xref: /qemu/hw/net/cadence_gem.c (revision bf8d4924)
1 /*
2  * QEMU Cadence GEM emulation
3  *
4  * Copyright (c) 2011 Xilinx, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
27 
28 #include "hw/net/cadence_gem.h"
29 #include "net/checksum.h"
30 
31 #ifdef CADENCE_GEM_ERR_DEBUG
32 #define DB_PRINT(...) do { \
33     fprintf(stderr,  ": %s: ", __func__); \
34     fprintf(stderr, ## __VA_ARGS__); \
35     } while (0);
36 #else
37     #define DB_PRINT(...)
38 #endif
39 
40 #define GEM_NWCTRL        (0x00000000/4) /* Network Control reg */
41 #define GEM_NWCFG         (0x00000004/4) /* Network Config reg */
42 #define GEM_NWSTATUS      (0x00000008/4) /* Network Status reg */
43 #define GEM_USERIO        (0x0000000C/4) /* User IO reg */
44 #define GEM_DMACFG        (0x00000010/4) /* DMA Control reg */
45 #define GEM_TXSTATUS      (0x00000014/4) /* TX Status reg */
46 #define GEM_RXQBASE       (0x00000018/4) /* RX Q Base address reg */
47 #define GEM_TXQBASE       (0x0000001C/4) /* TX Q Base address reg */
48 #define GEM_RXSTATUS      (0x00000020/4) /* RX Status reg */
49 #define GEM_ISR           (0x00000024/4) /* Interrupt Status reg */
50 #define GEM_IER           (0x00000028/4) /* Interrupt Enable reg */
51 #define GEM_IDR           (0x0000002C/4) /* Interrupt Disable reg */
52 #define GEM_IMR           (0x00000030/4) /* Interrupt Mask reg */
53 #define GEM_PHYMNTNC      (0x00000034/4) /* Phy Maintenance reg */
54 #define GEM_RXPAUSE       (0x00000038/4) /* RX Pause Time reg */
55 #define GEM_TXPAUSE       (0x0000003C/4) /* TX Pause Time reg */
56 #define GEM_TXPARTIALSF   (0x00000040/4) /* TX Partial Store and Forward */
57 #define GEM_RXPARTIALSF   (0x00000044/4) /* RX Partial Store and Forward */
58 #define GEM_HASHLO        (0x00000080/4) /* Hash Low address reg */
59 #define GEM_HASHHI        (0x00000084/4) /* Hash High address reg */
60 #define GEM_SPADDR1LO     (0x00000088/4) /* Specific addr 1 low reg */
61 #define GEM_SPADDR1HI     (0x0000008C/4) /* Specific addr 1 high reg */
62 #define GEM_SPADDR2LO     (0x00000090/4) /* Specific addr 2 low reg */
63 #define GEM_SPADDR2HI     (0x00000094/4) /* Specific addr 2 high reg */
64 #define GEM_SPADDR3LO     (0x00000098/4) /* Specific addr 3 low reg */
65 #define GEM_SPADDR3HI     (0x0000009C/4) /* Specific addr 3 high reg */
66 #define GEM_SPADDR4LO     (0x000000A0/4) /* Specific addr 4 low reg */
67 #define GEM_SPADDR4HI     (0x000000A4/4) /* Specific addr 4 high reg */
68 #define GEM_TIDMATCH1     (0x000000A8/4) /* Type ID1 Match reg */
69 #define GEM_TIDMATCH2     (0x000000AC/4) /* Type ID2 Match reg */
70 #define GEM_TIDMATCH3     (0x000000B0/4) /* Type ID3 Match reg */
71 #define GEM_TIDMATCH4     (0x000000B4/4) /* Type ID4 Match reg */
72 #define GEM_WOLAN         (0x000000B8/4) /* Wake on LAN reg */
73 #define GEM_IPGSTRETCH    (0x000000BC/4) /* IPG Stretch reg */
74 #define GEM_SVLAN         (0x000000C0/4) /* Stacked VLAN reg */
75 #define GEM_MODID         (0x000000FC/4) /* Module ID reg */
76 #define GEM_OCTTXLO       (0x00000100/4) /* Octects transmitted Low reg */
77 #define GEM_OCTTXHI       (0x00000104/4) /* Octects transmitted High reg */
78 #define GEM_TXCNT         (0x00000108/4) /* Error-free Frames transmitted */
79 #define GEM_TXBCNT        (0x0000010C/4) /* Error-free Broadcast Frames */
80 #define GEM_TXMCNT        (0x00000110/4) /* Error-free Multicast Frame */
81 #define GEM_TXPAUSECNT    (0x00000114/4) /* Pause Frames Transmitted */
82 #define GEM_TX64CNT       (0x00000118/4) /* Error-free 64 TX */
83 #define GEM_TX65CNT       (0x0000011C/4) /* Error-free 65-127 TX */
84 #define GEM_TX128CNT      (0x00000120/4) /* Error-free 128-255 TX */
85 #define GEM_TX256CNT      (0x00000124/4) /* Error-free 256-511 */
86 #define GEM_TX512CNT      (0x00000128/4) /* Error-free 512-1023 TX */
87 #define GEM_TX1024CNT     (0x0000012C/4) /* Error-free 1024-1518 TX */
88 #define GEM_TX1519CNT     (0x00000130/4) /* Error-free larger than 1519 TX */
89 #define GEM_TXURUNCNT     (0x00000134/4) /* TX under run error counter */
90 #define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
91 #define GEM_MULTCOLLCNT   (0x0000013C/4) /* Multiple Collision Frames */
92 #define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
93 #define GEM_LATECOLLCNT   (0x00000144/4) /* Late Collision Frames */
94 #define GEM_DEFERTXCNT    (0x00000148/4) /* Deferred Transmission Frames */
95 #define GEM_CSENSECNT     (0x0000014C/4) /* Carrier Sense Error Counter */
96 #define GEM_OCTRXLO       (0x00000150/4) /* Octects Received register Low */
97 #define GEM_OCTRXHI       (0x00000154/4) /* Octects Received register High */
98 #define GEM_RXCNT         (0x00000158/4) /* Error-free Frames Received */
99 #define GEM_RXBROADCNT    (0x0000015C/4) /* Error-free Broadcast Frames RX */
100 #define GEM_RXMULTICNT    (0x00000160/4) /* Error-free Multicast Frames RX */
101 #define GEM_RXPAUSECNT    (0x00000164/4) /* Pause Frames Received Counter */
102 #define GEM_RX64CNT       (0x00000168/4) /* Error-free 64 byte Frames RX */
103 #define GEM_RX65CNT       (0x0000016C/4) /* Error-free 65-127B Frames RX */
