xref: /qemu/hw/net/cadence_gem.c (revision 01f9175d)
1 /*
2  * QEMU Cadence GEM emulation
3  *
4  * Copyright (c) 2011 Xilinx, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
27 
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/registerfields.h"
32 #include "migration/vmstate.h"
33 #include "qapi/error.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "sysemu/dma.h"
37 #include "net/checksum.h"
38 #include "net/eth.h"
39 
40 #define CADENCE_GEM_ERR_DEBUG 0
41 #define DB_PRINT(...) do {\
42     if (CADENCE_GEM_ERR_DEBUG) {   \
43         qemu_log(": %s: ", __func__); \
44         qemu_log(__VA_ARGS__); \
45     } \
46 } while (0)
47 
48 REG32(NWCTRL, 0x0) /* Network Control reg */
49     FIELD(NWCTRL, LOOPBACK , 0, 1)
50     FIELD(NWCTRL, LOOPBACK_LOCAL , 1, 1)
51     FIELD(NWCTRL, ENABLE_RECEIVE, 2, 1)
52     FIELD(NWCTRL, ENABLE_TRANSMIT, 3, 1)
53     FIELD(NWCTRL, MAN_PORT_EN , 4, 1)
54     FIELD(NWCTRL, CLEAR_ALL_STATS_REGS , 5, 1)
55     FIELD(NWCTRL, INC_ALL_STATS_REGS, 6, 1)
56     FIELD(NWCTRL, STATS_WRITE_EN, 7, 1)
57     FIELD(NWCTRL, BACK_PRESSURE, 8, 1)
58     FIELD(NWCTRL, TRANSMIT_START , 9, 1)
59     FIELD(NWCTRL, TRANSMIT_HALT, 10, 1)
60     FIELD(NWCTRL, TX_PAUSE_FRAME_RE, 11, 1)
61     FIELD(NWCTRL, TX_PAUSE_FRAME_ZE, 12, 1)
62     FIELD(NWCTRL, STATS_TAKE_SNAP, 13, 1)
63     FIELD(NWCTRL, STATS_READ_SNAP, 14, 1)
64     FIELD(NWCTRL, STORE_RX_TS, 15, 1)
65     FIELD(NWCTRL, PFC_ENABLE, 16, 1)
66     FIELD(NWCTRL, PFC_PRIO_BASED, 17, 1)
67     FIELD(NWCTRL, FLUSH_RX_PKT_PCLK , 18, 1)
68     FIELD(NWCTRL, TX_LPI_EN, 19, 1)
69     FIELD(NWCTRL, PTP_UNICAST_ENA, 20, 1)
70     FIELD(NWCTRL, ALT_SGMII_MODE, 21, 1)
71     FIELD(NWCTRL, STORE_UDP_OFFSET, 22, 1)
72     FIELD(NWCTRL, EXT_TSU_PORT_EN, 23, 1)
73     FIELD(NWCTRL, ONE_STEP_SYNC_MO, 24, 1)
74     FIELD(NWCTRL, PFC_CTRL , 25, 1)
75     FIELD(NWCTRL, EXT_RXQ_SEL_EN , 26, 1)
76     FIELD(NWCTRL, OSS_CORRECTION_FIELD, 27, 1)
77     FIELD(NWCTRL, SEL_MII_ON_RGMII, 28, 1)
78     FIELD(NWCTRL, TWO_PT_FIVE_GIG, 29, 1)
79     FIELD(NWCTRL, IFG_EATS_QAV_CREDIT, 30, 1)
80 
81 REG32(NWCFG, 0x4) /* Network Config reg */
82     FIELD(NWCFG, SPEED, 0, 1)
83     FIELD(NWCFG, FULL_DUPLEX, 1, 1)
84     FIELD(NWCFG, DISCARD_NON_VLAN_FRAMES, 2, 1)
85     FIELD(NWCFG, JUMBO_FRAMES, 3, 1)
86     FIELD(NWCFG, PROMISC, 4, 1)
87     FIELD(NWCFG, NO_BROADCAST, 5, 1)
88     FIELD(NWCFG, MULTICAST_HASH_EN, 6, 1)
89     FIELD(NWCFG, UNICAST_HASH_EN, 7, 1)
90     FIELD(NWCFG, RECV_1536_BYTE_FRAMES, 8, 1)
91     FIELD(NWCFG, EXTERNAL_ADDR_MATCH_EN, 9, 1)
92     FIELD(NWCFG, GIGABIT_MODE_ENABLE, 10, 1)
93     FIELD(NWCFG, PCS_SELECT, 11, 1)
94     FIELD(NWCFG, RETRY_TEST, 12, 1)
95     FIELD(NWCFG, PAUSE_ENABLE, 13, 1)
96     FIELD(NWCFG, RECV_BUF_OFFSET, 14, 2)
97     FIELD(NWCFG, LEN_ERR_DISCARD, 16, 1)
98     FIELD(NWCFG, FCS_REMOVE, 17, 1)
99     FIELD(NWCFG, MDC_CLOCK_DIV, 18, 3)
100     FIELD(NWCFG, DATA_BUS_WIDTH, 21, 2)
101     FIELD(NWCFG, DISABLE_COPY_PAUSE_FRAMES, 23, 1)
102     FIELD(NWCFG, RECV_CSUM_OFFLOAD_EN, 24, 1)
103     FIELD(NWCFG, EN_HALF_DUPLEX_RX, 25, 1)
104     FIELD(NWCFG, IGNORE_RX_FCS, 26, 1)
105     FIELD(NWCFG, SGMII_MODE_ENABLE, 27, 1)
106     FIELD(NWCFG, IPG_STRETCH_ENABLE, 28, 1)
107     FIELD(NWCFG, NSP_ACCEPT, 29, 1)
108     FIELD(NWCFG, IGNORE_IPG_RX_ER, 30, 1)
109     FIELD(NWCFG, UNI_DIRECTION_ENABLE, 31, 1)
110 
111 REG32(NWSTATUS, 0x8) /* Network Status reg */
112 REG32(USERIO, 0xc) /* User IO reg */
113 
114 REG32(DMACFG, 0x10) /* DMA Control reg */
115     FIELD(DMACFG, SEND_BCAST_TO_ALL_QS, 31, 1)
116     FIELD(DMACFG, DMA_ADDR_BUS_WIDTH, 30, 1)
117     FIELD(DMACFG, TX_BD_EXT_MODE_EN , 29, 1)
118     FIELD(DMACFG, RX_BD_EXT_MODE_EN , 28, 1)
119     FIELD(DMACFG, FORCE_MAX_AMBA_BURST_TX, 26, 1)
120     FIELD(DMACFG, FORCE_MAX_AMBA_BURST_RX, 25, 1)
121     FIELD(DMACFG, FORCE_DISCARD_ON_ERR, 24, 1)
122     FIELD(DMACFG, RX_BUF_SIZE, 16, 8)
123     FIELD(DMACFG, CRC_ERROR_REPORT, 13, 1)
124     FIELD(DMACFG, INF_LAST_DBUF_SIZE_EN, 12, 1)
125     FIELD(DMACFG, TX_PBUF_CSUM_OFFLOAD, 11, 1)
126     FIELD(DMACFG, TX_PBUF_SIZE, 10, 1)
127     FIELD(DMACFG, RX_PBUF_SIZE, 8, 2)
128     FIELD(DMACFG, ENDIAN_SWAP_PACKET, 7, 1)
129     FIELD(DMACFG, ENDIAN_SWAP_MGNT, 6, 1)
130     FIELD(DMACFG, HDR_DATA_SPLIT_EN, 5, 1)
131     FIELD(DMACFG, AMBA_BURST_LEN , 0, 5)
132 #define GEM_DMACFG_RBUFSZ_MUL  64         /* DMA RX Buffer Size multiplier */
133 
134 REG32(TXSTATUS, 0x14) /* TX Status reg */
135 REG32(RXQBASE, 0x18) /* RX Q Base address reg */
136 REG32(TXQBASE, 0x1c) /* TX Q Base address reg */
137 REG32(RXSTATUS, 0x20) /* RX Status reg */
138 REG32(ISR, 0x24) /* Interrupt Status reg */
139 REG32(IER, 0x28) /* Interrupt Enable reg */
140 REG32(IDR, 0x2c) /* Interrupt Disable reg */
141 REG32(IMR, 0x30) /* Interrupt Mask reg */
142 REG32(PHYMNTNC, 0x34) /* Phy Maintenance reg */
143 REG32(RXPAUSE, 0x38) /* RX Pause Time reg */
144 REG32(TXPAUSE, 0x3c) /* TX Pause Time reg */
145 REG32(TXPARTIALSF, 0x40) /* TX Partial Store and Forward */
146 REG32(RXPARTIALSF, 0x44) /* RX Partial Store and Forward */
147 REG32(JUMBO_MAX_LEN, 0x48) /* Max Jumbo Frame Size */
148 REG32(HASHLO, 0x80) /* Hash Low address reg */
149 REG32(HASHHI, 0x84) /* Hash High address reg */
150 REG32(SPADDR1LO, 0x88) /* Specific addr 1 low reg */
151 REG32(SPADDR1HI, 0x8c) /* Specific addr 1 high reg */
152 REG32(SPADDR2LO, 0x90) /* Specific addr 2 low reg */
153 REG32(SPADDR2HI, 0x94) /* Specific addr 2 high reg */
154 REG32(SPADDR3LO, 0x98) /* Specific addr 3 low reg */
155 REG32(SPADDR3HI, 0x9c) /* Specific addr 3 high reg */
156 REG32(SPADDR4LO, 0xa0) /* Specific addr 4 low reg */
157 REG32(SPADDR4HI, 0xa4) /* Specific addr 4 high reg */
158 REG32(TIDMATCH1, 0xa8) /* Type ID1 Match reg */
159 REG32(TIDMATCH2, 0xac) /* Type ID2 Match reg */
160 REG32(TIDMATCH3, 0xb0) /* Type ID3 Match reg */
161 REG32(TIDMATCH4, 0xb4) /* Type ID4 Match reg */
162 REG32(WOLAN, 0xb8) /* Wake on LAN reg */
163 REG32(IPGSTRETCH, 0xbc) /* IPG Stretch reg */
164 REG32(SVLAN, 0xc0) /* Stacked VLAN reg */
165 REG32(MODID, 0xfc) /* Module ID reg */
166 REG32(OCTTXLO, 0x100) /* Octects transmitted Low reg */
167 REG32(OCTTXHI, 0x104) /* Octects transmitted High reg */
168 REG32(TXCNT, 0x108) /* Error-free Frames transmitted */
169 REG32(TXBCNT, 0x10c) /* Error-free Broadcast Frames */
170 REG32(TXMCNT, 0x110) /* Error-free Multicast Frame */
171 REG32(TXPAUSECNT, 0x114) /* Pause Frames Transmitted */
172 REG32(TX64CNT, 0x118) /* Error-free 64 TX */
173 REG32(TX65CNT, 0x11c) /* Error-free 65-127 TX */
174 REG32(TX128CNT, 0x120) /* Error-free 128-255 TX */
175 REG32(TX256CNT, 0x124) /* Error-free 256-511 */
176 REG32(TX512CNT, 0x128) /* Error-free 512-1023 TX */
177 REG32(TX1024CNT, 0x12c) /* Error-free 1024-1518 TX */
