xref: /qemu/hw/net/cadence_gem.c (revision bd8a922d)
1 /*
2  * QEMU Cadence GEM emulation
3  *
4  * Copyright (c) 2011 Xilinx, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
27 
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/registerfields.h"
32 #include "migration/vmstate.h"
33 #include "qapi/error.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "sysemu/dma.h"
37 #include "net/checksum.h"
38 #include "net/eth.h"
39 
40 #define CADENCE_GEM_ERR_DEBUG 0
41 #define DB_PRINT(...) do {\
42     if (CADENCE_GEM_ERR_DEBUG) {   \
43         qemu_log(": %s: ", __func__); \
44         qemu_log(__VA_ARGS__); \
45     } \
46 } while (0)
47 
48 REG32(NWCTRL, 0x0) /* Network Control reg */
49     FIELD(NWCTRL, LOOPBACK , 0, 1)
50     FIELD(NWCTRL, LOOPBACK_LOCAL , 1, 1)
51     FIELD(NWCTRL, ENABLE_RECEIVE, 2, 1)
52     FIELD(NWCTRL, ENABLE_TRANSMIT, 3, 1)
53     FIELD(NWCTRL, MAN_PORT_EN , 4, 1)
54     FIELD(NWCTRL, CLEAR_ALL_STATS_REGS , 5, 1)
55     FIELD(NWCTRL, INC_ALL_STATS_REGS, 6, 1)
56     FIELD(NWCTRL, STATS_WRITE_EN, 7, 1)
57     FIELD(NWCTRL, BACK_PRESSURE, 8, 1)
58     FIELD(NWCTRL, TRANSMIT_START , 9, 1)
59     FIELD(NWCTRL, TRANSMIT_HALT, 10, 1)
60     FIELD(NWCTRL, TX_PAUSE_FRAME_RE, 11, 1)
61     FIELD(NWCTRL, TX_PAUSE_FRAME_ZE, 12, 1)
62     FIELD(NWCTRL, STATS_TAKE_SNAP, 13, 1)
63     FIELD(NWCTRL, STATS_READ_SNAP, 14, 1)
64     FIELD(NWCTRL, STORE_RX_TS, 15, 1)
65     FIELD(NWCTRL, PFC_ENABLE, 16, 1)
66     FIELD(NWCTRL, PFC_PRIO_BASED, 17, 1)
67     FIELD(NWCTRL, FLUSH_RX_PKT_PCLK , 18, 1)
68     FIELD(NWCTRL, TX_LPI_EN, 19, 1)
69     FIELD(NWCTRL, PTP_UNICAST_ENA, 20, 1)
70     FIELD(NWCTRL, ALT_SGMII_MODE, 21, 1)
71     FIELD(NWCTRL, STORE_UDP_OFFSET, 22, 1)
72     FIELD(NWCTRL, EXT_TSU_PORT_EN, 23, 1)
73     FIELD(NWCTRL, ONE_STEP_SYNC_MO, 24, 1)
74     FIELD(NWCTRL, PFC_CTRL , 25, 1)
75     FIELD(NWCTRL, EXT_RXQ_SEL_EN , 26, 1)
76     FIELD(NWCTRL, OSS_CORRECTION_FIELD, 27, 1)
77     FIELD(NWCTRL, SEL_MII_ON_RGMII, 28, 1)
78     FIELD(NWCTRL, TWO_PT_FIVE_GIG, 29, 1)
79     FIELD(NWCTRL, IFG_EATS_QAV_CREDIT, 30, 1)
80 
81 REG32(NWCFG, 0x4) /* Network Config reg */
82 REG32(NWSTATUS, 0x8) /* Network Status reg */
83 REG32(USERIO, 0xc) /* User IO reg */
84 REG32(DMACFG, 0x10) /* DMA Control reg */
85 REG32(TXSTATUS, 0x14) /* TX Status reg */
86 REG32(RXQBASE, 0x18) /* RX Q Base address reg */
87 REG32(TXQBASE, 0x1c) /* TX Q Base address reg */
88 REG32(RXSTATUS, 0x20) /* RX Status reg */
89 REG32(ISR, 0x24) /* Interrupt Status reg */
90 REG32(IER, 0x28) /* Interrupt Enable reg */
91 REG32(IDR, 0x2c) /* Interrupt Disable reg */
92 REG32(IMR, 0x30) /* Interrupt Mask reg */
93 REG32(PHYMNTNC, 0x34) /* Phy Maintenance reg */
94 REG32(RXPAUSE, 0x38) /* RX Pause Time reg */
95 REG32(TXPAUSE, 0x3c) /* TX Pause Time reg */
96 REG32(TXPARTIALSF, 0x40) /* TX Partial Store and Forward */
97 REG32(RXPARTIALSF, 0x44) /* RX Partial Store and Forward */
98 REG32(JUMBO_MAX_LEN, 0x48) /* Max Jumbo Frame Size */
99 REG32(HASHLO, 0x80) /* Hash Low address reg */
100 REG32(HASHHI, 0x84) /* Hash High address reg */
101 REG32(SPADDR1LO, 0x88) /* Specific addr 1 low reg */
102 REG32(SPADDR1HI, 0x8c) /* Specific addr 1 high reg */
103 REG32(SPADDR2LO, 0x90) /* Specific addr 2 low reg */
104 REG32(SPADDR2HI, 0x94) /* Specific addr 2 high reg */
105 REG32(SPADDR3LO, 0x98) /* Specific addr 3 low reg */
106 REG32(SPADDR3HI, 0x9c) /* Specific addr 3 high reg */
107 REG32(SPADDR4LO, 0xa0) /* Specific addr 4 low reg */
108 REG32(SPADDR4HI, 0xa4) /* Specific addr 4 high reg */
109 REG32(TIDMATCH1, 0xa8) /* Type ID1 Match reg */
110 REG32(TIDMATCH2, 0xac) /* Type ID2 Match reg */
111 REG32(TIDMATCH3, 0xb0) /* Type ID3 Match reg */
112 REG32(TIDMATCH4, 0xb4) /* Type ID4 Match reg */
113 REG32(WOLAN, 0xb8) /* Wake on LAN reg */
114 REG32(IPGSTRETCH, 0xbc) /* IPG Stretch reg */
115 REG32(SVLAN, 0xc0) /* Stacked VLAN reg */
116 REG32(MODID, 0xfc) /* Module ID reg */
117 REG32(OCTTXLO, 0x100) /* Octects transmitted Low reg */
118 REG32(OCTTXHI, 0x104) /* Octects transmitted High reg */
119 REG32(TXCNT, 0x108) /* Error-free Frames transmitted */
120 REG32(TXBCNT, 0x10c) /* Error-free Broadcast Frames */
121 REG32(TXMCNT, 0x110) /* Error-free Multicast Frame */
122 REG32(TXPAUSECNT, 0x114) /* Pause Frames Transmitted */
123 REG32(TX64CNT, 0x118) /* Error-free 64 TX */
124 REG32(TX65CNT, 0x11c) /* Error-free 65-127 TX */
125 REG32(TX128CNT, 0x120) /* Error-free 128-255 TX */
126 REG32(TX256CNT, 0x124) /* Error-free 256-511 */
127 REG32(TX512CNT, 0x128) /* Error-free 512-1023 TX */
128 REG32(TX1024CNT, 0x12c) /* Error-free 1024-1518 TX */
129 REG32(TX1519CNT, 0x130) /* Error-free larger than 1519 TX */
130 REG32(TXURUNCNT, 0x134) /* TX under run error counter */
131 REG32(SINGLECOLLCNT, 0x138) /* Single Collision Frames */
132 REG32(MULTCOLLCNT, 0x13c) /* Multiple Collision Frames */
133 REG32(EXCESSCOLLCNT, 0x140) /* Excessive Collision Frames */
134 REG32(LATECOLLCNT, 0x144) /* Late Collision Frames */
135 REG32(DEFERTXCNT, 0x148) /* Deferred Transmission Frames */
136 REG32(CSENSECNT, 0x14c) /* Carrier Sense Error Counter */
137 REG32(OCTRXLO, 0x150) /* Octects Received register Low */
138 REG32(OCTRXHI, 0x154) /* Octects Received register High */
139 REG32(RXCNT, 0x158) /* Error-free Frames Received */
140 REG32(RXBROADCNT, 0x15c) /* Error-free Broadcast Frames RX */
141 REG32(RXMULTICNT, 0x160) /* Error-free Multicast Frames RX */
142 REG32(RXPAUSECNT, 0x164) /* Pause Frames Received Counter */
143 REG32(RX64CNT, 0x168) /* Error-free 64 byte Frames RX */
144 REG32(RX65CNT, 0x16c) /* Error-free 65-127B Frames RX */
145 REG32(RX128CNT, 0x170) /* Error-free 128-255B Frames RX */
146 REG32(RX256CNT, 0x174) /* Error-free 256-512B Frames RX */
147 REG32(RX512CNT, 0x178) /* Error-free 512-1023B Frames RX */
148 REG32(RX1024CNT, 0x17c) /* Error-free 1024-1518B Frames RX */
149 REG32(RX1519CNT, 0x180) /* Error-free 1519-max Frames RX */
150 REG32(RXUNDERCNT, 0x184) /* Undersize Frames Received */
151 REG32(RXOVERCNT, 0x188) /* Oversize Frames Received */
152 REG32(RXJABCNT, 0x18c) /* Jabbers Received Counter */
153 REG32(RXFCSCNT, 0x190) /* Frame Check seq. Error Counter */
154 REG32(RXLENERRCNT, 0x194) /* Length Field Error Counter */
155 REG32(RXSYMERRCNT, 0x198) /* Symbol Error Counter */
156 REG32(RXALIGNERRCNT, 0x19c) /* Alignment Error Counter */
157 REG32(RXRSCERRCNT, 0x1a0) /* Receive Resource Error Counter */
