xref: /qemu/hw/net/cadence_gem.c (revision 466da857)
1 /*
2  * QEMU Cadence GEM emulation
3  *
4  * Copyright (c) 2011 Xilinx, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
27 
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/registerfields.h"
32 #include "migration/vmstate.h"
33 #include "qapi/error.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "sysemu/dma.h"
37 #include "net/checksum.h"
38 #include "net/eth.h"
39 
40 #define CADENCE_GEM_ERR_DEBUG 0
41 #define DB_PRINT(...) do {\
42     if (CADENCE_GEM_ERR_DEBUG) {   \
43         qemu_log(": %s: ", __func__); \
44         qemu_log(__VA_ARGS__); \
45     } \
46 } while (0)
47 
48 REG32(NWCTRL, 0x0) /* Network Control reg */
49     FIELD(NWCTRL, LOOPBACK , 0, 1)
50     FIELD(NWCTRL, LOOPBACK_LOCAL , 1, 1)
51     FIELD(NWCTRL, ENABLE_RECEIVE, 2, 1)
52     FIELD(NWCTRL, ENABLE_TRANSMIT, 3, 1)
53     FIELD(NWCTRL, MAN_PORT_EN , 4, 1)
54     FIELD(NWCTRL, CLEAR_ALL_STATS_REGS , 5, 1)
55     FIELD(NWCTRL, INC_ALL_STATS_REGS, 6, 1)
56     FIELD(NWCTRL, STATS_WRITE_EN, 7, 1)
57     FIELD(NWCTRL, BACK_PRESSURE, 8, 1)
58     FIELD(NWCTRL, TRANSMIT_START , 9, 1)
59     FIELD(NWCTRL, TRANSMIT_HALT, 10, 1)
60     FIELD(NWCTRL, TX_PAUSE_FRAME_RE, 11, 1)
61     FIELD(NWCTRL, TX_PAUSE_FRAME_ZE, 12, 1)
62     FIELD(NWCTRL, STATS_TAKE_SNAP, 13, 1)
63     FIELD(NWCTRL, STATS_READ_SNAP, 14, 1)
64     FIELD(NWCTRL, STORE_RX_TS, 15, 1)
65     FIELD(NWCTRL, PFC_ENABLE, 16, 1)
66     FIELD(NWCTRL, PFC_PRIO_BASED, 17, 1)
67     FIELD(NWCTRL, FLUSH_RX_PKT_PCLK , 18, 1)
68     FIELD(NWCTRL, TX_LPI_EN, 19, 1)
69     FIELD(NWCTRL, PTP_UNICAST_ENA, 20, 1)
70     FIELD(NWCTRL, ALT_SGMII_MODE, 21, 1)
71     FIELD(NWCTRL, STORE_UDP_OFFSET, 22, 1)
72     FIELD(NWCTRL, EXT_TSU_PORT_EN, 23, 1)
73     FIELD(NWCTRL, ONE_STEP_SYNC_MO, 24, 1)
74     FIELD(NWCTRL, PFC_CTRL , 25, 1)
75     FIELD(NWCTRL, EXT_RXQ_SEL_EN , 26, 1)
76     FIELD(NWCTRL, OSS_CORRECTION_FIELD, 27, 1)
77     FIELD(NWCTRL, SEL_MII_ON_RGMII, 28, 1)
78     FIELD(NWCTRL, TWO_PT_FIVE_GIG, 29, 1)
79     FIELD(NWCTRL, IFG_EATS_QAV_CREDIT, 30, 1)
80 
81 REG32(NWCFG, 0x4) /* Network Config reg */
82     FIELD(NWCFG, SPEED, 0, 1)
83     FIELD(NWCFG, FULL_DUPLEX, 1, 1)
84     FIELD(NWCFG, DISCARD_NON_VLAN_FRAMES, 2, 1)
85     FIELD(NWCFG, JUMBO_FRAMES, 3, 1)
86     FIELD(NWCFG, PROMISC, 4, 1)
87     FIELD(NWCFG, NO_BROADCAST, 5, 1)
88     FIELD(NWCFG, MULTICAST_HASH_EN, 6, 1)
89     FIELD(NWCFG, UNICAST_HASH_EN, 7, 1)
90     FIELD(NWCFG, RECV_1536_BYTE_FRAMES, 8, 1)
91     FIELD(NWCFG, EXTERNAL_ADDR_MATCH_EN, 9, 1)
92     FIELD(NWCFG, GIGABIT_MODE_ENABLE, 10, 1)
93     FIELD(NWCFG, PCS_SELECT, 11, 1)
94     FIELD(NWCFG, RETRY_TEST, 12, 1)
95     FIELD(NWCFG, PAUSE_ENABLE, 13, 1)
96     FIELD(NWCFG, RECV_BUF_OFFSET, 14, 2)
97     FIELD(NWCFG, LEN_ERR_DISCARD, 16, 1)
98     FIELD(NWCFG, FCS_REMOVE, 17, 1)
99     FIELD(NWCFG, MDC_CLOCK_DIV, 18, 3)
100     FIELD(NWCFG, DATA_BUS_WIDTH, 21, 2)
101     FIELD(NWCFG, DISABLE_COPY_PAUSE_FRAMES, 23, 1)
102     FIELD(NWCFG, RECV_CSUM_OFFLOAD_EN, 24, 1)
103     FIELD(NWCFG, EN_HALF_DUPLEX_RX, 25, 1)
104     FIELD(NWCFG, IGNORE_RX_FCS, 26, 1)
105     FIELD(NWCFG, SGMII_MODE_ENABLE, 27, 1)
106     FIELD(NWCFG, IPG_STRETCH_ENABLE, 28, 1)
107     FIELD(NWCFG, NSP_ACCEPT, 29, 1)
108     FIELD(NWCFG, IGNORE_IPG_RX_ER, 30, 1)
109     FIELD(NWCFG, UNI_DIRECTION_ENABLE, 31, 1)
110 
111 REG32(NWSTATUS, 0x8) /* Network Status reg */
112 REG32(USERIO, 0xc) /* User IO reg */
113 
114 REG32(DMACFG, 0x10) /* DMA Control reg */
115     FIELD(DMACFG, SEND_BCAST_TO_ALL_QS, 31, 1)
116     FIELD(DMACFG, DMA_ADDR_BUS_WIDTH, 30, 1)
117     FIELD(DMACFG, TX_BD_EXT_MODE_EN , 29, 1)
118     FIELD(DMACFG, RX_BD_EXT_MODE_EN , 28, 1)
119     FIELD(DMACFG, FORCE_MAX_AMBA_BURST_TX, 26, 1)
120     FIELD(DMACFG, FORCE_MAX_AMBA_BURST_RX, 25, 1)
121     FIELD(DMACFG, FORCE_DISCARD_ON_ERR, 24, 1)
122     FIELD(DMACFG, RX_BUF_SIZE, 16, 8)
123     FIELD(DMACFG, CRC_ERROR_REPORT, 13, 1)
124     FIELD(DMACFG, INF_LAST_DBUF_SIZE_EN, 12, 1)
125     FIELD(DMACFG, TX_PBUF_CSUM_OFFLOAD, 11, 1)
126     FIELD(DMACFG, TX_PBUF_SIZE, 10, 1)
127     FIELD(DMACFG, RX_PBUF_SIZE, 8, 2)
128     FIELD(DMACFG, ENDIAN_SWAP_PACKET, 7, 1)
129     FIELD(DMACFG, ENDIAN_SWAP_MGNT, 6, 1)
130     FIELD(DMACFG, HDR_DATA_SPLIT_EN, 5, 1)
131     FIELD(DMACFG, AMBA_BURST_LEN , 0, 5)
132 #define GEM_DMACFG_RBUFSZ_MUL  64         /* DMA RX Buffer Size multiplier */
133 
134 REG32(TXSTATUS, 0x14) /* TX Status reg */
135     FIELD(TXSTATUS, TX_USED_BIT_READ_MIDFRAME, 12, 1)
136     FIELD(TXSTATUS, TX_FRAME_TOO_LARGE, 11, 1)
137     FIELD(TXSTATUS, TX_DMA_LOCKUP, 10, 1)
138     FIELD(TXSTATUS, TX_MAC_LOCKUP, 9, 1)
139     FIELD(TXSTATUS, RESP_NOT_OK, 8, 1)
140     FIELD(TXSTATUS, LATE_COLLISION, 7, 1)
141     FIELD(TXSTATUS, TRANSMIT_UNDER_RUN, 6, 1)
142     FIELD(TXSTATUS, TRANSMIT_COMPLETE, 5, 1)
143     FIELD(TXSTATUS, AMBA_ERROR, 4, 1)
144     FIELD(TXSTATUS, TRANSMIT_GO, 3, 1)
145     FIELD(TXSTATUS, RETRY_LIMIT, 2, 1)
146     FIELD(TXSTATUS, COLLISION, 1, 1)
147     FIELD(TXSTATUS, USED_BIT_READ, 0, 1)
148 
149 REG32(RXQBASE, 0x18) /* RX Q Base address reg */
150 REG32(TXQBASE, 0x1c) /* TX Q Base address reg */
151 REG32(RXSTATUS, 0x20) /* RX Status reg */
152     FIELD(RXSTATUS, RX_DMA_LOCKUP, 5, 1)
153     FIELD(RXSTATUS, RX_MAC_LOCKUP, 4, 1)
154     FIELD(RXSTATUS, RESP_NOT_OK, 3, 1)
155     FIELD(RXSTATUS, RECEIVE_OVERRUN, 2, 1)
156     FIELD(RXSTATUS, FRAME_RECEIVED, 1, 1)
157     FIELD(RXSTATUS, BUF_NOT_AVAILABLE, 0, 1)
158 
159 REG32(ISR, 0x24) /* Interrupt Status reg */
160 REG32(IER, 0x28) /* Interrupt Enable reg */
161 REG32(IDR, 0x2c) /* Interrupt Disable reg */
162 REG32(IMR, 0x30) /* Interrupt Mask reg */
163 REG32(PHYMNTNC, 0x34) /* Phy Maintenance reg */
164 REG32(RXPAUSE, 0x38) /* RX Pause Time reg */
165 REG32(TXPAUSE, 0x3c) /* TX Pause Time reg */
166 REG32(TXPARTIALSF, 0x40) /* TX Partial Store and Forward */
167 REG32(RXPARTIALSF, 0x44) /* RX Partial Store and Forward */
168 REG32(JUMBO_MAX_LEN, 0x48) /* Max Jumbo Frame Size */
169 REG32(HASHLO, 0x80) /* Hash Low address reg */
170 REG32(HASHHI, 0x84) /* Hash High address reg */
171 REG32(SPADDR1LO, 0x88) /* Specific addr 1 low reg */
172 REG32(SPADDR1HI, 0x8c) /* Specific addr 1 high reg */
173 REG32(SPADDR2LO, 0x90) /* Specific addr 2 low reg */
174 REG32(SPADDR2HI, 0x94) /* Specific addr 2 high reg */
175 REG32(SPADDR3LO, 0x98) /* Specific addr 3 low reg */
176 REG32(SPADDR3HI, 0x9c) /* Specific addr 3 high reg */
177 REG32(SPADDR4LO, 0xa0) /* Specific addr 4 low reg */
178 REG32(SPADDR4HI, 0xa4) /* Specific addr 4 high reg */
179 REG32(TIDMATCH1, 0xa8) /* Type ID1 Match reg */
180 REG32(TIDMATCH2, 0xac) /* Type ID2 Match reg */
181 REG32(TIDMATCH3, 0xb0) /* Type ID3 Match reg */
182 REG32(TIDMATCH4, 0xb4) /* Type ID4 Match reg */
183 REG32(WOLAN, 0xb8) /* Wake on LAN reg */
184 REG32(IPGSTRETCH, 0xbc) /* IPG Stretch reg */
185 REG32(SVLAN, 0xc0) /* Stacked VLAN reg */
