xref: /qemu/hw/net/cadence_gem.c (revision c755c943)
1 /*
2  * QEMU Cadence GEM emulation
3  *
4  * Copyright (c) 2011 Xilinx, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
27 
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/registerfields.h"
32 #include "migration/vmstate.h"
33 #include "qapi/error.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "sysemu/dma.h"
37 #include "net/checksum.h"
38 #include "net/eth.h"
39 
40 #define CADENCE_GEM_ERR_DEBUG 0
41 #define DB_PRINT(...) do {\
42     if (CADENCE_GEM_ERR_DEBUG) {   \
43         qemu_log(": %s: ", __func__); \
44         qemu_log(__VA_ARGS__); \
45     } \
46 } while (0)
47 
48 REG32(NWCTRL, 0x0) /* Network Control reg */
49 REG32(NWCFG, 0x4) /* Network Config reg */
50 REG32(NWSTATUS, 0x8) /* Network Status reg */
51 REG32(USERIO, 0xc) /* User IO reg */
52 REG32(DMACFG, 0x10) /* DMA Control reg */
53 REG32(TXSTATUS, 0x14) /* TX Status reg */
54 REG32(RXQBASE, 0x18) /* RX Q Base address reg */
55 REG32(TXQBASE, 0x1c) /* TX Q Base address reg */
56 REG32(RXSTATUS, 0x20) /* RX Status reg */
57 REG32(ISR, 0x24) /* Interrupt Status reg */
58 REG32(IER, 0x28) /* Interrupt Enable reg */
59 REG32(IDR, 0x2c) /* Interrupt Disable reg */
60 REG32(IMR, 0x30) /* Interrupt Mask reg */
61 REG32(PHYMNTNC, 0x34) /* Phy Maintenance reg */
62 REG32(RXPAUSE, 0x38) /* RX Pause Time reg */
63 REG32(TXPAUSE, 0x3c) /* TX Pause Time reg */
64 REG32(TXPARTIALSF, 0x40) /* TX Partial Store and Forward */
65 REG32(RXPARTIALSF, 0x44) /* RX Partial Store and Forward */
66 REG32(JUMBO_MAX_LEN, 0x48) /* Max Jumbo Frame Size */
67 REG32(HASHLO, 0x80) /* Hash Low address reg */
68 REG32(HASHHI, 0x84) /* Hash High address reg */
69 REG32(SPADDR1LO, 0x88) /* Specific addr 1 low reg */
70 REG32(SPADDR1HI, 0x8c) /* Specific addr 1 high reg */
71 REG32(SPADDR2LO, 0x90) /* Specific addr 2 low reg */
72 REG32(SPADDR2HI, 0x94) /* Specific addr 2 high reg */
73 REG32(SPADDR3LO, 0x98) /* Specific addr 3 low reg */
74 REG32(SPADDR3HI, 0x9c) /* Specific addr 3 high reg */
75 REG32(SPADDR4LO, 0xa0) /* Specific addr 4 low reg */
76 REG32(SPADDR4HI, 0xa4) /* Specific addr 4 high reg */
77 REG32(TIDMATCH1, 0xa8) /* Type ID1 Match reg */
78 REG32(TIDMATCH2, 0xac) /* Type ID2 Match reg */
79 REG32(TIDMATCH3, 0xb0) /* Type ID3 Match reg */
80 REG32(TIDMATCH4, 0xb4) /* Type ID4 Match reg */
81 REG32(WOLAN, 0xb8) /* Wake on LAN reg */
82 REG32(IPGSTRETCH, 0xbc) /* IPG Stretch reg */
83 REG32(SVLAN, 0xc0) /* Stacked VLAN reg */
84 REG32(MODID, 0xfc) /* Module ID reg */
85 REG32(OCTTXLO, 0x100) /* Octects transmitted Low reg */
86 REG32(OCTTXHI, 0x104) /* Octects transmitted High reg */
87 REG32(TXCNT, 0x108) /* Error-free Frames transmitted */
88 REG32(TXBCNT, 0x10c) /* Error-free Broadcast Frames */
89 REG32(TXMCNT, 0x110) /* Error-free Multicast Frame */
90 REG32(TXPAUSECNT, 0x114) /* Pause Frames Transmitted */
91 REG32(TX64CNT, 0x118) /* Error-free 64 TX */
92 REG32(TX65CNT, 0x11c) /* Error-free 65-127 TX */
93 REG32(TX128CNT, 0x120) /* Error-free 128-255 TX */
94 REG32(TX256CNT, 0x124) /* Error-free 256-511 */
95 REG32(TX512CNT, 0x128) /* Error-free 512-1023 TX */
96 REG32(TX1024CNT, 0x12c) /* Error-free 1024-1518 TX */
97 REG32(TX1519CNT, 0x130) /* Error-free larger than 1519 TX */
98 REG32(TXURUNCNT, 0x134) /* TX under run error counter */
99 REG32(SINGLECOLLCNT, 0x138) /* Single Collision Frames */
100 REG32(MULTCOLLCNT, 0x13c) /* Multiple Collision Frames */
101 REG32(EXCESSCOLLCNT, 0x140) /* Excessive Collision Frames */
102 REG32(LATECOLLCNT, 0x144) /* Late Collision Frames */
103 REG32(DEFERTXCNT, 0x148) /* Deferred Transmission Frames */
104 REG32(CSENSECNT, 0x14c) /* Carrier Sense Error Counter */
105 REG32(OCTRXLO, 0x150) /* Octects Received register Low */
106 REG32(OCTRXHI, 0x154) /* Octects Received register High */
107 REG32(RXCNT, 0x158) /* Error-free Frames Received */
108 REG32(RXBROADCNT, 0x15c) /* Error-free Broadcast Frames RX */
109 REG32(RXMULTICNT, 0x160) /* Error-free Multicast Frames RX */
110 REG32(RXPAUSECNT, 0x164) /* Pause Frames Received Counter */
111 REG32(RX64CNT, 0x168) /* Error-free 64 byte Frames RX */
112 REG32(RX65CNT, 0x16c) /* Error-free 65-127B Frames RX */
113 REG32(RX128CNT, 0x170) /* Error-free 128-255B Frames RX */
114 REG32(RX256CNT, 0x174) /* Error-free 256-512B Frames RX */
115 REG32(RX512CNT, 0x178) /* Error-free 512-1023B Frames RX */
116 REG32(RX1024CNT, 0x17c) /* Error-free 1024-1518B Frames RX */
117 REG32(RX1519CNT, 0x180) /* Error-free 1519-max Frames RX */
118 REG32(RXUNDERCNT, 0x184) /* Undersize Frames Received */
119 REG32(RXOVERCNT, 0x188) /* Oversize Frames Received */
120 REG32(RXJABCNT, 0x18c) /* Jabbers Received Counter */
121 REG32(RXFCSCNT, 0x190) /* Frame Check seq. Error Counter */
122 REG32(RXLENERRCNT, 0x194) /* Length Field Error Counter */
123 REG32(RXSYMERRCNT, 0x198) /* Symbol Error Counter */
124 REG32(RXALIGNERRCNT, 0x19c) /* Alignment Error Counter */
125 REG32(RXRSCERRCNT, 0x1a0) /* Receive Resource Error Counter */
126 REG32(RXORUNCNT, 0x1a4) /* Receive Overrun Counter */
127 REG32(RXIPCSERRCNT, 0x1a8) /* IP header Checksum Err Counter */
128 REG32(RXTCPCCNT, 0x1ac) /* TCP Checksum Error Counter */
129 REG32(RXUDPCCNT, 0x1b0) /* UDP Checksum Error Counter */
130 
131 REG32(1588S, 0x1d0) /* 1588 Timer Seconds */
132 REG32(1588NS, 0x1d4) /* 1588 Timer Nanoseconds */
133 REG32(1588ADJ, 0x1d8) /* 1588 Timer Adjust */
134 REG32(1588INC, 0x1dc) /* 1588 Timer Increment */
135 REG32(PTPETXS, 0x1e0) /* PTP Event Frame Transmitted (s) */
136 REG32(PTPETXNS, 0x1e4) /* PTP Event Frame Transmitted (ns) */
137 REG32(PTPERXS, 0x1e8) /* PTP Event Frame Received (s) */
138 REG32(PTPERXNS, 0x1ec) /* PTP Event Frame Received (ns) */
139 REG32(PTPPTXS, 0x1e0) /* PTP Peer Frame Transmitted (s) */
140 REG32(PTPPTXNS, 0x1e4) /* PTP Peer Frame Transmitted (ns) */
141 REG32(PTPPRXS, 0x1e8) /* PTP Peer Frame Received (s) */
142 REG32(PTPPRXNS, 0x1ec) /* PTP Peer Frame Received (ns) */
143 