158 REG32(RXORUNCNT, 0x1a4) /* Receive Overrun Counter */
159 REG32(RXIPCSERRCNT, 0x1a8) /* IP header Checksum Err Counter */
160 REG32(RXTCPCCNT, 0x1ac) /* TCP Checksum Error Counter */
161 REG32(RXUDPCCNT, 0x1b0) /* UDP Checksum Error Counter */
162 
163 REG32(1588S, 0x1d0) /* 1588 Timer Seconds */
164 REG32(1588NS, 0x1d4) /* 1588 Timer Nanoseconds */
165 REG32(1588ADJ, 0x1d8) /* 1588 Timer Adjust */
166 REG32(1588INC, 0x1dc) /* 1588 Timer Increment */
167 REG32(PTPETXS, 0x1e0) /* PTP Event Frame Transmitted (s) */
168 REG32(PTPETXNS, 0x1e4) /* PTP Event Frame Transmitted (ns) */
169 REG32(PTPERXS, 0x1e8) /* PTP Event Frame Received (s) */
170 REG32(PTPERXNS, 0x1ec) /* PTP Event Frame Received (ns) */
171 REG32(PTPPTXS, 0x1e0) /* PTP Peer Frame Transmitted (s) */
172 REG32(PTPPTXNS, 0x1e4) /* PTP Peer Frame Transmitted (ns) */
173 REG32(PTPPRXS, 0x1e8) /* PTP Peer Frame Received (s) */
174 REG32(PTPPRXNS, 0x1ec) /* PTP Peer Frame Received (ns) */
175 
176 /* Design Configuration Registers */
177 REG32(DESCONF, 0x280)
178 REG32(DESCONF2, 0x284)
179 REG32(DESCONF3, 0x288)
180 REG32(DESCONF4, 0x28c)
181 REG32(DESCONF5, 0x290)
182 REG32(DESCONF6, 0x294)
183 #define GEM_DESCONF6_64B_MASK (1U << 23)
184 REG32(DESCONF7, 0x298)
185 
186 REG32(INT_Q1_STATUS, 0x400)
187 REG32(INT_Q1_MASK, 0x640)
188 
189 REG32(TRANSMIT_Q1_PTR, 0x440)
190 REG32(TRANSMIT_Q7_PTR, 0x458)
191 
192 REG32(RECEIVE_Q1_PTR, 0x480)
193 REG32(RECEIVE_Q7_PTR, 0x498)
194 
195 REG32(TBQPH, 0x4c8)
196 REG32(RBQPH, 0x4d4)
197 
198 REG32(INT_Q1_ENABLE, 0x600)
199 REG32(INT_Q7_ENABLE, 0x618)
200 
201 REG32(INT_Q1_DISABLE, 0x620)
202 REG32(INT_Q7_DISABLE, 0x638)
203 
204 REG32(SCREENING_TYPE1_REG0, 0x500)
205     FIELD(SCREENING_TYPE1_REG0, QUEUE_NUM, 0, 4)
206     FIELD(SCREENING_TYPE1_REG0, DSTC_MATCH, 4, 8)
207     FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH, 12, 16)
208     FIELD(SCREENING_TYPE1_REG0, DSTC_ENABLE, 28, 1)
209     FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN, 29, 1)
210     FIELD(SCREENING_TYPE1_REG0, DROP_ON_MATCH, 30, 1)
211 
212 REG32(SCREENING_TYPE2_REG0, 0x540)
213     FIELD(SCREENING_TYPE2_REG0, QUEUE_NUM, 0, 4)
214     FIELD(SCREENING_TYPE2_REG0, VLAN_PRIORITY, 4, 3)
215     FIELD(SCREENING_TYPE2_REG0, VLAN_ENABLE, 8, 1)
216     FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_REG_INDEX, 9, 3)
217     FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE, 12, 1)
218     FIELD(SCREENING_TYPE2_REG0, COMPARE_A, 13, 5)
219     FIELD(SCREENING_TYPE2_REG0, COMPARE_A_ENABLE, 18, 1)
220     FIELD(SCREENING_TYPE2_REG0, COMPARE_B, 19, 5)
221     FIELD(SCREENING_TYPE2_REG0, COMPARE_B_ENABLE, 24, 1)
222     FIELD(SCREENING_TYPE2_REG0, COMPARE_C, 25, 5)
223     FIELD(SCREENING_TYPE2_REG0, COMPARE_C_ENABLE, 30, 1)
224     FIELD(SCREENING_TYPE2_REG0, DROP_ON_MATCH, 31, 1)
225 
226 REG32(SCREENING_TYPE2_ETHERTYPE_REG0, 0x6e0)
227 
228 REG32(TYPE2_COMPARE_0_WORD_0, 0x700)
229     FIELD(TYPE2_COMPARE_0_WORD_0, MASK_VALUE, 0, 16)
230     FIELD(TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE, 16, 16)
231 
232 REG32(TYPE2_COMPARE_0_WORD_1, 0x704)
233     FIELD(TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE, 0, 7)
234     FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET, 7, 2)
235     FIELD(TYPE2_COMPARE_0_WORD_1, DISABLE_MASK, 9, 1)
236     FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_VLAN_ID, 10, 1)
237 
238 /*****************************************/
239 #define GEM_NWCFG_STRIP_FCS    0x00020000 /* Strip FCS field */
240 #define GEM_NWCFG_LERR_DISC    0x00010000 /* Discard RX frames with len err */
241 #define GEM_NWCFG_BUFF_OFST_M  0x0000C000 /* Receive buffer offset mask */
242 #define GEM_NWCFG_BUFF_OFST_S  14         /* Receive buffer offset shift */
243 #define GEM_NWCFG_RCV_1538     0x00000100 /* Receive 1538 bytes frame */
244 #define GEM_NWCFG_UCAST_HASH   0x00000080 /* accept unicast if hash match */
245 #define GEM_NWCFG_MCAST_HASH   0x00000040 /* accept multicast if hash match */
246 #define GEM_NWCFG_BCAST_REJ    0x00000020 /* Reject broadcast packets */
247 #define GEM_NWCFG_PROMISC      0x00000010 /* Accept all packets */
248 #define GEM_NWCFG_JUMBO_FRAME  0x00000008 /* Jumbo Frames enable */
249 
250 #define GEM_DMACFG_ADDR_64B    (1U << 30)
251 #define GEM_DMACFG_TX_BD_EXT   (1U << 29)
252 #define GEM_DMACFG_RX_BD_EXT   (1U << 28)
253 #define GEM_DMACFG_RBUFSZ_M    0x00FF0000 /* DMA RX Buffer Size mask */
254 #define GEM_DMACFG_RBUFSZ_S    16         /* DMA RX Buffer Size shift */
255 #define GEM_DMACFG_RBUFSZ_MUL  64         /* DMA RX Buffer Size multiplier */
256 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
257 
258 #define GEM_TXSTATUS_TXCMPL    0x00000020 /* Transmit Complete */
259 #define GEM_TXSTATUS_USED      0x00000001 /* sw owned descriptor encountered */
260 
261 #define GEM_RXSTATUS_FRMRCVD   0x00000002 /* Frame received */
262 #define GEM_RXSTATUS_NOBUF     0x00000001 /* Buffer unavailable */
263 
264 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
265 #define GEM_INT_TXCMPL        0x00000080 /* Transmit Complete */
266 #define GEM_INT_AMBA_ERR      0x00000040
267 #define GEM_INT_TXUSED         0x00000008
268 #define GEM_INT_RXUSED         0x00000004
269 #define GEM_INT_RXCMPL        0x00000002
270 
271 #define GEM_PHYMNTNC_OP_R      0x20000000 /* read operation */
272 #define GEM_PHYMNTNC_OP_W      0x10000000 /* write operation */
273 #define GEM_PHYMNTNC_ADDR      0x0F800000 /* Address bits */
274 #define GEM_PHYMNTNC_ADDR_SHFT 23
275 #define GEM_PHYMNTNC_REG       0x007C0000 /* register bits */
276 #define GEM_PHYMNTNC_REG_SHIFT 18
277 
278 /* Marvell PHY definitions */
279 #define BOARD_PHY_ADDRESS    0 /* PHY address we will emulate a device at */
280 
281 #define PHY_REG_CONTROL      0
282 #define PHY_REG_STATUS       1
283 #define PHY_REG_PHYID1       2
284 #define PHY_REG_PHYID2       3
285 #define PHY_REG_ANEGADV      4
286 #define PHY_REG_LINKPABIL    5
287 #define PHY_REG_ANEGEXP      6
288 #define PHY_REG_NEXTP        7
289 #define PHY_REG_LINKPNEXTP   8
290 #define PHY_REG_100BTCTRL    9
291 #define PHY_REG_1000BTSTAT   10
292 #define PHY_REG_EXTSTAT      15
293 #define PHY_REG_PHYSPCFC_CTL 16
294 #define PHY_REG_PHYSPCFC_ST  17
295 #define PHY_REG_INT_EN       18
296 #define PHY_REG_INT_ST       19
297 #define PHY_REG_EXT_PHYSPCFC_CTL  20
298 #define PHY_REG_RXERR        21