186 REG32(MODID, 0xfc) /* Module ID reg */
187 REG32(OCTTXLO, 0x100) /* Octects transmitted Low reg */
188 REG32(OCTTXHI, 0x104) /* Octects transmitted High reg */
189 REG32(TXCNT, 0x108) /* Error-free Frames transmitted */
190 REG32(TXBCNT, 0x10c) /* Error-free Broadcast Frames */
191 REG32(TXMCNT, 0x110) /* Error-free Multicast Frame */
192 REG32(TXPAUSECNT, 0x114) /* Pause Frames Transmitted */
193 REG32(TX64CNT, 0x118) /* Error-free 64 TX */
194 REG32(TX65CNT, 0x11c) /* Error-free 65-127 TX */
195 REG32(TX128CNT, 0x120) /* Error-free 128-255 TX */
196 REG32(TX256CNT, 0x124) /* Error-free 256-511 */
197 REG32(TX512CNT, 0x128) /* Error-free 512-1023 TX */
198 REG32(TX1024CNT, 0x12c) /* Error-free 1024-1518 TX */
199 REG32(TX1519CNT, 0x130) /* Error-free larger than 1519 TX */
200 REG32(TXURUNCNT, 0x134) /* TX under run error counter */
201 REG32(SINGLECOLLCNT, 0x138) /* Single Collision Frames */
202 REG32(MULTCOLLCNT, 0x13c) /* Multiple Collision Frames */
203 REG32(EXCESSCOLLCNT, 0x140) /* Excessive Collision Frames */
204 REG32(LATECOLLCNT, 0x144) /* Late Collision Frames */
205 REG32(DEFERTXCNT, 0x148) /* Deferred Transmission Frames */
206 REG32(CSENSECNT, 0x14c) /* Carrier Sense Error Counter */
207 REG32(OCTRXLO, 0x150) /* Octects Received register Low */
208 REG32(OCTRXHI, 0x154) /* Octects Received register High */
209 REG32(RXCNT, 0x158) /* Error-free Frames Received */
210 REG32(RXBROADCNT, 0x15c) /* Error-free Broadcast Frames RX */
211 REG32(RXMULTICNT, 0x160) /* Error-free Multicast Frames RX */
212 REG32(RXPAUSECNT, 0x164) /* Pause Frames Received Counter */
213 REG32(RX64CNT, 0x168) /* Error-free 64 byte Frames RX */
214 REG32(RX65CNT, 0x16c) /* Error-free 65-127B Frames RX */
215 REG32(RX128CNT, 0x170) /* Error-free 128-255B Frames RX */
216 REG32(RX256CNT, 0x174) /* Error-free 256-512B Frames RX */
217 REG32(RX512CNT, 0x178) /* Error-free 512-1023B Frames RX */
218 REG32(RX1024CNT, 0x17c) /* Error-free 1024-1518B Frames RX */
219 REG32(RX1519CNT, 0x180) /* Error-free 1519-max Frames RX */
220 REG32(RXUNDERCNT, 0x184) /* Undersize Frames Received */
221 REG32(RXOVERCNT, 0x188) /* Oversize Frames Received */
222 REG32(RXJABCNT, 0x18c) /* Jabbers Received Counter */
223 REG32(RXFCSCNT, 0x190) /* Frame Check seq. Error Counter */
224 REG32(RXLENERRCNT, 0x194) /* Length Field Error Counter */
225 REG32(RXSYMERRCNT, 0x198) /* Symbol Error Counter */
226 REG32(RXALIGNERRCNT, 0x19c) /* Alignment Error Counter */
227 REG32(RXRSCERRCNT, 0x1a0) /* Receive Resource Error Counter */
228 REG32(RXORUNCNT, 0x1a4) /* Receive Overrun Counter */
229 REG32(RXIPCSERRCNT, 0x1a8) /* IP header Checksum Err Counter */
230 REG32(RXTCPCCNT, 0x1ac) /* TCP Checksum Error Counter */
231 REG32(RXUDPCCNT, 0x1b0) /* UDP Checksum Error Counter */
232 
233 REG32(1588S, 0x1d0) /* 1588 Timer Seconds */
234 REG32(1588NS, 0x1d4) /* 1588 Timer Nanoseconds */
235 REG32(1588ADJ, 0x1d8) /* 1588 Timer Adjust */
236 REG32(1588INC, 0x1dc) /* 1588 Timer Increment */
237 REG32(PTPETXS, 0x1e0) /* PTP Event Frame Transmitted (s) */
238 REG32(PTPETXNS, 0x1e4) /* PTP Event Frame Transmitted (ns) */
239 REG32(PTPERXS, 0x1e8) /* PTP Event Frame Received (s) */
240 REG32(PTPERXNS, 0x1ec) /* PTP Event Frame Received (ns) */
241 REG32(PTPPTXS, 0x1e0) /* PTP Peer Frame Transmitted (s) */
242 REG32(PTPPTXNS, 0x1e4) /* PTP Peer Frame Transmitted (ns) */
243 REG32(PTPPRXS, 0x1e8) /* PTP Peer Frame Received (s) */
244 REG32(PTPPRXNS, 0x1ec) /* PTP Peer Frame Received (ns) */
245 
246 /* Design Configuration Registers */
247 REG32(DESCONF, 0x280)
248 REG32(DESCONF2, 0x284)
249 REG32(DESCONF3, 0x288)
250 REG32(DESCONF4, 0x28c)
251 REG32(DESCONF5, 0x290)
252 REG32(DESCONF6, 0x294)
253 #define GEM_DESCONF6_64B_MASK (1U << 23)
254 REG32(DESCONF7, 0x298)
255 
256 REG32(INT_Q1_STATUS, 0x400)
257 REG32(INT_Q1_MASK, 0x640)
258 
259 REG32(TRANSMIT_Q1_PTR, 0x440)
260 REG32(TRANSMIT_Q7_PTR, 0x458)
261 
262 REG32(RECEIVE_Q1_PTR, 0x480)
263 REG32(RECEIVE_Q7_PTR, 0x498)
264 
265 REG32(TBQPH, 0x4c8)
266 REG32(RBQPH, 0x4d4)
267 
268 REG32(INT_Q1_ENABLE, 0x600)
269 REG32(INT_Q7_ENABLE, 0x618)
270 
271 REG32(INT_Q1_DISABLE, 0x620)
272 REG32(INT_Q7_DISABLE, 0x638)
273 
274 REG32(SCREENING_TYPE1_REG0, 0x500)
275     FIELD(SCREENING_TYPE1_REG0, QUEUE_NUM, 0, 4)
276     FIELD(SCREENING_TYPE1_REG0, DSTC_MATCH, 4, 8)
277     FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH, 12, 16)
278     FIELD(SCREENING_TYPE1_REG0, DSTC_ENABLE, 28, 1)
279     FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN, 29, 1)
280     FIELD(SCREENING_TYPE1_REG0, DROP_ON_MATCH, 30, 1)
281 
282 REG32(SCREENING_TYPE2_REG0, 0x540)
283     FIELD(SCREENING_TYPE2_REG0, QUEUE_NUM, 0, 4)
284     FIELD(SCREENING_TYPE2_REG0, VLAN_PRIORITY, 4, 3)
285     FIELD(SCREENING_TYPE2_REG0, VLAN_ENABLE, 8, 1)
286     FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_REG_INDEX, 9, 3)
287     FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE, 12, 1)
288     FIELD(SCREENING_TYPE2_REG0, COMPARE_A, 13, 5)
289     FIELD(SCREENING_TYPE2_REG0, COMPARE_A_ENABLE, 18, 1)
290     FIELD(SCREENING_TYPE2_REG0, COMPARE_B, 19, 5)
291     FIELD(SCREENING_TYPE2_REG0, COMPARE_B_ENABLE, 24, 1)
292     FIELD(SCREENING_TYPE2_REG0, COMPARE_C, 25, 5)
293     FIELD(SCREENING_TYPE2_REG0, COMPARE_C_ENABLE, 30, 1)
294     FIELD(SCREENING_TYPE2_REG0, DROP_ON_MATCH, 31, 1)
295 
296 REG32(SCREENING_TYPE2_ETHERTYPE_REG0, 0x6e0)
297 
298 REG32(TYPE2_COMPARE_0_WORD_0, 0x700)
299     FIELD(TYPE2_COMPARE_0_WORD_0, MASK_VALUE, 0, 16)
300     FIELD(TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE, 16, 16)
301 
302 REG32(TYPE2_COMPARE_0_WORD_1, 0x704)
303     FIELD(TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE, 0, 7)
304     FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET, 7, 2)
305     FIELD(TYPE2_COMPARE_0_WORD_1, DISABLE_MASK, 9, 1)
306     FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_VLAN_ID, 10, 1)
307 
308 /*****************************************/
309 
310 
311 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
312 #define GEM_INT_TXCMPL        0x00000080 /* Transmit Complete */
313 #define GEM_INT_AMBA_ERR      0x00000040
314 #define GEM_INT_TXUSED         0x00000008
315 #define GEM_INT_RXUSED         0x00000004
316 #define GEM_INT_RXCMPL        0x00000002
317 
318 #define GEM_PHYMNTNC_OP_R      0x20000000 /* read operation */
319 #define GEM_PHYMNTNC_OP_W      0x10000000 /* write operation */
320 #define GEM_PHYMNTNC_ADDR      0x0F800000 /* Address bits */
321 #define GEM_PHYMNTNC_ADDR_SHFT 23
322 #define GEM_PHYMNTNC_REG       0x007C0000 /* register bits */
323 #define GEM_PHYMNTNC_REG_SHIFT 18
324 
325 /* Marvell PHY definitions */
326 #define BOARD_PHY_ADDRESS    0 /* PHY address we will emulate a device at */
327 
328 #define PHY_REG_CONTROL      0
329 #define PHY_REG_STATUS       1
330 #define PHY_REG_PHYID1       2
331 #define PHY_REG_PHYID2       3
332 #define PHY_REG_ANEGADV      4
333 #define PHY_REG_LINKPABIL    5