144 /* Design Configuration Registers */
145 REG32(DESCONF, 0x280)
146 REG32(DESCONF2, 0x284)
147 REG32(DESCONF3, 0x288)
148 REG32(DESCONF4, 0x28c)
149 REG32(DESCONF5, 0x290)
150 REG32(DESCONF6, 0x294)
151 #define GEM_DESCONF6_64B_MASK (1U << 23)
152 REG32(DESCONF7, 0x298)
153 
154 REG32(INT_Q1_STATUS, 0x400)
155 REG32(INT_Q1_MASK, 0x640)
156 
157 REG32(TRANSMIT_Q1_PTR, 0x440)
158 REG32(TRANSMIT_Q7_PTR, 0x458)
159 
160 REG32(RECEIVE_Q1_PTR, 0x480)
161 REG32(RECEIVE_Q7_PTR, 0x498)
162 
163 REG32(TBQPH, 0x4c8)
164 REG32(RBQPH, 0x4d4)
165 
166 REG32(INT_Q1_ENABLE, 0x600)
167 REG32(INT_Q7_ENABLE, 0x618)
168 
169 REG32(INT_Q1_DISABLE, 0x620)
170 REG32(INT_Q7_DISABLE, 0x638)
171 
172 REG32(SCREENING_TYPE1_REG0, 0x500)
173 
174 #define GEM_ST1R_UDP_PORT_MATCH_ENABLE  (1 << 29)
175 #define GEM_ST1R_DSTC_ENABLE            (1 << 28)
176 #define GEM_ST1R_UDP_PORT_MATCH_SHIFT   (12)
177 #define GEM_ST1R_UDP_PORT_MATCH_WIDTH   (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
178 #define GEM_ST1R_DSTC_MATCH_SHIFT       (4)
179 #define GEM_ST1R_DSTC_MATCH_WIDTH       (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
180 #define GEM_ST1R_QUEUE_SHIFT            (0)
181 #define GEM_ST1R_QUEUE_WIDTH            (3 - GEM_ST1R_QUEUE_SHIFT + 1)
182 
183 REG32(SCREENING_TYPE2_REG0, 0x540)
184 
185 #define GEM_ST2R_COMPARE_A_ENABLE       (1 << 18)
186 #define GEM_ST2R_COMPARE_A_SHIFT        (13)
187 #define GEM_ST2R_COMPARE_WIDTH          (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
188 #define GEM_ST2R_ETHERTYPE_ENABLE       (1 << 12)
189 #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT  (9)
190 #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH  (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
191                                             + 1)
192 #define GEM_ST2R_QUEUE_SHIFT            (0)
193 #define GEM_ST2R_QUEUE_WIDTH            (3 - GEM_ST2R_QUEUE_SHIFT + 1)
194 
195 REG32(SCREENING_TYPE2_ETHERTYPE_REG0, 0x6e0)
196 REG32(TYPE2_COMPARE_0_WORD_0, 0x700)
197 
198 #define GEM_T2CW1_COMPARE_OFFSET_SHIFT  (7)
199 #define GEM_T2CW1_COMPARE_OFFSET_WIDTH  (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
200 #define GEM_T2CW1_OFFSET_VALUE_SHIFT    (0)
201 #define GEM_T2CW1_OFFSET_VALUE_WIDTH    (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)
202 
203 /*****************************************/
204 #define GEM_NWCTRL_TXSTART     0x00000200 /* Transmit Enable */
205 #define GEM_NWCTRL_TXENA       0x00000008 /* Transmit Enable */
206 #define GEM_NWCTRL_RXENA       0x00000004 /* Receive Enable */
207 #define GEM_NWCTRL_LOCALLOOP   0x00000002 /* Local Loopback */
208 
209 #define GEM_NWCFG_STRIP_FCS    0x00020000 /* Strip FCS field */
210 #define GEM_NWCFG_LERR_DISC    0x00010000 /* Discard RX frames with len err */
211 #define GEM_NWCFG_BUFF_OFST_M  0x0000C000 /* Receive buffer offset mask */
212 #define GEM_NWCFG_BUFF_OFST_S  14         /* Receive buffer offset shift */
213 #define GEM_NWCFG_RCV_1538     0x00000100 /* Receive 1538 bytes frame */
214 #define GEM_NWCFG_UCAST_HASH   0x00000080 /* accept unicast if hash match */
215 #define GEM_NWCFG_MCAST_HASH   0x00000040 /* accept multicast if hash match */
216 #define GEM_NWCFG_BCAST_REJ    0x00000020 /* Reject broadcast packets */
217 #define GEM_NWCFG_PROMISC      0x00000010 /* Accept all packets */
218 #define GEM_NWCFG_JUMBO_FRAME  0x00000008 /* Jumbo Frames enable */
219 
220 #define GEM_DMACFG_ADDR_64B    (1U << 30)
221 #define GEM_DMACFG_TX_BD_EXT   (1U << 29)
222 #define GEM_DMACFG_RX_BD_EXT   (1U << 28)
223 #define GEM_DMACFG_RBUFSZ_M    0x00FF0000 /* DMA RX Buffer Size mask */
224 #define GEM_DMACFG_RBUFSZ_S    16         /* DMA RX Buffer Size shift */
225 #define GEM_DMACFG_RBUFSZ_MUL  64         /* DMA RX Buffer Size multiplier */
226 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
227 
228 #define GEM_TXSTATUS_TXCMPL    0x00000020 /* Transmit Complete */
229 #define GEM_TXSTATUS_USED      0x00000001 /* sw owned descriptor encountered */
230 
231 #define GEM_RXSTATUS_FRMRCVD   0x00000002 /* Frame received */
232 #define GEM_RXSTATUS_NOBUF     0x00000001 /* Buffer unavailable */
233 
234 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
235 #define GEM_INT_TXCMPL        0x00000080 /* Transmit Complete */
236 #define GEM_INT_AMBA_ERR      0x00000040
237 #define GEM_INT_TXUSED         0x00000008
238 #define GEM_INT_RXUSED         0x00000004
239 #define GEM_INT_RXCMPL        0x00000002
240 
241 #define GEM_PHYMNTNC_OP_R      0x20000000 /* read operation */
242 #define GEM_PHYMNTNC_OP_W      0x10000000 /* write operation */
243 #define GEM_PHYMNTNC_ADDR      0x0F800000 /* Address bits */
244 #define GEM_PHYMNTNC_ADDR_SHFT 23
245 #define GEM_PHYMNTNC_REG       0x007C0000 /* register bits */
246 #define GEM_PHYMNTNC_REG_SHIFT 18
247 
248 /* Marvell PHY definitions */
249 #define BOARD_PHY_ADDRESS    0 /* PHY address we will emulate a device at */
250 
251 #define PHY_REG_CONTROL      0
252 #define PHY_REG_STATUS       1
253 #define PHY_REG_PHYID1       2
254 #define PHY_REG_PHYID2       3
255 #define PHY_REG_ANEGADV      4
256 #define PHY_REG_LINKPABIL    5
257 #define PHY_REG_ANEGEXP      6
258 #define PHY_REG_NEXTP        7
259 #define PHY_REG_LINKPNEXTP   8
260 #define PHY_REG_100BTCTRL    9
261 #define PHY_REG_1000BTSTAT   10
262 #define PHY_REG_EXTSTAT      15
263 #define PHY_REG_PHYSPCFC_CTL 16
264 #define PHY_REG_PHYSPCFC_ST  17
265 #define PHY_REG_INT_EN       18
266 #define PHY_REG_INT_ST       19
267 #define PHY_REG_EXT_PHYSPCFC_CTL  20
268 #define PHY_REG_RXERR        21
269 #define PHY_REG_EACD         22
270 #define PHY_REG_LED          24
271 #define PHY_REG_LED_OVRD     25
272 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
273 #define PHY_REG_EXT_PHYSPCFC_ST   27
274 #define PHY_REG_CABLE_DIAG   28
275 
276 #define PHY_REG_CONTROL_RST       0x8000
277 #define PHY_REG_CONTROL_LOOP      0x4000
278 #define PHY_REG_CONTROL_ANEG      0x1000
279 #define PHY_REG_CONTROL_ANRESTART 0x0200