299 #define PHY_REG_EACD         22
300 #define PHY_REG_LED          24
301 #define PHY_REG_LED_OVRD     25
302 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
303 #define PHY_REG_EXT_PHYSPCFC_ST   27
304 #define PHY_REG_CABLE_DIAG   28
305 
306 #define PHY_REG_CONTROL_RST       0x8000
307 #define PHY_REG_CONTROL_LOOP      0x4000
308 #define PHY_REG_CONTROL_ANEG      0x1000
309 #define PHY_REG_CONTROL_ANRESTART 0x0200
310 
311 #define PHY_REG_STATUS_LINK     0x0004
312 #define PHY_REG_STATUS_ANEGCMPL 0x0020
313 
314 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
315 #define PHY_REG_INT_ST_LINKC    0x0400
316 #define PHY_REG_INT_ST_ENERGY   0x0010
317 
318 /***********************************************************************/
319 #define GEM_RX_REJECT                   (-1)
320 #define GEM_RX_PROMISCUOUS_ACCEPT       (-2)
321 #define GEM_RX_BROADCAST_ACCEPT         (-3)
322 #define GEM_RX_MULTICAST_HASH_ACCEPT    (-4)
323 #define GEM_RX_UNICAST_HASH_ACCEPT      (-5)
324 
325 #define GEM_RX_SAR_ACCEPT               0
326 
327 /***********************************************************************/
328 
329 #define DESC_1_USED 0x80000000
330 #define DESC_1_LENGTH 0x00001FFF
331 
332 #define DESC_1_TX_WRAP 0x40000000
333 #define DESC_1_TX_LAST 0x00008000
334 
335 #define DESC_0_RX_WRAP 0x00000002
336 #define DESC_0_RX_OWNERSHIP 0x00000001
337 
338 #define R_DESC_1_RX_SAR_SHIFT           25
339 #define R_DESC_1_RX_SAR_LENGTH          2
340 #define R_DESC_1_RX_SAR_MATCH           (1 << 27)
341 #define R_DESC_1_RX_UNICAST_HASH        (1 << 29)
342 #define R_DESC_1_RX_MULTICAST_HASH      (1 << 30)
343 #define R_DESC_1_RX_BROADCAST           (1 << 31)
344 
345 #define DESC_1_RX_SOF 0x00004000
346 #define DESC_1_RX_EOF 0x00008000
347 
348 #define GEM_MODID_VALUE 0x00020118
349 
350 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
351 {
352     uint64_t ret = desc[0];
353 
354     if (s->regs[R_DMACFG] & GEM_DMACFG_ADDR_64B) {
355         ret |= (uint64_t)desc[2] << 32;
356     }
357     return ret;
358 }
359 
360 static inline unsigned tx_desc_get_used(uint32_t *desc)
361 {
362     return (desc[1] & DESC_1_USED) ? 1 : 0;
363 }
364 
365 static inline void tx_desc_set_used(uint32_t *desc)
366 {
367     desc[1] |= DESC_1_USED;
368 }
369 
370 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
371 {
372     return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
373 }
374 
375 static inline unsigned tx_desc_get_last(uint32_t *desc)
376 {
377     return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
378 }
379 
380 static inline unsigned tx_desc_get_length(uint32_t *desc)
381 {
382     return desc[1] & DESC_1_LENGTH;
383 }
384 
385 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
386 {
387     DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
388     DB_PRINT("bufaddr: 0x%08x\n", *desc);
389     DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
390     DB_PRINT("wrap:    %d\n", tx_desc_get_wrap(desc));
391     DB_PRINT("last:    %d\n", tx_desc_get_last(desc));
392     DB_PRINT("length:  %d\n", tx_desc_get_length(desc));
393 }
394 
395 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
396 {
397     uint64_t ret = desc[0] & ~0x3UL;
398 
399     if (s->regs[R_DMACFG] & GEM_DMACFG_ADDR_64B) {
400         ret |= (uint64_t)desc[2] << 32;
401     }
402     return ret;
403 }
404 
405 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
406 {
407     int ret = 2;
408 
409     if (s->regs[R_DMACFG] & GEM_DMACFG_ADDR_64B) {
410         ret += 2;
411     }
412     if (s->regs[R_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT
413                                        : GEM_DMACFG_TX_BD_EXT)) {
414         ret += 2;
415     }
416 
417     assert(ret <= DESC_MAX_NUM_WORDS);
418     return ret;
419 }
420 
421 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
422 {
423     return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
424 }
425 
426 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
427 {
428     return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
429 }
430 
431 static inline void rx_desc_set_ownership(uint32_t *desc)
432 {
433     desc[0] |= DESC_0_RX_OWNERSHIP;
434 }
435 
436 static inline void rx_desc_set_sof(uint32_t *desc)
437 {
438     desc[1] |= DESC_1_RX_SOF;
439 }
440 
441 static inline void rx_desc_clear_control(uint32_t *desc)
442 {
443     desc[1]  = 0;
444 }
445 
446 static inline void rx_desc_set_eof(uint32_t *desc)
447 {
448     desc[1] |= DESC_1_RX_EOF;
449 }
450 
451 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
452 {
453     desc[1] &= ~DESC_1_LENGTH;
454     desc[1] |= len;
455 }
456 
457 static inline void rx_desc_set_broadcast(uint32_t *desc)
458 {
459     desc[1] |= R_DESC_1_RX_BROADCAST;
460 }
461 
462 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
463 {
464     desc[1] |= R_DESC_1_RX_UNICAST_HASH;
465 }
466 
467 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
468 {
469     desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
470 }
471 
472 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
473 {
474     desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
475                         sar_idx);
476     desc[1] |= R_DESC_1_RX_SAR_MATCH;
477 }
478 
479 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
480 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
481 
482 static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx)
483 {
484     uint32_t size;
485     if (s->regs[R_NWCFG] & GEM_NWCFG_JUMBO_FRAME) {
486         size = s->regs[R_JUMBO_MAX_LEN];
487         if (size > s->jumbo_max_len) {
488             size = s->jumbo_max_len;
489             qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be"
490                 " greater than 0x%" PRIx32 "\n", s->jumbo_max_len);
491         }
492     } else if (tx) {
493         size = 1518;
494     } else {
495         size = s->regs[R_NWCFG] & GEM_NWCFG_RCV_1538 ? 1538 : 1518;
496     }
497     return size;
498 }
499 
500 static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag)
501 {
502     if (q == 0) {
503         s->regs[R_ISR] |= flag & ~(s->regs[R_IMR]);
504     } else {
505         s->regs[R_INT_Q1_STATUS + q - 1] |= flag &
506                                       ~(s->regs[R_INT_Q1_MASK + q - 1]);
507     }
508 }
509 
510 /*
511  * gem_init_register_masks:
512  * One time initialization.