334 #define PHY_REG_ANEGEXP      6
335 #define PHY_REG_NEXTP        7
336 #define PHY_REG_LINKPNEXTP   8
337 #define PHY_REG_100BTCTRL    9
338 #define PHY_REG_1000BTSTAT   10
339 #define PHY_REG_EXTSTAT      15
340 #define PHY_REG_PHYSPCFC_CTL 16
341 #define PHY_REG_PHYSPCFC_ST  17
342 #define PHY_REG_INT_EN       18
343 #define PHY_REG_INT_ST       19
344 #define PHY_REG_EXT_PHYSPCFC_CTL  20
345 #define PHY_REG_RXERR        21
346 #define PHY_REG_EACD         22
347 #define PHY_REG_LED          24
348 #define PHY_REG_LED_OVRD     25
349 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
350 #define PHY_REG_EXT_PHYSPCFC_ST   27
351 #define PHY_REG_CABLE_DIAG   28
352 
353 #define PHY_REG_CONTROL_RST       0x8000
354 #define PHY_REG_CONTROL_LOOP      0x4000
355 #define PHY_REG_CONTROL_ANEG      0x1000
356 #define PHY_REG_CONTROL_ANRESTART 0x0200
357 
358 #define PHY_REG_STATUS_LINK     0x0004
359 #define PHY_REG_STATUS_ANEGCMPL 0x0020
360 
361 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
362 #define PHY_REG_INT_ST_LINKC    0x0400
363 #define PHY_REG_INT_ST_ENERGY   0x0010
364 
365 /***********************************************************************/
366 #define GEM_RX_REJECT                   (-1)
367 #define GEM_RX_PROMISCUOUS_ACCEPT       (-2)
368 #define GEM_RX_BROADCAST_ACCEPT         (-3)
369 #define GEM_RX_MULTICAST_HASH_ACCEPT    (-4)
370 #define GEM_RX_UNICAST_HASH_ACCEPT      (-5)
371 
372 #define GEM_RX_SAR_ACCEPT               0
373 
374 /***********************************************************************/
375 
376 #define DESC_1_USED 0x80000000
377 #define DESC_1_LENGTH 0x00001FFF
378 
379 #define DESC_1_TX_WRAP 0x40000000
380 #define DESC_1_TX_LAST 0x00008000
381 
382 #define DESC_0_RX_WRAP 0x00000002
383 #define DESC_0_RX_OWNERSHIP 0x00000001
384 
385 #define R_DESC_1_RX_SAR_SHIFT           25
386 #define R_DESC_1_RX_SAR_LENGTH          2
387 #define R_DESC_1_RX_SAR_MATCH           (1 << 27)
388 #define R_DESC_1_RX_UNICAST_HASH        (1 << 29)
389 #define R_DESC_1_RX_MULTICAST_HASH      (1 << 30)
390 #define R_DESC_1_RX_BROADCAST           (1 << 31)
391 
392 #define DESC_1_RX_SOF 0x00004000
393 #define DESC_1_RX_EOF 0x00008000
394 
395 #define GEM_MODID_VALUE 0x00020118
396 
397 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
398 {
399     uint64_t ret = desc[0];
400 
401     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
402         ret |= (uint64_t)desc[2] << 32;
403     }
404     return ret;
405 }
406 
407 static inline unsigned tx_desc_get_used(uint32_t *desc)
408 {
409     return (desc[1] & DESC_1_USED) ? 1 : 0;
410 }
411 
412 static inline void tx_desc_set_used(uint32_t *desc)
413 {
414     desc[1] |= DESC_1_USED;
415 }
416 
417 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
418 {
419     return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
420 }
421 
422 static inline unsigned tx_desc_get_last(uint32_t *desc)
423 {
424     return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
425 }
426 
427 static inline unsigned tx_desc_get_length(uint32_t *desc)
428 {
429     return desc[1] & DESC_1_LENGTH;
430 }
431 
432 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
433 {
434     DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
435     DB_PRINT("bufaddr: 0x%08x\n", *desc);
436     DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
437     DB_PRINT("wrap:    %d\n", tx_desc_get_wrap(desc));
438     DB_PRINT("last:    %d\n", tx_desc_get_last(desc));
439     DB_PRINT("length:  %d\n", tx_desc_get_length(desc));
440 }
441 
442 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
443 {
444     uint64_t ret = desc[0] & ~0x3UL;
445 
446     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
447         ret |= (uint64_t)desc[2] << 32;
448     }
449     return ret;
450 }
451 
452 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
453 {
454     int ret = 2;
455 
456     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
457         ret += 2;
458     }
459     if (s->regs[R_DMACFG] & (rx_n_tx ? R_DMACFG_RX_BD_EXT_MODE_EN_MASK
460                                      : R_DMACFG_TX_BD_EXT_MODE_EN_MASK)) {
461         ret += 2;
462     }
463 
464     assert(ret <= DESC_MAX_NUM_WORDS);
465     return ret;
466 }
467 
468 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
469 {
470     return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
471 }
472 
473 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
474 {
475     return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
476 }
477 
478 static inline void rx_desc_set_ownership(uint32_t *desc)
479 {
480     desc[0] |= DESC_0_RX_OWNERSHIP;
481 }
482 
483 static inline void rx_desc_set_sof(uint32_t *desc)
484 {
485     desc[1] |= DESC_1_RX_SOF;
486 }
487 
488 static inline void rx_desc_clear_control(uint32_t *desc)
489 {
490     desc[1]  = 0;
491 }
492 
493 static inline void rx_desc_set_eof(uint32_t *desc)
494 {
495     desc[1] |= DESC_1_RX_EOF;
496 }
497 
498 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
499 {
500     desc[1] &= ~DESC_1_LENGTH;
501     desc[1] |= len;
502 }
503 
504 static inline void rx_desc_set_broadcast(uint32_t *desc)
505 {
506     desc[1] |= R_DESC_1_RX_BROADCAST;
507 }
508 
509 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
510 {
511     desc[1] |= R_DESC_1_RX_UNICAST_HASH;
512 }
513 
514 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
515 {
516     desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
517 }
518 
519 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
520 {
521     desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
522                         sar_idx);
523     desc[1] |= R_DESC_1_RX_SAR_MATCH;
524 }
525 
526 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
527 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
528 
529 static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx)
530 {
531     uint32_t size;
532     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, JUMBO_FRAMES)) {
533         size = s->regs[R_JUMBO_MAX_LEN];
534         if (size > s->jumbo_max_len) {
535             size = s->jumbo_max_len;
536             qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be"
537                 " greater than 0x%" PRIx32 "\n", s->jumbo_max_len);
538         }
539     } else if (tx) {
540         size = 1518;
541     } else {
542         size = FIELD_EX32(s->regs[R_NWCFG],
543                           NWCFG, RECV_1536_BYTE_FRAMES) ? 1538 : 1518;
544     }
545     return size;
546 }
547 
548 static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag)
549 {
550     if (q == 0) {
551         s->regs[R_ISR] |= flag & ~(s->regs[R_IMR]);
552     } else {
553         s->regs[R_INT_Q1_STATUS + q - 1] |= flag &
554                                       ~(s->regs[R_INT_Q1_MASK + q - 1]);
555     }
556 }
557 
558 /*
559  * gem_init_register_masks:
560  * One time initialization.