280 
281 #define PHY_REG_STATUS_LINK     0x0004
282 #define PHY_REG_STATUS_ANEGCMPL 0x0020
283 
284 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
285 #define PHY_REG_INT_ST_LINKC    0x0400
286 #define PHY_REG_INT_ST_ENERGY   0x0010
287 
288 /***********************************************************************/
289 #define GEM_RX_REJECT                   (-1)
290 #define GEM_RX_PROMISCUOUS_ACCEPT       (-2)
291 #define GEM_RX_BROADCAST_ACCEPT         (-3)
292 #define GEM_RX_MULTICAST_HASH_ACCEPT    (-4)
293 #define GEM_RX_UNICAST_HASH_ACCEPT      (-5)
294 
295 #define GEM_RX_SAR_ACCEPT               0
296 
297 /***********************************************************************/
298 
299 #define DESC_1_USED 0x80000000
300 #define DESC_1_LENGTH 0x00001FFF
301 
302 #define DESC_1_TX_WRAP 0x40000000
303 #define DESC_1_TX_LAST 0x00008000
304 
305 #define DESC_0_RX_WRAP 0x00000002
306 #define DESC_0_RX_OWNERSHIP 0x00000001
307 
308 #define R_DESC_1_RX_SAR_SHIFT           25
309 #define R_DESC_1_RX_SAR_LENGTH          2
310 #define R_DESC_1_RX_SAR_MATCH           (1 << 27)
311 #define R_DESC_1_RX_UNICAST_HASH        (1 << 29)
312 #define R_DESC_1_RX_MULTICAST_HASH      (1 << 30)
313 #define R_DESC_1_RX_BROADCAST           (1 << 31)
314 
315 #define DESC_1_RX_SOF 0x00004000
316 #define DESC_1_RX_EOF 0x00008000
317 
318 #define GEM_MODID_VALUE 0x00020118
319 
320 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
321 {
322     uint64_t ret = desc[0];
323 
324     if (s->regs[R_DMACFG] & GEM_DMACFG_ADDR_64B) {
325         ret |= (uint64_t)desc[2] << 32;
326     }
327     return ret;
328 }
329 
330 static inline unsigned tx_desc_get_used(uint32_t *desc)
331 {
332     return (desc[1] & DESC_1_USED) ? 1 : 0;
333 }
334 
335 static inline void tx_desc_set_used(uint32_t *desc)
336 {
337     desc[1] |= DESC_1_USED;
338 }
339 
340 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
341 {
342     return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
343 }
344 
345 static inline unsigned tx_desc_get_last(uint32_t *desc)
346 {
347     return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
348 }
349 
350 static inline unsigned tx_desc_get_length(uint32_t *desc)
351 {
352     return desc[1] & DESC_1_LENGTH;
353 }
354 
355 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
356 {
357     DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
358     DB_PRINT("bufaddr: 0x%08x\n", *desc);
359     DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
360     DB_PRINT("wrap:    %d\n", tx_desc_get_wrap(desc));
361     DB_PRINT("last:    %d\n", tx_desc_get_last(desc));
362     DB_PRINT("length:  %d\n", tx_desc_get_length(desc));
363 }
364 
365 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
366 {
367     uint64_t ret = desc[0] & ~0x3UL;
368 
369     if (s->regs[R_DMACFG] & GEM_DMACFG_ADDR_64B) {
370         ret |= (uint64_t)desc[2] << 32;
371     }
372     return ret;
373 }
374 
375 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
376 {
377     int ret = 2;
378 
379     if (s->regs[R_DMACFG] & GEM_DMACFG_ADDR_64B) {
380         ret += 2;
381     }
382     if (s->regs[R_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT
383                                        : GEM_DMACFG_TX_BD_EXT)) {
384         ret += 2;
385     }
386 
387     assert(ret <= DESC_MAX_NUM_WORDS);
388     return ret;
389 }
390 
391 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
392 {
393     return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
394 }
395 
396 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
397 {
398     return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
399 }
400 
401 static inline void rx_desc_set_ownership(uint32_t *desc)
402 {
403     desc[0] |= DESC_0_RX_OWNERSHIP;
404 }
405 
406 static inline void rx_desc_set_sof(uint32_t *desc)
407 {
408     desc[1] |= DESC_1_RX_SOF;
409 }
410 
411 static inline void rx_desc_clear_control(uint32_t *desc)
412 {
413     desc[1]  = 0;
414 }
415 
416 static inline void rx_desc_set_eof(uint32_t *desc)
417 {
418     desc[1] |= DESC_1_RX_EOF;
419 }
420 
421 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
422 {
423     desc[1] &= ~DESC_1_LENGTH;
424     desc[1] |= len;
425 }
426 
427 static inline void rx_desc_set_broadcast(uint32_t *desc)
428 {
429     desc[1] |= R_DESC_1_RX_BROADCAST;
430 }
431 
432 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
433 {
434     desc[1] |= R_DESC_1_RX_UNICAST_HASH;
435 }
436 
437 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
438 {
439     desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
440 }
441 
442 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
443 {
444     desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
445                         sar_idx);
446     desc[1] |= R_DESC_1_RX_SAR_MATCH;
447 }
448 
449 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
450 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
451 
452 static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx)
453 {
454     uint32_t size;
455     if (s->regs[R_NWCFG] & GEM_NWCFG_JUMBO_FRAME) {
456         size = s->regs[R_JUMBO_MAX_LEN];
457         if (size > s->jumbo_max_len) {
458             size = s->jumbo_max_len;
459             qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be"
460                 " greater than 0x%" PRIx32 "\n", s->jumbo_max_len);
461         }
462     } else if (tx) {
463         size = 1518;
464     } else {
465         size = s->regs[R_NWCFG] & GEM_NWCFG_RCV_1538 ? 1538 : 1518;
466     }
467     return size;
468 }
469 
470 static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag)
471 {
472     if (q == 0) {
473         s->regs[R_ISR] |= flag & ~(s->regs[R_IMR]);
474     } else {
475         s->regs[R_INT_Q1_STATUS + q - 1] |= flag &
476                                       ~(s->regs[R_INT_Q1_MASK + q - 1]);
477     }
478 }
479 
480 /*
481  * gem_init_register_masks:
482  * One time initialization.