513  * Set masks to identify which register bits have magical clear properties
514  */
515 static void gem_init_register_masks(CadenceGEMState *s)
516 {
517     unsigned int i;
518     /* Mask of register bits which are read only */
519     memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
520     s->regs_ro[R_NWCTRL]   = 0xFFF80000;
521     s->regs_ro[R_NWSTATUS] = 0xFFFFFFFF;
522     s->regs_ro[R_DMACFG]   = 0x8E00F000;
523     s->regs_ro[R_TXSTATUS] = 0xFFFFFE08;
524     s->regs_ro[R_RXQBASE]  = 0x00000003;
525     s->regs_ro[R_TXQBASE]  = 0x00000003;
526     s->regs_ro[R_RXSTATUS] = 0xFFFFFFF0;
527     s->regs_ro[R_ISR]      = 0xFFFFFFFF;
528     s->regs_ro[R_IMR]      = 0xFFFFFFFF;
529     s->regs_ro[R_MODID]    = 0xFFFFFFFF;
530     for (i = 0; i < s->num_priority_queues; i++) {
531         s->regs_ro[R_INT_Q1_STATUS + i] = 0xFFFFFFFF;
532         s->regs_ro[R_INT_Q1_ENABLE + i] = 0xFFFFF319;
533         s->regs_ro[R_INT_Q1_DISABLE + i] = 0xFFFFF319;
534         s->regs_ro[R_INT_Q1_MASK + i] = 0xFFFFFFFF;
535     }
536 
537     /* Mask of register bits which are clear on read */
538     memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
539     s->regs_rtc[R_ISR]      = 0xFFFFFFFF;
540     for (i = 0; i < s->num_priority_queues; i++) {
541         s->regs_rtc[R_INT_Q1_STATUS + i] = 0x00000CE6;
542     }
543 
544     /* Mask of register bits which are write 1 to clear */
545     memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
546     s->regs_w1c[R_TXSTATUS] = 0x000001F7;
547     s->regs_w1c[R_RXSTATUS] = 0x0000000F;
548 
549     /* Mask of register bits which are write only */
550     memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
551     s->regs_wo[R_NWCTRL]   = 0x00073E60;
552     s->regs_wo[R_IER]      = 0x07FFFFFF;
553     s->regs_wo[R_IDR]      = 0x07FFFFFF;
554     for (i = 0; i < s->num_priority_queues; i++) {
555         s->regs_wo[R_INT_Q1_ENABLE + i] = 0x00000CE6;
556         s->regs_wo[R_INT_Q1_DISABLE + i] = 0x00000CE6;
557     }
558 }
559 
560 /*
561  * phy_update_link:
562  * Make the emulated PHY link state match the QEMU "interface" state.
563  */
564 static void phy_update_link(CadenceGEMState *s)
565 {
566     DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
567 
568     /* Autonegotiation status mirrors link status.  */
569     if (qemu_get_queue(s->nic)->link_down) {
570         s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
571                                          PHY_REG_STATUS_LINK);
572         s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
573     } else {
574         s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
575                                          PHY_REG_STATUS_LINK);
576         s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
577                                         PHY_REG_INT_ST_ANEGCMPL |
578                                         PHY_REG_INT_ST_ENERGY);
579     }
580 }
581 
582 static bool gem_can_receive(NetClientState *nc)
583 {
584     CadenceGEMState *s;
585     int i;
586 
587     s = qemu_get_nic_opaque(nc);
588 
589     /* Do nothing if receive is not enabled. */
590     if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_RECEIVE)) {
591         if (s->can_rx_state != 1) {
592             s->can_rx_state = 1;
593             DB_PRINT("can't receive - no enable\n");
594         }
595         return false;
596     }
597 
598     for (i = 0; i < s->num_priority_queues; i++) {
599         if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
600             break;
601         }
602     };
603 
604     if (i == s->num_priority_queues) {
605         if (s->can_rx_state != 2) {
606             s->can_rx_state = 2;
607             DB_PRINT("can't receive - all the buffer descriptors are busy\n");
608         }
609         return false;
610     }
611 
612     if (s->can_rx_state != 0) {
613         s->can_rx_state = 0;
614         DB_PRINT("can receive\n");
615     }
616     return true;
617 }
618 
619 /*
620  * gem_update_int_status:
621  * Raise or lower interrupt based on current status.
622  */
623 static void gem_update_int_status(CadenceGEMState *s)
624 {
625     int i;
626 
627     qemu_set_irq(s->irq[0], !!s->regs[R_ISR]);
628 
629     for (i = 1; i < s->num_priority_queues; ++i) {
630         qemu_set_irq(s->irq[i], !!s->regs[R_INT_Q1_STATUS + i - 1]);
631     }
632 }
633 
634 /*
635  * gem_receive_updatestats:
636  * Increment receive statistics.
637  */
638 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
639                                     unsigned bytes)
640 {
641     uint64_t octets;
642 
643     /* Total octets (bytes) received */
644     octets = ((uint64_t)(s->regs[R_OCTRXLO]) << 32) |
645              s->regs[R_OCTRXHI];
646     octets += bytes;
647     s->regs[R_OCTRXLO] = octets >> 32;
648     s->regs[R_OCTRXHI] = octets;
649 
650     /* Error-free Frames received */
651     s->regs[R_RXCNT]++;
652 
653     /* Error-free Broadcast Frames counter */
654     if (!memcmp(packet, broadcast_addr, 6)) {
655         s->regs[R_RXBROADCNT]++;
656     }
657 
658     /* Error-free Multicast Frames counter */
659     if (packet[0] == 0x01) {
660         s->regs[R_RXMULTICNT]++;
661     }
662 
663     if (bytes <= 64) {
664         s->regs[R_RX64CNT]++;
665     } else if (bytes <= 127) {
666         s->regs[R_RX65CNT]++;
667     } else if (bytes <= 255) {
668         s->regs[R_RX128CNT]++;
669     } else if (bytes <= 511) {
670         s->regs[R_RX256CNT]++;
671     } else if (bytes <= 1023) {
672         s->regs[R_RX512CNT]++;
673     } else if (bytes <= 1518) {
674         s->regs[R_RX1024CNT]++;
675     } else {
676         s->regs[R_RX1519CNT]++;
677     }
678 }
679 
680 /*
681  * Get the MAC Address bit from the specified position
682  */
683 static unsigned get_bit(const uint8_t *mac, unsigned bit)
684 {
685     unsigned byte;
686 
687     byte = mac[bit / 8];
688     byte >>= (bit & 0x7);
689     byte &= 1;
690 
691     return byte;
692 }
693 
694 /*
695  * Calculate a GEM MAC Address hash index
696  */
697 static unsigned calc_mac_hash(const uint8_t *mac)
698 {
699     int index_bit, mac_bit;
700     unsigned hash_index;
701 
702     hash_index = 0;
703     mac_bit = 5;
704     for (index_bit = 5; index_bit >= 0; index_bit--) {
705         hash_index |= (get_bit(mac,  mac_bit) ^
706                                get_bit(mac, mac_bit + 6) ^
707                                get_bit(mac, mac_bit + 12) ^
708                                get_bit(mac, mac_bit + 18) ^
709                                get_bit(mac, mac_bit + 24) ^
710                                get_bit(mac, mac_bit + 30) ^
711                                get_bit(mac, mac_bit + 36) ^
712                                get_bit(mac, mac_bit + 42)) << index_bit;
713         mac_bit--;
714     }
715 
716     return hash_index;
717 }
718 
719 /*
720  * gem_mac_address_filter:
721  * Accept or reject this destination address?