561  * Set masks to identify which register bits have magical clear properties
562  */
563 static void gem_init_register_masks(CadenceGEMState *s)
564 {
565     unsigned int i;
566     /* Mask of register bits which are read only */
567     memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
568     s->regs_ro[R_NWCTRL]   = 0xFFF80000;
569     s->regs_ro[R_NWSTATUS] = 0xFFFFFFFF;
570     s->regs_ro[R_DMACFG]   = 0x8E00F000;
571     s->regs_ro[R_TXSTATUS] = 0xFFFFFE08;
572     s->regs_ro[R_RXQBASE]  = 0x00000003;
573     s->regs_ro[R_TXQBASE]  = 0x00000003;
574     s->regs_ro[R_RXSTATUS] = 0xFFFFFFF0;
575     s->regs_ro[R_ISR]      = 0xFFFFFFFF;
576     s->regs_ro[R_IMR]      = 0xFFFFFFFF;
577     s->regs_ro[R_MODID]    = 0xFFFFFFFF;
578     for (i = 0; i < s->num_priority_queues; i++) {
579         s->regs_ro[R_INT_Q1_STATUS + i] = 0xFFFFFFFF;
580         s->regs_ro[R_INT_Q1_ENABLE + i] = 0xFFFFF319;
581         s->regs_ro[R_INT_Q1_DISABLE + i] = 0xFFFFF319;
582         s->regs_ro[R_INT_Q1_MASK + i] = 0xFFFFFFFF;
583     }
584 
585     /* Mask of register bits which are clear on read */
586     memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
587     s->regs_rtc[R_ISR]      = 0xFFFFFFFF;
588     for (i = 0; i < s->num_priority_queues; i++) {
589         s->regs_rtc[R_INT_Q1_STATUS + i] = 0x00000CE6;
590     }
591 
592     /* Mask of register bits which are write 1 to clear */
593     memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
594     s->regs_w1c[R_TXSTATUS] = 0x000001F7;
595     s->regs_w1c[R_RXSTATUS] = 0x0000000F;
596 
597     /* Mask of register bits which are write only */
598     memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
599     s->regs_wo[R_NWCTRL]   = 0x00073E60;
600     s->regs_wo[R_IER]      = 0x07FFFFFF;
601     s->regs_wo[R_IDR]      = 0x07FFFFFF;
602     for (i = 0; i < s->num_priority_queues; i++) {
603         s->regs_wo[R_INT_Q1_ENABLE + i] = 0x00000CE6;
604         s->regs_wo[R_INT_Q1_DISABLE + i] = 0x00000CE6;
605     }
606 }
607 
608 /*
609  * phy_update_link:
610  * Make the emulated PHY link state match the QEMU "interface" state.
611  */
612 static void phy_update_link(CadenceGEMState *s)
613 {
614     DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
615 
616     /* Autonegotiation status mirrors link status.  */
617     if (qemu_get_queue(s->nic)->link_down) {
618         s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
619                                          PHY_REG_STATUS_LINK);
620         s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
621     } else {
622         s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
623                                          PHY_REG_STATUS_LINK);
624         s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
625                                         PHY_REG_INT_ST_ANEGCMPL |
626                                         PHY_REG_INT_ST_ENERGY);
627     }
628 }
629 
630 static bool gem_can_receive(NetClientState *nc)
631 {
632     CadenceGEMState *s;
633     int i;
634 
635     s = qemu_get_nic_opaque(nc);
636 
637     /* Do nothing if receive is not enabled. */
638     if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_RECEIVE)) {
639         if (s->can_rx_state != 1) {
640             s->can_rx_state = 1;
641             DB_PRINT("can't receive - no enable\n");
642         }
643         return false;
644     }
645 
646     for (i = 0; i < s->num_priority_queues; i++) {
647         if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
648             break;
649         }
650     };
651 
652     if (i == s->num_priority_queues) {
653         if (s->can_rx_state != 2) {
654             s->can_rx_state = 2;
655             DB_PRINT("can't receive - all the buffer descriptors are busy\n");
656         }
657         return false;
658     }
659 
660     if (s->can_rx_state != 0) {
661         s->can_rx_state = 0;
662         DB_PRINT("can receive\n");
663     }
664     return true;
665 }
666 
667 /*
668  * gem_update_int_status:
669  * Raise or lower interrupt based on current status.
670  */
671 static void gem_update_int_status(CadenceGEMState *s)
672 {
673     int i;
674 
675     qemu_set_irq(s->irq[0], !!s->regs[R_ISR]);
676 
677     for (i = 1; i < s->num_priority_queues; ++i) {
678         qemu_set_irq(s->irq[i], !!s->regs[R_INT_Q1_STATUS + i - 1]);
679     }
680 }
681 
682 /*
683  * gem_receive_updatestats:
684  * Increment receive statistics.
685  */
686 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
687                                     unsigned bytes)
688 {
689     uint64_t octets;
690 
691     /* Total octets (bytes) received */
692     octets = ((uint64_t)(s->regs[R_OCTRXLO]) << 32) |
693              s->regs[R_OCTRXHI];
694     octets += bytes;
695     s->regs[R_OCTRXLO] = octets >> 32;
696     s->regs[R_OCTRXHI] = octets;
697 
698     /* Error-free Frames received */
699     s->regs[R_RXCNT]++;
700 
701     /* Error-free Broadcast Frames counter */
702     if (!memcmp(packet, broadcast_addr, 6)) {
703         s->regs[R_RXBROADCNT]++;
704     }
705 
706     /* Error-free Multicast Frames counter */
707     if (packet[0] == 0x01) {
708         s->regs[R_RXMULTICNT]++;
709     }
710 
711     if (bytes <= 64) {
712         s->regs[R_RX64CNT]++;
713     } else if (bytes <= 127) {
714         s->regs[R_RX65CNT]++;
715     } else if (bytes <= 255) {
716         s->regs[R_RX128CNT]++;
717     } else if (bytes <= 511) {
718         s->regs[R_RX256CNT]++;
719     } else if (bytes <= 1023) {
720         s->regs[R_RX512CNT]++;
721     } else if (bytes <= 1518) {
722         s->regs[R_RX1024CNT]++;
723     } else {
724         s->regs[R_RX1519CNT]++;
725     }
726 }
727 
728 /*
729  * Get the MAC Address bit from the specified position
730  */
731 static unsigned get_bit(const uint8_t *mac, unsigned bit)
732 {
733     unsigned byte;
734 
735     byte = mac[bit / 8];
736     byte >>= (bit & 0x7);
737     byte &= 1;
738 
739     return byte;
740 }
741 
742 /*
743  * Calculate a GEM MAC Address hash index
744  */
745 static unsigned calc_mac_hash(const uint8_t *mac)
746 {
747     int index_bit, mac_bit;
748     unsigned hash_index;
749 
750     hash_index = 0;
751     mac_bit = 5;
752     for (index_bit = 5; index_bit >= 0; index_bit--) {
753         hash_index |= (get_bit(mac,  mac_bit) ^
754                                get_bit(mac, mac_bit + 6) ^
755                                get_bit(mac, mac_bit + 12) ^
756                                get_bit(mac, mac_bit + 18) ^
757                                get_bit(mac, mac_bit + 24) ^
758                                get_bit(mac, mac_bit + 30) ^
759                                get_bit(mac, mac_bit + 36) ^
760                                get_bit(mac, mac_bit + 42)) << index_bit;
761         mac_bit--;
762     }
763 
764     return hash_index;
765 }
766 
767 /*
768  * gem_mac_address_filter:
769  * Accept or reject this destination address?