178 REG32(TX1519CNT, 0x130) /* Error-free larger than 1519 TX */
179 REG32(TXURUNCNT, 0x134) /* TX under run error counter */
180 REG32(SINGLECOLLCNT, 0x138) /* Single Collision Frames */
181 REG32(MULTCOLLCNT, 0x13c) /* Multiple Collision Frames */
182 REG32(EXCESSCOLLCNT, 0x140) /* Excessive Collision Frames */
183 REG32(LATECOLLCNT, 0x144) /* Late Collision Frames */
184 REG32(DEFERTXCNT, 0x148) /* Deferred Transmission Frames */
185 REG32(CSENSECNT, 0x14c) /* Carrier Sense Error Counter */
186 REG32(OCTRXLO, 0x150) /* Octects Received register Low */
187 REG32(OCTRXHI, 0x154) /* Octects Received register High */
188 REG32(RXCNT, 0x158) /* Error-free Frames Received */
189 REG32(RXBROADCNT, 0x15c) /* Error-free Broadcast Frames RX */
190 REG32(RXMULTICNT, 0x160) /* Error-free Multicast Frames RX */
191 REG32(RXPAUSECNT, 0x164) /* Pause Frames Received Counter */
192 REG32(RX64CNT, 0x168) /* Error-free 64 byte Frames RX */
193 REG32(RX65CNT, 0x16c) /* Error-free 65-127B Frames RX */
194 REG32(RX128CNT, 0x170) /* Error-free 128-255B Frames RX */
195 REG32(RX256CNT, 0x174) /* Error-free 256-512B Frames RX */
196 REG32(RX512CNT, 0x178) /* Error-free 512-1023B Frames RX */
197 REG32(RX1024CNT, 0x17c) /* Error-free 1024-1518B Frames RX */
198 REG32(RX1519CNT, 0x180) /* Error-free 1519-max Frames RX */
199 REG32(RXUNDERCNT, 0x184) /* Undersize Frames Received */
200 REG32(RXOVERCNT, 0x188) /* Oversize Frames Received */
201 REG32(RXJABCNT, 0x18c) /* Jabbers Received Counter */
202 REG32(RXFCSCNT, 0x190) /* Frame Check seq. Error Counter */
203 REG32(RXLENERRCNT, 0x194) /* Length Field Error Counter */
204 REG32(RXSYMERRCNT, 0x198) /* Symbol Error Counter */
205 REG32(RXALIGNERRCNT, 0x19c) /* Alignment Error Counter */
206 REG32(RXRSCERRCNT, 0x1a0) /* Receive Resource Error Counter */
207 REG32(RXORUNCNT, 0x1a4) /* Receive Overrun Counter */
208 REG32(RXIPCSERRCNT, 0x1a8) /* IP header Checksum Err Counter */
209 REG32(RXTCPCCNT, 0x1ac) /* TCP Checksum Error Counter */
210 REG32(RXUDPCCNT, 0x1b0) /* UDP Checksum Error Counter */
211 
212 REG32(1588S, 0x1d0) /* 1588 Timer Seconds */
213 REG32(1588NS, 0x1d4) /* 1588 Timer Nanoseconds */
214 REG32(1588ADJ, 0x1d8) /* 1588 Timer Adjust */
215 REG32(1588INC, 0x1dc) /* 1588 Timer Increment */
216 REG32(PTPETXS, 0x1e0) /* PTP Event Frame Transmitted (s) */
217 REG32(PTPETXNS, 0x1e4) /* PTP Event Frame Transmitted (ns) */
218 REG32(PTPERXS, 0x1e8) /* PTP Event Frame Received (s) */
219 REG32(PTPERXNS, 0x1ec) /* PTP Event Frame Received (ns) */
220 REG32(PTPPTXS, 0x1e0) /* PTP Peer Frame Transmitted (s) */
221 REG32(PTPPTXNS, 0x1e4) /* PTP Peer Frame Transmitted (ns) */
222 REG32(PTPPRXS, 0x1e8) /* PTP Peer Frame Received (s) */
223 REG32(PTPPRXNS, 0x1ec) /* PTP Peer Frame Received (ns) */
224 
225 /* Design Configuration Registers */
226 REG32(DESCONF, 0x280)
227 REG32(DESCONF2, 0x284)
228 REG32(DESCONF3, 0x288)
229 REG32(DESCONF4, 0x28c)
230 REG32(DESCONF5, 0x290)
231 REG32(DESCONF6, 0x294)
232 #define GEM_DESCONF6_64B_MASK (1U << 23)
233 REG32(DESCONF7, 0x298)
234 
235 REG32(INT_Q1_STATUS, 0x400)
236 REG32(INT_Q1_MASK, 0x640)
237 
238 REG32(TRANSMIT_Q1_PTR, 0x440)
239 REG32(TRANSMIT_Q7_PTR, 0x458)
240 
241 REG32(RECEIVE_Q1_PTR, 0x480)
242 REG32(RECEIVE_Q7_PTR, 0x498)
243 
244 REG32(TBQPH, 0x4c8)
245 REG32(RBQPH, 0x4d4)
246 
247 REG32(INT_Q1_ENABLE, 0x600)
248 REG32(INT_Q7_ENABLE, 0x618)
249 
250 REG32(INT_Q1_DISABLE, 0x620)
251 REG32(INT_Q7_DISABLE, 0x638)
252 
253 REG32(SCREENING_TYPE1_REG0, 0x500)
254     FIELD(SCREENING_TYPE1_REG0, QUEUE_NUM, 0, 4)
255     FIELD(SCREENING_TYPE1_REG0, DSTC_MATCH, 4, 8)
256     FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH, 12, 16)
257     FIELD(SCREENING_TYPE1_REG0, DSTC_ENABLE, 28, 1)
258     FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN, 29, 1)
259     FIELD(SCREENING_TYPE1_REG0, DROP_ON_MATCH, 30, 1)
260 
261 REG32(SCREENING_TYPE2_REG0, 0x540)
262     FIELD(SCREENING_TYPE2_REG0, QUEUE_NUM, 0, 4)
263     FIELD(SCREENING_TYPE2_REG0, VLAN_PRIORITY, 4, 3)
264     FIELD(SCREENING_TYPE2_REG0, VLAN_ENABLE, 8, 1)
265     FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_REG_INDEX, 9, 3)
266     FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE, 12, 1)
267     FIELD(SCREENING_TYPE2_REG0, COMPARE_A, 13, 5)
268     FIELD(SCREENING_TYPE2_REG0, COMPARE_A_ENABLE, 18, 1)
269     FIELD(SCREENING_TYPE2_REG0, COMPARE_B, 19, 5)
270     FIELD(SCREENING_TYPE2_REG0, COMPARE_B_ENABLE, 24, 1)
271     FIELD(SCREENING_TYPE2_REG0, COMPARE_C, 25, 5)
272     FIELD(SCREENING_TYPE2_REG0, COMPARE_C_ENABLE, 30, 1)
273     FIELD(SCREENING_TYPE2_REG0, DROP_ON_MATCH, 31, 1)
274 
275 REG32(SCREENING_TYPE2_ETHERTYPE_REG0, 0x6e0)
276 
277 REG32(TYPE2_COMPARE_0_WORD_0, 0x700)
278     FIELD(TYPE2_COMPARE_0_WORD_0, MASK_VALUE, 0, 16)
279     FIELD(TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE, 16, 16)
280 
281 REG32(TYPE2_COMPARE_0_WORD_1, 0x704)
282     FIELD(TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE, 0, 7)
283     FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET, 7, 2)
284     FIELD(TYPE2_COMPARE_0_WORD_1, DISABLE_MASK, 9, 1)
285     FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_VLAN_ID, 10, 1)
286 
287 /*****************************************/
288 
289 #define GEM_TXSTATUS_TXCMPL    0x00000020 /* Transmit Complete */
290 #define GEM_TXSTATUS_USED      0x00000001 /* sw owned descriptor encountered */
291 
292 #define GEM_RXSTATUS_FRMRCVD   0x00000002 /* Frame received */
293 #define GEM_RXSTATUS_NOBUF     0x00000001 /* Buffer unavailable */
294 
295 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
296 #define GEM_INT_TXCMPL        0x00000080 /* Transmit Complete */
297 #define GEM_INT_AMBA_ERR      0x00000040
298 #define GEM_INT_TXUSED         0x00000008
299 #define GEM_INT_RXUSED         0x00000004
300 #define GEM_INT_RXCMPL        0x00000002
301 
302 #define GEM_PHYMNTNC_OP_R      0x20000000 /* read operation */
303 #define GEM_PHYMNTNC_OP_W      0x10000000 /* write operation */
304 #define GEM_PHYMNTNC_ADDR      0x0F800000 /* Address bits */
305 #define GEM_PHYMNTNC_ADDR_SHFT 23
306 #define GEM_PHYMNTNC_REG       0x007C0000 /* register bits */
307 #define GEM_PHYMNTNC_REG_SHIFT 18
308 
309 /* Marvell PHY definitions */
310 #define BOARD_PHY_ADDRESS    0 /* PHY address we will emulate a device at */
311 
312 #define PHY_REG_CONTROL      0
313 #define PHY_REG_STATUS       1
314 #define PHY_REG_PHYID1       2
315 #define PHY_REG_PHYID2       3
316 #define PHY_REG_ANEGADV      4
317 #define PHY_REG_LINKPABIL    5
318 #define PHY_REG_ANEGEXP      6
319 #define PHY_REG_NEXTP        7
320 #define PHY_REG_LINKPNEXTP   8
321 #define PHY_REG_100BTCTRL    9
322 #define PHY_REG_1000BTSTAT   10