722  * Returns:
723  * GEM_RX_REJECT: reject
724  * >= 0: Specific address accept (which matched SAR is returned)
725  * others for various other modes of accept:
726  * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
727  * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
728  */
729 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
730 {
731     uint8_t *gem_spaddr;
732     int i, is_mc;
733 
734     /* Promiscuous mode? */
735     if (s->regs[R_NWCFG] & GEM_NWCFG_PROMISC) {
736         return GEM_RX_PROMISCUOUS_ACCEPT;
737     }
738 
739     if (!memcmp(packet, broadcast_addr, 6)) {
740         /* Reject broadcast packets? */
741         if (s->regs[R_NWCFG] & GEM_NWCFG_BCAST_REJ) {
742             return GEM_RX_REJECT;
743         }
744         return GEM_RX_BROADCAST_ACCEPT;
745     }
746 
747     /* Accept packets -w- hash match? */
748     is_mc = is_multicast_ether_addr(packet);
749     if ((is_mc && (s->regs[R_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
750         (!is_mc && (s->regs[R_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
751         uint64_t buckets;
752         unsigned hash_index;
753 
754         hash_index = calc_mac_hash(packet);
755         buckets = ((uint64_t)s->regs[R_HASHHI] << 32) | s->regs[R_HASHLO];
756         if ((buckets >> hash_index) & 1) {
757             return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT
758                          : GEM_RX_UNICAST_HASH_ACCEPT;
759         }
760     }
761 
762     /* Check all 4 specific addresses */
763     gem_spaddr = (uint8_t *)&(s->regs[R_SPADDR1LO]);
764     for (i = 3; i >= 0; i--) {
765         if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
766             return GEM_RX_SAR_ACCEPT + i;
767         }
768     }
769 
770     /* No address match; reject the packet */
771     return GEM_RX_REJECT;
772 }
773 
774 /* Figure out which queue the received data should be sent to */
775 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
776                                  unsigned rxbufsize)
777 {
778     uint32_t reg;
779     bool matched, mismatched;
780     int i, j;
781 
782     for (i = 0; i < s->num_type1_screeners; i++) {
783         reg = s->regs[R_SCREENING_TYPE1_REG0 + i];
784         matched = false;
785         mismatched = false;
786 
787         /* Screening is based on UDP Port */
788         if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN)) {
789             uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
790             if (udp_port == FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH)) {
791                 matched = true;
792             } else {
793                 mismatched = true;
794             }
795         }
796 
797         /* Screening is based on DS/TC */
798         if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_ENABLE)) {
799             uint8_t dscp = rxbuf_ptr[14 + 1];
800             if (dscp == FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_MATCH)) {
801                 matched = true;
802             } else {
803                 mismatched = true;
804             }
805         }
806 
807         if (matched && !mismatched) {
808             return FIELD_EX32(reg, SCREENING_TYPE1_REG0, QUEUE_NUM);
809         }
810     }
811 
812     for (i = 0; i < s->num_type2_screeners; i++) {
813         reg = s->regs[R_SCREENING_TYPE2_REG0 + i];
814         matched = false;
815         mismatched = false;
816 
817         if (FIELD_EX32(reg, SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE)) {
818             uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
819             int et_idx = FIELD_EX32(reg, SCREENING_TYPE2_REG0,
820                                     ETHERTYPE_REG_INDEX);
821 
822             if (et_idx > s->num_type2_screeners) {
823                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
824                               "register index: %d\n", et_idx);
825             }
826             if (type == s->regs[R_SCREENING_TYPE2_ETHERTYPE_REG0 +
827                                 et_idx]) {
828                 matched = true;
829             } else {
830                 mismatched = true;
831             }
832         }
833 
834         /* Compare A, B, C */
835         for (j = 0; j < 3; j++) {
836             uint32_t cr0, cr1, mask, compare;
837             uint16_t rx_cmp;
838             int offset;
839             int cr_idx = extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_SHIFT + j * 6,
840                                    R_SCREENING_TYPE2_REG0_COMPARE_A_LENGTH);
841 
842             if (!extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_SHIFT + j * 6,
843                            R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_LENGTH)) {
844                 continue;
845             }
846 
847             if (cr_idx > s->num_type2_screeners) {
848                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
849                               "register index: %d\n", cr_idx);
850             }
851 
852             cr0 = s->regs[R_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
853             cr1 = s->regs[R_TYPE2_COMPARE_0_WORD_1 + cr_idx * 2];
854             offset = FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE);
855 
856             switch (FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET)) {
857             case 3: /* Skip UDP header */
858                 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
859                               "unimplemented - assuming UDP\n");
860                 offset += 8;
861                 /* Fallthrough */
862             case 2: /* skip the IP header */
863                 offset += 20;
864                 /* Fallthrough */
865             case 1: /* Count from after the ethertype */
866                 offset += 14;
867                 break;
868             case 0:
869                 /* Offset from start of frame */
870                 break;
871             }
872 
873             rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
874             mask = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, MASK_VALUE);
875             compare = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE);
876 
877             if ((rx_cmp & mask) == (compare & mask)) {
878                 matched = true;
879             } else {
880                 mismatched = true;
881             }
882         }
883 
884         if (matched && !mismatched) {
885             return FIELD_EX32(reg, SCREENING_TYPE2_REG0, QUEUE_NUM);
886         }
887     }
888 
889     /* We made it here, assume it's queue 0 */
890     return 0;
891 }
892 
893 static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q)
894 {
895     uint32_t base_addr = 0;
896 
897     switch (q) {
898     case 0:
899         base_addr = s->regs[tx ? R_TXQBASE : R_RXQBASE];
900         break;
901     case 1 ... (MAX_PRIORITY_QUEUES - 1):
902         base_addr = s->regs[(tx ? R_TRANSMIT_Q1_PTR :
903                                  R_RECEIVE_Q1_PTR) + q - 1];
904         break;
905     default:
906         g_assert_not_reached();
907     };
908 
909     return base_addr;
910 }
911 
912 static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q)
913 {
914     return gem_get_queue_base_addr(s, true, q);
915 }
916 
917 static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q)
918 {
919     return gem_get_queue_base_addr(s, false, q);
920 }
921 
922 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
923 {
924     hwaddr desc_addr = 0;
925 
926     if (s->regs[R_DMACFG] & GEM_DMACFG_ADDR_64B) {
927         desc_addr = s->regs[tx ? R_TBQPH : R_RBQPH];
928     }
929     desc_addr <<= 32;
930     desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
931     return desc_addr;
932 }
933 
934 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
935 {
936     return gem_get_desc_addr(s, true, q);
937 }
938 
939 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
940 {
941     return gem_get_desc_addr(s, false, q);
942 }
943 
944 static void gem_get_rx_desc(CadenceGEMState *s, int q)
945 {
946     hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
947 
948     DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
949 
950     /* read current descriptor */
951     address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
952                        s->rx_desc[q],
953                        sizeof(uint32_t) * gem_get_desc_len(s, true));
954 
955     /* Descriptor owned by software ? */
956     if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
957         DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
958         s->regs[R_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
959         gem_set_isr(s, q, GEM_INT_RXUSED);
960         /* Handle interrupt consequences */
961         gem_update_int_status(s);
962     }
963 }
964 
965 /*
966  * gem_receive:
967  * Fit a packet handed to us by QEMU into the receive descriptor ring.
968  */
969 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
970 {
971     CadenceGEMState *s = qemu_get_nic_opaque(nc);
972     unsigned   rxbufsize, bytes_to_copy;
973     unsigned   rxbuf_offset;
974     uint8_t   *rxbuf_ptr;
975     bool first_desc = true;
976     int maf;
977     int q = 0;
978 
979     /* Is this destination MAC address "for us" ? */
980     maf = gem_mac_address_filter(s, buf);
981     if (maf == GEM_RX_REJECT) {
982         return size;  /* no, drop silently b/c it's not an error */
983     }
984 
985     /* Discard packets with receive length error enabled ? */
986     if (s->regs[R_NWCFG] & GEM_NWCFG_LERR_DISC) {
987         unsigned type_len;
988 
989         /* Fish the ethertype / length field out of the RX packet */
990         type_len = buf[12] << 8 | buf[13];
991         /* It is a length field, not an ethertype */
992         if (type_len < 0x600) {
993             if (size < type_len) {
994                 /* discard */
995                 return -1;
996             }
997         }
998     }
999 
1000     /*
1001      * Determine configured receive buffer offset (probably 0)
1002      */
1003     rxbuf_offset = (s->regs[R_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
1004                    GEM_NWCFG_BUFF_OFST_S;
1005 
1006     /* The configure size of each receive buffer.  Determines how many
1007      * buffers needed to hold this packet.