770  * Returns:
771  * GEM_RX_REJECT: reject
772  * >= 0: Specific address accept (which matched SAR is returned)
773  * others for various other modes of accept:
774  * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
775  * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
776  */
777 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
778 {
779     uint8_t *gem_spaddr;
780     int i, is_mc;
781 
782     /* Promiscuous mode? */
783     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, PROMISC)) {
784         return GEM_RX_PROMISCUOUS_ACCEPT;
785     }
786 
787     if (!memcmp(packet, broadcast_addr, 6)) {
788         /* Reject broadcast packets? */
789         if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, NO_BROADCAST)) {
790             return GEM_RX_REJECT;
791         }
792         return GEM_RX_BROADCAST_ACCEPT;
793     }
794 
795     /* Accept packets -w- hash match? */
796     is_mc = is_multicast_ether_addr(packet);
797     if ((is_mc && (FIELD_EX32(s->regs[R_NWCFG], NWCFG, MULTICAST_HASH_EN))) ||
798         (!is_mc && FIELD_EX32(s->regs[R_NWCFG], NWCFG, UNICAST_HASH_EN))) {
799         uint64_t buckets;
800         unsigned hash_index;
801 
802         hash_index = calc_mac_hash(packet);
803         buckets = ((uint64_t)s->regs[R_HASHHI] << 32) | s->regs[R_HASHLO];
804         if ((buckets >> hash_index) & 1) {
805             return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT
806                          : GEM_RX_UNICAST_HASH_ACCEPT;
807         }
808     }
809 
810     /* Check all 4 specific addresses */
811     gem_spaddr = (uint8_t *)&(s->regs[R_SPADDR1LO]);
812     for (i = 3; i >= 0; i--) {
813         if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
814             return GEM_RX_SAR_ACCEPT + i;
815         }
816     }
817 
818     /* No address match; reject the packet */
819     return GEM_RX_REJECT;
820 }
821 
822 /* Figure out which queue the received data should be sent to */
823 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
824                                  unsigned rxbufsize)
825 {
826     uint32_t reg;
827     bool matched, mismatched;
828     int i, j;
829 
830     for (i = 0; i < s->num_type1_screeners; i++) {
831         reg = s->regs[R_SCREENING_TYPE1_REG0 + i];
832         matched = false;
833         mismatched = false;
834 
835         /* Screening is based on UDP Port */
836         if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN)) {
837             uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
838             if (udp_port == FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH)) {
839                 matched = true;
840             } else {
841                 mismatched = true;
842             }
843         }
844 
845         /* Screening is based on DS/TC */
846         if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_ENABLE)) {
847             uint8_t dscp = rxbuf_ptr[14 + 1];
848             if (dscp == FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_MATCH)) {
849                 matched = true;
850             } else {
851                 mismatched = true;
852             }
853         }
854 
855         if (matched && !mismatched) {
856             return FIELD_EX32(reg, SCREENING_TYPE1_REG0, QUEUE_NUM);
857         }
858     }
859 
860     for (i = 0; i < s->num_type2_screeners; i++) {
861         reg = s->regs[R_SCREENING_TYPE2_REG0 + i];
862         matched = false;
863         mismatched = false;
864 
865         if (FIELD_EX32(reg, SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE)) {
866             uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
867             int et_idx = FIELD_EX32(reg, SCREENING_TYPE2_REG0,
868                                     ETHERTYPE_REG_INDEX);
869 
870             if (et_idx > s->num_type2_screeners) {
871                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
872                               "register index: %d\n", et_idx);
873             }
874             if (type == s->regs[R_SCREENING_TYPE2_ETHERTYPE_REG0 +
875                                 et_idx]) {
876                 matched = true;
877             } else {
878                 mismatched = true;
879             }
880         }
881 
882         /* Compare A, B, C */
883         for (j = 0; j < 3; j++) {
884             uint32_t cr0, cr1, mask, compare;
885             uint16_t rx_cmp;
886             int offset;
887             int cr_idx = extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_SHIFT + j * 6,
888                                    R_SCREENING_TYPE2_REG0_COMPARE_A_LENGTH);
889 
890             if (!extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_SHIFT + j * 6,
891                            R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_LENGTH)) {
892                 continue;
893             }
894 
895             if (cr_idx > s->num_type2_screeners) {
896                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
897                               "register index: %d\n", cr_idx);
898             }
899 
900             cr0 = s->regs[R_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
901             cr1 = s->regs[R_TYPE2_COMPARE_0_WORD_1 + cr_idx * 2];
902             offset = FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE);
903 
904             switch (FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET)) {
905             case 3: /* Skip UDP header */
906                 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
907                               "unimplemented - assuming UDP\n");
908                 offset += 8;
909                 /* Fallthrough */
910             case 2: /* skip the IP header */
911                 offset += 20;
912                 /* Fallthrough */
913             case 1: /* Count from after the ethertype */
914                 offset += 14;
915                 break;
916             case 0:
917                 /* Offset from start of frame */
918                 break;
919             }
920 
921             rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
922             mask = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, MASK_VALUE);
923             compare = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE);
924 
925             if ((rx_cmp & mask) == (compare & mask)) {
926                 matched = true;
927             } else {
928                 mismatched = true;
929             }
930         }
931 
932         if (matched && !mismatched) {
933             return FIELD_EX32(reg, SCREENING_TYPE2_REG0, QUEUE_NUM);
934         }
935     }
936 
937     /* We made it here, assume it's queue 0 */
938     return 0;
939 }
940 
941 static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q)
942 {
943     uint32_t base_addr = 0;
944 
945     switch (q) {
946     case 0:
947         base_addr = s->regs[tx ? R_TXQBASE : R_RXQBASE];
948         break;
949     case 1 ... (MAX_PRIORITY_QUEUES - 1):
950         base_addr = s->regs[(tx ? R_TRANSMIT_Q1_PTR :
951                                  R_RECEIVE_Q1_PTR) + q - 1];
952         break;
953     default:
954         g_assert_not_reached();
955     };
956 
957     return base_addr;
958 }
959 
960 static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q)
961 {
962     return gem_get_queue_base_addr(s, true, q);
963 }
964 
965 static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q)
966 {
967     return gem_get_queue_base_addr(s, false, q);
968 }
969 
970 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
971 {
972     hwaddr desc_addr = 0;
973 
974     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
975         desc_addr = s->regs[tx ? R_TBQPH : R_RBQPH];
976     }
977     desc_addr <<= 32;
978     desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
979     return desc_addr;
980 }
981 
982 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
983 {
984     return gem_get_desc_addr(s, true, q);
985 }
986 
987 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
988 {
989     return gem_get_desc_addr(s, false, q);
990 }
991 
992 static void gem_get_rx_desc(CadenceGEMState *s, int q)
993 {
994     hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
995 
996     DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
997 
998     /* read current descriptor */
999     address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1000                        s->rx_desc[q],
1001                        sizeof(uint32_t) * gem_get_desc_len(s, true));
1002 
1003     /* Descriptor owned by software ? */
1004     if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
1005         DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
1006         s->regs[R_RXSTATUS] |= R_RXSTATUS_BUF_NOT_AVAILABLE_MASK;
1007         gem_set_isr(s, q, GEM_INT_RXUSED);
1008         /* Handle interrupt consequences */
1009         gem_update_int_status(s);
1010     }
1011 }
1012 
1013 /*
1014  * gem_receive:
1015  * Fit a packet handed to us by QEMU into the receive descriptor ring.