483  * Set masks to identify which register bits have magical clear properties
484  */
485 static void gem_init_register_masks(CadenceGEMState *s)
486 {
487     unsigned int i;
488     /* Mask of register bits which are read only */
489     memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
490     s->regs_ro[R_NWCTRL]   = 0xFFF80000;
491     s->regs_ro[R_NWSTATUS] = 0xFFFFFFFF;
492     s->regs_ro[R_DMACFG]   = 0x8E00F000;
493     s->regs_ro[R_TXSTATUS] = 0xFFFFFE08;
494     s->regs_ro[R_RXQBASE]  = 0x00000003;
495     s->regs_ro[R_TXQBASE]  = 0x00000003;
496     s->regs_ro[R_RXSTATUS] = 0xFFFFFFF0;
497     s->regs_ro[R_ISR]      = 0xFFFFFFFF;
498     s->regs_ro[R_IMR]      = 0xFFFFFFFF;
499     s->regs_ro[R_MODID]    = 0xFFFFFFFF;
500     for (i = 0; i < s->num_priority_queues; i++) {
501         s->regs_ro[R_INT_Q1_STATUS + i] = 0xFFFFFFFF;
502         s->regs_ro[R_INT_Q1_ENABLE + i] = 0xFFFFF319;
503         s->regs_ro[R_INT_Q1_DISABLE + i] = 0xFFFFF319;
504         s->regs_ro[R_INT_Q1_MASK + i] = 0xFFFFFFFF;
505     }
506 
507     /* Mask of register bits which are clear on read */
508     memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
509     s->regs_rtc[R_ISR]      = 0xFFFFFFFF;
510     for (i = 0; i < s->num_priority_queues; i++) {
511         s->regs_rtc[R_INT_Q1_STATUS + i] = 0x00000CE6;
512     }
513 
514     /* Mask of register bits which are write 1 to clear */
515     memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
516     s->regs_w1c[R_TXSTATUS] = 0x000001F7;
517     s->regs_w1c[R_RXSTATUS] = 0x0000000F;
518 
519     /* Mask of register bits which are write only */
520     memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
521     s->regs_wo[R_NWCTRL]   = 0x00073E60;
522     s->regs_wo[R_IER]      = 0x07FFFFFF;
523     s->regs_wo[R_IDR]      = 0x07FFFFFF;
524     for (i = 0; i < s->num_priority_queues; i++) {
525         s->regs_wo[R_INT_Q1_ENABLE + i] = 0x00000CE6;
526         s->regs_wo[R_INT_Q1_DISABLE + i] = 0x00000CE6;
527     }
528 }
529 
530 /*
531  * phy_update_link:
532  * Make the emulated PHY link state match the QEMU "interface" state.
533  */
534 static void phy_update_link(CadenceGEMState *s)
535 {
536     DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
537 
538     /* Autonegotiation status mirrors link status.  */
539     if (qemu_get_queue(s->nic)->link_down) {
540         s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
541                                          PHY_REG_STATUS_LINK);
542         s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
543     } else {
544         s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
545                                          PHY_REG_STATUS_LINK);
546         s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
547                                         PHY_REG_INT_ST_ANEGCMPL |
548                                         PHY_REG_INT_ST_ENERGY);
549     }
550 }
551 
552 static bool gem_can_receive(NetClientState *nc)
553 {
554     CadenceGEMState *s;
555     int i;
556 
557     s = qemu_get_nic_opaque(nc);
558 
559     /* Do nothing if receive is not enabled. */
560     if (!(s->regs[R_NWCTRL] & GEM_NWCTRL_RXENA)) {
561         if (s->can_rx_state != 1) {
562             s->can_rx_state = 1;
563             DB_PRINT("can't receive - no enable\n");
564         }
565         return false;
566     }
567 
568     for (i = 0; i < s->num_priority_queues; i++) {
569         if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
570             break;
571         }
572     };
573 
574     if (i == s->num_priority_queues) {
575         if (s->can_rx_state != 2) {
576             s->can_rx_state = 2;
577             DB_PRINT("can't receive - all the buffer descriptors are busy\n");
578         }
579         return false;
580     }
581 
582     if (s->can_rx_state != 0) {
583         s->can_rx_state = 0;
584         DB_PRINT("can receive\n");
585     }
586     return true;
587 }
588 
589 /*
590  * gem_update_int_status:
591  * Raise or lower interrupt based on current status.
592  */
593 static void gem_update_int_status(CadenceGEMState *s)
594 {
595     int i;
596 
597     qemu_set_irq(s->irq[0], !!s->regs[R_ISR]);
598 
599     for (i = 1; i < s->num_priority_queues; ++i) {
600         qemu_set_irq(s->irq[i], !!s->regs[R_INT_Q1_STATUS + i - 1]);
601     }
602 }
603 
604 /*
605  * gem_receive_updatestats:
606  * Increment receive statistics.
607  */
608 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
609                                     unsigned bytes)
610 {
611     uint64_t octets;
612 
613     /* Total octets (bytes) received */
614     octets = ((uint64_t)(s->regs[R_OCTRXLO]) << 32) |
615              s->regs[R_OCTRXHI];
616     octets += bytes;
617     s->regs[R_OCTRXLO] = octets >> 32;
618     s->regs[R_OCTRXHI] = octets;
619 
620     /* Error-free Frames received */
621     s->regs[R_RXCNT]++;
622 
623     /* Error-free Broadcast Frames counter */
624     if (!memcmp(packet, broadcast_addr, 6)) {
625         s->regs[R_RXBROADCNT]++;
626     }
627 
628     /* Error-free Multicast Frames counter */
629     if (packet[0] == 0x01) {
630         s->regs[R_RXMULTICNT]++;
631     }
632 
633     if (bytes <= 64) {
634         s->regs[R_RX64CNT]++;
635     } else if (bytes <= 127) {
636         s->regs[R_RX65CNT]++;
637     } else if (bytes <= 255) {
638         s->regs[R_RX128CNT]++;
639     } else if (bytes <= 511) {
640         s->regs[R_RX256CNT]++;
641     } else if (bytes <= 1023) {
642         s->regs[R_RX512CNT]++;
643     } else if (bytes <= 1518) {
644         s->regs[R_RX1024CNT]++;
645     } else {
646         s->regs[R_RX1519CNT]++;
647     }
648 }
649 
650 /*
651  * Get the MAC Address bit from the specified position
652  */
653 static unsigned get_bit(const uint8_t *mac, unsigned bit)
654 {
655     unsigned byte;
656 
657     byte = mac[bit / 8];
658     byte >>= (bit & 0x7);
659     byte &= 1;
660 
661     return byte;
662 }
663 
664 /*
665  * Calculate a GEM MAC Address hash index
666  */
667 static unsigned calc_mac_hash(const uint8_t *mac)
668 {
669     int index_bit, mac_bit;
670     unsigned hash_index;
671 
672     hash_index = 0;
673     mac_bit = 5;
674     for (index_bit = 5; index_bit >= 0; index_bit--) {
675         hash_index |= (get_bit(mac,  mac_bit) ^
676                                get_bit(mac, mac_bit + 6) ^
677                                get_bit(mac, mac_bit + 12) ^
678                                get_bit(mac, mac_bit + 18) ^
679                                get_bit(mac, mac_bit + 24) ^
680                                get_bit(mac, mac_bit + 30) ^
681                                get_bit(mac, mac_bit + 36) ^
682                                get_bit(mac, mac_bit + 42)) << index_bit;
683         mac_bit--;
684     }
685 
686     return hash_index;
687 }
688 
689 /*
690  * gem_mac_address_filter:
691  * Accept or reject this destination address?