1008      */
1009     rxbufsize = ((s->regs[R_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
1010                  GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
1011     bytes_to_copy = size;
1012 
1013     /* Hardware allows a zero value here but warns against it. To avoid QEMU
1014      * indefinite loops we enforce a minimum value here
1015      */
1016     if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
1017         rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
1018     }
1019 
1020     /* Pad to minimum length. Assume FCS field is stripped, logic
1021      * below will increment it to the real minimum of 64 when
1022      * not FCS stripping
1023      */
1024     if (size < 60) {
1025         size = 60;
1026     }
1027 
1028     /* Strip of FCS field ? (usually yes) */
1029     if (s->regs[R_NWCFG] & GEM_NWCFG_STRIP_FCS) {
1030         rxbuf_ptr = (void *)buf;
1031     } else {
1032         unsigned crc_val;
1033 
1034         if (size > MAX_FRAME_SIZE - sizeof(crc_val)) {
1035             size = MAX_FRAME_SIZE - sizeof(crc_val);
1036         }
1037         bytes_to_copy = size;
1038         /* The application wants the FCS field, which QEMU does not provide.
1039          * We must try and calculate one.
1040          */
1041 
1042         memcpy(s->rx_packet, buf, size);
1043         memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size);
1044         rxbuf_ptr = s->rx_packet;
1045         crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60)));
1046         memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val));
1047 
1048         bytes_to_copy += 4;
1049         size += 4;
1050     }
1051 
1052     DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size);
1053 
1054     /* Find which queue we are targeting */
1055     q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
1056 
1057     if (size > gem_get_max_buf_len(s, false)) {
1058         qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n");
1059         gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1060         return -1;
1061     }
1062 
1063     while (bytes_to_copy) {
1064         hwaddr desc_addr;
1065 
1066         /* Do nothing if receive is not enabled. */
1067         if (!gem_can_receive(nc)) {
1068             return -1;
1069         }
1070 
1071         DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n",
1072                 MIN(bytes_to_copy, rxbufsize),
1073                 rx_desc_get_buffer(s, s->rx_desc[q]));
1074 
1075         /* Copy packet data to emulated DMA buffer */
1076         address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
1077                                                                   rxbuf_offset,
1078                             MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
1079                             MIN(bytes_to_copy, rxbufsize));
1080         rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
1081         bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
1082 
1083         rx_desc_clear_control(s->rx_desc[q]);
1084 
1085         /* Update the descriptor.  */
1086         if (first_desc) {
1087             rx_desc_set_sof(s->rx_desc[q]);
1088             first_desc = false;
1089         }
1090         if (bytes_to_copy == 0) {
1091             rx_desc_set_eof(s->rx_desc[q]);
1092             rx_desc_set_length(s->rx_desc[q], size);
1093         }
1094         rx_desc_set_ownership(s->rx_desc[q]);
1095 
1096         switch (maf) {
1097         case GEM_RX_PROMISCUOUS_ACCEPT:
1098             break;
1099         case GEM_RX_BROADCAST_ACCEPT:
1100             rx_desc_set_broadcast(s->rx_desc[q]);
1101             break;
1102         case GEM_RX_UNICAST_HASH_ACCEPT:
1103             rx_desc_set_unicast_hash(s->rx_desc[q]);
1104             break;
1105         case GEM_RX_MULTICAST_HASH_ACCEPT:
1106             rx_desc_set_multicast_hash(s->rx_desc[q]);
1107             break;
1108         case GEM_RX_REJECT:
1109             abort();
1110         default: /* SAR */
1111             rx_desc_set_sar(s->rx_desc[q], maf);
1112         }
1113 
1114         /* Descriptor write-back.  */
1115         desc_addr = gem_get_rx_desc_addr(s, q);
1116         address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1117                             s->rx_desc[q],
1118                             sizeof(uint32_t) * gem_get_desc_len(s, true));
1119 
1120         /* Next descriptor */
1121         if (rx_desc_get_wrap(s->rx_desc[q])) {
1122             DB_PRINT("wrapping RX descriptor list\n");
1123             s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q);
1124         } else {
1125             DB_PRINT("incrementing RX descriptor list\n");
1126             s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1127         }
1128 
1129         gem_get_rx_desc(s, q);
1130     }
1131 
1132     /* Count it */
1133     gem_receive_updatestats(s, buf, size);
1134 
1135     s->regs[R_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
1136     gem_set_isr(s, q, GEM_INT_RXCMPL);
1137 
1138     /* Handle interrupt consequences */
1139     gem_update_int_status(s);
1140 
1141     return size;
1142 }
1143 
1144 /*
1145  * gem_transmit_updatestats:
1146  * Increment transmit statistics.
1147  */
1148 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1149                                      unsigned bytes)
1150 {
1151     uint64_t octets;
1152 
1153     /* Total octets (bytes) transmitted */
1154     octets = ((uint64_t)(s->regs[R_OCTTXLO]) << 32) |
1155              s->regs[R_OCTTXHI];
1156     octets += bytes;
1157     s->regs[R_OCTTXLO] = octets >> 32;
1158     s->regs[R_OCTTXHI] = octets;
1159 
1160     /* Error-free Frames transmitted */
1161     s->regs[R_TXCNT]++;
1162 
1163     /* Error-free Broadcast Frames counter */
1164     if (!memcmp(packet, broadcast_addr, 6)) {
1165         s->regs[R_TXBCNT]++;
1166     }
1167 
1168     /* Error-free Multicast Frames counter */
1169     if (packet[0] == 0x01) {
1170         s->regs[R_TXMCNT]++;
1171     }
1172 
1173     if (bytes <= 64) {
1174         s->regs[R_TX64CNT]++;
1175     } else if (bytes <= 127) {
1176         s->regs[R_TX65CNT]++;
1177     } else if (bytes <= 255) {
1178         s->regs[R_TX128CNT]++;
1179     } else if (bytes <= 511) {
1180         s->regs[R_TX256CNT]++;
1181     } else if (bytes <= 1023) {
1182         s->regs[R_TX512CNT]++;
1183     } else if (bytes <= 1518) {
1184         s->regs[R_TX1024CNT]++;
1185     } else {
1186         s->regs[R_TX1519CNT]++;
1187     }
1188 }
1189 
1190 /*
1191  * gem_transmit:
1192  * Fish packets out of the descriptor ring and feed them to QEMU
1193  */
1194 static void gem_transmit(CadenceGEMState *s)
1195 {
1196     uint32_t desc[DESC_MAX_NUM_WORDS];
1197     hwaddr packet_desc_addr;
1198     uint8_t     *p;
1199     unsigned    total_bytes;
1200     int q = 0;
1201 
1202     /* Do nothing if transmit is not enabled. */
1203     if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1204         return;
1205     }
1206 
1207     DB_PRINT("\n");
1208 
1209     /* The packet we will hand off to QEMU.
1210      * Packets scattered across multiple descriptors are gathered to this
1211      * one contiguous buffer first.
1212      */
1213     p = s->tx_packet;
1214     total_bytes = 0;
1215 
1216     for (q = s->num_priority_queues - 1; q >= 0; q--) {
1217         /* read current descriptor */
1218         packet_desc_addr = gem_get_tx_desc_addr(s, q);
1219 
1220         DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1221         address_space_read(&s->dma_as, packet_desc_addr,
1222                            MEMTXATTRS_UNSPECIFIED, desc,
1223                            sizeof(uint32_t) * gem_get_desc_len(s, false));
1224         /* Handle all descriptors owned by hardware */
1225         while (tx_desc_get_used(desc) == 0) {
1226 
1227             /* Do nothing if transmit is not enabled. */
1228             if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1229                 return;
1230             }
1231             print_gem_tx_desc(desc, q);
1232 
1233             /* The real hardware would eat this (and possibly crash).
1234              * For QEMU let's lend a helping hand.
1235              */
1236             if ((tx_desc_get_buffer(s, desc) == 0) ||
1237                 (tx_desc_get_length(desc) == 0)) {
1238                 DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n",
1239                          packet_desc_addr);
1240                 break;
1241             }
1242 
1243             if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) -
1244                                                (p - s->tx_packet)) {
1245                 qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \
1246                          HWADDR_PRIx " too large: size 0x%x space 0x%zx\n",
1247                          packet_desc_addr, tx_desc_get_length(desc),
1248                          gem_get_max_buf_len(s, true) - (p - s->tx_packet));
1249                 gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1250                 break;
1251             }
1252 
1253             /* Gather this fragment of the packet from "dma memory" to our
1254              * contig buffer.