104 #define GEM_RX128CNT      (0x00000170/4) /* Error-free 128-255B Frames RX */
105 #define GEM_RX256CNT      (0x00000174/4) /* Error-free 256-512B Frames RX */
106 #define GEM_RX512CNT      (0x00000178/4) /* Error-free 512-1023B Frames RX */
107 #define GEM_RX1024CNT     (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
108 #define GEM_RX1519CNT     (0x00000180/4) /* Error-free 1519-max Frames RX */
109 #define GEM_RXUNDERCNT    (0x00000184/4) /* Undersize Frames Received */
110 #define GEM_RXOVERCNT     (0x00000188/4) /* Oversize Frames Received */
111 #define GEM_RXJABCNT      (0x0000018C/4) /* Jabbers Received Counter */
112 #define GEM_RXFCSCNT      (0x00000190/4) /* Frame Check seq. Error Counter */
113 #define GEM_RXLENERRCNT   (0x00000194/4) /* Length Field Error Counter */
114 #define GEM_RXSYMERRCNT   (0x00000198/4) /* Symbol Error Counter */
115 #define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
116 #define GEM_RXRSCERRCNT   (0x000001A0/4) /* Receive Resource Error Counter */
117 #define GEM_RXORUNCNT     (0x000001A4/4) /* Receive Overrun Counter */
118 #define GEM_RXIPCSERRCNT  (0x000001A8/4) /* IP header Checksum Error Counter */
119 #define GEM_RXTCPCCNT     (0x000001AC/4) /* TCP Checksum Error Counter */
120 #define GEM_RXUDPCCNT     (0x000001B0/4) /* UDP Checksum Error Counter */
121 
122 #define GEM_1588S         (0x000001D0/4) /* 1588 Timer Seconds */
123 #define GEM_1588NS        (0x000001D4/4) /* 1588 Timer Nanoseconds */
124 #define GEM_1588ADJ       (0x000001D8/4) /* 1588 Timer Adjust */
125 #define GEM_1588INC       (0x000001DC/4) /* 1588 Timer Increment */
126 #define GEM_PTPETXS       (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
127 #define GEM_PTPETXNS      (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
128 #define GEM_PTPERXS       (0x000001E8/4) /* PTP Event Frame Received (s) */
129 #define GEM_PTPERXNS      (0x000001EC/4) /* PTP Event Frame Received (ns) */
130 #define GEM_PTPPTXS       (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
131 #define GEM_PTPPTXNS      (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
132 #define GEM_PTPPRXS       (0x000001E8/4) /* PTP Peer Frame Received (s) */
133 #define GEM_PTPPRXNS      (0x000001EC/4) /* PTP Peer Frame Received (ns) */
134 
135 /* Design Configuration Registers */
136 #define GEM_DESCONF       (0x00000280/4)
137 #define GEM_DESCONF2      (0x00000284/4)
138 #define GEM_DESCONF3      (0x00000288/4)
139 #define GEM_DESCONF4      (0x0000028C/4)
140 #define GEM_DESCONF5      (0x00000290/4)
141 #define GEM_DESCONF6      (0x00000294/4)
142 #define GEM_DESCONF7      (0x00000298/4)
143 
144 /*****************************************/
145 #define GEM_NWCTRL_TXSTART     0x00000200 /* Transmit Enable */
146 #define GEM_NWCTRL_TXENA       0x00000008 /* Transmit Enable */
147 #define GEM_NWCTRL_RXENA       0x00000004 /* Receive Enable */
148 #define GEM_NWCTRL_LOCALLOOP   0x00000002 /* Local Loopback */
149 
150 #define GEM_NWCFG_STRIP_FCS    0x00020000 /* Strip FCS field */
151 #define GEM_NWCFG_LERR_DISC    0x00010000 /* Discard RX frames with len err */
152 #define GEM_NWCFG_BUFF_OFST_M  0x0000C000 /* Receive buffer offset mask */
153 #define GEM_NWCFG_BUFF_OFST_S  14         /* Receive buffer offset shift */
154 #define GEM_NWCFG_UCAST_HASH   0x00000080 /* accept unicast if hash match */
155 #define GEM_NWCFG_MCAST_HASH   0x00000040 /* accept multicast if hash match */
156 #define GEM_NWCFG_BCAST_REJ    0x00000020 /* Reject broadcast packets */
157 #define GEM_NWCFG_PROMISC      0x00000010 /* Accept all packets */
158 
159 #define GEM_DMACFG_RBUFSZ_M    0x00FF0000 /* DMA RX Buffer Size mask */
160 #define GEM_DMACFG_RBUFSZ_S    16         /* DMA RX Buffer Size shift */
161 #define GEM_DMACFG_RBUFSZ_MUL  64         /* DMA RX Buffer Size multiplier */
162 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
163 
164 #define GEM_TXSTATUS_TXCMPL    0x00000020 /* Transmit Complete */
165 #define GEM_TXSTATUS_USED      0x00000001 /* sw owned descriptor encountered */
166 
167 #define GEM_RXSTATUS_FRMRCVD   0x00000002 /* Frame received */
168 #define GEM_RXSTATUS_NOBUF     0x00000001 /* Buffer unavailable */
169 
170 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
171 #define GEM_INT_TXCMPL        0x00000080 /* Transmit Complete */
172 #define GEM_INT_TXUSED         0x00000008
173 #define GEM_INT_RXUSED         0x00000004
174 #define GEM_INT_RXCMPL        0x00000002
175 
176 #define GEM_PHYMNTNC_OP_R      0x20000000 /* read operation */
177 #define GEM_PHYMNTNC_OP_W      0x10000000 /* write operation */
178 #define GEM_PHYMNTNC_ADDR      0x0F800000 /* Address bits */
179 #define GEM_PHYMNTNC_ADDR_SHFT 23
180 #define GEM_PHYMNTNC_REG       0x007C0000 /* register bits */
181 #define GEM_PHYMNTNC_REG_SHIFT 18
182 
183 /* Marvell PHY definitions */
184 #define BOARD_PHY_ADDRESS    23 /* PHY address we will emulate a device at */
185 
186 #define PHY_REG_CONTROL      0
187 #define PHY_REG_STATUS       1
188 #define PHY_REG_PHYID1       2
189 #define PHY_REG_PHYID2       3
190 #define PHY_REG_ANEGADV      4