1016  */
1017 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1018 {
1019     CadenceGEMState *s = qemu_get_nic_opaque(nc);
1020     unsigned   rxbufsize, bytes_to_copy;
1021     unsigned   rxbuf_offset;
1022     uint8_t   *rxbuf_ptr;
1023     bool first_desc = true;
1024     int maf;
1025     int q = 0;
1026 
1027     /* Is this destination MAC address "for us" ? */
1028     maf = gem_mac_address_filter(s, buf);
1029     if (maf == GEM_RX_REJECT) {
1030         return size;  /* no, drop silently b/c it's not an error */
1031     }
1032 
1033     /* Discard packets with receive length error enabled ? */
1034     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, LEN_ERR_DISCARD)) {
1035         unsigned type_len;
1036 
1037         /* Fish the ethertype / length field out of the RX packet */
1038         type_len = buf[12] << 8 | buf[13];
1039         /* It is a length field, not an ethertype */
1040         if (type_len < 0x600) {
1041             if (size < type_len) {
1042                 /* discard */
1043                 return -1;
1044             }
1045         }
1046     }
1047 
1048     /*
1049      * Determine configured receive buffer offset (probably 0)
1050      */
1051     rxbuf_offset = FIELD_EX32(s->regs[R_NWCFG], NWCFG, RECV_BUF_OFFSET);
1052 
1053     /* The configure size of each receive buffer.  Determines how many
1054      * buffers needed to hold this packet.
1055      */
1056     rxbufsize = FIELD_EX32(s->regs[R_DMACFG], DMACFG, RX_BUF_SIZE);
1057     rxbufsize *= GEM_DMACFG_RBUFSZ_MUL;
1058 
1059     bytes_to_copy = size;
1060 
1061     /* Hardware allows a zero value here but warns against it. To avoid QEMU
1062      * indefinite loops we enforce a minimum value here
1063      */
1064     if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
1065         rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
1066     }
1067 
1068     /* Pad to minimum length. Assume FCS field is stripped, logic
1069      * below will increment it to the real minimum of 64 when
1070      * not FCS stripping
1071      */
1072     if (size < 60) {
1073         size = 60;
1074     }
1075 
1076     /* Strip of FCS field ? (usually yes) */
1077     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, FCS_REMOVE)) {
1078         rxbuf_ptr = (void *)buf;
1079     } else {
1080         unsigned crc_val;
1081 
1082         if (size > MAX_FRAME_SIZE - sizeof(crc_val)) {
1083             size = MAX_FRAME_SIZE - sizeof(crc_val);
1084         }
1085         bytes_to_copy = size;
1086         /* The application wants the FCS field, which QEMU does not provide.
1087          * We must try and calculate one.
1088          */
1089 
1090         memcpy(s->rx_packet, buf, size);
1091         memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size);
1092         rxbuf_ptr = s->rx_packet;
1093         crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60)));
1094         memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val));
1095 
1096         bytes_to_copy += 4;
1097         size += 4;
1098     }
1099 
1100     DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size);
1101 
1102     /* Find which queue we are targeting */
1103     q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
1104 
1105     if (size > gem_get_max_buf_len(s, false)) {
1106         qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n");
1107         gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1108         return -1;
1109     }
1110 
1111     while (bytes_to_copy) {
1112         hwaddr desc_addr;
1113 
1114         /* Do nothing if receive is not enabled. */
1115         if (!gem_can_receive(nc)) {
1116             return -1;
1117         }
1118 
1119         DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n",
1120                 MIN(bytes_to_copy, rxbufsize),
1121                 rx_desc_get_buffer(s, s->rx_desc[q]));
1122 
1123         /* Copy packet data to emulated DMA buffer */
1124         address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
1125                                                                   rxbuf_offset,
1126                             MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
1127                             MIN(bytes_to_copy, rxbufsize));
1128         rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
1129         bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
1130 
1131         rx_desc_clear_control(s->rx_desc[q]);
1132 
1133         /* Update the descriptor.  */
1134         if (first_desc) {
1135             rx_desc_set_sof(s->rx_desc[q]);
1136             first_desc = false;
1137         }
1138         if (bytes_to_copy == 0) {
1139             rx_desc_set_eof(s->rx_desc[q]);
1140             rx_desc_set_length(s->rx_desc[q], size);
1141         }
1142         rx_desc_set_ownership(s->rx_desc[q]);
1143 
1144         switch (maf) {
1145         case GEM_RX_PROMISCUOUS_ACCEPT:
1146             break;
1147         case GEM_RX_BROADCAST_ACCEPT:
1148             rx_desc_set_broadcast(s->rx_desc[q]);
1149             break;
1150         case GEM_RX_UNICAST_HASH_ACCEPT:
1151             rx_desc_set_unicast_hash(s->rx_desc[q]);
1152             break;
1153         case GEM_RX_MULTICAST_HASH_ACCEPT:
1154             rx_desc_set_multicast_hash(s->rx_desc[q]);
1155             break;
1156         case GEM_RX_REJECT:
1157             abort();
1158         default: /* SAR */
1159             rx_desc_set_sar(s->rx_desc[q], maf);
1160         }
1161 
1162         /* Descriptor write-back.  */
1163         desc_addr = gem_get_rx_desc_addr(s, q);
1164         address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1165                             s->rx_desc[q],
1166                             sizeof(uint32_t) * gem_get_desc_len(s, true));
1167 
1168         /* Next descriptor */
1169         if (rx_desc_get_wrap(s->rx_desc[q])) {
1170             DB_PRINT("wrapping RX descriptor list\n");
1171             s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q);
1172         } else {
1173             DB_PRINT("incrementing RX descriptor list\n");
1174             s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1175         }
1176 
1177         gem_get_rx_desc(s, q);
1178     }
1179 
1180     /* Count it */
1181     gem_receive_updatestats(s, buf, size);
1182 
1183     s->regs[R_RXSTATUS] |= R_RXSTATUS_FRAME_RECEIVED_MASK;
1184     gem_set_isr(s, q, GEM_INT_RXCMPL);
1185 
1186     /* Handle interrupt consequences */
1187     gem_update_int_status(s);
1188 
1189     return size;
1190 }
1191 
1192 /*
1193  * gem_transmit_updatestats:
1194  * Increment transmit statistics.
1195  */
1196 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1197                                      unsigned bytes)
1198 {
1199     uint64_t octets;
1200 
1201     /* Total octets (bytes) transmitted */
1202     octets = ((uint64_t)(s->regs[R_OCTTXLO]) << 32) |
1203              s->regs[R_OCTTXHI];
1204     octets += bytes;
1205     s->regs[R_OCTTXLO] = octets >> 32;
1206     s->regs[R_OCTTXHI] = octets;
1207 
1208     /* Error-free Frames transmitted */
1209     s->regs[R_TXCNT]++;
1210 
1211     /* Error-free Broadcast Frames counter */
1212     if (!memcmp(packet, broadcast_addr, 6)) {
1213         s->regs[R_TXBCNT]++;
1214     }
1215 
1216     /* Error-free Multicast Frames counter */
1217     if (packet[0] == 0x01) {
1218         s->regs[R_TXMCNT]++;
1219     }
1220 
1221     if (bytes <= 64) {
1222         s->regs[R_TX64CNT]++;
1223     } else if (bytes <= 127) {
1224         s->regs[R_TX65CNT]++;
1225     } else if (bytes <= 255) {
1226         s->regs[R_TX128CNT]++;
1227     } else if (bytes <= 511) {
1228         s->regs[R_TX256CNT]++;
1229     } else if (bytes <= 1023) {
1230         s->regs[R_TX512CNT]++;
1231     } else if (bytes <= 1518) {
1232         s->regs[R_TX1024CNT]++;
1233     } else {
1234         s->regs[R_TX1519CNT]++;
1235     }
1236 }
1237 
1238 /*
1239  * gem_transmit:
1240  * Fish packets out of the descriptor ring and feed them to QEMU
1241  */
1242 static void gem_transmit(CadenceGEMState *s)
1243 {
1244     uint32_t desc[DESC_MAX_NUM_WORDS];
1245     hwaddr packet_desc_addr;
1246     uint8_t     *p;
1247     unsigned    total_bytes;
1248     int q = 0;
1249 
1250     /* Do nothing if transmit is not enabled. */
1251     if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1252         return;
1253     }
1254 
1255     DB_PRINT("\n");
1256 
1257     /* The packet we will hand off to QEMU.
1258      * Packets scattered across multiple descriptors are gathered to this
1259      * one contiguous buffer first.