323 #define PHY_REG_EXTSTAT      15
324 #define PHY_REG_PHYSPCFC_CTL 16
325 #define PHY_REG_PHYSPCFC_ST  17
326 #define PHY_REG_INT_EN       18
327 #define PHY_REG_INT_ST       19
328 #define PHY_REG_EXT_PHYSPCFC_CTL  20
329 #define PHY_REG_RXERR        21
330 #define PHY_REG_EACD         22
331 #define PHY_REG_LED          24
332 #define PHY_REG_LED_OVRD     25
333 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
334 #define PHY_REG_EXT_PHYSPCFC_ST   27
335 #define PHY_REG_CABLE_DIAG   28
336 
337 #define PHY_REG_CONTROL_RST       0x8000
338 #define PHY_REG_CONTROL_LOOP      0x4000
339 #define PHY_REG_CONTROL_ANEG      0x1000
340 #define PHY_REG_CONTROL_ANRESTART 0x0200
341 
342 #define PHY_REG_STATUS_LINK     0x0004
343 #define PHY_REG_STATUS_ANEGCMPL 0x0020
344 
345 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
346 #define PHY_REG_INT_ST_LINKC    0x0400
347 #define PHY_REG_INT_ST_ENERGY   0x0010
348 
349 /***********************************************************************/
350 #define GEM_RX_REJECT                   (-1)
351 #define GEM_RX_PROMISCUOUS_ACCEPT       (-2)
352 #define GEM_RX_BROADCAST_ACCEPT         (-3)
353 #define GEM_RX_MULTICAST_HASH_ACCEPT    (-4)
354 #define GEM_RX_UNICAST_HASH_ACCEPT      (-5)
355 
356 #define GEM_RX_SAR_ACCEPT               0
357 
358 /***********************************************************************/
359 
360 #define DESC_1_USED 0x80000000
361 #define DESC_1_LENGTH 0x00001FFF
362 
363 #define DESC_1_TX_WRAP 0x40000000
364 #define DESC_1_TX_LAST 0x00008000
365 
366 #define DESC_0_RX_WRAP 0x00000002
367 #define DESC_0_RX_OWNERSHIP 0x00000001
368 
369 #define R_DESC_1_RX_SAR_SHIFT           25
370 #define R_DESC_1_RX_SAR_LENGTH          2
371 #define R_DESC_1_RX_SAR_MATCH           (1 << 27)
372 #define R_DESC_1_RX_UNICAST_HASH        (1 << 29)
373 #define R_DESC_1_RX_MULTICAST_HASH      (1 << 30)
374 #define R_DESC_1_RX_BROADCAST           (1 << 31)
375 
376 #define DESC_1_RX_SOF 0x00004000
377 #define DESC_1_RX_EOF 0x00008000
378 
379 #define GEM_MODID_VALUE 0x00020118
380 
381 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
382 {
383     uint64_t ret = desc[0];
384 
385     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
386         ret |= (uint64_t)desc[2] << 32;
387     }
388     return ret;
389 }
390 
391 static inline unsigned tx_desc_get_used(uint32_t *desc)
392 {
393     return (desc[1] & DESC_1_USED) ? 1 : 0;
394 }
395 
396 static inline void tx_desc_set_used(uint32_t *desc)
397 {
398     desc[1] |= DESC_1_USED;
399 }
400 
401 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
402 {
403     return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
404 }
405 
406 static inline unsigned tx_desc_get_last(uint32_t *desc)
407 {
408     return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
409 }
410 
411 static inline unsigned tx_desc_get_length(uint32_t *desc)
412 {
413     return desc[1] & DESC_1_LENGTH;
414 }
415 
416 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
417 {
418     DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
419     DB_PRINT("bufaddr: 0x%08x\n", *desc);
420     DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
421     DB_PRINT("wrap:    %d\n", tx_desc_get_wrap(desc));
422     DB_PRINT("last:    %d\n", tx_desc_get_last(desc));
423     DB_PRINT("length:  %d\n", tx_desc_get_length(desc));
424 }
425 
426 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
427 {
428     uint64_t ret = desc[0] & ~0x3UL;
429 
430     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
431         ret |= (uint64_t)desc[2] << 32;
432     }
433     return ret;
434 }
435 
436 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
437 {
438     int ret = 2;
439 
440     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
441         ret += 2;
442     }
443     if (s->regs[R_DMACFG] & (rx_n_tx ? R_DMACFG_RX_BD_EXT_MODE_EN_MASK
444                                      : R_DMACFG_TX_BD_EXT_MODE_EN_MASK)) {
445         ret += 2;
446     }
447 
448     assert(ret <= DESC_MAX_NUM_WORDS);
449     return ret;
450 }
451 
452 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
453 {
454     return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
455 }
456 
457 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
458 {
459     return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
460 }
461 
462 static inline void rx_desc_set_ownership(uint32_t *desc)
463 {
464     desc[0] |= DESC_0_RX_OWNERSHIP;
465 }
466 
467 static inline void rx_desc_set_sof(uint32_t *desc)
468 {
469     desc[1] |= DESC_1_RX_SOF;
470 }
471 
472 static inline void rx_desc_clear_control(uint32_t *desc)
473 {
474     desc[1]  = 0;
475 }
476 
477 static inline void rx_desc_set_eof(uint32_t *desc)
478 {
479     desc[1] |= DESC_1_RX_EOF;
480 }
481 
482 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
483 {
484     desc[1] &= ~DESC_1_LENGTH;
485     desc[1] |= len;
486 }
487 
488 static inline void rx_desc_set_broadcast(uint32_t *desc)
489 {
490     desc[1] |= R_DESC_1_RX_BROADCAST;
491 }
492 
493 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
494 {
495     desc[1] |= R_DESC_1_RX_UNICAST_HASH;
496 }
497 
498 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
499 {
500     desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
501 }
502 
503 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
504 {
505     desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
506                         sar_idx);
507     desc[1] |= R_DESC_1_RX_SAR_MATCH;
508 }
509 
510 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
511 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
512 
513 static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx)
514 {
515     uint32_t size;
516     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, JUMBO_FRAMES)) {
517         size = s->regs[R_JUMBO_MAX_LEN];
518         if (size > s->jumbo_max_len) {
519             size = s->jumbo_max_len;
520             qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be"
521                 " greater than 0x%" PRIx32 "\n", s->jumbo_max_len);
522         }
523     } else if (tx) {
524         size = 1518;
525     } else {
526         size = FIELD_EX32(s->regs[R_NWCFG],
527                           NWCFG, RECV_1536_BYTE_FRAMES) ? 1538 : 1518;
528     }
529     return size;
530 }
531 
532 static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag)
533 {
534     if (q == 0) {
535         s->regs[R_ISR] |= flag & ~(s->regs[R_IMR]);
536     } else {
537         s->regs[R_INT_Q1_STATUS + q - 1] |= flag &
538                                       ~(s->regs[R_INT_Q1_MASK + q - 1]);
539     }
540 }
541 
542 /*
543  * gem_init_register_masks:
544  * One time initialization.