1255              */
1256             address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1257                                MEMTXATTRS_UNSPECIFIED,
1258                                p, tx_desc_get_length(desc));
1259             p += tx_desc_get_length(desc);
1260             total_bytes += tx_desc_get_length(desc);
1261 
1262             /* Last descriptor for this packet; hand the whole thing off */
1263             if (tx_desc_get_last(desc)) {
1264                 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1265                 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1266 
1267                 /* Modify the 1st descriptor of this packet to be owned by
1268                  * the processor.
1269                  */
1270                 address_space_read(&s->dma_as, desc_addr,
1271                                    MEMTXATTRS_UNSPECIFIED, desc_first,
1272                                    sizeof(desc_first));
1273                 tx_desc_set_used(desc_first);
1274                 address_space_write(&s->dma_as, desc_addr,
1275                                     MEMTXATTRS_UNSPECIFIED, desc_first,
1276                                     sizeof(desc_first));
1277                 /* Advance the hardware current descriptor past this packet */
1278                 if (tx_desc_get_wrap(desc)) {
1279                     s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q);
1280                 } else {
1281                     s->tx_desc_addr[q] = packet_desc_addr +
1282                                          4 * gem_get_desc_len(s, false);
1283                 }
1284                 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1285 
1286                 s->regs[R_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1287                 gem_set_isr(s, q, GEM_INT_TXCMPL);
1288 
1289                 /* Handle interrupt consequences */
1290                 gem_update_int_status(s);
1291 
1292                 /* Is checksum offload enabled? */
1293                 if (s->regs[R_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
1294                     net_checksum_calculate(s->tx_packet, total_bytes, CSUM_ALL);
1295                 }
1296 
1297                 /* Update MAC statistics */
1298                 gem_transmit_updatestats(s, s->tx_packet, total_bytes);
1299 
1300                 /* Send the packet somewhere */
1301                 if (s->phy_loop || FIELD_EX32(s->regs[R_NWCTRL], NWCTRL,
1302                                               LOOPBACK_LOCAL)) {
1303                     qemu_receive_packet(qemu_get_queue(s->nic), s->tx_packet,
1304                                         total_bytes);
1305                 } else {
1306                     qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet,
1307                                      total_bytes);
1308                 }
1309 
1310                 /* Prepare for next packet */
1311                 p = s->tx_packet;
1312                 total_bytes = 0;
1313             }
1314 
1315             /* read next descriptor */
1316             if (tx_desc_get_wrap(desc)) {
1317                 if (s->regs[R_DMACFG] & GEM_DMACFG_ADDR_64B) {
1318                     packet_desc_addr = s->regs[R_TBQPH];
1319                     packet_desc_addr <<= 32;
1320                 } else {
1321                     packet_desc_addr = 0;
1322                 }
1323                 packet_desc_addr |= gem_get_tx_queue_base_addr(s, q);
1324             } else {
1325                 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1326             }
1327             DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1328             address_space_read(&s->dma_as, packet_desc_addr,
1329                                MEMTXATTRS_UNSPECIFIED, desc,
1330                                sizeof(uint32_t) * gem_get_desc_len(s, false));
1331         }
1332 
1333         if (tx_desc_get_used(desc)) {
1334             s->regs[R_TXSTATUS] |= GEM_TXSTATUS_USED;
1335             /* IRQ TXUSED is defined only for queue 0 */
1336             if (q == 0) {
1337                 gem_set_isr(s, 0, GEM_INT_TXUSED);
1338             }
1339             gem_update_int_status(s);
1340         }
1341     }
1342 }
1343 
1344 static void gem_phy_reset(CadenceGEMState *s)
1345 {
1346     memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1347     s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1348     s->phy_regs[PHY_REG_STATUS] = 0x7969;
1349     s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1350     s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1351     s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1352     s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1353     s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1354     s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1355     s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1356     s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1357     s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1358     s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1359     s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1360     s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1361     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1362     s->phy_regs[PHY_REG_LED] = 0x4100;
1363     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1364     s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1365 
1366     phy_update_link(s);
1367 }
1368 
1369 static void gem_reset(DeviceState *d)
1370 {
1371     int i;
1372     CadenceGEMState *s = CADENCE_GEM(d);
1373     const uint8_t *a;
1374     uint32_t queues_mask = 0;
1375 
1376     DB_PRINT("\n");
1377 
1378     /* Set post reset register values */
1379     memset(&s->regs[0], 0, sizeof(s->regs));
1380     s->regs[R_NWCFG] = 0x00080000;
1381     s->regs[R_NWSTATUS] = 0x00000006;
1382     s->regs[R_DMACFG] = 0x00020784;
1383     s->regs[R_IMR] = 0x07ffffff;
1384     s->regs[R_TXPAUSE] = 0x0000ffff;
1385     s->regs[R_TXPARTIALSF] = 0x000003ff;
1386     s->regs[R_RXPARTIALSF] = 0x000003ff;
1387     s->regs[R_MODID] = s->revision;
1388     s->regs[R_DESCONF] = 0x02D00111;
1389     s->regs[R_DESCONF2] = 0x2ab10000 | s->jumbo_max_len;
1390     s->regs[R_DESCONF5] = 0x002f2045;
1391     s->regs[R_DESCONF6] = GEM_DESCONF6_64B_MASK;
1392     s->regs[R_INT_Q1_MASK] = 0x00000CE6;
1393     s->regs[R_JUMBO_MAX_LEN] = s->jumbo_max_len;
1394 
1395     if (s->num_priority_queues > 1) {
1396         queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1397         s->regs[R_DESCONF6] |= queues_mask;
1398     }
1399 
1400     /* Set MAC address */
1401     a = &s->conf.macaddr.a[0];
1402     s->regs[R_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1403     s->regs[R_SPADDR1HI] = a[4] | (a[5] << 8);
1404 
1405     for (i = 0; i < 4; i++) {
1406         s->sar_active[i] = false;
1407     }
1408 
1409     gem_phy_reset(s);
1410 
1411     gem_update_int_status(s);
1412 }
1413 
1414 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1415 {
1416     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1417     return s->phy_regs[reg_num];
1418 }
1419 
1420 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1421 {
1422     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1423 
1424     switch (reg_num) {
1425     case PHY_REG_CONTROL:
1426         if (val & PHY_REG_CONTROL_RST) {
1427             /* Phy reset */
1428             gem_phy_reset(s);
1429             val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1430             s->phy_loop = 0;
1431         }
1432         if (val & PHY_REG_CONTROL_ANEG) {
1433             /* Complete autonegotiation immediately */
1434             val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
1435             s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1436         }
1437         if (val & PHY_REG_CONTROL_LOOP) {
1438             DB_PRINT("PHY placed in loopback\n");
1439             s->phy_loop = 1;
1440         } else {
1441             s->phy_loop = 0;
1442         }
1443         break;
1444     }
1445     s->phy_regs[reg_num] = val;
1446 }
1447 
1448 /*
1449  * gem_read32:
1450  * Read a GEM register.
1451  */
1452 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1453 {
1454     CadenceGEMState *s;
1455     uint32_t retval;
1456     s = opaque;
1457 
1458     offset >>= 2;
1459     retval = s->regs[offset];
1460 
1461     DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1462 
1463     switch (offset) {
1464     case R_ISR:
1465         DB_PRINT("lowering irqs on ISR read\n");
1466         /* The interrupts get updated at the end of the function. */
1467         break;
1468     case R_PHYMNTNC:
1469         if (retval & GEM_PHYMNTNC_OP_R) {
1470             uint32_t phy_addr, reg_num;
1471 
1472             phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1473             if (phy_addr == s->phy_addr) {
1474                 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1475                 retval &= 0xFFFF0000;
1476                 retval |= gem_phy_read(s, reg_num);
1477             } else {
1478                 retval |= 0xFFFF; /* No device at this address */
1479             }
1480         }
1481         break;
1482     }
1483 
1484     /* Squash read to clear bits */
1485     s->regs[offset] &= ~(s->regs_rtc[offset]);
1486 
1487     /* Do not provide write only bits */
1488     retval &= ~(s->regs_wo[offset]);
1489 
1490     DB_PRINT("0x%08x\n", retval);
1491     gem_update_int_status(s);
1492     return retval;
1493 }
1494 
1495 /*
1496  * gem_write32:
1497  * Write a GEM register.
