlidx, attrs);
2288 
2289             if (sbank < 0) {
2290                 continue;
2291             }
2292             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2293         }
2294         break;
2295     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2296         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2297             val = 0;
2298             break;
2299         };
2300         /*
2301          * The BFSR bits [15:8] are shared between security states
2302          * and we store them in the NS copy. They are RAZ/WI for
2303          * NS code if AIRCR.BFHFNMINS is 0.
2304          */
2305         val = s->cpu->env.v7m.cfsr[attrs.secure];
2306         if (!attrs.secure &&
2307             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2308             val &= ~R_V7M_CFSR_BFSR_MASK;
2309         } else {
2310             val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2311         }
2312         val = extract32(val, (offset - 0xd28) * 8, size * 8);
2313         break;
2314     case 0xfe0 ... 0xfff: /* ID.  */
2315         if (offset & 3) {
2316             val = 0;
2317         } else {
2318             val = nvic_id[(offset - 0xfe0) >> 2];
2319         }
2320         break;
2321     default:
2322         if (size == 4) {
2323             val = nvic_readl(s, offset, attrs);
2324         } else {
2325             qemu_log_mask(LOG_GUEST_ERROR,
2326                           "NVIC: Bad read of size %d at offset 0x%x\n",
2327                           size, offset);
2328             val = 0;
2329         }
2330     }
2331 
2332     trace_nvic_sysreg_read(addr, val, size);
2333     *data = val;
2334     return MEMTX_OK;
2335 }
2336 
2337 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2338                                      uint64_t value, unsigned size,
2339                                      MemTxAttrs attrs)
2340 {
2341     NVICState *s = (NVICState *)opaque;
2342     uint32_t offset = addr;
2343     unsigned i, startvec, end;
2344     unsigned setval = 0;
2345 
2346     trace_nvic_sysreg_write(addr, value, size);
2347 
2348     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2349         /* Generate BusFault for unprivileged accesses */
2350         return MEMTX_ERROR;
2351     }
2352 
2353     switch (offset) {
2354     case 0x100 ... 0x13f: /* NVIC Set enable */
2355         offset += 0x80;
2356         setval = 1;
2357         /* fall through */
2358     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2359         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2360 
2361         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2362             if (value & (1 << i) &&
2363                 (attrs.secure || s->itns[startvec + i])) {
2364                 s->vectors[startvec + i].enabled = setval;
2365             }
2366         }
2367         nvic_irq_update(s);
2368         goto exit_ok;
2369     case 0x200 ... 0x23f: /* NVIC Set pend */
2370         /* the special logic in armv7m_nvic_set_pending()
2371          * is not needed since IRQs are never escalated
2372          */
2373         offset += 0x80;
2374         setval = 1;
2375         /* fall through */
2376     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2377         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2378 
2379         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2380             /*
2381              * Note that if the input line is still held high and the interrupt
2382              * is not active then rule R_CVJS requires that the Pending state
2383              * remains set; in that case we mustn't let it be cleared.
2384              */
2385             if (value & (1 << i) &&
2386                 (attrs.secure || s->itns[startvec + i]) &&
2387                 !(setval == 0 && s->vectors[startvec + i].level &&
2388                   !s->vectors[startvec + i].active)) {
2389                 s->vectors[startvec + i].pending = setval;
2390             }
2391         }
2392         nvic_irq_update(s);
2393         goto exit_ok;
2394     case 0x300 ... 0x33f: /* NVIC Active */
2395         goto exit_ok; /* R/O */
2396     case 0x400 ... 0x5ef: /* NVIC Priority */
2397         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2398 
2399         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2400             if (attrs.secure || s->itns[startvec + i]) {
2401                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2402             }
2403         }
2404         nvic_irq_update(s);
2405         goto exit_ok;
2406     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2407         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2408             goto exit_ok;
2409         }
2410         /* fall through */
2411     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2412         for (i = 0; i < size; i++) {
2413             unsigned hdlidx = (offset - 0xd14) + i;
2414             int newprio = extract32(value, i * 8, 8);
2415             int sbank = shpr_bank(s, hdlidx, attrs);
2416 
2417             if (sbank < 0) {
2418                 continue;
2419             }
2420             set_prio(s, hdlidx, sbank, newprio);
2421         }
2422         nvic_irq_update(s);
2423         goto exit_ok;
2424     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2425         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2426             goto exit_ok;
2427         }
2428         /* All bits are W1C, so construct 32 bit value with 0s in
2429          * the parts not written by the access size
2430          */
2431         value <<= ((offset - 0xd28) * 8);
2432 
2433         if (!attrs.secure &&
2434             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2435             /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2436             value &= ~R_V7M_CFSR_BFSR_MASK;
2437         }
2438 
2439         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2440         if (attrs.secure) {
2441             /* The BFSR bits [15:8] are shared between security states
2442              * and we store them in the NS copy.