545  * Set masks to identify which register bits have magical clear properties
546  */
547 static void gem_init_register_masks(CadenceGEMState *s)
548 {
549     unsigned int i;
550     /* Mask of register bits which are read only */
551     memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
552     s->regs_ro[R_NWCTRL]   = 0xFFF80000;
553     s->regs_ro[R_NWSTATUS] = 0xFFFFFFFF;
554     s->regs_ro[R_DMACFG]   = 0x8E00F000;
555     s->regs_ro[R_TXSTATUS] = 0xFFFFFE08;
556     s->regs_ro[R_RXQBASE]  = 0x00000003;
557     s->regs_ro[R_TXQBASE]  = 0x00000003;
558     s->regs_ro[R_RXSTATUS] = 0xFFFFFFF0;
559     s->regs_ro[R_ISR]      = 0xFFFFFFFF;
560     s->regs_ro[R_IMR]      = 0xFFFFFFFF;
561     s->regs_ro[R_MODID]    = 0xFFFFFFFF;
562     for (i = 0; i < s->num_priority_queues; i++) {
563         s->regs_ro[R_INT_Q1_STATUS + i] = 0xFFFFFFFF;
564         s->regs_ro[R_INT_Q1_ENABLE + i] = 0xFFFFF319;
565         s->regs_ro[R_INT_Q1_DISABLE + i] = 0xFFFFF319;
566         s->regs_ro[R_INT_Q1_MASK + i] = 0xFFFFFFFF;
567     }
568 
569     /* Mask of register bits which are clear on read */
570     memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
571     s->regs_rtc[R_ISR]      = 0xFFFFFFFF;
572     for (i = 0; i < s->num_priority_queues; i++) {
573         s->regs_rtc[R_INT_Q1_STATUS + i] = 0x00000CE6;
574     }
575 
576     /* Mask of register bits which are write 1 to clear */
577     memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
578     s->regs_w1c[R_TXSTATUS] = 0x000001F7;
579     s->regs_w1c[R_RXSTATUS] = 0x0000000F;
580 
581     /* Mask of register bits which are write only */
582     memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
583     s->regs_wo[R_NWCTRL]   = 0x00073E60;
584     s->regs_wo[R_IER]      = 0x07FFFFFF;
585     s->regs_wo[R_IDR]      = 0x07FFFFFF;
586     for (i = 0; i < s->num_priority_queues; i++) {
587         s->regs_wo[R_INT_Q1_ENABLE + i] = 0x00000CE6;
588         s->regs_wo[R_INT_Q1_DISABLE + i] = 0x00000CE6;
589     }
590 }
591 
592 /*
593  * phy_update_link:
594  * Make the emulated PHY link state match the QEMU "interface" state.
595  */
596 static void phy_update_link(CadenceGEMState *s)
597 {
598     DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
599 
600     /* Autonegotiation status mirrors link status.  */
601     if (qemu_get_queue(s->nic)->link_down) {
602         s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
603                                          PHY_REG_STATUS_LINK);
604         s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
605     } else {
606         s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
607                                          PHY_REG_STATUS_LINK);
608         s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
609                                         PHY_REG_INT_ST_ANEGCMPL |
610                                         PHY_REG_INT_ST_ENERGY);
611     }
612 }
613 
614 static bool gem_can_receive(NetClientState *nc)
615 {
616     CadenceGEMState *s;
617     int i;
618 
619     s = qemu_get_nic_opaque(nc);
620 
621     /* Do nothing if receive is not enabled. */
622     if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_RECEIVE)) {
623         if (s->can_rx_state != 1) {
624             s->can_rx_state = 1;
625             DB_PRINT("can't receive - no enable\n");
626         }
627         return false;
628     }
629 
630     for (i = 0; i < s->num_priority_queues; i++) {
631         if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
632             break;
633         }
634     };
635 
636     if (i == s->num_priority_queues) {
637         if (s->can_rx_state != 2) {
638             s->can_rx_state = 2;
639             DB_PRINT("can't receive - all the buffer descriptors are busy\n");
640         }
641         return false;
642     }
643 
644     if (s->can_rx_state != 0) {
645         s->can_rx_state = 0;
646         DB_PRINT("can receive\n");
647     }
648     return true;
649 }
650 
651 /*
652  * gem_update_int_status:
653  * Raise or lower interrupt based on current status.
654  */
655 static void gem_update_int_status(CadenceGEMState *s)
656 {
657     int i;
658 
659     qemu_set_irq(s->irq[0], !!s->regs[R_ISR]);
660 
661     for (i = 1; i < s->num_priority_queues; ++i) {
662         qemu_set_irq(s->irq[i], !!s->regs[R_INT_Q1_STATUS + i - 1]);
663     }
664 }
665 
666 /*
667  * gem_receive_updatestats:
668  * Increment receive statistics.
669  */
670 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
671                                     unsigned bytes)
672 {
673     uint64_t octets;
674 
675     /* Total octets (bytes) received */
676     octets = ((uint64_t)(s->regs[R_OCTRXLO]) << 32) |
677              s->regs[R_OCTRXHI];
678     octets += bytes;
679     s->regs[R_OCTRXLO] = octets >> 32;
680     s->regs[R_OCTRXHI] = octets;
681 
682     /* Error-free Frames received */
683     s->regs[R_RXCNT]++;
684 
685     /* Error-free Broadcast Frames counter */
686     if (!memcmp(packet, broadcast_addr, 6)) {
687         s->regs[R_RXBROADCNT]++;
688     }
689 
690     /* Error-free Multicast Frames counter */
691     if (packet[0] == 0x01) {
692         s->regs[R_RXMULTICNT]++;
693     }
694 
695     if (bytes <= 64) {
696         s->regs[R_RX64CNT]++;
697     } else if (bytes <= 127) {
698         s->regs[R_RX65CNT]++;
699     } else if (bytes <= 255) {
700         s->regs[R_RX128CNT]++;
701     } else if (bytes <= 511) {
702         s->regs[R_RX256CNT]++;
703     } else if (bytes <= 1023) {
704         s->regs[R_RX512CNT]++;
705     } else if (bytes <= 1518) {
706         s->regs[R_RX1024CNT]++;
707     } else {
708         s->regs[R_RX1519CNT]++;
709     }
710 }
711 
712 /*
713  * Get the MAC Address bit from the specified position
714  */
715 static unsigned get_bit(const uint8_t *mac, unsigned bit)
716 {
717     unsigned byte;
718 
719     byte = mac[bit / 8];
720     byte >>= (bit & 0x7);
721     byte &= 1;
722 
723     return byte;
724 }
725 
726 /*
727  * Calculate a GEM MAC Address hash index
728  */
729 static unsigned calc_mac_hash(const uint8_t *mac)
730 {
731     int index_bit, mac_bit;
732     unsigned hash_index;
733 
734     hash_index = 0;
735     mac_bit = 5;
736     for (index_bit = 5; index_bit >= 0; index_bit--) {
737         hash_index |= (get_bit(mac,  mac_bit) ^
738                                get_bit(mac, mac_bit + 6) ^
739                                get_bit(mac, mac_bit + 12) ^
740                                get_bit(mac, mac_bit + 18) ^
741                                get_bit(mac, mac_bit + 24) ^
742                                get_bit(mac, mac_bit + 30) ^
743                                get_bit(mac, mac_bit + 36) ^
744                                get_bit(mac, mac_bit + 42)) << index_bit;
745         mac_bit--;
746     }
747 
748     return hash_index;
749 }
750 
751 /*
752  * gem_mac_address_filter:
753  * Accept or reject this destination address?