692  * Returns:
693  * GEM_RX_REJECT: reject
694  * >= 0: Specific address accept (which matched SAR is returned)
695  * others for various other modes of accept:
696  * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
697  * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
698  */
699 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
700 {
701     uint8_t *gem_spaddr;
702     int i, is_mc;
703 
704     /* Promiscuous mode? */
705     if (s->regs[R_NWCFG] & GEM_NWCFG_PROMISC) {
706         return GEM_RX_PROMISCUOUS_ACCEPT;
707     }
708 
709     if (!memcmp(packet, broadcast_addr, 6)) {
710         /* Reject broadcast packets? */
711         if (s->regs[R_NWCFG] & GEM_NWCFG_BCAST_REJ) {
712             return GEM_RX_REJECT;
713         }
714         return GEM_RX_BROADCAST_ACCEPT;
715     }
716 
717     /* Accept packets -w- hash match? */
718     is_mc = is_multicast_ether_addr(packet);
719     if ((is_mc && (s->regs[R_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
720         (!is_mc && (s->regs[R_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
721         uint64_t buckets;
722         unsigned hash_index;
723 
724         hash_index = calc_mac_hash(packet);
725         buckets = ((uint64_t)s->regs[R_HASHHI] << 32) | s->regs[R_HASHLO];
726         if ((buckets >> hash_index) & 1) {
727             return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT
728                          : GEM_RX_UNICAST_HASH_ACCEPT;
729         }
730     }
731 
732     /* Check all 4 specific addresses */
733     gem_spaddr = (uint8_t *)&(s->regs[R_SPADDR1LO]);
734     for (i = 3; i >= 0; i--) {
735         if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
736             return GEM_RX_SAR_ACCEPT + i;
737         }
738     }
739 
740     /* No address match; reject the packet */
741     return GEM_RX_REJECT;
742 }
743 
744 /* Figure out which queue the received data should be sent to */
745 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
746                                  unsigned rxbufsize)
747 {
748     uint32_t reg;
749     bool matched, mismatched;
750     int i, j;
751 
752     for (i = 0; i < s->num_type1_screeners; i++) {
753         reg = s->regs[R_SCREENING_TYPE1_REG0 + i];
754         matched = false;
755         mismatched = false;
756 
757         /* Screening is based on UDP Port */
758         if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
759             uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
760             if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
761                                            GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
762                 matched = true;
763             } else {
764                 mismatched = true;
765             }
766         }
767 
768         /* Screening is based on DS/TC */
769         if (reg & GEM_ST1R_DSTC_ENABLE) {
770             uint8_t dscp = rxbuf_ptr[14 + 1];
771             if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
772                                        GEM_ST1R_DSTC_MATCH_WIDTH)) {
773                 matched = true;
774             } else {
775                 mismatched = true;
776             }
777         }
778 
779         if (matched && !mismatched) {
780             return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
781         }
782     }
783 
784     for (i = 0; i < s->num_type2_screeners; i++) {
785         reg = s->regs[R_SCREENING_TYPE2_REG0 + i];
786         matched = false;
787         mismatched = false;
788 
789         if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
790             uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
791             int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
792                                         GEM_ST2R_ETHERTYPE_INDEX_WIDTH);
793 
794             if (et_idx > s->num_type2_screeners) {
795                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
796                               "register index: %d\n", et_idx);
797             }
798             if (type == s->regs[R_SCREENING_TYPE2_ETHERTYPE_REG0 +
799                                 et_idx]) {
800                 matched = true;
801             } else {
802                 mismatched = true;
803             }
804         }
805 
806         /* Compare A, B, C */
807         for (j = 0; j < 3; j++) {
808             uint32_t cr0, cr1, mask;
809             uint16_t rx_cmp;
810             int offset;
811             int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
812                                         GEM_ST2R_COMPARE_WIDTH);
813 
814             if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
815                 continue;
816             }
817             if (cr_idx > s->num_type2_screeners) {
818                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
819                               "register index: %d\n", cr_idx);
820             }
821 
822             cr0 = s->regs[R_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
823             cr1 = s->regs[R_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
824             offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
825                                     GEM_T2CW1_OFFSET_VALUE_WIDTH);
826 
827             switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
828                                    GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
829             case 3: /* Skip UDP header */
830                 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
831                               "unimplemented - assuming UDP\n");
832                 offset += 8;
833                 /* Fallthrough */
834             case 2: /* skip the IP header */
835                 offset += 20;
836                 /* Fallthrough */
837             case 1: /* Count from after the ethertype */
838                 offset += 14;
839                 break;
840             case 0:
841                 /* Offset from start of frame */
842                 break;
843             }
844 
845             rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
846             mask = extract32(cr0, 0, 16);
847 
848             if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
849                 matched = true;
850             } else {
851                 mismatched = true;
852             }
853         }
854 
855         if (matched && !mismatched) {
856             return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
857         }
858     }
859 
860     /* We made it here, assume it's queue 0 */
861     return 0;
862 }
863 
864 static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q)
865 {
866     uint32_t base_addr = 0;
867 
868     switch (q) {
869     case 0:
870         base_addr = s->regs[tx ? R_TXQBASE : R_RXQBASE];
871         break;
872     case 1 ... (MAX_PRIORITY_QUEUES - 1):
873         base_addr = s->regs[(tx ? R_TRANSMIT_Q1_PTR :
874                                  R_RECEIVE_Q1_PTR) + q - 1];
875         break;
876     default:
877         g_assert_not_reached();
878     };
879 
880     return base_addr;
881 }
882 
883 static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q)
884 {
885     return gem_get_queue_base_addr(s, true, q);
886 }
887 
888 static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q)
889 {
890     return gem_get_queue_base_addr(s, false, q);
891 }
892 
893 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
894 {
895     hwaddr desc_addr = 0;
896 
897     if (s->regs[R_DMACFG] & GEM_DMACFG_ADDR_64B) {
898         desc_addr = s->regs[tx ? R_TBQPH : R_RBQPH];
899     }
900     desc_addr <<= 32;
901     desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
902     return desc_addr;
903 }
904 
905 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
906 {
907     return gem_get_desc_addr(s, true, q);
908 }
909 
910 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
911 {
912     return gem_get_desc_addr(s, false, q);
913 }
914 
915 static void gem_get_rx_desc(CadenceGEMState *s, int q)
916 {
917     hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
918 
919     DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
920 
921     /* read current descriptor */
922     address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
923                        s->rx_desc[q],
924                        sizeof(uint32_t) * gem_get_desc_len(s, true));
925 
926     /* Descriptor owned by software ? */
927     if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
928         DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
929         s->regs[R_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
930         gem_set_isr(s, q, GEM_INT_RXUSED);
931         /* Handle interrupt consequences */
932         gem_update_int_status(s);
933     }
934 }
935 
936 /*
937  * gem_receive:
938  * Fit a packet handed to us by QEMU into the receive descriptor ring.
939  */
940 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
941 {
942     CadenceGEMState *s = qemu_get_nic_opaque(nc);
943     unsigned   rxbufsize, bytes_to_copy;
944     unsigned   rxbuf_offset;
945     uint8_t   *rxbuf_ptr;
946     bool first_desc = true;
947     int maf;
948     int q = 0;
949 
950     /* Is this destination MAC address "for us" ? */
951     maf = gem_mac_address_filter(s, buf);
952     if (maf == GEM_RX_REJECT) {
953         return size;  /* no, drop silently b/c it's not an error */
954     }
955 
956     /* Discard packets with receive length error enabled ? */
957     if (s->regs[R_NWCFG] & GEM_NWCFG_LERR_DISC) {
958         unsigned type_len;
959 
960         /* Fish the ethertype / length field out of the RX packet */
961         type_len = buf[12] << 8 | buf[13];
962         /* It is a length field, not an ethertype */
963         if (type_len < 0x600) {
964             if (size < type_len) {
965                 /* discard */
966                 return -1;
967             }
968         }
969     }
970 
971     /*
972      * Determine configured receive buffer offset (probably 0)
973      */
974     rxbuf_offset = (s->regs[R_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
975                    GEM_NWCFG_BUFF_OFST_S;
976 
977     /* The configure size of each receive buffer.  Determines how many
978      * buffers needed to hold this packet.
979      */
980     rxbufsize = ((s->regs[R_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
981                  GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
982     bytes_to_copy = size;
983 
984     /* Hardware allows a zero value here but warns against it. To avoid QEMU
985      * indefinite loops we enforce a minimum value here
986      */
987     if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
988         rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
989     }
990 
991     /* Pad to minimum length. Assume FCS field is stripped, logic
992      * below will increment it to the real minimum of 64 when
993      * not FCS stripping
994      */
995     if (size < 60) {
996         size = 60;
997     }
998 
999     /* Strip of FCS field ? (usually yes) */
1000     if (s->regs[R_NWCFG] & GEM_NWCFG_STRIP_FCS) {
1001         rxbuf_ptr = (void *)buf;
1002     } else {
1003         unsigned crc_val;
1004 
1005         if (size > MAX_FRAME_SIZE - sizeof(crc_val)) {
1006             size = MAX_FRAME_SIZE - sizeof(crc_val);
1007         }
1008         bytes_to_copy = size;
1009         /* The application wants the FCS field, which QEMU does not provide.