2443              */
2444             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2445         }
2446         goto exit_ok;
2447     }
2448     if (size == 4) {
2449         nvic_writel(s, offset, value, attrs);
2450         goto exit_ok;
2451     }
2452     qemu_log_mask(LOG_GUEST_ERROR,
2453                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2454     /* This is UNPREDICTABLE; treat as RAZ/WI */
2455 
2456  exit_ok:
2457     /* Ensure any changes made are reflected in the cached hflags.  */
2458     arm_rebuild_hflags(&s->cpu->env);
2459     return MEMTX_OK;
2460 }
2461 
2462 static const MemoryRegionOps nvic_sysreg_ops = {
2463     .read_with_attrs = nvic_sysreg_read,
2464     .write_with_attrs = nvic_sysreg_write,
2465     .endianness = DEVICE_NATIVE_ENDIAN,
2466 };
2467 
2468 static int nvic_post_load(void *opaque, int version_id)
2469 {
2470     NVICState *s = opaque;
2471     unsigned i;
2472     int resetprio;
2473 
2474     /* Check for out of range priority settings */
2475     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2476 
2477     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2478         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2479         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2480         return 1;
2481     }
2482     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2483         if (s->vectors[i].prio & ~0xff) {
2484             return 1;
2485         }
2486     }
2487 
2488     nvic_recompute_state(s);
2489 
2490     return 0;
2491 }
2492 
2493 static const VMStateDescription vmstate_VecInfo = {
2494     .name = "armv7m_nvic_info",
2495     .version_id = 1,
2496     .minimum_version_id = 1,
2497     .fields = (VMStateField[]) {
2498         VMSTATE_INT16(prio, VecInfo),
2499         VMSTATE_UINT8(enabled, VecInfo),
2500         VMSTATE_UINT8(pending, VecInfo),
2501         VMSTATE_UINT8(active, VecInfo),
2502         VMSTATE_UINT8(level, VecInfo),
2503         VMSTATE_END_OF_LIST()
2504     }
2505 };
2506 
2507 static bool nvic_security_needed(void *opaque)
2508 {
2509     NVICState *s = opaque;
2510 
2511     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2512 }
2513 
2514 static int nvic_security_post_load(void *opaque, int version_id)
2515 {
2516     NVICState *s = opaque;
2517     int i;
2518 
2519     /* Check for out of range priority settings */
2520     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2521         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2522         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2523          * if the CPU state has been migrated yet; a mismatch won't
2524          * cause the emulation to blow up, though.
2525          */
2526         return 1;
2527     }
2528     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2529         if (s->sec_vectors[i].prio & ~0xff) {
2530             return 1;
2531         }
2532     }
2533     return 0;
2534 }
2535 
2536 static const VMStateDescription vmstate_nvic_security = {
2537     .name = "armv7m_nvic/m-security",
2538     .version_id = 1,
2539     .minimum_version_id = 1,
2540     .needed = nvic_security_needed,
2541     .post_load = &nvic_security_post_load,
2542     .fields = (VMStateField[]) {
2543         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2544                              vmstate_VecInfo, VecInfo),
2545         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2546         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2547         VMSTATE_END_OF_LIST()
2548     }
2549 };
2550 
2551 static const VMStateDescription vmstate_nvic = {
2552     .name = "armv7m_nvic",
2553     .version_id = 4,
2554     .minimum_version_id = 4,
2555     .post_load = &nvic_post_load,
2556     .fields = (VMStateField[]) {
2557         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2558                              vmstate_VecInfo, VecInfo),
2559         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2560         VMSTATE_END_OF_LIST()
2561     },
2562     .subsections = (const VMStateDescription*[]) {
2563         &vmstate_nvic_security,
2564         NULL
2565     }
2566 };
2567 
2568 static Property props_nvic[] = {
2569     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2570     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2571     DEFINE_PROP_END_OF_LIST()
2572 };
2573 
2574 static void armv7m_nvic_reset(DeviceState *dev)
2575 {
2576     int resetprio;
2577     NVICState *s = NVIC(dev);
2578 
2579     memset(s->vectors, 0, sizeof(s->vectors));
2580     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2581     s->prigroup[M_REG_NS] = 0;
2582     s->prigroup[M_REG_S] = 0;
2583 
2584     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2585     /* MEM, BUS, and USAGE are enabled through
2586      * the System Handler Control register
2587      */
2588     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2589     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2590     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2591 
2592     /* DebugMonitor is enabled via DEMCR.MON_EN */
2593     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2594 
2595     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2596     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2597     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2598     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2599 
2600     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2601         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2602         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2603         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2604         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2605 
2606         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2607         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2608         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2609         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2610     } else {
2611         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2612     }
2613 
2614     /* Strictly speaking the reset handler should be enabled.