191 #define PHY_REG_LINKPABIL    5
192 #define PHY_REG_ANEGEXP      6
193 #define PHY_REG_NEXTP        7
194 #define PHY_REG_LINKPNEXTP   8
195 #define PHY_REG_100BTCTRL    9
196 #define PHY_REG_1000BTSTAT   10
197 #define PHY_REG_EXTSTAT      15
198 #define PHY_REG_PHYSPCFC_CTL 16
199 #define PHY_REG_PHYSPCFC_ST  17
200 #define PHY_REG_INT_EN       18
201 #define PHY_REG_INT_ST       19
202 #define PHY_REG_EXT_PHYSPCFC_CTL  20
203 #define PHY_REG_RXERR        21
204 #define PHY_REG_EACD         22
205 #define PHY_REG_LED          24
206 #define PHY_REG_LED_OVRD     25
207 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
208 #define PHY_REG_EXT_PHYSPCFC_ST   27
209 #define PHY_REG_CABLE_DIAG   28
210 
211 #define PHY_REG_CONTROL_RST  0x8000
212 #define PHY_REG_CONTROL_LOOP 0x4000
213 #define PHY_REG_CONTROL_ANEG 0x1000
214 
215 #define PHY_REG_STATUS_LINK     0x0004
216 #define PHY_REG_STATUS_ANEGCMPL 0x0020
217 
218 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
219 #define PHY_REG_INT_ST_LINKC    0x0400
220 #define PHY_REG_INT_ST_ENERGY   0x0010
221 
222 /***********************************************************************/
223 #define GEM_RX_REJECT                   (-1)
224 #define GEM_RX_PROMISCUOUS_ACCEPT       (-2)
225 #define GEM_RX_BROADCAST_ACCEPT         (-3)
226 #define GEM_RX_MULTICAST_HASH_ACCEPT    (-4)
227 #define GEM_RX_UNICAST_HASH_ACCEPT      (-5)
228 
229 #define GEM_RX_SAR_ACCEPT               0
230 
231 /***********************************************************************/
232 
233 #define DESC_1_USED 0x80000000
234 #define DESC_1_LENGTH 0x00001FFF
235 
236 #define DESC_1_TX_WRAP 0x40000000
237 #define DESC_1_TX_LAST 0x00008000
238 
239 #define DESC_0_RX_WRAP 0x00000002
240 #define DESC_0_RX_OWNERSHIP 0x00000001
241 
242 #define R_DESC_1_RX_SAR_SHIFT           25
243 #define R_DESC_1_RX_SAR_LENGTH          2
244 #define R_DESC_1_RX_SAR_MATCH           (1 << 27)
245 #define R_DESC_1_RX_UNICAST_HASH        (1 << 29)
246 #define R_DESC_1_RX_MULTICAST_HASH      (1 << 30)
247 #define R_DESC_1_RX_BROADCAST           (1 << 31)
248 
249 #define DESC_1_RX_SOF 0x00004000
250 #define DESC_1_RX_EOF 0x00008000
251 
252 static inline unsigned tx_desc_get_buffer(unsigned *desc)
253 {
254     return desc[0];
255 }
256 
257 static inline unsigned tx_desc_get_used(unsigned *desc)
258 {
259     return (desc[1] & DESC_1_USED) ? 1 : 0;
260 }
261 
262 static inline void tx_desc_set_used(unsigned *desc)
263 {
264     desc[1] |= DESC_1_USED;
265 }
266 
267 static inline unsigned tx_desc_get_wrap(unsigned *desc)
268 {
269     return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
270 }
271 
272 static inline unsigned tx_desc_get_last(unsigned *desc)
273 {
274     return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
275 }
276 
277 static inline void tx_desc_set_last(unsigned *desc)
278 {
279     desc[1] |= DESC_1_TX_LAST;
280 }
281 
282 static inline unsigned tx_desc_get_length(unsigned *desc)
283 {
284     return desc[1] & DESC_1_LENGTH;
285 }
286 
287 static inline void print_gem_tx_desc(unsigned *desc)
288 {
289     DB_PRINT("TXDESC:\n");
290     DB_PRINT("bufaddr: 0x%08x\n", *desc);
291     DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
292     DB_PRINT("wrap:    %d\n", tx_desc_get_wrap(desc));
293     DB_PRINT("last:    %d\n", tx_desc_get_last(desc));
294     DB_PRINT("length:  %d\n", tx_desc_get_length(desc));
295 }
296 
297 static inline unsigned rx_desc_get_buffer(unsigned *desc)
298 {
299     return desc[0] & ~0x3UL;
300 }
301 
302 static inline unsigned rx_desc_get_wrap(unsigned *desc)
303 {
304     return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
305 }
306 
307 static inline unsigned rx_desc_get_ownership(unsigned *desc)
308 {
309     return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
310 }
311 
312 static inline void rx_desc_set_ownership(unsigned *desc)
313 {
314     desc[0] |= DESC_0_RX_OWNERSHIP;
315 }
316 
317 static inline void rx_desc_set_sof(unsigned *desc)
318 {
319     desc[1] |= DESC_1_RX_SOF;
320 }
321 
322 static inline void rx_desc_set_eof(unsigned *desc)
323 {
324     desc[1] |= DESC_1_RX_EOF;
325 }
326 
327 static inline void rx_desc_set_length(unsigned *desc, unsigned len)
328 {
329     desc[1] &= ~DESC_1_LENGTH;
330     desc[1] |= len;
331 }
332 
333 static inline void rx_desc_set_broadcast(unsigned *desc)
334 {
335     desc[1] |= R_DESC_1_RX_BROADCAST;
336 }
337 
338 static inline void rx_desc_set_unicast_hash(unsigned *desc)
339 {
340     desc[1] |= R_DESC_1_RX_UNICAST_HASH;
341 }
342 
343 static inline void rx_desc_set_multicast_hash(unsigned *desc)
344 {
345     desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
346 }
347 
348 static inline void rx_desc_set_sar(unsigned *desc, int sar_idx)
349 {
350     desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
351                         sar_idx);
352     desc[1] |= R_DESC_1_RX_SAR_MATCH;
353 }
354 
355 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
356 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
357 
358 /*
359  * gem_init_register_masks:
360  * One time initialization.