1010          * We must try and calculate one.
1011          */
1012 
1013         memcpy(s->rx_packet, buf, size);
1014         memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size);
1015         rxbuf_ptr = s->rx_packet;
1016         crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60)));
1017         memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val));
1018 
1019         bytes_to_copy += 4;
1020         size += 4;
1021     }
1022 
1023     DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size);
1024 
1025     /* Find which queue we are targeting */
1026     q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
1027 
1028     if (size > gem_get_max_buf_len(s, false)) {
1029         qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n");
1030         gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1031         return -1;
1032     }
1033 
1034     while (bytes_to_copy) {
1035         hwaddr desc_addr;
1036 
1037         /* Do nothing if receive is not enabled. */
1038         if (!gem_can_receive(nc)) {
1039             return -1;
1040         }
1041 
1042         DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n",
1043                 MIN(bytes_to_copy, rxbufsize),
1044                 rx_desc_get_buffer(s, s->rx_desc[q]));
1045 
1046         /* Copy packet data to emulated DMA buffer */
1047         address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
1048                                                                   rxbuf_offset,
1049                             MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
1050                             MIN(bytes_to_copy, rxbufsize));
1051         rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
1052         bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
1053 
1054         rx_desc_clear_control(s->rx_desc[q]);
1055 
1056         /* Update the descriptor.  */
1057         if (first_desc) {
1058             rx_desc_set_sof(s->rx_desc[q]);
1059             first_desc = false;
1060         }
1061         if (bytes_to_copy == 0) {
1062             rx_desc_set_eof(s->rx_desc[q]);
1063             rx_desc_set_length(s->rx_desc[q], size);
1064         }
1065         rx_desc_set_ownership(s->rx_desc[q]);
1066 
1067         switch (maf) {
1068         case GEM_RX_PROMISCUOUS_ACCEPT:
1069             break;
1070         case GEM_RX_BROADCAST_ACCEPT:
1071             rx_desc_set_broadcast(s->rx_desc[q]);
1072             break;
1073         case GEM_RX_UNICAST_HASH_ACCEPT:
1074             rx_desc_set_unicast_hash(s->rx_desc[q]);
1075             break;
1076         case GEM_RX_MULTICAST_HASH_ACCEPT:
1077             rx_desc_set_multicast_hash(s->rx_desc[q]);
1078             break;
1079         case GEM_RX_REJECT:
1080             abort();
1081         default: /* SAR */
1082             rx_desc_set_sar(s->rx_desc[q], maf);
1083         }
1084 
1085         /* Descriptor write-back.  */
1086         desc_addr = gem_get_rx_desc_addr(s, q);
1087         address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1088                             s->rx_desc[q],
1089                             sizeof(uint32_t) * gem_get_desc_len(s, true));
1090 
1091         /* Next descriptor */
1092         if (rx_desc_get_wrap(s->rx_desc[q])) {
1093             DB_PRINT("wrapping RX descriptor list\n");
1094             s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q);
1095         } else {
1096             DB_PRINT("incrementing RX descriptor list\n");
1097             s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1098         }
1099 
1100         gem_get_rx_desc(s, q);
1101     }
1102 
1103     /* Count it */
1104     gem_receive_updatestats(s, buf, size);
1105 
1106     s->regs[R_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
1107     gem_set_isr(s, q, GEM_INT_RXCMPL);
1108 
1109     /* Handle interrupt consequences */
1110     gem_update_int_status(s);
1111 
1112     return size;
1113 }
1114 
1115 /*
1116  * gem_transmit_updatestats:
1117  * Increment transmit statistics.
1118  */
1119 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1120                                      unsigned bytes)
1121 {
1122     uint64_t octets;
1123 
1124     /* Total octets (bytes) transmitted */
1125     octets = ((uint64_t)(s->regs[R_OCTTXLO]) << 32) |
1126              s->regs[R_OCTTXHI];
1127     octets += bytes;
1128     s->regs[R_OCTTXLO] = octets >> 32;
1129     s->regs[R_OCTTXHI] = octets;
1130 
1131     /* Error-free Frames transmitted */
1132     s->regs[R_TXCNT]++;
1133 
1134     /* Error-free Broadcast Frames counter */
1135     if (!memcmp(packet, broadcast_addr, 6)) {
1136         s->regs[R_TXBCNT]++;
1137     }
1138 
1139     /* Error-free Multicast Frames counter */
1140     if (packet[0] == 0x01) {
1141         s->regs[R_TXMCNT]++;
1142     }
1143 
1144     if (bytes <= 64) {
1145         s->regs[R_TX64CNT]++;
1146     } else if (bytes <= 127) {
1147         s->regs[R_TX65CNT]++;
1148     } else if (bytes <= 255) {
1149         s->regs[R_TX128CNT]++;
1150     } else if (bytes <= 511) {
1151         s->regs[R_TX256CNT]++;
1152     } else if (bytes <= 1023) {
1153         s->regs[R_TX512CNT]++;
1154     } else if (bytes <= 1518) {
1155         s->regs[R_TX1024CNT]++;
1156     } else {
1157         s->regs[R_TX1519CNT]++;
1158     }
1159 }
1160 
1161 /*
1162  * gem_transmit:
1163  * Fish packets out of the descriptor ring and feed them to QEMU
1164  */
1165 static void gem_transmit(CadenceGEMState *s)
1166 {
1167     uint32_t desc[DESC_MAX_NUM_WORDS];
1168     hwaddr packet_desc_addr;
1169     uint8_t     *p;
1170     unsigned    total_bytes;
1171     int q = 0;
1172 
1173     /* Do nothing if transmit is not enabled. */
1174     if (!(s->regs[R_NWCTRL] & GEM_NWCTRL_TXENA)) {
1175         return;
1176     }
1177 
1178     DB_PRINT("\n");
1179 
1180     /* The packet we will hand off to QEMU.
1181      * Packets scattered across multiple descriptors are gathered to this
1182      * one contiguous buffer first.
1183      */
1184     p = s->tx_packet;
1185     total_bytes = 0;
1186 
1187     for (q = s->num_priority_queues - 1; q >= 0; q--) {
1188         /* read current descriptor */
1189         packet_desc_addr = gem_get_tx_desc_addr(s, q);
1190 
1191         DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1192         address_space_read(&s->dma_as, packet_desc_addr,
1193                            MEMTXATTRS_UNSPECIFIED, desc,
1194                            sizeof(uint32_t) * gem_get_desc_len(s, false));
1195         /* Handle all descriptors owned by hardware */
1196         while (tx_desc_get_used(desc) == 0) {
1197 
1198             /* Do nothing if transmit is not enabled. */
1199             if (!(s->regs[R_NWCTRL] & GEM_NWCTRL_TXENA)) {
1200                 return;
1201             }
1202             print_gem_tx_desc(desc, q);
1203 
1204             /* The real hardware would eat this (and possibly crash).
1205              * For QEMU let's lend a helping hand.
1206              */
1207             if ((tx_desc_get_buffer(s, desc) == 0) ||
1208                 (tx_desc_get_length(desc) == 0)) {
1209                 DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n",
1210                          packet_desc_addr);
1211                 break;
1212             }
1213 
1214             if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) -
1215                                                (p - s->tx_packet)) {
1216                 qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \
1217                          HWADDR_PRIx " too large: size 0x%x space 0x%zx\n",
1218                          packet_desc_addr, tx_desc_get_length(desc),
1219                          gem_get_max_buf_len(s, true) - (p - s->tx_packet));
1220                 gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1221                 break;
1222             }
1223 
1224             /* Gather this fragment of the packet from "dma memory" to our
1225              * contig buffer.
1226              */
1227             address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1228                                MEMTXATTRS_UNSPECIFIED,
1229                                p, tx_desc_get_length(desc));
1230             p += tx_desc_get_length(desc);
1231             total_bytes += tx_desc_get_length(desc);
1232 
1233             /* Last descriptor for this packet; hand the whole thing off */
1234             if (tx_desc_get_last(desc)) {
1235                 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1236                 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1237 
1238                 /* Modify the 1st descriptor of this packet to be owned by
1239                  * the processor.