754  * Returns:
755  * GEM_RX_REJECT: reject
756  * >= 0: Specific address accept (which matched SAR is returned)
757  * others for various other modes of accept:
758  * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
759  * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
760  */
761 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
762 {
763     uint8_t *gem_spaddr;
764     int i, is_mc;
765 
766     /* Promiscuous mode? */
767     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, PROMISC)) {
768         return GEM_RX_PROMISCUOUS_ACCEPT;
769     }
770 
771     if (!memcmp(packet, broadcast_addr, 6)) {
772         /* Reject broadcast packets? */
773         if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, NO_BROADCAST)) {
774             return GEM_RX_REJECT;
775         }
776         return GEM_RX_BROADCAST_ACCEPT;
777     }
778 
779     /* Accept packets -w- hash match? */
780     is_mc = is_multicast_ether_addr(packet);
781     if ((is_mc && (FIELD_EX32(s->regs[R_NWCFG], NWCFG, MULTICAST_HASH_EN))) ||
782         (!is_mc && FIELD_EX32(s->regs[R_NWCFG], NWCFG, UNICAST_HASH_EN))) {
783         uint64_t buckets;
784         unsigned hash_index;
785 
786         hash_index = calc_mac_hash(packet);
787         buckets = ((uint64_t)s->regs[R_HASHHI] << 32) | s->regs[R_HASHLO];
788         if ((buckets >> hash_index) & 1) {
789             return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT
790                          : GEM_RX_UNICAST_HASH_ACCEPT;
791         }
792     }
793 
794     /* Check all 4 specific addresses */
795     gem_spaddr = (uint8_t *)&(s->regs[R_SPADDR1LO]);
796     for (i = 3; i >= 0; i--) {
797         if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
798             return GEM_RX_SAR_ACCEPT + i;
799         }
800     }
801 
802     /* No address match; reject the packet */
803     return GEM_RX_REJECT;
804 }
805 
806 /* Figure out which queue the received data should be sent to */
807 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
808                                  unsigned rxbufsize)
809 {
810     uint32_t reg;
811     bool matched, mismatched;
812     int i, j;
813 
814     for (i = 0; i < s->num_type1_screeners; i++) {
815         reg = s->regs[R_SCREENING_TYPE1_REG0 + i];
816         matched = false;
817         mismatched = false;
818 
819         /* Screening is based on UDP Port */
820         if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN)) {
821             uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
822             if (udp_port == FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH)) {
823                 matched = true;
824             } else {
825                 mismatched = true;
826             }
827         }
828 
829         /* Screening is based on DS/TC */
830         if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_ENABLE)) {
831             uint8_t dscp = rxbuf_ptr[14 + 1];
832             if (dscp == FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_MATCH)) {
833                 matched = true;
834             } else {
835                 mismatched = true;
836             }
837         }
838 
839         if (matched && !mismatched) {
840             return FIELD_EX32(reg, SCREENING_TYPE1_REG0, QUEUE_NUM);
841         }
842     }
843 
844     for (i = 0; i < s->num_type2_screeners; i++) {
845         reg = s->regs[R_SCREENING_TYPE2_REG0 + i];
846         matched = false;
847         mismatched = false;
848 
849         if (FIELD_EX32(reg, SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE)) {
850             uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
851             int et_idx = FIELD_EX32(reg, SCREENING_TYPE2_REG0,
852                                     ETHERTYPE_REG_INDEX);
853 
854             if (et_idx > s->num_type2_screeners) {
855                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
856                               "register index: %d\n", et_idx);
857             }
858             if (type == s->regs[R_SCREENING_TYPE2_ETHERTYPE_REG0 +
859                                 et_idx]) {
860                 matched = true;
861             } else {
862                 mismatched = true;
863             }
864         }
865 
866         /* Compare A, B, C */
867         for (j = 0; j < 3; j++) {
868             uint32_t cr0, cr1, mask, compare;
869             uint16_t rx_cmp;
870             int offset;
871             int cr_idx = extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_SHIFT + j * 6,
872                                    R_SCREENING_TYPE2_REG0_COMPARE_A_LENGTH);
873 
874             if (!extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_SHIFT + j * 6,
875                            R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_LENGTH)) {
876                 continue;
877             }
878 
879             if (cr_idx > s->num_type2_screeners) {
880                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
881                               "register index: %d\n", cr_idx);
882             }
883 
884             cr0 = s->regs[R_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
885             cr1 = s->regs[R_TYPE2_COMPARE_0_WORD_1 + cr_idx * 2];
886             offset = FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE);
887 
888             switch (FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET)) {
889             case 3: /* Skip UDP header */
890                 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
891                               "unimplemented - assuming UDP\n");
892                 offset += 8;
893                 /* Fallthrough */
894             case 2: /* skip the IP header */
895                 offset += 20;
896                 /* Fallthrough */
897             case 1: /* Count from after the ethertype */
898                 offset += 14;
899                 break;
900             case 0:
901                 /* Offset from start of frame */
902                 break;
903             }
904 
905             rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
906             mask = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, MASK_VALUE);
907             compare = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE);
908 
909             if ((rx_cmp & mask) == (compare & mask)) {
910                 matched = true;
911             } else {
912                 mismatched = true;
913             }
914         }
915 
916         if (matched && !mismatched) {
917             return FIELD_EX32(reg, SCREENING_TYPE2_REG0, QUEUE_NUM);
918         }
919     }
920 
921     /* We made it here, assume it's queue 0 */
922     return 0;
923 }
924 
925 static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q)
926 {
927     uint32_t base_addr = 0;
928 
929     switch (q) {
930     case 0:
931         base_addr = s->regs[tx ? R_TXQBASE : R_RXQBASE];
932         break;
933     case 1 ... (MAX_PRIORITY_QUEUES - 1):
934         base_addr = s->regs[(tx ? R_TRANSMIT_Q1_PTR :
935                                  R_RECEIVE_Q1_PTR) + q - 1];
936         break;
937     default:
938         g_assert_not_reached();
939     };
940 
941     return base_addr;
942 }
943 
944 static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q)
945 {
946     return gem_get_queue_base_addr(s, true, q);
947 }
948 
949 static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q)
950 {
951     return gem_get_queue_base_addr(s, false, q);
952 }
953 
954 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
955 {
956     hwaddr desc_addr = 0;
957 
958     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
959         desc_addr = s->regs[tx ? R_TBQPH : R_RBQPH];
960     }
961     desc_addr <<= 32;
962     desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
963     return desc_addr;
964 }
965 
966 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
967 {
968     return gem_get_desc_addr(s, true, q);
969 }
970 
971 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
972 {
973     return gem_get_desc_addr(s, false, q);
974 }
975 
976 static void gem_get_rx_desc(CadenceGEMState *s, int q)
977 {
978     hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
979 
980     DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
981 
982     /* read current descriptor */
983     address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
984                        s->rx_desc[q],
985                        sizeof(uint32_t) * gem_get_desc_len(s, true));
986 
987     /* Descriptor owned by software ? */
988     if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
989         DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
990         s->regs[R_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
991         gem_set_isr(s, q, GEM_INT_RXUSED);
992         /* Handle interrupt consequences */
993         gem_update_int_status(s);
994     }
995 }
996 
997 /*
998  * gem_receive:
999  * Fit a packet handed to us by QEMU into the receive descriptor ring.