1260      */
1261     p = s->tx_packet;
1262     total_bytes = 0;
1263 
1264     for (q = s->num_priority_queues - 1; q >= 0; q--) {
1265         /* read current descriptor */
1266         packet_desc_addr = gem_get_tx_desc_addr(s, q);
1267 
1268         DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1269         address_space_read(&s->dma_as, packet_desc_addr,
1270                            MEMTXATTRS_UNSPECIFIED, desc,
1271                            sizeof(uint32_t) * gem_get_desc_len(s, false));
1272         /* Handle all descriptors owned by hardware */
1273         while (tx_desc_get_used(desc) == 0) {
1274 
1275             /* Do nothing if transmit is not enabled. */
1276             if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1277                 return;
1278             }
1279             print_gem_tx_desc(desc, q);
1280 
1281             /* The real hardware would eat this (and possibly crash).
1282              * For QEMU let's lend a helping hand.
1283              */
1284             if ((tx_desc_get_buffer(s, desc) == 0) ||
1285                 (tx_desc_get_length(desc) == 0)) {
1286                 DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n",
1287                          packet_desc_addr);
1288                 break;
1289             }
1290 
1291             if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) -
1292                                                (p - s->tx_packet)) {
1293                 qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \
1294                          HWADDR_PRIx " too large: size 0x%x space 0x%zx\n",
1295                          packet_desc_addr, tx_desc_get_length(desc),
1296                          gem_get_max_buf_len(s, true) - (p - s->tx_packet));
1297                 gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1298                 break;
1299             }
1300 
1301             /* Gather this fragment of the packet from "dma memory" to our
1302              * contig buffer.
1303              */
1304             address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1305                                MEMTXATTRS_UNSPECIFIED,
1306                                p, tx_desc_get_length(desc));
1307             p += tx_desc_get_length(desc);
1308             total_bytes += tx_desc_get_length(desc);
1309 
1310             /* Last descriptor for this packet; hand the whole thing off */
1311             if (tx_desc_get_last(desc)) {
1312                 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1313                 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1314 
1315                 /* Modify the 1st descriptor of this packet to be owned by
1316                  * the processor.
1317                  */
1318                 address_space_read(&s->dma_as, desc_addr,
1319                                    MEMTXATTRS_UNSPECIFIED, desc_first,
1320                                    sizeof(desc_first));
1321                 tx_desc_set_used(desc_first);
1322                 address_space_write(&s->dma_as, desc_addr,
1323                                     MEMTXATTRS_UNSPECIFIED, desc_first,
1324                                     sizeof(desc_first));
1325                 /* Advance the hardware current descriptor past this packet */
1326                 if (tx_desc_get_wrap(desc)) {
1327                     s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q);
1328                 } else {
1329                     s->tx_desc_addr[q] = packet_desc_addr +
1330                                          4 * gem_get_desc_len(s, false);
1331                 }
1332                 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1333 
1334                 s->regs[R_TXSTATUS] |= R_TXSTATUS_TRANSMIT_COMPLETE_MASK;
1335                 gem_set_isr(s, q, GEM_INT_TXCMPL);
1336 
1337                 /* Handle interrupt consequences */
1338                 gem_update_int_status(s);
1339 
1340                 /* Is checksum offload enabled? */
1341                 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, TX_PBUF_CSUM_OFFLOAD)) {
1342                     net_checksum_calculate(s->tx_packet, total_bytes, CSUM_ALL);
1343                 }
1344 
1345                 /* Update MAC statistics */
1346                 gem_transmit_updatestats(s, s->tx_packet, total_bytes);
1347 
1348                 /* Send the packet somewhere */
1349                 if (s->phy_loop || FIELD_EX32(s->regs[R_NWCTRL], NWCTRL,
1350                                               LOOPBACK_LOCAL)) {
1351                     qemu_receive_packet(qemu_get_queue(s->nic), s->tx_packet,
1352                                         total_bytes);
1353                 } else {
1354                     qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet,
1355                                      total_bytes);
1356                 }
1357 
1358                 /* Prepare for next packet */
1359                 p = s->tx_packet;
1360                 total_bytes = 0;
1361             }
1362 
1363             /* read next descriptor */
1364             if (tx_desc_get_wrap(desc)) {
1365                 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
1366                     packet_desc_addr = s->regs[R_TBQPH];
1367                     packet_desc_addr <<= 32;
1368                 } else {
1369                     packet_desc_addr = 0;
1370                 }
1371                 packet_desc_addr |= gem_get_tx_queue_base_addr(s, q);
1372             } else {
1373                 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1374             }
1375             DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1376             address_space_read(&s->dma_as, packet_desc_addr,
1377                                MEMTXATTRS_UNSPECIFIED, desc,
1378                                sizeof(uint32_t) * gem_get_desc_len(s, false));
1379         }
1380 
1381         if (tx_desc_get_used(desc)) {
1382             s->regs[R_TXSTATUS] |= R_TXSTATUS_USED_BIT_READ_MASK;
1383             /* IRQ TXUSED is defined only for queue 0 */
1384             if (q == 0) {
1385                 gem_set_isr(s, 0, GEM_INT_TXUSED);
1386             }
1387             gem_update_int_status(s);
1388         }
1389     }
1390 }
1391 
1392 static void gem_phy_reset(CadenceGEMState *s)
1393 {
1394     memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1395     s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1396     s->phy_regs[PHY_REG_STATUS] = 0x7969;
1397     s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1398     s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1399     s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1400     s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1401     s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1402     s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1403     s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1404     s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1405     s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1406     s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1407     s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1408     s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1409     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1410     s->phy_regs[PHY_REG_LED] = 0x4100;
1411     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1412     s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1413 
1414     phy_update_link(s);
1415 }
1416 
1417 static void gem_reset(DeviceState *d)
1418 {
1419     int i;
1420     CadenceGEMState *s = CADENCE_GEM(d);
1421     const uint8_t *a;
1422     uint32_t queues_mask = 0;
1423 
1424     DB_PRINT("\n");
1425 
1426     /* Set post reset register values */
1427     memset(&s->regs[0], 0, sizeof(s->regs));
1428     s->regs[R_NWCFG] = 0x00080000;
1429     s->regs[R_NWSTATUS] = 0x00000006;
1430     s->regs[R_DMACFG] = 0x00020784;
1431     s->regs[R_IMR] = 0x07ffffff;
1432     s->regs[R_TXPAUSE] = 0x0000ffff;
1433     s->regs[R_TXPARTIALSF] = 0x000003ff;
1434     s->regs[R_RXPARTIALSF] = 0x000003ff;
1435     s->regs[R_MODID] = s->revision;
1436     s->regs[R_DESCONF] = 0x02D00111;
1437     s->regs[R_DESCONF2] = 0x2ab10000 | s->jumbo_max_len;
1438     s->regs[R_DESCONF5] = 0x002f2045;
1439     s->regs[R_DESCONF6] = GEM_DESCONF6_64B_MASK;
1440     s->regs[R_INT_Q1_MASK] = 0x00000CE6;
1441     s->regs[R_JUMBO_MAX_LEN] = s->jumbo_max_len;
1442 
1443     if (s->num_priority_queues > 1) {
1444         queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1445         s->regs[R_DESCONF6] |= queues_mask;
1446     }
1447 
1448     /* Set MAC address */
1449     a = &s->conf.macaddr.a[0];
1450     s->regs[R_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1451     s->regs[R_SPADDR1HI] = a[4] | (a[5] << 8);
1452 
1453     for (i = 0; i < 4; i++) {
1454         s->sar_active[i] = false;
1455     }
1456 
1457     gem_phy_reset(s);
1458 
1459     gem_update_int_status(s);
1460 }
1461 
1462 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1463 {
1464     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1465     return s->phy_regs[reg_num];
1466 }
1467 
1468 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1469 {
1470     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1471 
1472     switch (reg_num) {
1473     case PHY_REG_CONTROL:
1474         if (val & PHY_REG_CONTROL_RST) {
1475             /* Phy reset */
1476             gem_phy_reset(s);
1477             val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1478             s->phy_loop = 0;
1479         }
1480         if (val & PHY_REG_CONTROL_ANEG) {
1481             /* Complete autonegotiation immediately */
1482             val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
1483             s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1484         }
1485         if (val & PHY_REG_CONTROL_LOOP) {
1486             DB_PRINT("PHY placed in loopback\n");
1487             s->phy_loop = 1;
1488         } else {
1489             s->phy_loop = 0;
1490         }
1491         break;
1492     }
1493     s->phy_regs[reg_num] = val;
1494 }
1495 
1496 /*
1497  * gem_read32:
1498  * Read a GEM register.