1240                  */
1241                 address_space_read(&s->dma_as, desc_addr,
1242                                    MEMTXATTRS_UNSPECIFIED, desc_first,
1243                                    sizeof(desc_first));
1244                 tx_desc_set_used(desc_first);
1245                 address_space_write(&s->dma_as, desc_addr,
1246                                     MEMTXATTRS_UNSPECIFIED, desc_first,
1247                                     sizeof(desc_first));
1248                 /* Advance the hardware current descriptor past this packet */
1249                 if (tx_desc_get_wrap(desc)) {
1250                     s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q);
1251                 } else {
1252                     s->tx_desc_addr[q] = packet_desc_addr +
1253                                          4 * gem_get_desc_len(s, false);
1254                 }
1255                 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1256 
1257                 s->regs[R_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1258                 gem_set_isr(s, q, GEM_INT_TXCMPL);
1259 
1260                 /* Handle interrupt consequences */
1261                 gem_update_int_status(s);
1262 
1263                 /* Is checksum offload enabled? */
1264                 if (s->regs[R_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
1265                     net_checksum_calculate(s->tx_packet, total_bytes, CSUM_ALL);
1266                 }
1267 
1268                 /* Update MAC statistics */
1269                 gem_transmit_updatestats(s, s->tx_packet, total_bytes);
1270 
1271                 /* Send the packet somewhere */
1272                 if (s->phy_loop || (s->regs[R_NWCTRL] &
1273                                     GEM_NWCTRL_LOCALLOOP)) {
1274                     qemu_receive_packet(qemu_get_queue(s->nic), s->tx_packet,
1275                                         total_bytes);
1276                 } else {
1277                     qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet,
1278                                      total_bytes);
1279                 }
1280 
1281                 /* Prepare for next packet */
1282                 p = s->tx_packet;
1283                 total_bytes = 0;
1284             }
1285 
1286             /* read next descriptor */
1287             if (tx_desc_get_wrap(desc)) {
1288                 if (s->regs[R_DMACFG] & GEM_DMACFG_ADDR_64B) {
1289                     packet_desc_addr = s->regs[R_TBQPH];
1290                     packet_desc_addr <<= 32;
1291                 } else {
1292                     packet_desc_addr = 0;
1293                 }
1294                 packet_desc_addr |= gem_get_tx_queue_base_addr(s, q);
1295             } else {
1296                 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1297             }
1298             DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1299             address_space_read(&s->dma_as, packet_desc_addr,
1300                                MEMTXATTRS_UNSPECIFIED, desc,
1301                                sizeof(uint32_t) * gem_get_desc_len(s, false));
1302         }
1303 
1304         if (tx_desc_get_used(desc)) {
1305             s->regs[R_TXSTATUS] |= GEM_TXSTATUS_USED;
1306             /* IRQ TXUSED is defined only for queue 0 */
1307             if (q == 0) {
1308                 gem_set_isr(s, 0, GEM_INT_TXUSED);
1309             }
1310             gem_update_int_status(s);
1311         }
1312     }
1313 }
1314 
1315 static void gem_phy_reset(CadenceGEMState *s)
1316 {
1317     memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1318     s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1319     s->phy_regs[PHY_REG_STATUS] = 0x7969;
1320     s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1321     s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1322     s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1323     s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1324     s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1325     s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1326     s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1327     s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1328     s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1329     s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1330     s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1331     s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1332     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1333     s->phy_regs[PHY_REG_LED] = 0x4100;
1334     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1335     s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1336 
1337     phy_update_link(s);
1338 }
1339 
1340 static void gem_reset(DeviceState *d)
1341 {
1342     int i;
1343     CadenceGEMState *s = CADENCE_GEM(d);
1344     const uint8_t *a;
1345     uint32_t queues_mask = 0;
1346 
1347     DB_PRINT("\n");
1348 
1349     /* Set post reset register values */
1350     memset(&s->regs[0], 0, sizeof(s->regs));
1351     s->regs[R_NWCFG] = 0x00080000;
1352     s->regs[R_NWSTATUS] = 0x00000006;
1353     s->regs[R_DMACFG] = 0x00020784;
1354     s->regs[R_IMR] = 0x07ffffff;
1355     s->regs[R_TXPAUSE] = 0x0000ffff;
1356     s->regs[R_TXPARTIALSF] = 0x000003ff;
1357     s->regs[R_RXPARTIALSF] = 0x000003ff;
1358     s->regs[R_MODID] = s->revision;
1359     s->regs[R_DESCONF] = 0x02D00111;
1360     s->regs[R_DESCONF2] = 0x2ab10000 | s->jumbo_max_len;
1361     s->regs[R_DESCONF5] = 0x002f2045;
1362     s->regs[R_DESCONF6] = GEM_DESCONF6_64B_MASK;
1363     s->regs[R_INT_Q1_MASK] = 0x00000CE6;
1364     s->regs[R_JUMBO_MAX_LEN] = s->jumbo_max_len;
1365 
1366     if (s->num_priority_queues > 1) {
1367         queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1368         s->regs[R_DESCONF6] |= queues_mask;
1369     }
1370 
1371     /* Set MAC address */
1372     a = &s->conf.macaddr.a[0];
1373     s->regs[R_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1374     s->regs[R_SPADDR1HI] = a[4] | (a[5] << 8);
1375 
1376     for (i = 0; i < 4; i++) {
1377         s->sar_active[i] = false;
1378     }
1379 
1380     gem_phy_reset(s);
1381 
1382     gem_update_int_status(s);
1383 }
1384 
1385 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1386 {
1387     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1388     return s->phy_regs[reg_num];
1389 }
1390 
1391 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1392 {
1393     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1394 
1395     switch (reg_num) {
1396     case PHY_REG_CONTROL:
1397         if (val & PHY_REG_CONTROL_RST) {
1398             /* Phy reset */
1399             gem_phy_reset(s);
1400             val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1401             s->phy_loop = 0;
1402         }
1403         if (val & PHY_REG_CONTROL_ANEG) {
1404             /* Complete autonegotiation immediately */
1405             val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
1406             s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1407         }
1408         if (val & PHY_REG_CONTROL_LOOP) {
1409             DB_PRINT("PHY placed in loopback\n");
1410             s->phy_loop = 1;
1411         } else {
1412             s->phy_loop = 0;
1413         }
1414         break;
1415     }
1416     s->phy_regs[reg_num] = val;
1417 }
1418 
1419 /*
1420  * gem_read32:
1421  * Read a GEM register.
1422  */
1423 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1424 {
1425     CadenceGEMState *s;
1426     uint32_t retval;
1427     s = opaque;
1428 
1429     offset >>= 2;
1430     retval = s->regs[offset];
1431 
1432     DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1433 
1434     switch (offset) {
1435     case R_ISR:
1436         DB_PRINT("lowering irqs on ISR read\n");
1437         /* The interrupts get updated at the end of the function. */
1438         break;
1439     case R_PHYMNTNC:
1440         if (retval & GEM_PHYMNTNC_OP_R) {
1441             uint32_t phy_addr, reg_num;
1442 
1443             phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1444             if (phy_addr == s->phy_addr) {
1445                 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1446                 retval &= 0xFFFF0000;
1447                 retval |= gem_phy_read(s, reg_num);
1448             } else {
1449                 retval |= 0xFFFF; /* No device at this address */
1450             }
1451         }
1452         break;
1453     }
1454 
1455     /* Squash read to clear bits */
1456     s->regs[offset] &= ~(s->regs_rtc[offset]);
1457 
1458     /* Do not provide write only bits */
1459     retval &= ~(s->regs_wo[offset]);
1460 
1461     DB_PRINT("0x%08x\n", retval);
1462     gem_update_int_status(s);
1463     return retval;
1464 }
1465 
1466 /*
1467  * gem_write32:
1468  * Write a GEM register.