361  * Set masks to identify which register bits have magical clear properties
362  */
363 static void gem_init_register_masks(CadenceGEMState *s)
364 {
365     /* Mask of register bits which are read only */
366     memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
367     s->regs_ro[GEM_NWCTRL]   = 0xFFF80000;
368     s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
369     s->regs_ro[GEM_DMACFG]   = 0xFE00F000;
370     s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
371     s->regs_ro[GEM_RXQBASE]  = 0x00000003;
372     s->regs_ro[GEM_TXQBASE]  = 0x00000003;
373     s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
374     s->regs_ro[GEM_ISR]      = 0xFFFFFFFF;
375     s->regs_ro[GEM_IMR]      = 0xFFFFFFFF;
376     s->regs_ro[GEM_MODID]    = 0xFFFFFFFF;
377 
378     /* Mask of register bits which are clear on read */
379     memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
380     s->regs_rtc[GEM_ISR]      = 0xFFFFFFFF;
381 
382     /* Mask of register bits which are write 1 to clear */
383     memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
384     s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
385     s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
386 
387     /* Mask of register bits which are write only */
388     memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
389     s->regs_wo[GEM_NWCTRL]   = 0x00073E60;
390     s->regs_wo[GEM_IER]      = 0x07FFFFFF;
391     s->regs_wo[GEM_IDR]      = 0x07FFFFFF;
392 }
393 
394 /*
395  * phy_update_link:
396  * Make the emulated PHY link state match the QEMU "interface" state.
397  */
398 static void phy_update_link(CadenceGEMState *s)
399 {
400     DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
401 
402     /* Autonegotiation status mirrors link status.  */
403     if (qemu_get_queue(s->nic)->link_down) {
404         s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
405                                          PHY_REG_STATUS_LINK);
406         s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
407     } else {
408         s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
409                                          PHY_REG_STATUS_LINK);
410         s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
411                                         PHY_REG_INT_ST_ANEGCMPL |
412                                         PHY_REG_INT_ST_ENERGY);
413     }
414 }
415 
416 static int gem_can_receive(NetClientState *nc)
417 {
418     CadenceGEMState *s;
419 
420     s = qemu_get_nic_opaque(nc);
421 
422     /* Do nothing if receive is not enabled. */
423     if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
424         if (s->can_rx_state != 1) {
425             s->can_rx_state = 1;
426             DB_PRINT("can't receive - no enable\n");
427         }
428         return 0;
429     }
430 
431     if (rx_desc_get_ownership(s->rx_desc) == 1) {
432         if (s->can_rx_state != 2) {
433             s->can_rx_state = 2;
434             DB_PRINT("can't receive - busy buffer descriptor 0x%x\n",
435                      s->rx_desc_addr);
436         }
437         return 0;
438     }
439 
440     if (s->can_rx_state != 0) {
441         s->can_rx_state = 0;
442         DB_PRINT("can receive 0x%x\n", s->rx_desc_addr);
443     }
444     return 1;
445 }
446 
447 /*
448  * gem_update_int_status:
449  * Raise or lower interrupt based on current status.
450  */
451 static void gem_update_int_status(CadenceGEMState *s)
452 {
453     if (s->regs[GEM_ISR]) {
454         DB_PRINT("asserting int. (0x%08x)\n", s->regs[GEM_ISR]);
455         qemu_set_irq(s->irq, 1);
456     }
457 }
458 
459 /*
460  * gem_receive_updatestats:
461  * Increment receive statistics.
462  */
463 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
464                                     unsigned bytes)
465 {
466     uint64_t octets;
467 
468     /* Total octets (bytes) received */
469     octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
470              s->regs[GEM_OCTRXHI];
471     octets += bytes;
472     s->regs[GEM_OCTRXLO] = octets >> 32;
473     s->regs[GEM_OCTRXHI] = octets;
474 
475     /* Error-free Frames received */
476     s->regs[GEM_RXCNT]++;
477 
478     /* Error-free Broadcast Frames counter */
479     if (!memcmp(packet, broadcast_addr, 6)) {
480         s->regs[GEM_RXBROADCNT]++;
481     }
482 
483     /* Error-free Multicast Frames counter */
484     if (packet[0] == 0x01) {
485         s->regs[GEM_RXMULTICNT]++;
486     }
487 
488     if (bytes <= 64) {
489         s->regs[GEM_RX64CNT]++;
490     } else if (bytes <= 127) {
491         s->regs[GEM_RX65CNT]++;
492     } else if (bytes <= 255) {
493         s->regs[GEM_RX128CNT]++;
494     } else if (bytes <= 511) {
495         s->regs[GEM_RX256CNT]++;
496     } else if (bytes <= 1023) {
497         s->regs[GEM_RX512CNT]++;
498     } else if (bytes <= 1518) {
499         s->regs[GEM_RX1024CNT]++;
500     } else {
501         s->regs[GEM_RX1519CNT]++;
502     }
503 }
504 
505 /*
506  * Get the MAC Address bit from the specified position
507  */
508 static unsigned get_bit(const uint8_t *mac, unsigned bit)
509 {
510     unsigned byte;
511 
512     byte = mac[bit / 8];
513     byte >>= (bit & 0x7);
514     byte &= 1;
515 
516     return byte;
517 }
518 
519 /*
520  * Calculate a GEM MAC Address hash index
521  */
522 static unsigned calc_mac_hash(const uint8_t *mac)
523 {
524     int index_bit, mac_bit;
525     unsigned hash_index;
526 
527     hash_index = 0;
528     mac_bit = 5;
529     for (index_bit = 5; index_bit >= 0; index_bit--) {
530         hash_index |= (get_bit(mac,  mac_bit) ^
531                                get_bit(mac, mac_bit + 6) ^
532                                get_bit(mac, mac_bit + 12) ^
533                                get_bit(mac, mac_bit + 18) ^
534                                get_bit(mac, mac_bit + 24) ^
535                                get_bit(mac, mac_bit + 30) ^
536                                get_bit(mac, mac_bit + 36) ^
537                                get_bit(mac, mac_bit + 42)) << index_bit;
538         mac_bit--;
539     }
540 
541     return hash_index;
542 }
543 
544 /*
545  * gem_mac_address_filter:
546  * Accept or reject this destination address?