2615      * However, we don't simulate soft resets through the NVIC,
2616      * and the reset vector should never be pended.
2617      * So we leave it disabled to catch logic errors.
2618      */
2619 
2620     s->exception_prio = NVIC_NOEXC_PRIO;
2621     s->vectpending = 0;
2622     s->vectpending_is_s_banked = false;
2623     s->vectpending_prio = NVIC_NOEXC_PRIO;
2624 
2625     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2626         memset(s->itns, 0, sizeof(s->itns));
2627     } else {
2628         /* This state is constant and not guest accessible in a non-security
2629          * NVIC; we set the bits to true to avoid having to do a feature
2630          * bit check in the NVIC enable/pend/etc register accessors.
2631          */
2632         int i;
2633 
2634         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2635             s->itns[i] = true;
2636         }
2637     }
2638 
2639     /*
2640      * We updated state that affects the CPU's MMUidx and thus its hflags;
2641      * and we can't guarantee that we run before the CPU reset function.
2642      */
2643     arm_rebuild_hflags(&s->cpu->env);
2644 }
2645 
2646 static void nvic_systick_trigger(void *opaque, int n, int level)
2647 {
2648     NVICState *s = opaque;
2649 
2650     if (level) {
2651         /* SysTick just asked us to pend its exception.
2652          * (This is different from an external interrupt line's
2653          * behaviour.)
2654          * n == 0 : NonSecure systick
2655          * n == 1 : Secure systick
2656          */
2657         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2658     }
2659 }
2660 
2661 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2662 {
2663     NVICState *s = NVIC(dev);
2664 
2665     /* The armv7m container object will have set our CPU pointer */
2666     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2667         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2668         return;
2669     }
2670 
2671     if (s->num_irq > NVIC_MAX_IRQ) {
2672         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2673         return;
2674     }
2675 
2676     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2677 
2678     /* include space for internal exception vectors */
2679     s->num_irq += NVIC_FIRST_IRQ;
2680 
2681     s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2682 
2683     /*
2684      * This device provides a single memory region which covers the
2685      * sysreg/NVIC registers from 0xE000E000 .. 0xE000EFFF, with the
2686      * exception of the systick timer registers 0xE000E010 .. 0xE000E0FF.
2687      */
2688     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2689                           "nvic_sysregs", 0x1000);
2690     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->sysregmem);
2691 }
2692 
2693 static void armv7m_nvic_instance_init(Object *obj)
2694 {
2695     DeviceState *dev = DEVICE(obj);
2696     NVICState *nvic = NVIC(obj);
2697     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2698 
2699     sysbus_init_irq(sbd, &nvic->excpout);
2700     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2701     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2702                             M_REG_NUM_BANKS);
2703     qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2704 }
2705 
2706 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2707 {
2708     DeviceClass *dc = DEVICE_CLASS(klass);
2709 
2710     dc->vmsd  = &vmstate_nvic;
2711     device_class_set_props(dc, props_nvic);
2712     dc->reset = armv7m_nvic_reset;
2713     dc->realize = armv7m_nvic_realize;
2714 }
2715 
2716 static const TypeInfo armv7m_nvic_info = {
2717     .name          = TYPE_NVIC,
2718     .parent        = TYPE_SYS_BUS_DEVICE,
2719     .instance_init = armv7m_nvic_instance_init,
2720     .instance_size = sizeof(NVICState),
2721     .class_init    = armv7m_nvic_class_init,
2722     .class_size    = sizeof(SysBusDeviceClass),
2723 };
2724 
2725 static void armv7m_nvic_register_types(void)
2726 {
2727     type_register_static(&armv7m_nvic_info);
2728 }
2729 
2730 type_init(armv7m_nvic_register_types)
2731