1000  */
1001 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1002 {
1003     CadenceGEMState *s = qemu_get_nic_opaque(nc);
1004     unsigned   rxbufsize, bytes_to_copy;
1005     unsigned   rxbuf_offset;
1006     uint8_t   *rxbuf_ptr;
1007     bool first_desc = true;
1008     int maf;
1009     int q = 0;
1010 
1011     /* Is this destination MAC address "for us" ? */
1012     maf = gem_mac_address_filter(s, buf);
1013     if (maf == GEM_RX_REJECT) {
1014         return size;  /* no, drop silently b/c it's not an error */
1015     }
1016 
1017     /* Discard packets with receive length error enabled ? */
1018     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, LEN_ERR_DISCARD)) {
1019         unsigned type_len;
1020 
1021         /* Fish the ethertype / length field out of the RX packet */
1022         type_len = buf[12] << 8 | buf[13];
1023         /* It is a length field, not an ethertype */
1024         if (type_len < 0x600) {
1025             if (size < type_len) {
1026                 /* discard */
1027                 return -1;
1028             }
1029         }
1030     }
1031 
1032     /*
1033      * Determine configured receive buffer offset (probably 0)
1034      */
1035     rxbuf_offset = FIELD_EX32(s->regs[R_NWCFG], NWCFG, RECV_BUF_OFFSET);
1036 
1037     /* The configure size of each receive buffer.  Determines how many
1038      * buffers needed to hold this packet.
1039      */
1040     rxbufsize = FIELD_EX32(s->regs[R_DMACFG], DMACFG, RX_BUF_SIZE);
1041     rxbufsize *= GEM_DMACFG_RBUFSZ_MUL;
1042 
1043     bytes_to_copy = size;
1044 
1045     /* Hardware allows a zero value here but warns against it. To avoid QEMU
1046      * indefinite loops we enforce a minimum value here
1047      */
1048     if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
1049         rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
1050     }
1051 
1052     /* Pad to minimum length. Assume FCS field is stripped, logic
1053      * below will increment it to the real minimum of 64 when
1054      * not FCS stripping
1055      */
1056     if (size < 60) {
1057         size = 60;
1058     }
1059 
1060     /* Strip of FCS field ? (usually yes) */
1061     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, FCS_REMOVE)) {
1062         rxbuf_ptr = (void *)buf;
1063     } else {
1064         unsigned crc_val;
1065 
1066         if (size > MAX_FRAME_SIZE - sizeof(crc_val)) {
1067             size = MAX_FRAME_SIZE - sizeof(crc_val);
1068         }
1069         bytes_to_copy = size;
1070         /* The application wants the FCS field, which QEMU does not provide.
1071          * We must try and calculate one.
1072          */
1073 
1074         memcpy(s->rx_packet, buf, size);
1075         memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size);
1076         rxbuf_ptr = s->rx_packet;
1077         crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60)));
1078         memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val));
1079 
1080         bytes_to_copy += 4;
1081         size += 4;
1082     }
1083 
1084     DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size);
1085 
1086     /* Find which queue we are targeting */
1087     q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
1088 
1089     if (size > gem_get_max_buf_len(s, false)) {
1090         qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n");
1091         gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1092         return -1;
1093     }
1094 
1095     while (bytes_to_copy) {
1096         hwaddr desc_addr;
1097 
1098         /* Do nothing if receive is not enabled. */
1099         if (!gem_can_receive(nc)) {
1100             return -1;
1101         }
1102 
1103         DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n",
1104                 MIN(bytes_to_copy, rxbufsize),
1105                 rx_desc_get_buffer(s, s->rx_desc[q]));
1106 
1107         /* Copy packet data to emulated DMA buffer */
1108         address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
1109                                                                   rxbuf_offset,
1110                             MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
1111                             MIN(bytes_to_copy, rxbufsize));
1112         rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
1113         bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
1114 
1115         rx_desc_clear_control(s->rx_desc[q]);
1116 
1117         /* Update the descriptor.  */
1118         if (first_desc) {
1119             rx_desc_set_sof(s->rx_desc[q]);
1120             first_desc = false;
1121         }
1122         if (bytes_to_copy == 0) {
1123             rx_desc_set_eof(s->rx_desc[q]);
1124             rx_desc_set_length(s->rx_desc[q], size);
1125         }
1126         rx_desc_set_ownership(s->rx_desc[q]);
1127 
1128         switch (maf) {
1129         case GEM_RX_PROMISCUOUS_ACCEPT:
1130             break;
1131         case GEM_RX_BROADCAST_ACCEPT:
1132             rx_desc_set_broadcast(s->rx_desc[q]);
1133             break;
1134         case GEM_RX_UNICAST_HASH_ACCEPT:
1135             rx_desc_set_unicast_hash(s->rx_desc[q]);
1136             break;
1137         case GEM_RX_MULTICAST_HASH_ACCEPT:
1138             rx_desc_set_multicast_hash(s->rx_desc[q]);
1139             break;
1140         case GEM_RX_REJECT:
1141             abort();
1142         default: /* SAR */
1143             rx_desc_set_sar(s->rx_desc[q], maf);
1144         }
1145 
1146         /* Descriptor write-back.  */
1147         desc_addr = gem_get_rx_desc_addr(s, q);
1148         address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1149                             s->rx_desc[q],
1150                             sizeof(uint32_t) * gem_get_desc_len(s, true));
1151 
1152         /* Next descriptor */
1153         if (rx_desc_get_wrap(s->rx_desc[q])) {
1154             DB_PRINT("wrapping RX descriptor list\n");
1155             s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q);
1156         } else {
1157             DB_PRINT("incrementing RX descriptor list\n");
1158             s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1159         }
1160 
1161         gem_get_rx_desc(s, q);
1162     }
1163 
1164     /* Count it */
1165     gem_receive_updatestats(s, buf, size);
1166 
1167     s->regs[R_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
1168     gem_set_isr(s, q, GEM_INT_RXCMPL);
1169 
1170     /* Handle interrupt consequences */
1171     gem_update_int_status(s);
1172 
1173     return size;
1174 }
1175 
1176 /*
1177  * gem_transmit_updatestats:
1178  * Increment transmit statistics.
1179  */
1180 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1181                                      unsigned bytes)
1182 {
1183     uint64_t octets;
1184 
1185     /* Total octets (bytes) transmitted */
1186     octets = ((uint64_t)(s->regs[R_OCTTXLO]) << 32) |
1187              s->regs[R_OCTTXHI];
1188     octets += bytes;
1189     s->regs[R_OCTTXLO] = octets >> 32;
1190     s->regs[R_OCTTXHI] = octets;
1191 
1192     /* Error-free Frames transmitted */
1193     s->regs[R_TXCNT]++;
1194 
1195     /* Error-free Broadcast Frames counter */
1196     if (!memcmp(packet, broadcast_addr, 6)) {
1197         s->regs[R_TXBCNT]++;
1198     }
1199 
1200     /* Error-free Multicast Frames counter */
1201     if (packet[0] == 0x01) {
1202         s->regs[R_TXMCNT]++;
1203     }
1204 
1205     if (bytes <= 64) {
1206         s->regs[R_TX64CNT]++;
1207     } else if (bytes <= 127) {
1208         s->regs[R_TX65CNT]++;
1209     } else if (bytes <= 255) {
1210         s->regs[R_TX128CNT]++;
1211     } else if (bytes <= 511) {
1212         s->regs[R_TX256CNT]++;
1213     } else if (bytes <= 1023) {
1214         s->regs[R_TX512CNT]++;
1215     } else if (bytes <= 1518) {
1216         s->regs[R_TX1024CNT]++;
1217     } else {
1218         s->regs[R_TX1519CNT]++;
1219     }
1220 }
1221 
1222 /*
1223  * gem_transmit:
1224  * Fish packets out of the descriptor ring and feed them to QEMU
1225  */
1226 static void gem_transmit(CadenceGEMState *s)
1227 {
1228     uint32_t desc[DESC_MAX_NUM_WORDS];
1229     hwaddr packet_desc_addr;
1230     uint8_t     *p;
1231     unsigned    total_bytes;
1232     int q = 0;
1233 
1234     /* Do nothing if transmit is not enabled. */
1235     if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1236         return;
1237     }
1238 
1239     DB_PRINT("\n");
1240 
1241     /* The packet we will hand off to QEMU.
1242      * Packets scattered across multiple descriptors are gathered to this
1243      * one contiguous buffer first.
1244      */
1245     p = s->tx_packet;
1246     total_bytes = 0;
1247 
1248     for (q = s->num_priority_queues - 1; q >= 0; q--) {
1249         /* read current descriptor */
1250         packet_desc_addr = gem_get_tx_desc_addr(s, q);
1251 
1252         DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1253         address_space_read(&s->dma_as, packet_desc_addr,
1254                            MEMTXATTRS_UNSPECIFIED, desc,
1255                            sizeof(uint32_t) * gem_get_desc_len(s, false));
1256         /* Handle all descriptors owned by hardware */
1257         while (tx_desc_get_used(desc) == 0) {
1258 
1259             /* Do nothing if transmit is not enabled. */
1260             if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1261                 return;
1262             }
1263             print_gem_tx_desc(desc, q);
1264 
1265             /* The real hardware would eat this (and possibly crash).