547  * Returns:
548  * GEM_RX_REJECT: reject
549  * >= 0: Specific address accept (which matched SAR is returned)
550  * others for various other modes of accept:
551  * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
552  * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
553  */
554 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
555 {
556     uint8_t *gem_spaddr;
557     int i;
558 
559     /* Promiscuous mode? */
560     if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
561         return GEM_RX_PROMISCUOUS_ACCEPT;
562     }
563 
564     if (!memcmp(packet, broadcast_addr, 6)) {
565         /* Reject broadcast packets? */
566         if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
567             return GEM_RX_REJECT;
568         }
569         return GEM_RX_BROADCAST_ACCEPT;
570     }
571 
572     /* Accept packets -w- hash match? */
573     if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
574         (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
575         unsigned hash_index;
576 
577         hash_index = calc_mac_hash(packet);
578         if (hash_index < 32) {
579             if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
580                 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
581                                            GEM_RX_UNICAST_HASH_ACCEPT;
582             }
583         } else {
584             hash_index -= 32;
585             if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
586                 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
587                                            GEM_RX_UNICAST_HASH_ACCEPT;
588             }
589         }
590     }
591 
592     /* Check all 4 specific addresses */
593     gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
594     for (i = 3; i >= 0; i--) {
595         if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
596             return GEM_RX_SAR_ACCEPT + i;
597         }
598     }
599 
600     /* No address match; reject the packet */
601     return GEM_RX_REJECT;
602 }
603 
604 static void gem_get_rx_desc(CadenceGEMState *s)
605 {
606     DB_PRINT("read descriptor 0x%x\n", (unsigned)s->rx_desc_addr);
607     /* read current descriptor */
608     cpu_physical_memory_read(s->rx_desc_addr,
609                              (uint8_t *)s->rx_desc, sizeof(s->rx_desc));
610 
611     /* Descriptor owned by software ? */
612     if (rx_desc_get_ownership(s->rx_desc) == 1) {
613         DB_PRINT("descriptor 0x%x owned by sw.\n",
614                  (unsigned)s->rx_desc_addr);
615         s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
616         s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
617         /* Handle interrupt consequences */
618         gem_update_int_status(s);
619     }
620 }
621 
622 /*
623  * gem_receive:
624  * Fit a packet handed to us by QEMU into the receive descriptor ring.
625  */
626 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
627 {
628     CadenceGEMState *s;
629     unsigned   rxbufsize, bytes_to_copy;
630     unsigned   rxbuf_offset;
631     uint8_t    rxbuf[2048];
632     uint8_t   *rxbuf_ptr;
633     bool first_desc = true;
634     int maf;
635 
636     s = qemu_get_nic_opaque(nc);
637 
638     /* Is this destination MAC address "for us" ? */
639     maf = gem_mac_address_filter(s, buf);
640     if (maf == GEM_RX_REJECT) {
641         return -1;
642     }
643 
644     /* Discard packets with receive length error enabled ? */
645     if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
646         unsigned type_len;
647 
648         /* Fish the ethertype / length field out of the RX packet */
649         type_len = buf[12] << 8 | buf[13];
650         /* It is a length field, not an ethertype */
651         if (type_len < 0x600) {
652             if (size < type_len) {
653                 /* discard */
654                 return -1;
655             }
656         }
657     }
658 
659     /*
660      * Determine configured receive buffer offset (probably 0)
661      */
662     rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
663                    GEM_NWCFG_BUFF_OFST_S;
664 
665     /* The configure size of each receive buffer.  Determines how many
666      * buffers needed to hold this packet.
667      */
668     rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
669                  GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
670     bytes_to_copy = size;
671 
672     /* Hardware allows a zero value here but warns against it. To avoid QEMU
673      * indefinite loops we enforce a minimum value here
674      */
675     if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
676         rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
677     }
678 
679     /* Pad to minimum length. Assume FCS field is stripped, logic
680      * below will increment it to the real minimum of 64 when
681      * not FCS stripping
682      */
683     if (size < 60) {
684         size = 60;
685     }
686 
687     /* Strip of FCS field ? (usually yes) */
688     if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
689         rxbuf_ptr = (void *)buf;
690     } else {
691         unsigned crc_val;
692 
693         if (size > sizeof(rxbuf) - sizeof(crc_val)) {
694             size = sizeof(rxbuf) - sizeof(crc_val);
695         }
696         bytes_to_copy = size;
697         /* The application wants the FCS field, which QEMU does not provide.
698          * We must try and calculate one.