1498  */
1499 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1500         unsigned size)
1501 {
1502     CadenceGEMState *s = (CadenceGEMState *)opaque;
1503     uint32_t readonly;
1504     int i;
1505 
1506     DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1507     offset >>= 2;
1508 
1509     /* Squash bits which are read only in write value */
1510     val &= ~(s->regs_ro[offset]);
1511     /* Preserve (only) bits which are read only and wtc in register */
1512     readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1513 
1514     /* Copy register write to backing store */
1515     s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1516 
1517     /* do w1c */
1518     s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1519 
1520     /* Handle register write side effects */
1521     switch (offset) {
1522     case R_NWCTRL:
1523         if (FIELD_EX32(val, NWCTRL, ENABLE_RECEIVE)) {
1524             for (i = 0; i < s->num_priority_queues; ++i) {
1525                 gem_get_rx_desc(s, i);
1526             }
1527         }
1528         if (FIELD_EX32(val, NWCTRL, TRANSMIT_START)) {
1529             gem_transmit(s);
1530         }
1531         if (!(FIELD_EX32(val, NWCTRL, ENABLE_TRANSMIT))) {
1532             /* Reset to start of Q when transmit disabled. */
1533             for (i = 0; i < s->num_priority_queues; i++) {
1534                 s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i);
1535             }
1536         }
1537         if (gem_can_receive(qemu_get_queue(s->nic))) {
1538             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1539         }
1540         break;
1541 
1542     case R_TXSTATUS:
1543         gem_update_int_status(s);
1544         break;
1545     case R_RXQBASE:
1546         s->rx_desc_addr[0] = val;
1547         break;
1548     case R_RECEIVE_Q1_PTR ... R_RECEIVE_Q7_PTR:
1549         s->rx_desc_addr[offset - R_RECEIVE_Q1_PTR + 1] = val;
1550         break;
1551     case R_TXQBASE:
1552         s->tx_desc_addr[0] = val;
1553         break;
1554     case R_TRANSMIT_Q1_PTR ... R_TRANSMIT_Q7_PTR:
1555         s->tx_desc_addr[offset - R_TRANSMIT_Q1_PTR + 1] = val;
1556         break;
1557     case R_RXSTATUS:
1558         gem_update_int_status(s);
1559         break;
1560     case R_IER:
1561         s->regs[R_IMR] &= ~val;
1562         gem_update_int_status(s);
1563         break;
1564     case R_JUMBO_MAX_LEN:
1565         s->regs[R_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK;
1566         break;
1567     case R_INT_Q1_ENABLE ... R_INT_Q7_ENABLE:
1568         s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_ENABLE] &= ~val;
1569         gem_update_int_status(s);
1570         break;
1571     case R_IDR:
1572         s->regs[R_IMR] |= val;
1573         gem_update_int_status(s);
1574         break;
1575     case R_INT_Q1_DISABLE ... R_INT_Q7_DISABLE:
1576         s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_DISABLE] |= val;
1577         gem_update_int_status(s);
1578         break;
1579     case R_SPADDR1LO:
1580     case R_SPADDR2LO:
1581     case R_SPADDR3LO:
1582     case R_SPADDR4LO:
1583         s->sar_active[(offset - R_SPADDR1LO) / 2] = false;
1584         break;
1585     case R_SPADDR1HI:
1586     case R_SPADDR2HI:
1587     case R_SPADDR3HI:
1588     case R_SPADDR4HI:
1589         s->sar_active[(offset - R_SPADDR1HI) / 2] = true;
1590         break;
1591     case R_PHYMNTNC:
1592         if (val & GEM_PHYMNTNC_OP_W) {
1593             uint32_t phy_addr, reg_num;
1594 
1595             phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1596             if (phy_addr == s->phy_addr) {
1597                 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1598                 gem_phy_write(s, reg_num, val);
1599             }
1600         }
1601         break;
1602     }
1603 
1604     DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1605 }
1606 
1607 static const MemoryRegionOps gem_ops = {
1608     .read = gem_read,
1609     .write = gem_write,
1610     .endianness = DEVICE_LITTLE_ENDIAN,
1611 };
1612 
1613 static void gem_set_link(NetClientState *nc)
1614 {
1615     CadenceGEMState *s = qemu_get_nic_opaque(nc);
1616 
1617     DB_PRINT("\n");
1618     phy_update_link(s);
1619     gem_update_int_status(s);
1620 }
1621 
1622 static NetClientInfo net_gem_info = {
1623     .type = NET_CLIENT_DRIVER_NIC,
1624     .size = sizeof(NICState),
1625     .can_receive = gem_can_receive,
1626     .receive = gem_receive,
1627     .link_status_changed = gem_set_link,
1628 };
1629 
1630 static void gem_realize(DeviceState *dev, Error **errp)
1631 {
1632     CadenceGEMState *s = CADENCE_GEM(dev);
1633     int i;
1634 
1635     address_space_init(&s->dma_as,
1636                        s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1637 
1638     if (s->num_priority_queues == 0 ||
1639         s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1640         error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1641                    s->num_priority_queues);
1642         return;
1643     } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1644         error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1645                    s->num_type1_screeners);
1646         return;
1647     } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1648         error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1649                    s->num_type2_screeners);
1650         return;
1651     }
1652 
1653     for (i = 0; i < s->num_priority_queues; ++i) {
1654         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1655     }
1656 
1657     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1658 
1659     s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1660                           object_get_typename(OBJECT(dev)), dev->id, s);
1661 
1662     if (s->jumbo_max_len > MAX_FRAME_SIZE) {
1663         error_setg(errp, "jumbo-max-len is greater than %d",
1664                   MAX_FRAME_SIZE);
1665         return;
1666     }
1667 }
1668 
1669 static void gem_init(Object *obj)
1670 {
1671     CadenceGEMState *s = CADENCE_GEM(obj);
1672     DeviceState *dev = DEVICE(obj);
1673 
1674     DB_PRINT("\n");
1675 
1676     gem_init_register_masks(s);
1677     memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1678                           "enet", sizeof(s->regs));
1679 
1680     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1681 }
1682 
1683 static const VMStateDescription vmstate_cadence_gem = {
1684     .name = "cadence_gem",
1685     .version_id = 4,
1686     .minimum_version_id = 4,
1687     .fields = (VMStateField[]) {
1688         VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1689         VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1690         VMSTATE_UINT8(phy_loop, CadenceGEMState),
1691         VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1692                              MAX_PRIORITY_QUEUES),
1693         VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1694                              MAX_PRIORITY_QUEUES),
1695         VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1696         VMSTATE_END_OF_LIST(),
1697     }
1698 };
1699 
1700 static Property gem_properties[] = {
1701     DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1702     DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1703                        GEM_MODID_VALUE),
1704     DEFINE_PROP_UINT8("phy-addr", CadenceGEMState, phy_addr, BOARD_PHY_ADDRESS),
1705     DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1706                       num_priority_queues, 1),
1707     DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1708                       num_type1_screeners, 4),
1709     DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1710                       num_type2_screeners, 4),
1711     DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState,
1712                        jumbo_max_len, 10240),
1713     DEFINE_PROP_LINK("dma", CadenceGEMState, dma_mr,
1714                      TYPE_MEMORY_REGION, MemoryRegion *),
1715     DEFINE_PROP_END_OF_LIST(),
1716 };
1717 
1718 static void gem_class_init(ObjectClass *klass, void *data)
1719 {
1720     DeviceClass *dc = DEVICE_CLASS(klass);
1721 
1722     dc->realize = gem_realize;
1723     device_class_set_props(dc, gem_properties);
1724     dc->vmsd = &vmstate_cadence_gem;
1725     dc->reset = gem_reset;
1726 }
1727 
1728 static const TypeInfo gem_info = {
1729     .name  = TYPE_CADENCE_GEM,
1730     .parent = TYPE_SYS_BUS_DEVICE,
1731     .instance_size  = sizeof(CadenceGEMState),
1732     .instance_init = gem_init,
1733     .class_init = gem_class_init,
1734 };
1735 
1736 static void gem_register_types(void)
1737 {
1738     type_register_static(&gem_info);
1739 }
1740 
1741 type_init(gem_register_types)
1742