1266              * For QEMU let's lend a helping hand.
1267              */
1268             if ((tx_desc_get_buffer(s, desc) == 0) ||
1269                 (tx_desc_get_length(desc) == 0)) {
1270                 DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n",
1271                          packet_desc_addr);
1272                 break;
1273             }
1274 
1275             if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) -
1276                                                (p - s->tx_packet)) {
1277                 qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \
1278                          HWADDR_PRIx " too large: size 0x%x space 0x%zx\n",
1279                          packet_desc_addr, tx_desc_get_length(desc),
1280                          gem_get_max_buf_len(s, true) - (p - s->tx_packet));
1281                 gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1282                 break;
1283             }
1284 
1285             /* Gather this fragment of the packet from "dma memory" to our
1286              * contig buffer.
1287              */
1288             address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1289                                MEMTXATTRS_UNSPECIFIED,
1290                                p, tx_desc_get_length(desc));
1291             p += tx_desc_get_length(desc);
1292             total_bytes += tx_desc_get_length(desc);
1293 
1294             /* Last descriptor for this packet; hand the whole thing off */
1295             if (tx_desc_get_last(desc)) {
1296                 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1297                 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1298 
1299                 /* Modify the 1st descriptor of this packet to be owned by
1300                  * the processor.
1301                  */
1302                 address_space_read(&s->dma_as, desc_addr,
1303                                    MEMTXATTRS_UNSPECIFIED, desc_first,
1304                                    sizeof(desc_first));
1305                 tx_desc_set_used(desc_first);
1306                 address_space_write(&s->dma_as, desc_addr,
1307                                     MEMTXATTRS_UNSPECIFIED, desc_first,
1308                                     sizeof(desc_first));
1309                 /* Advance the hardware current descriptor past this packet */
1310                 if (tx_desc_get_wrap(desc)) {
1311                     s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q);
1312                 } else {
1313                     s->tx_desc_addr[q] = packet_desc_addr +
1314                                          4 * gem_get_desc_len(s, false);
1315                 }
1316                 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1317 
1318                 s->regs[R_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1319                 gem_set_isr(s, q, GEM_INT_TXCMPL);
1320 
1321                 /* Handle interrupt consequences */
1322                 gem_update_int_status(s);
1323 
1324                 /* Is checksum offload enabled? */
1325                 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, TX_PBUF_CSUM_OFFLOAD)) {
1326                     net_checksum_calculate(s->tx_packet, total_bytes, CSUM_ALL);
1327                 }
1328 
1329                 /* Update MAC statistics */
1330                 gem_transmit_updatestats(s, s->tx_packet, total_bytes);
1331 
1332                 /* Send the packet somewhere */
1333                 if (s->phy_loop || FIELD_EX32(s->regs[R_NWCTRL], NWCTRL,
1334                                               LOOPBACK_LOCAL)) {
1335                     qemu_receive_packet(qemu_get_queue(s->nic), s->tx_packet,
1336                                         total_bytes);
1337                 } else {
1338                     qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet,
1339                                      total_bytes);
1340                 }
1341 
1342                 /* Prepare for next packet */
1343                 p = s->tx_packet;
1344                 total_bytes = 0;
1345             }
1346 
1347             /* read next descriptor */
1348             if (tx_desc_get_wrap(desc)) {
1349                 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
1350                     packet_desc_addr = s->regs[R_TBQPH];
1351                     packet_desc_addr <<= 32;
1352                 } else {
1353                     packet_desc_addr = 0;
1354                 }
1355                 packet_desc_addr |= gem_get_tx_queue_base_addr(s, q);
1356             } else {
1357                 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1358             }
1359             DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1360             address_space_read(&s->dma_as, packet_desc_addr,
1361                                MEMTXATTRS_UNSPECIFIED, desc,
1362                                sizeof(uint32_t) * gem_get_desc_len(s, false));
1363         }
1364 
1365         if (tx_desc_get_used(desc)) {
1366             s->regs[R_TXSTATUS] |= GEM_TXSTATUS_USED;
1367             /* IRQ TXUSED is defined only for queue 0 */
1368             if (q == 0) {
1369                 gem_set_isr(s, 0, GEM_INT_TXUSED);
1370             }
1371             gem_update_int_status(s);
1372         }
1373     }
1374 }
1375 
1376 static void gem_phy_reset(CadenceGEMState *s)
1377 {
1378     memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1379     s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1380     s->phy_regs[PHY_REG_STATUS] = 0x7969;
1381     s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1382     s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1383     s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1384     s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1385     s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1386     s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1387     s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1388     s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1389     s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1390     s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1391     s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1392     s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1393     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1394     s->phy_regs[PHY_REG_LED] = 0x4100;
1395     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1396     s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1397 
1398     phy_update_link(s);
1399 }
1400 
1401 static void gem_reset(DeviceState *d)
1402 {
1403     int i;
1404     CadenceGEMState *s = CADENCE_GEM(d);
1405     const uint8_t *a;
1406     uint32_t queues_mask = 0;
1407 
1408     DB_PRINT("\n");
1409 
1410     /* Set post reset register values */
1411     memset(&s->regs[0], 0, sizeof(s->regs));
1412     s->regs[R_NWCFG] = 0x00080000;
1413     s->regs[R_NWSTATUS] = 0x00000006;
1414     s->regs[R_DMACFG] = 0x00020784;
1415     s->regs[R_IMR] = 0x07ffffff;
1416     s->regs[R_TXPAUSE] = 0x0000ffff;
1417     s->regs[R_TXPARTIALSF] = 0x000003ff;
1418     s->regs[R_RXPARTIALSF] = 0x000003ff;
1419     s->regs[R_MODID] = s->revision;
1420     s->regs[R_DESCONF] = 0x02D00111;
1421     s->regs[R_DESCONF2] = 0x2ab10000 | s->jumbo_max_len;
1422     s->regs[R_DESCONF5] = 0x002f2045;
1423     s->regs[R_DESCONF6] = GEM_DESCONF6_64B_MASK;
1424     s->regs[R_INT_Q1_MASK] = 0x00000CE6;
1425     s->regs[R_JUMBO_MAX_LEN] = s->jumbo_max_len;
1426 
1427     if (s->num_priority_queues > 1) {
1428         queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1429         s->regs[R_DESCONF6] |= queues_mask;
1430     }
1431 
1432     /* Set MAC address */
1433     a = &s->conf.macaddr.a[0];
1434     s->regs[R_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1435     s->regs[R_SPADDR1HI] = a[4] | (a[5] << 8);
1436 
1437     for (i = 0; i < 4; i++) {
1438         s->sar_active[i] = false;
1439     }
1440 
1441     gem_phy_reset(s);
1442 
1443     gem_update_int_status(s);
1444 }
1445 
1446 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1447 {
1448     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1449     return s->phy_regs[reg_num];
1450 }
1451 
1452 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1453 {
1454     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1455 
1456     switch (reg_num) {
1457     case PHY_REG_CONTROL:
1458         if (val & PHY_REG_CONTROL_RST) {
1459             /* Phy reset */
1460             gem_phy_reset(s);
1461             val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1462             s->phy_loop = 0;
1463         }
1464         if (val & PHY_REG_CONTROL_ANEG) {
1465             /* Complete autonegotiation immediately */
1466             val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
1467             s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1468         }
1469         if (val & PHY_REG_CONTROL_LOOP) {
1470             DB_PRINT("PHY placed in loopback\n");
1471             s->phy_loop = 1;
1472         } else {
1473             s->phy_loop = 0;
1474         }
1475         break;
1476     }
1477     s->phy_regs[reg_num] = val;
1478 }
1479 
1480 /*
1481  * gem_read32:
1482  * Read a GEM register.
1483  */
1484 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1485 {
1486     CadenceGEMState *s;
1487     uint32_t retval;
1488     s = opaque;
1489 
1490     offset >>= 2;
1491     retval = s->regs[offset];
1492 
1493     DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1494 
1495     switch (offset) {
1496     case R_ISR:
1497         DB_PRINT("lowering irqs on ISR read\n");
1498         /* The interrupts get updated at the end of the function. */
1499         break;
1500     case R_PHYMNTNC:
1501         if (retval & GEM_PHYMNTNC_OP_R) {
1502             uint32_t phy_addr, reg_num;
1503 
1504             phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1505             if (phy_addr == s->phy_addr) {
1506                 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1507                 retval &= 0xFFFF0000;
1508                 retval |= gem_phy_read(s, reg_num);
1509             } else {
1510                 retval |= 0xFFFF; /* No device at this address */
1511             }
1512         }
1513         break;
1514     }
1515 
1516     /* Squash read to clear bits */
1517     s->regs[offset] &= ~(s->regs_rtc[offset]);
1518 
1519     /* Do not provide write only bits */
1520     retval &= ~(s->regs_wo[offset]);
1521 
1522     DB_PRINT("0x%08x\n", retval);
1523     gem_update_int_status(s);
1524     return retval;
1525 }
1526 
1527 /*
1528  * gem_write32:
1529  * Write a GEM register.