699          */
700 
701         memcpy(rxbuf, buf, size);
702         memset(rxbuf + size, 0, sizeof(rxbuf) - size);
703         rxbuf_ptr = rxbuf;
704         crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
705         memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
706 
707         bytes_to_copy += 4;
708         size += 4;
709     }
710 
711     DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
712 
713     while (bytes_to_copy) {
714         /* Do nothing if receive is not enabled. */
715         if (!gem_can_receive(nc)) {
716             assert(!first_desc);
717             return -1;
718         }
719 
720         DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
721                 rx_desc_get_buffer(s->rx_desc));
722 
723         /* Copy packet data to emulated DMA buffer */
724         cpu_physical_memory_write(rx_desc_get_buffer(s->rx_desc) + rxbuf_offset,
725                                   rxbuf_ptr, MIN(bytes_to_copy, rxbufsize));
726         rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
727         bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
728 
729         /* Update the descriptor.  */
730         if (first_desc) {
731             rx_desc_set_sof(s->rx_desc);
732             first_desc = false;
733         }
734         if (bytes_to_copy == 0) {
735             rx_desc_set_eof(s->rx_desc);
736             rx_desc_set_length(s->rx_desc, size);
737         }
738         rx_desc_set_ownership(s->rx_desc);
739 
740         switch (maf) {
741         case GEM_RX_PROMISCUOUS_ACCEPT:
742             break;
743         case GEM_RX_BROADCAST_ACCEPT:
744             rx_desc_set_broadcast(s->rx_desc);
745             break;
746         case GEM_RX_UNICAST_HASH_ACCEPT:
747             rx_desc_set_unicast_hash(s->rx_desc);
748             break;
749         case GEM_RX_MULTICAST_HASH_ACCEPT:
750             rx_desc_set_multicast_hash(s->rx_desc);
751             break;
752         case GEM_RX_REJECT:
753             abort();
754         default: /* SAR */
755             rx_desc_set_sar(s->rx_desc, maf);
756         }
757 
758         /* Descriptor write-back.  */
759         cpu_physical_memory_write(s->rx_desc_addr,
760                                   (uint8_t *)s->rx_desc, sizeof(s->rx_desc));
761 
762         /* Next descriptor */
763         if (rx_desc_get_wrap(s->rx_desc)) {
764             DB_PRINT("wrapping RX descriptor list\n");
765             s->rx_desc_addr = s->regs[GEM_RXQBASE];
766         } else {
767             DB_PRINT("incrementing RX descriptor list\n");
768             s->rx_desc_addr += 8;
769         }
770         gem_get_rx_desc(s);
771     }
772 
773     /* Count it */
774     gem_receive_updatestats(s, buf, size);
775 
776     s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
777     s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
778 
779     /* Handle interrupt consequences */
780     gem_update_int_status(s);
781 
782     return size;
783 }
784 
785 /*
786  * gem_transmit_updatestats:
787  * Increment transmit statistics.
788  */
789 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
790                                      unsigned bytes)
791 {
792     uint64_t octets;
793 
794     /* Total octets (bytes) transmitted */
795     octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
796              s->regs[GEM_OCTTXHI];
797     octets += bytes;
798     s->regs[GEM_OCTTXLO] = octets >> 32;
799     s->regs[GEM_OCTTXHI] = octets;
800 
801     /* Error-free Frames transmitted */
802     s->regs[GEM_TXCNT]++;
803 
804     /* Error-free Broadcast Frames counter */
805     if (!memcmp(packet, broadcast_addr, 6)) {
806         s->regs[GEM_TXBCNT]++;
807     }
808 
809     /* Error-free Multicast Frames counter */
810     if (packet[0] == 0x01) {
811         s->regs[GEM_TXMCNT]++;
812     }
813 
814     if (bytes <= 64) {
815         s->regs[GEM_TX64CNT]++;
816     } else if (bytes <= 127) {
817         s->regs[GEM_TX65CNT]++;
818     } else if (bytes <= 255) {
819         s->regs[GEM_TX128CNT]++;
820     } else if (bytes <= 511) {
821         s->regs[GEM_TX256CNT]++;
822     } else if (bytes <= 1023) {
823         s->regs[GEM_TX512CNT]++;
824     } else if (bytes <= 1518) {
825         s->regs[GEM_TX1024CNT]++;
826     } else {
827         s->regs[GEM_TX1519CNT]++;
828     }
829 }
830 
831 /*
832  * gem_transmit:
833  * Fish packets out of the descriptor ring and feed them to QEMU
834  */
835 static void gem_transmit(CadenceGEMState *s)
836 {
837     unsigned    desc[2];
838     hwaddr packet_desc_addr;
839     uint8_t     tx_packet[2048];
840     uint8_t     *p;
841     unsigned    total_bytes;
842 
843     /* Do nothing if transmit is not enabled. */
844     if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
845         return;
846     }
847 
848     DB_PRINT("\n");
849 
850     /* The packet we will hand off to QEMU.
851      * Packets scattered across multiple descriptors are gathered to this
852      * one contiguous buffer first.
853      */
854     p = tx_packet;
855     total_bytes = 0;
856 
857     /* read current descriptor */
858     packet_desc_addr = s->tx_desc_addr;
859 
860     DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
861     cpu_physical_memory_read(packet_desc_addr,
862                              (uint8_t *)desc, sizeof(desc));
863     /* Handle all descriptors owned by hardware */
864     while (tx_desc_get_used(desc) == 0) {
865 
866         /* Do nothing if transmit is not enabled. */
867         if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
868             return;
869         }
870         print_gem_tx_desc(desc);
871 
872         /* The real hardware would eat this (and possibly crash).
873          * For QEMU let's lend a helping hand.
874          */
875         if ((tx_desc_get_buffer(desc) == 0) ||
876             (tx_desc_get_length(desc) == 0)) {
877             DB_PRINT("Invalid TX descriptor @ 0x%x\n",
878                      (unsigned)packet_desc_addr);
879             break;
880         }
881 
882         if (tx_desc_get_length(desc) > sizeof(tx_packet) - (p - tx_packet)) {
883             DB_PRINT("TX descriptor @ 0x%x too large: size 0x%x space 0x%x\n",
884                      (unsigned)packet_desc_addr,
885                      (unsigned)tx_desc_get_length(desc),
886                      sizeof(tx_packet) - (p - tx_packet));
887             break;
888         }
889 
890         /* Gather this fragment of the packet from "dma memory" to our contig.
891          * buffer.
892          */
893         cpu_physical_memory_read(tx_desc_get_buffer(desc), p,
894                                  tx_desc_get_length(desc));
895         p += tx_desc_get_length(desc);
896         total_bytes += tx_desc_get_length(desc);
897 
898         /* Last descriptor for this packet; hand the whole thing off */
899         if (tx_desc_get_last(desc)) {
900             unsigned    desc_first[2];
901 
902             /* Modify the 1st descriptor of this packet to be owned by
903              * the processor.