1499  */
1500 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1501 {
1502     CadenceGEMState *s;
1503     uint32_t retval;
1504     s = opaque;
1505 
1506     offset >>= 2;
1507     retval = s->regs[offset];
1508 
1509     DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1510 
1511     switch (offset) {
1512     case R_ISR:
1513         DB_PRINT("lowering irqs on ISR read\n");
1514         /* The interrupts get updated at the end of the function. */
1515         break;
1516     case R_PHYMNTNC:
1517         if (retval & GEM_PHYMNTNC_OP_R) {
1518             uint32_t phy_addr, reg_num;
1519 
1520             phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1521             if (phy_addr == s->phy_addr) {
1522                 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1523                 retval &= 0xFFFF0000;
1524                 retval |= gem_phy_read(s, reg_num);
1525             } else {
1526                 retval |= 0xFFFF; /* No device at this address */
1527             }
1528         }
1529         break;
1530     }
1531 
1532     /* Squash read to clear bits */
1533     s->regs[offset] &= ~(s->regs_rtc[offset]);
1534 
1535     /* Do not provide write only bits */
1536     retval &= ~(s->regs_wo[offset]);
1537 
1538     DB_PRINT("0x%08x\n", retval);
1539     gem_update_int_status(s);
1540     return retval;
1541 }
1542 
1543 /*
1544  * gem_write32:
1545  * Write a GEM register.
1546  */
1547 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1548         unsigned size)
1549 {
1550     CadenceGEMState *s = (CadenceGEMState *)opaque;
1551     uint32_t readonly;
1552     int i;
1553 
1554     DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1555     offset >>= 2;
1556 
1557     /* Squash bits which are read only in write value */
1558     val &= ~(s->regs_ro[offset]);
1559     /* Preserve (only) bits which are read only and wtc in register */
1560     readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1561 
1562     /* Copy register write to backing store */
1563     s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1564 
1565     /* do w1c */
1566     s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1567 
1568     /* Handle register write side effects */
1569     switch (offset) {
1570     case R_NWCTRL:
1571         if (FIELD_EX32(val, NWCTRL, ENABLE_RECEIVE)) {
1572             for (i = 0; i < s->num_priority_queues; ++i) {
1573                 gem_get_rx_desc(s, i);
1574             }
1575         }
1576         if (FIELD_EX32(val, NWCTRL, TRANSMIT_START)) {
1577             gem_transmit(s);
1578         }
1579         if (!(FIELD_EX32(val, NWCTRL, ENABLE_TRANSMIT))) {
1580             /* Reset to start of Q when transmit disabled. */
1581             for (i = 0; i < s->num_priority_queues; i++) {
1582                 s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i);
1583             }
1584         }
1585         if (gem_can_receive(qemu_get_queue(s->nic))) {
1586             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1587         }
1588         break;
1589 
1590     case R_TXSTATUS:
1591         gem_update_int_status(s);
1592         break;
1593     case R_RXQBASE:
1594         s->rx_desc_addr[0] = val;
1595         break;
1596     case R_RECEIVE_Q1_PTR ... R_RECEIVE_Q7_PTR:
1597         s->rx_desc_addr[offset - R_RECEIVE_Q1_PTR + 1] = val;
1598         break;
1599     case R_TXQBASE:
1600         s->tx_desc_addr[0] = val;
1601         break;
1602     case R_TRANSMIT_Q1_PTR ... R_TRANSMIT_Q7_PTR:
1603         s->tx_desc_addr[offset - R_TRANSMIT_Q1_PTR + 1] = val;
1604         break;
1605     case R_RXSTATUS:
1606         gem_update_int_status(s);
1607         break;
1608     case R_IER:
1609         s->regs[R_IMR] &= ~val;
1610         gem_update_int_status(s);
1611         break;
1612     case R_JUMBO_MAX_LEN:
1613         s->regs[R_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK;
1614         break;
1615     case R_INT_Q1_ENABLE ... R_INT_Q7_ENABLE:
1616         s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_ENABLE] &= ~val;
1617         gem_update_int_status(s);
1618         break;
1619     case R_IDR:
1620         s->regs[R_IMR] |= val;
1621         gem_update_int_status(s);
1622         break;
1623     case R_INT_Q1_DISABLE ... R_INT_Q7_DISABLE:
1624         s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_DISABLE] |= val;
1625         gem_update_int_status(s);
1626         break;
1627     case R_SPADDR1LO:
1628     case R_SPADDR2LO:
1629     case R_SPADDR3LO:
1630     case R_SPADDR4LO:
1631         s->sar_active[(offset - R_SPADDR1LO) / 2] = false;
1632         break;
1633     case R_SPADDR1HI:
1634     case R_SPADDR2HI:
1635     case R_SPADDR3HI:
1636     case R_SPADDR4HI:
1637         s->sar_active[(offset - R_SPADDR1HI) / 2] = true;
1638         break;
1639     case R_PHYMNTNC:
1640         if (val & GEM_PHYMNTNC_OP_W) {
1641             uint32_t phy_addr, reg_num;
1642 
1643             phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1644             if (phy_addr == s->phy_addr) {
1645                 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1646                 gem_phy_write(s, reg_num, val);
1647             }
1648         }
1649         break;
1650     }
1651 
1652     DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1653 }
1654 
1655 static const MemoryRegionOps gem_ops = {
1656     .read = gem_read,
1657     .write = gem_write,
1658     .endianness = DEVICE_LITTLE_ENDIAN,
1659 };
1660 
1661 static void gem_set_link(NetClientState *nc)
1662 {
1663     CadenceGEMState *s = qemu_get_nic_opaque(nc);
1664 
1665     DB_PRINT("\n");
1666     phy_update_link(s);
1667     gem_update_int_status(s);
1668 }
1669 
1670 static NetClientInfo net_gem_info = {
1671     .type = NET_CLIENT_DRIVER_NIC,
1672     .size = sizeof(NICState),
1673     .can_receive = gem_can_receive,
1674     .receive = gem_receive,
1675     .link_status_changed = gem_set_link,
1676 };
1677 
1678 static void gem_realize(DeviceState *dev, Error **errp)
1679 {
1680     CadenceGEMState *s = CADENCE_GEM(dev);
1681     int i;
1682 
1683     address_space_init(&s->dma_as,
1684                        s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1685 
1686     if (s->num_priority_queues == 0 ||
1687         s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1688         error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1689                    s->num_priority_queues);
1690         return;
1691     } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1692         error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1693                    s->num_type1_screeners);
1694         return;
1695     } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1696         error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1697                    s->num_type2_screeners);
1698         return;
1699     }
1700 
1701     for (i = 0; i < s->num_priority_queues; ++i) {
1702         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1703     }
1704 
1705     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1706 
1707     s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1708                           object_get_typename(OBJECT(dev)), dev->id, s);
1709 
1710     if (s->jumbo_max_len > MAX_FRAME_SIZE) {
1711         error_setg(errp, "jumbo-max-len is greater than %d",
1712                   MAX_FRAME_SIZE);
1713         return;
1714     }
1715 }
1716 
1717 static void gem_init(Object *obj)
1718 {
1719     CadenceGEMState *s = CADENCE_GEM(obj);
1720     DeviceState *dev = DEVICE(obj);
1721 
1722     DB_PRINT("\n");
1723 
1724     gem_init_register_masks(s);
1725     memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1726                           "enet", sizeof(s->regs));
1727 
1728     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1729 }
1730 
1731 static const VMStateDescription vmstate_cadence_gem = {
1732     .name = "cadence_gem",
1733     .version_id = 4,
1734     .minimum_version_id = 4,
1735     .fields = (VMStateField[]) {
1736         VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1737         VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1738         VMSTATE_UINT8(phy_loop, CadenceGEMState),
1739         VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1740                              MAX_PRIORITY_QUEUES),
1741         VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1742                              MAX_PRIORITY_QUEUES),
1743         VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1744         VMSTATE_END_OF_LIST(),
1745     }
1746 };
1747 
1748 static Property gem_properties[] = {
1749     DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1750     DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1751                        GEM_MODID_VALUE),
1752     DEFINE_PROP_UINT8("phy-addr", CadenceGEMState, phy_addr, BOARD_PHY_ADDRESS),
1753     DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1754                       num_priority_queues, 1),
1755     DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1756                       num_type1_screeners, 4),
1757     DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1758                       num_type2_screeners, 4),
1759     DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState,
1760                        jumbo_max_len, 10240),
1761     DEFINE_PROP_LINK("dma", CadenceGEMState, dma_mr,
1762                      TYPE_MEMORY_REGION, MemoryRegion *),
1763     DEFINE_PROP_END_OF_LIST(),
1764 };
1765 
1766 static void gem_class_init(ObjectClass *klass, void *data)
1767 {
1768     DeviceClass *dc = DEVICE_CLASS(klass);
1769 
1770     dc->realize = gem_realize;
1771     device_class_set_props(dc, gem_properties);
1772     dc->vmsd = &vmstate_cadence_gem;
1773     dc->reset = gem_reset;
1774 }
1775 
1776 static const TypeInfo gem_info = {
1777     .name  = TYPE_CADENCE_GEM,
1778     .parent = TYPE_SYS_BUS_DEVICE,
1779     .instance_size  = sizeof(CadenceGEMState),
1780     .instance_init = gem_init,
1781     .class_init = gem_class_init,
1782 };
1783 
1784 static void gem_register_types(void)
1785 {
1786     type_register_static(&gem_info);
1787 }
1788 
1789 type_init(gem_register_types)
1790