1530  */
1531 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1532         unsigned size)
1533 {
1534     CadenceGEMState *s = (CadenceGEMState *)opaque;
1535     uint32_t readonly;
1536     int i;
1537 
1538     DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1539     offset >>= 2;
1540 
1541     /* Squash bits which are read only in write value */
1542     val &= ~(s->regs_ro[offset]);
1543     /* Preserve (only) bits which are read only and wtc in register */
1544     readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1545 
1546     /* Copy register write to backing store */
1547     s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1548 
1549     /* do w1c */
1550     s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1551 
1552     /* Handle register write side effects */
1553     switch (offset) {
1554     case R_NWCTRL:
1555         if (FIELD_EX32(val, NWCTRL, ENABLE_RECEIVE)) {
1556             for (i = 0; i < s->num_priority_queues; ++i) {
1557                 gem_get_rx_desc(s, i);
1558             }
1559         }
1560         if (FIELD_EX32(val, NWCTRL, TRANSMIT_START)) {
1561             gem_transmit(s);
1562         }
1563         if (!(FIELD_EX32(val, NWCTRL, ENABLE_TRANSMIT))) {
1564             /* Reset to start of Q when transmit disabled. */
1565             for (i = 0; i < s->num_priority_queues; i++) {
1566                 s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i);
1567             }
1568         }
1569         if (gem_can_receive(qemu_get_queue(s->nic))) {
1570             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1571         }
1572         break;
1573 
1574     case R_TXSTATUS:
1575         gem_update_int_status(s);
1576         break;
1577     case R_RXQBASE:
1578         s->rx_desc_addr[0] = val;
1579         break;
1580     case R_RECEIVE_Q1_PTR ... R_RECEIVE_Q7_PTR:
1581         s->rx_desc_addr[offset - R_RECEIVE_Q1_PTR + 1] = val;
1582         break;
1583     case R_TXQBASE:
1584         s->tx_desc_addr[0] = val;
1585         break;
1586     case R_TRANSMIT_Q1_PTR ... R_TRANSMIT_Q7_PTR:
1587         s->tx_desc_addr[offset - R_TRANSMIT_Q1_PTR + 1] = val;
1588         break;
1589     case R_RXSTATUS:
1590         gem_update_int_status(s);
1591         break;
1592     case R_IER:
1593         s->regs[R_IMR] &= ~val;
1594         gem_update_int_status(s);
1595         break;
1596     case R_JUMBO_MAX_LEN:
1597         s->regs[R_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK;
1598         break;
1599     case R_INT_Q1_ENABLE ... R_INT_Q7_ENABLE:
1600         s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_ENABLE] &= ~val;
1601         gem_update_int_status(s);
1602         break;
1603     case R_IDR:
1604         s->regs[R_IMR] |= val;
1605         gem_update_int_status(s);
1606         break;
1607     case R_INT_Q1_DISABLE ... R_INT_Q7_DISABLE:
1608         s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_DISABLE] |= val;
1609         gem_update_int_status(s);
1610         break;
1611     case R_SPADDR1LO:
1612     case R_SPADDR2LO:
1613     case R_SPADDR3LO:
1614     case R_SPADDR4LO:
1615         s->sar_active[(offset - R_SPADDR1LO) / 2] = false;
1616         break;
1617     case R_SPADDR1HI:
1618     case R_SPADDR2HI:
1619     case R_SPADDR3HI:
1620     case R_SPADDR4HI:
1621         s->sar_active[(offset - R_SPADDR1HI) / 2] = true;
1622         break;
1623     case R_PHYMNTNC:
1624         if (val & GEM_PHYMNTNC_OP_W) {
1625             uint32_t phy_addr, reg_num;
1626 
1627             phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1628             if (phy_addr == s->phy_addr) {
1629                 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1630                 gem_phy_write(s, reg_num, val);
1631             }
1632         }
1633         break;
1634     }
1635 
1636     DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1637 }
1638 
1639 static const MemoryRegionOps gem_ops = {
1640     .read = gem_read,
1641     .write = gem_write,
1642     .endianness = DEVICE_LITTLE_ENDIAN,
1643 };
1644 
1645 static void gem_set_link(NetClientState *nc)
1646 {
1647     CadenceGEMState *s = qemu_get_nic_opaque(nc);
1648 
1649     DB_PRINT("\n");
1650     phy_update_link(s);
1651     gem_update_int_status(s);
1652 }
1653 
1654 static NetClientInfo net_gem_info = {
1655     .type = NET_CLIENT_DRIVER_NIC,
1656     .size = sizeof(NICState),
1657     .can_receive = gem_can_receive,
1658     .receive = gem_receive,
1659     .link_status_changed = gem_set_link,
1660 };
1661 
1662 static void gem_realize(DeviceState *dev, Error **errp)
1663 {
1664     CadenceGEMState *s = CADENCE_GEM(dev);
1665     int i;
1666 
1667     address_space_init(&s->dma_as,
1668                        s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1669 
1670     if (s->num_priority_queues == 0 ||
1671         s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1672         error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1673                    s->num_priority_queues);
1674         return;
1675     } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1676         error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1677                    s->num_type1_screeners);
1678         return;
1679     } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1680         error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1681                    s->num_type2_screeners);
1682         return;
1683     }
1684 
1685     for (i = 0; i < s->num_priority_queues; ++i) {
1686         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1687     }
1688 
1689     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1690 
1691     s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1692                           object_get_typename(OBJECT(dev)), dev->id, s);
1693 
1694     if (s->jumbo_max_len > MAX_FRAME_SIZE) {
1695         error_setg(errp, "jumbo-max-len is greater than %d",
1696                   MAX_FRAME_SIZE);
1697         return;
1698     }
1699 }
1700 
1701 static void gem_init(Object *obj)
1702 {
1703     CadenceGEMState *s = CADENCE_GEM(obj);
1704     DeviceState *dev = DEVICE(obj);
1705 
1706     DB_PRINT("\n");
1707 
1708     gem_init_register_masks(s);
1709     memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1710                           "enet", sizeof(s->regs));
1711 
1712     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1713 }
1714 
1715 static const VMStateDescription vmstate_cadence_gem = {
1716     .name = "cadence_gem",
1717     .version_id = 4,
1718     .minimum_version_id = 4,
1719     .fields = (VMStateField[]) {
1720         VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1721         VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1722         VMSTATE_UINT8(phy_loop, CadenceGEMState),
1723         VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1724                              MAX_PRIORITY_QUEUES),
1725         VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1726                              MAX_PRIORITY_QUEUES),
1727         VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1728         VMSTATE_END_OF_LIST(),
1729     }
1730 };
1731 
1732 static Property gem_properties[] = {
1733     DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1734     DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1735                        GEM_MODID_VALUE),
1736     DEFINE_PROP_UINT8("phy-addr", CadenceGEMState, phy_addr, BOARD_PHY_ADDRESS),
1737     DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1738                       num_priority_queues, 1),
1739     DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1740                       num_type1_screeners, 4),
1741     DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1742                       num_type2_screeners, 4),
1743     DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState,
1744                        jumbo_max_len, 10240),
1745     DEFINE_PROP_LINK("dma", CadenceGEMState, dma_mr,
1746                      TYPE_MEMORY_REGION, MemoryRegion *),
1747     DEFINE_PROP_END_OF_LIST(),
1748 };
1749 
1750 static void gem_class_init(ObjectClass *klass, void *data)
1751 {
1752     DeviceClass *dc = DEVICE_CLASS(klass);
1753 
1754     dc->realize = gem_realize;
1755     device_class_set_props(dc, gem_properties);
1756     dc->vmsd = &vmstate_cadence_gem;
1757     dc->reset = gem_reset;
1758 }
1759 
1760 static const TypeInfo gem_info = {
1761     .name  = TYPE_CADENCE_GEM,
1762     .parent = TYPE_SYS_BUS_DEVICE,
1763     .instance_size  = sizeof(CadenceGEMState),
1764     .instance_init = gem_init,
1765     .class_init = gem_class_init,
1766 };
1767 
1768 static void gem_register_types(void)
1769 {
1770     type_register_static(&gem_info);
1771 }
1772 
1773 type_init(gem_register_types)
1774