904              */
905             cpu_physical_memory_read(s->tx_desc_addr, (uint8_t *)desc_first,
906                                      sizeof(desc_first));
907             tx_desc_set_used(desc_first);
908             cpu_physical_memory_write(s->tx_desc_addr, (uint8_t *)desc_first,
909                                       sizeof(desc_first));
910             /* Advance the hardware current descriptor past this packet */
911             if (tx_desc_get_wrap(desc)) {
912                 s->tx_desc_addr = s->regs[GEM_TXQBASE];
913             } else {
914                 s->tx_desc_addr = packet_desc_addr + 8;
915             }
916             DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr);
917 
918             s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
919             s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
920 
921             /* Handle interrupt consequences */
922             gem_update_int_status(s);
923 
924             /* Is checksum offload enabled? */
925             if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
926                 net_checksum_calculate(tx_packet, total_bytes);
927             }
928 
929             /* Update MAC statistics */
930             gem_transmit_updatestats(s, tx_packet, total_bytes);
931 
932             /* Send the packet somewhere */
933             if (s->phy_loop || (s->regs[GEM_NWCTRL] & GEM_NWCTRL_LOCALLOOP)) {
934                 gem_receive(qemu_get_queue(s->nic), tx_packet, total_bytes);
935             } else {
936                 qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
937                                  total_bytes);
938             }
939 
940             /* Prepare for next packet */
941             p = tx_packet;
942             total_bytes = 0;
943         }
944 
945         /* read next descriptor */
946         if (tx_desc_get_wrap(desc)) {
947             tx_desc_set_last(desc);
948             packet_desc_addr = s->regs[GEM_TXQBASE];
949         } else {
950             packet_desc_addr += 8;
951         }
952         DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
953         cpu_physical_memory_read(packet_desc_addr,
954                                  (uint8_t *)desc, sizeof(desc));
955     }
956 
957     if (tx_desc_get_used(desc)) {
958         s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
959         s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
960         gem_update_int_status(s);
961     }
962 }
963 
964 static void gem_phy_reset(CadenceGEMState *s)
965 {
966     memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
967     s->phy_regs[PHY_REG_CONTROL] = 0x1140;
968     s->phy_regs[PHY_REG_STATUS] = 0x7969;
969     s->phy_regs[PHY_REG_PHYID1] = 0x0141;
970     s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
971     s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
972     s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
973     s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
974     s->phy_regs[PHY_REG_NEXTP] = 0x2001;
975     s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
976     s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
977     s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
978     s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
979     s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
980     s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
981     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
982     s->phy_regs[PHY_REG_LED] = 0x4100;
983     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
984     s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
985 
986     phy_update_link(s);
987 }
988 
989 static void gem_reset(DeviceState *d)
990 {
991     int i;
992     CadenceGEMState *s = CADENCE_GEM(d);
993     const uint8_t *a;
994 
995     DB_PRINT("\n");
996 
997     /* Set post reset register values */
998     memset(&s->regs[0], 0, sizeof(s->regs));
999     s->regs[GEM_NWCFG] = 0x00080000;
1000     s->regs[GEM_NWSTATUS] = 0x00000006;
1001     s->regs[GEM_DMACFG] = 0x00020784;
1002     s->regs[GEM_IMR] = 0x07ffffff;
1003     s->regs[GEM_TXPAUSE] = 0x0000ffff;
1004     s->regs[GEM_TXPARTIALSF] = 0x000003ff;
1005     s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1006     s->regs[GEM_MODID] = 0x00020118;
1007     s->regs[GEM_DESCONF] = 0x02500111;
1008     s->regs[GEM_DESCONF2] = 0x2ab13fff;
1009     s->regs[GEM_DESCONF5] = 0x002f2145;
1010     s->regs[GEM_DESCONF6] = 0x00000200;
1011 
1012     /* Set MAC address */
1013     a = &s->conf.macaddr.a[0];
1014     s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1015     s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);
1016 
1017     for (i = 0; i < 4; i++) {
1018         s->sar_active[i] = false;
1019     }
1020 
1021     gem_phy_reset(s);
1022 
1023     gem_update_int_status(s);
1024 }
1025 
1026 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1027 {
1028     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1029     return s->phy_regs[reg_num];
1030 }
1031 
1032 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1033 {
1034     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1035 
1036     switch (reg_num) {
1037     case PHY_REG_CONTROL:
1038         if (val & PHY_REG_CONTROL_RST) {
1039             /* Phy reset */
1040             gem_phy_reset(s);
1041             val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1042             s->phy_loop = 0;
1043         }
1044         if (val & PHY_REG_CONTROL_ANEG) {
1045             /* Complete autonegotiation immediately */
1046             val &= ~PHY_REG_CONTROL_ANEG;
1047             s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1048         }
1049         if (val & PHY_REG_CONTROL_LOOP) {
1050             DB_PRINT("PHY placed in loopback\n");
1051             s->phy_loop = 1;
1052         } else {
1053             s->phy_loop = 0;
1054         }
1055         break;
1056     }
1057     s->phy_regs[reg_num] = val;
1058 }
1059 
1060 /*
1061  * gem_read32:
1062  * Read a GEM register.
1063  */
1064 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1065 {
1066     CadenceGEMState *s;
1067     uint32_t retval;
1068 
1069     s = (CadenceGEMState *)opaque;
1070 
1071     offset >>= 2;
1072     retval = s->regs[offset];
1073 
1074     DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1075 
1076     switch (offset) {
1077     case GEM_ISR:
1078         DB_PRINT("lowering irq on ISR read\n");
1079         qemu_set_irq(s->irq, 0);
1080         break;
1081     case GEM_PHYMNTNC:
1082         if (retval & GEM_PHYMNTNC_OP_R) {
1083             uint32_t phy_addr, reg_num;
1084 
1085             phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1086             if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1087                 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1088                 retval &= 0xFFFF0000;
1089                 retval |= gem_phy_read(s, reg_num);
1090             } else {
1091                 retval |= 0xFFFF; /* No device at this address */
1092             }
1093         }
1094         break;
1095     }
1096 
1097     /* Squash read to clear bits */
1098     s->regs[offset] &= ~(s->regs_rtc[offset]);
1099 
1100     /* Do not provide write only bits */
1101     retval &= ~(s->regs_wo[offset]);
1102 
1103     DB_PRINT("0x%08x\n", retval);
1104     return retval;
1105 }
1106 
1107 /*
1108  * gem_write32:
1109  * Write a GEM register.