1469  */
1470 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1471         unsigned size)
1472 {
1473     CadenceGEMState *s = (CadenceGEMState *)opaque;
1474     uint32_t readonly;
1475     int i;
1476 
1477     DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1478     offset >>= 2;
1479 
1480     /* Squash bits which are read only in write value */
1481     val &= ~(s->regs_ro[offset]);
1482     /* Preserve (only) bits which are read only and wtc in register */
1483     readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1484 
1485     /* Copy register write to backing store */
1486     s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1487 
1488     /* do w1c */
1489     s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1490 
1491     /* Handle register write side effects */
1492     switch (offset) {
1493     case R_NWCTRL:
1494         if (val & GEM_NWCTRL_RXENA) {
1495             for (i = 0; i < s->num_priority_queues; ++i) {
1496                 gem_get_rx_desc(s, i);
1497             }
1498         }
1499         if (val & GEM_NWCTRL_TXSTART) {
1500             gem_transmit(s);
1501         }
1502         if (!(val & GEM_NWCTRL_TXENA)) {
1503             /* Reset to start of Q when transmit disabled. */
1504             for (i = 0; i < s->num_priority_queues; i++) {
1505                 s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i);
1506             }
1507         }
1508         if (gem_can_receive(qemu_get_queue(s->nic))) {
1509             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1510         }
1511         break;
1512 
1513     case R_TXSTATUS:
1514         gem_update_int_status(s);
1515         break;
1516     case R_RXQBASE:
1517         s->rx_desc_addr[0] = val;
1518         break;
1519     case R_RECEIVE_Q1_PTR ... R_RECEIVE_Q7_PTR:
1520         s->rx_desc_addr[offset - R_RECEIVE_Q1_PTR + 1] = val;
1521         break;
1522     case R_TXQBASE:
1523         s->tx_desc_addr[0] = val;
1524         break;
1525     case R_TRANSMIT_Q1_PTR ... R_TRANSMIT_Q7_PTR:
1526         s->tx_desc_addr[offset - R_TRANSMIT_Q1_PTR + 1] = val;
1527         break;
1528     case R_RXSTATUS:
1529         gem_update_int_status(s);
1530         break;
1531     case R_IER:
1532         s->regs[R_IMR] &= ~val;
1533         gem_update_int_status(s);
1534         break;
1535     case R_JUMBO_MAX_LEN:
1536         s->regs[R_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK;
1537         break;
1538     case R_INT_Q1_ENABLE ... R_INT_Q7_ENABLE:
1539         s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_ENABLE] &= ~val;
1540         gem_update_int_status(s);
1541         break;
1542     case R_IDR:
1543         s->regs[R_IMR] |= val;
1544         gem_update_int_status(s);
1545         break;
1546     case R_INT_Q1_DISABLE ... R_INT_Q7_DISABLE:
1547         s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_DISABLE] |= val;
1548         gem_update_int_status(s);
1549         break;
1550     case R_SPADDR1LO:
1551     case R_SPADDR2LO:
1552     case R_SPADDR3LO:
1553     case R_SPADDR4LO:
1554         s->sar_active[(offset - R_SPADDR1LO) / 2] = false;
1555         break;
1556     case R_SPADDR1HI:
1557     case R_SPADDR2HI:
1558     case R_SPADDR3HI:
1559     case R_SPADDR4HI:
1560         s->sar_active[(offset - R_SPADDR1HI) / 2] = true;
1561         break;
1562     case R_PHYMNTNC:
1563         if (val & GEM_PHYMNTNC_OP_W) {
1564             uint32_t phy_addr, reg_num;
1565 
1566             phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1567             if (phy_addr == s->phy_addr) {
1568                 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1569                 gem_phy_write(s, reg_num, val);
1570             }
1571         }
1572         break;
1573     }
1574 
1575     DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1576 }
1577 
1578 static const MemoryRegionOps gem_ops = {
1579     .read = gem_read,
1580     .write = gem_write,
1581     .endianness = DEVICE_LITTLE_ENDIAN,
1582 };
1583 
1584 static void gem_set_link(NetClientState *nc)
1585 {
1586     CadenceGEMState *s = qemu_get_nic_opaque(nc);
1587 
1588     DB_PRINT("\n");
1589     phy_update_link(s);
1590     gem_update_int_status(s);
1591 }
1592 
1593 static NetClientInfo net_gem_info = {
1594     .type = NET_CLIENT_DRIVER_NIC,
1595     .size = sizeof(NICState),
1596     .can_receive = gem_can_receive,
1597     .receive = gem_receive,
1598     .link_status_changed = gem_set_link,
1599 };
1600 
1601 static void gem_realize(DeviceState *dev, Error **errp)
1602 {
1603     CadenceGEMState *s = CADENCE_GEM(dev);
1604     int i;
1605 
1606     address_space_init(&s->dma_as,
1607                        s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1608 
1609     if (s->num_priority_queues == 0 ||
1610         s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1611         error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1612                    s->num_priority_queues);
1613         return;
1614     } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1615         error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1616                    s->num_type1_screeners);
1617         return;
1618     } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1619         error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1620                    s->num_type2_screeners);
1621         return;
1622     }
1623 
1624     for (i = 0; i < s->num_priority_queues; ++i) {
1625         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1626     }
1627 
1628     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1629 
1630     s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1631                           object_get_typename(OBJECT(dev)), dev->id, s);
1632 
1633     if (s->jumbo_max_len > MAX_FRAME_SIZE) {
1634         error_setg(errp, "jumbo-max-len is greater than %d",
1635                   MAX_FRAME_SIZE);
1636         return;
1637     }
1638 }
1639 
1640 static void gem_init(Object *obj)
1641 {
1642     CadenceGEMState *s = CADENCE_GEM(obj);
1643     DeviceState *dev = DEVICE(obj);
1644 
1645     DB_PRINT("\n");
1646 
1647     gem_init_register_masks(s);
1648     memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1649                           "enet", sizeof(s->regs));
1650 
1651     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1652 }
1653 
1654 static const VMStateDescription vmstate_cadence_gem = {
1655     .name = "cadence_gem",
1656     .version_id = 4,
1657     .minimum_version_id = 4,
1658     .fields = (VMStateField[]) {
1659         VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1660         VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1661         VMSTATE_UINT8(phy_loop, CadenceGEMState),
1662         VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1663                              MAX_PRIORITY_QUEUES),
1664         VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1665                              MAX_PRIORITY_QUEUES),
1666         VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1667         VMSTATE_END_OF_LIST(),
1668     }
1669 };
1670 
1671 static Property gem_properties[] = {
1672     DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1673     DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1674                        GEM_MODID_VALUE),
1675     DEFINE_PROP_UINT8("phy-addr", CadenceGEMState, phy_addr, BOARD_PHY_ADDRESS),
1676     DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1677                       num_priority_queues, 1),
1678     DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1679                       num_type1_screeners, 4),
1680     DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1681                       num_type2_screeners, 4),
1682     DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState,
1683                        jumbo_max_len, 10240),
1684     DEFINE_PROP_LINK("dma", CadenceGEMState, dma_mr,
1685                      TYPE_MEMORY_REGION, MemoryRegion *),
1686     DEFINE_PROP_END_OF_LIST(),
1687 };
1688 
1689 static void gem_class_init(ObjectClass *klass, void *data)
1690 {
1691     DeviceClass *dc = DEVICE_CLASS(klass);
1692 
1693     dc->realize = gem_realize;
1694     device_class_set_props(dc, gem_properties);
1695     dc->vmsd = &vmstate_cadence_gem;
1696     dc->reset = gem_reset;
1697 }
1698 
1699 static const TypeInfo gem_info = {
1700     .name  = TYPE_CADENCE_GEM,
1701     .parent = TYPE_SYS_BUS_DEVICE,
1702     .instance_size  = sizeof(CadenceGEMState),
1703     .instance_init = gem_init,
1704     .class_init = gem_class_init,
1705 };
1706 
1707 static void gem_register_types(void)
1708 {
1709     type_register_static(&gem_info);
1710 }
1711 
1712 type_init(gem_register_types)
1713