1110  */
1111 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1112         unsigned size)
1113 {
1114     CadenceGEMState *s = (CadenceGEMState *)opaque;
1115     uint32_t readonly;
1116 
1117     DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1118     offset >>= 2;
1119 
1120     /* Squash bits which are read only in write value */
1121     val &= ~(s->regs_ro[offset]);
1122     /* Preserve (only) bits which are read only and wtc in register */
1123     readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1124 
1125     /* Copy register write to backing store */
1126     s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1127 
1128     /* do w1c */
1129     s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1130 
1131     /* Handle register write side effects */
1132     switch (offset) {
1133     case GEM_NWCTRL:
1134         if (val & GEM_NWCTRL_RXENA) {
1135             gem_get_rx_desc(s);
1136         }
1137         if (val & GEM_NWCTRL_TXSTART) {
1138             gem_transmit(s);
1139         }
1140         if (!(val & GEM_NWCTRL_TXENA)) {
1141             /* Reset to start of Q when transmit disabled. */
1142             s->tx_desc_addr = s->regs[GEM_TXQBASE];
1143         }
1144         if (gem_can_receive(qemu_get_queue(s->nic))) {
1145             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1146         }
1147         break;
1148 
1149     case GEM_TXSTATUS:
1150         gem_update_int_status(s);
1151         break;
1152     case GEM_RXQBASE:
1153         s->rx_desc_addr = val;
1154         break;
1155     case GEM_TXQBASE:
1156         s->tx_desc_addr = val;
1157         break;
1158     case GEM_RXSTATUS:
1159         gem_update_int_status(s);
1160         break;
1161     case GEM_IER:
1162         s->regs[GEM_IMR] &= ~val;
1163         gem_update_int_status(s);
1164         break;
1165     case GEM_IDR:
1166         s->regs[GEM_IMR] |= val;
1167         gem_update_int_status(s);
1168         break;
1169     case GEM_SPADDR1LO:
1170     case GEM_SPADDR2LO:
1171     case GEM_SPADDR3LO:
1172     case GEM_SPADDR4LO:
1173         s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1174         break;
1175     case GEM_SPADDR1HI:
1176     case GEM_SPADDR2HI:
1177     case GEM_SPADDR3HI:
1178     case GEM_SPADDR4HI:
1179         s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1180         break;
1181     case GEM_PHYMNTNC:
1182         if (val & GEM_PHYMNTNC_OP_W) {
1183             uint32_t phy_addr, reg_num;
1184 
1185             phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1186             if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1187                 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1188                 gem_phy_write(s, reg_num, val);
1189             }
1190         }
1191         break;
1192     }
1193 
1194     DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1195 }
1196 
1197 static const MemoryRegionOps gem_ops = {
1198     .read = gem_read,
1199     .write = gem_write,
1200     .endianness = DEVICE_LITTLE_ENDIAN,
1201 };
1202 
1203 static void gem_set_link(NetClientState *nc)
1204 {
1205     DB_PRINT("\n");
1206     phy_update_link(qemu_get_nic_opaque(nc));
1207 }
1208 
1209 static NetClientInfo net_gem_info = {
1210     .type = NET_CLIENT_OPTIONS_KIND_NIC,
1211     .size = sizeof(NICState),
1212     .can_receive = gem_can_receive,
1213     .receive = gem_receive,
1214     .link_status_changed = gem_set_link,
1215 };
1216 
1217 static int gem_init(SysBusDevice *sbd)
1218 {
1219     DeviceState *dev = DEVICE(sbd);
1220     CadenceGEMState *s = CADENCE_GEM(dev);
1221 
1222     DB_PRINT("\n");
1223 
1224     gem_init_register_masks(s);
1225     memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1226                           "enet", sizeof(s->regs));
1227     sysbus_init_mmio(sbd, &s->iomem);
1228     sysbus_init_irq(sbd, &s->irq);
1229     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1230 
1231     s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1232             object_get_typename(OBJECT(dev)), dev->id, s);
1233 
1234     return 0;
1235 }
1236 
1237 static const VMStateDescription vmstate_cadence_gem = {
1238     .name = "cadence_gem",
1239     .version_id = 2,
1240     .minimum_version_id = 2,
1241     .fields = (VMStateField[]) {
1242         VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1243         VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1244         VMSTATE_UINT8(phy_loop, CadenceGEMState),
1245         VMSTATE_UINT32(rx_desc_addr, CadenceGEMState),
1246         VMSTATE_UINT32(tx_desc_addr, CadenceGEMState),
1247         VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1248         VMSTATE_END_OF_LIST(),
1249     }
1250 };
1251 
1252 static Property gem_properties[] = {
1253     DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1254     DEFINE_PROP_END_OF_LIST(),
1255 };
1256 
1257 static void gem_class_init(ObjectClass *klass, void *data)
1258 {
1259     DeviceClass *dc = DEVICE_CLASS(klass);
1260     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1261 
1262     sdc->init = gem_init;
1263     dc->props = gem_properties;
1264     dc->vmsd = &vmstate_cadence_gem;
1265     dc->reset = gem_reset;
1266 }
1267 
1268 static const TypeInfo gem_info = {
1269     .name  = TYPE_CADENCE_GEM,
1270     .parent = TYPE_SYS_BUS_DEVICE,
1271     .instance_size  = sizeof(CadenceGEMState),
1272     .class_init = gem_class_init,
1273 };
1274 
1275 static void gem_register_types(void)
1276 {
1277     type_register_static(&gem_info);
1278 }
1279 
1280 type_init(gem_register_types)
1281